Science.gov

Sample records for iridium isotopes alpha

  1. Discovery of tantalum, rhenium, osmium, and iridium isotopes

    SciTech Connect

    Robinson, R.; Thoennessen, M.

    2012-09-15

    Currently, thirty-eight tantalum, thirty-eight rhenium, thirty-nine osmium, and thirty-eight iridium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  2. Large Deformation Change in Iridium Isotopes from Laser Spectroscopy

    SciTech Connect

    D. Verney; L. Cabaret; J. Crawford; H.T. Duong; J. Genevey; G. Hubert; F. Ibrahim; M. Krieg; F. Le Blanc; J.K.P. Lee; G. Le Scornet; D. Lunney; J. Obert; J. Oms; J. Pinard; J.C. Putaux; B. Roussiere; J. Sauvage; V. Sebastian

    1999-12-31

    Laser spectroscopy measurements have been performed on neutron-deficient iridium isotopes. The hyperfine structure and isotope shift of the optical Ir I transition 5d{sup 7}6s{sup 2} {sup 4}F{sub 9/2} {yields}5d{sup 7}6s6p {sup 6}F{sub 11/2} have been studied for the {sup 182-189}Ir, {sup 186}Ir{sup m} and {sup 191,193}Ir isotopes. The nuclear magnetic and quadrupole moments were obtained from the hyperfine splitting measurements and the changes of the mean square charge radii from the isotope shift measurements. A large deformation change between {sup 187}Ir and {sup 186}Ir and between {sup 186}Ir{sup m} and {sup 186}Ir{sup g} has been observed.

  3. Formic acid dehydrogenation with bioinspired iridium complexes: a kinetic isotope effect study and mechanistic insight.

    PubMed

    Wang, Wan-Hui; Xu, Shaoan; Manaka, Yuichi; Suna, Yuki; Kambayashi, Hide; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2014-07-01

    Highly efficient hydrogen generation from dehydrogenation of formic acid is achieved by using bioinspired iridium complexes that have hydroxyl groups at the ortho positions of the bipyridine or bipyrimidine ligand (i.e., OH in the second coordination sphere of the metal center). In particular, [Ir(Cp*)(TH4BPM)(H2 O)]SO4 (TH4BPM: 2,2',6,6'-tetrahydroxyl-4,4'-bipyrimidine; Cp*: pentamethylcyclopentadienyl) has a high turnover frequency of 39 500 h(-1) at 80 °C in a 1 M aqueous solution of HCO2 H/HCO2 Na and produces hydrogen and carbon dioxide without carbon monoxide contamination. The deuterium kinetic isotope effect study clearly indicates a different rate-determining step for complexes with hydroxyl groups at different positions of the ligands. The rate-limiting step is β-hydrogen elimination from the iridium-formate intermediate for complexes with hydroxyl groups at ortho positions, owing to a proton relay (i.e., pendent-base effect), which lowers the energy barrier of hydrogen generation. In contrast, the reaction of iridium hydride with a proton to liberate hydrogen is demonstrated to be the rate-determining step for complexes that do not have hydroxyl groups at the ortho positions.

  4. Practically convenient and industrially-aligned methods for iridium-catalysed hydrogen isotope exchange processes.

    PubMed

    Cochrane, A R; Idziak, C; Kerr, W J; Mondal, B; Paterson, L C; Tuttle, T; Andersson, S; Nilsson, G N

    2014-06-14

    The use of alternative solvents in the iridium-catalysed hydrogen isotope exchange reaction with developing phosphine/NHC Ir(I) complexes has identified reaction media which are more widely applicable and industrially acceptable than the commonly employed chlorinated solvent, dichloromethane. Deuterium incorporation into a variety of substrates has proceeded to deliver high levels of labelling (and regioselectivity) in the presence of low catalyst loadings and over short reaction times. The preparative outputs have been complemented by DFT studies to explore ligand orientation, as well as solvent and substrate binding energies within the catalyst system.

  5. Thorium isotopic analysis by alpha spectrometry.

    PubMed

    Gingell, T

    2001-01-01

    The technique of alpha spectrometry is used to detect alpha particles and to determine their energy. In this way the technique is able to provide simultaneously quantitative information (i.e. the activity) and qualitative information (the identity) on any radionuclide that emits an alpha particle. The longer-lived naturally occurring isotopes of thorium are all alpha emitters so the technique can be used to quantify them directly and this is extremely important if radiation doses due to intakes of these isotopes into the body are to be accurately assessed. The principle of the technique is discussed, its advantages and disadvantages, and the instrumentation that is commonly used today. The need for radiochemical separation is discussed and illustrated by reference to analysis procedures in current use for thorium isotopic analysis. Practical issues such as detection limits, quality control procedures. sample throughput and cost will be covered.

  6. Alpha-decay of light protactinium isotopes

    SciTech Connect

    Faestermann, T.; Gillitzer, A.; Hartel, K.; Henning, W.; Kienle, P.

    1987-12-10

    Light protactinium isotopes have been produced with /sup 204/Pb (/sup 19/F,xn) reactions. ..cap alpha..-activities with E/sub ..cap alpha../ = 9.90(5) MeV, T/sub 1/2/ = 53(10) ns and E/sub ..cap alpha../ = 9.65(5) MeV, T/sub 1/2/ = 0.78(16) ..mu..s could be attributed to the previously unobserved nuclei /sup 219/Pa and /sup 220/Pa with the help of excitation functions. The peak cross sections for the 4n and 3n evaporation channels are on the order of 10 ..mu..b. The decay energies as well as the halflives fit well into the systematics of these nuclei close to the magic neutron number N = 126. /sup 219/Pa is the shortest lived nuclide known with directly measured halflife.

  7. Iridium(I)-catalyzed regioselective C-H activation and hydrogen-isotope exchange of non-aromatic unsaturated functionality.

    PubMed

    Kerr, William J; Mudd, Richard J; Paterson, Laura C; Brown, Jack A

    2014-11-03

    Isotopic labelling is a key technology of increasing importance for the investigation of new CH activation and functionalization techniques, as well as in the construction of labelled molecules for use within both organic synthesis and drug discovery. Herein, we report for the first time selective iridium-catalyzed CH activation and hydrogen-isotope exchange at the β-position of unsaturated organic compounds. The use of our highly active [Ir(cod)(IMes)(PPh3 )][PF6 ] (cod=1,5-cyclooctadiene) catalyst, under mild reaction conditions, allows the regioselective β-activation and labelling of a range of α,β-unsaturated compounds with differing steric and electronic properties. This new process delivers high levels of isotope incorporation over short reaction times by using low levels of catalyst loading.

  8. Alpha decay half-life of bismuth isotopes

    NASA Astrophysics Data System (ADS)

    Tavares, O. A. P.; Medeiros, E. L.; Terranova, M. L.

    2005-02-01

    The observed alpha decay half-life values of favoured alpha transitions of ell = 5 in bismuth isotopes have been analysed in the framework of a model based on quantum mechanical tunnelling through a potential barrier where the centrifugal and overlapping effects are taken into account. In particular, the very recently measured alpha decay half-life value of (1.9 ± 0.2) × 1019 y for the unique naturally occurring 209Bi isotope has been reproduced by the present approach as (1.0 ± 0.3) × 1019 y. Also, the partial alpha decay half-lives for a number of unmeasured alpha transitions of ell = 5 in bismuth isotopes are predicted by the model, thus making it possible to demonstrate the influence of the 126 neutron shell closure on the alpha decay half-life. The present approach is shown to be successfully applicable to other isotopic sequences of alpha-emitter nuclides. Dedicated to Professor Cesare M G Lattes, one of the discoverers of the π-meson, on the occasion of his 80th birthday.

  9. Anisotropic alpha emission from on-line separated isotopes

    SciTech Connect

    Wouters, J.; Vandeplassche, D.; van Walle, E.; Severijns, N.; Vanneste, L.

    1986-05-05

    A systematic on-line nuclear-orientation study of heavy isotopes using anisotropic ..cap alpha.. emission is reported for the first time. The anisotrophies recorded for /sup 199/At, /sup 201/At, and /sup 203/At are remarkably pronounced and strongly varying. At lower neutron number the ..cap alpha.. particles are more preferentially emitted perpendicularly to the nuclear-spin direction. This may be interpreted in terms of the high sensitivity of the ..cap alpha..-emission probability to changes in the nuclear shape.

  10. Carbon isotope curve and iridium anomaly in the Albian-Cenomanian paleoceanic deposits of the Eastern Kamchatka

    NASA Astrophysics Data System (ADS)

    Savelyev, D. P.; Savelyeva, O. L.; Palechek, T. N.; Pokrovsky, B. G.

    2012-04-01

    determined contents of carbon and oxygen stable isotopes in limestones and have compared the received results to isotope curves of other regions. In studied section the curve of d13C is characterized by a clearly expressed positive shift at the level of the lower carbonaceous bed. Below it and in the overlapping stratum of siliceous limestone (1 cm thickness) d13C has the values of 1.9-2.1 pro mille and above it d13C increases up to 2.5-3 pro mille. The precise d13C maximum after a sharp shift is correlatable with the form of a d13C curve of the Middle Cenomanian Tethyan sections. Accordingly, it is possible to assert, that the lower carbonaceous bed was formed during the mid-Cenomanian anoxic event (MCE). Gradual increase of d13C in the upper part of our section is similar to change of d13C in Upper Cenomanian fragments of Tethyan sections, i.e. the lower carbonaceous bed corresponds to anoxic event at the Cenomanian/Turonian boundary (OAE2). Neutron activation analysis indicates increased up to 9 ppb concentration of Ir at the bottom of the lower carbonaceous bed (inorganic part of the sample was analyzed comprising 46% of the bulk rock). This anomaly correlates in the studied section with a positive shift of d13C. Taking into account radiolarian age data this allows to correlate the anomaly with the MCE. A source of iridium and other elements of the platinum group could be basalts and hyaloclastites from the eruptions during the sedimentation period. Anoxic conditions promoted deposit enrichment in ore elements. This work was supported by the RFBR (No. 10-05-00065).

  11. Isotopic analysis of uranium in natural waters by alpha spectrometry

    USGS Publications Warehouse

    Edwards, K.W.

    1968-01-01

    A method is described for the determination of U234/U238 activity ratios for uranium present in natural waters. The uranium is coprecipitated from solution with aluminum phosphate, extracted into ethyl acetate, further purified by ion exchange, and finally electroplated on a titanium disc for counting. The individual isotopes are determined by measurement of the alpha-particle energy spectrum using a high resolution low-background alpha spectrometer. Overall chemical recovery of about 90 percent and a counting efficiency of 25 percent allow analyses of water samples containing as little as 0.10 ?g/l of uranium. The accuracy of the method is limited, on most samples, primarily by counting statistics.

  12. Microbial degradation of alpha-cypermethrin in soil by compound-specific stable isotope analysis.

    PubMed

    Xu, Zemin; Shen, Xiaoli; Zhang, Xi-Chang; Liu, Weiping; Yang, Fangxing

    2015-09-15

    To assess microbial degradation of alpha-cypermethrin in soil, attenuation of alpha-cypermethrin was investigated by compound-specific stable isotope analysis. The variations of the residual concentrations and stable carbon isotope ratios of alpha-cypermethrin were detected in unsterilized and sterilized soils spiked with alpha-cypermethrin. After an 80 days' incubation, the concentrations of alpha-cypermethrin decreased to 0.47 and 3.41 mg/kg in the unsterilized soils spiked with 2 and 10 mg/kg, while those decreased to 1.43 and 6.61 mg/kg in the sterilized soils. Meanwhile, the carbon isotope ratios shifted to -29.14 ± 0.22‰ and -29.86 ± 0.33‰ in the unsterilized soils spiked with 2 and 10 mg/kg, respectively. The results revealed that microbial degradation contributed to the attenuation of alpha-cypermethrin and induced the carbon isotope fractionation. In order to quantitatively assess microbial degradation, a relationship between carbon isotope ratios and residual concentrations of alpha-cypermethrin was established according to Rayleigh equation. An enrichment factor, ϵ = -1.87‰ was obtained, which can be employed to assess microbial degradation of alpha-cypermethrin. The significant carbon isotope fractionation during microbial degradation suggests that CSIA is a proper approach to qualitatively detect and quantitatively assess the biodegradation during attenuation process of alpha-cypermethrin in the field.

  13. Anisotropic. cap alpha. -emission of on-line separated isotopes

    SciTech Connect

    Wouters, J.; Vandeplassche, D.; van Walle, E.; Severijns, N.; Van Haverbeke, J.; Vanneste, L.

    1987-12-10

    The technical realization of particle detection at very low temperatures (4K) has made it possible to study for the first time the anisotropic ..cap alpha..-decay of oriented nuclei which have been produced, separated and implanted on line. The measured ..cap alpha..-angular distributions reveal surprising new results on nuclear aspects as well as in solid state physics. The nuclear structure information from these data questions the older ..cap alpha..-decay theoretical interpretation and urges for a reaxamination of the earliest work on anisotropic ..cap alpha..-decay.

  14. Iridium in natural waters

    SciTech Connect

    Anbar, A.D.; Wasserburg, G.J.; Papanastassiou, D.A.

    1996-09-13

    Iridium, commonly used as a tracer of extraterrestrial material, was measured in rivers, oceans, and an estuarine environment. The concentration of iridium in the oceans ranges from 3.0 ({+-}1.3) x 10{sup 8} to 5.7 ({+-}0.8) x 10{sup 8} atoms per kilogram. Rivers contain from 17.4 ({+-}0.9) x 10{sup 8} to 92.9 ({+-}2.2) x 10{sup 8} atoms per kilogram and supply more dissolved iridium to the oceans than do extraterrestrial sources. In the Baltic Sea, {approximately}75% of riverine iridium is removed from solution. Iron-manganese oxyhydroxides scavenge iridium under oxidizing conditions, but anoxic environments are not a major sink for iridium. The ocean residence time of iridium is between 2 x 10{sup 3} and 2 x 10{sup 4} years. 32 refs., 3 figs., 1 tab.

  15. Urinary analysis of 16(5alpha)-androsten-3alpha-ol by gas chromatography/combustion/isotope ratio mass spectrometry: implications in anti-doping analysis.

    PubMed

    Saudan, Christophe; Baume, Norbert; Mangin, Patrice; Saugy, Martial

    2004-10-15

    We present a method for the analysis of urinary 16(5alpha)-androsten-3alpha-ol together with 5beta-pregnane-3alpha,20alpha-diol and four testosterone metabolites: androsterone (Andro), etiocholanolone (Etio), 5alpha-androstane-3alpha,17beta-diol (5alphaA), 5beta-androstane-3alpha,17beta-diol (5betaA) by means of gas chromatography/combustion/isotopic ratio mass spectrometry (GC/C/IRMS). The within-assay and between-assay precision S.D.s of the investigated steroids were lower than 0.3 and 0.6 per thousand, respectively. A comparative study on a population composed of 20 subjects has shown that the differences of the intra-individual delta(13)C-values for 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol are less than 0.9 per thousand. Thereafter, the method has been applied in the frame of an excretion study following oral ingestion of 50 mg DHEA initially and oral ingestion of 50mg pregnenolone 48 h later. Our findings show that administration of DHEA does not affect the isotopic ratio values of 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol, whereas the isotopic ratio values of 5beta-pregnane-3alpha,20alpha-diol vary by more 5 per thousand upon ingestion of pregnenolone. We have observed delta(13)C-value changes lower than 1 per thousand for 16(5alpha)-androsten-3alpha-ol, though pregnenolone is a precursor of the 16-ene steroids. In contrast to 5beta-pregnane-3alpha,20alpha-diol, the 16-ene steroid may be used as an endogenous reference compound when pregnenolone is administered.

  16. {alpha} decay studies of very neutron-deficient francium and radium isotopes

    SciTech Connect

    Uusitalo, J.; Leino, M.; Enqvist, T.; Grahn, T.; Greenlees, P.T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kettunen, H.; Koivisto, H.; Kuusiniemi, P.; Leppaenen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Scholey, C.; Eskola, K.

    2005-02-01

    Very neutron-deficient francium and radium isotopes have been produced in fusion evaporation reactions using {sup 63}Cu and {sup 65}Cu ions on {sup 141}Pr targets and {sup 36}Ar ions on {sup 170}Yb targets. The gas-filled recoil separator RITU was employed to collect the fusion products and to separate them from the scattered beam. The activities were implanted into a position-sensitive silicon detector after passing through a gas-counter system. The isotopes were identified using spatial and time correlations between the implants and decays. Two new {alpha} decaying radium isotopes, {sup 201}Ra and {sup 202}Ra, were identified. The {alpha} decay energy and half-life of {sup 203}Ra were measured with improved precision. The {alpha} decay properties measured for the francium isotopes {sup 201}Fr,{sup 202}Fr,{sup 203}Fr, and {sup 204}Fr were confirmed, in many cases with improved precision. For the first time, a ({pi}s{sub 1/2}{sup -1})1/2{sup +} proton intruder state was identified in francium isotopes, namely in {sup 201}Fr and tentatively in {sup 203}Fr. The measured decay properties for the neutron-deficient odd-mass Fr isotopes suggest an onset of substantial deformation at N=112.

  17. Processing of Iridium and Iridium Alloys

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    Iridium and its alloys have been considered to be difficult to fabricate due to their high melting temperatures, limited ductility, sensitivity to impurity content, and chemical properties. The variety of processing methods used for iridium and its alloys are reviewed, including purification, melting, forming, joining, and powder metallurgy techniques. Also included are coating and forming by the methods of electroplating, chemical and physical vapor deposition, and melt particle deposition.

  18. {alpha} decay of the new isotope {sup 206}Ac

    SciTech Connect

    Eskola, K.; Kuusiniemi, P.; Leino, M.; Cocks, J.F.; Enqvist, T.; Hurskanen, S.; Kettunen, H.; Trzaska, W.H.; Uusitalo, J.; Allatt, R.G.; Greenlees, P.T.; Page, R.D.

    1998-01-01

    The new neutron-deficient nuclide {sup 206}Ac was produced by bombarding a {sup 175}Lu target with 5.5 MeV/nucleon {sup 36}Ar ions. The evaporation residues were separated in flight by a gas-filled separator and subsequently identified by the {alpha}-{alpha} position and time correlation method. {sup 206}Ac was found to have two {alpha} particle emitting isomeric levels with half-lives of (22{sub {minus}5}{sup +9}) ms and (33{sub {minus}9}{sup +22}) ms, and with {alpha} particle energies of (7790{plus_minus}30) keV and (7750{plus_minus}20) keV, respectively. The former isomer is tentatively assigned to a J{sup {pi}}=3{sup +} level and the latter to a J{sup {pi}}=10{sup {minus}} level, both of which are also seen in the daughter and granddaughter nuclides {sup 202}Fr and {sup 198}At. Improved values of (27{sub {minus}6}{sup +11}) ms and (7693{plus_minus}25) keV for the half-life and {alpha} particle energy of {sup 207}Ac are also reported. {copyright} {ital 1998} {ital The American Physical Society}

  19. FAST-RESPONSE ISOTOPIC ALPHA CONTINUOUS AIR MONITOR (CAM)

    SciTech Connect

    Keith D. Patch

    2000-04-28

    The objective of this effort is to develop and test a novel Continuous Air Monitor (CAM) instrument for monitoring alpha-emitting radionuclides, using a technology that can be applied to Continuous Emission Monitoring (CEM) of thermal treatment system off gas streams. The CAM instrument will have very high alpha spectral resolution and provide real-time, on-line monitoring suitable for alerting workers of high concentrations of alpha-emitting radionuclides in the ambient air and for improved control of decontamination, dismantlement, and air emission control equipment. Base Phase I involves the design, development, and preliminary testing of a laboratory-scale instrument. Testing will initially be conducted using naturally-occurring radon progeny in ambient air. In the Optional Phase II, the Base Phase I instrument will be critically evaluated at the Lovelace Respiratory Research Institute (LRRI) with characterized plutonium aerosols; then an improved instrument will be built and field-tested at a suitable DOE site.

  20. Determination of alpha-emitting uranium isotopes in soft tissues by solvent extraction and alpha-spectrometry.

    PubMed

    Singh, N P; Wrenn, M E

    1983-04-01

    A radiochemical procedure has been developed for the determination of alpha-emitting isotopes of uranium ((238)U, (235)U and (234)U) in soft tissues. Known amounts of sample are spiked with (232)U internal tracer and wet-ashed. Uranium is co-precipitated with iron hydroxide as carrier, and extracted into 20% trilaurylamine solution in xylene after dissolution of the precipitate in 10M hydrochloric acid. The uranium, after stripping into an aqueous phase, is electro-deposited onto a platinum disc and counted by alpha-spectrometry. The radiochemical recovery ranges from 60 to 85% for bovine liver samples. The average radiochemical recoveries for human tissues vary from 53 to 78%.

  1. Alpha heating and isotopic mass effects in JET plasmas with sawteeth

    SciTech Connect

    Budny, R. V.; Team, JET

    2016-02-09

    The alpha heating experiment in the Joint European Torus (JET) 1997 DTE1 campaign is re-examined. Several effects correlated with tritium content and thermal hydrogenic isotopic mass < A> weaken the conclusion that alpha heating was clearly observed. These effects delayed the occurrence of significant sawtooth crashes allowing the electron and ion temperatures T e and T i to achieve higher values. Under otherwise equal circumstances T e and T i were typically higher for discharges with higher < A >, and significant scaling of T i, T e, and total stored energy with < A > were observed. The higher T i led to increased ion–electron heating rates with magnitudes comparable to those computed for alpha electron heating. Rates of other heating/loss processes also had comparable magnitudes. Simulations of T e assuming the observed scaling of T i are qualitatively consistent with the measured profiles, without invoking alpha heating

  2. {alpha} transitions to coexisting 0{sup +} states in Pb and Po isotopes

    SciTech Connect

    Xu Chang; Ren Zhongzhou

    2007-04-15

    The {alpha}-transitions ({delta}l=0) to ground and first excited 0{sup +} states in neutron deficient Pb and Po isotopes are systematically analyzed by the density-dependent cluster model. The magnitude of nuclear deformation of the coexisting 0{sub 1}{sup +} and 0{sub 2}{sup +} states is extracted directly from the experimental {alpha}-decay energies and half-lives. The phenomenon of shape coexistence around the Z=82 shell closure is clearly demonstrated in our present analysis. The obtained deformation values from Rn {yields} Po {yields} Pb decay chains are generally consistent with both the available experimental and theoretical studies.

  3. Alpha-Particle Angular Distributions of At and Rn Isotopes and Their Relation to Nuclear Structure

    SciTech Connect

    NICOLE Collaboration and ISOLDE Collaboration

    1996-12-01

    We report on an extensive on-line nuclear orientation study of the angular distribution of {alpha} particles emitted in the favored decay of neutron deficient At and Rn nuclei near the {ital N}=126 shell closure. Surprisingly large anisotropies were observed, showing pronounced changes from one isotope to another. Comparing these data with several theoretical models shows that anisotropic {alpha} emission in favored decays from near-spherical nuclei can well be explained within the shell model, implying that it is mainly determined by the structure of the decaying nucleus. {copyright} {ital 1996 The American Physical Society.}

  4. Iridium Interfacial Stack (IRIS)

    NASA Technical Reports Server (NTRS)

    Spry, David James (Inventor)

    2015-01-01

    An iridium interfacial stack ("IrIS") and a method for producing the same are provided. The IrIS may include ordered layers of TaSi.sub.2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.

  5. Iridium: failures & successes

    NASA Astrophysics Data System (ADS)

    Christensen, CarissaBryce; Beard, Suzette

    2001-03-01

    This paper will provide an overview of the Iridium business venture in terms of the challenges faced, the successes achieved, and the causes of the ultimate failure of the venture — bankruptcy and system de-orbit. The paper will address technical, business, and policy issues. The intent of the paper is to provide a balanced and accurate overview of the Iridium experience, to aid future decision-making by policy makers, the business community, and technical experts. Key topics will include the history of the program, the objectives and decision-making of Motorola, the market research and analysis conducted, partnering strategies and their impact, consumer equipment availability, and technical issues — target performance, performance achieved, technical accomplishments, and expected and unexpected technical challenges. The paper will use as sources trade media and business articles on the Iridium program, technical papers and conference presentations, Wall Street analyst's reports, and, where possible, interviews with participants and close observers.

  6. The emission probabilities of long range alpha particles from even-even 244-252Cm isotopes

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Krishnan, Sreejith; Priyanka, B.

    2014-10-01

    The alpha accompanied cold ternary fission of even-even 244Cm, 246Cm, 248Cm, 250Cm and 252Cm isotopes has been studied by taking the interacting barrier as the sum of the Coulomb and proximity potential with the fragments in equatorial configuration. The favorable fragment combinations are obtained from the cold reaction valley plot and by calculating the relative yield for the charge minimized fragments. In the alpha accompanied ternary fission of the 244Cm isotope, the highest yield is found for the fragment combination 110Ru+4He+130Sn, which possess near doubly magic nuclei 130Sn. For the ternary fission of 246Cm, 248Cm, 250Cm and 252Cm isotopes with 4He as the light charged particle, the highest yield is obtained for the fragment combination with doubly magic nuclei 132Sn as the heavier fragment. The emission probabilities and kinetic energies of long range alpha particles have been computed for the 242,244,246,248Cm isotopes and are found to be in good agreement with the experimental data. The relative yields for the 4He accompanied ternary fission (equatorial and collinear) of 242-252Cm isotopes are compared with the corresponding yield for binary fission. The effect of deformation and orientation of fragments in the 4He accompanied ternary fission of 244-252Cm isotopes are studied. Our study reveals that the ground state deformation has as an important role in the alpha accompanied ternary fission as that of the shell effect.

  7. Hydridomethyl iridium complex

    SciTech Connect

    Bergman, R.G; Buchanan, J.M.; Stryker, J.M.; Wax, M.J.

    1989-07-18

    This patent describes a hydridomethyl complex of the formula: CpIr(P(R{sub 1}){sub 3})HMe. Cp represents a cyclopentadienyl or alkyl cyclopentadienyl radical; Ir represents an iridium atom; P represents a phosphorus atom; R{sub 1} represents an alkyl group; and Me represents a methyl group.

  8. Luminogenic iridium azide complexes

    PubMed Central

    Ohata, Jun; Vohidov, Farrukh; Aliyan, Amirhossein; Huang, Kewei; Martí, Angel A.

    2015-01-01

    The synthesis and characterization of luminogenic, bioorthogonal iridium probes is described. These probes exhibit long fluorescent lifetimes amenable to time-resolved applications. A simple, modular synthesis via 5-azidophenanthroline allows structural variation and allows optimization of cell labeling. PMID:26325066

  9. Alpha-emitting isotopes and chromium in a coastal California aquifer

    USGS Publications Warehouse

    Densmore, Jill N.; Izbicki, John A.; Murtaugh, Joseph M.; Swarzenski, Peter W.; Bullen, Thomas D.

    2014-01-01

    The unadjusted 72-h gross alpha activities in water from two wells completed in marine and alluvial deposits in a coastal southern California aquifer 40 km north of San Diego were 15 and 25 picoCuries per liter (pCi/L). Although activities were below the Maximum Contaminant Level (MCL) of 15 pCi/L, when adjusted for uranium activity; there is concern that new wells in the area may exceed MCLs, or that future regulations may limit water use from the wells. Coupled well-bore flow and depth-dependent water-quality data collected from the wells in 2011 (with analyses for isotopes within the uranium, actinium, and thorium decay-chains) show gross alpha activity in marine deposits is associated with decay of naturally-occurring 238U and its daughter 234U. Radon activities in marine deposits were as high as 2230 pCi/L. In contrast, gross alpha activities in overlying alluvium within the Piedra de Lumbre watershed, eroded from the nearby San Onofre Hills, were associated with decay of 232Th, including its daughter 224Ra. Radon activities in alluvium from Piedra de Lumbre of 450 pCi/L were lower than in marine deposits. Chromium VI concentrations in marine deposits were less than the California MCL of 10 μg/L (effective July 1, 2014) but δ53Cr compositions were near zero and within reported ranges for anthropogenic chromium. Alluvial deposits from the nearby Las Flores watershed, which drains a larger area having diverse geology, has low alpha activities and chromium as a result of geologic and geochemical conditions and may be more promising for future water-supply development.

  10. Measurement of alpha-tocopherol turnover in plasma and in lipoproteins using stable isotopes and gas chromatography/mass spectrometry.

    PubMed

    Parks, Elizabeth J

    2002-01-01

    Burton and Daroszewska (16) have presented an excellent method for quantifying alpha-tocopherol in human and animal tissues. The present paper expands that method by including the theory and calculations for alpha-tocopherol turnover in human plasma and lipoprotein fractions. Recent advances in mathematical modeling in experimental nutrition (22) have been aided by the increased availability of labeled isotopes and sensitive analytical methods. Applied to the study of alpha-tocopherol, these techniques will allow the characterization of the kinetic behavior of this micronutrient in vivo and expand the understanding of this key nutrient's role in preventing disease.

  11. {alpha}-decay spectroscopy of the new isotope {sup 192}At

    SciTech Connect

    Andreyev, A.N.; Antalic, S.; Streicher, B.; Saro, S.; Ackermann, D.; Muenzenberg, G.; Franchoo, S.; Hessberger, F.P.; Kojouharov, I.; Kindler, B.; Kuusiniemi, P.; Lommel, B.; Mann, R.; Sulignano, B.; Hofmann, S.; Huyse, M.; Lesher, S.R.; Duppen, P. van; Nishio, K.; Page, R.D.

    2006-02-15

    Decay properties of the new neutron-deficient nuclide {sup 192}At have been studied in the complete fusion reaction {sup 144}Sm({sup 51}V,3n){sup 192}At at the velocity filter SHIP. Two isomeric states with half-lives of 88(6) ms and 11.5(6) ms, respectively, and with complex {alpha}-decay schemes were identified in {sup 192}At. The decay pattern of one of the isomers suggests that it is based on the oblate-deformed {pi}2f{sub 7/2}x{nu}1i{sub 13/2} configuration, which confirms the expected onset of deformation in the At isotopes by approaching the neutron midshell at N=104.

  12. Method for refining contaminated iridium

    DOEpatents

    Heshmatpour, B.; Heestand, R.L.

    1982-08-31

    Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

  13. Method for refining contaminated iridium

    DOEpatents

    Heshmatpour, Bahman; Heestand, Richard L.

    1983-01-01

    Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

  14. Laser Spectroscopy of Iridium Monochloride

    NASA Astrophysics Data System (ADS)

    Linton, Colan; Adam, Allan G.; Foran, Samantha; Ma, Tongmei; Steimle, Timothy

    2016-06-01

    Iridium monochloride (IrCl) molecules have been produced in the gas phase using laser ablation sources at the University of New Brunswick (UNB) and Arizona State University (ASU). Low resolution laser induced fluorescence (LIF) spectra, obtained at UNB using a pulsed dye laser, showed three bands at 557, 545 and 534 nm which appeared to form an upper state vibrational progression. Dispersed fluorescence (DF) spectra, obtained by exciting each band at its band head frequency, showed a ground state vibrational progression extending from v=0 to 6. High resolution spectra (FWHM=0.006 wn), taken using a cw ring dye laser, showed resolved rotational lines, broadened by unresolved Ir (I=3/2) hyperfine structure, in both the 193Ir35Cl and 191Ir35Cl isotopologues. Vibrational assignments of 0-0, 1-0 and 2-0 for the three bands were determined from the isotope structure and the rotational analysis showed the transition to be ^3Φ_4 - ^3Φ_4, similar to that previously observed in IrF. Higher resolution spectra (FWHM=0.001 wn) of the 1-0 band, obtained at ASU, showed resolved hyperfine structure from which the magnetic and quadrupole hyperfine parameters in the ground and excited states were determined. The interpretation of the hyperfine parameters in terms of the electron configurations will be presented along with a comparison of the properties of IrCl and IrF.

  15. Radiometric assay for cytochrome P-450-catalyzed progesterone 16 alpha-hydroxylation and determination of an apparent isotope effect

    SciTech Connect

    Osawa, Y.; Coon, M.J.

    1987-08-01

    In the course of studies on the oxygenation of steroids by purified P-450 cytochromes, particularly rabbit liver microsomal cytochrome P-450 form 3b, a rapid and reliable radiometric assay has been devised for progesterone 16 alpha-hydroxylation. In view of the lack of a commercially available, suitably tritiated substrate, (1,2,6,7,16,17-3H)progesterone was treated with alkali to remove the label from potential hydroxylation sites other than the 16 alpha position. The resulting (1,7,16-3H)progesterone was added to a reconstituted enzyme system containing cytochrome P-450 form 3b, NADPH-cytochrome P-450 reductase, and NADPH, and the rate of 16 alpha-hydroxylation was measured by the formation of /sup 3/H/sub 2/O. This reaction was shown to be linear with respect to time and to the cytochrome P-450 concentration. An apparent tritium isotope effect of 2.1 was observed by comparison of the rates of formation of tritium oxide and 16 alpha-hydroxyprogesterone, and the magnitude of the isotope effect was confirmed by an isotope competition assay in which a mixture of (1,7,16-/sup 3/H)progesterone and (4-14C)progesterone was employed.

  16. Electrochemical deposition of iridium and iridium-nickel-alloys

    NASA Astrophysics Data System (ADS)

    Näther, J.; Köster, F.; Freudenberger, R.; Schöberl, C.; Lampke, T.

    2017-03-01

    To develop durable and reliable electronic contacts, precious metals are still very important for finish plating of contact surfaces. The lesser-known iridium might be an interesting alternative to substitute gold alloys, platinum or rhodium for applications with highest demands to wear and corrosion resistance such as sliding and plug contacts. As matters stand there is no commercial electrolyte for iridium plating. Initial investigation screened the parameter range for different iridium compounds when an iridium layer occurred on the substrates. This approach showed that the oxidation state of iridium is crucial to reach contenting deposits. Best results came from Ir(IV) electrolyte with high bromine concentration coming from the starting compound, while electrolytes made from Ir(III) compounds gave very poor deposits. In subsequent experiments different organic compounds were added to the electrolytes to improve plating efficiency and stability of the solutions. So found electrolytes gave crack-free deposits up to two microns with a micro-hardness of 600 HV. To reduce the iridium content in the layer, iridium-nickel-alloys were investigated, finding that a nickel-content of 10 wt% raised the layer hardness to more than 900 HV.

  17. Kinetic isotope effects of peptidylglycine alpha-hydroxylating mono-oxygenase reaction.

    PubMed Central

    Takahashi, K; Onami, T; Noguchi, M

    1998-01-01

    Many bioactive polypeptides or neuropeptides possess a C-terminal alpha-amide group as a critical determinant for their optimal bioactivities. The amide functions are introduced by the sequential actions of peptidylglycine alpha-hydroxylating mono-oxygenase (PHM; EC 1.14.17.3) and peptidylamidoglycollate lyase (PAL; EC 4.3.2.5) from their glycine-extended precursors. In the present study we examined the kinetic isotope effects of the frog PHM reaction by competitive and non-competitive approaches. In the competitive approach we employed the double-label tracer method with D-Tyr-[U-14C]Val-Gly, D-Tyr-[3,4-3H]Val-[2,2-2H2]-Gly, and D-Tyr-Val-(R,S)[2-3H]Gly as substrates, and we determined the deuterium and tritium effects on Vmax/Km as 1.625+/-0.041 (mean+/-S. D.) and 2.71+/-0.16 (mean+/-S.D.), respectively. The intrinsic deuterium isotope effect (Dk) on the glycine hydroxylation reaction was estimated to be 6.5-10.0 (mean 8.1) by the method of Northrop [Northrop (1975) Biochemistry 14, 2644-2651]. In the non-competitive approach with N,N-dimethyl-1,4-phenylenediamine as a reductant, however, the deuterium effect on Vmax (DV) was approximately unity, although the deuterium effect on Vmax/Km (DV/K) was comparable to that obtained by the competitive approach. These results indicated that DV was completely masked by the presence of one or more steps much slower than the glycine hydroxylation step and that DV/K was diminished from Dk by a large forward commitment to catalysis. The addition of PAL, however, increased the apparent DV from 1.0 to 1.2, implying that the product release step was greatly accelerated by PAL. These results suggest that the product release is rate-limiting in the overall PHM reaction. The large Dk indicated that the glycine hydroxylation catalysed by PHM might proceed in a stepwise mechanism similar to that proposed for the dopamine beta-hydroxylase reaction [Miller and Klinman (1983) Biochemistry 22, 3091-3096]. PMID:9806894

  18. Iridium Cyclooctene Complex That Forms a Hyperpolarization Transfer Catalyst before Converting to a Binuclear C–H Bond Activation Product Responsible for Hydrogen Isotope Exchange

    PubMed Central

    2016-01-01

    [IrCl(COE)2]2 (1) reacts with pyridine (py) and H2 to form crystallographically characterized IrCl(H)2(COE)(py)2 (2). 2 undergoes py loss to form 16-electron IrCl(H)2(COE)(py) (3), with equivalent hydride ligands. When this reaction is studied with parahydrogen, 1 efficiently achieves hyperpolarization of free py (and nicotinamide, nicotine, 5-aminopyrimidine, and 3,5-lutudine) via signal amplification by reversible exchange (SABRE) and hence reflects a simple and readily available precatayst for this process. 2 reacts further over 48 h at 298 K to form crystallographically characterized (Cl)(H)(py)(μ-Cl)(μ-H)(κ-μ-NC5H4)Ir(H)(py)2 (4). This dimer is active in the hydrogen isotope exchange process that is used in radiopharmaceutical preparations. Furthermore, while [Ir(H)2(COE)(py)3]PF6 (6) forms upon the addition of AgPF6 to 2, its stability precludes its efficient involvement in SABRE. PMID:27934314

  19. Iridium at Kilauea

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Trace-element anomalies observed in rocks located stratigraphically at the Cretaceous-Tertiary boundary are considered significant evidence that the boundary is a record of a large meteorite impact (Science, 208, 1095-1108, 1980). In particular, trace metals, including iridium and other members of the platinum metals group, are thought to be enriched in rocks alien to the earth's surface. These elements are indeed enriched in meteorites relative to earth crustal rocks, but new evidence from analyses of the January 1983 eruption of Kilauea suggest that the analogy may be invalid. W.H. Zoller, J.R. Parrington, and J.M. Phelan Kotra reported neutron activation analyses of airborne particulate matter collected at the Mauna Loa Observatory and found “strikingly” large concentrations of iridium in addition to element concentrations expected from volcanic emissions (Science, 222, 1118, 1983). The only other platinum-group trace metal analyzed was gold, which was also found to be anomalously high. They concede that they need more data of other platinum group elements and more data on other volcanos, but the implication is that the Cretacious-Tertiary boundary may well be volcanic, not due to a large meteorite impact.

  20. Iridium Satellite Signal Exploitation

    NASA Astrophysics Data System (ADS)

    McDonough, Peter

    2010-03-01

    The Iridium Satellite constellation is unique to satellite communication networks in that it allows for transmission of data between satellites instead of relying on transmission by the bent pipe methodology. As such, this network is far more secure than other satellite communication networks, and forces interception to occur within the locale of the transmission from modem to satellite or within the locale of the downlink from the satellite other modem. The purpose of this project was to demonstrate the security weaknesses within the Iridium protocol, showing that it was possible to track one of these satellites with a high gain antenna, resulting in the ability to anticipate transmission, to acquire the location of that transmission, and to uncover the content of that transmission. This project was completed as part of the summer student program at the Southwest Research Institute. The presentation will demonstrate the thought process used in chronological order, essentially demonstrating how I achieved the result from my point of view as the summer progressed.

  1. Experimental study of the variation of alpha elastic scattering cross sections along isotopic and isotonic chains at low energies

    SciTech Connect

    Kiss, G. G.; Gyuerky, Gy.; Elekes, Z.; Fueloep, Zs.; Somorjai, E.; Galaviz, D.; Sonnabend, K.; Zilges, A.; Mohr, P.; Goerres, J.; Wiescher, M.; Oezkan, N.; Gueray, T.; Yalcin, C.; Avrigeanu, M.

    2008-05-21

    To improve the reliability of statistical model calculations in the region of heavy proton rich isotopes alpha elastic scattering experiments have been performed at ATOMKI, Debrecen, Hungary. The experiments were carried out at several energies above and below the Coulomb barrier with high precision. The measured angular distributions can be used for testing the predictions of the global and regional optical potential parameter sets. Moreover, we derived the variation of the elastic alpha scattering cross section along the Z = 50 ({sup 112}Sn-{sup 124}Sn) isotopic and N = 50 ({sup 89}Y-{sup 92}Mo) isotonic chains. In this paper we summarize the efforts to provide high precision experimental angular distributions for several A{approx_equal}100 nuclei to test the global optical potential parameterizations applied to p-process network calculations.

  2. Measurement of alpha-induced reaction cross sections on erbium isotopes for γ process studies

    NASA Astrophysics Data System (ADS)

    Kiss, G. G.; Szücs, T.; Török, Zs.; Fülöp, Zs.; Gyürky, Gy.; Halász, Z.; Somorjai, E.; Rauscher, T.

    2014-05-01

    The cross sections of the 162Er(α,γ)166Yb and 162,164,166Er(α,n)165,167,169Yb reactions have been measured at MTA Atomki. The radiative alpha capture reaction cross section was measured between Ec.m. = 11.21 MeV and Ec.m. = 16.09 MeV just above the astrophysically relevant energy region (which lies between 7.8 and 11.48 MeV at T9 = 3 GK). The 162Er(α,n)165Yb, 164Er(α,n)167Yb and 166Er(α,n)169Yb reactions were studied between Ec.m. = 12.19 and 16.09 MeV, Ec.m. = 13.17 and 16.59 MeV and Ec.m. = 12.68 and 17.08 MeV, respectively. The aim of this work is to provide experimental data for modeling the γ process which is thought to be responsible for the production of the proton-rich isotopes heavier than iron.

  3. Measurement of alpha-induced reaction cross sections on erbium isotopes for γ process studies

    SciTech Connect

    Kiss, G. G.; Szücs, T.; Török, Zs.; Fülöp, Zs.; Gyürky, Gy.; Halász, Z.; Somorjai, E.; Rauscher, T.

    2014-05-02

    The cross sections of the {sup 162}Er(α,γ){sup 166}Yb and {sup 162,164,166}Er(α,n){sup 165,167,169}Yb reactions have been measured at MTA Atomki. The radiative alpha capture reaction cross section was measured between E{sub c.m.} = 11.21 MeV and E{sub c.m.} = 16.09 MeV just above the astrophysically relevant energy region (which lies between 7.8 and 11.48 MeV at T{sub 9} = 3 GK). The {sup 162}Er(α,n){sup 165}Yb, {sup 164}Er(α,n){sup 167}Yb and {sup 166}Er(α,n){sup 169}Yb reactions were studied between E{sub c.m.} = 12.19 and 16.09 MeV, E{sub c.m.} = 13.17 and 16.59 MeV and E{sub c.m.} = 12.68 and 17.08 MeV, respectively. The aim of this work is to provide experimental data for modeling the γ process which is thought to be responsible for the production of the proton-rich isotopes heavier than iron.

  4. Mononuclear iridium dinitrogen complexes bonded to zeolite HY

    SciTech Connect

    Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia; Dixon, David A.; Gates, Bruce C.

    2014-11-07

    In this study, the adsorption of N2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N2 in H2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N2. Four supported species formed in various flowing gases: Ir(N2), Ir(N2)(N2), Ir(C2H5)(N2), and Ir(H)(N2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N2, Ir(N2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N2) formed transiently in flowing CO, and in the presence of H2, rather stable iridium hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.

  5. Structural, kinetic, and thermodynamic study of the reversible thermal C-H activation/reductive elimination of alkanes at iridium

    SciTech Connect

    Buchanan, J.M.; Stryker, J.M.; Bergman, R.G.

    1986-04-02

    The hydrido alkyl iridium complex Cp*(PMe/sub 3/)Ir(Cy)(H) (1, Cp* = eta/sup 5/-C/sub 5/; Cy = cyclohexyl) has been isolated by air-free chromatography at -80/sup 0/C, and its molecular structure has been determined by X-ray diffraction. Thermolysis of 1 in benzene cleanly produces cyclohexane and Cp*(PMe/sub 3/)Ir(Ph)(H) (2). The rate of reaction is first-order in 1, zero-order in benzene, and inhibited by cyclohexane; its activation parameters are ..delta..H/sup + +/ = 35.6 +/- 0.5 kcal/mol and ..delta..S/sup + +/ = +10 +/- 2 eu. An inverse isotope effect, kappa/sub h/kappa/sub d/ = 0.7 +/- 0.1, is calculated from rates of cyclohexane and cyclohexane-d/sub 12/ reductive elimination at 130/sup 0/C, and deuterium scrambling between the hydride and ..cap alpha..-cyclohexyl positions is observed to occur competitively with reductive elimination. A mechanism is proposed in which cyclohexane loss from 1 is reversible and produces (Cp*(PMe/sub 3/)Ir), which oxidatively adds to a C-H bond in a benzene solvent molecule to form 2. Evidence is also presented for the possible intermediacy of a cyclohexane/(Cp*(PMe/sub 3/)Ir) sigma-complex, which is formed before free (Cp*(PMe/sub 3/)Ir) is released. Equilibrium constants for the equilibration of several pairs of alkanes and their corresponding iridium(III) hydrido alkyl complexes have been determined and imply the following trend in solution phase iridium-carbon bond dissociation enthalpies: phenyl >> n-pentyl > 2,3-dimethylbutyl > cyclopentyl approx. cyclohexyl > neopentyl.

  6. RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY

    SciTech Connect

    Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

    2010-06-23

    A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

  7. DOE FRMAC Method Volume 2, Page 33: Gross Alpha and Beta in Air

    EPA Pesticide Factsheets

    This method determines gross alpha and beta in air filters and americium, californium, cesium, cobalt, curium, europium, iridium, plutonium, plutonium, polonium, radium, ruthenium, strontium or uranium in wipes.

  8. Hydridomethyl iridium complex

    DOEpatents

    Bergman, Robert G.; Buchanan, J. Michael; Stryker, Jeffrey M.; Wax, Michael J.

    1989-01-01

    A process for functionalizing methane comprising: (a) reacting methane with a hydridoalkyl metal complex of the formula: CpIr[P(R.sub.1).sub.3 ]H(R.sub.2) wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical having from 1 to 5 carbon atoms; Ir represents an iridium atom; P represents a phosphorus atom; R.sub.1 represents an alkyl group; R.sub.2 represents an alkyl group having at least two carbon atoms; and H represents a hydrogen atom, in the presence of a liquid alkane R.sub.3 H having at least three carbon atoms to form a hydridomethyl complex of the formula: CpIr[P(R.sub.1).sub.3 ]HMe where Me represents a methyl radical. (b) reacting said hydridomethyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X"X'"X"" or CHX'X"X'"; wherein X', X", X"', and X"" represent halogens selected from bromine, iodine and chlorine, to halomethyl complex of step (a) having the formula: CpIr[P(R.sub.1).sub.3 ]MeX: (c) reacting said halomethyl complex with a mercuric halide of the formula HgX.sub.2 to form a methyl mercuric halide of the formula HgMeX; and (d) reacting said methyl mercuric halide with a molecular halogen of the formula X.sub.2 to form methyl halide.

  9. Iridium in sea-water.

    PubMed

    Fresco, J; Weiss, H V; Phillips, R B; Askeland, R A

    1985-08-01

    Iridium in sea-water has been measured (after isolation from the saline matrix by reduction with magnesium) by neutron bombardment, radiochemical purification and high-resolution gamma-ray spectroscopy. The concentration obtained in a Pacific coastal water was 1.02 +/- 0.26 x 10(-14) g per g of sea-water. At such extremely low concentrations, seawater is an extremely unlikely source for anomalously high iridium concentrations measured in the Cretaceous-Tertiary boundary layer of deep-sea sediments.

  10. Iridium-Catalyzed Allylic Substitution

    NASA Astrophysics Data System (ADS)

    Hartwig, John F.; Pouy, Mark J.

    Iridium-catalyzed asymmetric allylic substitution has become a valuable method to prepare products from the addition of nucleophiles at the more substituted carbon of an allyl unit. The most active and selective catalysts contain a phosphoramidite ligand possessing at least one arylethyl substituent on the nitrogen atom of the ligand. In these systems, the active catalyst is generated by a base-induced cyclometalation at the methyl group of this substituent to generate an iridium metalacycle bound by the COD ligand of the [Ir(COD)Cl]2 precursor and one additional labile dative ligand. Such complexes catalyze the reactions of linear allylic esters with alkylamines, arylamines, phenols, alcohols, imides, carbamates, ammonia, enolates and enolate equivalents, as well as typical stabilized carbon nucleophiles generated from malonates and cyanoesters. Iridium catalysts for enantioselective allylic substitution have also been generated from phosphorus ligands with substituents bound by heteroatoms, and an account of the studies of such systems, along with a description of the development of iridium catalysts is included.

  11. IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORATION 5 LBF CLASS ROCKET CHAMBER 25 LBF CLASS 75 HFC 25 TAC CERAMIC COMPOSITE ROCKET CHAMBER FROM REFRACTURY COMPOSITES INC. PURCHASE ORDER C-551941-

  12. Mononuclear iridium dinitrogen complexes bonded to zeolite HY

    DOE PAGES

    Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia; ...

    2014-11-07

    In this study, the adsorption of N2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N2 in H2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N2. Four supported species formed in various flowing gases: Ir(N2), Ir(N2)(N2), Ir(C2H5)(N2), and Ir(H)(N2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N2, Ir(N2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N2) formed transiently in flowing CO, and in the presence of H2, rather stable iridiummore » hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.« less

  13. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme.

    PubMed

    Karsten, W E; Hwang, C C; Cook, P F

    1999-04-06

    The NAD-malic enzyme from Ascaris suum catalyzes the divalent metal ion-dependent oxidative decarboxylation of L-malate to give pyruvate and CO2, with NAD+ as the oxidant. Alpha-secondary tritium kinetic isotope effects were measured with NAD+ or APAD+ and L-malate-2-H(D) and several different divalent metal ions. The alpha-secondary tritium kinetic isotope effects are slightly higher than 1 with NAD+ and L-malate as substrates, much larger than the expected inverse isotope effect for a hybridization change from sp2 to sp3. The alpha-secondary tritium kinetic isotope effects are reduced to values near 1 with L-malate-2-D as the substrate, regardless of the metal ion that is used. Data suggest the presence of quantum mechanical tunneling and coupled motion in the malic enzyme reaction when NAD+ and malate are used as substrates. Isotope effects were also measured using the D/T method with NAD+ and Mn2+ as the substrate pair. A Swain-Schaad exponent of 2.2 (less than the value of 3.26 expected for strictly semiclassical behavior) is estimated, suggesting the presence of other slow steps along the reaction pathway. With APAD+ and Mn2+ as the substrate pair, inverse alpha-secondary tritium kinetic isotope effects are observed, and a Swain-Schaad exponent of 3.3 is estimated, consistent with rate-limiting hydride transfer and no quantum mechanical tunneling or coupled motion. Data are discussed in terms of the malic enzyme mechanism and the theory developed by Huskey for D/T isotope effects as an indicator of tunneling [Huskey, W. P. (1991) J. Phys. Org. Chem. 4, 361-366].

  14. Stark broadening for diagnostics of the electron density in non-equilibrium plasma utilizing isotope hydrogen alpha lines

    SciTech Connect

    Yang, Lin; Tan, Xiaohua; Wan, Xiang; Chen, Lei; Jin, Dazhi; Qian, Muyang; Li, Gongping

    2014-04-28

    Two Stark broadening parameters including FWHM (full width at half maximum) and FWHA (full width at half area) of isotope hydrogen alpha lines are simultaneously introduced to determine the electron density of a pulsed vacuum arc jet. To estimate the gas temperature, the rotational temperature of the C{sub 2} Swan system is fit to 2500 ± 100 K. A modified Boltzmann-plot method with b{sub i}-factor is introduced to determine the modified electron temperature. The comparison between results of atomic and ionic lines indicates the jet is in partial local thermodynamic equilibrium and the electron temperature is close to 13 000 ± 400 K. Based on the computational results of Gig-Card calculation, a simple and precise interpolation algorithm for the discrete-points tables can be constructed to obtain the traditional n{sub e}-T{sub e} diagnostic maps of two Stark broadening parameters. The results from FWHA formula by the direct use of FWHM = FWHA and these from the diagnostic map are different. It can be attributed to the imprecise FWHA formula form and the deviation between FWHM and FWHA. The variation of the reduced mass pair due to the non-equilibrium effect contributes to the difference of the results derived from two hydrogen isotope alpha lines. Based on the Stark broadening analysis in this work, a corrected method is set up to determine n{sub e} of (1.10 ± 0.08) × 10{sup 21} m{sup −3}, the reference reduced mass μ{sub 0} pair of (3.30 ± 0.82 and 1.65 ± 0.41), and the ion kinetic temperature of 7900 ± 1800 K.

  15. Isolation of Pu-isotopes from environmental samples using ion chromatography for accelerator mass spectrometry and alpha spectrometry.

    PubMed

    Chamizo, E; Jiménez-Ramos, M C; Wacker, L; Vioque, I; Calleja, A; García-León, M; García-Tenorio, R

    2008-01-14

    A radiochemical method for the isolation of plutonium-isotopes from environmental samples, based on the use of specific extraction chromatography resins for actinides (TEVA), Eichrom Industries, Inc.), has been set up in our laboratory and optimised for their posterior determination by alpha spectrometry (AS) or accelerator mass spectrometry (AMS). The proposed radiochemical method has replaced in our lab a well-established one based on the use of a relatively un-specific anion-exchange resin (AG) 1X8, Bio-rad Laboratories, Inc.), because it is clearly less time consuming, reduces the amounts and molarities of acid wastes produced, and reproducibly gives high radiochemical yields. In order to check the reliability of the proposed radiochemical method for the determination of plutonium-isotopes in different environmental matrixes, twin aliquots of a set of samples were prepared with TEVA and with AG 1X8 resins and measured by AS. Some samples prepared with TEVA resins were measured as well by AMS. As it is shown in the text, there is a comfortable agreement between AS and AMS, which adequately validates the method.

  16. Theoretical analysis of kinetic isotope effects on proton transfer reactions between substituted alpha-methoxystyrenes and substituted acetic acids.

    PubMed

    Wong, Kin-Yiu; Richard, John P; Gao, Jiali

    2009-10-07

    Primary kinetic isotope effects (KIEs) on a series of carboxylic acid-catalyzed protonation reactions of aryl-substituted alpha-methoxystyrenes (X-1) to form oxocarbenium ions have been computed using the second-order Kleinert variational perturbation theory (KP2) in the framework of Feynman path integrals (PI) along with the potential energy surface obtained at the B3LYP/6-31+G(d,p) level. Good agreement with the experimental data was obtained, demonstrating that this novel computational approach for computing KIEs of organic reactions is a viable alternative to the traditional method employing Bigeleisen equation and harmonic vibrational frequencies. Although tunneling makes relatively small contributions to the lowering of the free energy barriers for the carboxylic acid catalyzed protonation reaction, it is necessary to include tunneling contributions to obtain quantitative estimates of the KIEs. Consideration of anharmonicity can further improve the calculated KIEs for the protonation of substituted alpha-methoxystyrenes by chloroacetic acid, but for the reactions of the parent and 4-NO(2) substituted alpha-methoxystyrene with substituted carboxylic acids, the correction of anharmonicity overestimates the computed KIEs for strong acid catalysts. In agreement with experimental findings, the largest KIEs are found in nearly ergoneutral reactions, DeltaG(o) approximately 0, where the transition structures are nearly symmetric and the reaction barriers are relatively low. Furthermore, the optimized transition structures are strongly dependent on the free energy for the formation of the carbocation intermediate, that is, the driving force DeltaG(o), along with a good correlation of Hammond shift in the transition state structure.

  17. Anisotropic alpha decay from oriented odd-mass isotopes of some light actinides

    SciTech Connect

    Berggren, T. )

    1994-11-01

    Half-lives and anisotropies in the [alpha] decay of [sup 205,207,209]Rn, [sup 219]Rn, [sup 221]Fr, [sup 227,229]Pa, and [sup 229]U have been calculated using the reaction-theoretical formalism proposed by Jackson and Rhoades-Brown and adapted for axially symmetric deformed nuclei by Berggren and Olanders. The possibility of octupole deformation has been taken into account. In addition, a variant of triaxial octupole deformation has been considered tentatively in the case of [sup 227]Pa and [sup 229]Pa.

  18. Iridium material for hydrothermal oxidation environments

    DOEpatents

    Hong, Glenn T.; Zilberstein, Vladimir A.

    1996-01-01

    A process for hydrothermal oxidation of combustible materials in which, during at least a part of the oxidation, corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises iridium, iridium oxide, an iridium alloy, or a base metal overlaid with an iridium coating. Iridium has been found to be highly resistant to environments encountered in the process of hydrothermal oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 800.degree. C.

  19. Alpha capture reaction cross section measurements on Sb isotopes by activation method

    NASA Astrophysics Data System (ADS)

    Korkulu, Z.; Özkan, N.; Kiss, G. G.; Szücs, T.; Fülöp, Zs; Güray, R. T.; Gyürky, Gy; Halász, Z.; Somorjai, E.; Török, Zs; Yalçin, C.

    2016-01-01

    Alpha induced reactions on natural and enriched antimony targets were investigated via the activation technique in the energy range from 9.74 MeV to 15.48 MeV, close to the upper end of the Gamow window at a temperature of 3 GK relevant to the γ-process. The experiments were carried out at the Institute for Nuclear Research, the Hungarian Academy of Sciences (MTA Atomki). 121Sb(α,γ)125I, 121Sb(α,n)124I and 123Sb(α,n)126I reactions were measured using a HPGe detector. In this work, the 121Sb(α,n)124 cross section results and the comparison with the theoretical predictions (obtained with standard settings of the statistical model codes NON-SMOKER and TALYS) were presented.

  20. Optimizing the Delivery of Short-Lived Alpha Particle-Emitting Isotopes to Solid Tumors

    SciTech Connect

    Adams, Gregory P.

    2004-11-24

    The underlying hypothesis of this project was that optimal alpha emitter-based radioimmunotherapy (RAIT) could be achieved by pairing the physical half-life of the radioisotope to the biological half-life of the targeting vehicle. The project had two specific aims. The first aim was to create and optimize the therapeutic efficacy of 211At-SAPS-C6.5 diabody conjugates. The second aim was to develop bispecific-targeting strategies that increase the specificity and efficacy of alpha-emitter-based RAIT. In the performance of the first aim, we created 211At-SAPS-C6.5 diabody conjugates that specifically targeted the HER2 tumor associated antigen. In evaluating these immunoconjugates we determined that they were capable of efficient tumor targeting and therapeutic efficacy of established human tumor xenografts growing in immunodeficient mice. We also determined that therapeutic doses were associated with late renal toxicity, likely due to the role of the kidneys in the systemic elimination o f these agents. We are currently performing more studies focused on better understanding the observed toxicity. In the second aim, we successfully generated bispecific single-chain Fv (bs-scFv) molecules that co-targeted HER2 and HER3 or HER2 and HER4. The in vitro kinetics and in vivo tumor-targeting properties of these molecules were evaluated. These studies revealed that the bs-scFv molecules selectively localized in vitro on tumor cells that expressed both antigens and were capable of effective tumor localization in in vivo studies.

  1. TCP Performance Enhancement Over Iridium

    NASA Technical Reports Server (NTRS)

    Torgerson, Leigh; Hutcherson, Joseph; McKelvey, James

    2007-01-01

    In support of iNET maturation, NASA-JPL has collaborated with NASA-Dryden to develop, test and demonstrate an over-the-horizon vehicle-to-ground networking capability, using Iridium as the vehicle-to-ground communications link for relaying critical vehicle telemetry. To ensure reliability concerns are met, the Space Communications Protocol Standards (SCPS) transport protocol was investigated for its performance characteristics in this environment. In particular, the SCPS-TP software performance was compared to that of the standard Transmission Control Protocol (TCP) over the Internet Protocol (IP). This paper will report on the results of this work.

  2. On the dissolution of iridium by aluminum.

    SciTech Connect

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  3. {alpha}-decay of the new isotope {sup 187}Po: Probing prolate structures beyond the neutron mid-shell at N = 104

    SciTech Connect

    Andreyev, A.N.; Antalic, S.

    2006-04-15

    The new neutron-deficient isotope {sup 187}Po has been identified in the complete fusion reaction {sup 46}Ti+{sup 144}Sm{yields}{sup 187}Po+3n at the velocity filter SHIP. Striking features of the {sup 187}Po {alpha} decay are the strongly-hindered decay to the spherical ground state and unhindered decay to a surprisingly low-lying deformed excited state at 286 keV in the daughter nucleus {sup 183}Pb. Based on the potential energy surface calculations, the {sup 187}Po ground state and the 286 keV excited state in {sup 183}Pb were interpreted as being of prolate origin. The systematic deviation of the {alpha}-decay properties in the lightest odd-A Po isotopes relative to the smooth behavior in the even-A neighbors is discussed. Improved data for the decay of {sup 187}Bi{sup m,g} were also obtained.

  4. Determining the Altitude of Iridium Flares

    NASA Technical Reports Server (NTRS)

    Foster, James; Owe, Manfred

    1999-01-01

    Iridium flares have nothing to do with the element iridium. Iridium is also the name of a telecommunications company that has been launching satellites into low orbits around the Earth. These satellites are being used for a new type of wireless phone and paging service. Flares have been observed coming from these satellites. These flares have the potential, especially when the full fleet of satellites is in orbit, to disrupt astronomical observations. The paper reviews using simple trigonometry how to calculate the altitude of one of these satellites.

  5. Enantioselective, iridium-catalyzed monoallylation of ammonia.

    PubMed

    Pouy, Mark J; Stanley, Levi M; Hartwig, John F

    2009-08-19

    Highly enantioselective, iridium-catalyzed monoallylations of ammonia are reported. These reactions occur with electron-neutral, -rich, and -poor cinnamyl carbonates, alkyl and trityloxy-substituted allylic carbonates, and dienyl carbonates in moderate to good yields and excellent enantioselectivities. This process is enabled by the use of an iridium catalyst that does not require a Lewis acid for activation and that is stable toward a large excess of ammonia. This selective formation of primary allylic amines allows for one-pot syntheses of heterodiallylamines and allylic amides that are not otherwise accessible via iridium-catalyzed allylic amination without the use of blocking groups and protective group manipulations.

  6. Enantioselective, Iridium-Catalyzed Monoallylation of Ammonia

    PubMed Central

    Pouy, Mark J.; Stanley, Levi M.; Hartwig, John F.

    2009-01-01

    Highly enantioselective, iridium-catalyzed monoallylations of ammonia are reported. These reactions occur with electron-neutral, -rich, and -poor cinnamyl carbonates, alkyl and trityloxy-substituted allylic carbonates, and dienyl carbonates in moderate to good yields and excellent enantioselectivities. This process is enabled by the use of an iridium catalyst that does not require a Lewis acid for activation and that is stable toward a large excess of ammonia. This selective formation of primary allylic amines allows for one-pot syntheses of heterodiallylamines and allylic amides that are not otherwise accessible via iridium-catalyzed allylic amination without the use of blocking groups and protective group manipulations. PMID:19722644

  7. Assessing the 210At impurity in the production of 211At for radiotherapy by 210Po analysis via isotope dilution alpha spectrometry.

    PubMed

    Schultz, Michael K; Hammond, Michelle; Cessna, Jeffrey T; Plascjak, Paul; Norman, Bruce; Szajek, Lawrence; Garmestani, Kayhan; Zimmerman, Brian E; Unterweger, Michael

    2006-01-01

    A method for assessing the impurity 210At in cyclotron-produced 211At via isotope dilution alpha spectrometry is presented. The activity of 210At is quantified by measuring the activity of daughter nuclide 210Po. Counting sources are prepared by spontaneous deposition of Po on a silver disc. Activity of 210At (at the time of 210Po maximum activity) is found to be 83.5+/-9.0 Bq, corresponding to an atom ratio (210At:211At at the time of distillation) of 0.010+/-0.007% (k=2). The method produces high-quality alpha spectra, with baseline alpha-peak resolution and chemical yields of greater than 85%.

  8. IRIDIUM (R): A Lockheed transition to commercial space

    NASA Technical Reports Server (NTRS)

    Tadano, Thomas N.

    1995-01-01

    At Lockheed Missiles & Space Company, the IRIDIUM commercial space program is dramatically revolutionizing spacecraft development and manufacturing processes to reduce cost while maintaining quality and reliability. This report includes the following sections: an overview of the IRIDIUM system, the Lockheed IRIDIUM project and challenges; cycle-time reduction through production reorganization; and design for manufacturing and quality.

  9. Method for determination of uranium isotopes in environmental samples by liquid-liquid extraction with triisooctylamine/xylene in hydrochloric media and alpha spectrometry.

    PubMed

    Popov, L

    2012-10-01

    Alternative method for determination of uranium isotopes in various environmental samples is presented. The method is based on total decomposition of the solid materials and preconcentration of liquid samples. The separation of uranium from interfering radionuclides and stable matrix elements is attained by liquid-liquid extraction with triisooctylamine/xylene in hydrochloric media. After the additional removal of stable iron by extraction with diisopropyl ether, purified uranium is electrodeposited on stainless steel disks and measured by alpha spectrometry. The analytical method has been successfully applied to the determination of uranium isotopes in water and bottom sediments from the rivers Danube, Ogosta and Tzibritza in Northwestern Bulgaria. The analytical quality was checked by analyzing reference materials with different matrices.

  10. The kinetics and mechanism of the organo-iridium catalysed racemisation of amines.

    PubMed

    Stirling, Matthew J; Mwansa, Joseph M; Sweeney, Gemma; Blacker, A John; Page, Michael I

    2016-08-07

    The dimeric iodo-iridium complex [IrCp*I2]2 (Cp* = pentamethylcyclopentadiene) is an efficient catalyst for the racemisation of secondary and tertiary amines at ambient and higher temperatures with a low catalyst loading. The racemisation occurs with pseudo-first-order kinetics and the corresponding four rate constants were obtained by monitoring the time dependence of the concentrations of the (R) and (S) enantiomers starting with either pure (R) or (S) and show a first-order dependence on catalyst concentration. Low temperature (1)H NMR data is consistent with the formation of a 1 : 1 complex with the amine coordinated to the iridium and with both iodide anions still bound to the metal-ion, but at the higher temperatures used for kinetic studies binding is weak and so no saturation zero-order kinetics are observed. A cross-over experiment with isotopically labelled amines demonstrates the intermediate formation of an imine which can dissociate from the iridium complex. Replacing the iodides in the catalyst by other ligands or having an amide substituent in Cp* results in a much less effective catalysts for the racemisation of amines. The rate constants for a deuterated amine yield a significant primary kinetic isotope effect kH/kD = 3.24 indicating that hydride transfer is involved in the rate-limiting step.

  11. In vitro study of iridium electrodes for neural stimulation.

    PubMed

    Aryan, Naser Pour; Brendler, Christian; Rieger, Viola; Schleehauf, Sebastian; Heusel, Gerhard; Rothermel, Albrecht

    2012-01-01

    Iridium is one of the main electrode materials for applications like neural stimulation. Iridium has a higher charge injection capacity when activated and transformed into AIROF (activated iridium oxide film) using specific electrical signals. Activation is not possible in stimulating devices, if they do not include the necessary circuitry for activation. We introduce a method for iridium electrode activation requiring minimum additional on-chip hardware. In the main part, the lifetime behavior of iridium electrodes is investigated. These results may be interesting for applications not including on-chip activation hardware, and also because activation has drawbacks such as worse mechanical properties and reproducibility of AIROF.

  12. Iridium-catalyzed H/D exchange: ligand complexes with improved efficiency and scope.

    PubMed

    Parmentier, Michael; Hartung, Thomas; Pfaltz, Andreas; Muri, Dieter

    2014-09-01

    Hydrogen isotope exchange (HIE) is one of the most attractive tools for the introduction of deuterium or tritium to an organic compound. Herein, iridium complexes with N,P-ligands, highly active catalysts for asymmetric double bond reductions, have been tested for their HIE capabilities. Electron-rich ligands, containing dicyclohexylphosphines or phosphinites, have been identified as excellent ligands for efficient deuterium incorporation. Substrates with strong directing groups, that is, pyridines, ketones, and amides, as well as weak ligating units, such as, nitro, sulfones, and sulfonamides, could be labeled efficiently. With the addition of tris(pentafluorophenyl) borane to the reaction mixture, also highly deactivating nitrile substituents were well tolerated in the reaction. Based on the excellent results obtained with the chiral ThrePhox ligand, a structurally simpler, achiral ligand was developed. The iridium complex containing this ligand, proved to be a powerful catalyst for HIE reactions.

  13. Analysis of plutonium isotope ratios including (238)Pu/(239)Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    PubMed

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as (238)U with (238)Pu and (241)Am with (241)Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of (238)Pu/(239)Pu, (240)Pu/(239)Pu, (241)Pu/(239)Pu, and (242)Pu/(239)Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the (240)Pu/(239)Pu, (241)Pu/(239)Pu, and (242)Pu/(239)Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, (238)Pu/(239)Pu isotope ratios were able to be calculated by using both the (238)Pu/((239)Pu+(240)Pu) activity ratios that had been measured through alpha spectrometry and the (240)Pu/(239)Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including (238)Pu/(239)Pu, in individual U-Pu mixed oxide particles.

  14. Annealing Increases Stability Of Iridium Thermocouples

    NASA Technical Reports Server (NTRS)

    Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.; Ahmed, Shaffiq

    1989-01-01

    Metallurgical studies carried out on samples of iridium versus iridium/40-percent rhodium thermocouples in condition received from manufacturer. Metallurgical studies included x-ray, macroscopic, resistance, and metallographic studies. Revealed large amount of internal stress caused by cold-working during manufacturing, and large number of segregations and inhomogeneities. Samples annealed in furnace at temperatures from 1,000 to 2,000 degree C for intervals up to 1 h to study effects of heat treatment. Wire annealed by this procedure found to be ductile.

  15. Iridium emissions from Hawaiian volcanoes

    NASA Technical Reports Server (NTRS)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  16. ORISE Method AP1: Gross Alpha and Beta for Various Matrices

    EPA Pesticide Factsheets

    This method uses gross alpha and gross beta proportional counting on soil, sediment and vegetation samples contaminated with americium, californium, cesium, cobalt, curium, europium, iridium, plutonium, polonium, radium, ruthenium, strontium or uranium.

  17. Beta delayed alpha emission from the neutron deficient rare earth isotopes {sup 152}Tm and {sup 150}Ho

    SciTech Connect

    Nacher, E.; Tain, J. L.; Rubio, B.; Algora, A.; Estevez Aguado, M. E.; Gadea, A.; Batist, L.; Briz, J. A.; Cano-Ott, D.; Doering, J.; Mukha, I.; Plettner, C.; Roeckl, E.; Gierlik, M.; Janas, Z.

    2011-11-30

    The study of beta-delayed proton emission is a well known method to aid the determination of the beta strength distribution in nuclei far from the stability line. At the neutron deficient side of the nuclear chart the process of proton or alpha emission from excited states is energetically allowed when one goes far enough from stability. However, beta-delayed alphas have seldom been measured for nuclei heavier than A = 20. Here we present a study of the beta-delayed alpha-particle emission from {sup 152}Tm and {sup 150}Ho and their importance in the full B(GT) distribution.

  18. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, Jr., Furn F.; Butler, Thomas A.; Brihaye, Claude

    1987-01-01

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline.

  19. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, F.F. Jr.; Butler, T.A.; Brihaye, C.

    1985-08-26

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline. 4 figs. 3 tabs.

  20. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  1. Iridium-192 Production for Cancer Treatment

    SciTech Connect

    Rostelato, M.E.C.M.; Silva, C.P.G.; Rela, P.R.; Zeituni, C.A.; Lepki, V.; Feher, A.

    2004-10-05

    The purpose of this work is to settle a laboratory for Iridium -192 sources production, that is, to determine a wire activation method and to build a hot cell for the wires manipulation, quality control and packaging. The paper relates, mainly, the wire activation method and its quality control. The wire activation is carried out in our nuclear reactor, IEA- R1m.

  2. Competition between alpha-decay and spontaneous fission at isotopes of superheavy elements Rf, Db, and Sg

    SciTech Connect

    Anghel, Claudia Ioana; Silisteanu, Andrei Octavian

    2015-12-07

    The most important decay modes for heavy and superheavy nuclei are their α-decay and spontaneous fission. This work investigates the evolution and the competition of these decay modes in long isotopic sequences. The partial half-lives are given by minimal sets of parameters extracted from the fit of experimental data and theoretical results. A summary of the experimental and calculated α-decay and spontaneous fission half-lives of the isotopes of elements Rf, Db, and Sg is presented. Some half-life extrapolations for nuclides not yet known are also obtained.

  3. Determination of thorium isotopes in mineral and environmental water and soil samples by alpha-spectrometry and the fate of thorium in water.

    PubMed

    Jia, Guogang; Torri, G; Ocone, R; Di Lullo, A; De Angelis, A; Boschetto, R

    2008-10-01

    A method has been developed for determination of thorium isotopes in water and soil samples by alpha-spectrometry. After fusion with Na(2)CO(3) and Na(2)O(2) at 600 degrees C, soil samples were leached with HNO(3) and HCl. Thorium in water sample or in soil leaching solution was coprecipitated together with iron (III) as hydroxides and/or carbonates at pH 9 with ammonia solution, separated from uranium and other alpha-emitters by a Microthene-TOPO (tri-octyl-phosphine oxide) chromatographic column, electrodeposited on a stainless steel disk, and measured by alpha-spectrometry. The method was checked with two certified reference materials supplied by the IAEA, and reliable results were obtained. The detection limits of the method for water (soil) samples are 0.44 microBq l(-1) (0.070 Bq kg(-1)) for (232)Th, 0.80 microBq l(-1) (0.13 Bq kg(-1)) for (230)Th and 1.0 microBq l(-1) (0.16 Bq kg(-1)) for (228)Th, respectively, if 100 l of water (0.50 g) for each sample are analysed. A variety of water or soil samples were analysed using this procedure and giving average thorium yields of 75.5+/-14.2% for water and 93.4+/-4.5% for soil. The obtained concentrations of thorium isotopes in water samples are in the range of 0.0007-0.0326 mBq l(-1) for (232)Th, isotopes in water was studied. The exposure impact due to intake of thorium in the analysed drinking water was evaluated, showing a negligible amount of dose contribution. The concentrations of (232)Th, (230)Th and (228)Th in the analysed soil samples are in the range of 30.2-48.6, 32.5-60.5 and 31.0-53.0 Bq kg(-1), respectively. The obtained mean ratio is 1.04+/-0.05 for (228)Th/(232)Th and 1.20+/-0.41 for (230)Th/(232)Th.

  4. UV Raman spatially resolved melting dynamics of isotopically labeled polyalanyl peptide: slow alpha-helix melting follows 3(10)-helices and pi-bulges premelting.

    PubMed

    Mikhonin, Aleksandr V; Asher, Sanford A; Bykov, Sergei V; Murza, Adrian

    2007-03-29

    We used UV resonance Raman (UVRR) to examine the spatial dependence of the T-jump secondary structure relaxation of an isotopically labeled 21-residue mainly Ala peptide, AdP. The AdP penultimate Ala residues were perdeuterated, leaving the central residues hydrogenated, to allow separate monitoring of melting of the middle versus the end peptide bonds. For 5 to 30 degrees C T-jumps, the central peptide bonds show a approximately 2-fold slower relaxation time (189 +/- 31 ns) than do the exterior peptide bonds (97 +/- 15 ns). In contrast, for a 20 to 40 degrees C T-jump, the central peptide bond relaxation appears to be faster (56 +/- 6 ns) than that of the penultimate peptide bonds (131 +/- 46 ns). We show that, if the data are modeled as a two-state transition, we find that only exterior peptide bonds show anti-Arrhenius folding behavior; the middle peptide bonds show both normal Arrhenius-like folding and unfolding. This anti-Arrhenius behavior results from the involvement of pi-bulges/helices and 3(10)-helix states in the melting. The unusual temperature dependence of the (un)folding rates of the interior and exterior peptide bonds is due to the different relative (un)folding rates of 3(10)-helices, alpha-helices, and pi-bulges/helices. Pure alpha-helix unfolding rates are approximately 12-fold slower (approximately 1 micros) than that of pi-bulges and 3(10)-helices. In addition, we also find that the alpha-helix is most stable at the AdP N-terminus where eight consecutive Ala occur, whereas the three hydrophilic Arg located in the middle and at the C-terminus destabilize the alpha-helix in these regions and induce defects such as pi-bulges and 3(10)-helices.

  5. Application of the Iridium Satellite System to Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Meza, Mike; Gupta, Om

    2008-01-01

    The next generation air transportation system will require greater air-ground communications capacity to accommodate more air traffic with increased safety and efficiency. Communications will remain primarily terrestrially based, but satellite communications will have an increased role. Inmarsat s aeronautical services have been approved and are in use for aeronautical safety communications provided by geostationary satellites. More recently the approval process for the Iridium low earth orbit constellation is nearing completion. The current Iridium system will be able to provide basic air traffic services communications suitable for oceanic, remote and polar regions. The planned second generation of the Iridium system, called Iridium NEXT, will provide enhanced capabilities and enable a greater role in the future of aeronautical communications. This paper will review the potential role of satellite communications in the future of air transportation, the Iridium approval process and relevant system testing, and the potential role of Iridium NEXT.

  6. Examination of the effect of alpha radiolysis on plutonium(V) sorption to quartz using multiple plutonium isotopes.

    PubMed

    Hixon, Amy E; Arai, Yuji; Powell, Brian A

    2013-08-01

    The objective of this research was to determine if radiolysis at the mineral surface was a plausible mechanism for surface-mediated reduction of plutonium. Batch sorption experiments were used to monitor the amount of plutonium sorbed to high-purity quartz as a function of time, pH, and total alpha radioactivity. Three systems were prepared using both (238)Pu and (242)Pu in order to increase the total alpha radioactivity of the mineral suspensions while maintaining a constant plutonium concentration. The fraction of sorbed plutonium increased with increasing time and pH regardless of the total alpha radioactivity of the system. Increasing the total alpha radioactivity of the solution had a negligible effect on the sorption rate. This indicated that surface-mediated reduction of Pu(V) in these systems was not due to radiolysis. Additionally, literature values for the Pu(V) disproportionation rate constant did not describe the experimental results. Therefore, Pu(V) disproportionation was also not a main driver for surface-mediated reduction of plutonium. Batch desorption experiments and X-ray absorption near edge structure spectroscopy were used to show that Pu(IV) was the dominant oxidation state of sorbed plutonium. Thus, it appears that the observed surface-mediated reduction of Pu(V) in the presence of high-purity quartz was based on the thermodynamic favorability of a Pu(IV) surface complex.

  7. Iridium and Radio Astronomy in Europe

    NASA Astrophysics Data System (ADS)

    Cohen, R. J.

    2004-06-01

    An account is given of the coordination of the Iridium mobile satellite system with the radio astronomy service in Europe, from the initial exploratory discussions at Jodrell Bank in 1991 to the signing of the so-called ``Interim Agreement'' in Paris in 1999. The technical issue of unwanted emissions from the Iridium downlink into the frequency band 1610.6-1613.8 MHz was not resolved, so the coordination agreement amounts to time sharing, albeit on more favourable terms for radio astronomy than agreements negotiated elsewhere. The European agreement fully recognizes the heavy use of the frequency band in European radio astronomy, and carries the promise that ``from 1 January 2006, European radioastronomers shall be able to collect measurement data consistent with the recommendation ITU-R RA.769-1.'' Some personal observations on the events are offered.

  8. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, John T.; Kazaroff, John M.; Appel, Marshall A.

    1988-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the meltimg temperature of iridium, 2400 C (4350 F).

  9. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, J. T.; Kazaroff, J. M.; Appel, M. A.

    1989-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the melting temperature of iridium, 2400 C (4350 F).

  10. Combined application of alpha-track and fission-track techniques for detection of plutonium particles in environmental samples prior to isotopic measurement using thermo-ionization mass spectrometry.

    PubMed

    Lee, Chi-Gyu; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Kimura, Takaumi

    2011-07-15

    The fission track technique is a sensitive detection method for particles which contain radio-nuclides like (235)U or (239)Pu. However, when the sample is a mixture of plutonium and uranium, discrimination between uranium particles and plutonium particles is difficult using this technique. In this study, we developed a method for detecting plutonium particles in a sample mixture of plutonium and uranium particles using alpha track and fission track techniques. The specific radioactivity (Bq/g) for alpha decay of plutonium is several orders of magnitude higher than that of uranium, indicating that the formation of the alpha track due to alpha decay of uranium can be disregarded under suitable conditions. While alpha tracks in addition to fission tracks were detected in a plutonium particle, only fission tracks were detected in a uranium particle, thereby making the alpha tracks an indicator for detecting particles containing plutonium. In addition, it was confirmed that there is a linear relationship between the numbers of alpha tracks produced by plutonium particles made of plutonium certified standard material and the ion intensities of the various plutonium isotopes measured by thermo-ionization mass spectrometry. Using this correlation, the accuracy in isotope ratios, signal intensity and measurement errors is presumable from the number of alpha tracks prior to the isotope ratio measurements by thermal ionization mass spectrometry. It is expected that this method will become an effective tool for plutonium particle analysis. The particles used in this study had sizes between 0.3 and 2.0 μm.

  11. Iridium versus Iridium: Nanocluster and Monometallic Catalysts Carrying the Same Ligand Behave Differently.

    PubMed

    Cano, Israel; Martínez-Prieto, Luis M; Chaudret, Bruno; van Leeuwen, Piet W N M

    2017-01-26

    A specific secondary phosphine oxide (SPO) ligand (tert-butyl(phenyl)phosphine oxide) was employed to generate two iridium catalysts, an Ir-SPO complex and IrNPs (iridium nanoparticles) ligated with SPO ligands, which were compared mutually and with several supported iridium catalysts with the aim to establish the differences in their catalytic properties. The Ir-SPO-based catalysts showed totally different activities and selectivities in the hydrogenation of various substituted aldehydes, in which H2 is likely cleaved by a metal-ligand cooperation, that is, the SPO ligand and a neighboring metal centre operate in tandem to activate the hydrogen molecule. In addition, the supported IrNPs behave very differently from both Ir-SPO catalysts. This study exemplifies perfectly the advantages and disadvantages related to the use of the main types of catalysts, and thus the dissimilarities between them.

  12. The Chemical Vapor Deposition of Iridium.

    DTIC Science & Technology

    1981-07-01

    accepted types are made of porous tungsten impregnated with barium calcium aluminates (Levi, 1955; Brodie and Jenkins, 1956). The emission capability of the...not only does the chemical composition of the pore ends and the bulk material undergo alteration, but the crystal structure of the tungsten (Maloney... hexafluoride to iridium metal or IrF 6 species. In our work, IrF 6 was prepared and stored in fluorine-passivated apparatus, and between runs maintained at

  13. Sputtered iridium oxide for stimulation electrode coatings.

    PubMed

    Mokwa, Wilfried; Wessling, Boerge; Schnakenberg, Uwe

    2007-01-01

    This work deals with the reactive RF-powered sputter deposition of iridium oxide for use as the active stimulation layer in functional medical implants. The oxygen gettered by the growing films is determined by an approach based on generic curves. Films deposited at different stages of oxygen integration show strong differences in electrochemical behaviour, caused by different morphologies. The dependence of electrochemical activity on morphology is further illustrated by RF sputtering onto heated substrates, as well as DC sputtering onto cold substrates.

  14. Benzo annulated cycloheptatriene PCP pincer iridium complexes.

    PubMed

    Leis, Wolfgang; Wernitz, Sophie; Reichart, Benedikt; Ruckerbauer, David; Wielandt, Johannes Wolfram; Mayer, Hermann A

    2014-08-28

    The benzo annulated cycloheptatriene PCP pincer ligand was prepared in five steps. Treatment of with Ir(CO)3Cl gave the meridional cyclometalated chlorohydrido carbonyl iridium complexes which differ in their arrangement of the H, Cl, and CO ligands around iridium. Storing in THF led to isomerization processes. Hydrogen shifts from the sp(3)-CH carbon bound to iridium into the ligand backbone produced the three isomers . Reductive elimination of HCl from these complexes resulted in the square planar Ir(i) carbonyl complexes . Abstraction of the hydrogen from the sp(3)-CH-Ir fragment could be achieved either by treatment of with Ph3CBF4 or by the elimination of H2 which is initiated by CF3SO3H. The mass spectrometric characterisation of using fast atom bombardment reveals a complex fragmentation pattern. These different "fragment" ions were further investigated by electro-spray ionisation (tandem) mass spectrometry in high and low resolution. The identified compounds were attributed to structures by DFT calculations.

  15. Synthesis of benzimidazoles via iridium-catalyzed acceptorless dehydrogenative coupling.

    PubMed

    Sun, Xiang; Lv, Xiao-Hui; Ye, Lin-Miao; Hu, Yu; Chen, Yan-Yan; Zhang, Xue-Jing; Yan, Ming

    2015-07-21

    Iridium-catalyzed acceptorless dehydrogenative coupling of tertiary amines and arylamines has been developed. A number of benzimidazoles were prepared in good yields. An iridium-mediated C-H activation mechanism is suggested. This finding represents a novel strategy for the synthesis of benzimidazoles.

  16. Variation of iridium in a differentiated tholeiitic dolerite

    USGS Publications Warehouse

    Greenland, L.P.

    1971-01-01

    Iridium has been determined in a drill core from the Great Lake (Tasmania) dolerite sheet. Iridium decreases systematically from the mafic dolerites (0.25 ppb) to the granophyres (0.006 ppb). The trend with differentiation closely parallels that of chromium. ?? 1971.

  17. Iridium enrichment in airborne particles from kilauea volcano: january 1983.

    PubMed

    Zoller, W H; Parrington, J R; Kotra, J M

    1983-12-09

    Airborne particulate matter from the January 1983 eruption of Kilauea volcano was inadvertently collected on air filters at Mauna Loa Observatory at a sampling station used to observe particles in global circulation. Analyses of affected samples revealed unusually large concentrations of selenium, arsenic, indium, gold, and sulfur, as expected for volcanic emissions. Strikingly large concentrations of iridium were also observed, the ratio of iridium to aluminum being 17,000 times its value in Hawaiian basalt. Since iridium enrichments have not previously been observed in volcanic emissions, the results for Kilauea suggest that it is part of an unusual volcanic system which may be fed by magma from the mantle. The iridium enrichment appears to be linked with the high fluorine content of the volcanic gases, which suggests that the iridium is released as a volatile IrF(6).

  18. Iridium Interfacial Stack - IrIS

    NASA Technical Reports Server (NTRS)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  19. Iridium Film For Charge-Coupled Device

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.

    1990-01-01

    Usability extended to different environments. Application of thin film of iridium to back surface of back-surface-illuminated charge-coupled device expected to increase and stabilize quantum efficiency at wavelengths less than 4,500 Angstrom. Enhances quantum efficiency according to principle discussed in "Metal Film Increases CCD Output" (NPO-16815). Does not react with hydrogen, so device need not be kept in oxygen: Advantage where high absorption of ultraviolet light by oxygen undesirable; for example, when device used to make astronomical observations from high altitudes.

  20. Iridium/Rhenium Parts For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Harding, John T.; Wooten, John R.

    1991-01-01

    Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.

  1. The use of iodine-125 seeds as a substitute for iridium-192 seeds in temporary interstitial breast implants

    SciTech Connect

    Vicini, F.; White, J.; Gustafson, G.; Matter, R.C.; Edmundson, G.; Martinez, A.; Clarke, D.H.

    1993-10-20

    We have previously reported that the use of iodine-125 seeds in temporary plastic tube interstitial implants may be more advantageous than iridium-192 seeds due to less patient and personnel radiation exposure, reduced shielding requirements, and significant dosimetric advantages. The impact of this isotope on the rate of local control and cosmetic outcome in patients with early stage breast cancer treated with interstitial implants for their irradiation {open_quotes}boost{close_quotes} remains to be defined. We reviewed the treatment outcome of 402 consecutive cases of Stage I and II breast cancer undergoing breast conserving therapy between 1/1/80 and 12/31/87. All patients underwent excisional biopsy and received 45-50 Gy to the entire breast followed by a boost to the tumor bed using either electrons (104 patients), photons (15 patients), or an interstitial implant with either iridium-192 (197 patients) or iodine-125 (86 patients) to at least 60 Gy. Iodine-125 implants were primarily performed in patients with significant risk factors for local recurrence (71%) or in patients with large breasts (17%). Local tumor control and cosmetic outcome were assessed and contrasted between patients boosted with each modality. We conclude that patients with State I and II breast cancer undergoing breast conserving therapy and judged to be candidates for boosts with interstitial implants can be effectively treated with iodine-125 seeds. Use of the isotope results in less patient and personnel irradiation exposure and a better dose distribution than iridium-192, since dose optimization can be routinely employed. Overall, local control and cosmetic outcome have been excellent and are similar to either iridium-192, electrons, or photons. 21 refs., 4 tabs.

  2. Rapid determination of (237)Np and plutonium isotopes in urine by inductively-coupled plasma mass spectrometry and alpha spectrometry.

    PubMed

    Maxwell, Sherrod L; Culligan, Brian K; Jones, Vernon D; Nichols, Sheldon T; Noyes, Gary W; Bernard, Maureen A

    2011-08-01

    A new rapid separation method was developed for the measurement of plutonium and neptunium in urine samples by inductively-coupled plasma mass spectrometry (ICP-MS) and/or alpha spectrometry with enhanced uranium removal. This method allows separation and preconcentration of plutonium and neptunium in urine samples using stacked extraction chromatography cartridges and vacuum box flow rates to facilitate rapid separations. There is an increasing need to develop faster analytical methods for emergency response samples. There is also enormous benefit to having rapid bioassay methods in the event that a nuclear worker has an uptake (puncture wound, etc.) to assess the magnitude of the uptake and guide efforts to mitigate dose (e.g., tissue excision and chelation therapy). This new method focuses only on the rapid separation of plutonium and neptunium with enhanced removal of uranium. For ICP-MS, purified solutions must have low salt content and low concentration of uranium due to spectral interference of (238)U(1)H(+) on m/z 239. Uranium removal using this method is enhanced by loading plutonium and neptunium initially onto TEVA resin, then moving plutonium to DGA resin where additional purification from uranium is performed with a decontamination factor of almost 1×10(5). If UTEVA resin is added to the separation scheme, a decontamination factor of ~3 × 10(6) can be achieved.

  3. The Use of Isotope Dilution Alpha Spectrometry and Liquid Scintillation Counting to Determine Radionuclides in Environmental Samples

    SciTech Connect

    Bylyku, Elida

    2009-04-19

    In Albania in recent years it has been of increasing interest to determine various pollutants in the environment and their possible effects on human health. The radiochemical procedure used to identify Pu, Am, U, Th, and Sr radioisotopes in soil, sediment, water, coal, and milk samples is described. The analysis is carried out in the presence of respective tracer solutions and combines the procedure for Pu analysis based on anion exchange, the selective method for Sr isolation based on extraction chromatography using Sr-Spec resin, and the application of the TRU-Spec column for separation of Am fraction. An acid digestion method has been applied for the decomposition of samples. The radiochemical procedure involves the separation of Pu from Th, Am, and Sr by anion exchange, followed by the preconcentration of Am and Sr by coprecipitation with calcium oxalate. Am is separated from Sr by extraction chromatography. Uranium is separated from the bulk elements by liquid-liquid extraction using UTEVA registered resin. Thin sources for alpha spectrometric measurements are prepared by microprecipitation with NdF3. Two International Atomic Energy Agency reference materials were analyzed in parallel with the samples.

  4. Diminiode thermionic conversion with 111-iridium electrodes

    NASA Technical Reports Server (NTRS)

    Koeger, E. W.; Bair, V. L.; Morris, J. F.

    1976-01-01

    Preliminary data indicating thermionic-conversion potentialities for a 111-iridium emitter and collector spaced 0.2 mm apart are presented. These results comprise output densities of current and of power as functions of voltage for three sets of emitter, collector, and reservoir temperatures: 1553, 944, 561 K; 1605, 898, 533 K; and 1656, 1028, 586 K. For the 1605 K evaluation, estimates produced work-function values of 2.22 eV for the emitter and 1.63 eV for the collector with a 2.0-eV barrier index (collector work function plus interelectrode voltage drop) corresponding to the maximum output of 5.5 W/sq cm at 0.24 volt. The current, voltage curve for the 1656 K 111-iridium diminiode yields a 6.2 W/sq cm maximum at 0.25 volt and is comparable with the 1700 K envelope for a diode with an etched-rhenium emitter and a 0.025-mm electrode gap made by TECO and evaluated by NASA.

  5. Ab initio phase diagram of iridium

    NASA Astrophysics Data System (ADS)

    Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.

    2016-09-01

    The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.

  6. Iridium wire grid polarizer fabricated using atomic layer deposition.

    PubMed

    Weber, Thomas; Käsebier, Thomas; Szeghalmi, Adriana; Knez, Mato; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2011-10-25

    In this work, an effective multistep process toward fabrication of an iridium wire grid polarizer for UV applications involving a frequency doubling process based on ultrafast electron beam lithography and atomic layer deposition is presented. The choice of iridium as grating material is based on its good optical properties and a superior oxidation resistance. Furthermore, atomic layer deposition of iridium allows a precise adjustment of the structural parameters of the grating much better than other deposition techniques like sputtering for example. At the target wavelength of 250 nm, a transmission of about 45% and an extinction ratio of 87 are achieved.

  7. Solvent and guest isotope effects on complexation thermodynamics of alpha-, beta-, and 6-amino-6-deoxy-beta-cyclodextrins.

    PubMed

    Rekharsky, Mikhail V; Inoue, Yoshihisa

    2002-10-16

    The stability constant (K), standard free energy (DeltaG degrees ), enthalpy (DeltaH degrees ), and entropy changes (TDeltaS degrees ) for the complexation of native alpha- and beta-cyclodextrins (CDs) and 6-amino-6-deoxy-beta-CD with more than 30 neutral, positively, and negatively charged guests, including seven fully or partially deuterated guests, have been determined in phosphate buffer solutions (pH/pD 6.9) of hydrogen oxide (H(2)O) or deuterium oxide (D(2)O) at 298.15 K by titration microcalorimetry. Upon complexation with these native and modified CDs, both nondeuterated and deuterated guests examined consistently exhibited higher affinities (by 5-20%) in D(2)O than in H(2)O. The quantitative affinity enhancement in D(2)O versus H(2)O directly correlates with the size and strength of the hydration shell around the charged/hydrophilic group of the guest. For that reason, negatively/positively charged guests, possessing a relatively large and strong hydration shell, afford smaller K(H2O)/K(D2O) ratios than those for neutral guests with a smaller and weaker hydration shell. Deuterated guests showed lower affinities (by 5-15%) than the relevant nondeuterated guests in both H(2)O and D(2)O, which is most likely ascribed to the lower ability of the C-D bond to produce induced dipoles and thus the reduced intracavity van der Waals interactions. The excellent enthalpy-entropy correlation obtained can be taken as evidence for the very limited conformational changes upon transfer of CD complexes from H(2)O to D(2)O.

  8. Isotopically sensitive branching in the formation of cyclic monoterpenes: proof that (-)-alpha-pinene and (-)-beta-pinene are synthesized by the same monoterpene cyclase via deprotonation of a common intermediate

    SciTech Connect

    Croteau, R.B.; Wheeler, C.J.; Cane, D.E.; Ebert, R.; Ha, H.J.

    1987-08-25

    To determine whether the bicyclic monoterpene olefins (-)-alpha-pinene and (-)-beta-pinene arise biosynthetically from the same monoterpene cyclase by alternate deprotonations of a common carbocationic intermediate, the product distributions arising from the acyclic precursor (10-/sup 2/H/sub 3/,1-/sup 3/H)geranyl pyrophosphate were compared with those resulting from incubation of (1-3H)geranyl pyrophosphate with (-)-pinene cyclase from Salvia officinalis. Alteration in proportions of the olefinic products generated by the partially purified pinene cyclase resulted from the suppression of the formation of (-)-beta-pinene (C10 deprotonation) by a primary deuterium isotope effect with a compensating stimulation of the formation of (-)-alpha-pinene (C4 deprotonation). (-)-Pinene cyclase as well as (+)-pinene cyclase also exhibited a decrease in the proportion of the acyclic olefin myrcene generated from the deuteriated substrate, accompanied by a corresponding increase in the commitment to cyclized products. The observation of isotopically sensitive branching, in conjunction with quantitation of the magnitude of the secondary deuterium isotope effect on the overall rate of product formation by the (+)- and (-)-pinene cyclases as well as two other monoterpene cyclases from the same tissue, supports the biosynthetic origin of (-)-alpha-pinene and (-)-beta-pinene by alternative deprotonations of a common enzymatic intermediate. A biogenetic scheme consistent with these results is presented, and alternate proposals for the origin of the pinenes are addressed.

  9. Phase control of iridium and iridium oxide thin films in atomic layer deposition

    SciTech Connect

    Kim, Sung-Wook; Kwon, Se-Hun; Kwak, Dong-Kee; Kang, Sang-Won

    2008-01-15

    The atomic layer deposition of iridium (Ir) and iridium oxide (IrO{sub 2}) films was investigated using an alternating supply of (ethylcyclopentadienyl)(1,5-cyclooctadiene) iridium and oxygen gas at temperatures between 230 and 290 deg. C. The phase transition between Ir and IrO{sub 2} occurred at the critical oxygen partial pressure during the oxygen injection pulse. The oxygen partial pressure was controlled by the O{sub 2}/(Ar+O{sub 2}) ratio or deposition pressures. The resistivity of the deposited Ir and IrO{sub 2} films was about 9 and 120 {mu}{omega} cm, respectively. In addition, the critical oxygen partial pressure for the phase transition between Ir and IrO{sub 2} was increased with increasing the deposition temperature. Thus, the phase of the deposited film, either Ir or IrO{sub 2}, was controlled by the oxygen partial pressure and the deposition temperature. However, the formation of a thin Ir layer was detected between the IrO{sub 2} and SiO{sub 2} substrate. To remove this interfacial layer, the oxygen partial pressure is increased to a severe condition. And the impurity contents were below the detection limit of Auger electron spectroscopy in both Ir and IrO{sub 2} films.

  10. Monoalkylation of acetonitrile by primary alcohols catalyzed by iridium complexes.

    PubMed

    Anxionnat, Bruno; Pardo, Domingo Gomez; Ricci, Gino; Cossy, Janine

    2011-08-05

    The monoalkylation of acetonitrile by primary alcohols was achieved in a one-pot sequence in the presence of iridium catalysts. A diversity of nitriles has been obtained from aryl- and alkyl-methanols in excellent yield.

  11. Acute radiodermatitis from occupational exposure to iridium 192

    SciTech Connect

    Becker, J.; Rosen, T. )

    1989-12-01

    Industrial radiography using the man-made radioisotope iridium 192 is commonplace in the southern states. Despite established procedures and safeguards, accidental exposure may result in typical acute radiodermatitis. We have presented a clinical example of this phenomenon.9 references.

  12. GPS/GNSS Interference from Iridium Data Transmitters

    NASA Astrophysics Data System (ADS)

    Berglund, H. T.; Blume, F.; Estey, L.; White, S.

    2011-12-01

    The Iridium satellite communication system broadcasts in the 1610 to 1626.5 MHz band. The L1 frequencies broadcast by GPS, Galileo and GLONASS satellites are 1575.42 MHz, 1575.42 MHz and 1602 MHz + n × 0.5625 MHz, respectively (each GLONASS satellite uses a unique frequency). The proximity of the Iridium frequency band with the L1 frequencies of the GPS, Galileo and GLONASS systems leaves GNSS receivers susceptible to interference from Iridium data transmissions. Interference from Iridium transmissions can cause cycle slips and loss of lock on the carrier and code phases, thereby degrading the quality of GNSS observations and position estimates. In 2008, UNAVCO staff members observed that the percent of slips vs. the number of observations increased as the distance between a GPS choke ring antenna (TRM29659.00) and an Iridium antenna decreased. From those observations they suggested that Iridium antennas and GPS antennas should be separated by >30 m to minimize cycle slips caused by the interference from Iridium data transmissions. A second test conducted in 2009 using a newer Trimble GNSS choke ring antenna (TRM59800.00) showed similar results to the previous test despite the wider frequency range of the newer antenna. More recent testing conducted to investigate the response of new receiver models to iridium transmissions has shown that many GNSS enabled models, when combined with GNSS enabled antennas, have increased sensitivity to interference when compared to older GPS-only models. The broader frequency spectrum of the Low Noise Amplifiers (LNA) installed in many newer GNSS antennas can increase the impact of near-band RF interference on tracking performance. Our testing has shown that the quality of data collected at sites collocated with iridium communications is highly degraded for antenna separations exceeding 100m. Using older GPS antenna models (e.g. TRM29659.00) with newer GNSS enabled receivers can reduce this effect. To mitigate the effects that

  13. Synthesis and characterization of nitrides of iridium and palladiums

    SciTech Connect

    Crowhurst, Jonathan C.; Goncharov, Alexander F.; Sadigh, B.; Zaug, J.M.; Aberg, D.; Meng, Yue; Prakapenka, Vitali B.

    2008-08-14

    We describe the synthesis of nitrides of iridium and palladium using the laser-heated diamond anvil cell. We have used the in situ techniques of x-ray powder diffraction and Raman scattering to characterize these compounds and have compared our experimental findings where possible to the results of first-principles theoretical calculations. We suggest that palladium nitride is isostructural with pyrite, while iridium nitride has a monoclinic symmetry and is isostructural with baddeleyite.

  14. Iridium{reg_sign} worldwide personal communication system

    SciTech Connect

    Helm, J.

    1997-01-01

    The IRIDIUM system is a personal worldwide communication system designed to support portable, low power subscriber units through the use of a constellation of satellites in low earth polar orbit. The satellites are networked together to form a system which provides continuous line-of-sight communications between the IRIDIUM system and any point within 30 km of the earth{close_quote}s surface. The system architecture and operation are described. {copyright} {ital 1997 American Institute of Physics.}

  15. Laser Induced Fluorescence Spectrum of Iridium Monophosphide

    NASA Astrophysics Data System (ADS)

    Pang, H. F.; Liu, Anwen; Cheung, A. S.-C.

    2009-06-01

    Laser induced fluorescence spectrum of IrP in the spectral region between 380-600 nm has been studied. Reacting laser ablated iridium atoms with 1% PH_3 seeded in argon produced the IrP molecule. A few vibronic transitions have been recorded. Preliminary analysis of the rotational structure indicated that these vibronic bands are with Ω^' = 0 and Ω^'' = 0 and is likely to be ^{1}Σ - X ^{1}Σ transition. Vibrational separation of the excited state is estimated to be about 442 cm^{-1}. The ground state bond length is determined to be 1.766 Å. This work represents the first experimental investigation of the spectra of IrP.

  16. Solventless synthesis of iridium(0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Redón, R.; Ramírez-Crescencio, F.; Fernández-Osorio, A. L.

    2011-11-01

    In this article, we present the results of a solvent-free synthesis of iridium(0) nanoparticles, both water washed and unwashed. IrCl3 and NaBH4, as starting materials, are mixed using an agate mortar and milled for 15 min until a black powder is obtained, which is heated in a nitrogen-controlled atmosphere oven at 200 °C for 2 h. If the product of the reaction is not washed before heating, NaBH4 and IrO2 impurities are observed. On the other hand, if the reaction product is washed before the heating, the obtained powder is free of impurities. We study the effect of the variation in reducing agent concentration and the annealing temperature used after the reaction. In all cases, the calculated particle size is less than 10 nm.

  17. On the Extreme Oxidation States of Iridium.

    PubMed

    Pyykkö, Pekka; Xu, Wen-Hua

    2015-06-22

    It has recently been suggested that the oxidation states of Ir run from the putative -III in the synthesized solid Na3 [Ir(CO)3 ] to the well-documented +IX in the species IrO4 (+) . Furthermore, [Ir(CO)3 ](3-) was identified as an 18-electron species. A closer DFT study now finds support for this picture: The orbitals spanned by the 6s,6p,5d orbitals of the iridium are all occupied. Although some have considerable ligand character, the deviations from 18 e leave the orbital symmetries unchanged. The isoelectronic systems from Os(-IV) to Au(-I) behave similarly, suggesting further possible species. To paraphrase Richard P. Feynmann "there is plenty of room at the bottom".

  18. PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

  19. DETERMINATION OF HETEROGENEOUS ELECTRON TRANSFER RATE CONSTANTS AT MICROFABRICATED IRIDIUM ELECTRODES. (R825511C022)

    EPA Science Inventory

    There has been an increasing use of both solid metal and microfabricated iridium electrodes as substrates for various types of electroanalysis. However, investigations to determine heterogeneous electron transfer rate constants on iridium, especially at an electron beam evapor...

  20. Iridium complexes demonstrating broadband emission through controlled geometric distortion and applications thereof

    SciTech Connect

    Li, Jian; Turner, Eric

    2016-04-12

    Iridium compounds and their uses are disclosed herein. For example, carbazole containing iridium compounds are disclosed. The compounds are useful in many devices, including, but not limited to, electroluminescent devices.

  1. Highly fluorescent and biocompatible iridium nanoclusters for cellular imaging.

    PubMed

    Vankayala, Raviraj; Gollavelli, Ganesh; Mandal, Badal Kumar

    2013-08-01

    Highly fluorescent iridium nanoclusters were synthesized and investigated its application as a potential intracellular marker. The iridium nanoclusters were prepared with an average size of ~2 nm. Further, these nanoclusters were refluxed with aromatic ligands, such as 2,2'-binaphthol (BINOL) in order to obtain fluorescence properties. The photophysical properties of these bluish-green emitting iridium nanoclusters were well characterized by using UV-Visible, fluorescence and lifetime decay measurements. The emission spectrum for these nanoclusters exhibit three characteristic peaks at 449, 480 and 515 nm. The fluorescence quantum yield of BINOL-Ir NCs were estimated to be 0.36 and the molar extinction co-efficients were in the order of 10(6) M(-1)cm(-1). In vitro cytotoxicity studies in HeLa cells reveal that iridium nanoclusters exhibited good biocompatibility with an IC50 value of ~100 μg/ml and also showed excellent co-localization and distribution throughout the cytoplasm region without entering into the nucleus. This research has opened a new window in developing the iridium nanoparticle based intracellular fluorescent markers and has wide scope to act as biomedical nanocarrier to carry many biological molecules and anticancer drugs.

  2. SO2 adsorption on silica supported iridium

    NASA Astrophysics Data System (ADS)

    Bounechada, Djamela; Anderson, David P.; Skoglundh, Magnus; Carlsson, Per-Anders

    2017-02-01

    The interaction of SO2 with Ir/SiO2 was studied by simultaneous in situ diffuse reflectance infrared Fourier transform spectroscopy and mass spectrometry, exposing the sample to different SO2 concentrations ranging from 10 to 50 ppm in the temperature interval 200-400 °C. Evidences of adsorption of sulfur species in both absence and presence of oxygen are found. For a pre-reduced sample in the absence of oxygen, SO2 disproportionates such that the iridium surface is rapidly saturated with adsorbed S while minor amounts of formed SO3 may adsorb on SiO2. Adding oxygen to the feed leads to the oxidation of sulfide species that either (i) desorb as SO2 and/or SO3, (ii) remain at metal sites in the form of adsorbed SO2, or (iii) spillover to the oxide support and form sulfates (SO42-). Notably, significant formation of sulfates on silica is possible only in the presence of both SO2 and O2, suggesting that SO2 oxidation to SO3 is a necessary first step in the mechanism of formation of sulfates on silica. During the formation of sulfates, a concomitant removal/rearrangement of surface silanol groups is observed. Finally, the interaction of SO2 with Ir/SiO2 depends primarily on the temperature and type of gas components but only to a minor extent on the inlet SO2 concentration.

  3. Experimental determination of the solubility of iridium in silicate melts: Preliminary results

    NASA Technical Reports Server (NTRS)

    Borisov, Alexander; Dingwell, Donald B.; Oneill, Hugh ST.C.; Palme, Herbert

    1992-01-01

    Little is known of the geochemical behavior of iridium. Normally this element is taken to be chalcophile and/or siderophile so that during planetary differentiation processes, e.g., core formation, iridium is extracted from silicate phases into metallic phases. Experimental determination of the metal/silicate partition coefficient of iridium is difficult simply because it is so large. Also there are no data on the solubility behavior of iridium in silicate melts. With information on the solubility of iridium in silicate melts it is possible, in combination with experimental data for Fe-Ir alloys, to calculate the partition coefficient between a metallic phase and a silicate melt.

  4. Field desorption of Na and Cs from graphene on iridium

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2015-08-01

    Field electron and desorption microscopy has been used to study specific features of the field desorption of sodium and cesium ions adsorbed on the surface of iridium with graphene. It was found that adsorbed sodium atoms most strongly reduce the work function on graphene islands situated over densely packed faces of iridium. A strong electric field qualitatively similarly affects the sodium and cesium desorption processes from a field emitter to give two desorption phases and has no noticeable effect on the disintegration of the graphene layer.

  5. Corrosion-resistant iridium-platinum anode material for high polarization application in corrosive acids

    SciTech Connect

    Farmer, J.; Summers, L.; Lewis, P.

    1993-09-08

    The present invention relates to highly corrosion resistant components for use in an electrochemical cell. Specifically, these components are resistant to corrosion under very extreme conditions such as exposure to aqua regia in the presence of a constant current density of 100mA/m{sup 2}. The components are comprised of an iridium-platinum alloy that comprises less than 30% iridium. In a preferred embodiment of the present invention, the iridium-platinum alloy comprises 15-20% iridium. In another preferred embodiment of the present invention, the iridium-platinum alloy is deposited on the surface of an electrochemical cell component by magnetron sputtering. The present invention also relates to a method for conducting an electrochemical reaction in the presence of highly corrosive acids under a high degree of polarization wherein the electrochemical cell comprises a component, preferably the anode, containing an iridium-platinum alloy that comprises less than 30% iridium.

  6. Homogeneous and heterogenized iridium water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Macchioni, Alceo

    2014-10-01

    The development of an efficient catalyst for the oxidative splitting of water into molecular oxygen, protons and electrons is of key importance for producing solar fuels through artificial photosynthesis. We are facing the problem by means of a rational approach aimed at understanding how catalytic performance may be optimized by the knowledge of the reaction mechanism of water oxidation and the fate of the catalytic site under the inevitably harsh oxidative conditions. For the purposes of our study we selected iridium water oxidation catalysts, exhibiting remarkable performance (TOF > 5 s-1 and TON > 20000). In particular, we recently focused our attention on [Cp*Ir(N,O)X] (N,O = 2-pyridincarboxylate; X = Cl or NO3) and [IrCl(Hedta)]Na water oxidation catalysts. The former exhibited a remarkable TOF whereas the latter showed a very high TON. Furthermore, [IrCl(Hedta)]Na was heterogenized onto TiO2 taking advantage of the presence of a dandling -COOH functionality. The heterogenized catalyst maintained approximately the same catalytic activity of the homogeneous analogous with the advantage that could be reused many times. Mechanistic studies were performed in order to shed some light on the rate-determining step and the transformation of catalysts when exposed to "oxidative stress". It was found that the last oxidative step, preceding oxygen liberation, is the rate-determining step when a small excess of sacrificial oxidant is used. In addition, several intermediates of the oxidative transformation of the catalyst were intercepted and characterized by NMR, X-Ray diffractometry and ESI-MS.

  7. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas

    SciTech Connect

    Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.; Pivovar, Bryan S.

    2016-06-02

    Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparative studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.

  8. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas

    DOE PAGES

    Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.; ...

    2016-06-02

    Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less

  9. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    SciTech Connect

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  10. Achieving Zero Stress in Iridium, Chromium, and Nickle Thin Films

    NASA Technical Reports Server (NTRS)

    Broadway, David M.; Weimer, Jeffrey; Gurgew, Danielle; Lis, Tomasz; Ramsey, Brian D.; O'Dell, Stephen L.; Ames, A.; Bruni, R.

    2015-01-01

    We examine a method for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight x-ray space telescopes into the regime of sub-arc second resolution that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure, including the existence of a critical pressure that results in zero film stress. This critical pressure scales linearly with the film's density. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we have discovered a similar behavior for iridium. Additionally, we have identified zero stress in iridium shortly after island coalescence. This feature of film growth is used for achieving a total internal stress of -2.89 MPa for a 15.8 nm thick iridium film. The surface roughness of this low-stress film was examined using scanning probe microscopy (SPM) and x-ray reflectivity (XRR) at CuKa and these results presented and discussed.

  11. The Marine Geochemistry of Rhenium, Iridium and Platinum

    DTIC Science & Technology

    1991-09-01

    fields ( Koeberl 1989). Iridium enrichment factors, defined reiaiive to Hawaiian basalt (and relative to Sc) range from 104 to 105. The transport of Ir in...and M. B. McElroy. (1984). "Changes in atmospheric C02: influence of marine biota at high latitudes." J. Geoohys. Res. 89: 4629-4637. Koeberl , C

  12. Electrodeposited iridium oxide for neural stimulation and recording electrodes.

    PubMed

    Meyer, R D; Cogan, S F; Nguyen, T H; Rauh, R D

    2001-03-01

    Iridium oxide films formed by electrodeposition onto noniridium metal substrates are compared with activated iridium oxide films (AIROFs) as a low impedance, high charge capacity coating for neural stimulation and recording electrodes. The electrodeposited iridium oxide films (EIROFs) were deposited on Au, Pt, PtIr, and 316 LVM stainless steel substrates from a solution of IrCl4, oxalic acid, and K2CO3. A deposition protocol involving 50 potential sweeps at 50 mV/s between limits of 0.0 V and 0.55 V (versus Ag AgCl) followed by potential pulsing between the same limits produced adherent films with a charge storage capacity of >25 mC/cm2. Characterization by cyclic voltammetry and impedance spectroscopy revealed no differences in the electrochemical behavior of EIROF on non-Ir substrates and AIROF. The mechanical stability of the oxides was evaluated by ultrasonication in distilled water followed by dehydration and rehydration. Stability under charge injection was evaluated using 200 micros, 5.9 A/cm2 (1.2 mC/cm2) cathodal pulses. Loss of iridium oxide charge capacity was comparable for AIROFs and the EIROFs, ranging from 1% to 8% of the capacity immediately after activation or deposition. The EIROFs were deposited and evaluated on silicon microprobe electrodes and on metallized polyimide electrodes being developed for neural recording and stimulation applications.

  13. Remote Sensing Missions for Earth Observation on Iridium NEXT

    NASA Astrophysics Data System (ADS)

    Gupta, O. P.

    2009-12-01

    A unique opportunity exists to host up to 66 earth observation sensors on Iridium’s proposed NEXT LEO constellation in a manner that can revolutionize earth observation and weather predictions. A constellation approach to sensing, using the real-time communications backbone of Iridium, will enable unprecedented geospatial and temporal sampling for now-casting of weather on a global basis as well as global climate monitoring. The NEXT constellation, which, like Iridium’s current LEO constellation, is expected to consist of 66 interconnected satellites in 6 near polar orbiting planes, provides a unique platform for hosting a variety of earth observation missions. Several remote sensing missions were recommended by Group on Earth Observations (GEO), NASA, NOAA, and ESA for consideration by Iridium during 2008. These include GPS radio occultation sensors, earth radiation budget measurements, altimetry, ocean and land imaging, and troposphere and stratospheric winds measurements including polar winds measurements. These missions are also considered high priority climate missions by the Decadal Survey. Study teams consisting of Iridium, NASA/JPL and multiple industrial partners of Iridium have conducted detailed studies of these missions for compatibility with NEXT. These studies have established technical feasibility, unique benefits from a constellation approach, and cost effectiveness for these solutions on NEXT.

  14. The Iridium (tm) system: Personal communications anytime, anyplace

    NASA Astrophysics Data System (ADS)

    Hatlelid, John E.; Casey, Larry

    The Iridium system is designed to provide handheld personal communications between diverse locations around the world at any time and without prior knowledge of the location of the personal units. This paper provides an overview of the system, the services it provides, its operation, and an overview of the commercial practices and relatively high volume satellite production techniques which will make the system cost effective. A constellation of 66 satellites will provide an orbiting, spherical-shell, infrastructure for this global calling capability. The satellites act as tall cellular towers and allow convenient operation for portable handheld telephones. The system will provide a full range of services including voice, paging, data, geolocation, and fax capabilities. Motorola is a world leader in the production of high volume, high quality, reliable telecommunications hardware. One of Iridium's goals is to apply these production techniques to high reliability space hardware. Concurrent engineering, high performance work teams, advanced manufacturing technologies, and improved assembly and test methods are some of the techniques that will keep the Iridium system cost effective. Mobile, global, flexible personal communications are coming that will allow anyone to call or receive a call from/to anyplace at anytime. The Iridium system will provide communications where none exist today. This connectivity will allow increased information transfer, open new markets for various business endeavors, and in general increase productivity and development.

  15. Origins of Regioselectivity in Iridium Catalyzed Allylic Substitution.

    PubMed

    Madrahimov, Sherzod T; Li, Qian; Sharma, Ankit; Hartwig, John F

    2015-12-02

    Detailed studies on the origin of the regioselectivity for formation of branched products over linear products have been conducted with complexes containing the achiral triphenylphosphite ligand. The combination of iridium and P(OPh)3 was the first catalytic system shown to give high regioselectivity for the branched product with iridium and among the most selective for forming branched products among any combination of metal and ligand. We have shown the active catalyst to be generated from [Ir(COD)Cl]2 and P(OPh)3 by cyclometalation of the phenyl group on the ligand and have shown such species to be the resting state of the catalyst. A series of allyliridium complexes ligated by the resulting P,C ligand have been generated and shown to be competent intermediates in the catalytic system. We have assessed the potential impact of charge, metal-iridium bond length, and stability of terminal vs internal alkenes generated by attack at the branched and terminal positions of the allyl ligand, respectively. These factors do not distinguish the regioselectivity for attack on allyliridium complexes from that for attack on allylpalladium complexes. Instead, detailed computational studies suggest that a series of weak, attractive, noncovalent interactions, including interactions of H-bond acceptors with a vinyl C-H bond of the alkene ligand, favor formation of the branched product with the iridium catalyst. This conclusion underscores the importance of considering attractive interactions, as well as repulsive steric interactions, when seeking to rationalize selectivities.

  16. Iridium Aluminide Coats For Protection Against Ox idation

    NASA Technical Reports Server (NTRS)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Jang, Qin

    1996-01-01

    Iridium aluminide coats investigated for use in protecting some metallic substrates against oxidation at high temperatures. Investigation prompted by need for cost-effective anti-oxidation coats for walls of combustion chambers in rocket engines. Also useful in special terrestrial applications like laboratory combustion chambers and some chemical-processing chambers.

  17. Iridium alloy Clad Vent Set manufacturing qualification studies

    NASA Astrophysics Data System (ADS)

    Ulrich, George B.

    Metallurgical qualification studies to demonstrate the manufacturing readiness of the iridium alloy Clad Vent Set (CVS) for the General Purpose Heat Source program at the Oak Ridge Y-12 Plant are described. Microstructural data for various materials/test conditions are presented.

  18. The Iridium (tm) system: Personal communications anytime, anyplace

    NASA Technical Reports Server (NTRS)

    Hatlelid, John E.; Casey, Larry

    1993-01-01

    The Iridium system is designed to provide handheld personal communications between diverse locations around the world at any time and without prior knowledge of the location of the personal units. This paper provides an overview of the system, the services it provides, its operation, and an overview of the commercial practices and relatively high volume satellite production techniques which will make the system cost effective. A constellation of 66 satellites will provide an orbiting, spherical-shell, infrastructure for this global calling capability. The satellites act as tall cellular towers and allow convenient operation for portable handheld telephones. The system will provide a full range of services including voice, paging, data, geolocation, and fax capabilities. Motorola is a world leader in the production of high volume, high quality, reliable telecommunications hardware. One of Iridium's goals is to apply these production techniques to high reliability space hardware. Concurrent engineering, high performance work teams, advanced manufacturing technologies, and improved assembly and test methods are some of the techniques that will keep the Iridium system cost effective. Mobile, global, flexible personal communications are coming that will allow anyone to call or receive a call from/to anyplace at anytime. The Iridium system will provide communications where none exist today. This connectivity will allow increased information transfer, open new markets for various business endeavors, and in general increase productivity and development.

  19. Utilization of Low Bandwidth Iridium Modems for Polar Seismology

    NASA Astrophysics Data System (ADS)

    Parker, T.

    2012-12-01

    Transmission of realtime seismic data is a desirable goal when a rapid response is needed. However, for many science applications sample waveform data, system state of health, and the ability to command and control the seismic station are operationally adequate. Determining the optimal telemetry requirements for a remote polar seismic experiment requires balancing science objective against the expensive, over-subscribed support available in the polar environments? For example there is a significant difference in the resources needed for a permanent "monitoring" effort versus a short-term experiment. We will describe IRIS/PASSCAL's successful approach to utilizing Iridium telemetry for short-term seismic experiments and suggest viable use of an Iridium RUDICs system for higher data-rate, permanent seismic stations such as a monitoring scenario. Most seismic stations are configured to record at a rate that exceeds twice the data rate of a single Iridium Internet modem. The power requirement to run continuous Iridium telemetry better than doubles that of a standalone seismic station. Doubling station power roughly doubles station logistics by requiring an increased number of support flights for installation and service. The tradeoffs between desirable and adequate telemetry requirements and the ramifications these requirements have on support services must be considered for a successful seismic station. We describe two Iridium telemetry systems, developed by the IRIS/PASSCAL Polar Program, for use with seismic stations in Antarctica and the Arctic. The first system uses an inexpensive Iridium 9602 modem based device and short burst data (SBD) transmission to monitor station performance, provide some command and control, and return a small amount of representative seismic data. Power requirements for this SBD system are approximately 10Ah per year for a daily message. The second system uses an Iridium 9522b modem based device the DOD RUDICs system for a 2400 Baud

  20. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    SciTech Connect

    Purwaningsih, Anik

    2014-09-30

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  1. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    NASA Astrophysics Data System (ADS)

    Purwaningsih, Anik

    2014-09-01

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  2. Cross sections for (n, 2n), (n, p) and (n, <alpha>) reactions on osmium isotopes in the neutron energy range of 13.5-14.8 MeV.

    PubMed

    Zhao, Liangyong; Yuan, Jilong; Tuo, Fei; Zhang, Yanbin; Kong, Xiangzhong; Liu, Rong; Jiang, Li

    2008-10-01

    Cross sections for (n, 2n), (n, p) and (n, alpha) reactions on the osmium isotopes were measured in the neutron energies 13.5-14.8 MeV by the activation technique with the monitor reaction (93)Nb(n, 2n)(92 m)Nb. Our measurements were carried out by gamma-detection using a coaxial high-purity germanium (HPGe) detector. Natural high-purity osmium powder (99.9%) was fabricated as the samples. The neutron energies were determined by the cross-section ratios for (93)Nb(n, 2n)(92 m)Nb and (90)Zr(n, 2n)(89 m+g)Zr reactions. The fast neutrons were produced by the T(d, n)(4)He reaction. The results obtained were compared with previous data.

  3. Iridium-Catalysed ortho-Directed Deuterium Labelling of Aromatic Esters--An Experimental and Theoretical Study on Directing Group Chemoselectivity.

    PubMed

    Devlin, Jennifer; Kerr, William J; Lindsay, David M; McCabe, Timothy J D; Reid, Marc; Tuttle, Tell

    2015-06-25

    Herein we report a combined experimental and theoretical study on the deuterium labelling of benzoate ester derivatives, utilizing our developed iridium N-heterocyclic carbene/phosphine catalysts. A range of benzoate esters were screened, including derivatives with electron-donating and -withdrawing groups in the para- position. The substrate scope, in terms of the alkoxy group, was studied and the nature of the catalyst counter-ion was shown to have a profound effect on the efficiency of isotope exchange. Finally, the observed chemoselectivity was rationalized by rate studies and theoretical calculations, and this insight was applied to the selective labelling of benzoate esters bearing a second directing group.

  4. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    NASA Technical Reports Server (NTRS)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  5. Iridium alloy clad vent set manufacturing qualification studies

    NASA Astrophysics Data System (ADS)

    Ulrich, George B.

    1991-01-01

    Qualification studies have been successfully conducted to demonstrate iridium alloy Clad Vent Set (CVS) manufacturing readiness for the General Purpose Heat Source (GPHS) program at the Oak Ridge Y-12 Plant. These studies were joint comparison evaluations of both the Y-12 Plant and EG&G Mound G-MAT) products. Note: EG&G-MAT formerly manufactured the iridium alloy CVS. The comparison evaluations involved work in a number of areas; however, only the CVS cup metallurgical evalution will be presented here. The initial metallurgical comparisons in conjunction with follow-up metallurgical work showed the Y-12 Plant CVS product to be comparable to the fully qualified (for Galileo and Ulysses missions) EG&G-MAT product. This allowed the Y-12 Plant to commence pilot production of CVS components for potential use in the CRAF and CASSINI missions.

  6. Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids.

    PubMed

    Zhu, Shou-Fei; Zhou, Qi-Lin

    2017-04-04

    Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h(-1)), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm

  7. Blistering during the atomic layer deposition of iridium

    SciTech Connect

    Genevée, Pascal E-mail: a.szeghalmi@uni-jena.de; Ahiavi, Ernest; Janunts, Norik; Pertsch, Thomas; Kley, Ernst-Bernhard; Szeghalmi, Adriana E-mail: a.szeghalmi@uni-jena.de; Oliva, Maria

    2016-01-15

    The authors report on the formation of blisters during the atomic layer deposition of iridium using iridium acetylacetonate and oxygen precursors. Films deposited on fused silica substrates led to sparsely distributed large blisters while in the case of silicon with native oxide additional small blisters with a high density was observed. It is found that the formation of blisters is favored by a higher deposition temperature and a larger layer thickness. Postdeposition annealing did not have a significant effect on the formation of blisters. Finally, changing purge duration during the film growth allowed us to avoid blistering and evidenced that impurities released from the film in gas phase were responsible for the formation of blisters.

  8. Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.

    2011-01-01

    NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.

  9. Synthesis of Iridium(III) Carboxamides via the Bimetallic Reaction between Cp(PMe(3))IrPh(OH) and [Cp(PMe(3))Ir(Ph)NCR](+).

    PubMed

    Tellers, David M.; Ritter, Joachim C. M.; Bergman, Robert G.

    1999-10-18

    Reaction of Cp(PMe(3))IrPh(OH) (1) with nitriles is undetectably slow in benzene solution at room temperature. However, in the presence of Cp(PMe(3))IrPh(OTf) (2) (OTf = O(3)SCF(3)), the reaction is strongly catalyzed, leading to iridium(III) carboxamides Cp(PMe(3))IrPh[NHC(O)R] (6a-d) [R = C(6)H(4)CH(3) (6a), C(6)H(5) (6b), C(6)H(4)CF(3) (6c), CH(3) (6d)]. We propose that these transformations occur by initial displacement of the trifluoromethanesulfonate ("triflate") anion of 2 by a molecule of nitrile, leading to a nitrile-substituted iridium cation, [Cp(PMe(3))IrPh(NCR)](+) (10). Following this, the nucleophilic hydroxide group of 1 attacks the (activated) nitrile molecule bound in 10, leading (after proton transfer) to the iridium carboxamide complex. In the case of nitriles possessing hydrogens alpha to the cyano group, competitive loss of one of these protons is observed, leading to iridium C-bound cyanoenolates such as Cp(PMe(3))(Ph)Ir(CH(2)CN) (7). Protonolysis of carboxamides 6a-d with HCl yields Cp(PMe(3))IrPh(Cl) (9) and the free amides. A pronounced solvent effect is observed when the reaction between 1 and nitriles catalyzed by 2 is carried out in THF solution. The basic hydroxide ligand of 1 induces an overall dehydration/cyclization reaction of the coordinated aromatic nitrile. For example, the reaction of 1 with p-trifluorotolunitrile and a catalytic amount of 2 leads to the formation of 6c, water, [Ph(PMe(3))Ir[C(5)Me(4)CH(2)C(C(6)H(4)CF(3))N

  10. Sputtered iridium oxide films (SIROFs) for neural stimulation electrodes

    PubMed Central

    Cogan, Stuart F.; Ehrlich, Julia; Plante, Timothy D.; Smirnov, Anton; Shire, Douglas B.; Gingerich, Marcus; Rizzo, Joseph F.

    2009-01-01

    Sputtered iridium oxide films (SIROFs) deposited by DC reactive sputtering from an iridium metal target have been characterized in vitro for their potential as neural recording and stimulation electrodes. SIROFs were deposited over gold metallization on flexible multielectrode arrays fabricated on thin (15 µm) polyimide substrates. SIROF thickness and electrode areas of 200–1300 nm and 1960–125600 µm2, respectively, were investigated. The charge-injection capacities of the SIROFs were evaluated in an inorganic interstitial fluid model in response to charge-balanced, cathodal-first current pulses. Charge injection capacities were measured as a function of cathodal pulse width (0.2 – 1 ms) and potential bias in the interpulse period (0.0 to 0.7 V vs. Ag|AgCl). Depending on the pulse parameters and electrode area, charge-injection capacities ranged from 1–9 mC/cm2, comparable with activated iridium oxide films (AIROFs) pulsed under similar conditions. Other parameters relevant to the use of SIROF on nerve electrodes, including the thickness dependence of impedance (0.05–105 Hz) and the current necessary to maintain a bias in the interpulse region were also determined. PMID:17271216

  11. Mono- and bis-tolylterpyridine iridium(III) complexes

    SciTech Connect

    Hinkle, Lindsay M.; Young, Jr., Victor G.; Mann, Kent R.

    2012-01-20

    The first structure report of trichlorido[4'-(p-tolyl)-2,2':6',2{double_prime}-terpyridine]iridium(III) dimethyl sulfoxide solvate, [IrCl{sub 3}(C{sub 22}H{sub 17}N{sub 3})] {center_dot} C{sub 2}H{sub 6}OS, (I), is presented, along with a higher-symmetry setting of previously reported bis[4'-(p-tolyl)-2,2':6',2{double_prime}-terpyridine]iridium(III) tris(hexafluoridophosphate) acetonitrile disolvate, [Ir(C{sub 22}H{sub 17}N{sub 3})2](PF{sub 6}){sub 3} {center_dot} 2C{sub 2}H{sub 3}N, (II) [Yoshikawa, Yamabe, Kanehisa, Kai, Takashima & Tsukahara (2007). Eur. J. Inorg. Chem. pp. 1911-1919]. For (I), the data were collected with synchrotron radiation and the dimethyl sulfoxide solvent molecule is disordered over three positions, one of which is an inversion center. The previously reported structure of (II) is presented in the more appropriate C2/c space group. The iridium complex and one PF{sub 6}{sup -} anion lie on twofold axes in this structure, making half of the molecule unique.

  12. Data reduction framework for standard atomic weights and isotopic compositions of the elements

    NASA Astrophysics Data System (ADS)

    Meija, Juris; Possolo, Antonio

    2017-04-01

    We outline a general framework to compute consensus reference values of standard atomic weights, isotope ratios, and isotopic abundances, and to evaluate associated uncertainties using modern statistical methods for consensus building that can handle mutually inconsistent measurement results. The multivariate meta-regression approach presented here is directly relevant to the work of the IUPAC Commission on Isotopic Abundances and atomic weights (CIAAW), and we illustrate the proposed method in meta-analyses of the isotopic abundances and atomic weights of zinc, platinum, antimony, and iridium.

  13. Evaluation of Molybdenum as a Surrogate for Iridium in the GPHS Weld Development

    SciTech Connect

    Stine, Andrew Martin; Pierce, Stanley W.; Moniz, Paul F.

    2015-10-17

    The welding equipment used for welding iridium containers (clads) at Los Alamos National Laboratory is twenty five years old and is undergoing an upgrade. With the upgrade, there is a requirement for requalification of the welding process, and the opportunity for process improvement. Testing of the new system and requalification will require several welds on iridium test parts and clads, and any efforts to improve the process will add to the need for iridium parts. The extreme high cost of iridium imposes a severe limitation on the extent of test welding that can be done. The 2 inch diameter, 0.027 inch thick, iridium blank disc that the clad cup is formed from, is useful for initial weld trials, but it costs $5000. The development clad sets needed for final tests and requalification cost $15,000 per set. A solution to iridium cost issue would be to do the majority of the weld development on a less expensive surrogate metal with similar weld characteristics. One such metal is molybdenum. Since its melting index (melting temperature x thermal conductivity) is closest to iridium, welds on molybdenum should be similar in size for a given weld power level. Molybdenum is inexpensive; a single 2 inch molybdenum disc costs only $9. In order to evaluate molybdenum as a surrogate for iridium, GTA welds were first developed to provide full penetration on 0.030 inch thick molybdenum discs at speeds of 20, 25, and 30 inches per minute (ipm). These weld parameters were then repeated on the standard 0.027 inch thick iridium blanks. The top surface and bottom surface (root) width and grain structure of the molybdenum and iridium welds were compared, and similarities were evident between the two metals. Due to material and thickness differences, the iridium welds were approximately 35% wider than the molybdenum welds. A reduction in iridium weld current of 35% produce welds slightly smaller than the molybdenum welds yet showed that current could be scaled according to molybdenum/iridium

  14. Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program

    NASA Astrophysics Data System (ADS)

    Viertel, Y.; Kinnersley, M.; Schumacher, I.

    2002-01-01

    The GRACE mission and the IRIDIUM mission on ROCKOT launch vehicle are presented. Two identical GRACE satellites to measure in tandem the gravitational field of the earth with previously unattainable accuracy - it's called the Gravity Research and Climate Experiment, or and is a joint project of the U.S. space agency, NASA and the German Centre for Aeronautics and Space Flight, DLR. In order to send the GRACE twins into a 500x500 km , 89deg. orbit, the Rockot launch vehicle was selected. A dual launch of two Iridium satellites was scheduled for June 2002 using the ROCKOT launch vehicle from Plesetsk Cosmodrome in Northern Russia. This launch will inject two replacement satellites into a low earth orbit (LEO) to support the maintenance of the Iridium constellation. In September 2001, Eurockot successfully carried out a "Pathfinder Campaign" to simulate the entire Iridium mission cycle at Plesetsk. The campaign comprised the transport of simulators and related equipment to the Russian port-of-entry and launch site and also included the integration and encapsulation of the simulators with the actual Rockot launch vehicle at Eurockot's dedicated launch facilities at Plesetsk Cosmodrome. The pathfinder campaign lasted four weeks and was carried out by a joint team that also included Khrunichev, Russian Space Forces and Eurockot personnel on the contractors' side. The pathfinder mission confirmed the capability of Eurockot Launch Services to perform the Iridium launch on cost and on schedule at Plesetsk following Eurockot's major investment in international standard preparation, integration and launch facilities including customer facilities and a new hotel. In 2003, Eurockot will also launch the Japanese SERVI'S-1 satellite for USEF. The ROCKOT launch vehicle is a 3 stage liquid fuel rocket whose first 2 stages have been adapted from the Russian SS-19. A third stage, called "Breeze", can be repeatedly ignited and is extraordinarily capable of manoeuvre. Rockot can place

  15. Quantification of the major urinary metabolite of 15-F2t-isoprostane (8-iso-PGF2alpha) by a stable isotope dilution mass spectrometric assay.

    PubMed

    Morrow, J D; Zackert, W E; Yang, J P; Kurhts, E H; Callewaert, D; Dworski, R; Kanai, K; Taber, D; Moore, K; Oates, J A; Roberts, L J

    1999-05-01

    The isoprostanes (IsoPs) are a series of novel prostaglandin (PG)-like compounds generated from the free radical-catalyzed peroxidation of arachidonic acid. The first series of IsoPs characterized contained F-type prostane rings analogous to PGF2alpha. One F-ring IsoP, 15-F2t-IsoP (8-iso-PGF2alpha) has been shown to be formed in abundance in vivo and to exert potent biological activity. As a means to assess the endogenous production of this compound, we developed a method to quantify the major urinary metabolite of 15-F2t-IsoP, 2,3-dinor-5,6-dihydro-15-F2t-IsoP (2,3-dinor-5, 6-dihydro-8-iso-PGF2alpha), by gas chromotography/negative ion chemical ionization mass spectrometry. This metabolite was chemically synthesized and converted to an 18O2-labeled derivative for use as an internal standard. After purification, the compound was analyzed as a pentafluorobenzyl ester trimethylsilyl ether. Precision of the assay is +/-4% and accuracy is 97%. The lower limit of sensitivity is approximately 20 pg. Levels of the urinary excretion of this metabolite in 10 normal adults were found to be 0. 39 +/- 0.18 ng/mg creatinine (mean +/- 2 SD). Substantial elevations in the urinary excretion of the metabolite were found in situations in which IsoP generation is increased and antioxidants effectively suppressed metabolite excretion. Levels of 2,3-dinor-5, 6-dihydro-15-F2t-IsoP were not affected by cyclooxygenase inhibitors. Thus, this assay provides a sensitive and accurate method to assess endogenous production of 15-F2t-IsoP as a means to explore the pathophysiological role of this compound in human disease.

  16. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  17. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  18. Real-Time Characterization of Formation and Breakup of Iridium Clusters in Highly Dealuminated Zeolite Y

    SciTech Connect

    Uzun, Alper; Gates, Bruce C.

    2009-01-15

    The chemistry of formation of iridium clusters from mononuclear iridium diethylene complexes anchored in dealuminated Y zeolite, and their subsequent breakup -- all including changes in the metal-metal, metal-support, and metal-ligand interactions -- is demonstrated by time-resolved EXAFS, XANES, and IR spectroscopy.

  19. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600 C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  20. Sensitized near-infrared emission from ytterbium(III) via direct energy transfer from iridium(III) in a heterometallic neutral complex.

    PubMed

    Mehlstäubl, Marita; Kottas, Gregg S; Colella, Silvia; De Cola, Luisa

    2008-05-14

    A tetrametallic iridium-ytterbium complex has been synthesised that shows sensitized near-infrared emission (lambda(max) = 976 nm) upon excitation of the iridium unit in the visible region (400 nm) due to efficient energy transfer from the iridium units to the Yb(III) ion. The iridium phosphorescence is quenched nearly quantitatively while the ytterbium ion emits brightly in the NIR.

  1. Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes.

    PubMed

    Cogan, S F; Plante, T D; Ehrlich, J

    2004-01-01

    Iridium oxide films formed by electrochemical activation of iridium metal (AIROF) or by electrochemical deposition (EIROF) are being evaluated as low-impedance charge-injection coatings for neural stimulation and recording. Iridium oxide may also be deposited by reactive sputtering from iridium metal in an oxidizing plasma. The characterization of sputtered iridium oxide films (SIROFs) as coatings for nerve electrodes is reported. SIROFs were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and potential transient measurements during charge-injection. The surface morphology of the SIROF transitions from smooth to highly nodular with increasing film thickness from 80 nm to 4600 nm. Charge-injection capacities exceed 0.75 mC/cm(2) with 0.75 ms current pulses in thicker films. The SIROF was deposited on both planar and non-planar substrates and photolithographically patterned by lift-off.

  2. Iridium-based double perovskites for efficient water oxidation in acid media

    NASA Astrophysics Data System (ADS)

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J.; Wezendonk, Tim; Gascon, Jorge; Fu, W. T.; Koper, Marc T. M.

    2016-08-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2.

  3. Iridium-based double perovskites for efficient water oxidation in acid media

    PubMed Central

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J.; Wezendonk, Tim; Gascon, Jorge; Fu, W. T.; Koper, Marc T. M.

    2016-01-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2. PMID:27498694

  4. Iridium: Global OTH data communications for high altitude scientific ballooning

    NASA Astrophysics Data System (ADS)

    Denney, A.

    beneficial points provided by the Iridium platform include pure global accessibility (as well as polar), cost effectiveness because it is available as a COTS (Commercially Off The Shelf) technology, reliability in that the equipment must operate in extreme conditions (near space), integration and development time into current systems must be minimized. As a bonus Motorola and NAL Research Corporation are developing SBD (Short Burst Data) into the Iridium network. This may lead the way to a global IP (Internet Protocol) node based ballooning platform. The Iridium satellite data modems employ the Iridium Low-Earth Orbit (LEO) satellite network. The scope of this paper is to introduce an OTH communications alternative, albeit not necessarily a primary one, to existing ballooning platforms using COTS based emerging technologies. Design aspects, characteristics, actual flight testing statistics, principles of the Iridium modems and communication paths are described including payload and support instrumentation interfacing. Not limited to high altitude ballooning, the Iridium communications platform opens a new era in remote commanding and data retrieval.

  5. Bias-enhanced nucleation of diamond on iridium: A comprehensive study of the first stages by sequential surface analysis

    NASA Astrophysics Data System (ADS)

    Chavanne, A.; Arnault, J.-C.; Barjon, J.; Arabski, J.

    2011-03-01

    The chemical evolution of the iridium surface along the successive steps of BEN was investigated using electron spectroscopy techniques (XPS, AES). To this end, a sequential study was carried out in an UHV analysis chamber connected to a MPCVD reactor. First, experimental results were obtained on iridium surfaces exposed to a methane plasma without bias. They show a sp 2 carbon layer formation on iridium, probably due to the segregation during cooling of carbon solubilized at high temperature in iridium. In this scenario, the iridium surface would be uncovered by carbon as BEN starts. Then, the consequences of BEN were observed: (i) formation of a thicker carbon layer at the iridium surface due to carbon segregation and sub-implantation (ii) chemical modification of iridium neighboring within the first nanometers; (iii) diamond nucleation.

  6. Luminescent iridium(III) complexes as novel protein staining agents.

    PubMed

    Jia, Junli; Fei, Hao; Zhou, Ming

    2012-05-01

    This article reports a new class of luminescent metal complexes, biscyclometalated iridium(III) complexes with an ancillary bathophenanthroline disulfonate ligand, for staining protein bands that are separated by electrophoresis. The performances of these novel staining agents have been studied in comparison with tris(bathophenanthroline disulfonate) ruthenium(II) tetrasodium salt (i.e. RuBPS) using a commercially available imaging system. The staining agents showed different limits of detection, linear dynamic ranges, and protein-to-protein variations. The overall performances of all three stains were found to be better than or equivalent to RuBPS under the experimental conditions.

  7. Broadband iridium wire grid polarizer for UV applications.

    PubMed

    Weber, Thomas; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2011-02-15

    In this Letter, we present an iridium wire grid polarizer with a large spectral working range from IR down to the UV spectral region. The required grating period of 100 nm for an application below a wavelength of 300 nm was realized using a spatial frequency doubling technique based on ultrafast electron beam writing. The optical performance of the polarizer at a wavelength of 300 nm is a transmittance of almost 60% and an extinction ratio of about 30 (15 dB). Furthermore, the oxidation resistance is discussed.

  8. Determination of iridium in mafic rocks by atomic absorption

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.M.

    1970-01-01

    Iridium is determined in mineralized mafic rocks by atomic absorption after fire-assay concentration into a gold bead. Interelement interferences in the atomic-absorption determination are removed and Ir sensitivity is increased by buffering the solutions with a mixture of copper and sodium sulphates. Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated in the atomic-absorption determination. The sensitivity and detection limits are 3.2 and 0.25 ppm of Ir, respectively. ?? 1970.

  9. Luminescent cyclometallated iridium(III) complexes having acetylide ligands

    DOEpatents

    Thompson, Mark E.; Bossi, Alberto; Djurovich, Peter Ivan

    2014-09-02

    The present invention relates to phosphorescent (triplet-emitting) organometallic materials. The phosphorescent materials of the present invention comprise Ir(III)cyclometallated alkynyl complexes for use as triplet light-emitting materials. The Ir(III)cyclometallated alkynyl complexes comprise at least one cyclometallating ligand and at least one alkynyl ligand bonded to the iridium. Also provided is an organic light emitting device comprising an anode, a cathode and an emissive layer between the anode and the cathode, wherein the emissive layer comprises a Ir(III)cyclometallated alkynyl complex as a triplet emitting material.

  10. Iridium-catalyzed reductive nitro-Mannich cyclization.

    PubMed

    Gregory, Alex W; Chambers, Alan; Hawkins, Alison; Jakubec, Pavol; Dixon, Darren J

    2015-01-02

    A new chemoselective reductive nitro-Mannich cyclization reaction sequence of nitroalkyl-tethered lactams has been developed. Relying on the rapid and chemoselective iridium(I)-catalyzed reduction of lactams to the corresponding enamine, subsequent nitro-Mannich cyclization of tethered nitroalkyl functionality provides direct access to important alkaloid natural-product-like structures in yields up to 81 % and in diastereoselectivities that are typically good to excellent. An in-depth understanding of the reaction mechanism has been gained through NMR studies and characterization of reaction intermediates. The new methodology has been applied to the total synthesis of (±)-epi-epiquinamide in four steps.

  11. The solubility of hydrogen in rhodium, ruthenium, iridium and nickel.

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Oates, W. A.

    1973-01-01

    The temperature variation of the solubility of hydrogen in rhodium, ruthenium, iridium, and nickel in equilibrium with H2 gas at 1 atm pressure has been measured by a technique involving saturating the solvent metal with hydrogen, quenching, and analyzing in resultant solid solutions. The solubilities determined are small (atom fraction of H is in the range from 0.0005 to 0.00001, and the results are consistent with the simple quasi-regular model for dilute interstitial solid solutions. The relative partial enthalpy and excess entropy of the dissolved hydrogen atoms have been calculated from the solubility data and compared with well-known correlations between these quantities.

  12. Measurements of the hard-x-ray reflectivity of iridium

    SciTech Connect

    Romaine, S.; Bruni, R.; Gorenstein, P.; Zhong, Z

    2007-01-10

    In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.

  13. Methanol dehydrogenation by iridium N-heterocyclic carbene complexes.

    PubMed

    Campos, Jesús; Sharninghausen, Liam S; Manas, Michael G; Crabtree, Robert H

    2015-06-01

    A series of homogeneous iridium bis(N-heterocyclic carbene) catalysts are active for three transformations involving dehydrogenative methanol activation: acceptorless dehydrogenation, transfer hydrogenation, and amine monoalkylation. The acceptorless dehydrogenation reaction requires base, yielding formate and carbonate, as well as 2-3 equivalents of H2. Of the few homogeneous systems known for this reaction, our catalysts tolerate air and employ simple ligands. Transfer hydrogenation of ketones and imines from methanol is also possible. Finally, N-monomethylation of anilines occurs through a "borrowing hydrogen" reaction. Notably, this reaction is highly selective for the monomethylated product.

  14. Dosimetric characterization of the M-15 high-dose-rate Iridium-192 brachytherapy source using the AAPM and ESTRO formalism.

    PubMed

    Ho Than, Minh-Tri; Munro Iii, John J; Medich, David C

    2015-05-08

    The Source Production & Equipment Co. (SPEC) model M-15 is a new Iridium-192 brachytherapy source model intended for use as a temporary high-dose-rate (HDR) brachytherapy source for the Nucletron microSelectron Classic afterloading system. The purpose of this study is to characterize this HDR source for clinical application by obtaining a complete set of Monte Carlo calculated dosimetric parameters for the M-15, as recommended by AAPM and ESTRO, for isotopes with average energies greater than 50 keV. This was accomplished by using the MCNP6 Monte Carlo code to simulate the resulting source dosimetry at various points within a pseudoinfinite water phantom. These dosimetric values next were converted into the AAPM and ESTRO dosimetry parameters and the respective statistical uncertainty in each parameter also calculated and presented. The M-15 source was modeled in an MCNP6 Monte Carlo environment using the physical source specifications provided by the manufacturer. Iridium-192 photons were uniformly generated inside the iridium core of the model M-15 with photon and secondary electron transport replicated using photoatomic cross-sectional tables supplied with MCNP6. Simulations were performed for both water and air/vacuum computer models with a total of 4 × 109 sources photon history for each simulation and the in-air photon spectrum filtered to remove low-energy photons belowδ = 10 keV. Dosimetric data, including D·(r,θ), gL(r), F(r,θ), φan(r), and φ-an, and their statistical uncertainty were calculated from the output of an MCNP model consisting of an M-15 source placed at the center of a spherical water phantom of 100 cm diameter. The air kerma strength in free space, SK, and dose rate constant, Λ, also was computed from a MCNP model with M-15 Iridium-192 source, was centered at the origin of an evacuated phantom in which a critical volume containing air at STP was added 100 cm from the source center. The reference dose rate, D·(r0,θ0) ≡ D· (1cm

  15. Accurate fast method with high chemical yield for determination of uranium isotopes (234U, 235U, 238U) in granitic samples using alpha spectroscopy

    NASA Astrophysics Data System (ADS)

    Guirguis, Laila A.; Farag, Nagdy M.; Salim, Adham K.

    2015-03-01

    The present study aims to use the α-spectroscopy at Nuclear Materials Authority (NMA) of Egypt. A radiochemical technique for analysis uranium isotopes was carried out for ten mineralized granitic samples together with the International standards RGU-1 (IAEA) and St4 (NMA). Several steps of sample preparation, radiochemical separation and source preparation were performed before analysis. Uranium was separated from sample matrix with 0.2 M TOPO in cyclohexane as an extracting agent with a chemical yield 98.95% then uranium was purified from lanthanides and actinides present with 0.2 M TOA in xylene as an extracting agent. The pure fraction was electrodeposited on a mirror-polished copper disc from buffer solution (NaHSO4+H2SO4+NH4OH). Rectangle pt-electrode with an anode-cathode distance of 2 cm was used. Current was 900 mA and the electrodeposition time reach up to 120 min. The achieved results show that the chemical yield ranged between 87.9±6.8 and 98±8.6.

  16. Precise measurement of K-shell fluorescence yield in iridium: An improved test of internal-conversion theory

    SciTech Connect

    Nica, N.; Hardy, J.C.; Iacob, V.E.; Montague, J.R.; Trzhaskovskaya, M.B.

    2005-05-01

    We have measured the total intensity of K x rays relative to 129.4-keV {gamma} rays from decay of the second excited state in {sup 191}Ir. This (M1+E2) transition was observed following the {beta} decay of 15.4-d {sup 191}Os. Our measured ratio yields the result {alpha}{sub K}{omega}{sub K}=2.044(11). When combined with a recent measurement of the same ratio for the 80.2-keV M4 transition from {sup 193}Ir{sup m}, this result strongly confirms the need for the K-shell hole to be included in calculations of internal-conversion coefficients {alpha}{sub K}. Since the {alpha}{sub K} value calculated for the {sup 191}Ir transition is virtually independent of the hole treatment, our result also yields a model-independent value for the iridium fluorescence yield, {omega}{sub K}=0.954(9)

  17. Assay of 25-hydroxy vitamin D3-1 alpha-hydroxylase in pig kidney mitochondria using isotope dilution-mass spectrometry

    SciTech Connect

    Holmberg, I.; Saarem, K.; Pedersen, J.I.; Bjoerkhem, I.

    1986-12-01

    An assay of 1 alpha-hydroxylation of 25-hydroxy vitamin D3 in pig kidney mitochondria, based on selected ion monitoring, has been developed. Trideuterium-labeled 1,25-dihydroxy vitamin D3 was synthesized and used as internal standard. This standard was added immediately after incubation of 25-hydroxy vitamin D3 with the mitochondrial fraction. The incubation extracts were purified by high-performance liquid chromatography. After formation of the trimethylsilyl derivative, the product was quantitated by mass fragmentography using the ion at m/z 452 and m/z 455. With the use of this assay it was found that formation of 1,25-dihydroxy vitamin D3 was linear with the amount of mitochondrial protein and time of incubation. Substrate saturation was obtained at about 20 microM of 25-hydroxy vitamin D3. The maximal rate of conversion obtained under the conditions employed was about 0.1 pmol/mg protein X minute.

  18. Excitation function of the alpha particle induced nuclear reactions on enriched 116Cd, production of the theranostic isotope 117mSn

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.; Szűcs, Z.; Saito, M.

    2016-10-01

    117mSn is one of the radioisotopes can be beneficially produced through alpha particle irradiation. The targets were prepared by deposition of 116Cd metal onto high purity 12 μm thick Cu backing. The average deposited thickness was 21.9 μm. The beam energy was thoroughly measured by Time of Flight (TOF) methods and proved to be 51.2 MeV. For the experiment the well-established stacked foil technique was used. In addition to the Cd targets, Ti foils were also inserted into the stacks for energy and intensity monitoring. The Cu backings were also used for monitoring and as recoil catcher of the reaction products from the cadmium layer. The activities of the irradiated foils were measured with HPGe detector for gamma-ray spectrometry and cross section values were determined. As a result excitation functions for the formation of 117mSn, 117m,gIn, 116mIn, 115mIn and 115m,gCd from enriched 116Cd were deduced and compared with the available literature data and with the results of the nuclear reaction model code calculations EMPIRE 3.2 and TALYS 1.8. Yield curves were also deduced for the measured nuclear reactions and compared with the literature.

  19. Dynamic high-temperature characterization of an iridium alloy in tension

    SciTech Connect

    Song, Bo; Nelson, Kevin; Jin, Helena; Lipinski, Ronald J.; Bignell, John; Ulrich, G. B.; George, E. P.

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  20. Analysis and Consequences of the Iridium 33-Cosmos 2251 Collision

    NASA Technical Reports Server (NTRS)

    Anz-Meador, P. D.; Liou, Jer-Chi

    2010-01-01

    The collision of Iridium 33 and Cosmos 2251, on 10 February 2009, was the first known unintentional hypervelocity collision in space of intact satellites. Iridium 33 was an active commercial telecommunications satellite, while Cosmos 2251 was a derelict communication satellite of the Strela-2M class. The collision occurred at a relative velocity of 11.6 km/s at an altitude of approximately 790 km over the Great Siberian Plain and near the northern apex of Cosmos 2251 s orbit. This paper describes the physical and orbital characteristics of the relevant spacecraft classes and reports upon our analysis of the resulting debris clouds size, mass, area-to-mass ratio, and relative velocity/directionality distributions. We compare these distributions to those predicted by the NASA breakup model and notable recent fragmentation events; in particular, we compare the area-to-mass ratio distribution for each spacecraft to that exhibited by the FY-1C debris cloud for the purpose of assessing the relative contribution of modern aerospace materials to debris clouds resulting from energetic collisions. In addition, we examine the long-term consequences of this event for the low Earth orbit (LEO) environment. Finally, we discuss "lessons learned", which may be incorporated into NASA s environmental models.

  1. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    SciTech Connect

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast process conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.

  2. Testing of Wrought Iridium/Chemical Vapor Deposition Rhenium Rocket

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Schneider, Steven J.

    1996-01-01

    A 22-N class, iridium/rhenium (Ir/Re) rocket chamber, composed of a thick (418 miocrometer) wrought iridium (Ir) liner and a rhenium substrate deposited via chemical vapor deposition, was tested over an extended period on gaseous oxygen/gaseous hydrogen (GO2/GH2) propellants. The test conditions were designed to produce species concentrations similar to those expected in an Earth-storable propellant combustion environment. Temperatures attained in testing were significantly higher than those expected with Earth-storable propellants, both because of the inherently higher combustion temperature of GO2/GH2 propellants and because the exterior surface of the rocket was not treated with a high-emissivity coating that would be applied to flight class rockets. Thus the test conditions were thought to represent a more severe case than for typical operational applications. The chamber successfully completed testing (over 11 hr accumulated in 44 firings), and post-test inspections showed little degradation of the Ir liner. The results indicate that use of a thick, wrought Ir liner is a viable alternative to the Ir coatings currently used for Ir/Re rockets.

  3. Microindentation hardness evaluation of iridium alloy clad vent set cups

    NASA Astrophysics Data System (ADS)

    Ulrich, George B.; DeRoos, Larry F.; Stinnette, Samuel E.

    1993-01-01

    An iridium alloy, DOP-26, is used as cladding for 238PuO2 fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration's Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors.

  4. Microindentation hardness evaluation of iridium alloy clad vent set cups

    SciTech Connect

    Ulrich, G.B.; DeRoos, L.F.; Stinnette, S.E. )

    1993-01-15

    An iridium alloy, DOP-26, is used as cladding for [sup 238]PuO[sub 2] fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration's Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors.

  5. Microindentation hardness evaluation of iridium alloy clad vent set cups

    SciTech Connect

    Ulrich, G.B.; DeRoos, L.F.; Stinnette, S.E.

    1992-05-15

    An iridium alloy, DOP-26, is used as cladding for {sup 238}PuO{sup 2} fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration`s Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors.

  6. Microindentation hardness evaluation of iridium alloy clad vent set cups

    SciTech Connect

    Ulrich, G.B.; DeRoos, L.F.; Stinnette, S.E.

    1992-05-15

    An iridium alloy, DOP-26, is used as cladding for {sup 238}PuO{sup 2} fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration's Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors.

  7. Iridium anomaly in the Cretaceous section of the Eastern Kamchatka

    NASA Astrophysics Data System (ADS)

    Savelyev, Dmitry; Savelyeva, Olga

    2010-05-01

    The origin of iridium anomalies is widely discussed with regard to massive fauna and flora extinction at several geologic boundaries. Two hypotheses are most popular, cosmogenic and volcanogenic. Anomalies of iridium are known at many stratigraphic levels, both at the geologic series borders and within geologic series. Our studies revealed increased content of iridium in a section of Cretaceous oceanic deposits on the Kamchatsky Mys Peninsula (Eastern Kamchatka, Russia). The investigated section (56°03.353´N, 163°00.376´E) includes interbedded jaspers and siliceous limestones overlaying pillow-basalts. These deposits belong to the Smagin Formation of the Albian-Cenomanian age. In the middle and upper parts of the section two beds of black carbonaceous rocks with sapropelic organic matter were observed. Their formation marked likely episodes of oxygen depletion of oceanic intermediate water (oceanic anoxic events). Our geochemical studies revealed an enrichment of the carbonaceous beds in a number of major and trace elements (Al2O3, TiO2, FeO, MgO, K2O, P2O5, Cu, Zn, Ni, Cr, V, Mo, Ba, Y, Zr, Nb, REE, U, Au, Pt etc.) in comparison with associating jaspers and limestones. There are likely different sources which contributed to the enrichment. It is possible however to correlate the excess of Al, Ti, Zr, Nb with volcanogenic admixture, which is absent in limestones and jaspers. A possible source of the volcanogenic material was local volcanism as suggested by the close association of the investigated section with volcanic rocks (basaltic lavas and hyaloclastites). The basalts of the Smagin Formation were previously proposed to originate during Cretaceous activity of the Hawaiian mantle plume (Portnyagin et al., Geology, 2008). Neutron activation analysis indicated increased up to 9 ppb concentration of Ir at the bottom of the lower carbonaceous bed (inorganic part of the sample was analyzed comprising 46% of the bulk rock). In other samples Ir content was below

  8. Phosphorescent Neutral Iridium (III) Complexes for Organic Light-Emitting Diodes.

    PubMed

    Bin Mohd Yusoff, Abd Rashid; Huckaba, Aron J; Nazeeruddin, Mohammad Khaja

    2017-04-01

    The development of transition metal complexes for application in light-emitting devices is currently attracting significant research interest. Among phosphorescent emitters, those involving iridium (III) complexes have proven to be exceedingly useful due to their relatively short triplet lifetime and high phosphorescence quantum yields. The emission wavelength of iridium (III) complexes significantly depends on the ligands, and changing the electronic nature and the position of the ligand substituents can control the properties of the ligands. In this chapter, we discuss recent developments of phosphorescent transition metal complexes for organic light-emitting diode applications focusing solely on the development of iridium metal complexes.

  9. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  10. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  11. A preliminary study of factors affecting the calibration stability of the iridium versus iridium-40 percent rhodium thermocouple

    NASA Technical Reports Server (NTRS)

    Ahmed, Shaffiq; Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.

    1987-01-01

    An iridium versus iridium-40% rhodium thermocouple was studied. Problems associated with the use of this thermocouple for high temperature applications (up to 2000 C) were investigated. The metallurgical studies included X-ray, macroscopic, resistance, and metallographic studies. The thermocouples in the as-received condition from the manufacturer revealed large amounts of internal stress caused by cold working during manufacturing. The thermocouples also contained a large amount of inhomogeneities and segregations. No phase transformations were observed in the alloy up to 1100 C. It was found that annealing the thermocouple at 1800 C for two hours, and then at 1400 C for 2 to 3 hours yielded a fine grain structure, relieving some of the strains, and making the wire more ductile. It was also found that the above annealing procedure stabilized the thermal emf behavior of the thermocouple for application below 1800 C (an improvement from + or - 1% to + or - 0.02% within the range of the test parameters used).

  12. Diamonds from the iridium-rich K-T boundary layer at Arroyo el Mimbral, Tamaulipas, Mexico

    NASA Astrophysics Data System (ADS)

    Hough, R. M.; Gilmour, I.; Pillinger, C. T.; Langenhorst, F.; Montanari, A.

    1997-11-01

    Diamonds, up to 30 μm in size, were found in the iridium-rich layer from the K-T boundary site at Arroyo El Mimbral and the spherule bed from Arroyo El Peñon, northeastern Mexico. Stepped heating experiments indicate two or more isotopically distinct diamond components with carbon isotopic compositions characteristic of a mixture of carbon sources. The diamonds' crystal form is cubic—not the hexagonal polymorph of diamond, lonsdaleite, which has been used previously to infer formation due to shock transformation of graphite. The size, crystallography, and mineralogic associations of K-T diamonds are similar to those of impact-produced diamonds from the Ries crater in Germany where both shock transformation of graphite and a mode of formation by condensation from a vapor plume have been inferred. The discovery of impact-produced diamonds in association with high Ir contents for these sediments supports their impact origin, K-T age, and the inference that their source was from the buried impact crater of Chicxulub on the Yucatan peninsula, Mexico.

  13. New Isotope 263Hs

    SciTech Connect

    Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Dvorak, J.; Ellison, P.A.; Gates, J.M.; Nelson, S.L.; Stavsetra, L.; Nitsche, H.

    2010-03-16

    A new isotope of Hs was produced in the reaction 208Pb(56Fe, n)263Hs at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. Six genetically correlated nuclear decay chains have been observed and assigned to the new isotope 263Hs. The measured cross section was 21+13-8.4 pb at 276.4 MeV lab-frame center-of-target beam energy. 263Hs decays with a half-life of 0.74 ms by alpha-decay and the measured alpha-particle energies are 10.57 +- 0.06, 10.72 +- 0.06, and 10.89 +- 0.06 MeV. The experimental cross section is compared to a theoretical prediction based on the Fusion by Diffusion model [W. J. Swiatecki et al., Phys. Rev. C 71, 014602 (2005)].

  14. Analysis and Implications of the Iridium 33-Cosmos 2251 Collision

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.

    On 2009 February 10, Iridium 33--an operational US communications satellite in low-Earth orbit--was struck and destroyed by Cosmos 2251--a long-defunct Russian communications satellite. This is the first time since the dawn of the Space Age that two satellites have collided in orbit. To better understand the circumstances of this event and the ramifications for avoiding similar events in the future, this paper provides a detailed analysis of the predictions leading up to the collision, using various data sources, and looks in detail at the collision, the evolution of the debris clouds, and the long-term implications for satellite operations. The only publicly available system available to satellite operators for screening for close approaches, SOCRATES, did predict this close approach, but it certainly wasn't the closest approach predicted for the week of February 10. In fact, at the time of the collision, SOCRATES ranked this close approach 152 of the 11,428 within 5 km of any payload. A detailed breakdown is provided to help understand the limitations of screening for close approaches using the two-line orbital element sets. Information is also provided specifically for the Iridium constellation to provide an understanding of how these limitations affect decision making for satellite operators. Post-event analysis using high-accuracy orbital data sources will be presented to show how that information might have been used to prevent this collision, had it been available and used. Analysis of the collision event, along with the distribution of the debris relative to the original orbits, will be presented to help develop an understanding of the geometry of the collision and the near-term evolution of the resulting debris clouds. Additional analysis will be presented to show the long-term evolution of the debris clouds, including orbital lifetimes, and estimate the increased risk for operations conducted by Iridium and other satellite operators in the low-Earth orbit

  15. Iridium-catalyzed hydrogen transfer: synthesis of substituted benzofurans, benzothiophenes, and indoles from benzyl alcohols.

    PubMed

    Anxionnat, Bruno; Gomez Pardo, Domingo; Ricci, Gino; Rossen, Kai; Cossy, Janine

    2013-08-02

    An iridium-catalyzed hydrogen transfer has been developed in the presence of p-benzoquinone, allowing the synthesis of a diversity of substituted benzofurans, benzothiophenes, and indoles from substituted benzylic alcohols.

  16. Synthesis and luminescence properties of iridium(III) azide- and triazole-bisterpyridine complexes.

    PubMed

    Goldstein, Daniel C; Peterson, Joshua R; Cheng, Yuen Yap; Clady, Raphael G C; Schmidt, Timothy W; Thordarson, Pall

    2013-07-26

    We describe here the synthesis of azide-functionalised iridium(III) bisterpyridines using the "chemistry on the complex" strategy. The resulting azide-complexes are then used in the copper(I)-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition "click chemistry" reaction to from the corresponding triazole-functionalised iridium(III) bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III) bisterpyridines, but this effect can be reversed by the addition of copper(II) sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III) bisterpyridines can be functionalized for use in "click chemistry" facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.

  17. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    PubMed

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery.

  18. S1 certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate certified reference material (organochlorine pesticides in tea) by isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Sin, Della Wai-Mei; Wong, Yee-Lok; Cheng, Eddie Chung-Chin; Lo, Man-Fung; Ho, Clare; Mok, Chuen-Shing; Wong, Siu-Kay

    2015-04-01

    This paper presents the certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate tea certified reference material (code: GLHK-11-03) according to the requirements of the ISO Guide 30 series. Certification of GLHK-11-03 was based on an analytical method purposely developed for the accurate measurement of the mass fraction of the target analytes in the material. An isotope dilution mass spectrometry (IDMS) method involving determination by (i) gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS) and (ii) gas chromatography-electron ionization-high-resolution mass spectrometry (GC-EI-HRMS) techniques was employed. The performance of the described method was demonstrated through participation in the key comparison CCQM-K95 "Mid-Polarity Analytes in Food Matrix: Mid-Polarity Pesticides in Tea" organized by the Consultative Committee for Amount of Substance-Metrology in Chemistry in 2012, where the study material was the same as the certified reference material (CRM). The values reported by using the developed method were in good agreement with the key comparison reference value (KCRV) assigned for beta-endosulfan (727 ± 14 μg kg(-1)) and endosulfan sulfate (505 ± 11 μg kg(-1)), where the degree of equivalence (DoE) values were 0.41 and 0.40, respectively. The certified values of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in dry mass fraction in GLHK-11-03 were 350, 730, and 502 μg kg(-1), respectively, and the respective expanded uncertainties, due to sample inhomogeneity, long-term and short-term stability, and variability in the characterization procedure, were 27 μg kg(-1) (7.8 %), 48 μg kg(-1) (6.6 %), and 33 μg kg(-1) (6.6 %).

  19. Concepts for Cost-Effective Enhanced Cryosat Continuity: Opportunity in the Iridium PRIME Context

    NASA Astrophysics Data System (ADS)

    Le Roy, Y.; Caubet, E.; Silverstrin, P.; Legrand, C.

    2016-08-01

    The Iridium-PRIME offer, recently initiated by the Iridium company, consists in hosting payloads on customized low cost Iridium-NEXT platforms on which the main telecom mission antenna (L-band) is removed. This leaves significant resources in terms of mass, volume and power consumption to host up to three payloads on these customized platforms. The Iridium-PRIME satellites will be inserted in the Iridium-NEXT constellation to take benefit of the low cost operation service (command, control and data telemetry through the life time of the Iridium-PRIME mission). Given the synergy between schedules of the Iridium-PRIME program (launches starting around 2020) and of a possible CryoSat Follow-On (FO) mission (launch around 2022) and the adequacy of the available on-board resources for such a mission, ESA tasked Thales Alenia Space, as responsible for the SIRAL radar instrument of the currently in-orbit CryoSat mission, to study the feasibility of a concept for enhanced continuity of CryoSat on an Iridium- PRIME satellite as potential low-cost fast-track solution. The study aimed to define a cost-effective topographic payload including not only the SIRAL radar but also the necessary sub-systems to retrieve the SIRAL antenna baseline attitude (star trackers) with high accuracy and to perform a Precise Orbit Determination (POD). All these aspects are presented in this paper. In addition, possible evolutions/improvements of the Ku-band radar instrument were analysed and are presented: adding a Ka-band nadir measurement capability and a Ku-band or Ka-band wide swath mode measurement capability. The transmission issue for the SIRAL science data is also discussed in the paper.

  20. Novel Quadrifilar Helix Antenna Combining GNSS, Iridium, and a UHF Communications Monopole

    DTIC Science & Technology

    2012-04-01

    R. J. Davis; “ Ferrite Loaded UHF Sleeve Monopole Integrated with a GPS Patch Antenna for a Handset”. Submitted for publication in “ Microwave and...Novel Quadrifilar Helix Antenna Combining GNSS, Iridium, and a UHF Communications Monopole P. G. Elliot, E. N. Rosario, R. J. Davis The MITRE...Corporation, Bedford, MA 01730 Abstract- A GPS/GNSS/Iridium antenna co-located with a UHF communications monopole on a handset was developed to

  1. Multidirectional Synthesis of Substituted Indazoles via Iridium-Catalyzed C-H Borylation.

    PubMed

    Sadler, Scott A; Hones, Andrew C; Roberts, Bryan; Blakemore, David; Marder, Todd B; Steel, Patrick G

    2015-05-15

    In the absence of a steric directing group, iridium-catalyzed C-H borylation of N-protected indazoles occurs rapidly and selectively at C-3 and the resulting boronate esters can be utilized in a range of downstream conversions. The functional group tolerance of the iridium-catalyzed C-H borylation reaction enables simple and efficient multidirectional syntheses of substituted indazoles to be realized.

  2. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes.

    PubMed

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-09-30

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1-40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1-40 peptide on the basis of their emission response.

  3. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-01-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1–40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1–40 peptide on the basis of their emission response. PMID:26419607

  4. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-09-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1-40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1-40 peptide on the basis of their emission response.

  5. Iridium-alloy processing experience in FY 1989

    SciTech Connect

    Ohriner, E.K.

    1990-11-01

    Iridium-alloy blanks and foil are produced at the Oak Ridge National Laboratory for use as fuel cladding material in radioisotope thermoelectric generators for space power sources. Until 1984, the material was produced from small 500-g drop castings. A new process has been developed in which consumable electrodes of about 10 kg are arc melted, extruded, and then rolled to produce the sheet products. The work performed during FY 1989 included the arc melting of three electrodes and the extruding and rolling to sheet of three billets. Significant improvements have been made in the extruding and arc-melting processes. Preliminary results show that these improvements have had an important effect in increasing the rate of blank acceptance in nondestructive evaluations. 4 refs., 33 figs., 11 tabs.

  6. Iridium abundance maxima in the Upper Cenomanian extinction interval

    NASA Technical Reports Server (NTRS)

    Orth, C. J.; Attrep, M., Jr.; Mao, X. Y.; Kauffman, E. G.; Diner, R.

    1988-01-01

    Two iridium abundance peaks, both 0.11 ppb (whole-rock basis) over a local background of 0.017 ppb, have been found in Middle Cretaceous marine rocks near Pueblo, Colorado. They occur just below the 92-million-year-old Cenomanian-Turonian (C-T) stage boundary. No other peaks were found in 45 meters of strata (about 2.5 million years of deposition) above and below the boundary interval. The broad lower peak straddles the first in a series of extinctions of benthic and nektonic macrobiota which comprise the C-T extinction event. The sharp upper peak occurs stratigraphically about 1.2 meters above the lower peak. The excess Ir might be from meteoroid impacts.

  7. Comparative modelling of chemical ordering in palladium-iridium nanoalloys

    SciTech Connect

    Davis, Jack B. A.; Johnston, Roy L.; Rubinovich, Leonid; Polak, Micha

    2014-12-14

    Chemical ordering in “magic-number” palladium-iridium nanoalloys has been studied by means of density functional theory (DFT) computations, and compared to those obtained by the Free Energy Concentration Expansion Method (FCEM) using derived coordination dependent bond energy variations (CBEV), and by the Birmingham Cluster Genetic Algorithm using the Gupta potential. Several compositions have been studied for 38- and 79-atom particles as well as the site preference for a single Ir dopant atom in the 201-atom truncated octahedron (TO). The 79- and 38-atom nanoalloy homotops predicted for the TO by the FCEM/CBEV are shown to be, respectively, the global minima and competitive low energy minima. Significant reordering of minima predicted by the Gupta potential is seen after reoptimisation at the DFT level.

  8. Intercalation of graphene on iridium with samarium atoms

    NASA Astrophysics Data System (ADS)

    Afanas'eva, E. Yu.; Rut'kov, E. V.; Gall, N. R.

    2016-07-01

    Intercalation of graphene on Ir (111) with Sm atoms is studied by methods of thermal desorption spectroscopy and thermionic emission. It is shown that adsorption of samarium at T = 300 K on graphene to concentrations of N ≤ 6 × 1014 atoms cm-2 followed by heating of the substrate leads to practically complete escape of adsorbate underneath the graphene layer. At N > 6 × 1014 atoms cm-2 and increasing temperature, a fraction of adsorbate remains on graphene in the form of two-dimensional "gas" and samarium islands and are desorbed in the range of temperatures of 1000-1200 K. Samarium remaining under the graphene is desorbed from the surface in the temperature range 1200-2150 K. Model conceptions for the samarium-graphene-iridium system in a wide temperature range are developed.

  9. Photochemical Oxidative Growth of Iridium Oxide Nanoparticles on CdSe@CdS Nanorods.

    PubMed

    Kalisman, Philip; Nakibli, Yifat; Amirav, Lilac

    2016-02-11

    We demonstrate a procedure for the photochemical oxidative growth of iridium oxide catalysts on the surface of seeded cadmium selenide-cadmium sulfide (CdSe@CdS) nanorod photocatalysts. Seeded rods are grown using a colloidal hot-injection method and then moved to an aqueous medium by ligand exchange. CdSe@CdS nanorods, an iridium precursor and other salts are mixed and illuminated. The deposition process is initiated by absorption of photons by the semiconductor particle, which results with formation of charge carriers that are used to promote redox reactions. To insure photochemical oxidative growth we used an electron scavenger. The photogenerated holes oxidize the iridium precursor, apparently in a mediated oxidative pathway. This results in the growth of high quality crystalline iridium oxide particles, ranging from 0.5 nm to about 3 nm, along the surface of the rod. Iridium oxide grown on CdSe@CdS heterostructures was studied by a variety of characterization methods, in order to evaluate its characteristics and quality. We explored means for control over particle size, crystallinity, deposition location on the CdS rod, and composition. Illumination time and excitation wavelength were found to be key parameters for such control. The influence of different growth conditions and the characterization of these heterostructures are described alongside a detailed description of their synthesis. Of significance is the fact that the addition of iridium oxide afforded the rods astounding photochemical stability under prolonged illumination in pure water (alleviating the requirement for hole scavengers).

  10. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    SciTech Connect

    Song, Bo; Nelson, Kevin; Lipinski, Ronald J.; Bignell, John L.; Ulrich, G. B.; George, E. P.

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  11. Iridium NEXT partnership for Earth observation: exploiting global satellite constellations for new remote sensing capabilities

    NASA Astrophysics Data System (ADS)

    Gupta, Om P.

    2008-08-01

    A unique opportunity exists to host up to 66 earth observation sensors on the Iridium NEXT LEO constellation in a manner that can revolutionize earth observation and weather predictions. A constellation approach to sensing, using the real-time communications backbone of Iridium, will enable unprecedented geospatial and temporal sampling for now-casting of weather on a global basis as well as global climate monitoring. The Iridium NEXT constellation, with 66 interconnected satellites in 6 near polar orbiting planes, provides a unique platform for hosting a variety of earth observation missions. The opportunity is proposed as a Public-Private Partnership (PPP) allowing for the sharing of infrastructure by government agencies. This has the potential to augment current and planned climate and weather observation programs in a very cost effective manner not achievable in any other way. Iridium, with the assistance of the Group on Earth Observations (GEO), NASA, NOAA, and ESA, has evaluated a number of sensing missions that would be a good fit to the Iridium NEXT constellation. These include GPS radio occultation sensors, earth radiation budget measurements, radio altimetry, tropospheric and stratospheric winds measurements including polar winds measurements, and atmospheric chemistry. Iridium NEXT launches start in 2013 and constellation operational life will extend beyond 2030. Detailed feasibility studies on specific missions are planned to begin later this year.

  12. Catalytic Transfer of Magnetism using a Neutral Iridium Phenoxide Complex

    PubMed Central

    Ruddlesden, Amy J.; Mewis, Ryan E.; Green, Gary G. R.; Whitwood, Adrian C.; Duckett, Simon B.

    2016-01-01

    A novel neutral iridium carbene complex Ir(κC,O-L1)(COD) (1) [where COD = cyclooctadiene and L1 = 3-(2-methylene-4-nitrophenolate)-1-(2,4,6-trimethylphenyl) imidazolylidene] with a pendant alkoxide ligand has been prepared and characterized. It contains a strong Ir-O bond and X-ray analysis reveals a distorted square planar structure. NMR spectroscopy reveals dynamic solution state behavior commensurate with rapid seven-membered ring flipping. In CD2Cl2 solution, under hydrogen at low temperature, this complex dominates although it exists in equilibrium with a reactive iridium dihydride cyclooctadiene complex. 1 reacts with pyridine and H2 to form neutral Ir(H)2(κC,O-L1)(py)2 which also exists in two conformers that differ according to the orientation of the seven-membered metallocycle and whilst its Ir-O bond remains intact, the complex undergoes both pyridine and H2 exchange. As a consequence, when placed under parahydrogen, efficient polarization transfer catalysis (PTC) is observed via the Signal Amplification By Reversible Exchange (SABRE) approach. Due to the neutral character of this catalyst, good hyperpolarization activity is shown in a wide range of solvents for a number of substrates. These observations reflect a dramatic improvement in solvent tolerance of SABRE over that reported for the best PTC precursor IrCl(IMes)(COD). For THF, the associated 1H NMR signal enhancement for the ortho proton signal of pyridine shows an increase of 600-fold at 298 K. The level of signal enhancement can be increased further through warming or varying the magnetic field experienced by the sample at the point of catalytic magnetization transfer.

  13. New yellow-emitting phosphorescent cyclometalated iridium(III) complex

    NASA Astrophysics Data System (ADS)

    Ivanov, P.; Tomova, R.; Petrova, P.; Stanimirov, S.; Petkov, I.

    2012-12-01

    We have synthesized a new yellow iridium complex Iridium(III) bis[2-phenylbenzothiazolato-N,C2']-(1-phenylicosane-1,3-dionate) (bt)2Ir(bsm), based on the benzothiazole derivative. The synthesized molecule was identified by 1H NMR and elemental analysis. The UV-Visible absorption and photoluminescence (PL) spectra of (bt)Ir2(bsm) in CH2Cl2 solution were found at 273 nm and 559 nm, respectively. The complex was used as a dopant into a hole-transporting layer (HTL) in a multilayered organic light emitting device (OLED) structure: ITO/doped-HTL/EL/ETL/M. ITO was a transparent anode of In2O3:SnO2, M- a metallic Al cathode, HTL- 4,4'-bis(9H-carbazol-9-yl)biphenyl (CBP) incorporated in poly(N-vinylcarbazole) (PVK) matrix, EL- electroluminescent layer of bis(8-hydroxy-2-methylquinoline)-(4-phenylphenoxy)aluminum (BAlq) and ETL- electron-transporting layer of tris(8-hydroxyquinolinato)aluminum (Alq3). The electroluminescent (EL) spectra of OLEDs were basically the sum of the emissions of BAlq at 496 nm and the emission of (bt)2Ir(bsm) at 559 nm. With increasing (bt)2Ir(bsm) concentration, the relative electroluminescent intensity of greenish-blue emission (at 496 nm) decreased, while the yellow (at 559 nm) - increased and CIE coordinates of the device shifted from (0.21, 0.33) at 0 wt % to (0.40, 0.48) at 8 wt % of the dopant. It was found that OLED with 0.5 wt % (bt)2Ir(bsm) had the best performance and stable color chromaticity at various voltages.

  14. Iridium-Coated Rhenium Radiation-Cooled Rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.; Schneider, Steven J.

    1997-01-01

    Radiation-cooled rockets are used for a range of low-thrust propulsion functions, including apogee insertion, attitude control, and repositioning of satellites, reaction control of launch vehicles, and primary propulsion for planetary space- craft. The key to high performance and long lifetimes for radiation-cooled rockets is the chamber temperature capability. The material system that is currently used for radiation-cooled rockets, a niobium alloy (C103) with a fused silica coating, has a maximum operating temperature of 1370 C. Temperature limitations of C103 rockets force the use of fuel film cooling, which degrades rocket performance and, in some cases, imposes a plume contamination issue from unburned fuel. A material system composed of a rhenium (Re) substrate and an iridium (Ir) coating has demonstrated operation at high temperatures (2200 C) and for long lifetimes (hours). The added thermal margin afforded by iridium-coated rhenium (Ir/Re) allows reduction or elimination of fuel film cooling. This, in turn, leads to higher performance and cleaner spacecraft environments. There are ongoing government- and industry-sponsored efforts to develop flight Ir/ Re engines, with the primary focus on 440-N, apogee insertion engines. Complementing these Ir/Re engine development efforts is a program to address specific concerns and fundamental characterization of the Ir/Re material system, including (1) development of Ir/Re rocket fabrication methods, (2) establishment of critical Re mechanical properly data, (3) development of reliable joining methods, and (4) characterization of Ir/Re life-limiting mechanisms.

  15. The Electric Dipole Moment of Iridium Monosilicide, IrSi

    NASA Astrophysics Data System (ADS)

    Le, Anh; Steimle, Timothy C.; Cheng, Lan; Stanton, John F.

    2013-06-01

    The optical spectrum of iridium monosilicide (IrSi) was recently observed using REMPI spectroscopy in the range 17200 to 23850 cm^{-1}. The observation was supported by an ab initio calculation which predicted a X^{2}Δ_{5/2} state. Here, we report on the analysis of the optical Stark effect for the X^{2}Δ_{5/2} and [16.0]1.5 (v=6) states. The (6,0)[16.0]1.5 - X^{2}Δ_{5/2} and the (7,0)[16.0]3.5- X^{2}Δ_{5/2} bands of IrSi have been recorded using high-resolution laser-induced fluorescence spectroscopy. The observed optical Stark shifts for the ^{193}IrSi and ^{191}IrSi isotopologues were analyzed to produce the electric dipole moments of -0.4139(64)D and 0.7821(63)D for the X^{2}Δ_{5/2} and [16.0]1.5 (v=6) states, respectively. The negative sign of electric dipole moment of the X^{2}Δ_{5/2} state is supported by high-level quantum-chemical calculations employing all-electron scalar-relativistic CCSD(T) method augmented with spin-orbit corrections as well as corrections due to full triple excitations. In particular, electron-correlation effects have been shown to be essential in the prediction of the negative sign of the dipole moment. A comparison with other iridium containing molecules will be made. Maria A. Garcia, Carolin Vietz, Fernando Ruipérez, Michael D. Morse, and Ivan Infante, Kimika Fakultatea, Euskal Herriko. J. Chem. Phys., (submitted)

  16. Cytotoxic activity and protein binding through an unusual oxidative mechanism by an iridium(I)-NHC complex.

    PubMed

    Gothe, Y; Marzo, T; Messori, L; Metzler-Nolte, N

    2015-02-21

    A new NHC iridium(I) complex (1) showing significant antiproliferative properties in vitro is described here. Its crystal structure, solution behaviour and interactions with the model proteins cytochrome c (cyt c) and lysozyme were investigated. High resolution ESI-MS measurements suggest that this iridium(i) complex acts as a prodrug and binds cyt c tightly through an unusual "oxidative" mechanism. Eventually, an iridium(III)-NHC fragment is found associated to the protein.

  17. Feasibility Analysis on the Utilization of the Iridium Satellite Communications Network for Resident Space Objects in Low Earth Orbit

    DTIC Science & Technology

    2013-03-21

    turquoise -colored plane (containing Iridium_68) and orange-colored plane (containing Iridium_40) compared to the spacing between the turquoise -colored...plane and the white-colored plane (containing Iridium_11). The turquoise -colored and orange-colored planes can be thought of as planes one and six...United States, the turquoise - colored plane is descending, or transiting north to south, and the orange-colored plane is ascending, or transiting

  18. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1994-01-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide

  19. Evaluated Iridium, Yttrium, and Thulium Cross Sections and Integral Validation Against Critical Assembly and Bethe Sphere Measurements

    SciTech Connect

    Chadwick, M.B. Frankle, S.; Trellue, H.; Talou, P.; Kawano, T.; Young, P.G.; MacFarlane, R.E.; Wilkerson, C.W.

    2007-12-15

    We describe new dosimetry (radiochemical) ENDF evaluations for yttrium, iridium, and thulium. These LANL2006 evaluations were based upon measured data and on nuclear model cross section calculations. In the case of iridium and yttrium, new measurements using the GEANIE gamma-ray detector at LANSCE were used to infer (n,xn) cross sections, the measurements being augmented by nuclear model calculations using the GNASH code. The thulium isotope evaluations were based on GNASH calculations and older measurements. The evaluated cross section data are tested through comparisons of simulations with measurements of reaction rates in critical assemblies and in Bethe sphere (sometimes called Wyman sphere) integral experiments. Two types of Bethe sphere experiments were studied - a LiD experiment that had a significant component of 14 MeV neutrons, and a LiD-U experiment that additionally had varying amounts of fission neutrons depending upon the location. These simulations were performed with the MCNP code using continuous energy Monte Carlo, and because the neutron fluences can be modeled fairly accurately by MCNP at different locations in these assemblies, the comparisons provide a valuable validation test of the accuracy of the evaluated cross sections and their energy dependencies. The MCNP integral reaction rate validation testing for the three detectors yttrium, iridium, and thulium, in the LANL2006 database is summarized as follows: (1) (n,2n)near 14 MeV: In 14 MeV-dominated locations (the LiD Bethe spheres and the outer regions of the LiD-U Bethe spheres), the (n,2n) products are modeled very well for all three detectors, suggesting that the evaluated {sup 89}Y(n,2n), {sup 191}Ir(n,2n), and {sup 169}Tm(n,2n) cross sections are accurate to better than about 5% near 14 MeV; (2) (n,2n)near threshold: In locations that have a significant number of fission spectrum neutrons or downscattered neutrons from 14 MeV inelastic scattering (the central regions of the Li

  20. Peptide-functionalized luminescent iridium complexes for lifetime imaging of CXCR4 expression.

    PubMed

    Kuil, Joeri; Steunenberg, Peter; Chin, Patrick T K; Oldenburg, Joppe; Jalink, Kees; Velders, Aldrik H; van Leeuwen, Fijs W B

    2011-08-16

    The chemokine receptor 4 (CXCR4) is over-expressed in 23 types of cancer in which it plays a role in, among others, the metastatic spread. For this reason it is a potential biomarker for the field of diagnostic oncology. The antagonistic Ac-TZ14011 peptide, which binds to CXCR4, has been conjugated to luminescent iridium dyes to allow for CXCR4 visualization. The iridium dyes are cyclometalated octahedral iridium(III) 2-phenylpyridine complexes that can be functionalized with one, two or three targeting Ac-TZ14011 peptides. Confocal microscopy and fluorescence lifetime imaging microscopy (FLIM) showed that the peptide-iridium complex conjugates can be used to visualize CXCR4 expression in tumor cells. The CXCR4 receptor affinity and specific cell binding of the mono-, di- and trimeric peptide derivatives were assessed by using flow cytometry. The three derivatives possessed nanomolar receptor affinity and could distinguish between cell lines with different CXCR4 expression levels. This yields the first example of a neutral iridium(III) complex functionalized with peptides for FLIM-based visualization of a cancer associated membrane receptor.

  1. Electrodeposition of platinum-iridium alloy nanowires for hermetic packaging of microelectronics.

    PubMed

    Petrossians, Artin; Whalen, John J; Weiland, James D; Mansfeld, Florian

    2012-01-01

    An electrodeposition technique was applied for fabrication of dense platinum-iridium alloy nanowires as interconnect structures in hermetic microelectronic packaging to be used in implantable devices. Vertically aligned arrays of platinum-iridium alloy nanowires with controllable length and a diameter of about 200 nm were fabricated using a cyclic potential technique from a novel electrodeposition bath in nanoporous aluminum oxide templates. Ti/Au thin films were sputter deposited on one side of the alumina membranes to form a base material for electrodeposition. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to characterize the morphology and the chemical composition of the nanowires, respectively. SEM micrographs revealed that the electrodeposited nanowires have dense and compact structures. EDS analysis showed a 60:40% platinum-iridium nanowire composition. Deposition rates were estimated by determining nanowire length as a function of deposition time. High Resolution Transmission Electron Microscopy (HRTEM) images revealed that the nanowires have a nanocrystalline structure with grain sizes ranging from 3 nm to 5 nm. Helium leak tests performed using a helium leak detector showed leak rates as low as 1 × 10(-11) mbar L s(-1) indicating that dense nanowires were electrodeposited inside the nanoporous membranes. Comparison of electrical measurements on platinum and platinum-iridium nanowires revealed that platinum-iridium nanowires have improved electrical conductivity.

  2. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors.

    PubMed

    Zhao, Qingcheng; Zhou, Yuyang; Li, Yingying; Gu, Wei; Zhang, Qi; Liu, Jian

    2016-02-02

    There has been growing interest in utilizing highly photostable iridium(III) complexes as new luminescent probes for biotechnology and life science. Herein, iridium(III) complex with carboxyl group was synthesized and activated with N-hydroxysuccinimide, followed by tagging to the amino terminate of single-stranded DNA (ssDNA). The Ir-ssDNA probe was further combined with graphene oxide (GO) nanosheets to develop a GO-based biosensor for target ssDNA detection. The quenching efficiency of GO, and the photostability of iridium(III) complex and GO-Ir-ssDNA biosensor, were also investigated. On the basis of the high luminescence quenching efficiency of GO toward iridium(III) complex, the GO-Ir-ssDNA biosensor exhibited minimal background signals, while strong emission was observed when Ir-ssDNA desorbed from GO nanosheets and formed a double helix with the specific target, leading to a high signal-to-background ratio. Moreover, it was found that luminescent intensities of iridium(III) complex and GO-Ir-ssDNA biosensor were around 15 and 3 times higher than those of the traditional carboxyl fluorescein (FAM) dye and the GO-FAM-ssDNA biosensor after UV irradiation, respectively. Our study suggested the sensitive and selective Ir-ssDNA probe was suitable for the development of highly photostable GO-based detection platforms, showing promise for application beyond the OLED (organic light emitting diode) area.

  3. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Technical Reports Server (NTRS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-01-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  4. Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice.

    PubMed

    Gabrielli, Paolo; Barbante, Carlo; Plane, John M C; Varga, Anita; Hong, Sungmin; Cozzi, Giulio; Gaspari, Vania; Planchon, Frédéric A M; Cairns, Warren; Ferrari, Christophe; Crutzen, Paul; Cescon, Paolo; Boutron, Claude F

    2004-12-23

    An iridium anomaly at the Cretaceous/Tertiary boundary layer has been attributed to an extraterrestrial body that struck the Earth some 65 million years ago. It has been suggested that, during this event, the carrier of iridium was probably a micrometre-sized silicate-enclosed aggregate or the nanophase material of the vaporized impactor. But the fate of platinum-group elements (such as iridium) that regularly enter the atmosphere via ablating meteoroids remains largely unknown. Here we report a record of iridium and platinum fluxes on a climatic-cycle timescale, back to 128,000 years ago, from a Greenland ice core. We find that unexpectedly constant fallout of extraterrestrial matter to Greenland occurred during the Holocene, whereas a greatly enhanced input of terrestrial iridium and platinum masked the cosmic flux in the dust-laden atmosphere of the last glacial age. We suggest that nanometre-sized meteoric smoke particles, formed from the recondensation of ablated meteoroids in the atmosphere at altitudes >70 kilometres, are transported into the winter polar vortices by the mesospheric meridional circulation and are preferentially deposited in the polar ice caps. This implies an average global fallout of 14 +/- 5 kilotons per year of meteoric smoke during the Holocene.

  5. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Astrophysics Data System (ADS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-11-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  6. Efficient asymmetric transfer hydrogenation of ketones in ethanol with chiral iridium complexes of spiroPAP ligands as catalysts.

    PubMed

    Liu, Wei-Peng; Yuan, Ming-Lei; Yang, Xiao-Hui; Li, Ke; Xie, Jian-Hua; Zhou, Qi-Lin

    2015-04-11

    Highly efficient iridium catalyzed asymmetric transfer hydrogenation of simple ketones with ethanol as a hydrogen donor has been developed. By using chiral spiro iridium catalysts (S)- a series of alkyl aryl ketones were hydrogenated to chiral alcohols with up to 98% ee.

  7. High Strain Rate Tensile Testing of DOP-26 Iridium

    SciTech Connect

    Schneibel, Joachim H; Carmichael Jr, Cecil Albert; George, Easo P

    2007-11-01

    The iridium alloy DOP-26 was developed through the Radioisotope Power Systems Program in the Office of Nuclear Energy of the Department of Energy. It is used for clad vent set cups containing radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for spacecraft. This report describes mechanical testing results for DOP-26. Specimens were given a vacuum recrystallization anneal of 1 hour at 1375 C and tested in tension in orientations parallel and perpendicular to the rolling direction of the sheet from which they were fabricated. The tests were performed at temperatures ranging from room temperature to 1090 C and strain rates ranging from 1 x 10{sup -3} to 50 s{sup -1}. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1 x 10{sup -4} Torr. The yield stress (YS) and the ultimate tensile stress (UTS) decreased with increasing temperature and increased with increasing strain rate. Between 600 and 1090 C, the ductility showed a slight increase with increasing temperature. Within the scatter of the data, the ductility did not depend on the strain rate. The reduction in area (RA), on the other hand, decreased with increasing strain rate. The YS and UTS values did not differ significantly for the longitudinal and transverse specimens. The ductility and RA values of the transverse specimens were marginally lower than those of the longitudinal specimens.

  8. Phosphorescent sensor for phosphorylated peptides based on an iridium complex.

    PubMed

    Kang, Jung Hyun; Kim, Hee Jin; Kwon, Tae-Hyuk; Hong, Jong-In

    2014-07-03

    A bis[(4,6-difluorophenyl)pyridinato-N,C(2')]iridium(III) picolinate (FIrpic) derivative coupled with bis(Zn(2+)-dipicolylamine) (ZnDPA) was developed as a sensor (1) for phosphorylated peptides, which are related to many cellular mechanisms. As a control, a fluorescent sensor (2) based on anthracene coupled to ZnDPA was also prepared. When the total negative charge on the phosphorylated peptides was changed to -2, -4, and -6, the emission intensity of sensor 1 gradually increased by factors of up to 7, 11, and 16, respectively. In contrast, there was little change in the emission intensity of sensor 1 upon the addition of a neutral phosphorylated peptide, non-phosphorylated peptides, or various anions such as CO3(2-), NO3(-), SO4(2-), phosphate, azide, and pyrophosphate. Furthermore, sensor 1 could be used to visually discriminate between phosphorylated peptides and adenosine triphosphate in aqueous solution under a UV-vis lamp, unlike fluorescent sensor 2. This enhanced luminance of phosphorescent sensor 1 upon binding to a phosphorylated peptide is attributed to a reduction in the repulsion between the Zn(2+) ions due to the phenoxy anion, its strong metal-to-ligand charge transfer character, and a reduction in self-quenching.

  9. High-Temperature Oxidation Behavior of Iridium-Rhenium Alloys

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1995-01-01

    The life-limiting mechanism for radiation-cooled rockets made from iridium-coated rhenium (Ir/Re) is the diffusion of Re into the Ir layer and the subsequent oxidation of the resulting Ir-Re alloy from the inner surface. In a previous study, a life model for Ir/Re rockets was developed. It incorporated Ir-Re diffusion and oxidation data to predict chamber lifetimes as a function of temperature and oxygen partial pressure. Oxidation testing at 1540 deg C suggested that a 20-wt percent Re concentration at the inner wall surface should be established as the failure criterion. The present study was performed to better define Ir-oxidation behavior as a function of Re concentration and to supplement the data base for the life model. Samples ranging from pure Ir to Ir-40 wt percent Re (Ir-40Re) were tested at 1500 deg C, in two different oxygen environments. There were indications that the oxidation rate of the Ir-Re alloy increased significantly when it went from a single-phase solid solution to a two-phase mixture, as was suggested in previous work. However, because of testing anomalies in this study, there were not enough dependable oxidation data to definitively raise the Ir/Re rocket failure criterion from 20-wt percent Re to a Re concentration corresponding to entry into the two-phase region.

  10. Iridium profiles and delivery across the Cretaceous/Paleogene boundary

    NASA Astrophysics Data System (ADS)

    Esmeray-Senlet, Selen; Miller, Kenneth G.; Sherrell, Robert M.; Senlet, Turgay; Vellekoop, Johan; Brinkhuis, Henk

    2017-01-01

    We examined iridium (Ir) anomalies at the Cretaceous/Paleogene (K/Pg) boundary in siliciclastic shallow marine cores of the New Jersey Coastal Plain, USA, that were deposited at an intermediate distance (∼2500 km) from the Chicxulub, Mexico crater. Although closely spaced and generally biostratigraphically complete, the cores show heterogeneity in terms of preservation of the ejecta layers, maximum concentration of Ir measured (∼0.1-2.4 ppb), and total thickness of the Ir-enriched interval (11-119 cm). We analyzed the shape of the Ir profiles with a Lagrangian particle-tracking model of sediment mixing. Fits between the mixing model and measured Ir profiles, as well as visible burrows in the cores, show that the shape of the Ir profiles was determined primarily by sediment mixing via bioturbation. In contrast, Tighe Park 1 and Bass River cores show post-depositional remobilization of Ir by geochemical processes. There is a strong inverse relationship between the maximum concentration of Ir measured and the thickness of the sediments over which Ir is spread. We show that the depth-integrated Ir inventory is similar in the majority of the cores, indicating that the total Ir delivery at time of the K/Pg event was spatially homogeneous over this region. Though delivered through a near-instantaneous source, stratospheric dispersal, and settling, our study shows that non-uniform Ir profiles develop due to changes in the regional delivery and post-depositional modification by bioturbation and geochemical processes.

  11. Earth's Radiation Imbalance from a Constellation of 66 Iridium Satellites

    NASA Astrophysics Data System (ADS)

    Chiu, J. C.; Wiscombe, W. J.

    2012-04-01

    The Earth Radiation Imbalance (ERI) at the top of the atmosphere is the primary driving force for climate change. If ERI is not zero, then Earth's temperature, both oceanic and atmospheric, will change gradually over time, tending toward a new steady state. The best estimates of current ERI from climate models range from 0.4 to 0.9 W/m2 (the imbalance being caused mainly by increasing CO2), but current satellite systems do not have the accuracy to measure ERI to even one significant digit. In this paper, we will describe a proposed constellation of 66 Earth radiation budget instruments, to be hosted on Iridium satellites. This system represents a quantum leap over current systems in several ways, in particular in providing ERI to at least one significant digit, thus enabling a crucial test of climate models. Because of its 24/7 coverage, the system will also provide ERI at three-hourly time scales without requiring extrapolations from narrowband geostationary instruments. This would allow studies of ERI's response to fast-evolving phenomena like dust storms and hurricanes. This offers a new, synoptic view of Earth radiation budget that will transform it from a monthly average into a dynamical variable alongside standard meteorological variables like temperature and pressure.

  12. Alpha Blockers

    MedlinePlus

    ... conditions such as high blood pressure and benign prostatic hyperplasia. Find out more about this class of medication. ... these conditions: High blood pressure Enlarged prostate (benign prostatic hyperplasia) Though alpha blockers are commonly used to treat ...

  13. Alpha fetoprotein

    MedlinePlus

    ... Alpha fetoprotein - series References Cunningham FG, Leveno KJ, Bloom SL, et al. Prenatal diagnosis and fetal therapy. In: Cunningham FG, Leveno KJ, Bloom SL, et al, eds. Williams Obstetrics . 23rd ed. ...

  14. Alpha Thalassemia

    MedlinePlus

    ... an apparently normal individual has a child with hemoglobin H disease or alpha thalassemia minor. It can ... gene on one chromosome 25% 25% 25% 25% hemoglobin H disease there is a 25% chance with ...

  15. Mono- and dinuclear cationic iridium(III) complexes bearing a 2,5-dipyridylpyrazine (2,5-dpp) ligand.

    PubMed

    Donato, Loïc; McCusker, Catherine E; Castellano, Felix N; Zysman-Colman, Eli

    2013-08-05

    The synthesis, X-ray structures, photophysical, and electrochemical characterization of mono- (1) and dinuclear (2) cationic iridium(III) complexes bearing a 2,5-dipyridylpyrazine (2,5-dpp) ancillary ligand are reported. Upon the complexation of a first equivalent of iridium, the photoluminescence shifts markedly into the deep red (λem = 710 nm, ΦPL = 0.9%) compared to other cationic iridium complexes such as [Ir(ppy)2(bpy)]PF6. With the coordination of a second equivalent of iridium, room temperature luminescence is completely quenched. Both 1 and 2 are luminescent at low temperatures but with distinct excited state decay kinetics; the emission of 2 is significantly red-shifted compared to 1. Emission both at 298 and 77 K results from a mixed charge-transfer state. Density functional theory (DFT) calculations and electrochemical behavior point to an electronic communication between the two iridium complexes.

  16. Reforming catalyst of separate platinum-containing and iridium-containing particles

    SciTech Connect

    Schoennagel, H.J.

    1981-04-21

    Catalyst compositions are provided comprising a refractory support, about 0.1 to about 2 percent by weight of platinum, about 0.1 to about 2 percent by weight of iridium and about 0.1 to about 5 weight percent of halogen where the platinum and iridium are contained on separate particles of said support. The relative weight ratio of the particles containing platinum and those containing iridium is between about 10:1 to about 1:10. The compositions are useful as hydrocarbon conversion catalysts and are especially applicable for use in catalyzing the reforming of naphtha petroleum fractions. There is also disclosed a reforming process conducted in the presence of hydrogen, under reforming conditions, in the presence of the above catalyst.

  17. Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.

    2006-09-01

    Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.

  18. Activation of C-H bonds in nitrones leads to iridium hydrides with antitumor activity.

    PubMed

    Song, Xiaoda; Qian, Yong; Ben, Rong; Lu, Xiang; Zhu, Hai-Liang; Chao, Hui; Zhao, Jing

    2013-08-22

    We report the design and synthesis of a series of new cyclometalated iridium hydrides derived from the C-H bond activation of aromatic nitrones and the biological evaluation of these iridium hydrides as antitumor agents. The nitrone ligands are based on the structure of a popular antioxidant, α-phenyl-N-tert-butylnitrone (PBN). Compared to cisplatin, the iridium hydrides exhibit excellent antitumor activity on HepG2 cells. The metal-coordinated compound with the most potent anticancer activity, 2f, was selected for further analysis because of its ability to induce apoptosis and interact with DNA. During in vitro studies and in vivo efficacy analysis with tumor xenograft models in Institute of Cancer Research (ICR) mice, complex 2f exhibited antitumor activity that was markedly superior to that of cisplatin. Our results suggest, for the first time, that metal hydrides could be a new type of metal-based antitumor agent.

  19. Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity.

    PubMed

    Lu, Lihua; Liu, Li-juan; Chao, Wei-chieh; Zhong, Hai-Jing; Wang, Modi; Chen, Xiu-Ping; Lu, Jin-Jian; Li, Ruei-nian; Ma, Dik-Lung; Leung, Chung-Hang

    2015-09-29

    Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus.

  20. Heterogeneous Catalysis for Water Oxidation by an Iridium Complex Immobilized on Bipyridine-Periodic Mesoporous Organosilica.

    PubMed

    Liu, Xiao; Maegawa, Yoshifumi; Goto, Yasutomo; Hara, Kenji; Inagaki, Shinji

    2016-07-04

    Heterogenization of metal-complex catalysts for water oxidation without loss of their catalytic activity is important for the development of devices simulating photosynthesis. In this study, efficient heterogeneous iridium complexes for water oxidation were prepared using bipyridine-bridged periodic mesoporous organosilica (BPy-PMO) as a solid chelating ligand. The BPy-PMO-based iridium catalysts (Ir-BPy-PMO) were prepared by postsynthetic metalation of BPy-PMO and characterized through physicochemical analyses. The Ir-BPy-PMOs showed high catalytic activity for water oxidation. The turnover frequency (TOF) values for Ir-BPy-PMOs were one order of magnitude higher than those of conventional heterogeneous iridium catalysts. The reusability and stability of Ir-BPy-PMO were also examined, and detailed characterization was conducted using powder X-ray diffraction, nitrogen adsorption, (13) C DD MAS NMR spectroscopy, TEM, and XAFS methods.

  1. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGES

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; ...

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  2. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    SciTech Connect

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  3. Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity

    PubMed Central

    Lu, Lihua; Liu, Li-Juan; Chao, Wei-chieh; Zhong, Hai-Jing; Wang, Modi; Chen, Xiu-Ping; Lu, Jin-Jian; Li, Ruei-nian; Ma, Dik-Lung; Leung, Chung-Hang

    2015-01-01

    Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus. PMID:26416333

  4. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  5. Oxygen atom transfer to a half-sandwich iridium complex: clean oxidation yielding a molecular product.

    PubMed

    Turlington, Christopher R; White, Peter S; Brookhart, Maurice; Templeton, Joseph L

    2014-03-12

    The oxidation of [Ir(Cp*)(phpy)(NCAr(F))][B(Ar(F))4] (1; Cp* = η(5)-pentamethylcyclopentadienyl, phpy = 2-phenylene-κC(1')-pyridine-κN, NCAr(F) = 3,5-bis(trifluoromethyl)benzonitrile, B(Ar(F))4 = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) with the oxygen atom transfer (OAT) reagent 2-tert-butylsulfonyliodosobenzene (sPhIO) yielded a single, molecular product at -40 °C. New Ir(Cp*) complexes with bidentate ligands derived by oxidation of phpy were synthesized to model possible products resulting from oxygen atom insertion into the iridium-carbon and/or iridium-nitrogen bonds of phpy. These new ligands were either cleaved from iridium by water or formed unreactive, phenoxide-bridged iridium dimers. The reactivity of these molecules suggested possible decomposition pathways of Ir(Cp*)-based water oxidation catalysts with bidentate ligands that are susceptible to oxidation. Monitoring the [Ir(Cp*)(phpy)(NCAr(F))](+) oxidation reaction by low-temperature NMR techniques revealed that the reaction involved two separate OAT events. An intermediate was detected, synthesized independently with trapping ligands, and characterized. The first oxidation step involves direct attack of the sPhIO oxidant on the carbon of the coordinated nitrile ligand. Oxygen atom transfer to carbon, followed by insertion into the iridium-carbon bond of phpy, formed a coordinated organic amide. A second oxygen atom transfer generated an unidentified iridium species (the "oxidized complex"). In the presence of triphenylphosphine, the "oxidized complex" proved capable of transferring one oxygen atom to phosphine, generating phosphine oxide and forming an Ir-PPh3 adduct in 92% yield. The final Ir-PPh3 product was fully characterized.

  6. Thermocouples of molybdenum and iridium alloys for more stable vacuum-high temperature performance

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1978-01-01

    Thermocouples providing stability and performance reliability in systems involving high temperatures and vacuums by employing a bimetallic thermocouple sensor are described. Each metal of the sensor is selected from a group of metals comprising molybdenum and iridium and alloys containing only those two metals. The molybdenum, iridium thermocouple sensor alloys provide bare metal thermocouple sensors having advantageous vapor pressure compatibility and performance characteristics. The compatibility and physical characteristics of the thermocouple sensor alloys result in improved emf, temperature properties and thermocouple hot junction performance.

  7. Selective DNA purine base photooxidation by bis-terdentate iridium(III) polypyridyl and cyclometalated complexes.

    PubMed

    Jacques, Alexandre; Kirsch-De Mesmaeker, Andrée; Elias, Benjamin

    2014-02-03

    Two bis-terdentate iridium(III) complexes with polypyridyl and cyclometalated ligands have been prepared and characterized. Their spectroscopic and electrochemical properties have been studied, and a photophysical scheme addressing their properties is proposed. Different types of excited states have been considered to account for the deactivation processes in each complex. Interestingly, in the presence of mono- or polynucleotides, a photoinduced electron-transfer process from a DNA purine base (i.e., guanine or adenine) to the excited complex is shown through luminescence quenching experiments. For the first time, this work reports evidence for selective DNA purine bases oxidation by excited iridium(III) bis-terdentate complexes.

  8. An Iridium(III) Complex Inhibits JMJD2 Activities and Acts as a Potential Epigenetic Modulator.

    PubMed

    Liu, Li-Juan; Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Kwong, Daniel W J; Ma, Dik-Lung; Leung, Chung-Hang

    2015-08-27

    A novel iridium(III) complex was synthesized and evaluated for its ability to target JMJD2 enzymatic activity. The iridium(III) complex 1 can inhibit JMJD2 activity and was selective for JMJD2 activity over JARID, JMJD3, and HDAC activities. Moreover, 1 suppressed the trimethylation of the p21 promoter on H3K9me3 and interrupted the JMJD2D-H3K9me3 interactions in human cells, suggesting that it could act as an epigenetic modulator. To our knowledge, 1 represents the first metal-based JMJD2 inhibitor reported in the literature.

  9. New Iridium Complex Coordinated with Tetrathiafulvalene Substituted Triazole-pyridine Ligand: Synthesis, Photophysical and Electrochemical Properties.

    PubMed

    Niu, Zhi-Gang; Xie, Hui; He, Li-Rong; Li, Kai-Xiu; Xia, Qing; Wu, Dong-Min; Li, Gao-Nan

    2016-01-01

    A new iridium(III) complex based on the triazole-pyridine ligand with tetrathiafulvalene unit, [Ir(ppy)2(L)]PF6 (1), has been synthesized and structurally characterized. The absorption spectra, luminescent spectra and electrochemical behaviors of L and 1 have been investigated. Complex 1 is found to be emissive at room temperature with maxima at 481 and 510 nm. The broad and structured emission bands are suggested a mixing of 3LC (3π-π*) and 3CT (3MLCT) excited states. The influence of iridium ion coordination on the redox properties of the TTF has also been investigated by cyclic voltammetry.

  10. High-strain-rate, high-temperature biaxial testing of DOP-26 iridium

    SciTech Connect

    George, T.G.

    1988-05-01

    High-strain-rate biaxial punch tests were performed on DOP-26 (Ir-0.3 wt.% tungsten) iridium-alloy disc given annealing and aging heat treatments. Test temperatures ranged between 600 and 1440/degree/C, and punch velocity was held constant at 45 m/s. Three types of samples were evaluated: Z-batch old-process discs, B-batch old-process discs, and B-batch new-process discs. The results indicate that batch-to-batch variations in ductility are significant and that new-process iridium is slightly more ductile than old-process material. 12 refs., 43 figs., 26 tabs.

  11. Analysis of the galactosyltransferase reaction by positional isotope exchange and secondary deuterium isotope effects

    SciTech Connect

    Kim, S.C.; Singh, A.N.; Raushel, F.M.

    1988-11-15

    The mechanism of the galactosyltransferase-catalyzed reaction was probed using positional isotope exchange, alpha-secondary deuterium isotope effects, and inhibition studies with potential transition state analogs. Incubation of (beta-18O2, alpha beta-18O)UDP-galactose and alpha-lactalbumin with galactosyltransferase from bovine milk did not result in any positional isotope exchange. The addition of 4-deoxy-4-fluoroglucose as a dead-end inhibitor did not induce any detectable positional isotope exchange. alpha-Secondary deuterium isotope effects of 1.21 +/- 0.04 on Vmax and 1.05 +/- 0.04 on Vmax/KM were observed for (1-2H)-UDP-galactose. D-Glucono-1,5-lactone, D-galactono-1,4-lactone, D-galactono-1,5-lactone, nojirimycin, and deoxynojirimycin, did not inhibit the galactosyl transfer reaction at concentrations less than 1.0 mM. The magnitude of the secondary deuterium isotope effect supports a mechanism in which the anomeric carbon of the galactosyl moiety has substantial sp2 character in the transition state. Therefore, the cleavage of the bond between the galactose and UDP moieties in the transition state has proceeded to a much greater extent than the formation of the bond between the galactose and the incoming glucose. The lack of a positional isotope exchange reaction indicates that the beta-phosphoryl group of the UDP is not free to rotate in the absence of an acceptor substrate.

  12. Dynamic High-Temperature Tensile Characterization of an Iridium Alloy with Kolsky Tension Bar Techniques

    SciTech Connect

    Song, Bo; Nelson, Kevin; Lipinski, Ronald; Bignell, John; Ulrich, G. B.; George, Easo P.

    2015-05-29

    In this study, conventional Kolsky tension bar techniques were modified to characterize an iridium alloy in tension at elevated strain rates and temperatures. The specimen was heated to elevated temperatures with an induction coil heater before dynamic loading; whereas, a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends of the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. The dynamic high-temperature tensile stress–strain curves of a DOP-26 iridium alloy were experimentally obtained at two different strain rates (~1000 and 3000 s-1) and temperatures (~750 and 1030°C). The effects of strain rate and temperature on the tensile stress–strain response of the iridium alloy were determined. Finally, the iridium alloy exhibited high ductility in stress–strain response that strongly depended on strain-rate and temperature.

  13. Dynamic High-Temperature Tensile Characterization of an Iridium Alloy with Kolsky Tension Bar Techniques

    DOE PAGES

    Song, Bo; Nelson, Kevin; Lipinski, Ronald; ...

    2015-05-29

    In this study, conventional Kolsky tension bar techniques were modified to characterize an iridium alloy in tension at elevated strain rates and temperatures. The specimen was heated to elevated temperatures with an induction coil heater before dynamic loading; whereas, a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends ofmore » the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. The dynamic high-temperature tensile stress–strain curves of a DOP-26 iridium alloy were experimentally obtained at two different strain rates (~1000 and 3000 s-1) and temperatures (~750 and 1030°C). The effects of strain rate and temperature on the tensile stress–strain response of the iridium alloy were determined. Finally, the iridium alloy exhibited high ductility in stress–strain response that strongly depended on strain-rate and temperature.« less

  14. Optimization and electrochemical characterization of RF-sputtered iridium oxide microelectrodes for electrical stimulation

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyang; Liu, Jingquan; Tian, Hongchang; Yang, Bin; NuLi, Yanna; Yang, Chunsheng

    2014-02-01

    A reactively sputtered iridium oxide (IrOx) thin film has been developed as electrochemical modification material for microelectrodes to obtain high stability and charge storage capacity (CSC) in functional electrical stimulation. The effect of the oxygen flow and oxygen to argon ratio during sputtering process on the microstructure and electrochemical properties of the IrOx film is characterized. After optimization, the activated IrOx microelectrode shows the highest CSC of 36.15 mC cm-2 at oxygen flow of 25 sccm and oxygen to argon ratio of (2.5:1). Because the deposition process of the reactively sputtered iridium oxide is an exothermic reaction, it is difficult to form film patterning by the lift-off process. The lift-off process was focused on the partially carbonized photoresist (PR) and normal PR. The higher of the carbonization degree of PR reaches, the longer the immersion duration. However, the patterning process of the iridium oxide film becomes feasible when the sputtering pressure is increasing. The experimental results show that the iridium oxide films forms the pattern with the lowest duration of ultrasonic agitation when the deposition pressure is 4.2 Pa and pressure ratio between O2 and Ar pressure is 3:4.

  15. Acylsilanes in Iridium-Catalyzed Directed Amidation Reactions and Formation of Heterocycles via Siloxycarbenes.

    PubMed

    Becker, Peter; Pirwerdjan, Ramona; Bolm, Carsten

    2015-12-14

    Exposing ortho-amido aroylsilanes to visible light or heat leads to cyclization reactions that provide N-heterocyclic compounds via siloxycarbenes as key intermediates. The previously unreported starting materials have been prepared by directed amidations of aromatic acylsilanes in the presence of an iridium catalyst followed by N-alkylation.

  16. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dangwal Pandey, A.; Krausert, K.; Franz, D.; Grânäs, E.; Shayduk, R.; Müller, P.; Keller, T. F.; Noei, H.; Vonk, V.; Stierle, A.

    2016-08-01

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  17. Total Synthesis of Cryptocaryol A by Enantioselective Iridium-Catalyzed Alcohol C-H Allylation.

    PubMed

    Perez, Felix; Waldeck, Andrew R; Krische, Michael J

    2016-04-11

    The polyketide natural product cryptocaryol A is prepared in 8 steps via iridium catalyzed enantioselective diol double C-H allylation, which directly generates an acetate-based triketide stereodiad. In 4 previously reported total syntheses, 17-28 steps were required.

  18. Catalytic cleavage of ether C-O bonds by pincer iridium complexes.

    PubMed

    Haibach, Michael C; Lease, Nicholas; Goldman, Alan S

    2014-09-15

    The development of efficient catalytic methods to cleave the relatively unreactive C-O bonds of ethers remains an important challenge in catalysis. Building on our group's recent work, we report the dehydroaryloxylation of aryl alkyl ethers using pincer iridium catalysts. This method represents a rare fully atom-economical method for ether C-O bond cleavage.

  19. Comparative assessment of iridium oxide and platinum alloy wires using an in vitro glial scar assay.

    PubMed

    Ereifej, Evon S; Khan, Saida; Newaz, Golam; Zhang, Jinsheng; Auner, Gregory W; VandeVord, Pamela J

    2013-12-01

    The long-term effect of chronically implanted electrodes is the formation of a glial scar. Therefore, it is imperative to assess the biocompatibility of materials before employing them in neural electrode fabrication. Platinum alloy and iridium oxide have been identified as good candidates as neural electrode biomaterials due to their mechanical and electrical properties, however, effect of glial scar formation for these two materials is lacking. In this study, we applied a glial scarring assay to observe the cellular reactivity to platinum alloy and iridium oxide wires in order to assess the biocompatibility based on previously defined characteristics. Through real-time PCR, immunostaining and imaging techniques, we will advance the understanding of the biocompatibility of these materials. Results of this study demonstrate iridium oxide wires exhibited a more significant reactive response as compared to platinum alloy wires. Cells cultured with platinum alloy wires had less GFAP gene expression, lower average GFAP intensity, and smaller glial scar thickness. Collectively, these results indicated that platinum alloy wires were more biocompatible than the iridium oxide wires.

  20. Iridium-catalyzed regio- and enantioselective allylic substitution of silyl dienolates derived from dioxinones.

    PubMed

    Chen, Ming; Hartwig, John F

    2014-11-03

    Reported herein is the iridium-catalyzed regio- and enantioselective allylic substitution reactions of unstabilized silyl dienolates derived from dioxinones. Asymmetric allylic substitution of a variety of allylic trichloroethyl carbonates with these silyl dienolates gave γ-allylated products selectively in 60-84% yield and 90-98% ee.

  1. Synthesis and luminescence properties of iridium complexes chelated with coumarin ligands.

    PubMed

    Park, Hye Rim; Kim, Bo Young; Kim, Young Kwan; Ha, Yunkyoung

    2013-05-01

    According to a recent report, the organic light-emitting diodes (OLEDs) using the iridium complexes of coumarin derivatives as emissive dopants are highly efficient and stable. Unlike the other Ir(III) phopsphorescent dopants, these coumarin-based Ir(III) complexes can effectively trap and transport electrons in the emissive layer. We have prepared a series of phosphorescent cyclometalated Ir(III) complexes containing 3-(2-pyridinyl)coumarin (pc) as an ancillary ligand. The new heteroleptic iridium complexes, Ir(C--N)2(pc) (CAN = 2-(2,4-difluorophenyl)pyridine (F2-ppy), 2-phenylpyridine (ppy) and 2-phenylquinoline (pq)) were characterized by 1H NMR and mass spectrometer. As main ligands, F2-ppy, ppy and pq were employed, which should have the drastically different ligand molecular orbital energy levels. The iridium complexes showed various emission ranges from 560 to 610 nm, depending upon the relative energy levels of their main and ancillary ligands. The photoabsorption, photoluminescence and electroluminescence of the complexes were studied. We also investigated the electrochemical properties of the iridium complexes to compare the HOMO and LUMO energy levels of these phosphorescent materials.

  2. Theoretical study of structure, stability, and the hydrolysis reactions of small iridium oxide nanoclusters.

    PubMed

    Zhou, Xin; Yang, Jingxiu; Li, Can

    2012-10-11

    The geometric structures and relative stabilities of small iridium oxide nanoclusters, Ir(m)O(n) (m = 1-5 and n = 1-2m), have been systematically investigated using density functional theory (DFT) calculations at the B3LYP level. Our results show that the lowest-energy structures of these clusters can be obtained by the sequential oxidation of small "core" iridium clusters. The iridium-monoxide-like clusters have relatively higher stability because of their relatively high binding energy and second difference in energies. On the basis of the optimized lowest-energy structures of neutral and cationic (IrO(2))(n) (n = 1-5), DFT has been used to study the hydrolysis reaction of these clusters with water molecules. The calculated results show that the addition of water molecules to the cationic species is much easier than the neutral ones. The overall hydrolysis reaction energies are more exothermic for the cationic clusters than for the neutral clusters. Our calculations indicate that H(2)O can be more easily split on the cationic iridium oxide clusters than on the neutral clusters.

  3. A pH Sensor Based on a Stainless Steel Electrode Electrodeposited with Iridium Oxide

    ERIC Educational Resources Information Center

    Martinez, C. C. M.; Madrid, R. E.; Felice, C. J.

    2009-01-01

    A simple procedure to make an iridium oxide (IrO[subscript 2]) electrodeposited pH sensor, that can be used in a chemical, biomedical, or materials laboratory, is presented here. Some exercises, based on this sensor, that can be used to teach important concepts in the field of biomedical, biochemical, tissue, or materials engineering, are also…

  4. Iridium-catalyzed selective α-alkylation of unactivated amides with primary alcohols.

    PubMed

    Guo, Le; Liu, Yinghua; Yao, Wubing; Leng, Xuebing; Huang, Zheng

    2013-03-01

    The first α-alkylation of unactivated amides with primary alcohols is described. An effective and robust iridium pincer complex has been developed for selective α-alkylation of tertiary and secondary acetamides involving a "borrowing hydrogen" methodology. The method is compatible with alcohols bearing various functional groups. This presents a convenient and environmentally benign protocol for α-alkylation of amides.

  5. A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions.

    PubMed

    Rojo, Maria Victoria; Guetzoyan, Lucie; Baxendale, Ian R

    2015-02-14

    An immobilised iridium hydrogen transfer catalyst has been developed for use in flow based processing by incorporation of a ligand into a porous polymeric monolithic flow reactor. The monolithic construct has been used for several redox reductions demonstrating excellent recyclability, good turnover numbers and high chemical stability giving negligible metal leaching over extended periods of use.

  6. The growth of graphite phase on an iridium field electron emitter

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2016-06-01

    The growth of graphite on the surface of an iridium tip in pyrolysis of benzene to give a ribbed crystal has been found by the methods of field electron and desorption microscopy. The formation of a graphite crystal results in the electric field factor increasing. The adsorption of alkali metals on the surface of graphite is accompanied by the intercalation effect.

  7. Grazing incidence X-ray reflectivity of gold and iridium coated flat mirrors

    NASA Astrophysics Data System (ADS)

    Aschenbach, Bernd; Braeuninger, Heinrich; Burkert, Wolfgang

    In the context of developing high reflectivity coatings for X-ray telescopes highly polished Zerodur and BK-7 glass flats have been coated with either gold or iridium. Grazing incidence reflectivity measurements at various X-ray energies are reported and compared with standard theory prediction.

  8. High temperature reactive ion etching of iridium thin films with aluminum mask in CF4/O2/Ar plasma

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Pin; Lisker, Marco; Kalkofen, Bodo; Burte, Edmund P.

    2016-08-01

    Reactive ion etching (RIE) technology for iridium with CF4/O2/Ar gas mixtures and aluminum mask at high temperatures up to 350 °C was developed. The influence of various process parameters such as gas mixing ratio and substrate temperature on the etch rate was studied in order to find optimal process conditions. The surface of the samples after etching was found to be clean under SEM inspection. It was also shown that the etch rate of iridium could be enhanced at higher process temperature and, at the same time, very high etching selectivity between aluminum etching mask and iridium could be achieved.

  9. Testing and evaluation of oxide-coated iridium/rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1993-01-01

    Iridium-coated rhenium provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase iridium/rhenium rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated iridium/rhenium, 22 N rocket chambers were tested on gaseous hydrogen/gaseous oxygen propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia or zirconia. Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of zirconia infiltrated with sol gel hafnia. The other chamber had a coating composed of an iridium/oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. The iridium/oxide composite coated chamber included testing for over 29 minutes at mixture ratio 16. The thicker-walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner-walled coatings did not experience the macrocracking and chipping of the chambers seen with the thick, monolithic coatings. However, burnthroughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stochiometric. The burn-throughs were probably the result of oxygen-diffusion through the oxide coating that allowed the underlying iridium and rhenium layers to be oxidized. The results of this test program indicated that the thin

  10. Chlorido-containing ruthenium(II) and iridium(III) complexes as antimicrobial agents.

    PubMed

    Pandrala, Mallesh; Li, Fangfei; Feterl, Marshall; Mulyana, Yanyan; Warner, Jeffrey M; Wallace, Lynne; Keene, F Richard; Collins, J Grant

    2013-04-07

    A series of polypyridyl-ruthenium(II) and -iridium(III) complexes that contain labile chlorido ligands, [{M(tpy)Cl}(2){μ-bb(n)}](2/4+) {Cl-Mbb(n); where M = Ru or Ir; tpy = 2,2':6',2''-terpyridine; and bb(n) = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane (n = 7, 12 or 16)} have been synthesised and their potential as antimicrobial agents examined. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of the series of metal complexes against four strains of bacteria - Gram positive Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), and Gram negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) - have been determined. All the ruthenium complexes were highly active and bactericidal. In particular, the Cl-Rubb(12) complex showed excellent activity against all bacterial cell lines with MIC values of 1 μg mL(-1) against the Gram positive bacteria and 2 and 8 μg mL(-1) against E. coli and P. aeruginosa, respectively. The corresponding iridium(III) complexes also showed significant antimicrobial activity in terms of MIC values; however and surprisingly, the iridium complexes were bacteriostatic rather than bactericidal. The inert iridium(III) complex, [{Ir(phen)(2)}(2){μ-bb(12)}](6+) {where phen = 1,10-phenanthroline) exhibited no antimicrobial activity, suggesting that it could not cross the bacterial membrane. The mononuclear model complex, [Ir(tpy)(Me(2)bpy)Cl]Cl(2) (where Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine), was found to aquate very rapidly, with the pK(a) of the iridium-bound water in the corresponding aqua complex determined to be 6.0. This suggests the dinuclear complexes [Ir(tpy)Cl}(2){μ-bb(n)}](4+) aquate and deprotonate rapidly and enter the bacterial cells as 4+ charged hydroxo species.

  11. Water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines.

    PubMed

    Yuan, Yong-Jun; Yu, Zhen-Tao; Cai, Jian-Guang; Zheng, Chao; Huang, Wei; Zou, Zhi-Gang

    2013-08-01

    The photoreduction of water to hydrogen represents a promising method for generating sustainable clean fuel. The molecular processes of this photoreduction require an effective light absorber, such as the ruthenium polybipyridine complex, to collect and convert the solar energy into a usable chemical form. In the search for a highly active and stable photosensitizer (PS), iridium complexes are attractive because of their desirable photophysical characteristics. Herein, a series of homoleptic tris-cyclometalated iridium complexes, based on different 2-phenylpyridine ligands, were utilized as PSs in photocatalytic systems for hydrogen production with [Rh(dtb-bpy)3 ](PF6 )3 (dtb-bpy=4,4'-di-tert-butyl-2,2'-dipyridyl) serving as the water reduction catalyst (WRC) and triethanolamine (TEOA) as the electron donor. The photophysical and electrochemical properties of these complexes were systematically investigated. The excited state of neutral iridium complexes (PS*) could not be quenched by using TEOA as an electron donor, but they could be quenched by using [Rh(dtb-bpy)3 ](PF6 )3 as an electron acceptor, indicating that the PS* quenching pathway in catalytic reactions was most likely an oxidative quenching process. A set of long-lived and highly active systems for hydrogen evolution were obtained in Ir(III) -Rh(III) -TEOA systems. These systems maintained their activity for more than 72 h with visible-light irradiation, and the total turnover number was up to 3040. Comparative studies indicated that the photocatalytic performance of these homoleptic tris-cyclometalated iridium compounds was superior to that of the cationic iridium complex [Ir(ppy)2 (bpy)](PF6 ) (ppy=2-phenylpyridine, bpy=2,2'-dipyridyl) (4), which was used as a reference. The significant increase in the photocatalytic efficiencies was in part attributed to the higher photostability of the neutral Ir(III) complexes. This assumption was supported by their different coordination modes, photophysical, and

  12. Iridium and Spherules in Late Eocene Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.; Liu, S.

    2002-01-01

    We have been independently examining the Ir (FTK) and spherule (SL) contents of recently discovered late Eocene impact deposits from the south Atlantic and western Indian oceans. These include ODP Sites 1090 [14,15], 709 [lo], and 699 [Liu in prep.]. Iridium abundances at these sites are within the typical range reported for late Eocene deposits, with peak concentrations between 100 and 1000 pg/g. In Table 1 we present estimated net Ir fluences (in ng Ir/cm ) for these and nine other sites. Although there are fewer sites than the K/T boundary, the average of 9 ng Ir/cm2 is probably a good estimate of the late Eocene global flux. This is enough Ir for a 6 km comet (assuming 250 ng/g Ir, p=1.5), is sufficient to produce the Popigai or Chesapeake Bay structures, and is 16% of the flux estimated for the K/T boundary (55 ng/cm2 [ 161). Figure 1 shows the relative abundances of Ir, glassy microtektites and cpx-bearing spherules in sediments from Sites 699 and 1090, which are separated by only 3100 km. Although these two sites have similar Ir anomalies, the abundances of spherules are quite different. Site 1090 has well-defined peaks for both types of spherules, with a peak of 562 cpx spheruledg, while Site 699 contains only a few glassy microtektites and no cpx spherules. While the different abundances of spherules may reflect a heterogeneous distribution of spherules on the Earth s surface, an equally likely cause of this difference may be differential preservation of spherules in the sediment. recovered are only a trace residue of the initial impact deposit. Earlier work found 0.22 ng/g Ir in glassy microtektites from Site 689 [17], an insufficient concentration to support 0.16 ng/g in the bulk sediment at this site. We measured 15 ng/g Ir in a group of 95 cpx spherules from Site 1090 with sizes from 63 to -200 pm, a set typical of the size distribution at this site. Although this is a significant concentration it also cannot support the Ir peak. We presently lack

  13. Testing of electroformed deposited iridium/powder metallurgy rhenium rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Dickerson, Robert

    1996-01-01

    High-temperature, oxidation-resistant chamber materials offer the thermal margin for high performance and extended lifetimes for radiation-cooled rockets. Rhenium (Re) coated with iridium (Ir) allow hours of operation at 2200 C on Earth-storable propellants. One process for manufacturing Ir/Re rocket chambers is the fabrication of Re substrates by powder metallurgy (PM) and the application of Ir coatings by using electroformed deposition (ED). ED Ir coatings, however, have been found to be porous and poorly adherent. The integrity of ED Ir coatings could be improved by densification after the electroforming process. This report summarizes the testing of two 22-N, ED Ir/PM Re rocket chambers that were subjected to post-deposition treatments in an effort to densify the Ir coating. One chamber was vacuum annealed, while the other chamber was subjected to hot isostatic pressure (HIP). The chambers were tested on gaseous oxygen/gaseous hydrogen propellants, at mixture ratios that simulated the oxidizing environments of Earth-storable propellants. ne annealed ED Ir/PM Re chamber was tested for a total of 24 firings and 4.58 hr at a mixture ratio of 4.2. After only 9 firings, the annealed ED Ir coating began to blister and spall upstream of the throat. The blistering and spalling were similar to what had been experienced with unannealed, as-deposited ED Ir coatings. The HIP ED Ir/PM Re chamber was tested for a total of 91 firings and 11.45 hr at mixture ratios of 3.2 and 4.2. The HIP ED Ir coating remained adherent to the Re substrate throughout testing; there were no visible signs of coating degradation. Metallography revealed, however, thinning of the HIP Ir coating and occasional pores in the Re layer upstream of the throat. Pinholes in the Ir coating may have provided a path for oxidation of the Re substrate at these locations. The HIP ED Ir coating proved to be more effective than vacuum annealed and as-deposited ED Ir. Further densification is still required to

  14. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  15. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  16. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium

    NASA Technical Reports Server (NTRS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1991-01-01

    This paper describes a technique for obtaining, in a conventional surface ionization mass spectrometer, intense ion beams of negatively charged oxides of Os, Re, and Ir by thermal ionization. It is shown that the principal ion species of these ions are OsO3(-), ReO4(-), and IrO2(-), respectively. For Re-187/Os-187 studies, this technique offers the advantage of isotopic analyses without prior chemical separation of Re from Os.

  17. Green chemiluminescence from a bis-cyclometalated iridium(III) complex with an ancillary bathophenanthroline disulfonate ligand.

    PubMed

    Zammit, Elizabeth M; Barnett, Neil W; Henderson, Luke C; Dyson, Gail A; Zhou, Ming; Francis, Paul S

    2011-08-07

    The reaction of a fluorinated iridium complex with cerium(IV) and organic reducing agents generates an intense emission with a significant hypsochromic shift compared to contemporary chemically-initiated luminescence from metal complexes.

  18. Determination of surface coverage of catalysts: Temperature programmed experiments on platinum and iridium sponge catalysts after low temperature ammonia oxidation

    SciTech Connect

    Broek, A.C.M. van den; Grondelle, J. van; Santen, R.A. van

    1999-07-25

    The activity of iridium and platinum sponge catalysts was studied in the low temperature gas phase oxidation of ammonia with oxygen. Under the reaction conditions used, iridium was found to be more active and more selective to nitrogen than platinum. Furthermore it was established from activity measurements that both catalysts lose activity as a function of time on stream due to inhibition of the surface by reaction intermediates. The used catalysts were studied by XPS and temperature programmed techniques. It was found that the surface of the catalysts had a high coverage of NH and OH and some additional NH{sub 2}. It seems most likely that the reaction mechanism proceeds through a stepwise dehydrogenation of the ammonia molecule. It appears that the last dehydrogenation step (NH by OH to N and water) is the rate determining step. The high selectivity of iridium to nitrogen can be explained by the higher activity of iridium in dissociating NO.

  19. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction.

    PubMed

    Du, Wenxin; Wang, Qi; Saxner, David; Deskins, N Aaron; Su, Dong; Krzanowski, James E; Frenkel, Anatoly I; Teng, Xiaowei

    2011-09-28

    Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir(71)Sn(29) catalysts with an average diameter of 2.7 ± 0.6 nm through a "surfactant-free" wet chemistry approach. The complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the "real" heterogeneous structure of Ir(71)Sn(29)/C particles as Ir/Ir-Sn/SnO(2), which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO(2) present on the surface. The Ir(71)Sn(29)/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO(2) on surface. Our cross-disciplinary work, from novel "surfactant-free" synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of "real" heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative impact on the commercialization of DEFC technology by replacing Pt with low

  20. Synthesis, structure, and reactivity of rhodium and iridium complexes of the chelating bis-sulfoxide tBuSOC2H4SOtBu. Selective O-H activation of 2-hydroxy-isopropyl-pyridine.

    PubMed

    Schaub, Thomas; Diskin-Posner, Yael; Radius, Udo; Milstein, David

    2008-07-21

    The chloro-bridged rhodium and iridium complexes [M2(BTSE)2Cl2] (M = Rh 1, Ir 2) bearing the chelating bis-sulfoxide tBuSOC2H4SOtBu (BTSE) were prepared by the reaction of [M2(COE)4Cl2] (M = Rh, Ir; COE = cyclooctene) with an excess of a racemic mixture of the ligand. The cationic compounds [M(BTSE)2][PF6] (M = Rh 3, Ir 4), bearing one S- and one O-bonded sulfoxide, were also obtained in good yields. The chloro-bridges in 2 can be cleaved with 2-methyl-6-pyridinemethanol and 2-aminomethyl pyridine, resulting in the iridium(I) complexes [Ir(BTSE)(Py)(Cl)] (Py = 2-methyl-6-pyridinemethanol 5, 2-aminomethyl-pyridine 6). In case of the bulky 2-hydroxy- isopropyl-pyridine, selective OH oxidative addition took place, forming the Ir(III)-hydride [Ir(BTSE)(2-isopropoxy-pyridine)(H)(Cl)] 7, with no competition from the six properly oriented C-H bonds. The cationic rhodium(I) and iridium(I) compounds [M(BTSE)(2-aminomethyl-pyridine)][X] (M = Rh 8, Ir 10), [Rh(BTSE)(2-hydroxy- isopropyl-pyridine)][X] 9(stabilized by intramolecular hydrogen bonding), [Ir(BTSE)(pyridine)2][PF6] 12, [Ir(BTSE)(alpha-picoline)2][PF6] 13, and [Rh(BTSE)(1,10-phenanthroline)][PF6] 14 were prepared either by chloride abstraction from the dimeric precursors or by replacement of the labile oxygen bonded sulfoxide in 3 or 4. Complex 14 exhibits a dimeric structure in the solid state by pi-pi stacking of the phenanthroline ligands.

  1. Chiral N-heterocyclic carbene/pyridine ligands for the iridium-catalyzed asymmetric hydrogenation of olefins.

    PubMed

    Schumacher, Andreas; Bernasconi, Maurizio; Pfaltz, Andreas

    2013-07-15

    Swapping N,P for C,N: Iridium complexes of bidentate pyridine-based C,N ligands with an N-heterocylic carbene (NHC) unit proved to be efficient and highly enantioselective hydrogenation catalysts. As a result of the lower acidity of iridium hydride intermediates produced from NHC-based complexes, these catalysts are much better suited than analogous N,P-ligand complexes for the hydrogenation of acid-sensitive substrates.

  2. Microscopic description of the anisotropy in alpha decay

    SciTech Connect

    Delion, D.S. ); Insolia, A. ); Liotta, R.J. )

    1994-06-01

    A microscopic description of alpha decay of odd mass nuclei is given for axially deformed nuclei. Realistic mean field+pairing residual interaction in a very large single particle basis is used. Systematics for At and Rn isotopes, as well as for [sup 221]Fr, are given. A pronounced anisotropic emission of alpha particles at low temperatures is predicted as a function of deformation for the At and Rn isotopes. This shows that alpha decay is an excellent tool to probe intrinsic deformations in nuclei.

  3. An Aldol Reaction-Based Iridium(III) Chemosensor for the Visualization of Proline in Living Cells

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Biao; Liu, Li-Juan; Dong, Zhen-Zhen; Yang, Guan-Jun; Leung, Chung-Hang; Ma, Dik-Lung

    2016-11-01

    A long-lived aldol reaction-based iridium(III) chemosensor [Ir(ppy)2(5-CHOphen)]PF6 (1, where ppy = 2-phenylpyridine and 5-CHOphen = 1,10-phenanthroline-5-carbaldehyde) for proline detection has been synthesized. The iridium(III) complex 1, incorporating an aldehyde group in N^N donor ligand, can take part in aldol reaction with acetone mediated by proline. The transformation of the sp2-hybridized carbonyl group into a sp3-hybridized alcohol group influences the metal-to-ligand charge-transfer (MLCT) state of the iridium(III) complex, resulting in a change in luminescence in response to proline. The interaction of the iridium(III) complex 1 with proline was investigated by 1H NMR, HRMS and emission titration experiments. Upon the addition of proline to a solution of iridium(III) complex 1, a maximum 8-fold luminescence enhancement was observed. The luminescence signal of iridium(III) complex 1 could be recognized in strongly fluorescent media using time-resolved emission spectroscopy (TRES). The detection of proline in living cells was also demonstrated.

  4. An Analysis of the FY-1C, Iridium 33, and Cosmos 2251 Fragments

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2014-01-01

    The beginning of the year 2013 marks the sixth anniversary of the destruction of the Fengyun-1C (FY-1C) weather satellite as the result of an anti-satellite test conducted by China in January 2007 and the fourth anniversary of the accidental collision between Cosmos 2251 and the operational Iridium 33 in February 2009. These two events represent the worst satellite breakups in history. A total of 5579 fragments have been cataloged by the U.S. Space Surveillance Network (SSN), and almost 5000 of them were still in orbit in January 2013. In addition to these cataloged objects, hundreds of thousands (or more) of fragments down to the millimeter size regime were also generated during the breakups. These fragments are too small to be tracked by the SSN, but are large enough to be a safety concern for human space activities and robotic missions in low Earth orbit (LEO, the region below 2000 km altitude). Like their cataloged siblings, many of them remain in orbit today. These two breakup events dramatically changed the landscape of the orbital debris environment in LEO. The spatial density of the cataloged population in January 2013 is shown as the top blue curve. The combined FY-1C, Iridium 33, and Cosmos 2251 fragments (black curve) account for about 50 percent of the cataloged population below an altitude of 1000 km. They are also responsible for the concentrations at 770 km and 850 km, altitudes at which the collisions occurred. The effects of the FY-1C, Iridium 33, and Cosmos 2251 fragments will continue to be felt for decades to come. For example, approximately half of the generated FY-1C fragments will remain in orbit 20 years from now. In general, the Iridium 33 and Cosmos 2251 fragments will decay faster than the FY-1C fragments because of their lower altitudes. Of the Iridium 33 and Cosmos 2251 fragments, the former have much shorter orbital lifetimes than the latter, because lightweight composite materials were heavily used in the construction of the Iridium

  5. Penicillanic acid sulfone: an unexpected isotope effect in the interaction of 6 alpha- and 6 beta-monodeuterio and of 6,6-dideuterio derivatives with RTEM beta-lactamase from Escherichia coli.

    PubMed

    Brenner, D G; Knowles, J R

    1981-06-23

    Penicillanic acid sulfone (1) is both a substrate and an inactivator of the RTEM beta-lactamase. About 7000 hydrolytic events occur before enzyme inactivation. The 6,6-dideuterio sulfone shows a 3-fold acceleration of both the hydrolysis reaction and the enzyme inactivation. The kinetic and spectroscopic results are nicely accommodated by a scheme in which a transiently stable intermediate is formed in an isotopically sensitive step. The deuterated material partitions less readily toward this transiently stable intermediate by virtue of a primary isotope effect, and more enzyme is then available for the hydrolysis and inactivation pathways. Use of the stereospecifically monodeuterated sulfones shows that the 6 beta hydrogen is preferentially abstracted in the formation of the transiently stable intermediate and allows a detailed picture of the interaction of the sulfone and the beta-lactamase to be drawn. The crystal structures of both the labeled and unlabeled compounds are reported.

  6. Isotopic generator for /sup 212/Pb and /sup 212/Bi

    SciTech Connect

    Zucchini, G.L.; Friedman, A.M.

    1982-01-01

    A large potential exists for the use of short lived alpha emitting isotopes for therapeutic purposes. Most prior research has been performed with isotopes such as /sup 211/At which require a cyclotron for production. It obviously would be more convenient to use a long lived isotopic generator system. For this reason, we have undertaken a study of the properties of several such generators, one of which, /sup 228/Th, is described here.

  7. Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array.

    PubMed

    Yoo, Je-Min; Negi, Sandeep; Tathireddy, Prashant; Solzbacher, Florian; Song, Jong-In; Rieth, Loren W

    2013-04-30

    Implantable microelectrodes provide a measure to electrically stimulate neurons in the brain and spinal cord and record their electrophysiological activity. A material with a high charge capacity such as activated or sputter-deposited iridium oxide film (AIROF or SIROF) is used as an interface. The Utah electrode array (UEA) uses SIROF for its interface material with neural tissue and oxygen plasma etching (OPE) with an aluminium foil mask to expose the active area, where the interface between the electrode and neural tissue is formed. However, deinsulation of Parylene-C using OPE has limitations, including the lack of uniformity in the exposed area and reproducibility. While the deinsulation of Parylene-C using an excimer laser is proven to be an alternative for overcoming the limitations, the iridium oxide (IrOx) suffers from fracture when high laser fluence (>1000 mJ/cm2) is used. Iridium (Ir), which has a much higher fracture resistance than IrOx, can be deposited before excimer laser deinsulation and then the exposed Ir film area can be activated by electrochemical treatment to acquire the AIROF. Characterisation of the laser-ablated Ir film and AIROF by surface analysis (X-ray photoelectron spectroscopy, scanning electron microscope, and atomic force microscope) and electrochemical analysis (electrochemical impedance spectroscopy, and cyclic voltammetry) shows that the damage on the Ir film induced by laser irradiation is significantly less than that on SIROF, and the AIROF has a high charge storage capacity. The results show the potential of the laser deinsulation technique for use in high performance AIROF-coated UEA fabrication.

  8. The promise of targeted {alpha}-particle therapy.

    PubMed

    Mulford, Deborah A; Scheinberg, David A; Jurcic, Joseph G

    2005-01-01

    The use of monoclonal antibodies to deliver radioisotopes directly to tumor cells has become a promising strategy to enhance the antitumor effects of native antibodies. Since the alpha- and beta-particles emitted during the decay of radioisotopes differ in significant ways, proper selection of isotope and antibody combinations is crucial to making radioimmunotherapy a standard therapeutic modality. Because of the short pathlength (50-80 microm) and high linear energy transfer ( approximately 100 keV/microm) of alpha-emitting radioisotopes, targeted alpha-particle therapy offers the potential for more specific tumor cell killing with less damage to surrounding normal tissues than beta-emitters. These properties make targeted alpha-particle therapy ideal for the elimination of minimal residual or micrometastatic disease. Radioimmunotherapy using alpha-emitters such as (213)Bi, (211)At, and (225)Ac has shown activity in several in vitro and in vivo experimental models. Clinical trials have demonstrated the safety, feasibility, and activity of targeted alpha-particle therapy in the treatment of small-volume and cytoreduced disease. Further advances will require investigation of more potent isotopes, new sources and methods of isotope production, improved chelation techniques, better methods for pharmacokinetic and dosimetric modeling, and new methods of isotope delivery such as pretargeting. Treatment of patients with less-advanced disease and, ultimately, randomized trials comparing targeted alpha-particle therapy with standard approaches will be required to determine the clinical utility of this approach.

  9. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  10. Targeted alpha-therapy: past, present, future?

    PubMed

    Brechbiel, Martin W

    2007-11-21

    Monoclonal antibodies have become a viable strategy for the delivery of therapeutic, particle emitting radionuclides specifically to tumor cells to either augment anti-tumor action of the native antibodies or to solely take advantage of their action as targeting vectors. Proper and rational selection of radionuclide and antibody combinations is critical to making radioimmunotherapy (RIT) a standard therapeutic modality due to the fundamental and significant differences in the emission of either alpha- and beta-particles. The alpha-particle has a short path length (50-80 microm) that is characterized by high linear energy transfer (100 keV microm(-1)). Actively targeted alpha-therapy potentially offers a more specific tumor cell killing action with less collateral damage to the surrounding normal tissues than beta-emitters. These properties make targeted alpha-therapy an appropriate therapy to eliminate minimal residual or micrometastatic disease. RIT using alpha-emitters such as (213)Bi, (211)At, (225)Ac, and others has demonstrated significant activity in both in vitro and in vivo model systems. Limited numbers of clinical trials have progressed to demonstrate safety, feasibility, and therapeutic activity of targeted alpha-therapy, despite having to traverse complex obstacles. Further advances may require more potent isotopes, additional sources and more efficient means of isotope production. Refinements in chelation and/or radiolabeling chemistry combined with rational improvements of isotope delivery, targeting vectors, molecular targets, and identification of appropriate clinical applications remain as active areas of research. Ultimately, randomized trials comparing targeted alpha-therapy combined with integration into existing standards of care treatment regimens will determine the clinical utility of this modality.

  11. Preliminary design studies for an iridium rod target at the BNL-AGS

    SciTech Connect

    Ludewig, H.; Hastings, J.; Montanez, P.; Todosow, M.

    1998-12-31

    The BNL-AGS is an intense source of 24 GeV protons. It is proposed to explore the potential to use these protons as the driver for a Pulsed Spallation Neutron Source target. The proposed target design is based on an edge cooled iridium rod concept--similar to the anti-proton production target which operated reliably at CERN under similar conditions. Lead, lead fluoride, and beryllium are investigated as possible reflector materials, and ambient temperature light water and 80 K light water ice are proposed as initial moderator materials. Both moderators are decoupled by cadmium containing moderator chamber walls. The small size of the target has the advantage that the moderators can be placed close to the target (resulting in a bright source), and since a large fraction of the radioactive inventory is contained in the iridium rod, removal and disposition of this inventory should be relatively simple and inexpensive.

  12. First Applications of DoD Iridium RUDICS in the NSF Polar Programs

    NASA Astrophysics Data System (ADS)

    Valentic, T.; Stehle, R.

    2008-12-01

    We will present the first deployment and application of the new Iridium RUDICS service to remote instrumentation projects within the National Science Foundation's polar programs. The rise of automated observing networks has increased the demand for real-time connectivity to remote instruments, not only for immediate access to data, but to also interrogate health and status. Communicating with field sites in the polar regions is complicated by the remoteness from existing infrastructure, low temperatures and limited connection options. Sites located above 78° latitude are not able to see geostationary satellites, leaving the Iridium constellation as the only one that provide a direct connection. Some others, such as Orbcomm, only provide a store-and-forward service. Iridium is often used as a dial up modem to establish a PPP connection to the Internet with data files transferred via FTP. On low-bandwidth, high-latency networks like Iridium (2400bps with ping times of seconds), this approach is time consuming and inefficient. The dial up time alone takes upwards of a minute, and standard TCP/IP and FTP protocols are hampered by the long latencies. Minimizing transmission time is important for reducing battery usage and connection costs. The new Iridium RUDICS service can be used for more efficient transfers. RUDICS is an acronym for "Router-based Unstructured Digital Inter-working Connectivity Solution" and provides a direct connection between an instrument in the field and a server on the Internet. After dialing into the Iridium gateway, a socket connection is opened to a registered port on a user's server. Bytes sent to or from the modem appear at the server's socket. The connection time is reduced to about 10 seconds because the modem training and PPP negotiation stages are eliminated. The remote device does not need to have a full TCP/IP stack, allowing smaller instruments such as data loggers to directly handle the data transmission. Alternative protocols can

  13. The treatment of malignant diseases in Romania using stainless steel encapsulated iridium-192 sources

    NASA Astrophysics Data System (ADS)

    Stanef, I.; Matache, G.; Ciocǎltei, V.; Gheorghiev, G.

    1994-01-01

    Iridium-192 sources supplied by the Institute for Nuclear Physics and Engineering have been used in Romanian radiotherapy clinics since 1980. The source assembly is sealed in a protective stainless steel sheath which satisfies the requirements of international standards. Since this sheath acts as a filter to change the characteristic spectrum it has been necessary to determine experimentally an accurate value of the specific gamma-ray constant. Some clinical aspects of the complex treatment of carcinomas with iridium-192 are reviewed. Results of the calculation of the dose distribution around single and multiple sources are given for different applications in the treatment of carcinomas of the vaginal and uterine cervix, oral cavity, rectum and vagina.

  14. Conferring Phosphorogenic Properties on Iridium(III)-Based Bioorthogonal Probes through Modification with a Nitrone Unit.

    PubMed

    Lee, Lawrence Cho-Cheung; Lau, Jonathan Chun-Wai; Liu, Hua-Wei; Lo, Kenneth Kam-Wing

    2016-01-18

    The use of bioorthogonal probes that display fluorogenic or phosphorogenic properties is advantageous to the labeling and imaging of biomolecules in live cells and organisms. Herein we present the design of three iridium(III) complexes containing a nitrone moiety as novel phosphorogenic bioorthogonal probes. These probes were non-emissive owing to isomerization of the C=N group but showed significant emission enhancement upon cycloaddition reaction with strained cyclooctynes. Interestingly, the connection of the nitrone ligand to the cationic iridium(III) center led to accelerated reaction kinetics. These nitrone complexes were also identified as phosphorogenic bioorthogonal labels and imaging reagents for cyclooctyne-modified proteins. These findings contribute to the development of phosphorogenic bioorthogonal probes and imaging reagents.

  15. An inconvenient influence of iridium(III) isomer on OLED efficiency.

    PubMed

    Baranoff, Etienne; Bolink, Henk J; De Angelis, Filippo; Fantacci, Simona; Di Censo, Davide; Djellab, Karim; Grätzel, Michael; Nazeeruddin, Md Khaja

    2010-10-14

    The recently reported heteroleptic cyclometallated iridium(III) complex [Ir(2-phenylpyridine)(2)(2-carboxy-4-dimethylaminopyridine)] N984 and its isomer N984b have been studied more in detail. While photo- and electrochemical properties are very similar, DFT/TDDFT calculations show that the two isomers have different HOMO orbital characteristics. As a consequence, solution processed OLEDs made using a mixture of N984 and isomer N984b similar to vacuum processed devices show that the isomer has a dramatic detrimental effect on the performances of the device. In addition, commonly used thermogravimetric analysis is not suitable for showing the isomerization process. The isomer could impact performances of vacuum processed OLEDs using heteroleptic cyclometallated iridium(III) complexes as dopant.

  16. Research of remote control for Chinese Antarctica Telescope based on iridium satellite communication

    NASA Astrophysics Data System (ADS)

    Xu, Lingzhe; Yang, Shihai

    2010-07-01

    Astronomers are ever dreaming of sites with best seeing on the Earth surface for celestial observation, and the Antarctica is one of a few such sites only left owing to the global air pollution. However, Antarctica region is largely unaccessible for human being due to lacking of fundamental living conditions, travel facilities and effective ways of communication. Worst of all, the popular internet source as a general way of communication scarcely exists there. Facing such a dilemma and as a solution remote control and data transmission for telescopes through iridium satellite communication has been put forward for the Chinese network Antarctic Schmidt Telescopes 3 (AST3), which is currently under all round research and development. This paper presents iridium satellite-based remote control application adapted to telescope control. The pioneer work in China involves hardware and software configuration utilizing techniques for reliable and secure communication, which is outlined in the paper too.

  17. Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films.

    PubMed

    Wen, Rui-Tao; Niklasson, Gunnar A; Granqvist, Claes G

    2015-05-13

    Anodically colored nickel oxide (NiO) thin films are of much interest as counter electrodes in tungsten oxide based electrochromic devices such as "smart windows" for energy-efficient buildings. However, NiO films are prone to suffering severe charge density degradation upon prolonged electrochemical cycling, which can lead to insufficient device lifetime. Therefore, a means to improve the durability of NiO-based films is an important challenge at present. Here we report that the incorporation of a modest amount of iridium into NiO films [Ir/(Ir + Ni) = 7.6 atom %] leads to remarkable durability, exceeding 10000 cycles in a lithium-conducting electrolyte, along with significantly improved optical modulation during extended cycling. Structure characterization showed that the face-centered-cubic-type NiO structure remained after iridium addition. Moreover, the crystallinity of these films was enhanced upon electrochemical cycling.

  18. Iridium-catalyzed (Z)-trialkylsilylation of terminal olefins.

    PubMed

    Lu, Biao; Falck, J R

    2010-03-05

    A complex of commercial [Ir(OMe)(cod)](2) and 4,4-di-tert-butyl-2,2-bipyridine (dtbpy) catalyzes the Z-selective, dehydrative silylation of terminal alkenes, but not 1,2-disubstituted alkenes, with triethylsilane or benzyldimethylsilane in THF at 40 degrees C. Yields and Z-stereoselectivity were significantly improved by 2-norbornene, in contrast with other sacrificial alkenes. The reaction is compatible with many functional groups including epoxides, ketones, amides, alcohols, esters, halides, ketals, and silanes. alpha,beta-Unsaturated esters were unreactive. The reaction probably proceeds through a Heck-type mechanism.

  19. Localization matters: a nuclear targeting two-photon absorption iridium complex in photodynamic therapy.

    PubMed

    Tian, Xiaohe; Zhu, Yingzhong; Zhang, Mingzhu; Luo, Lei; Wu, Jieying; Zhou, Hongping; Guan, Lijuan; Battaglia, Giuseppe; Tian, Yupeng

    2017-03-16

    We present a two-photon (2P, 800 nm) PDT cyclometalated Iridium(iii) complex (Ir-Es) that targets the intracellular nucleus. The complex is capable of migrating sequentially from the nucleus to mitochondria and inducing dual-damage under light exposure. This study suggests that with minor modification of the terminal moieties of complexes, their final intracellular destinations and PDT efficiency can be significantly impacted.

  20. A Cascade Isomerization/Prins Strategy through Iridium(III)/Brønsted Acid Cooperative Catalysis**

    PubMed Central

    Lombardo, Vince M.; Thomas, Christopher D.; Scheidt, Karl A.

    2014-01-01

    A mild and efficient isomerization/protonation sequence involving an appropriately functionalized indole precursor to generate a wide variety of pyran-fused indoles utilizing cooperative catalysis between cationic iridium (III) and bismuth triflate has been developed. Three distinct cyclization manifolds lead to bioactive scaffolds that can be obtained in good yields. In addition, N-substituted indoles can be synthesized enantioselectively via an oxocarbenium• chiral phosphate counterion strategy. PMID:24218144

  1. Transformation of a Cp*-iridium(III) precatalyst for water oxidation when exposed to oxidative stress.

    PubMed

    Zuccaccia, Cristiano; Bellachioma, Gianfranco; Bortolini, Olga; Bucci, Alberto; Savini, Arianna; Macchioni, Alceo

    2014-03-17

    The reaction of [Cp*Ir(bzpy)NO3 ] (1; bzpy=2-benzoylpyridine, Cp*=pentamethylcyclopentadienyl anion), a competent water-oxidation catalyst, with several oxidants (H2 O2 , NaIO4 , cerium ammonium nitrate (CAN)) was studied to intercept and characterize possible intermediates of the oxidative transformation. NMR spectroscopy and ESI-MS techniques provided evidence for the formation of many species that all had the intact Ir-bzpy moiety and a gradually more oxidized Cp* ligand. Initially, an oxygen atom is trapped in between two carbon atoms of Cp* and iridium, which gives an oxygen-Ir coordinated epoxide, whereas the remaining three carbon atoms of Cp* are involved in a η(3) interaction with iridium (2 a). Formal addition of H2 O to 2 a or H2 O2 to 1 leads to 2 b, in which a double MeCOH functionalization of Cp* is present with one MeCOH engaged in an interaction with iridium. The structure of 2 b was unambiguously determined in the solid state and in solution by X-ray single-crystal diffractometry and advanced NMR spectroscopic techniques, respectively. Further oxidation led to the opening of Cp* and transformation of the diol into a diketone with one carbonyl coordinated at the metal (2 c). A η(3) interaction between the three non-oxygenated carbons of "ex-Cp*" and iridium is also present in both 2 b and 2 c. Isolated 2 b and mixtures of 2 a-c species were tested in water-oxidation catalysis by using CAN as sacrificial oxidant. They showed substantially the same activity than 1 (turnover frequency values ranged from 9 to 14 min(-1) ).

  2. An iridium abundance anomaly at the palynological Cretaceous-Tertiary boundary in northern New Mexico

    USGS Publications Warehouse

    Orth, C.J.; Gilmore, J.S.; Knight, J.D.; Pillmore, C.L.; Tschudy, R.H.; Fassett, J.E.

    1981-01-01

    An iridium abundance anomaly, with concentrations up to 5000 parts per trillion over a background level of 4 to 20 parts per trillion, has been located in sedimentary rocks laid down under freshwater swamp conditions in the Raton Basin of northeastern New Mexico. The anomaly occurs at the base of a coal bed, at the same stratigraphic position at which several well-known species of Cretaceous-age pollen became extinct. Copyright ?? 1981 AAAS.

  3. A mild dihydrobenzooxaphosphole oxazoline/iridium catalytic system for asymmetric hydrogenation of unfunctionalized dialins.

    PubMed

    Qu, Bo; Samankumara, Lalith P; Ma, Shengli; Fandrick, Keith R; Desrosiers, Jean-Nicolas; Rodriguez, Sonia; Li, Zhibin; Haddad, Nizar; Han, Zhengxu S; McKellop, Keith; Pennino, Scott; Grinberg, Nelu; Gonnella, Nina C; Song, Jinhua J; Senanayake, Chris H

    2014-12-22

    Air-stable P-chiral dihydrobenzooxaphosphole oxazoline ligands were designed and synthesized. When they were used in the iridium-catalyzed asymmetric hydrogenation of unfunctionalized 1-aryl-3,4-dihydronaphthalenes under one atmosphere pressure of H2 , up to 99:1 e.r. was obtained. High enantioselectivities were also observed in the reduction of the exocyclic imine derivatives of 1-tetralones.

  4. The laser welding of iridium-platinum tips to spark plug electrodes

    NASA Astrophysics Data System (ADS)

    Antoszewski, Bogdan; Tofil, Szymon

    2016-12-01

    The paper presents selected results of model and technological experiments of welding iridium-platinum tips to spark plug electrodes. Variants of welding technology included different ways of preparing materials and the use of different Nd: YAG lasers (Rofin BLS 720 and Rofin Integral). The results of technological tests were verified by the metallographic evaluation of joints. Performance tests when powered by biogas were conducted for selected variants of welding.

  5. Diastereo- and Enantioselective Iridium Catalyzed Carbonyl (α-Cyclopropyl)allylation via Transfer Hydrogenation.

    PubMed

    Tsutsumi, Ryosuke; Hong, Suckchang; Krische, Michael J

    2015-09-07

    The first examples of diastereo- and enantioselective carbonyl α-(cyclopropyl)allylation are reported. Under the conditions of iridium catalyzed transfer hydrogenation using the chiral precatalyst (R)-Ir-I modified by SEGPHOS, carbonyl α-(cyclopropyl)allylation may be achieved with equal facility from alcohol or aldehyde oxidation levels. This methodology provides a conduit to hitherto inaccessible inaccessible enantiomerically enriched cyclopropane-containing architectures.

  6. Branch-Selective Alkene Hydroarylation by Cooperative Destabilization: Iridium-Catalyzed ortho-Alkylation of Acetanilides

    PubMed Central

    Crisenza, Giacomo E M; Sokolova, Olga O; Bower, John F

    2015-01-01

    An iridium(I) catalyst system, modified with the wide-bite-angle and electron-deficient bisphosphine dFppb (1,4-bis(di(pentafluorophenyl)phosphino)butane) promotes highly branch-selective hydroarylation reactions between diverse acetanilides and aryl- or alkyl-substituted alkenes. This provides direct and ortho-selective access to synthetically challenging anilines, and addresses long-standing issues associated with related Friedel–Crafts alkylations. PMID:26490739

  7. Biocompatibility and durability of Teflon-coated platinum-iridium wires implanted in the vitreous cavity.

    PubMed

    Nishida, Kentaro; Sakaguchi, Hirokazu; Xie, Ping; Terasawa, Yasuo; Ozawa, Motoki; Kamei, Motohiro; Nishida, Kohji

    2011-12-01

    Teflon-coated platinum-iridium wires are placed in the vitreous as electrodes in artificial vision systems. The purpose of this study was to determine whether these wires have toxicity in the vitreous cavity, and to examine the durability of their coating when grasped by forceps. Rabbits were implanted with platinum-iridium wires that were 50 μm in diameter and coated with Teflon to a total diameter of 68 or 100 μm. To examine the biocompatibility, electroretinograms (ERGs) and fluorescein angiography (FA) were performed before and 1 week, 1, 3, and 6 months after the implantation of the electrode. After 6 months, the eyes were histologically examined with light microscopy. To check the durability, the surface of a coated wire was examined with scanning electron microscopy after grasping with different types of forceps. At all times after the implantation the amplitudes and implicit times of the ERGs recorded were not significantly different from those recorded before the implantation (P > 0.05). FA showed no notable change during the follow-up periods. Histological studies showed that the retinas were intact after 6 months of implantation. There was no damage to the Teflon-coated wire after grasping the wire with forceps with silicon-coated tips, while surface damage of the Teflon that did not extend to the platinum-iridium wire was found when grasped by vitreoretinal forceps. We conclude that Teflon-coated platinum-iridium wire is highly biocompatible in the vitreous for at least 6 months. Wires should be handled with vitreoretinal forceps with silicone-coated tips in order to avoid causing damage during wire manipulation.

  8. Octahedral Chiral-at-Metal Iridium Catalysts: Versatile Chiral Lewis Acids for Asymmetric Conjugate Additions.

    PubMed

    Shen, Xiaodong; Huo, Haohua; Wang, Chuanyong; Zhang, Bo; Harms, Klaus; Meggers, Eric

    2015-06-26

    Octahedral iridium(III) complexes containing two bidentate cyclometalating 5-tert-butyl-2-phenylbenzoxazole (IrO) or 5-tert-butyl-2-phenylbenzothiazole (IrS) ligands in addition to two labile acetonitrile ligands are demonstrated to constitute a highly versatile class of asymmetric Lewis acid catalysts. These complexes feature the metal center as the exclusive source of chirality and serve as effective asymmetric catalysts (0.5-5.0 mol % catalyst loading) for a variety of reactions with α,β-unsaturated carbonyl compounds, namely Friedel-Crafts alkylations (94-99% ee), Michael additions with CH-acidic compounds (81-97% ee), and a variety of cycloadditions (92-99% ee with high d.r.). Mechanistic investigations and crystal structures of an iridium-coordinated substrates and iridium-coordinated products are consistent with a mechanistic picture in which the α,β-unsaturated carbonyl compounds are activated by two-point binding (bidentate coordination) to the chiral Lewis acid.

  9. Neutron activation determination of iridium, gold, platinum, and silver in geologic samples

    USGS Publications Warehouse

    Millard, H.T.

    1987-01-01

    Low-level methods for the determination of iridium and other noble metals have become increasingly important in recent years due to interest in locating abundance anomalies associated with the Cretaceous and Tertiary (K-T) boundary. Typical iridium anomalies are in the range of 1 to 100 ??g/kg (ppb). Thus methods with detection limits near 0.1 ??g/kg should be adequate to detect K-T boundary anomalies. Radiochemical neutron activation analysis methods continue to be required although instrumental neutron activation analysis techniques employing elaborate gamma-counters are under development. In the procedure developed in this study samples irradiated in the epithermal neutron facility of the U. S. Geological Survey TRIGA Reactor (Denver, Colorado) are treated with a mini-fire assay technique. The iridium, gold, and silver are collected in a 1-gram metallic lead button. Primary contaminants at this stage are arsenic and antimony. These can be removed by heating the button with a mixture of sodium perioxide and sodium hydroxide. The resulting 0.2-gram lead bead is counted in a Compton suppression spectrometer. Carrier yields are determined by reirradiation of the lead beads. This procedure has been applied to the U.S.G.S. Standard Rock PCC-1 and samples from K-T boundary sites in the Western Interior of North America. ?? 1987 Akade??miai Kiado??.

  10. Synthesis, characterisation and application of iridium(III) photosensitisers for catalytic water reduction.

    PubMed

    Gärtner, Felix; Cozzula, Daniela; Losse, Sebastian; Boddien, Albert; Anilkumar, Gopinatan; Junge, Henrik; Schulz, Thomas; Marquet, Nicolas; Spannenberg, Anke; Gladiali, Serafino; Beller, Matthias

    2011-06-14

    The synthesis of novel, monocationic iridium(III) photosensitisers (Ir-PSs) with the general formula [Ir(III)(C^N)(2)(N^N)](+) (C^N: cyclometallating phenylpyridine ligand, N^N: neutral bidentate ligand) is described. The structures obtained were examined by cyclic voltammetry, UV/Vis and photoluminescence spectroscopy and X-ray analysis. All iridium complexes were tested for their ability as photosensitisers to promote homogeneously catalysed hydrogen generation from water. In the presence of [HNEt(3)][HFe(3)(CO)(11)] as a water-reduction catalyst (WRC) and triethylamine as a sacrificial reductant (SR), seven of the new iridium complexes showed activity. [Ir(6-iPr-bpy)(ppy)(2)]PF(6) (bpy: 2,2'-bipyridine, ppy: 2-phenylpyridine) turned out to be the most efficient photosensitiser. This complex was also tested in combination with other WRCs based on rhodium, platinum, cobalt and manganese. In all cases, significant hydrogen evolution took place. Maximum turnover numbers of 4550 for this Ir-PS and 2770 for the Fe WRC generated in situ from [HNEt(3)][HFe(3)(CO)(11)] and tris[3,5-bis(trifluoromethyl)phenyl]phosphine was obtained. These are the highest overall efficiencies for any Ir/Fe water-reduction system reported to date. The incident photon to hydrogen yield reaches 16.4% with the best system.

  11. Consumable arc-melting, extruding, and rolling process for iridium sheet

    SciTech Connect

    Heestand, R.L.; Copeland, G.L.; Martin, M.M.

    1986-06-01

    An iridium alloy has been used as cladding for the /sup 238/PuO/sub 2/ fuel in radioisotope thermoelectric generators (RTGs) for recent interplanetary spacecraft such as Voyagers 1 and 2 and will be used for the Galileo and Ulysses spacecraft. The iridium alloy sheet for the fuel cladding used on these missions was fabricated by hot and cold rolling of arc-melted and drop-cast 0.5-kg ingots. Upon completion of production for these spacecraft, an opportunity was taken to conduct process improvement studies that would increase processing batch sizes, develop a more uniform product, decrease rejections due to internal delaminations and surface defects, and reduce costs. The studies to scale up and improve the fabrication process are described. In the new process, iridium is electron beam melted, alloyed by arc melting, and then consumable arc melted to form a cylindrical ingot of approximately 7 kg for extrusion. The ingot is extruded to sheet bar and hot and cold rooled into sheet. Sheet evaluated from the first two ingots showed 100% acceptance with no defects on inspection. An improved uniformity of microstructure was obtained, and chemistry was controlled within specification limits.

  12. Green Phosphorescence and Electroluminescence of Sulfur Pentafluoride-Functionalized Cationic Iridium(III) Complexes.

    PubMed

    Shavaleev, Nail M; Xie, Guohua; Varghese, Shinto; Cordes, David B; Slawin, Alexandra M Z; Momblona, Cristina; Ortí, Enrique; Bolink, Henk J; Samuel, Ifor D W; Zysman-Colman, Eli

    2015-06-15

    We report on four cationic iridium(III) complexes [Ir(C^N)2(dtBubpy)](PF6) that have sulfur pentafluoride-modified 1-phenylpyrazole and 2-phenylpyridine cyclometalating (C^N) ligands (dtBubpy = 4,4'-di-tert-butyl-2,2'-bipyridyl). Three of the complexes were characterized by single-crystal X-ray structure analysis. In cyclic voltammetry, the complexes undergo reversible oxidation of iridium(III) and irreversible reduction of the SF5 group. They emit bright green phosphorescence in acetonitrile solution and in thin films at room temperature, with emission maxima in the range of 482-519 nm and photoluminescence quantum yields of up to 79%. The electron-withdrawing sulfur pentafluoride group on the cyclometalating ligands increases the oxidation potential and the redox gap and blue-shifts the phosphorescence of the iridium complexes more so than the commonly employed fluoro and trifluoromethyl groups. The irreversible reduction of the SF5 group may be a problem in organic electronics; for example, the complexes do not exhibit electroluminescence in light-emitting electrochemical cells (LEECs). Nevertheless, the complexes exhibit green to yellow-green electroluminescence in doped multilayer organic light-emitting diodes (OLEDs) with emission maxima ranging from 501 nm to 520 nm and with an external quantum efficiency (EQE) of up to 1.7% in solution-processed devices.

  13. Supported Molecular Iridium Catalysts: Resolving Effects of Metal Nuclearity and Supports as Ligands

    SciTech Connect

    Lu, Jing; Serna, Pedro; Aydin, Cerem; Browning, Nigel D.; Gates, Bruce C.

    2012-02-07

    The performance of a supported catalyst is influenced by the size and structure of the metal species, the ligands bonded to the metal, and the support. Resolution of these effects has been lacking because of the lack of investigations of catalysts with uniform and systematically varied catalytic sites. We now demonstrate that the performance for ethene hydrogenation of isostructural iridium species on supports with contrasting properties as ligands (electron-donating MgO and electron-withdrawing HY zeolite) can be elucidated on the basis of molecular concepts. Spectra of the working catalysts show that the catalytic reaction rate is determined by the dissociation of H{sub 2} when the iridium, either as mono- or tetra-nuclear species, is supported on MgO and is not when the support is the zeolite. The neighboring iridium sites in clusters are crucial for activation of both H{sub 2} and C{sub 2}H{sub 4} when the support is MgO but not when it is the zeolite, because the electron-withdrawing properties of the zeolite support enable even single site-isolated Ir atoms to bond to both C{sub 2}H{sub 4} and H{sub 2} and facilitate the catalysis.

  14. A Novel Efficient Red Emitting Iridium Complex for Polymer Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Hu, Zheng-Yong; Yang, Jian-Kui; Luo, Jing; Liang, Min; Wang, Jing

    2012-12-01

    Photo-physical properties of iridium complexes bis(1-(2',4'-difluorobiphenyl -4-yl)isoquinoline)iridium(III)(5-(4-(bis(4-methoxyphenyl)amino)phenyl)picolinic acid) used as phosphorescent dopant in polymer light-emitting devices with a blend ofpoly(9,9-dioctylfluorene) and 2-tert-butyl-phenyl-5-biphenyl-1,3,4-oxadiazole as a host matrix are investigated. The iridium complex exhibits distinct UV-vis absorption bands around 300-450 nm and intense red photoluminescent emissions peaked at around 618 nm in dichloromethane. The devices display a maximum external quantum efficiency of 4.8% and luminous efficiency of 3.1 cd·A-1 at current density of 3.2 mA·cm-2 with a dominant red emission peak around 620 nm and a shoulder around 660 nm. At 100 mA·cm-2, the devices still display a maximum external quantum efficiency as high as 3.9%.

  15. Radioimmunotherapy with alpha-emitting nuclides.

    PubMed

    McDevitt, M R; Sgouros, G; Finn, R D; Humm, J L; Jurcic, J G; Larson, S M; Scheinberg, D A

    1998-09-01

    This review discusses the application of alpha particle-emitting radionuclides in targeted radioimmunotherapy. It will outline the production and chemistry of astatine-211, bismuth-212, lead-212, actinium-225, bismuth-213, fermium-255, radium-223 and terbium-149, which at present are the most promising alpha-emitting isotopes available for human clinical use. The selective cytotoxicity offered by alpha particle-emitting radioimmunoconstructs is due to the high linear energy transfer and short particle path length of these radionuclides. Based upon the pharmacokinetics of alpha particle-emitting radioimmunoconstructs, both stochastic and conventional dosimetric methodology is discussed, as is the preclinical and initial clinical use of these radionuclides conjugated to monoclonal antibodies for the treatment of human neoplasia.

  16. Isotope fractionation

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    A rash of new controversy has emerged around the subject of mass-independent isotope fractionation effects, particularly in the case of the oxygen isotopes. To be sure, the controversy has been around for awhile, but it has been given new impetus by the results of a recent study by Mark H. Thiemens and John E. Heidenreich III of the University of California, San Diego (Science, March 4, 1983).Gustav Arrhenius has been trying to convince the planetary science community that chemical effects in isotope fractionation processes could explain observations in meteorites that appear to be outside of the traditionally understood mass-dependent fractionations (G. Arrhenius, J . L. McCrumb, and N. F. Friedman, Astrophys. Space Sci, 65, 297, 1974). Robert Clayton had made the basic observations of oxygen in carbonaceous chondrites that the slope of the δ17 versus δ18 line was 1 instead of the slope of ½ characteristic of terrestrial rocks and lunar samples (Ann. Rev. Nucl. Part. Sci., 28, 501, 1978). The mass-independent effects were ascribed to the apparent contribution of an ancient presolar system component of O16.

  17. Visualization of Zn²⁺ ions in live zebrafish using a luminescent iridium(III) chemosensor.

    PubMed

    Ma, Dik-Lung; He, Hong-Zhang; Zhong, Hai-Jing; Lin, Sheng; Chan, Daniel Shiu-Hin; Wang, Liang; Lee, Simon Ming-Yuen; Leung, Chung-Hang; Wong, Chun-Yuen

    2014-08-27

    A novel luminescent cyclometalated iridium(III) complex-based chemosensor (1) bearing a zinc-specific receptor, tris(2-pyridylmethyl)amine, and the 3-phenyl-1H-pyrazole ligand has been designed and synthesized. Upon the addition of Zn(2+) ions to a solution of iridium(III) complex 1, a pronounced luminescence color change from blue to green can be observed, which may be attributed to the suppression of photoinduced electron transfer upon complexation of complex 1 with Zn(2+) ions. The interaction of iridium(III) complex 1 with Zn(2+) ions was investigated by UV-vis absorption titration, emission titration, and (1)H NMR titration. Furthermore, the iridium(III) complex 1 exhibited good selectivity for Zn(2+) over 13 other common metal ions, including K(+), Ag(+), Na(+), Ni(2+), Fe(3+), Hg(2+), Cd(2+), Mg(2+), Ca(2+), Cu(2+), Mn(2+), Co(2+), and Pb(2+) ions. The practical application of the iridium(III) complex 1 in visualizing intracellular Zn(2+) distribution in live zebrafish was also demonstrated.

  18. Synthesis, photophysical and electroluminescent properties of novel iridium (III) complexes based on 5-methyl-2-phenylbenzo[d]oxazole derivatives

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Chi, Hai-Jun; Dong, Yan; Xiao, Guo-Yong; Lei, Peng; Zhang, Dong-Yu; Cui, Zheng

    2013-12-01

    A new series of phosphorescent iridium (III) complexes based on 5-methyl-2-phenylbenzo[d]oxazole derivatives as main ligands, i.e. bis(5-methyl-2- phenylbenzo[d]oxazole-N,C2‧)iridium(acetylacetonate) [(mpbo)2Ir(acac)], bis(2-(4-fluorophenyl)-5-methylbenzo[d]oxazole-N,C2‧)iridium(acetylacetonate) [(fmbo)2Ir(acac)] and bis(5-methyl-2-p-tolylbenzo[d]oxazole-N,C2‧) iridium(acetylacetonate) [(mtbo)2Ir(acac)], were synthesized for organic light-emitting diodes (OLEDs), and their photophysical, electroluminescent properties were investigated. All complexes have high thermal stability and emit intense phosphorescence from green to yellow at room temperature with high quantum efficiencies and relatively short lifetimes. The OLED based on (fmbo)2Ir(acac) as dopant emitter showed very high luminance of 26,004 cd m-2 and luminance efficiency of 18.5 cd A-1. The evidences indicated that this series of iridium (III) complexes were potential candidates for applications in organic electroluminescent devices.

  19. Iridium contents in the Late Cretaceous-Early Tertiary clays in relation to the K/T boundary, North Jordan

    NASA Astrophysics Data System (ADS)

    Abboud, Iyad Ahmed

    2016-06-01

    The mineralogy, lithology, and geochemistry of five discrete laminations across the K/T boundary of clayey shale at the Yarmouk River area, Jordan, were examined. There were no marked changes in the mineralogy of the clayey shale within the K/T boundary. This outcrop consists of more than 100 m of Maastrichtian oil shale overlying about 20 m limestone. Marly limestone included many clay laminations from organic and volcanic origins, which are considered an evidence of the K/T boundary through detected iridium anomalies. Any of these particular lamellae range from 2 mm to 5 mm in thickness. Smectite was the predominant clay mineral in smectitic shale laminations. It was located at eight meters above the K/T boundary and includes some anomalous concentrations of iridium and traces of other elements. The analysis of geochemical platinum group at the K/T boundary clays showed anomalous enrichments of iridium, compared with other carbonate rocks as a result of weathering processes of oil shale, or through concentration from weathering of basalt flows, but not pointing to an impact process. The clays in late Maastrichtian have Ir-Sc prevailed anomalies and synchronize with increasing of terrigenous and volcanogenic traced elements. Kaolin, smectite, and volkonskoite were the dominant clay minerals at the K/T boundary with high concentrations of iridium. The concentration levels of iridium in some laminations of the Yarmouk sediments ranged between 1.6 and 7.8 ppb.

  20. A Convenient Approach To Synthesize o-Carborane-Functionalized Phosphorescent Iridium(III) Complexes for Endocellular Hypoxia Imaging.

    PubMed

    Li, Xiang; Tong, Xiao; Yan, Hong; Lu, Changsheng; Zhao, Qiang; Huang, Wei

    2016-11-21

    The structure-property relationship of carborane-modified iridium(III) complexes was investigated. Firstly, an efficient approach for the synthesis of o-carborane-containing pyridine ligands a-f in high yields was developed by utilizing stable and cheap B10 H10 (Et4 N)2 as the starting material. By using these ligands, iridium(III) complexes I-VII were efficiently prepared. In combination with DFT calculations, the photophysical and electrochemical properties of these complexes were studied. The hydrophilic nido-o-carborane-based iridium(III) complex VII showed the highest phosphorescence efficiency (abs. ϕP =0.48) among known water-soluble homoleptic cyclometalated iridium(III) complexes and long emission lifetime (τ=1.24 μs) in aqueous solution. Both of them are sensitive to O2 , and thus endocellular hypoxia imaging of complex VII was realized by time-resolved luminescence imaging (TRLI). This is the first example of applying TRLI in endocellular oxygen detection with a water-soluble nido-carborane functionalized iridium(III) complex.

  1. Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey

    2006-01-01

    A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of alpha particles into electricity. In addition to having long operational lives, these sources are expected to operate with energy-conversion efficiencies from 70 to 90 percent. A power source as proposed (see figure) would be an electrolytic cell in which liquid gallium would serve as both an electrolyte and an energy-conversion medium. The cell would contain an iridium cathode and a zirconium anode. The alpha particles, each with a kinetic energy approx.5.8 MeV, would be emitted by radioactive decay of Cm-244, which has a half-life of 18 years. The Cm-244 source would be positioned so that the a particles would enter the liquid gallium, where their kinetic energy would be dissipated mostly through ionization of Ga atoms, creating Ga(+) ions and free electrons. The electrons would be collected by iridium cathode, and the Ga(+) ions would be neutralized at the zirconium cathode by electrons returning after flowing through an external circuit. Gallium is a candidate for use as the electrolyte and the energy-conversion medium because in the liquid state it is a semimetal: its electrical conductivity is greater than that of a typical semiconductor but small in comparison with the conductivities of metals. Consequently, in liquid gallium, electrons and Ga(+) can exist without immediate recombination and can be moved by electric fields. It is expected that electric fields, resulting at least partly from the difference between the work functions of the electrode metals, would move the electrons and ions to their respective electrodes. The open-circuit potential of the cell is expected to be 1.62 V - equal to the difference between the work functions of iridium and zirconium. Unlike in a solid-state energy conversion medium, the impingement of energetic a particles would not give rise to displacement damage in the liquid gallium. Hence, the cell should have a long

  2. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water

    PubMed Central

    Liu, Di; Chen, Xiufang; Xu, Guoqiang; Guan, Jing; Cao, Quan; Dong, Bo; Qi, Yunfei; Li, Chunhu; Mu, Xindong

    2016-01-01

    Nitrogen-doped hierarchical porous carbons were synthesized successfully by a controllable one-pot method using glucose and dicyandiamide as carbon source and nitrogen source via hydrothermal carbonization process. The nitrogen-doped materials, possessing high nitrogen content (up to 7 wt%), large surface area (>320 m2 g−1) and excellent hierarchical nanostructure, were employed as catalyst supports for immobilization of iridium nanoparticles for bio-alcohol condensation in water. The introduction of nitrogen atoms into the carbon framework significantly improved iridium nanoparticles dispersion and stabilization. The novel iridium catalysts exhibited superior catalytic activity in the aqueous phase condensation of butanol, offering high butanol conversion of 45% with impressive 2-ethylhexanol selectivity of 97%. The heterogeneous catalysts had great advantages of easy recovery and high catalytic stability. The outstanding catalytic performance could be attributed to excellent dispersion of iridium nanoparticles, stronger iridium-support interactions and interaction of nitrogen species with alcohol substrates. PMID:26912370

  3. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water

    NASA Astrophysics Data System (ADS)

    Liu, Di; Chen, Xiufang; Xu, Guoqiang; Guan, Jing; Cao, Quan; Dong, Bo; Qi, Yunfei; Li, Chunhu; Mu, Xindong

    2016-02-01

    Nitrogen-doped hierarchical porous carbons were synthesized successfully by a controllable one-pot method using glucose and dicyandiamide as carbon source and nitrogen source via hydrothermal carbonization process. The nitrogen-doped materials, possessing high nitrogen content (up to 7 wt%), large surface area (>320 m2 g‑1) and excellent hierarchical nanostructure, were employed as catalyst supports for immobilization of iridium nanoparticles for bio-alcohol condensation in water. The introduction of nitrogen atoms into the carbon framework significantly improved iridium nanoparticles dispersion and stabilization. The novel iridium catalysts exhibited superior catalytic activity in the aqueous phase condensation of butanol, offering high butanol conversion of 45% with impressive 2-ethylhexanol selectivity of 97%. The heterogeneous catalysts had great advantages of easy recovery and high catalytic stability. The outstanding catalytic performance could be attributed to excellent dispersion of iridium nanoparticles, stronger iridium-support interactions and interaction of nitrogen species with alcohol substrates.

  4. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water.

    PubMed

    Liu, Di; Chen, Xiufang; Xu, Guoqiang; Guan, Jing; Cao, Quan; Dong, Bo; Qi, Yunfei; Li, Chunhu; Mu, Xindong

    2016-02-25

    Nitrogen-doped hierarchical porous carbons were synthesized successfully by a controllable one-pot method using glucose and dicyandiamide as carbon source and nitrogen source via hydrothermal carbonization process. The nitrogen-doped materials, possessing high nitrogen content (up to 7 wt%), large surface area (>320 m(2) g(-1)) and excellent hierarchical nanostructure, were employed as catalyst supports for immobilization of iridium nanoparticles for bio-alcohol condensation in water. The introduction of nitrogen atoms into the carbon framework significantly improved iridium nanoparticles dispersion and stabilization. The novel iridium catalysts exhibited superior catalytic activity in the aqueous phase condensation of butanol, offering high butanol conversion of 45% with impressive 2-ethylhexanol selectivity of 97%. The heterogeneous catalysts had great advantages of easy recovery and high catalytic stability. The outstanding catalytic performance could be attributed to excellent dispersion of iridium nanoparticles, stronger iridium-support interactions and interaction of nitrogen species with alcohol substrates.

  5. Nondeletional alpha-thalassemia: first description of alpha Hph alpha and alpha Nco alpha mutations in a Spanish population.

    PubMed

    Ayala, S; Colomer, D; Aymerich, M; Pujades, A; Vives-Corrons, J L

    1996-07-01

    Several different deletions underlie the molecular basis of alpha-thalassemia. The most common alpha-thalassemia determinant in Spain is the rightward deletion (-alpha 3.7). To our knowledge, however, no cases of alpha-thalassemia due to nondeletional mutations have so far been described in this particular Mediterranean area. Here, we report the existence of nondeletional forms of alpha-thalassemia in ten Spanish families. The alpha 2-globin gene was characterized in ten unrelated patients and their relatives only when the presence of deletional alpha-thalassemia was ruled out. The alpha 2-globin gene analysis was performed using the polymerase chain reaction (PCR) followed by restriction enzyme analysis or by allelespecific priming. This allowed the identification of a 5-base pair (bp) deletion at the donor site of IVS I (alpha Hph alpha) in 9 cases and the alpha 2 initiation codon mutation (alpha Nco alpha) in one case. Although these alpha 2-globin gene mutations are found in other mediterranean areas, our results demonstrate their presence in the Spanish population and suggest that the alpha Hph alpha/alpha alpha genotype is probably the most common nondeletional form of alpha-thalassemia in Spain.

  6. Development of U.S. Government General Technical Requirements for UAS Flight Safety Systems Utilizing the Iridium Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Murray, Jennifer; Birr, Richard

    2010-01-01

    This slide presentation reviews the development of technical requirements for Unmanned Aircraft Systems (UAS) utilization of the Iridium Satellite Constellation to provide flight safety. The Federal Aviation Authority (FAA) required an over-the-horizon communication standard to guarantee flight safety before permitting widespread UAS flights in the National Air Space (NAS). This is important to ensure reliable control of UASs during loss-link and over-the-horizon scenarios. The core requirement was to utilize a satellite system to send GPS tracking data and other telemetry from a flight vehicle down to the ground. Iridium was chosen as the system because it is one of the only true satellite systems that has world wide coverage, and the service has a highly reliable link margin. The Iridium system, the flight modems, and the test flight are described.

  7. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    SciTech Connect

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.

  8. Deliberate synthetic control over the excited-state properties of cyclometalated iridium(III) complexes with materials applications

    NASA Astrophysics Data System (ADS)

    Lowry, Michael Scott

    Luminescence color tuning is an area of great interest to materials research due to the expanding role of emissive complexes in a variety of optoelectronic and photocatalytic applications. This thesis contains an examination of structure-property relationships with luminescent iridium(III) complexes in order to synthetically control their photophysical and electrochemical properties and to optimize their performance in diverse fields, such as organic light-emitting diodes (OLEDs), photochemical water splitting, and chiroptical materials. A combinatorial approach was developed to accelerate the discovery of useful luminophores, and over 300 heteroleptic iridium(III) complexes have been prepared and characterized for their photophysical properties. Considerable attention has been placed on interpreting the effect of structural modifications at the ligand periphery and will be discussed in the context of tailoring the luminescent behavior of novel materials. An area that has seen tremendous growth throughout the tenure of this work is the field of OLED devices. Single-layer electroluminescent device constructed with an iridium(III) complexes were observed for the first time, and the color of these devices was tuned from yellow (lambdamax = 560 nm) to blue-green (lambdamax = 500 nm) by strategically modifying the iridium(III) luminophore. A computational method for predicting the emission energy of novel materials was also developed and will be discussed. A second field into which this work has endeavored is the area of photoinduced hydrogen production, specifically the design and optimization of iridium(III) photocatalysts for reducing protons to molecular hydrogen. Seven iridium(III) complexes were examined as photosensitizers, and a material expressing a nearly 100-fold increase in its ability to catalyze hydrogen production over Ru(bpy) 32+ is reported. A final extension of this work examined the chiroptical properties of enantiomerically pure iridium

  9. A Colorimetric and Luminescent Dual-Modal Assay for Cu(II) Ion Detection Using an Iridium(III) Complex

    PubMed Central

    Ma, Dik-Lung; He, Hong-Zhang; Chan, Daniel Shiu-Hin; Wong, Chun-Yuen; Leung, Chung-Hang

    2014-01-01

    A novel iridium(III) complex-based chemosensor bearing the 5,6-bis(salicylideneimino)-1,10-phenanthroline ligand receptor was developed, which exhibited a highly sensitive and selective color change from colorless to yellow and a visible turn-off luminescence response upon the addition of Cu(II) ions. The interactions of this iridium(III) complex with Cu2+ ions and thirteen other cations have been investigated by UV-Vis absorption titration, emission titration, and 1H NMR titration. PMID:24927177

  10. Intercalated samarium as an agent enabling the intercalation of oxygen under a monolayer graphene film on iridium

    NASA Astrophysics Data System (ADS)

    Afanas'eva, E. Yu.; Rut'kov, E. V.; Gall', N. R.

    2016-06-01

    Using thermal desorption time-of-flight mass spectrometry and thermionic methods, it is shown that oxygen does not intercalate under a graphene monolayer grown correctly on iridium, at least at temperatures of T = 300-400 K and exposures below 12000 L. However, if the graphene film on iridium is preliminary intercalated with samarium atoms (up to coverage of θSm = 0.2-0.45), the penetration of oxygen atoms under the graphene film is observed. The oxygen atoms in the intercalated state are chemically bonded to samarium atoms and remain under graphene up to high temperatures (~2150 K).

  11. Techniques for Achieving Zero Stress in Thin Films of Iridium, Chromium, and Nickel

    NASA Technical Reports Server (NTRS)

    Broadway, David M.; O'Dell, Stephen L.; Ramsey, Brian D.; Weimer, Jeffrey

    2015-01-01

    We examine techniques for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The intrinsic stress is further correlated to the microstructural features and physical properties such as surface roughness and optical density at a scale appropriate to soft X-ray wavelengths. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight X-ray space telescopes into the regime of sub-arcsecond resolution through various deposition techniques that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure and deposition rate, including the existence of a critical argon process pressure that results in zero film stress which scales linearly with the atomic mass of the sputtered species. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we report this effect for iridium. In addition to stress reversal, we identify zero stress in the optical functioning iridium layer shortly after island coalescence for low process pressures at a film thickness of approximately 35nm. The measurement of the low values of stress during deposition was achieved with the aid of a sensitive in-situ instrument capable of a minimum detectable level of stress, assuming a 35nm thick film, in the range of 0.40-6.0 MPa for <111> oriented crystalline silicon substrate thicknesses of 70-280 microns, respectively.

  12. Interstitial microwave-induced hyperthermia and iridium brachytherapy for the treatment of obstructing biliary carcinomas.

    PubMed

    Coughlin, C T; Wong, T Z; Ryan, T P; Jones, E L; Crichlow, R W; Spiegel, P K; Jeffery, R

    1992-01-01

    In a phase I clinical study, 10 patients with obstructive biliary carcinomas were treated with single-antenna interstitial microwave hyperthermia and iridium-192 brachytherapy. For each patient a standard biliary drainage catheter was implanted percutaneously through the obstructed common bile duct. This catheter accommodated a single microwave antenna which operated at 915 MHz, and one or two fibreoptic thermometry probes for temperature measurement. Under fluoroscopic guidance the microwave antenna and temperature probes were positioned in the CT-determined tumour mass. The 60-min heat treatment achieved a central tumour temperature of 45-55 degrees C while keeping temperatures at the proximal and distal margins at 43 degrees C. Immediately following the hyperthermia treatment the microwave antenna and temperature probes were removed, and a single strand of iridium-192 double-strength seeds was inserted to irradiate the tumour length. A dose of 5500-7900 cGy calculated at 0.5 cm radially from the catheter was administered over 5-7 days. Upon removal of the iridium a second hyperthermia treatment was performed. A total of 18 hyperthermia treatments were administered to the 10 patients. In two cases the second hyperthermia treatment after brachytherapy was not possible due to a kink in the catheter, or bile precipitation in the catheter. All patients tolerated the procedure well, and there were no acute complications. To evaluate the volumetric heating potential of this hyperthermia method, specific absorption rate (SAR) values were measured at 182 planar points in muscle phantom. Insulated and non-insulated antenna performance was tested at 915 MHz in a biliary catheter filled with air, saline, or bile to mimic clinical treatments. The insulated antenna exhibited the best performance. Differences between antenna performance in saline and bile were also noted. In summary, this technique may have potential for tumours which obstruct biliary drainage and are

  13. Cyclometalated iridium(III) complexes for phosphorescence sensing of biological metal ions.

    PubMed

    You, Youngmin; Cho, Somin; Nam, Wonwoo

    2014-02-17

    Phosphorescence signaling provides a valuable alternative to conventional bioimaging based on fluorescence. The benefits of using phosphorescent molecules include improved sensitivity and capabilities for effective elimination of background signals by time-gated acquisition. Cyclometalated Ir(III) complexes are promising candidates for facilitating phosphorescent bioimaging because they provide synthetic versatility and excellent phosphorescence properties. In this Forum Article, we present our recent studies on the development of phosphorescence sensors for the detection of metal ions based on cyclometalated iridium(III) complexes. The constructs contained cyclometalating (C^N) ligands with the electron densities and band-gap energies of the C^N ligand structures systematically varied. Receptors that chelated zinc, cupric, and chromium ions were tethered to the ligands to create phosphorescence sensors. The alterations in the C^N ligand structures had a profound influence on the phosphorescence responses to metal ions. Mechanistic studies suggested that the phosphorescence responses could be explained on the basis of the modulation of photoinduced electron transfer (PeT) from the receptor to the photoexcited iridium species. The PeT behaviors strictly adhered to the Rehm-Weller principle, and the occurrence of PeT was located in the Marcus-normal region. It is thus anticipated that improved responses will be obtainable by increasing the excited-state reduction potential of the iridium(III) complexes. Femtosecond transient absorption experiments provided evidence for the presence of an additional photophysical mechanism that involved metal-ion-induced alteration of the intraligand charge-transfer (ILCT) transition state. Utility of the mechanism by PeT and ILCT has been demonstrated for the phosphorescence sensing of biologically important transition-metal ions. In particular, the phosphorescence zinc sensor could report the presence of intracellular zinc pools by

  14. The next step in chemical propulsion: Oxide-iridium/rhenium combustion chambers

    SciTech Connect

    Fortini, Arthur J.; Tuffias, Robert H.

    1999-01-22

    Chemical propulsion systems are currently limited by materials issues. Until recently, the state-of-the-art material for liquid propellant combustion chambers was silicide-coated niobium. However, combustion chamber performance demands have exceeded the capabilities of this material system, requiring development of better materials. The iridium/rhenium combustion chamber, comprising a rhenium structural shell with an iridium inner liner for oxidation protection, represents the current state of the art in high-performance, high temperature, long-life propulsion systems using nitrogen tetroxide/monomethyl hydrazine propellant. However, oxygen/hydrogen (O{sub 2}/H{sub 2}) and new 'green' monopropellants under development to replace hydrazine will be significantly more oxidizing at operating temperature. For these more highly aggressive combustion environments, Ultramet has shown that substantial additional life can be obtained by lining the interior of the combustion chamber with a refractory metal oxide, which functions as a thermal and gas diffusion barrier and provides dramatically increased oxidation resistance. Ultramet has fabricated numerous 22-N (5-lb{sub f}) thrust chambers with this oxide-iridium/rhenium architecture that have been hot-fire tested at NASA Lewis Research Center in O{sub 2}/H{sub 2} propellant at mixture ratios of 6 and 16, with steady-state exterior wall temperatures ranging from 2433 to 2899 K, comprising the most severe temperature and oxidizing conditions ever utilized. Of the seven chambers tested to date, three failed due to facility problems, and two never failed. The best-performing chamber was hot-fired for 13,595 seconds (227 minutes; 3.8 hours) and showed no visible signs of degradation. Additional chambers are being fabricated for future testing.

  15. Efficient light harvesting and energy transfer in a red phosphorescent iridium dendrimer.

    PubMed

    Cho, Yang-Jin; Hong, Seong Ahn; Son, Ho-Jin; Han, Won-Sik; Cho, Dae Won; Kang, Sang Ook

    2014-12-15

    A series of red phosphorescent iridium dendrimers of the type [Ir(btp)2(pic-PCn)] (Ir-Gn; n = 0, 1, 2, and 3) with two 2-(benzo[b]thiophen-2-yl)pyridines (btp) and 3-hydroxypicolinate (pic) as the cyclometalating and ancillary ligands were prepared in good yields. Dendritic generation was grown at the 3 position of the pic ligand with 4-(9H-carbazolyl)phenyl dendrons connected to 3,5-bis(methyleneoxy)benzyloxy branches (PCn; n = 0, 2, 4, and 8). The harvesting photons on the PCn dendrons followed by efficient energy transfer to the iridium center resulted in high red emissions at ∼600 nm by metal-to-ligand charge transfer. The intensity of the phosphorescence gradually increased with increasing dendrimer generation. Steady-state and time-resolved spectroscopy were used to investigate the energy-transfer mechanism. On the basis of the fluorescence quenching rate constants of the PCn dendrons, the energy-transfer efficiencies for Ir-G1, Ir-G2, and Ir-G3 were 99, 98, and 96%, respectively. The energy-transfer efficiency for higher-generation dendrimers decreased slightly because of the longer distance between the PC dendrons and the core iridium(III) complex, indicating that energy transfer in Ir-Gn is a Förster-type energy transfer. Finally, the light-harvesting efficiencies for Ir-G1, Ir-G2, and Ir-G3 were determined to be 162, 223, and 334%, respectively.

  16. Steric and Electronic Influence of Aryl Isocyanides on the Properties of Iridium(III) Cyclometalates.

    PubMed

    Maity, Ayan; Le, Linh Q; Zhu, Zhuan; Bao, Jiming; Teets, Thomas S

    2016-03-07

    Cyclometalated iridium complexes with efficient phosphorescence and good electrochemical stability are important candidates for optoelectronic devices. Isocyanide ligands are strong-field ligands: when attached to transition metals, they impart larger HOMO-LUMO energy gaps, engender higher oxidative stability at the metal center, and support rugged organometallic complexes. Aryl isocyanides offer more versatile steric and electronic control by selective substitution at the aryl ring periphery. Despite a few reports of alkyl isocyanide of cyclometalated iridium(III), detailed studies on analogous aryl isocyanide complexes are scant. We report the synthesis, photophysical properties, and electrochemical properties of 11 new luminescent cationic biscyclometalated bis(aryl isocyanide)iridium(III) complexes. Three different aryl isocyanides--2,6-dimethylphenyl isocyanide (CNAr(dmp)), 2,6-diisopropylphenyl isocyanide (CNAr(dipp)), and 2-naphthyl isocyanide (CNAr(nap))--were combined with four cyclometalating ligands with differential π-π* energies--2-phenylpyridine (ppy), 2,4-difluorophenylpyridine (F2ppy), 2-benzothienylpyridine (btp), and 2-phenylbenzothiazole (bt). Five of them were crystallographically characterized. All new complexes show wide redox windows, with reduction potentials falling in a narrow range of -2.02 to -2.37 V and oxidation potentials spanning a wider range of 0.97-1.48 V. Efficient structured emission spans from the blue region for [(F2ppy)2Ir(CNAr)2]PF6 to the orange region for [(btp)2Ir(CNAr)2]PF6, demonstrating that isocyanide ligands can support redox-stable luminescent complexes with a range of emission colors. Emission quantum yields were generally high, reaching a maximum of 0.37 for two complexes, whereas btp-ligated complexes had quantum yields below 1%. The structure of the CNAr ligand has a minimal effect on the photophysical properties, which are shown to arise from ligand-centered excited states with very little contribution from

  17. The next step in chemical propulsion: Oxide-iridium/rhenium combustion chambers

    NASA Astrophysics Data System (ADS)

    Fortini, Arthur J.; Tuffias, Robert H.

    1999-01-01

    Chemical propulsion systems are currently limited by materials issues. Until recently, the state-of-the-art material for liquid propellant combustion chambers was silicide-coated niobium. However, combustion chamber performance demands have exceeded the capabilities of this material system, requiring development of better materials. The iridium/rhenium combustion chamber, comprising a rhenium structural shell with an iridium inner liner for oxidation protection, represents the current state of the art in high-performance, high temperature, long-life propulsion systems using nitrogen tetroxide/monomethyl hydrazine propellant. However, oxygen/hydrogen (O2/H2) and new ``green'' monopropellants under development to replace hydrazine will be significantly more oxidizing at operating temperature. For these more highly aggressive combustion environments, Ultramet has shown that substantial additional life can be obtained by lining the interior of the combustion chamber with a refractory metal oxide, which functions as a thermal and gas diffusion barrier and provides dramatically increased oxidation resistance. Ultramet has fabricated numerous 22-N (5-lbf) thrust chambers with this oxide-iridium/rhenium architecture that have been hot-fire tested at NASA Lewis Research Center in O2/H2 propellant at mixture ratios of 6 and 16, with steady-state exterior wall temperatures ranging from 2433 to 2899 K, comprising the most severe temperature and oxidizing conditions ever utilized. Of the seven chambers tested to date, three failed due to facility problems, and two never failed. The best-performing chamber was hot-fired for 13,595 seconds (227 minutes; 3.8 hours) and showed no visible signs of degradation. Additional chambers are being fabricated for future testing.

  18. Alpha decay of {sup 181}Pb

    SciTech Connect

    Davids, C.N.; Henderson, D.J.; Hermann, R.

    1995-08-01

    The {alpha}-decay energy of {sup 181}Pb was measured as 7211(10) keV and 7044(15). In the first study the isotope was produced in {sup 90}Zr bombardments of {sup 94}Mo and, after traversing a velocity filter, implanted in a position-sensitive Si detector; no half life for {sup 181}Pb was reported. In the second study the isotope was produced in {sup 40}Ca bombardments of {sup 144}Sm and transported to a position in front of a Si(Au) surface barrier detector with a fast He-gas-jet capillary system; an estimate of 50 ms was determined for the {sup 181}Pb half life. Recently we investigated {sup 181}Pb {alpha} decay at ATLAS as part of a survey experiment in which a l-pnA beam of 400-MeV {sup 92}Mo was used to irradiate targets of {sup 89}Y, {sup 90,92,94}Zr, and {sup 92}Mo to examine yields for one- and two-nucleon evaporation products from symmetric cold-fusion reactions. Recoiling nuclei of interest were passed through the Fragment Mass Analyzer and implanted in a double-sided silicon strip detector for {alpha}-particle assay. With the {sup 90}Zr target we observed a group at 7065(20) keV which was correlated with A = 181 recoils and had a half life of 45(20) ms. Our new results for {sup 181}Pb therefore agreed with those of the second study. There was no indication in the {sup 90}Zr + {sup 92}Mo data of the 7211(10)-keV {alpha} particles seen by Keller et al. The interested reader is referred to the 1993 atomic mass evaluation wherein the input {alpha}-decay energies and resultant masses of the light Pb isotopes (including {sup 181}Pb) are discussed.

  19. A Chiral Nitrogen Ligand for Enantioselective, Iridium-Catalyzed Silylation of Aromatic C-H Bonds.

    PubMed

    Su, Bo; Zhou, Tai-Gang; Li, Xian-Wei; Shao, Xiao-Ru; Xu, Pei-Lin; Wu, Wen-Lian; Hartwig, John F; Shi, Zhang-Jie

    2017-01-19

    Iridium catalysts containing dative nitrogen ligands are highly active for the borylation and silylation of C-H bonds, but chiral analogs of these catalysts for enantioselective silylation reactions have not been developed. We report a new chiral pyridinyloxazoline ligand for enantioselective, intramolecular silylation of symmetrical diarylmethoxy diethylsilanes. Regioselective and enantioselective silylation of unsymmetrical substrates was also achieved in the presence of this newly developed system. Preliminary mechanistic studies imply that C-H bond cleavage is irreversible, but not the rate-determining step.

  20. Hydrogen transfer reduction of polyketones catalyzed by iridium complexes: a novel route towards more biocompatible materials.

    PubMed

    Milani, Barbara; Crottib, Corrado; Farnetti, Erica

    2008-09-14

    Transfer hydrogenation from 2-propanol to CO/4-methylstyrene and CO/styrene polyketones was catalyzed by [Ir(diene)(N-N)X] (N-N = nitrogen chelating ligand; X = halogen) in the presence of a basic cocatalyst. The reactions were performed using dioxane as cosolvent, in order to overcome problems due to low polyketone solubility. The polyalcohols were obtained in yields up to 95%, the conversions being markedly dependent on the nature of the ligands coordinated to iridium as well as on the experimental conditions.

  1. High activity, high yield tin modified platinum-iridium catalysts, and reforming process utilizing such catalysts

    SciTech Connect

    Baird, W.C. Jr.; Swan, G.A. III; Boyle, J.P.

    1993-06-22

    A process is described for improving the octane quality of a naphtha which comprises reforming said naphtha at reforming conditions wherein said reforming conditions are defined as follows: over a catalyst which includes from about 0.1 percent to about 1.0 percent platinum, from about 0.1 percent to about 1.0 percent iridium, and from about 0.02 percent to about 0.4 percent tin, wherein each of said metals is composited with and uniformly dispersed throughout an inorganic oxide support.

  2. The Collision of Iridium 33 and Cosmos 2251: The Shape of Things to Come

    NASA Technical Reports Server (NTRS)

    Nicholas, Johnson

    2009-01-01

    The collision of Iridium 33 and Cosmos 2251 was the most severe accidental fragmentation on record. More than 1800 debris approx. 10 cm and larger were produced. If solar activity returns to normal, half of the tracked debris will reenter within five years. Less than 60 cataloged debris had reentered by 1 October 2009. Some debris from both satellites will remain in orbit through the end of the century. The collision rate of one every five years will increase without future removal of large derelict spacecraft and launch vehicle orbital stages.

  3. NMR study on iridium(III) complexes for identifying disulfonate substituted bathophenanthroline regio-isomers.

    PubMed

    Liu, Chenchen; Yu, Linpo; Liu, Yang; Li, Fang; Zhou, Ming

    2011-12-01

    A series of novel biscyclometalated iridium (III) complexes with an ancillary disulfonated bathophenanthroline (DSBP(2-)) ligand, Ir(L)(2)DSBPNa, L = 2-phenylpyridine (ppy), 2,4-difluorophenylpyridine (fppy), and 1-phenylisoquinoline (piq) were found to have two isomeric forms. The chemical structures of the isomers were determined by the one- and two-dimensional (1)H and (13)C NMR studies. The isomeric state was proved to have originated from the disulfonate-related regio-isomer of the DSBP(2-) ligand.

  4. Palynological and Iridium Anomalies at Cretaceous-Tertiary Boundary, South-Central Saskatchewan

    NASA Astrophysics Data System (ADS)

    Nichols, D. J.; Jarzen, D. M.; Orth, C. J.; Oliver, P. Q.

    1986-02-01

    The Cretaceous-Tertiary boundary in south-central Saskatchewan is marked by coincident anomalies in abundance of iridium and fern spores at the extinction level of a suite of Cretaceous pollen taxa. Evidence of disruption of the terrestrial flora includes the fern-spore abundance anomaly and local extinction of as much as 30 percent of angiosperm species. The reorganized earliest Tertiary flora is made up largely of surviving species that assumed new roles of dominance. Persistence of climatically sensitive taxa across the boundary indicates that if paleoclimate was altered by the terminal Cretaceous event, it returned quickly to the pre-event condition.

  5. Palynological and iridium anomalies at Cretaceous-Tertiary boundary, south-central Saskatchewan

    USGS Publications Warehouse

    Nichols, D.J.; Jarzen, D.M.; Orth, C.J.; Oliver, P.Q.

    1986-01-01

    The Cretaceous-Tertiary boundary in south-central Saskatchewan is marked by coincident anomalies in abundance of iridium and fern spores at the extinction level of a suite of Cretaceous pollen taxa. Evidence of disruption of the terrestrial flora includes the fern-spore abundance anomaly and local extinction of as much as 30 percent of angiosperm species. The reorganized earliest Tertiary flora is made up largely of surviving species that assumed new roles of dominance. Persistence of climatically sensitive taxa across the boundary indicates that if paleoclimate was altered by the terminal Cretaceous event, it returned quickly to the pre-event condition.

  6. Iridium-Catalyzed Asymmetric Ring-Opening of Oxabenzonorbornadienes with N-Substituted Piperazine Nucleophiles.

    PubMed

    Yang, Wen; Luo, Renshi; Yang, Dingqiao

    2015-11-27

    Iridium-catalyzed asymmetric ring-opening of oxabenzonorbornadienes with N-substituted piperazines was described. The reaction afforded the corresponding ring-opening products in high yields and moderate enantioselectivities in the presence of 2.5 mol % [Ir(COD)Cl]₂ and 5.0 mol % (S)-p-Tol-BINAP. The effects of various chiral bidentate ligands, catalyst loading, solvent, and temperature on the yield and enantioselectivity were also investigated. A plausible mechanism was proposed to account for the formation of the corresponding trans-ring opened products based on the X-ray structure of product 2i.

  7. Relationship between mass extinction and iridium across the Cretaceous-Paleogene boundary in New Jersey

    USGS Publications Warehouse

    Miller, K.G.; Sherrell, Robert M.; Browning, J.V.; Field, M.P.; Gallagher, W.; Olsson, R.K.; Sugarman, P.J.; Tuorto, S.; Wahyudi, H.

    2010-01-01

    We directly link iridium (Ir) anomalies in New Jersey to the mass extinction of marine plankton marking the Cretaceous-Paleogene (K-Pg) boundary. We confirm previous reports of an Ir anomaly 20 cm below the extinction of Cretaceous macrofauna (the "Pinna" bed) with new results from a muddy sand section from Tighe Park, Freehold, New Jersey (United States), but we also show that Ir anomalies correlate with marine mass extinctions at three other clay-rich New Jersey sections. Thus, we attribute the anomaly at Freehold to the downward movement of Ir and reaffirm the link between impact and mass extinction. ?? 2010 Geological Society of America.

  8. Electrogenerated chemiluminescence from heteroleptic iridium(III) complexes with multicolor emission.

    PubMed

    Zhou, Yuyang; Gao, Hongfang; Wang, Xiaomei; Qi, Honglan

    2015-02-16

    Electrogenerated chemiluminescence (ECL) with different emission colors is important in the development of multichannel analytical techniques. In this report, five new heteroleptic iridium(III) complexes were synthesized, and their photophysical, electrochemical, and ECL properties were studied. Here, 2-(2,4-difluorophenyl)pyridine (dfppy, complex 1), 2-phenylbenzo[d]thiazole (bt, complex 2), and 2-phenylpyridine (ppy, complex 3) were used as the main ligands to tune the emission color, while avobenzone (avo) was used as the ancillary ligand. For comparison, complexes 4 and 5 with 2-phenylpyridine and 2-phenylbenzo[d]thiazole as the main ligand, respectively, and acetyl acetone (acac) as the ancillary ligand were also synthesized. All five iridium(III) complexes had strong intraligand absorption bands (π–π*) in the UV region (below 350 nm) and a featureless MLCT (d−π*) transition in the visible 400–500 nm range. Multicolored emissions were observed for these five iridium(III) complexes, including green, orange, and red for complexes 4, 5, 2, 1, 3, respectively. Density functional theory calculations indicate that the electronic density of the highest occupied molecular orbital is entirely located on the C^N ligands and the iridium atom, while the formation of the lowest unoccupied molecular orbital (LUMO) is complicated. The LUMO is mainly assigned to the ancillary ligand for complexes 1 and 3 but to the C^N ligand for complexes 2, 4, and 5. Cyclic voltammetry studies showed that all these complexes have a reversible oxidation wave, but no reduction waves were found in the electrochemical windows of CH2Cl2. The E1/2(ox) values of these complexes ranged from 0.642 to 0.978 V for complexes 3, 4, 2, 5, 1, (in increasing order) and are all lower than that of Ru(bpy)3(2+). Most importantly, when using tripropylamine as a coreactant, complexes 1–5 exhibited intense ECL signals with an emission wavelength centered at 616, 580, 663, 536, and 569 nm, respectively

  9. Theoretical studies on the photophysical properties of some Iridium (III) complexes used for OLED

    NASA Astrophysics Data System (ADS)

    Urinda, Sharmistha; Das, Goutam; Pramanik, Anup; Sarkar, Pranab

    2016-09-01

    The structural and photophysical properties of four heteroleptic Iridium (III) complexes, based on 1-phenylpyrazole ligand, have been investigated theoretically. The effect of chemical substitution on the absorption and the emission spectra of the complexes has been studied and compared with the experimental data. We observe a significant structural change in the lowest triplet excited state as compared to the ground singlet state. We compute the emission wavelength of the complexes by considering the spin-orbit coupling. Using these understandings, we predict two new complexes having deeper blue emission which are supposed to be better efficient OLED materials.

  10. A Site-Isolated Iridium Diethylene Complex Supported on Highly Dealuminated Y Zeolite: Synthesis And Characterization

    SciTech Connect

    Uzun, A.; Bhirud, V.A.; Kletnieks, P.W.; Haw, J.F.; Gates, B.C.

    2009-06-04

    Highly dealuminated Y zeolite-supported mononuclear iridium complexes with reactive ethylene ligands were synthesized by chemisorption of Ir(C{sub 2}H{sub 4}){sub 2}(C{sub 5}H{sub 7}O{sub 2}). The resultant structure and its treatment in He, CO, ethylene, and H2 were investigated with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. The IR spectra show that Ir(C{sub 2}H{sub 4}){sub 2}(C{sub 5}H{sub 7}O{sub 2}) reacted readily with surface OH groups of the zeolite, leading to the removal of C{sub 5}H{sub 7}O{sub 2} ligands and the formation of supported mononuclear iridium complexes, confirmed by the lack of Ir-Ir contributions in the EXAFS spectra. The EXAFS data show that each Ir atom was bonded to four carbon atoms at an average distance of 2.10 {angstrom}, consistent with the presence of two ethylene ligands per Ir atom and in agreement with the IR spectra indicating {pi}-bonded ethylene ligands. The EXAFS data also indicate that each Ir atom was bonded to two oxygen atoms of the zeolite at a distance of 2.15 {angstrom}. The supported iridium-ethylene complex reacted with H{sub 2} to give ethane, and it also catalyzed ethylene hydrogenation at atmospheric pressure and 294 K. Treatment of the sample in CO led to the formation of Ir(CO){sub 2} complexes bonded to the zeolite. The sharpness of the V{sub CO} bands indicates a high degree of uniformity of these complexes on the support. The iridium-ethylene complex on the crystalline zeolite support is inferred to be one of the most nearly uniform supported metal complex catalysts. The results indicate that it is isostructural with a previously reported rhodium complex on the same zeolite; thus, the results are a start to a family of analogous, structurally well-defined supported metal complex catalysts.

  11. Iridium Complexes and Clusters in Dealuminated Zeolite HY: Distribution between Crystalline and Impurity Amorphous Regions

    SciTech Connect

    Martinez-Macias, Claudia; Xu, Pinghong; Hwang, Son-Jong; Lu, Jing; Chen, Cong-Yan; Browning, Nigel D.; Gates, Bruce C.

    2014-07-08

    Dealuminated zeolite HY was used to support Ir(CO)2 complexes formed from Ir(CO)2(C5H7O2). Infrared and X-ray absorption spectra and atomic-resolution electron microscopy images identify these complexes, and the images and 27Al NMR spectra identify impurity amorphous regions in the zeolite where the iridium is more susceptible to aggregation than in the crystalline regions. The results indicate a significant stability limitation of metal in amorphous impurity regions of zeolites.

  12. Cyclometalated Iridium(III) Imidazole Phenanthroline Complexes as Luminescent and Electrochemiluminescent G-Quadruplex DNA Binders.

    PubMed

    Castor, Katherine J; Metera, Kimberly L; Tefashe, Ushula M; Serpell, Christopher J; Mauzeroll, Janine; Sleiman, Hanadi F

    2015-07-20

    Six cyclometalated iridium(III) phenanthroimidazole complexes with different modifications to the imidazole phenanthroline ligand exhibit enhanced luminescence when bound to guanine (G-) quadruplex DNA sequences. The complexes bind with low micromolar affinity to human telomeric and c-myc sequences in a 1:1 complex:quadruplex stoichiometry. Due to the luminescence enhancement upon binding to G-quadruplex DNA, the complexes can be used as selective quadruplex indicators. In addition, the electrogenerated chemiluminescence of all complexes increases in the presence of specific G-quadruplex sequences, demonstrating potential for the development of an ECL-based G-quadruplex assay.

  13. Sizeable Kane-Mele-like spin orbit coupling in graphene decorated with iridium clusters

    NASA Astrophysics Data System (ADS)

    Qin, Yuyuan; Wang, Siqi; Wang, Rui; Bu, Haijun; Wang, Xuefeng; Wang, Xinran; Song, Fengqi; Wang, Baigeng; Wang, Guanghou

    2016-05-01

    The spin-orbit coupling strength of graphene can be enhanced by depositing iridium nanoclusters. Weak localization is intensely suppressed near zero fields after the cluster deposition, rather than changing to weak anti-localization. Fitting the magnetoresistance gives the spin relaxation time, which increases by two orders with the application of a back gate. The spin relaxation time is found to be proportional to the electronic elastic scattering time, demonstrating the Elliot-Yafet spin relaxation mechanism. A sizeable Kane-Mele-like coupling strength of over 5.5 meV is determined by extrapolating the temperature dependence to zero.

  14. A water-soluble and highly phosphorescent cyclometallated iridium complex with versatile sensing capability.

    PubMed

    Yang, Zhen; Zhao, Yuan; Wang, Chan; Song, Qijun; Pang, Qingfeng

    2017-05-01

    A water-soluble and highly phosphorescent cyclometallated iridium complex [(pq)2Ir(bpy-COOK)](+)Cl(-) (where pq=2-phenylquinoline, bpy-COOK= potassium 2,2'-bipyridine-4,4'-dicarboxylate) (Ir) has been synthesized and characterized. Its phosphorescence can be sensitively and selectively quenched by tryptophan through a photoinduced electron-transfer (PET) process. Furthermore, the phosphorescence of Ir is drastically increased upon binding with bovine serum albumin (BSA), and the enhanced signal is effectively quenched in the presence of Cu(2+). Thus, Ir can be used as a multifunctional chemosensor for tryptophan, BSA, and Cu(2+) determination as well as for cell imaging.

  15. Alpha spectrometry — A tool for nuclear data measurements

    NASA Astrophysics Data System (ADS)

    Wiltshire, R. A. P.

    1984-06-01

    Alpha spectrometry is a precise technique which can be applied to the measurement of data such as half-lives and the production cross-sections of higher actinides. The application of this technique to the measurement of 239Pu and 242Cm half-lives, to the production cross-sections for curium isotopes in fast reactor spectra and to the analysis of irradiated fuel for alpha emitting higher actinide nuclides are discussed.

  16. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-03

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  17. Ab initio alpha-alpha scattering

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.

    2015-12-01

    Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  18. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  19. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Technological Aspects

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.; Chiu, C. J-Y.

    2012-01-01

    Iridium Communications Inc. is launching a new generation of polar orbiting communication satellites in 2015-2017. Iridium will provide a hosted payload bay on each of the 66 satellites (plus 6 in-space spares). This offers the potential for a paradigm shift in the way we measure Earth radiation imbalance from space, as well as massive cost savings. Because the constellation provides 24/7 global coverage, there is no need to account for diurnal cycle via extrapolations from uncalibrated narrowband geostationary imagers. And the spares can be rolled over to view the Sun and deep space, then transfer their calibration to the other members of the constellation during the frequent cross-overs. In part using simulations of the constellation viewing realistic Earth scenes, this presentation will address the technological aspects of such a constellation: (1) the calibration strategy; (2) the highly-accurate and stable radiometers for measuring outgoing flux; and (3) the GRACE-inspired algorithms for representing the outgoing flux field in spherical harmonics and thus achieving rv500-km spatial resolution and two-hour temporal resolution.

  20. Penetrating microelectrode arrays with low-impedance sputtered iridium oxide electrode coatings.

    PubMed

    Cogan, Stuart F; Ehrlich, Julia; Plante, Timothy D; Van Wagenen, Rick

    2009-01-01

    Sputtered iridium oxide (SIROF) is a candidate low-impedance coating for neural stimulation and recording electrodes. SIROF on planar substrates has exhibited a high charge-injection capacity and impedance suitable for indwelling cortical microelectrode applications. In the present work, the properties of SIROF electrode coatings deposited onto multi-shank penetrating arrays intended for intracortical and intraneural applications were examined. The charge-injection properties under constant current pulsing were evaluated for a range of pulsewidths and current densities using voltage transients to determine maximum potential excursions in an inorganic model of interstitial fluid at 37 degrees C. The charge-injection capacity of the SIROFs was significantly improved by the use of positive potential biasing in the interpulse period, but even without bias, the SIROFs reversibly inject higher charge than other iridium oxides or platinum. Typical deliverable charge levels of 25 to 160 nC/phase were obtained with 2000 mum(2) electrodes depending on pulsewidth and interpulse bias. Similar sized platinum electrodes could inject 3 to 8 nC/phase.

  1. Electron-beam processing of kilogram quantities of iridium for radioisotope thermoelectric generator applications

    SciTech Connect

    Huxford, T.J.; Ohriner, E.K.

    1992-12-31

    Iridium alloys are used as fuel-cladding materials in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyagers I and 2, Galilee, and Ulysses spacecraft. An integral part of the production of iridium-sheet metal involves electron-beam (EB) processing. These processes include the degassing of powder-pressed compacts followed by multiple meltings in order to purify 500-g buttons of Ir-0.3% W alloy. Starting in 1972 and continuing into 1992, our laboratory EB processing was Performed (ca. 1970) in a 60-kW (20 kV at 3 A), two-gun system. In 1991, a new 150-kW EB gun facility was installed to complement the older unit. This paper describes how the newly installed system was qualified for production of RTG developmental work is discussed that will potentially improve the existing process by utilizing the capabilities of the new EB system.

  2. Electron-beam processing of kilogram quantities of iridium for radioisotope thermoelectric generator applications

    SciTech Connect

    Huxford, T.J.; Ohriner, E.K.

    1992-01-01

    Iridium alloys are used as fuel-cladding materials in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyagers I and 2, Galilee, and Ulysses spacecraft. An integral part of the production of iridium-sheet metal involves electron-beam (EB) processing. These processes include the degassing of powder-pressed compacts followed by multiple meltings in order to purify 500-g buttons of Ir-0.3% W alloy. Starting in 1972 and continuing into 1992, our laboratory EB processing was Performed (ca. 1970) in a 60-kW (20 kV at 3 A), two-gun system. In 1991, a new 150-kW EB gun facility was installed to complement the older unit. This paper describes how the newly installed system was qualified for production of RTG developmental work is discussed that will potentially improve the existing process by utilizing the capabilities of the new EB system.

  3. [Brachytherapy in France: current situation and economic outlook due to the unavailability of iridium wires].

    PubMed

    Le Vu, B; Boucher, S

    2014-10-01

    In 2013, about 6000 patients were treated with brachytherapy, the number diminishing by 2.6% per year since 2008. Prostate, breast and gynecological cancers are the most common types of cancers. Since 2008, the number of brachytherapy facilities has decreased by 18%. In medicoeconomic terms, brachytherapy faces many problems: the coding system is outdated; brachytherapy treatments cost as much as internal radiation; fees do not cover costs; since iridium wire has disappeared from the market, the technique will be transferred to more expensive high-speed or pulse dose rates. The French financing grid based on the national study of costs lags behind changes in such treatments and in the best of cases, hospitals resorting to alternatives such as in-hospital brachytherapy are funded at 46% of their additional costs. Brachytherapy is a reference technique. With intense pressure on hospital pricing, financing brachytherapy facilities will become even more problematic as a consequence of the disappearance of iridium 192 wires. The case of brachytherapy illustrates the limits of the French financing system and raises serious doubts as to its responsiveness.

  4. Possible Superconductivity Induced by Strong Spin-Orbit Coupling in Carrier Doped Iridium Oxides Insulators

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Kazutaka; Shirakawa, Tomonori; Watanabe, Hiroshi; Arita, Ryotaro; Yunoki, Seiji

    2014-03-01

    5 d transition metal oxide Sr2IrO4 and its relevant Iridium oxides have attracted much interest because of exotic properties arising from highly entangled spin and orbital degrees of freedom due to strong spin-orbit coupling (SOC). Sr2IrO4 crystalizes in the layered perovskite structure, similar to cuprates. Five 5 d electrons in Ir occupy its t2 g orbitals which are split by strong SOC, locally inducing an effective total angular momentum Jeff = 1 / 2 , analogous to a S = 1 / 2 state in cuprates. Because of the similarities to cuprates, the possibility of superconductivity (SC) in Iridium oxides has been expected theoretically once mobile carriers are introduced into the Jeff = 1 / 2 antiferromagnetic insulator. To study theoretically possible SC in carrier doped Sr2IrO4, we investigate a three-orbital Hubbard model with SOC. By solving the Eliashberg equation in the random phase approximation, we find that Jeff = 1 / 2 antiferromagnetic fluctuations favor dx2 -y2-wave SC with a mixture of singlet and triplet Cooper pairings. We will also discuss the particle-hole asymmetry of the SC induced by electron and hole doping.

  5. Dynamic Structural Changes in a Molecular Zeolite-Supported Iridium Catalyst for Ethene Hydrogenation

    SciTech Connect

    Uzun, Alper; Gates, Bruce C.

    2009-11-16

    The structure of a catalyst often changes as a result of changes in the reactive environment during operation. Examples include changes in bulk phases, extended surface structures, and nanoparticle morphologies; now we report real-time characterization of changes in the structure of a working supported catalyst at the molecular level. Time-resolved extended X-ray absorption fine structure (EXAFS) data demonstrate the reversible interconversion of mononuclear iridium complexes and tetrairidium clusters inside zeolite Y cages, with the structure controlled by the C{sub 2}H{sub 4}/H{sub 2} ratio during ethene hydrogenation at 353 K. The data demonstrate break-up of tetrairidium clusters into mononuclear complexes indicated by a decrease in the Ir-Ir coordination number in ethene-rich feed. When the feed composition was switched to first equimolar and then to a H{sub 2}-rich (C{sub 2}H{sub 4}/H{sub 2} = 0.3) feed, the EXAFS spectra show the reformation of tetrairidium clusters as the Ir-Ir coordination number increased again. When the feed composition was cycled from ethene-rich to H{sub 2}-rich, the predominant species in the catalyst cycled accordingly. Evidence confirming the structural change is provided by IR spectra of iridium carbonyls formed by probing of the catalyst with CO. The data are the first showing how to tune the structure of a solid catalyst at the molecular scale by choice of the reactant composition.

  6. Phase diagram and electrical behavior of silicon-rich iridium silicide compounds

    NASA Technical Reports Server (NTRS)

    Allevato, C. E.; Vining, Cronin B.

    1992-01-01

    The iridium-silicon phase diagram on the silicon-rich side was investigated by means of X-ray powder diffraction, density, differential thermal analysis, metalography, microprobe analysis, and electrical resistivity. Attempts were made to prepare eight previously reported silicon-rich iridium silicide compounds by arc melting and Bridgman-like growth. However, microprobe analysis identified only four distinct compositions: IrSi, Ir3Si4, Ir3Si5 and IrSi sub about 3. The existence of Ir4Si5 could not be confirmed in this study, even though the crystal structure has been previously reported. Differential thermal analysis (DTA) in conjunction with X-ray powder diffraction confirm polymorphism in IrSi sub about 3, determined to have orthorhombic and monoclinic unit cells in the high and low temperature forms. A eutectic composition alloy of 83 +/- 1 atomic percent silicon was observed between IrSi sub about 3 and silicon. Ir3Si4 exhibits distinct metallic behavior while Ir3Si5 is semiconducting. Both and IrSi and IrSi sub about 3 exhibit nearly temperature independent electrical resistivities on the order of 5-10 x 10 exp -6 ohms-m.

  7. Phosphorescent iridium(III) complexes as multicolor probes for specific mitochondrial imaging and tracking.

    PubMed

    Chen, Yu; Qiao, Liping; Ji, Liangnian; Chao, Hui

    2014-01-01

    In the present study, four phosphorescent iridium(III) complexes [Ir(C-N)2(PhenSe)](+) (Ir1-Ir4, in which C-N = 2-(2,4-difluorophenyl)pyridine (dfppy), dibenzo[f,h]quinoxaline (dbq), 2-phenylquinoline (2-pq) and 2-phenylpyridine (ppy), PhenSe = 1,10-phenanthrolineselenazole) with tunable emission colors were developed to image mitochondria and track the dynamics of the mitochondrial morphology. In comparison with commercially available mitochondrial trackers, Ir1-Ir4 possess high specificity to mitochondria in live and fixed cells without requiring prior membrane permeabilization or the replacement of the culture medium. Due to the high resistance of Ir1-Ir4 to the loss of mitochondrial membrane potential as well as the appreciable tolerance to environmental changes, these complexes are applicable for the imaging and tracking of the mitochondrial morphological changes over long periods of time. In addition, Ir2-Ir4 exhibited superior photostability compared to the commercially available mitochondrial trackers. These colorful iridium(III) complexes may contribute to the future development of staining agents for organelle-selective imaging in living cells.

  8. Development of low-stress Iridium coatings for astronomical x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Wen, Mingwu; Proserpio, Laura

    2016-07-01

    Previously used mirror technologies are not suitable for the challenging needs of future X-ray telescopes. This is why the required high precision mirror manufacturing triggers new technical developments around the world. Some aspects of X-ray mirrors production are studied within the interdisciplinary project INTRAAST, a German acronym for "industry transfer of astronomical mirror technologies". The project is embedded in a cooperation of Aschaffenburg University of Applied Sciences and the Max-Planck-Institute for extraterrestrial Physics. One important task is the development of low-stress Iridium coatings for X-ray mirrors based on slumped thin glass substrates. The surface figure of the glass substrates is measured before and after the coating process by optical methods. Correlating the surface shape deformation to the parameters of coating deposition, here especially to the Argon sputtering pressure, allows for an optimization of the process. The sputtering parameters also have an influence on the coating layer density and on the micro-roughness of the coatings, influencing their X-ray reflection properties. Unfortunately the optimum coating process parameters seem to be contrarious: low Argon pressure resulted in better micro-roughness and higher density, whereas higher pressure leads to lower coating stress. Therefore additional measures like intermediate coating layers and temperature treatment will be considered for further optimization. The technical approach for the low-stress Iridium coating development, the experimental equipment, and the obtained first experimental results are presented within this paper.

  9. para-C-H Borylation of Benzene Derivatives by a Bulky Iridium Catalyst.

    PubMed

    Saito, Yutaro; Segawa, Yasutomo; Itami, Kenichiro

    2015-04-22

    A highly para-selective aromatic C-H borylation has been accomplished. By a new iridium catalyst bearing a bulky diphosphine ligand, Xyl-MeO-BIPHEP, the C-H borylation of monosubstituted benzenes can be affected with para-selectivity up to 91%. This catalytic system is quite different from the usual iridium catalysts that cannot distinguish meta- and para-C-H bonds of monosubstituted benzene derivatives, resulting in the preferred formation of meta-products. The para-selectivity increases with increasing bulkiness of the substituent on the arene, indicating that the regioselectivity of the present reaction is primarily controlled by steric repulsion between substrate and catalyst. Caramiphen, an anticholinergic drug used in the treatment of Parkinson's disease, was converted into five derivatives via our para-selective borylation. The present [Ir(cod)OH]2/Xyl-MeO-BIPHEP catalyst represents a unique, sterically controlled, para-selective, aromatic C-H borylation system that should find use in streamlined, predictable chemical synthesis and in the rapid discovery and optimization of pharmaceuticals and materials.

  10. Ester-Modified Cyclometalated Iridium(III) Complexes as Mitochondria-Targeting Anticancer Agents

    PubMed Central

    Wang, Fang-Xin; Chen, Mu-He; Hu, Xiao-Ying; Ye, Rui-Rong; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2016-01-01

    Organometallic iridium complexes are potent anticancer candidates which act through different mechanisms from cisplatin-based chemotherapy regimens. Here, ten phosphorescent cyclometalated iridium(III) complexes containing 2,2′-bipyridine-4,4′-dicarboxylic acid and its diester derivatives as ligands are designed and synthesized. The modification by ester group, which can be hydrolysed by esterase, facilitates the adjustment of drug-like properties. The quantum yields and emission lifetimes are influenced by variation of the ester substituents on the Ir(III) complexes. The cytotoxicity of these Ir(III) complexes is correlated with the length of their ester groups. Among them, 4a and 4b are found to be highly active against a panel of cancer cells screened, including cisplatin-resistant cancer cells. Mechanism studies in vitro indicate that they undergo hydrolysis of ester bonds, accumulate in mitochondria, and induce a series of cell-death related events mediated by mitochondria. Furthermore, 4a and 4b can induce pro-death autophagy and apoptosis simultaneously. Our study indicates that ester modification is a simple and feasible strategy to enhance the anticancer potency of Ir(III) complexes. PMID:27958338

  11. Iridium- and Osmium-decorated Reduced Graphenes as Promising Catalysts for Hydrogen Evolution.

    PubMed

    Lim, Chee Shan; Sofer, Zdeněk; Toh, Rou Jun; Eng, Alex Yong Sheng; Luxa, Jan; Pumera, Martin

    2015-06-22

    Renewable energy sources are highly sought after as a result of numerous worldwide problems concerning the environment and the shortage of energy. Currently, the focus in the field is on the development of catalysts that are able to provide water splitting catalysis and energy storage for the hydrogen evolution reaction (HER). While platinum is an excellent material for HER catalysis, it is costly and rare. In this work, we investigated the electrocatalytic abilities of various graphene-metal hybrids to replace platinum for the HER. The graphene materials were doped with 4f metals, namely, iridium, osmium, platinum and rhenium, as well as 3d metals, namely, cobalt, iron and manganese. We discovered that a few hybrids, in particular iridium- and osmium-doped graphenes, have the potential to become competent electrocatalysts owing to their low costs and-more importantly-to their promising electrochemical performances towards the HER. One of the more noteworthy observations of this work is the superiority of these two hybrids over MoS2 , a well-known electrocatalyst for the HER.

  12. The kinetics and mechanism of the organo-iridium-catalysed enantioselective reduction of imines.

    PubMed

    Stirling, Matthew J; Sweeney, Gemma; MacRory, Kerry; Blacker, A John; Page, Michael I

    2016-04-14

    The iridium complex of pentamethylcyclopentadiene and (S,S)-1,2-diphenyl-N'-tosylethane-1,2-diamine is an effective catalyst for the asymmetric transfer hydrogenation of imine substrates under acidic conditions. Using the Ir catalyst and a 5 : 2 ratio of formic acid : triethylamine as the hydride source for the asymmetric transfer hydrogenation of 1-methyl-3,4-dihydroisoquinoline and its 6,7-dimethoxy substituted derivative, in either acetonitrile or dichloromethane, shows unusual enantiomeric excess (ee) profiles for the product amines. The reactions initially give predominantly the (R) enantiomer of the chiral amine products with >90% ee but which then decreases significantly during the reaction. The decrease in ee is not due to racemisation of the product amine, but because the rate of formation of the (R)-enantiomer follows first-order kinetics whereas that for the (S)-enantiomer is zero-order. This difference in reaction order explains the change in selectivity as the reaction proceeds - the rate formation of the (R)-enantiomer decreases exponentially with time while that for the (S)-enantiomer remains constant. A reaction scheme is proposed which requires rate-limiting hydride transfer from the iridium hydride to the iminium ion for the first-order rate of formation of the (R)-enantiomer amine and rate-limiting dissociation of the product for the zero-order rate of formation of the (S)-enantiomer.

  13. High-Performance Computer Modeling of the Cosmos-Iridium Collision

    SciTech Connect

    Olivier, S; Cook, K; Fasenfest, B; Jefferson, D; Jiang, M; Leek, J; Levatin, J; Nikolaev, S; Pertica, A; Phillion, D; Springer, K; De Vries, W

    2009-08-28

    This paper describes the application of a new, integrated modeling and simulation framework, encompassing the space situational awareness (SSA) enterprise, to the recent Cosmos-Iridium collision. This framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel, high-performance computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the application of this framework to the recent collision of the Cosmos and Iridium satellites, including (1) detailed hydrodynamic modeling of the satellite collision and resulting debris generation, (2) orbital propagation of the simulated debris and analysis of the increased risk to other satellites (3) calculation of the radar and optical signatures of the simulated debris and modeling of debris detection with space surveillance radar and optical systems (4) determination of simulated debris orbits from modeled space surveillance observations and analysis of the resulting orbital accuracy, (5) comparison of these modeling and simulation results with Space Surveillance Network observations. We will also discuss the use of this integrated modeling and simulation framework to analyze the risks and consequences of future satellite collisions and to assess strategies for mitigating or avoiding future incidents, including the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.

  14. White light-emitting organic electroluminescent device based on a new orange organometallic iridium complexes

    NASA Astrophysics Data System (ADS)

    Shieh, Tien-shou; Huang, Heh-lung; Liu, Pey-ching; Tseng, Mei-Rurng; Liu, Jia-Ming

    2007-09-01

    We develop the white organic light-emitting diodes (WOLEDs) with a new orange electrophosphorescent emission, and the blue electrofluorescent or electrophosphorescent sensitizer. The new orange phosphorescent sensitizer is the thieno-pyridine framework organo-iridium complexes (PO-01). The blue phosphorsensitized electrofluorescent is 4,4'-Bis(9-ethyl-3-carbazovinylene)-1,1'- biphenyl (DSA) doped into 4,4'-Bis(2,2-diphenyl-ethen-1-yl) diphenyl (DPVBi). Beside, the blue phosphorescent sensitizer is Bis(3,5-difluoro-2-(2-pyridyl)phenyl- (2-carboxypyridyl)iridium (FirPic). The Device Type I of WOLED based on the PO-01 and the DSA doped into DPVBi has an efficiency of 5.7 lm/W (10.6Cd/A) at 500 Cd/m2, a CIE coordinates of (0.33, 0.31), and a CRI of 71. However, the Device Type II of WOLED has an efficiency of 5.5 lm/W (10.3Cd/A) at 500 Cd/m2 and a CIE coordinates of (0.30, 0.42), while the FirPic replaces the DPVBi doped with DSA. The spectra of the Device Type II and I both response insensitive to drive current. Nevertheless, the Device Type I relatively achieves a balanced whit emission with CIE coordinates of (0.33, 0.33). They are good suitability to use in OLED lighting and full-color LCD backlights.

  15. Picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications

    NASA Astrophysics Data System (ADS)

    Muhammad, N.; Whitehead, D.; Boor, A.; Oppenlander, W.; Liu, Z.; Li, L.

    2012-03-01

    The demand for micromachining of coronary stents by means of industrial lasers rises quickly for treating coronary artery diseases, which cause more than one million deaths each year. The most widely used types of laser for stent manufacturing are Nd:YAG laser systems with a wavelength of 1064 nm with pulse lengths of 10-3-10-2 seconds. Considerable post-processing is required to remove heat-affected zones (HAZ), and to improve surface finishes and geometry. Using a third harmonic laser radiation of picosecond laser (6×10-12 s pulse duration) in UV range, the capability of the picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications are presented. In this study dross-free cut of nitinol and platinum-iridium alloy tubes are demonstrated and topography analysis of the cut surface is carried out. The HAZ characteristics have been investigated by means of microscopic examinations and measurement of micro-hardness distribution near the cut zones.

  16. Treatment of carcinoma of the penis by iridium 192 wire implant

    SciTech Connect

    Daly, N.J.; Douchez, J.; Combes, P.F.

    1982-07-01

    Since 1971, a group of 22 adult patients with squamous cell carcinoma of the penis have been treated by iridium 192 wire implants. There were 6 T1 tumors, 14 T2 tumors and 2 T3; only one patient (T3) presented with local failure after implant. Local necrosis occurred in 2 patients without local tumoral recurrence, but was sufficient enough to warrant amputation. Thus 19/22 (86%) patients were locally cured with penile conservation. In these patients the most frequent posttherapeutic complication is chronic urethral stenosis (9/19 patients, 47%) requiring repeated instrumental dilations. Four patients presented with initial inguinal mestastatic nodes; only one was cured by radiosurgical treatment. Among patients without metastatic nodes at the time of diagnosis, none had delayed metastatic nodes. Three patients died of nodal evolution, 5 patients died of intercurrent disease without evidence of disease and 14 are now alive and NED. It appears that iridium 192 wire implant is the most effective conservative treatment of invasive squamous cell carcinoma of the penis; however, these results confirm that no particular treatment is required for inguinal nodal areas for patients who initially present with no disease.

  17. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    DOE PAGES

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay timemore » is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.« less

  18. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions

    NASA Astrophysics Data System (ADS)

    Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin

    2017-02-01

    Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission "turn-on" bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.

  19. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    SciTech Connect

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay time is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.

  20. Partially oxidized iridium clusters within dendrimers: size-controlled synthesis and selective hydrogenation of 2-nitrobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Higaki, Tatsuya; Kitazawa, Hirokazu; Yamazoe, Seiji; Tsukuda, Tatsuya

    2016-06-01

    Iridium clusters nominally composed of 15, 30 or 60 atoms were size-selectively synthesized within OH-terminated poly(amidoamine) dendrimers of generation 6. Spectroscopic characterization revealed that the Ir clusters were partially oxidized. All the Ir clusters efficiently converted 2-nitrobenzaldehyde to anthranil and 2-aminobenzaldehyde under atmospheric hydrogen at room temperature in toluene via selective hydrogenation of the NO2 group. The selectivity toward 2-aminobenzaldehyde over anthranil was improved with the reduction of the cluster size. The improved selectivity is ascribed to more efficient reduction than intramolecular heterocyclization of a hydroxylamine intermediate on smaller clusters that have a higher Ir(0)-phase population on the surface.Iridium clusters nominally composed of 15, 30 or 60 atoms were size-selectively synthesized within OH-terminated poly(amidoamine) dendrimers of generation 6. Spectroscopic characterization revealed that the Ir clusters were partially oxidized. All the Ir clusters efficiently converted 2-nitrobenzaldehyde to anthranil and 2-aminobenzaldehyde under atmospheric hydrogen at room temperature in toluene via selective hydrogenation of the NO2 group. The selectivity toward 2-aminobenzaldehyde over anthranil was improved with the reduction of the cluster size. The improved selectivity is ascribed to more efficient reduction than intramolecular heterocyclization of a hydroxylamine intermediate on smaller clusters that have a higher Ir(0)-phase population on the surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01460g

  1. Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993

    SciTech Connect

    Not Available

    1994-03-01

    On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci{sup 192}Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape.

  2. New isotope {sup 263}Hs

    SciTech Connect

    Dragojevic, I.; Ellison, P. A.; Gates, J. M.; Nelson, S. L.; Nitsche, H.; Gregorich, K. E.; Dvorak, J.; Stavsetra, L.; Duellmann, Ch. E.

    2009-01-15

    A new isotope of Hs was produced in the reaction {sup 208}Pb({sup 56}Fe,n){sup 263}Hs at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. Six genetically correlated nuclear decay chains have been observed and assigned to the new isotope {sup 263}Hs. The measured cross section was 21{sub -8.4}{sup +13} pb at 276.4 MeV lab frame center-of-target beam energy. {sup 263}Hs decays with a half-life of 0.74{sub -0.21}{sup +0.48} ms by {alpha}-decay and the measured {alpha}-particle energies are 10.57 {+-} 0.06, 10.72 {+-} 0.06, and 10.89 {+-} 0.06 MeV. The experimental cross section is compared to a theoretical prediction based on the Fusion by Diffusion model [W. J. SwiaPtecki et al., Phys. Rev. C 71, 014602 (2005)].

  3. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  4. Novel Design of Iridium Phosphors with Pyridinylphosphinate Ligands for High-Efficiency Blue Organic Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Wu, Zheng-Guang; Jing, Yi-Ming; Lu, Guang-Zhao; Zhou, Jie; Zheng, You-Xuan; Zhou, Liang; Wang, Yi; Pan, Yi

    2016-12-01

    Due to the high quantum efficiency and wide scope of emission colors, iridium (Ir) (III) complexes have been widely applied as guest materials for OLEDs (organic light-emitting diodes). Contrary to well-developed Ir(III)-based red and green phosphorescent complexes, the efficient blue emitters are rare reported. Like the development of the LED, the absence of efficient and stable blue materials hinders the widely practical application of the OLEDs. Inspired by this, we designed two novel ancillary ligands of phenyl(pyridin-2-yl)phosphinate (ppp) and dipyridinylphosphinate (dpp) for efficient blue phosphorescent iridium complexes (dfppy)2Ir(ppp) and (dfppy)2Ir(dpp) (dfppy = 2-(2,4-difluorophenyl)pyridine) with good electron transport property. The devices using the new iridium phosphors display excellent electroluminescence (EL) performances with a peak current efficiency of 58.78 cd/A, a maximum external quantum efficiency of 28.3%, a peak power efficiency of 52.74 lm/W and negligible efficiency roll-off ratios. The results demonstrated that iridium complexes with pyridinylphosphinate ligands are potential blue phosphorescent materials for OLEDs.

  5. Application of AirCell Cellular AMPS Network and Iridium Satellite System Dual Mode Service to Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The AirCell/Iridium dual mode service is evaluated for potential applications to Air Traffic Management (ATM) communication needs. The AirCell system which is largely based on the Advanced Mobile Phone System (AMPS) technology, and the Iridium FDMA/TDMA system largely based on the Global System for Mobile Communications(GSM) technology, can both provide communication relief for existing or future aeronautical communication links. Both have a potential to serve as experimental platforms for future technologies via a cost effective approach. The two systems are well established in the entire CONUS and globally hence making it feasible to utilize in all regions, for all altitudes, and all classes of aircraft. Both systems have been certified for air usage. The paper summarizes the specifications of the AirCell/Iridium system, as well as the ATM current and future links, and application specifications. the paper highlights the scenarios, applications, and conditions under which the AirCell/Iridium technology can be suited for ATM Communication.

  6. Characteristics of White Organic Light-Emitting Diodes Using Heteroleptic Iridium Complexes for Green and Red Phosphorescence

    NASA Astrophysics Data System (ADS)

    Seo, Ji Hyun; Kim, In Jun; Kim, Young Kwan; Kim, Young Sik

    2008-08-01

    We have demonstrated red-green-blue emissive white organic light-emitting diodes (RGB-WOLEDs) by using two emissive materials as dopant, 4,4'-bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl (BCzVBi) and heteroleptic tris-cyclometalated iridium(III) complexes. It was found that the heteroleptic iridium complexes, bis(2-phenylquinoline)(2-p-tolylpyridine) iridium(III) [Ir(pq)2(tpy)] and bis(2-p-tolylpyridine)(2-phenylquinoline) iridium(III) [Ir(tpy)2(pq)], used in this study showed double emissive colors, where the pq and tpy ligands emitted red and green colors, respectively. The luminance-voltage (L-V) characteristics of the RGB-WOLEDs using the Ir(tpy)2(pq) showed a luminance of 9630 cd/m2 at 14 V and a maximum luminous efficiency of 12.9 cd/A. The CIEx,y coordinates also showed (x=0.31, y=0.36) at 12 V.

  7. Iridium-catalysed dehydrocoupling of aryl phosphine-borane adducts: synthesis and characterisation of high molecular weight poly(phosphinoboranes).

    PubMed

    Paul, Ursula S D; Braunschweig, Holger; Radius, Udo

    2016-06-30

    The thermal dehydrogenative coupling of aryl phosphine-borane adducts with iridium complexes bearing a bis(phosphinite) pincer ligand is reported. This catalysis produces high molecular weight poly(phosphinoboranes) [ArPH-BH2]n (Ar = Ph, (p)Tol, Mes). Furthermore, we investigated the reactivity of these pincer complexes towards primary phosphines and their respective borane adducts on a stoichiometric scale.

  8. Novel Design of Iridium Phosphors with Pyridinylphosphinate Ligands for High-Efficiency Blue Organic Light-emitting Diodes

    PubMed Central

    Wu, Zheng-Guang; Jing, Yi-Ming; Lu, Guang-Zhao; Zhou, Jie; Zheng, You-Xuan; Zhou, Liang; Wang, Yi; Pan, Yi

    2016-01-01

    Due to the high quantum efficiency and wide scope of emission colors, iridium (Ir) (III) complexes have been widely applied as guest materials for OLEDs (organic light-emitting diodes). Contrary to well-developed Ir(III)-based red and green phosphorescent complexes, the efficient blue emitters are rare reported. Like the development of the LED, the absence of efficient and stable blue materials hinders the widely practical application of the OLEDs. Inspired by this, we designed two novel ancillary ligands of phenyl(pyridin-2-yl)phosphinate (ppp) and dipyridinylphosphinate (dpp) for efficient blue phosphorescent iridium complexes (dfppy)2Ir(ppp) and (dfppy)2Ir(dpp) (dfppy = 2-(2,4-difluorophenyl)pyridine) with good electron transport property. The devices using the new iridium phosphors display excellent electroluminescence (EL) performances with a peak current efficiency of 58.78 cd/A, a maximum external quantum efficiency of 28.3%, a peak power efficiency of 52.74 lm/W and negligible efficiency roll-off ratios. The results demonstrated that iridium complexes with pyridinylphosphinate ligands are potential blue phosphorescent materials for OLEDs. PMID:27929124

  9. Thinking Problems of the Present Collision Warning Work by Analyzing the Intersection Between Cosmos 2251 and Iridium 33

    NASA Astrophysics Data System (ADS)

    Wang, R. L.; Liu, W.; Yan, R. D.; Gong, J. C.

    2013-08-01

    After Cosmos 2251 and Iridium 33 collision breakup event, the institutions at home and abroad began the collision warning analysis for the event. This paper compared the results from the different research units and discussed the problems of the current collision warning work, then gave the suggestions of further study.

  10. alpha-Hexachlorocyclohexane (alpha-HCH)

    Integrated Risk Information System (IRIS)

    alpha - Hexachlorocyclohexane ( alpha - HCH ) ; CASRN 319 - 84 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Ass

  11. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  12. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  13. Alpha Hydroxy Acids

    MedlinePlus

    ... Cosmetics Home Cosmetics Products & Ingredients Ingredients Alpha Hydroxy Acids Share Tweet Linkedin Pin it More sharing options ... for Industry: Labeling for Cosmetics Containing Alpha Hydroxy Acids The following information is intended to answer questions ...

  14. Helium isotopic abundance variation in nature

    SciTech Connect

    Holden, N.E.

    1993-08-01

    The isotopic abundance of helium in nature has been reviewed. This atomic weight value is based on the value of helium in the atmosphere, which is invariant around the world and up to a distance of 100,000 feet. Helium does vary in natural gas, volcanic rocks and gases, ocean floor sediments, waters of various types and in radioactive minerals and ores due to {alpha} particle decay of radioactive nuclides.

  15. Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues

    SciTech Connect

    Knight, K; Kita, N; Mendybaev, R; Richter, F; Davis, A; Valley, J

    2009-06-18

    Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose

  16. The Alpha Centauri System.

    ERIC Educational Resources Information Center

    Soderblom, David R.

    1987-01-01

    Describes the Alpha Centauri star system, which is the closest star system to the sun. Discusses the difficulties associated with measurements involving Alpha Centauri, along with some of the recent advances in stellar seismology. Raises questions about the possibilities of planets around Alpha Centauri. (TW)

  17. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha-particle therapy applications

    PubMed Central

    Miederer, Matthias; Scheinberg, David A.; McDevitt, Michael R.

    2013-01-01

    Alpha particle-emitting isotopes have been proposed as novel cytotoxic agents for augmenting targeted therapy. Properties of alpha particle radiation such as their limited range in tissue of a few cell diameters and their high linear energy transfer leading to dense radiation damage along each alpha track are promising in the treatment of cancer, especially when single cells or clusters of tumor cells are targeted. Actinium-225 (225Ac) is an alpha particle-emitting radionuclide that generates 4 net alpha particle isotopes in a short decay chain to stable 209Bi, and as such can be described as an alpha particle nanogenerator. This article reviews the literature pertaining to the research, development, and utilization of targeted 225Ac to potently and specifically affect cancer. PMID:18514364

  18. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications.

    PubMed

    Miederer, Matthias; Scheinberg, David A; McDevitt, Michael R

    2008-09-01

    Alpha particle-emitting isotopes have been proposed as novel cytotoxic agents for augmenting targeted therapy. Properties of alpha particle radiation such as their limited range in tissue of a few cell diameters and their high linear energy transfer leading to dense radiation damage along each alpha track are promising in the treatment of cancer, especially when single cells or clusters of tumor cells are targeted. Actinium-225 (225 Ac) is an alpha particle-emitting radionuclide that generates 4 net alpha particle isotopes in a short decay chain to stable 209 Bi, and as such can be described as an alpha particle nanogenerator. This article reviews the literature pertaining to the research, development, and utilization of targeted 225 Ac to potently and specifically affect cancer.

  19. Migration of Single Iridium Atoms and Tri-iridium Clusters on MgO Surfaces. Aberration-Corrected STEM Imaging and ab-initio Calculations

    SciTech Connect

    Han, Chang W.; Iddir, Hakim; Uzun, Alper; Curtiss, Larry A.; Browning, Nigel D.; Gates, Bruce C.; Ortalan, Volkan

    2015-11-06

    To address the challenge of fast, direct atomic-scale visualization of the diffusion of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as ~0.1 s per frame) to visualize the diffusion of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir3 cluster on MgO(110). Sequential Z-contrast images elucidate the diffusion mechanisms, including the hopping of Ir1 and the rotational migration of Ir3 as two Ir atoms remain anchored to the surface. Density functional theory (DFT) calculations provided estimates of the diffusion energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow real-time visualization and fundamental understanding of surface diffusion phenomena pertaining to supported catalysts and other materials.

  20. Quantification of active infliximab in human serum with liquid chromatography-tandem mass spectrometry using a tumor necrosis factor alpha -based pre-analytical sample purification and a stable isotopic labeled infliximab bio-similar as internal standard: A target-based, sensitive and cost-effective method.

    PubMed

    El Amrani, Mohsin; van den Broek, Marcel P H; Göbel, Camiel; van Maarseveen, Erik M

    2016-07-08

    The therapeutic monoclonal antibody Infliximab (IFX) is a widely used drug for the treatment of several inflammatory autoimmune diseases. However, approximately 10% of patients develop anti-infliximab antibodies (ATIs) rendering the treatment ineffective. Early detection of underexposure to unbound IFX would result in a timely switch of therapy which could aid in the treatment of this disease. Streptavidin coated 96 well plates were used to capture biotinylated-tumor necrosis factor -alpha (b-TNF-α), which in turn was used to selectively extract the active form of IFX in human serum. After elution, IFX was digested using trypsin and one signature peptide was selected for subsequent analysis on liquid chromatography-tandem mass spectrometry (LC-MS/MS). The internal standard used was a stable isotopic labeled IFX bio-similar. The assay was successfully validated according to European Medicines Agency (EMA) guidelines and was found to be linear in a range of 0.5-20μg/mL (r(2)=0.994). Lower limit of quantification for the assay (<20% CV) was 0.5μg/mL, requiring only 2μL of sample. Cross-validation against enzyme-linked immunosorbent assay (ELISA) resulted in a high correlation between methods (r(2)=0.95 with a ρc=0.83) and the accuracy was in line with previously published results. In conclusion, a sensitive, robust and cost-effective method was developed for the bio-analysis of IFX with LC-MS/MS by means of a target-based pre-analytical sample purification. Moreover, low volume and costs of consumables per sample promote its feasibility in (pre)clinical studies and in therapeutic drug monitoring. This method should be considered as first choice due to its accuracy and multiple degree of selectivity.

  1. Nd2K2IrO7 and Sm2K2IrO7: Iridium(VI) Oxides Prepared under Ambient Pressure

    SciTech Connect

    Mugavero, III, S.; Smith, M; Yoon, W; zur Loye, H

    2009-01-01

    The most-oxidized iridium oxides known to date are prepared in a hydroxide flux under normal pressure. They contain iridium centers exclusively in the +VI oxidation state and are characterized crystallographically. The picture shows the structure of the Ln2K2IrO7 (Ln=Nd, Sm) and its structural components: IrO6 octahedra (black), KO10 polyhedra (beige), LnO10 polyhedra (blue).

  2. Cellular uptake of PLA nanoparticles studied by light and electron microscopy: synthesis, characterization and biocompatibility studies using an iridium(III) complex as correlative label.

    PubMed

    Reifarth, Martin; Pretzel, David; Schubert, Stephanie; Weber, Christine; Heintzmann, Rainer; Hoeppener, Stephanie; Schubert, Ulrich S

    2016-03-21

    We present the synthesis of polylactide by ring-opening polymerization using a luminescent iridium(III) complex acting as initiator. The polymer was formulated into nanoparticles, which were taken up by HEK-293 cells. We could show that the particles provided an appropriate contrast in both superresolution fluorescence and electron microscopy, and, moreover, are non-toxic, in contrast to the free iridium complex.

  3. Conodont survival and low iridium abundances across the Permian-Triassic boundary in south China

    NASA Technical Reports Server (NTRS)

    Clark, D. L.; Wang, C.-Y.; Orth, C. J.; Gilmore, J. S.

    1986-01-01

    The Permian-Triassic sedimentary sequence of China includes one of the most complete and fossiliferous Paleozoic-Mesozoic boundaries known. Closely spaced sampling across the boundary, which is an important extinction event for most organisms, has produced good conodont faunas that show little diversity change. A drop in conodont abundance is the only apparent response to the extinction event. A low concentration of iridium in the boundary clay (0.002 part per billion + or - 20 percent), as well as in samples immediately below and above, that range from 0.004 to 0.034 part per billion do not support the proposal of an extraterrestrial impact event at this boundary in China.

  4. Iridium-catalyzed asymmetric ring-opening of azabicyclic alkenes with alcohols.

    PubMed

    Yang, Dingqiao; Xia, Jiuyun; Long, Yuhua; Zeng, Zhongyi; Zuo, Xiongjun; Wang, Sanyong; Li, Chunrong

    2013-08-07

    A novel asymmetric ring-opening reaction of N-substituted azabenzonorbornadienes with a wide variety of substituted benzyl alcohols and the addition reaction of N-substituted azabenzonorbornadienes with thiols are reported, affording the corresponding 1,2-trans-alkoxyamino products in moderate yields with excellent enantioselectivities (up to 94% ee) and the corresponding thiol addition products in high yields with lower enantiomeric excesses (ee) in the presence of iridium catalyst, respectively. The effects of ligands, catalyst loading, solvents and additives, and temperature were also investigated. The anti-configuration of the product 3c was confirmed by X-ray crystal structure analysis. A possible mechanism for the present catalytic reaction is proposed.

  5. Enantiopure Ferrocene-Based Planar-Chiral Iridacycles: Stereospecific Control of Iridium-Centred Chirality.

    PubMed

    Arthurs, Ross A; Ismail, Muhammad; Prior, Christopher C; Oganesyan, Vasily S; Horton, Peter N; Coles, Simon J; Richards, Christopher J

    2016-02-24

    Reaction of [IrCp*Cl2 ]2 with ferrocenylimines (Fc=NAr, Ar=Ph, p-MeOC6 H4 ) results in ferrocene C-H activation and the diastereoselective synthesis of half-sandwich iridacycles of relative configuration Sp *,RIr *. Extension to (S)-2-ferrocenyl-4-(1-methylethyl)oxazoline gave highly diastereoselective control over the new elements of planar chirality and metal-based pseudo-tetrahedral chirality, to give both neutral and cationic half-sandwich iridacycles of absolute configuration Sc ,Sp ,RIr . Substitution reactions proceed with retention of configuration, with the planar chirality controlling the metal-centred chirality through an iron-iridium interaction in the coordinatively unsaturated cationic intermediate.

  6. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    NASA Astrophysics Data System (ADS)

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  7. Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer agents.

    PubMed

    Xiong, Kai; Chen, Yu; Ouyang, Cheng; Guan, Rui-Lin; Ji, Liang-Nian; Chao, Hui

    2016-06-01

    Four cyclometalated iridium(III) complexes [Ir(dfppy)2(L)](+) (dfppy = 2-(2,4-difluorophenyl)pyridine, L = 6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine, Ir1; 6-(isoquinolin-1-yl)-1,3,5-triazine-2,4-diamine, Ir2; 6-(quinolin-2-yl)-1,3,5-triazine-2,4-diamine, Ir3; 6-(isoquinolin-3-yl)-1,3,5-triazine-2,4-diamine, Ir4) have been synthesized and characterized. Distinct from cisplatin, Ir1-Ir4 could specifically target mitochondria and induced apoptosis against various cancer cell lines, especially for cisplatin resistant cells. ICP-MS results indicated that Ir1-Ir4 were taken up via different mechanism for cancer cells and normal cells, which resulted in their high selectivity. The structure-activity relationship and signaling pathways were also discussed.

  8. Hot rocket plume experiment - Survey and conceptual design. [of rhenium-iridium bipropellants

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Luan, Taylor W.; Dowdy, Mack W.

    1992-01-01

    Attention is given to a space-borne engine plume experiment study to fly an experiment which will both verify and quantify the reduced contamination from advanced rhenium-iridium earth-storable bipropellant rockets (hot rockets) and provide a correlation between high-fidelity, in-space measurements and theoretical plume and surface contamination models. The experiment conceptual design is based on survey results from plume and contamination technologists throughout the U.S. With respect to shuttle use, cursory investigations validate Hitchhiker availability and adaptability, adequate remote manipulator system (RMS) articulation and dynamic capability, acceptable RMS attachment capability, adequate power and telemetry capability, and adequate flight altitude and attitude/orbital capability.

  9. Asymmetric hydrogenation of furans and benzofurans with iridium-pyridine-phosphinite catalysts.

    PubMed

    Pauli, Larissa; Tannert, René; Scheil, Robin; Pfaltz, Andreas

    2015-01-19

    Enantioselective hydrogenation of furans and benzofurans remains a challenging task. We report the hydrogenation of 2- and 3-substituted furans by using iridium catalysts that bear bicyclic pyridine-phosphinite ligands. Excellent enantioselectivities and high conversions were obtained for monosubstituted furans with a 3-alkyl or 3-aryl group. Furans substituted at the 2-position and 2,4-disubstituted furans proved to be more difficult substrates. The best results (80-97% conversion, 65-82% enantiomeric excess) were obtained with monosubstituted 2-alkylfurans and 2-[4-(trifluoromethyl)phenyl]furan. Benzofurans with an alkyl substituent at the 2- or 3-position also gave high conversions and enantioselectivity, whereas 2-aryl derivatives showed essentially no reactivity. The asymmetric hydrogenation of a 3-methylbenzofuran derivative was used as a key step in the formal total synthesis of the cytotoxic naphthoquinone natural product (-)-thespesone.

  10. Iridium-catalyzed hydrogen production from monosaccharides, disaccharide, cellulose, and lignocellulose.

    PubMed

    Li, Yang; Sponholz, Peter; Nielsen, Martin; Junge, Henrik; Beller, Matthias

    2015-03-01

    Hydrogen constitutes an important feedstock for clean-energy technologies as well as for production of bulk and fine chemicals. Hence, the development of novel processes to convert easily available biomass into H2 is of general interest. Herein, we demonstrate a one-pot protocol hydrogen generation from monosaccharides, disaccharide, and extremely demanding cellulose and lignocellulose substrates by using a pincer-type iridium catalyst. Applying ppm amounts of this catalyst, hydrogen is produced at temperatures lower than 120 °C. More specifically, catalyst turnover numbers (TONs) for lignocellulose from bamboo reached up to about 3000. Interestingly, even (used) cigarette filters, which are composed of cellulose acetate, produce hydrogen under optimized conditions.

  11. Spin-orbit coupled jeff=1/2 iridium moments on the geometrically frustrated fcc lattice

    DOE PAGES

    Cook, A. M.; Matern, S.; Hickey, C.; ...

    2015-07-01

    Motivated by experiments on La2ZnIrO6 and La2MgIrO6, we study the magnetism of spin-orbit coupled jeff = 1/2 iridium moments on the three-dimensional geometrically-frustrated face-centered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. Using Luttinger-Tisza and Monte Carlo simulations, we find a rich variety of orders, including collinear A-type antiferromagnetism, collinear stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and determine their magnetic ordering transition temperatures. We argue that thermodynamic data on these iridates underscore the presence of a dominant Kitaev exchange, and suggest a possible resolution to the puzzle of why La2ZnIrO6,more » but not La2MgIrO6, exhibits 'weak' ferromagnetism.« less

  12. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE PAGES

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; ...

    2016-07-15

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  13. Iridium-Catalyzed, Hydrosilyl-Directed Borylation of Unactivated Alkyl C−H Bonds

    PubMed Central

    Larsen, Matthew A.; Cho, Seung Hwan; Hartwig, John

    2016-01-01

    We report the iridium-catalyzed borylation of primary and secondary alkyl C−H bonds directed by a Si−H group to form alkylboronate esters site selectively. The reactions occur with high selectivity at primary C−H bonds γ to the hydrosilyl group to form primary alkyl bisboronate esters. In the absence of such primary C−H bonds, the borylation occurs selectively at a secondary C−H bond γ to the hydrosilyl group, and these reactions of secondary C−H bonds occur with high diastereoselectivity. The hydrosilyl-containing alkyl boronate esters formed by this method undergo transformations selectively at the carbon−boron or carbon−silicon bonds of these products under distinct conditions to give the products of amination, oxidation, and arylation. PMID:26745739

  14. Spin-orbit coupled jeff=1 /2 iridium moments on the geometrically frustrated fcc lattice

    NASA Astrophysics Data System (ADS)

    Cook, A. M.; Matern, S.; Hickey, C.; Aczel, A. A.; Paramekanti, A.

    2015-07-01

    Motivated by experiments on the double perovskites La2ZnIrO6 and La2MgIrO6 , we study the magnetism of spin-orbit coupled jeff=1 /2 iridium moments on the three-dimensional, geometrically frustrated, face-centered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich variety of orders, including collinear A -type antiferromagnetism, stripe order with moments along the {111 } direction, and incommensurate noncoplanar spirals, and we use Monte Carlo simulations to determine their magnetic ordering temperatures. We argue that existing thermodynamic data on these iridates underscores the presence of a dominant Kitaev exchange, and also suggest a resolution to the puzzle of why La2ZnIrO6 , but not La2MgIrO6 , exhibits "weak" ferromagnetism.

  15. Treatment of equine cutaneous neoplasia by radiotherapy using iridium 192 linear sources.

    PubMed

    Wyn-Jones, G

    1983-10-01

    The treatment of equine cutaneous tumours by conventional or cryosurgical techniques can be limited where the position of the tumour makes radical excision or freezing impractical or dangerous. Radiotherapy provides an effective and practical alternative. The use of iridium pins with guide needles allows accurate positioning of sources and uniform radiation fields to be achieved. The subsequent removal of the pins reduces the period of incapacity and reduces the radiation risk when compared to permanently implanted sources. Twenty-seven tumours on 26 horses were treated by this method with a 100 per cent success rate after a single irradiation. The technique of implantation is described and the criteria used to select cases and to assess the efficacy of this treatment are discussed.

  16. Radiation therapy of early carcinoma of the breast without mastectomy. [Linear acceleraor and iridium implants

    SciTech Connect

    Hellman, S.; Harris, J.R.; Levene, M.B.

    1980-08-15

    The results of the treatment of 176 patients with early breast cancer, using radiation therapy without mastectomy are reported. The likelihood of local recurrence was 5% for Stage I patients and 7% for Stage II patients. Local control was significantly greater in those patients receiving an iridium implant. The cumulative survival probability at five years is 96% for Stage I and 68% for Stage II. Gross tumor resection with careful reapproximation of the breast tissue and well-placed incisions facilitates the radiation therapy. Homogeneous external beam radiation to the breast and draining lymph nodes (4500 to 5000 rads) and supplemental local radiation to the sites of the primary lesion (in this series using interstitial implantation) are recommended. The frequency of normal tissue complications was low.

  17. Recent Polar Instrumentation Developments Using Low Cost, New Access Methods via Iridium Short Burst Data (SBD)

    NASA Astrophysics Data System (ADS)

    Behar, A.

    2012-04-01

    Recent advances in low-power communications using the new Iridium data capabilities now available (SBD, SMS) has allowed the development of systems that can stream transmit data (and receive commands) reliably in real time from very remote locations. This has allowed the development of sites or systems where one can put up instruments (cameras, gps, weather monitors, etc.) to collect data and not need to return to the site for data download. This has then expanded the possibilities where sites can be located by either removing the logistical costs of returning or being able to put sites where it would be too dangerous to return (tip of surging glaciers, crevasse locations, volcanoes, etc.).

  18. Recent Polar Instrumentation Developments Using Low Cost, New Access Methods via Iridium Short Burst Data (SBD)

    NASA Astrophysics Data System (ADS)

    Behar, Alberto

    2013-04-01

    Recent advances in low-power communications using the new Iridium data capabilities now available (SBD, SMS) has allowed the development of systems that can stream transmit data (and receive commands) reliably in real time from very remote locations. This has allowed the development of sites or systems where one can put up instruments (cameras, gps, weather monitors, etc.) to collect data and not need to return to the site for data download. This has then expanded the possibilities where sites can be located by either removing the logistical costs of returning or being able to put sites where it would be too dangerous to return (tip of surging glaciers, crevasse locations, volcanoes, etc.).

  19. Recent Polar Instrumentation Developments Using Low Cost, New Access Methods via Iridium Short Burst Data (SBD)

    NASA Astrophysics Data System (ADS)

    Behar, A.

    2013-12-01

    Recent advances in low-power communications using the new Iridium data capabilities now available (SBD, SMS) has allowed the development of systems that can stream transmit data (and receive commands) reliably in real time from very remote locations. This has allowed the development of sites or systems where one can put up instruments (cameras, gps, weather monitors, etc.) to collect data and not need to return to the site for data download. This has then expanded the possibilities where sites can be located by either removing the logistical costs of returning or being able to put sites where it would be too dangerous to return (tip of surging glaciers, crevasse locations, volcanoes, etc.).

  20. Recent Polar Instrumentation Developments Using Low Cost, New Access Methods via Iridium Short Burst Data (SBD)

    NASA Astrophysics Data System (ADS)

    Behar, A. E.

    2012-12-01

    Recent advances in low-power communications using the new Iridium data capabilities now available (SBD, SMS) has allowed the development of systems that can stream transmit data (and receive commands) reliably in real time from very remote locations. This has allowed the development of sites or systems where one can put up instruments (cameras, gps, weather monitors, etc.) to collect data and not need to return to the site for data download. This has then expanded the possibilities where sites can be located by either removing the logistical costs of returning or being able to put sites where it would be too dangerous to return (tip of surging glaciers, crevasse locations, volcanoes, etc.). Crevasse Strain and Water Monitors sending depth of water and changes of crevasse opening. Trackers on West Greenland Superglacial Rivers and Lakes, sending, depth, position, and velocity.

  1. Anodic Deposition of a Robust Iridium-Based Water-Oxidation Catalyst from Organometallic Precursors

    SciTech Connect

    Blakemore, James D; Schley, Nathan D; Olack, G.; Incarvito, Christopher D; Brudvig, Gary W; Crabtree, Robert H

    2011-01-01

    Artificial photosynthesis, modeled on natural light-driven oxidation of water in Photosystem II, holds promise as a sustainable source of reducing equivalents for producing fuels. Few robust water-oxidation catalysts capable of mediating this difficult four-electron, four-proton reaction have yet been described. We report a new method for generating an amorphous electrodeposited material, principally consisting of iridium and oxygen, which is a robust and long-lived catalyst for water oxidation, when driven electrochemically. The catalyst material is generated by a simple anodic deposition from Cp*Ir aqua or hydroxo complexes in aqueous solution. This work suggests that organometallic precursors may be useful in electrodeposition of inorganic heterogeneous catalysts.

  2. Iridium abundance maxima at the latest Ordovician mass extinction horizon, Yangtze Basin, China: Terrestrial or extraterrestrial

    SciTech Connect

    Kun Wang; Chatterton, B.D.E. ); Attrep, M. Jr; Orth, C.J. )

    1992-01-01

    Neutron activation analyses of the Chinese Ordovician/Silurian (O/S) boundary sections at two distant localities in the Yangtze Basin, spanning the horizon of a major latest Ordovician global extinction event, show the maxima of iridium abundances to be coincident with the extinction horizon at the base of the graptolite Glyptograptus persculputs zone. The 0.23 ppb Ir maximum in the Yichang type section is almost as large as the late Eocene impact Ir anomaly. However, the authors have observed that the Ir abundances in the Chinese sections are closely correlated with the sedimentation rates, and therefore have concluded that Ir maxima do not indicate a cataclysmic extraterrestrial impact at this extinction level.

  3. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    SciTech Connect

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; Neyerlin, K. C.; Kocha, Shyam S.; Pylypenko, Svitlana; Xu, Hui; Pivovar, Bryan S.

    2016-07-15

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained for performance and durability in electrolysis cells.

  4. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary.

    PubMed

    Olsen, P E; Kent, D V; Sues, H-D; Koeberl, C; Huber, H; Montanari, A; Rainforth, E C; Fowell, S J; Szajna, M J; Hartline, B W

    2002-05-17

    Analysis of tetrapod footprints and skeletal material from more than 70 localities in eastern North America shows that large theropod dinosaurs appeared less than 10,000 years after the Triassic-Jurassic boundary and less than 30,000 years after the last Triassic taxa, synchronous with a terrestrial mass extinction. This extraordinary turnover is associated with an iridium anomaly (up to 285 parts per trillion, with an average maximum of 141 parts per trillion) and a fern spore spike, suggesting that a bolide impact was the cause. Eastern North American dinosaurian diversity reached a stable maximum less than 100,000 years after the boundary, marking the establishment of dinosaur-dominated communities that prevailed for the next 135 million years.

  5. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    PubMed Central

    Bower, John F.; Krische, Michael J.

    2011-01-01

    The formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C–C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile–nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C–H bonds. PMID:21822399

  6. Epitaxially stabilized iridium spinel oxide without cations in the tetrahedral site

    NASA Astrophysics Data System (ADS)

    Kuriyama, Hiromichi; Matsuno, Jobu; Niitaka, Seiji; Uchida, Masaya; Hashizume, Daisuke; Nakao, Aiko; Sugimoto, Kunihisa; Ohsumi, Hiroyuki; Takata, Masaki; Takagi, Hidenori

    2010-05-01

    Single-crystalline thin film of an iridium dioxide polymorph Ir2O4 has been fabricated by the pulsed laser deposition of LixIr2O4 precursor and the subsequent Li-deintercalation using soft chemistry. Ir2O4 crystallizes in a spinel (AB2O4) without A cations in the tetrahedral site, which is isostructural to λ-MnO2. Ir ions form a pyrochlore sublattice, which is known to give rise to a strong geometrical frustration. This Ir spinel was found to be a narrow gap insulator, in remarkable contrast to the metallic ground state of rutile-type IrO2. We argue that an interplay of a strong spin-orbit coupling and a Coulomb repulsion gives rise to an insulating ground state as in a layered perovskite Sr2IrO4.

  7. Iridium-Catalyzed, Hydrosilyl-Directed Borylation of Unactivated Alkyl C-H Bonds.

    PubMed

    Larsen, Matthew A; Cho, Seung Hwan; Hartwig, John

    2016-01-27

    We report the iridium-catalyzed borylation of primary and secondary alkyl C-H bonds directed by a Si-H group to form alkylboronate esters site selectively. The reactions occur with high selectivity at primary C-H bonds γ to the hydrosilyl group to form primary alkyl bisboronate esters. In the absence of such primary C-H bonds, the borylation occurs selectively at a secondary C-H bond γ to the hydrosilyl group, and these reactions of secondary C-H bonds occur with high diastereoselectivity. The hydrosilyl-containing alkyl boronate esters formed by this method undergo transformations selectively at the carbon-boron or carbon-silicon bonds of these products under distinct conditions to give the products of amination, oxidation, and arylation.

  8. Conodont survival and low iridium abundances across the Permian-Triassic boundary in South China

    SciTech Connect

    Clark, D.L.; Wang, C.Y.; Orth, C.J.; Gilmore, J.S.

    1986-08-29

    The Permian-Triassic sedimentary sequence of China includes one of the most complete and fossiliferous Paleozoic-Mesozoic boundaries known. Closely spaced sampling across the boundary, which is an important extinction event for most organisms, has produced good conodont faunas that show little diversity change. A drop in conodont abundance is the only apparent response to the extinction event. A low concentration of iridium in the boundary clay (0.002 part per billion +/- 20 percent), as well as in samples immediately below and above, that range form 0.004 to 0.034 part per billion do not support the proposal of an extraterrestrial impact event at this boundary in China. 21 references, 2 tables.

  9. Determination of plutonium in environmental samples by AMS and alpha spectrometry.

    PubMed

    Hrnecek, E; Steier, P; Wallner, A

    2005-01-01

    Environmental samples from nuclear weapons test sites at the atolls of Mururoa and Fangataufa (French Polynesia, south Pacific) have been analyzed for their content of plutonium isotopes by applying the independent techniques of decay counting (Alpha Spectrometry) and accelerator mass spectrometry (AMS). Here, we propose the combination of both techniques which results in a maximum of information on the isotopic signature of Pu in environmental samples. Plutonium was chemically separated from the bulk material by anion exchange. (242)Pu was used as an internal standard for both AMS and alpha spectrometry. The samples for alpha spectrometry were prepared by micro-precipitation with NdF(3). After alpha spectrometry, the samples were reprocessed for AMS. Pu was co-precipitated with Fe(OH)(3) and finally, solid samples were prepared. At the VERA (Vienna Environmental Research Accelerator) facility, the various Pu isotopes were separated by their isotopic masses and quantified by the AMS technique. A good agreement of the results obtained from the AMS measurements was found with those obtained from Alpha Spectrometry. Overall, the data agree on average within 10% of each other. Isotope ratios for (238)Pu, (239)Pu and (240)Pu can be extracted from our investigations. Alpha spectrometry delivers data for the (238)Pu and the combination of ((239+240))Pu concentrations in those samples. In addition, the AMS technique provides information on the individual concentrations of (240)Pu and (239)Pu.

  10. Sol-Gel Deposition of Iridium Oxide for Biomedical Micro-Devices

    PubMed Central

    Nguyen, Cuong M.; Rao, Smitha; Yang, Xuesong; Dubey, Souvik; Mays, Jeffrey; Cao, Hung; Chiao, Jung-Chih

    2015-01-01

    Flexible iridium oxide (IrOx)-based micro-electrodes were fabricated on flexible polyimide substrates using a sol-gel deposition process for utilization as integrated pseudo-reference electrodes for bio-electrochemical sensing applications. The fabrication method yields reliable miniature on-probe IrOx electrodes with long lifetime, high stability and repeatability. Such sensors can be used for long-term measurements. Various dimensions of sol-gel iridium oxide electrodes including 1 mm × 1 mm, 500 μm × 500 μm, and 100 μm × 100 μm were fabricated. Sensor longevity and pH dependence were investigated by immersing the electrodes in hydrochloric acid, fetal bovine serum (FBS), and sodium hydroxide solutions for 30 days. Less pH dependent responses, compared to IrOx electrodes fabricated by electrochemical deposition processes, were measured at 58.8 ± 0.4 mV/pH, 53.8 ± 1.3 mV/pH and 48 ± 0.6 mV/pH, respectively. The on-probe IrOx pseudo-reference electrodes were utilized for dopamine sensing. The baseline responses of the sensors were higher than the one using an external Ag/AgCl reference electrode. Using IrOx reference electrodes integrated on the same probe with working electrodes eliminated the use of cytotoxic Ag/AgCl reference electrode without loss in sensitivity. This enables employing such sensors in long-term recording of concentrations of neurotransmitters in central nervous systems of animals and humans. PMID:25686309

  11. Sol-gel deposition of iridium oxide for biomedical micro-devices.

    PubMed

    Nguyen, Cuong M; Rao, Smitha; Yang, Xuesong; Dubey, Souvik; Mays, Jeffrey; Cao, Hung; Chiao, Jung-Chih

    2015-02-12

    Flexible iridium oxide (IrOx)-based micro-electrodes were fabricated on flexible polyimide substrates using a sol-gel deposition process for utilization as integrated pseudo-reference electrodes for bio-electrochemical sensing applications. The fabrication method yields reliable miniature on-probe IrOx electrodes with long lifetime, high stability and repeatability. Such sensors can be used for long-term measurements. Various dimensions of sol-gel iridium oxide electrodes including 1 mm × 1 mm, 500 µm × 500 µm, and 100 µm × 100 µm were fabricated. Sensor longevity and pH dependence were investigated by immersing the electrodes in hydrochloric acid, fetal bovine serum (FBS), and sodium hydroxide solutions for 30 days. Less pH dependent responses, compared to IrOx electrodes fabricated by electrochemical deposition processes, were measured at 58.8 ± 0.4 mV/pH, 53.8 ± 1.3 mV/pH and 48 ± 0.6 mV/pH, respectively. The on-probe IrOx pseudo-reference electrodes were utilized for dopamine sensing. The baseline responses of the sensors were higher than the one using an external Ag/AgCl reference electrode. Using IrOx reference electrodes integrated on the same probe with working electrodes eliminated the use of cytotoxic Ag/AgCl reference electrode without loss in sensitivity. This enables employing such sensors in long-term recording of concentrations of neurotransmitters in central nervous systems of animals and humans.

  12. Osmium, ruthenium, iridium and uranium in silicates and chromite from the eastern Bushveld Complex, South Africa

    USGS Publications Warehouse

    Gijbels, R.h.; Millard, H.T.; Desborough, G.A.; Bartel, A.J.

    1974-01-01

    Osmium, ruthenium, iridium and uranium contents were determined in eight ortho pyroxene, seven plagioclase, and three chromite mineral separates from the eastern Bushveld Complex. Neutron activation analysis was used to measure the platinum metals, and uranium was determined by a fission track technique. The platinum metals were found to be present within each mine??ral in the proportions Os:Ru:Ir = 1:7:1, while the concentrations of these metals in the minerals are in the ratios orthopyroxene:plagioclase:chromite = 1:16:700. The concentration of uranium was found to range from 11 to 66 ppb (parts per billion) and not to vary significantly from mineral to mineral. The data for the platinum metals are consistent with a model in which the eastern Bushveld Complex was formed by the fractional crystallization of two separately injected magmas. A computer fit of this model to these data indicates that the initial concentrations of Os, Ru and Ir in the first magma were 0.24, 2.0 and 0.21 ppb and in the second magma were 0.16, 1.1 and 0.18 ppb, respectively. The fit also yields the distribution coefficients for the partitioning between the liquid and cumulus orthopyroxene, cumulus plagioclase and cumulus chromite. These coefficients (mineral/liquid) for osmium are 4.5, 66 and 2700; for ruthenium, they are 5, 65 and 2700; and for iridium, they are 4, 60 and 1600. To make this fit, it was necessary to hypothesize the existence of two types of chromite: one type with a large distribution coefficient, presumably formed as a cumulus phase at high temperature, and another, more prevalent type with a smaller distribution coefficient, which may have been formed by postcumulus growth at a lower temperature. This hypothesis is supported by data for coexisting chromite-silicate pairs, which indicate that the chromite grains expelled these platinum metals as they cooled. ?? 1974.

  13. Iridium-catalyzed enantioselective hydrogenation of imines in supercritical carbon dioxide

    SciTech Connect

    Kainz, S.; Brinkmann, A.; Leitner, W.; Pfaltz, A.

    1999-07-14

    Supercritical carbon dioxide (scCO{sub 2}) was shown to be a reaction medium with unique properties for highly efficient iridium-catalyzed enantioselective hydrogenation of prochiral imines. Cationic iridium(I) complexes with chiral phosphinodihydrooxazoles, modified with perfluoroalkyl groups in the ligand or in the anion, were synthesized and tested in the hydrogenation of N-(1-phenylethylidene)aniline. Both the side chains and the lipophilic anions increased the solubility, but the choice of the anion also had a dramatic effect on the enantioselectivity with tetrakis-3,5-bis(trifluoromethyl)phenylborate (BARF) leading to the highest asymmetric induction. (R)-N-phenyl-1-phenylethylamine was formed quantitatively within 1 h in scCO{sub 2}[d(CO{sub 2}) = 0.75 g mL{sup {minus}1}] at 40 C and a H{sub 2} pressure of 30 bar with enantiomeric excesses of up to 81% using 0.078 mol % catalyst. The use of scCO{sub 2} instead of conventional solvents such as CH{sub 2}Cl{sub 2} allowed the catalyst loading to be lowered significantly owing to a change in the rate profile of the reaction. the homogeneous nature of the catalytically active species under the reaction conditions was demonstrated and was found to depend strongly on the composition of the reaction mixture and especially on the presence of the substrate. Utilizing the selective extractive properties of scCO{sub 2}, the product could be readily separated from the catalyst, which could be recycled several times without significant loss of activity and enantioselectivity. High-pressure FT-IR and NMR investigations revealed that the reactivity of the products to form the corresponding carbamic acids plays an important role for the application of this new methodology.

  14. Mobility of iridium in terrestrial environments: Implications for the interpretation of impact-related mass-extinctions

    NASA Astrophysics Data System (ADS)

    Martín-Peinado, F. J.; Rodríguez-Tovar, F. J.

    2010-08-01

    Traditionally, iridium has been considered an element of low mobility, but its behavior is still debated. Ir concentration in a soil affected by a catastrophic mining spill in 1998 that covered the soil with a layer of tailings offers the opportunity to analyse an exceptional Ir-bearing horizon 10 years after deposition. This has enabled comparisons with the values of past Ir-bearing horizons associated to impact-related mass-extinction events. Iridium concentration in the tailings (0.349 ppm) was 5-fold higher than the anomaly in the K-Pg at The Moody Creek Mine section (the highest values obtained from terrestrial sections). The oxidative weathering of the tailings caused the release of Ir and infiltration into the soil. Iridium distribution in depth indicates redistribution throughout the profile in relation to the change in the physico-chemical properties of the soil. With regard to the background concentration in the soil (0.056 ppm), anomalous values of Ir (0.129 ppm) can be detected to 11 cm below the layer of tailings. The correlation analysis between the Ir concentration and the main properties and constituents of the soils indicated a significant correlation with sulfur, iron, clay content, and pH. Selective extractions were made to study the forms in which Ir can be mobilized in the soil. The residual/insoluble fraction was >90% of the total Ir concentration in soil. Soluble-in-water concentration of Ir (1.5% of total) was detected in the uppermost 2-3 cm of the soil, which were directly affected by the leaching of acidic waters coming from the oxidation of the pyrite tailings. Iridium retention in the affected part of the soil reached 9% of the total Ir concentration; this retention could be related to the amorphous iron forms dissolved by the oxalic-oxalate extraction. However, according to our research, original Ir abundance could be secondarily modified, and then a direct analysis of the iridium values recorded in sediments could induce

  15. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  16. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  17. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  18. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  19. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  20. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  1. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  2. Isotope reference materials

    USGS Publications Warehouse

    Coplen, Tyler B.

    2010-01-01

    Measurement of the same isotopically homogeneous sample by any laboratory worldwide should yield the same isotopic composition within analytical uncertainty. International distribution of light element isotopic reference materials by the International Atomic Energy Agency and the U.S. National Institute of Standards and Technology enable laboratories to achieve this goal.

  3. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  4. Synthesis and crystal structure of the iridium(I) carbene complex with a pair of hydrogen wing tips

    NASA Astrophysics Data System (ADS)

    Huang, H.-Y.; Chen, Z.-M.; Wang, Y.; Wu, E.-M.; Wang, G.; Jiang, M.-J.

    2016-12-01

    The iridium(I) cyclooctadiene complex with two (3- tert-butylimidazol-2-ylidene) ligands [(H-I m t Bu)2Ir(COD)]+PF 6 - (C22H32PF6IrN4) has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal atom, which is coordinated by two H-I m t Bu ligands and one cyclooctadiene group. The new iridium carbene complex has a pair of hydrogen wing tips. The Ir-Ccarbene bond lengths are 2.066(5) and 2.052(5) Å, and the bond angle C-Ir-C between these bonds is 95.54(19)°. The dihedral angle between two imidazol-2-ylidene rings is 86.42°.

  5. Dicarba-closo-dodecarborane-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium: biological relevance and synthetic strategies.

    PubMed

    Barry, Nicolas P E; Sadler, Peter J

    2012-04-21

    This review describes how the incorporation of dicarba-closo-dodecarboranes into half-sandwich complexes of ruthenium, osmium, rhodium and iridium might lead to the development of a new class of compounds with applications in medicine. Such a combination not only has unexplored potential in traditional areas such as Boron Neutron Capture Therapy agents, but also as pharmacophores for the targeting of biologically important proteins and the development of targeted drugs. The synthetic pathways used for the syntheses of dicarba-closo-dodecarboranes-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium are also reviewed. Complexes with a wide variety of geometries and characteristics can be prepared. Examples of addition reactions on the metal centre, B-H activation, transmetalation reactions and/or direct formation of metal-metal bonds are discussed (103 references).

  6. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R2 = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis.

  7. Supramolecular sky-blue phosphorescent polymer iridium complexes for single-emissive-layer organic light-emitting diodes.

    PubMed

    Liang, Ai-Hui; Dong, Sheng; Zhang, Kai; Xiao, Xiao; Huang, Fei; Zhu, Xu-Hui; Cao, Yong

    2013-08-01

    Novel supramolecular phosphorescent polymers (SPPs) are synthesized as a new class of solution-processable electroluminescent emitters. The formation of these SPPs takes advantage of the efficient non-bonding assembly between bis(dibenzo-24-crown-8)-functionalized iridium complex monomer and bis(dibenzylammonium)-tethered co-monomer, which is monitored by (1) H NMR spectroscopy and viscosity measurements. These SPPs show good film morphology and an intrinsic glass transition with a Tg of 94-116 °C. Noticeably, they are highly photoluminescent in solid state with quantum efficiency up to ca. 78%. The photophysical and electroluminescent properties are strongly dependent on the molecular structures of the iridium complex monomers.

  8. Luminescence switch-on assay of interferon-gamma using a G-quadruplex-selective iridium(III) complex.

    PubMed

    Lin, Sheng; He, Bingyong; Yang, Chao; Leung, Chung-Hang; Mergny, Jean-Louis; Ma, Dik-Lung

    2015-11-18

    In this study, we synthesized a series of 9 luminescent iridium(III) complexes and studied their ability to function as luminescent probes for G-quadruplex DNA. The iridium(III) complex 8 [Ir(pbtz)2(dtbpy)]PF6 (where pbtz = 2-phenylbenzo[d]thiazole; dtbpy = 4,4'-di-tert-butyl-2,2'-bipyridine) showed high selectivity for G-quadruplex DNA over single-stranded and double-stranded DNA, and was subsequently utilized for the development of a label-free oligonucleotide-based assay for interferon-gamma (IFN-γ), an important biomarker for a range of immune and infectious diseases, in aqueous solution. We further demonstrated that this assay could monitor IFN-γ levels even in the presence of cellular debris. This assay represents the first G-quadruplex-based assay for IFN-γ detection described in the literature.

  9. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine.

    PubMed

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-18

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R(2) = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis.

  10. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Grimaud, Alexis; Demortiere, Arnaud; Saubanere, Matthieu; Dachraoui, Walid; Duchamp, Martial; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-01-01

    The oxygen evolution reaction (OER) is of prime importance in multiple energy storage devices; however, deeper mechanistic understanding is required to design enhanced electrocatalysts for the reaction. Current understanding of the OER mechanism based on oxygen adsorption on a metallic surface site fails to fully explain the activity of iridium and ruthenium oxide surfaces, and the drastic surface reconstruction observed for the most active OER catalysts. Here we demonstrate, using La2LiIrO6 as a model catalyst, that the exceptionally high activity found for Ir-based catalysts arises from the formation of active surface oxygen atoms that act as electrophilic centres for water to react. Moreover, with the help of transmission electron microscopy, we observe drastic surface reconstruction and iridium migration from the bulk to the surface. Therefore, we establish a correlation between surface activity and surface stability for OER catalysts that is rooted in the formation of surface reactive oxygen.

  11. Solution-processable deep red-emitting supramolecular phosphorescent polymer with novel iridium complex for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liang, Aihui; Huang, Gui; Wang, Zhiping; Wu, Wenjin; Zhong, Yu; Zhao, Shan

    2016-09-01

    A novel bis(dibenzo-24-crown-8)-functionalized iridium complex with an emission peak at 665 nm was synthesized. Several deep red-emitting supramolecualr phosphorescent polymers (SPPs) as a class of solutionprocessable electroluminescent (EL) emitters were formed by utilizing the efficient non-bonding self-assembly between the resulting iridium complex and bis(dibenzylammonium)-tethered monomers. These SPPs show an intrinsic glass transition with a T g of ca. 90 °C. The photophysical and electroluminescent properties are strongly dependent on the hosts' structures of the supramolecular phosphorescent polymers. The polymer light-emitting diode based on SPP3 displayed a maximal external quantum efficiency (EQE) of 2.14% ph·el-1 and the Commission Internationale de L'Eclairage (CIE) coordinates of (0.70, 0.29).

  12. Phosphorescent iridium(III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents.

    PubMed

    Li, Yi; Tan, Cai-Ping; Zhang, Wei; He, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2015-01-01

    Mitochondria-targeted compounds represent a promising approach to target tumors selectively and overcome resistance to current anticancer therapies. In this work, three cyclometalated iridium(III) complexes (1-3) containing bis-N-heterocyclic carbene (NHC) ligands have been explored as theranostic and photodynamic agents targeting mitochondria. These complexes display rich photophysical properties, which greatly facilitates the study of their intracellular fate. All three complexes are more cytotoxic than cisplatin against the cancer cells screened. 1-3 can penetrate into human cervical carcinoma (HeLa) cells quickly and efficiently, and they can carry out theranostic functions by simultaneously inducing and monitoring the morphological changes in mitochondria. Mechanism studies show that these complexes exert their anticancer efficacy by initiating a cascade of events related to mitochondrial dysfunction. Additionally, they display up to 3 orders of magnitude higher cytotoxicity upon irradiation at 365 nm, which is so far the highest photocytotoxic responses reported for iridium complexes.

  13. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R2 = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis. PMID:26778273

  14. Interpreting EEG alpha activity.

    PubMed

    Bazanova, O M; Vernon, D

    2014-07-01

    Exploring EEG alpha oscillations has generated considerable interest, in particular with regards to the role they play in cognitive, psychomotor, psycho-emotional and physiological aspects of human life. However, there is no clearly agreed upon definition of what constitutes 'alpha activity' or which of the many indices should be used to characterize it. To address these issues this review attempts to delineate EEG alpha-activity, its physical, molecular and morphological nature, and examine the following indices: (1) the individual alpha peak frequency; (2) activation magnitude, as measured by alpha amplitude suppression across the individual alpha bandwidth in response to eyes opening, and (3) alpha "auto-rhythmicity" indices: which include intra-spindle amplitude variability, spindle length and steepness. Throughout, the article offers a number of suggestions regarding the mechanism(s) of alpha activity related to inter and intra-individual variability. In addition, it provides some insights into the various psychophysiological indices of alpha activity and highlights their role in optimal functioning and behavior.

  15. Targeted alpha therapy for cancer

    NASA Astrophysics Data System (ADS)

    Allen, Barry J.; Raja, Chand; Rizvi, Syed; Li, Yong; Tsui, Wendy; Zhang, David; Song, Emma; Qu, Chang Fa; Kearsley, John; Graham, Peter; Thompson, John

    2004-08-01

    Targeted alpha therapy (TAT) offers the potential to inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The practicality and efficacy of TAT is tested by in vitro and in vivo studies in melanoma, leukaemia, colorectal, breast and prostate cancers, and by a phase 1 trial of intralesional TAT for melanoma. The alpha-emitting radioisotope used is Bi-213, which is eluted from the Ac-225 generator and chelated to a cancer specific monoclonal antibody (mab) or protein (e.g. plasminogen activator inhibitor-2 PAI2) to form the alpha-conjugate (AC). Stable alpha-ACs have been produced which have been tested for specificity and cytotoxicity in vitro against melanoma (9.2.27 mab), leukaemia (WM60), colorectal (C30.6), breast (PAI2, herceptin), ovarian (PAI2, herceptin, C595), prostate (PAI2, J591) and pancreatic (PAI2, C595) cancers. Subcutaneous inoculation of 1-1.5 million human cancer cells into the flanks of nude mice causes tumours to grow in all mice. Tumour growth is compared for untreated controls, nonspecific AC and specific AC, for local (subcutaneous) and systemic (tail vein or intraperitoneal) injection models. The 213Bi-9.2.27 AC is injected into secondary skin melanomas in stage 4 patients in a dose escalation study to determine the effective tolerance dose, and to measure kinematics to obtain the equivalent dose to organs. In vitro studies show that TAT is one to two orders of magnitude more cytotoxic to targeted cells than non-specific ACs, specific beta emitting conjugates or free isotopes. In vivo local TAT at 2 days post-inoculation completely prevents tumour formation for all cancers tested so far. Intra-lesional TAT can completely regress advanced sc melanoma but is less successful for breast and prostate cancers. Systemic TAT inhibits the growth of sc melanoma xenografts and gives almost complete control of breast and prostate cancer tumour growth. Intralesional doses up to 450 µCi in human

  16. Secondary interactions or ligand scrambling? Subtle steric effects govern the iridium(I) coordination chemistry of phosphoramidite ligands.

    PubMed

    Osswald, Tina; Rüegger, Heinz; Mezzetti, Antonio

    2010-01-25

    The like and unlike isomers of phosphoramidite (P*) ligands are found to react differently with iridium(I), which is a key to explaining the apparently inconsistent results obtained by us and other research groups in a variety of catalytic reactions. Thus, the unlike diastereoisomer (aR,S,S)-[IrCl(cod)(1 a)] (2 a; cod=1,5-cyclooctadiene, 1 a=(aR,S,S)-(1,1'-binaphthalene)-2,2'-diyl bis(1-phenylethyl)phosphoramidite) forms, upon chloride abstraction, the monosubstituted complex (aR,S,S)-[Ir(cod)(1,2-eta-1 a,kappaP)](+) (3 a), which contains a chelating P* ligand that features an eta(2) interaction between a dangling phenyl group and iridium. Under analogous conditions, the like analogue (aR,R,R)-1 a' gives the disubstituted species (aR,R,R)-[Ir(cod)(1 a',kappaP)(2)](+) (4 a') with monodentate P* ligands. The structure of 3 a was assessed by a combination of X-ray and NMR spectroscopic studies, which indicate that it is the configuration of the binaphthol moiety (and not that of the dangling benzyl N groups) that determines the configuration of the complex. The effect of the relative configuration of the P* ligand on its iridium(I) coordination chemistry is discussed in the context of our preliminary catalytic results and of apparently random results obtained by other groups in the iridium(I)-catalyzed asymmetric allylic alkylation of allylic acetates and in rhodium(I)-catalyzed asymmetric cycloaddition reactions. Further studies with the unlike ligand (aS,R,R)-(1,1'-binaphthalene)-2,2'-diyl bis{[1-(1-naphthalene-1-yl)ethyl]phosphoramidite} (1 b) showed a yet different coordination mode, that is, the eta(4)-arene-metal interaction in (aS,R,R)-[Ir(cod)(1,2,3,4-eta-1 b,kappaP)](+) (3 b).

  17. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    PubMed

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  18. Highly regio- and enantioselective synthesis of N-substituted 2-pyridones: iridium-catalyzed intermolecular asymmetric allylic amination.

    PubMed

    Zhang, Xiao; Yang, Ze-Peng; Huang, Lin; You, Shu-Li

    2015-02-02

    The first iridium-catalyzed intermolecular asymmetric allylic amination reaction with 2-hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N-substituted 2-pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2-hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98% yield and 99% ee.

  19. The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes.

    PubMed

    Li, Chunyan; Liu, Yi; Wu, Yongquan; Sun, Yun; Li, Fuyou

    2013-01-01

    Improvement of cellular uptake and subcellular resolution remains a major obstacle in the successful and broad application of cellular optical probes. In this context, we design and synthesize seven non-emissive cyclometalated iridium(III) solvent complexes [Ir(CˆN)(2)(solv)(2)](+)L(-) (LIr2-LIr8, in which CˆN = 2-phenylpyridine (ppy) or its derivative; solv = DMSO, H(2)O or CH(3)CN; L(-) = PF(6)(-) or OTf(-)) applicable in live cell imaging to facilitate selective visualization of cellular structures. Based on the above variations (including different counter ions, solvent ligands, and CˆN ligands), structure-activity relationship analyses reveal a number of clear correlations: (1) variations in counter anions and solvent ligands of iridium(III) complexes do not affect cellular imaging behavior, and (2) length of the side carbon chain in CˆN ligands has significant effects on cellular uptake and localization/accumulation of iridium complexes in living cells. Moreover, investigation of the uptake mechanism via low-temperature and metabolism inhibitor assays reveal that [Ir(4-Meppy)(2)(CH(3)CN)(2)](+)OTf(-) (LIr5) with 2-phenylpyridine derivative with side-chain of methyl group at the 4-position as CˆN ligand permeates the outer and nuclear membranes of living cells through an energy-dependent, non-endocytic entry pathway, and translocation of the complex from the cell periphery towards the perinuclear region possibly occurs through a microtubule-dependent transport pathway. Nuclear pore complexes (NPCs) appear to selectively control the transport of iridium(III) complexes between the cytoplasm and nucleus. A generalization of trends in behavior and structure-activity relationships is presented, which should provide further insights into the design and optimization of future probes.

  20. Carboxylate-Assisted Iridium-Catalyzed C-H Amination of Arenes with Biologically Relevant Alkyl Azides.

    PubMed

    Zhang, Tao; Hu, Xuejiao; Wang, Zhen; Yang, Tiantian; Sun, Hao; Li, Guigen; Lu, Hongjian

    2016-02-24

    An iridium-catalyzed C-H amination of arenes with a wide substrate scope is reported. Benzamides with electron-donating and -withdrawing groups and linear, branched, and cyclic alkyl azides are all applicable. Cesium carboxylate is crucial for both reactivity and regioselectivity of the reactions. Many biologically relevant molecules, such as amino acid, peptide, steroid, sugar, and thymidine derivatives can be introduced to arenes with high yields and 100 % chiral retention.

  1. Red-emitting dendritic iridium(III) complexes for solution processable phosphorescent organic light-emitting diodes.

    PubMed

    Qin, Tianshi; Ding, Junqiao; Baumgarten, Martin; Wang, Lixiang; Müllen, Klaus

    2012-06-27

    Functionalization of a red phosphorescent iridium(III) complex core surrounded by rigid polyphenylene dendrons with a hole-transporting triphenylamine surface allows to prevent the intermolecular aggregation-induced emission quenching, improves charge recombination, and therefore enhances photo- and electroluminescence efficiencies of dendrimer in solid state. These multifunctional shape-persistent dendrimers provide a new pathway to design highly efficient solution processable materials for phosphorescent organic light-emitting diodes (PhOLEDs).

  2. Treatment of periocular and non-ocular sarcoids in 18 horses by interstitial brachytherapy with iridium-192.

    PubMed

    Byam-Cook, K L; Henson, F M D; Slater, J D

    2006-09-09

    Treatment of the equine sarcoid has posed a significant challenge to clinicians for years and many different methods have been tried with varying success, including ionising radiation. The aim of this study was to review the efficacy of iridium-192 interstitial brachytherapy for the treatment of eight periocular sarcoids and 15 non-ocular sarcoids on 18 horses. All the periocular sarcoids and 13 of the 15 non-ocular sarcoids were treated successfully.

  3. Generation of Radixenon Isotopes

    SciTech Connect

    McIntyre, Justin I.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Panisko, Mark E.; Pitts, W. K.; Pratt, Sharon L.; Reeder, Paul L.; Thomas, Charles W.

    2003-06-30

    Pacific Northwest National Laboratory has developed an automated system for separating Xe from air and can detect the following radioxenon isotopes, 131mXe, 133mXe, 133Xe, and 135Xe. This report details the techniques used to generate the various radioxenon isotopes that are used for the calibration of the detector as well as other isotopes that have the potential to interfere with the fission produced radioxenon isotopes. Fission production is covered first using highly enriched uranium followed by a description and results from an experiment to produce radioxenon isotopes from neutron activation of ambient xenon.

  4. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  5. [Side effects of postoperative irradiation of uterine cancer with high dose rate iridium and low dose rate radium].

    PubMed

    Kucera, H; Unel, N; Weghaupt, K

    1986-02-01

    A report is given about reversible and irreversible complications following postoperative irradiation in cases of endometrial carcinoma. Intravaginal brachytherapy was performed. In advanced cases or in cases with poor prognosis (tumor grading) percutaneous irradiation was added (Co60). In 156 cases low-dose-rate irradiation (Ra226) and in 143 cases high-dose-rate irradiation (Ir192) was applied intravaginally. Reversible complications (cystitis, proctitis) could be observed following Radium in 7%, following Iridium in 14%. Irreversible complications (fistulas, stenoses): 1.9% following Radium and 3.5% following Iridium. When high-dose-rate irradiation was combined with percutaneous Co60 therapy, reversible complications occurred in 22.8%. After changing the Iridium-therapy scheme (reduction of dose from 10 to 7 Gy and irradiation only of the upper two thirds of the vagina) complications only could be observed in the same level as in Radium-therapy. High-dose-rate irradiation does not need hospitalization of the patients.

  6. Using iridium films to compensate for piezo-electric materials processing stresses in adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Ames, A.; Bruni, R.; Cotroneo, V.; Johnson-Wilke, R.; Kester, T.; Reid, P.; Romaine, S.; Tolier-McKinstry, S.; Wilke, R. H. T.

    2015-09-01

    Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 μm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating.

  7. Intramolecular C-H oxidative addition to iridium(I) triggered by trimethyl phosphite in N,N'-diphosphanesilanediamine complexes.

    PubMed

    Passarelli, Vincenzo; Pérez-Torrente, Jesús J; Oro, Luis A

    2015-11-14

    The reaction of [Ir(SiNP)(cod)][PF6] ([1][PF6]) and of IrCl(SiNP)(cod) (5) (SiNP = SiMe2{N(4-C6H4CH3)PPh2}2) with trimethyl phosphite affords the iridium(iii) derivatives of the formula [IrHClx(SiNP-H){P(OMe)3}2-x]((1-x)+) (x = 0, 3(+); x = 1, 6) containing the κ(3)C,P,P'-coordinated SiNP-H ligand (SiNP-H = Si(CH2)(CH3){N(4-C6H4CH3)PPh2}2). The thermally unstable pentacoordinated cation [Ir(SiNP){P(OMe)3}(cod)](+) (2(+)) has been detected as an intermediate of the reaction and has been fully characterised in solution. Also, the mechanism of the C-H oxidative addition has been elucidated by DFT calculations showing that the square planar iridium(i) complexes of the formula [IrClx(SiNP){P(OMe)3}2-x]((1-x)+) (x = 0, 4(+); x = 1, 7) should be firstly obtained from 2(+) and finally should undergo the C-H oxidative addition to iridium(i) via a concerted intramolecular mechanism. The influence of the counterion of 2(+) on the outcome of the C-H oxidative addition reaction has also been investigated.

  8. Electrochemically reduced graphene and iridium oxide nanoparticles for inhibition-based angiotensin-converting enzyme inhibitor detection.

    PubMed

    Kurbanoglu, Sevinc; Rivas, Lourdes; Ozkan, Sibel A; Merkoçi, Arben

    2017-02-15

    In this work, a novel biosensor based on electrochemically reduced graphene oxide and iridium oxide nanoparticles for the detection of angiotensin-converting enzyme inhibitor drug, captopril, is presented. For the preparation of the biosensor, tyrosinase is immobilized onto screen printed electrode by using 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-Hydroxysuccinimide coupling reagents, in electrochemically reduced graphene oxide and iridium oxide nanoparticles matrix. Biosensor response is characterized towards catechol, in terms of graphene oxide concentration, number of cycles to reduce graphene oxide, volume of iridium oxide nanoparticles and tyrosinase solution. The designed biosensor is used to inhibit tyrosinase activity by Captopril, which is generally used to treat congestive heart failure. It is an angiotensin-converting enzyme inhibitor that operates via chelating copper at the active site of tyrosinase and thioquinone formation. The captopril detections using both inhibition ways are very sensitive with low limits of detection: 0.019µM and 0.008µM for chelating copper at the active site of tyrosinase and thioquinone formation, respectively. The proposed methods have been successfully applied in captopril determination in spiked human serum and pharmaceutical dosage forms with acceptable recovery values.

  9. Analytical and preparative enantioseparation and main chiroptical properties of Iridium(III) bis(4,6-difluorophenylpyridinato)picolinato.

    PubMed

    Citti, Cinzia; Battisti, Umberto M; Ciccarella, Giuseppe; Maiorano, Vincenzo; Gigli, Giuseppe; Abbate, Sergio; Mazzeo, Giuseppe; Castiglioni, Ettore; Longhi, Giovanna; Cannazza, Giuseppe

    2016-10-07

    Almost all Iridium(III) complexes employed both as dopants in PhOLEDs and as pharmaceuticals and fluorescence bioprobes are racemic mixtures. In this study the single enantiomers of the most stable diastereomeric form fac-trans-N-N, bis[2-(4,6-difluorophenyl)pyridinato-C(2),N](picolinato)iridium(III) (FIrpic) were separated and analysed. The data obtained showed that the complex can be separated into stable optically active Λ and Δ isomers employing cellulose based chiral stationary phase both in normal and polar phase mode. Their chirality was confirmed and their absolute configuration assigned employing several methods (DFT and TDDFT calculations, CD and VCD). The CPL spectroscopy of the isolated enantiomers of FIrpic was also recorded due to its possible value in the OLEDs field. The chromatographic method was applied for a semipreparative purpose demonstrating that polar organic solvent chromatography (POSC) could be used to avoid the low-solubility issues associated with these Iridium(III) complexes. Finally, the chemical and stereochemical stability of the single isomers was evaluated under thermal stress by liquid chromatography coupled to high-resolution mass spectrometry (LC-QTOF) on both chiral and achiral columns. No racemization and/or isomerization was observed; however, the dissociation of the ancillary ligand was demonstrated employing LC-QTOF.

  10. Structural characterization and comparison of iridium, platinum and gold/palladium ultra-thin film coatings for STM of biomolecules

    SciTech Connect

    Sebring, R.; Arendt, P.; Imai, B.; Bradbury, E.M.; Gatewood, J.; Panitz, J.; Yau, P.

    1997-10-30

    Scanning tunneling microscopy (STM) is capable of atomic resolution and is ideally suited for imaging surfaces with uniform work function. A biological sample on a conducting substrate in air does not meet this criteria and requires a conductive coating for stable and reproducible STM imaging. In this paper, the authors describe the STM and transmission electron microscopy (TEM) characterization of ultra-thin ion-beam sputtered films of iridium and cathode sputtered gold/palladium and platinum films on highly ordered pyrolytic graphite (HOPG) which were developed for use as biomolecule coatings. The goals were the development of metal coatings sufficiently thin and fine grained that 15--20 {angstrom} features of biological molecules could be resolved using STM, and the development of a substrate/coating system which would allow complementary TEM information to be obtained for films and biological molecules. The authors demonstrate in this paper that ion-beam sputtered iridium on highly ordered pyrolytic graphite (HOPG) has met both these goals. The ion-beam sputtered iridium produced a very fine grained (< 10 {angstrom}) continuous film at 5--6 {angstrom} thickness suitable for stable air STM imaging. In comparison, cathode sputtered platinum produced 16 {angstrom} grains with the thinnest continuous film at 15 {angstrom} thickness, and the sputtered gold/palladium produced 25 {angstrom} grains with the thinnest continuous film at 18 {angstrom} thickness.

  11. Rare Earth Complex as Electron Trapper and Energy Transfer Ladder for Efficient Red Iridium Complex Based Electroluminescent Devices.

    PubMed

    Zhou, Liang; Li, Leijiao; Jiang, Yunlong; Cui, Rongzhen; Li, Yanan; Zhao, Xuesen; Zhang, Hongjie

    2015-07-29

    In this work, we experimentally demonstrated the new functions of trivalent rare earth complex in improving the electroluminescent (EL) performances of iridium complex by codoping trace Eu(TTA)3phen (TTA = thenoyltrifluoroacetone, phen = 1,10-phenanthroline) into a light-emitting layer based on PQ2Ir(dpm) (iridium(III)bis(2-phenylquinoly-N,C(2'))dipivaloylmethane). Compared with a reference device, the codoped devices displayed higher efficiencies, slower efficiency roll-off, higher brightness, and even better color purity. Experimental results demonstrated that Eu(TTA)3phen molecules function as electron trappers due to its low-lying energy levels, which are helpful in balancing holes and electrons and in broadening recombination zone. In addition, the matched triplet energy of Eu(TTA)3phen is instrumental in facilitating energy transfer from host to emitter. Finally, highly efficient red EL devices with the highest current efficiency, power efficiency and brightness up to 58.98 cd A(-1) (external quantum efficiency (EQE) of 21%), 61.73 lm W(-1) and 100870 cd m(-2), respectively, were obtained by appropriately decreasing the doping concentration of iridium complex. At certain brightness of 1000 cd m(-2), EL current efficiency up to 51.94 cd A(-1) (EQE = 18.5%) was retained. Our investigation extends the application of rare earth complexes in EL devices and provides a chance to improve the device performances.

  12. Electronic Structures and Spectroscopic Properties of a Novel Iridium (III) Complex with an Ancillary Ligand 2-(4-Trifluoromethyl -2-Hydroxylphenyl) Benzothiazole

    NASA Astrophysics Data System (ADS)

    Lei, Li-Ping; Hao, Yu-Ying; Fan, Wen-Hao; Xu, Bing-She

    2011-06-01

    Iridium (III) complexes with 2-phenylpyridine (ppy) have been demonstrated as a type of promising phosphorescence dopant in emitting layers of organic light emitting diodes (OLEDs). In most iridium (III) complexes, there exist the strong spin-orbit coupling between π-orbitals of cyclometalated ligands and 5d orbitals of the centric iridium. We study a novel iridium (III) complex (ppy)2Ir(4-TfmBTZ) with ppy as cyclometalated ligands and 2-(4-trifluoromethyl-2-hydroxylphenyl)benzothiazole (4-TfmBTZ) as an ancillary ligand using the Gaussian 03 program. The geometries, electronic structures and spectroscopic properties of this iridium (III) complex are investigated by density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The results show that the spin-orbit coupling occurs not only between ppy and iridium atom but also between 4-TfmBTZ and iridium atom in this complex. The highest occupied molecular orbital is dominantly localized on the Ir atom and 4-TfmBTZ ligand, while the lowest unoccupied molecular orbital on 4-TfmBTZ ligand. The triplet lowest-lying transition is attributed to the Ir-to-4-TfmBTZ charge-transfer (3MLCT) transition while the sub-low-lying transitions are assigned to the 3MLCT transitions of Ir(ppy)2. The nature of the lowest unoccupied orbital changes from ppy-localized to 4-TfmBTZ-localized and reveals that phosphorescent color of Ir(III) complex can be controlled by the ancillary ligand and substituent.

  13. A Site-isolated Mononuclear Iridium Complex Catalyst Supported on MgO: Characterization by Spectroscopy and Aberration-corrected Scanning Transmission Electron Microscopy

    SciTech Connect

    Uzun, A.; Ortalan, V; Browning, N; Gates , B

    2010-01-01

    Supported mononuclear iridium complexes with ethene ligands were prepared by the reaction of Ir(C{sub 2}H{sub 4}){sub 2}(acac) (acac is CH{sub 3}COCHCOCH{sub 3}) with highly dehydroxylated MgO. Characterization of the supported species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies showed that the resultant supported organometallic species were Ir(C{sub 2}H{sub 4}){sub 2}, formed by the dissociation of the acac ligand from Ir(C{sub 2}H{sub 4}){sub 2}(acac) and bonding of the Ir(C{sub 2}H{sub 4}){sub 2} species to the MgO surface. Direct evidence of the site-isolation of these mononuclear complexes was obtained by aberration-corrected scanning transmission electron microscopy (STEM); the images demonstrate the presence of the iridium complexes in the absence of any clusters. When the iridium complexes were probed with CO, the resulting IR spectra demonstrated the formation of Ir(CO){sub 2} complexes on the MgO surface. The breadth of the {nu}{sub CO} bands demonstrates a substantial variation in the metal-support bonding, consistent with the heterogeneity of the MgO surface; the STEM images are not sufficient to characterize this heterogeneity. The supported iridium complexes catalyzed ethene hydrogenation at room temperature and atmospheric pressure in a flow reactor, and EXAFS spectra indicated that the mononuclear iridium species remained intact. STEM images of the used catalyst confirmed that almost all of the iridium complexes remained intact, but this method was sensitive enough to detect a small degree of aggregation of the iridium on the support.

  14. ALPHA CONTAMINATION MONITORING

    DTIC Science & Technology

    This project was conducted to determine the alpha hazard existing in the vicinity of the missile launch pad following the destruction of a missile ...were used for plutonium particle collection. Because all warhead-carrying missiles were properly launched after Project 2.3 was approved, no alpha contamination data was obtained.

  15. Stable carbon isotope fractionation by sulfate-reducing bacteria

    NASA Technical Reports Server (NTRS)

    Londry, Kathleen L.; Des Marais, David J.

    2003-01-01

    Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.

  16. Actinium-225 in targeted alpha-particle therapeutic applications.

    PubMed

    Scheinberg, David A; McDevitt, Michael R

    2011-10-01

    Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium- 225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day halflife; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer.

  17. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  18. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  19. Event counting alpha detector

    DOEpatents

    Bolton, Richard D.; MacArthur, Duncan W.

    1996-01-01

    An electrostatic detector for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure.

  20. Event counting alpha detector

    DOEpatents

    Bolton, R.D.; MacArthur, D.W.

    1996-08-27

    An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.

  1. Alpha-particle diagnostics

    SciTech Connect

    Young, K.M.

    1991-01-01

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

  2. Reexamination of the {alpha}-{alpha}''fishbone'' potential

    SciTech Connect

    Day, J. P.; McEwen, J. E.; Elhanafy, M.; Smith, E.; Woodhouse, R.; Papp, Z.

    2011-09-15

    The fishbone potential of composite particles simulates the Pauli effect by nonlocal terms. We determine the {alpha}-{alpha} fishbone potential by simultaneously fitting to two-{alpha} resonance energies, experimental phase shifts, and three-{alpha} binding energies. We found that, essentially, a simple Gaussian can provide a good description of two-{alpha} and three-{alpha} experimental data without invoking three-body potentials.

  3. EPA Method EMSL-33: Isotopic Determination of Plutonium, Uranium, and Thorium in Water, Soil, Air, and Biological Tissue

    EPA Pesticide Factsheets

    SAM lists this method to provide for the analysis of isotopic plutonium, uranium and thorium, together or individually, in drinking water, aqueous/liquid, soil/sediment, surface wipe and/or air filter samples by alpha spectrometry.

  4. Magnetic symmetries in neutron and resonant x-ray Bragg diffraction patterns of four iridium oxides.

    PubMed

    Lovesey, S W; Khalyavin, D D; Manuel, P; Chapon, L C; Cao, G; Qi, T F

    2012-12-12

    The magnetic properties of Sr(2)IrO(4), Na(2)IrO(3), Sr(3)Ir(2)O(7) and CaIrO(3) are discussed, principally in the light of experimental data in recent literature for Bragg intensities measured in x-ray diffraction with enhancement at iridium L-absorption edges. The electronic structure factors we report, which incorporate parity-even and acentric entities, serve the immediate purpose of making full use of crystal and magnetic symmetry to refine our knowledge of the magnetic properties of the four iridates from resonant x-ray diffraction data. They also offer a platform on which to interpret future investigations, using dichroic signals, resonant x-ray diffraction and neutron diffraction, for example, as well as ab initio calculations of electronic structure. Unit-cell structure factors, suitable for x-ray Bragg diffraction enhanced by an electric dipole-electric dipole (E1-E1) event, reveal exactly which iridium multipoles are visible, e.g., a magnetic dipole parallel to the crystal c-axis (z-axis) and an electric quadrupole with yz-like symmetry in the specific case of CaIrO(3). Magnetic space-groups are assigned to Sr(2)IrO(4), Sr(3)Ir(2)O(7) and CaIrO(3), namely, P(I)cca, P(A)ban and Cm'cm', respectively, in the Belov-Neronova-Smirnova notation. The assignment for Sr(2)IrO(4) is possible because of our new high-resolution neutron diffraction data, gathered on a powder sample. In addition, the new data are used to show that the ordered magnetic moment of an Ir(4+) ion in Sr(2)IrO(4) does not exceed 0.29(4) μ(B). Na(2)IrO(3) has two candidate magnetic space-groups that are not resolved with currently available resonant x-ray data.

  5. The alpha channeling effect

    SciTech Connect

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  6. Relationship between an iridium anomaly and the North American microtektite layer in core RC9--58 from the Caribbean Sea

    SciTech Connect

    Glass, B.P.; DuBois, D.L.; Ganapathy, R.

    1982-11-15

    In a previous publication, an iridium anomaly was reported in core RC9--58 from the Caribbean Sea, about 30 cm below the peak abundance of North American microtektites. In order to determine more precisely the relationship between the iridium anomaly and the North American microtektite layer, we searched for microtektites in the samples that were used for the iridium studies. We found that the North American microtektite layer is actually two layers, with the peak abundances separated by 25 cm. The upper layer consists of 'normal' North American microtektites and the lower layer consists of previously described clinopyroxene-bearing spherules. The iridium anomaly was found to correlate with the lower layer. Although the two layers appear to be the result of two separate events, several lines of evidence suggest that they were produced by a single event. The separation into two layers may have been produced by differential settling in the sediment due to density variations. The correlation between the iridium anomaly and the North American microtektite layer supports the terrestrial impact origin for tektites.

  7. {alpha} decay of {sup 194}At

    SciTech Connect

    Andreyev, A. N.; Antalic, S.; Streicher, B.; Saro, S.; Venhart, M.; Ackermann, D.; Heinz, S.; Hessberger, F. P.; Kojouharov, I.; Kindler, B.; Lommel, B.; Mann, R.; Sulignano, B.; Bianco, L.; Page, R. D.; Sapple, P.; Thomson, J.; Franchoo, S.; Hofmann, S.; Huyse, M.

    2009-06-15

    Detailed {alpha}-decay studies of the neutron-deficient isotope {sup 194}At have been performed in the complete fusion reaction {sup 56}Fe+{sup 141}Pr{yields}{sup 194}At+3n at the velocity filter SHIP. Two {alpha}-decaying isomeric states with half-lives of T{sub 1/2}({sup 194}At{sup m1})=310(8) ms and T{sub 1/2}({sup 194}At{sup m2})=253(10) ms were identified in this nucleus. Their complex decays to the states in the daughter nucleus {sup 190}Bi are discussed in the article. We propose that similar to the case of the neighboring {sup 191,192,193,195}At isotopes, the oblate-deformed configurations based on the proton 1/2{sup +}[440] and/or 7/2{sup -}[514] Nilsson orbitals become important in {sup 194}At. A new isomeric state with the half-life of 175(8) ns was observed in {sup 190}Bi.

  8. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  9. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  10. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  11. Superconducting calorimetric alpha particle sensors for nuclear nonproliferation applications

    SciTech Connect

    Horansky, Robert D.; Ullom, Joel N.; Beall, James A.; Hilton, Gene C.; Irwin, Kent D.; Dry, Donald E.; Hastings, Elizabeth P.; Lamont, Stephen P.; Rudy, Clifford R.; Rabin, Michael W.

    2008-09-22

    Identification of trace nuclear materials is usually accomplished by alpha spectrometry. Current detectors cannot distinguish critical elements and isotopes. We have developed a detector called a microcalorimeter, which achieves a resolution of 1.06 keV for 5.3 MeV alphas, the highest resolving power of any energy dispersive measurement. With this exquisite resolution, we can unambiguously identify the {sup 240}Pu/{sup 239}Pu ratio in Pu, a critical measurement for ascertaining the intended use of nuclear material. Furthermore, we have made a direct measurement of the {sup 209}Po ground state decay.

  12. Role of electronic localization in the phosphorescence of iridium sensitizing dyes.

    PubMed

    Himmetoglu, Burak; Marchenko, Alex; Dabo, Ismaïla; Cococcioni, Matteo

    2012-10-21

    In this work we present a systematic study of three representative iridium dyes, namely, Ir(ppy)(3), FIrpic, and PQIr, which are commonly used as sensitizers in organic optoelectronic devices. We show that electronic correlations play a crucial role in determining the excited-state energies in these systems, due to localization of electrons on Ir d orbitals. Electronic localization is captured by employing hybrid functionals within time-dependent density-functional theory and with Hubbard-model corrections within the Δ-SCF approach. The performance of both methods are studied comparatively and shown to be in good agreement with experiment. The Hubbard-corrected functionals provide further insight into the localization of electrons and on the charge-transfer character of excited-states. The gained insight allows us to comment on envisioned functionalization strategies to improve the performance of these systems. Complementary discussions on the Δ-SCF method are also presented in order to fill some of the gaps in the literature.

  13. Global iridium anomaly, mass extinction, and redox change at the Devonian-Carboniferous boundary

    SciTech Connect

    Wang, K. Univ. of Calgary, Alberta ); Attrep, M. Jr.; Orth, C.J. )

    1993-12-01

    Iridium abundance anomalies have been found on a global scale in the Devonian-Carboniferous (D-C) boundary interval, which records one of the largest Phanerozoic mass-extinction events, an event that devastated many groups of living organisms, such as plants, ammonoids, trilobites, conodonts, fish, foraminiferans, brachiopods, and ostracodes. At or very close to the D-C boundary, there exists a geographically widespread black-shale interval, and Ir abundances reach anomalous maxima of 0.148 ppb (Montagne Noire, France), 0.138 ppb (Alberta, Canada) 0.140 ppb (Carnic Alps, Austria), 0.156 ppb (Guangxi, China), 0.258 ppb (Guizhou, China), and 0.250 ppb (Oklahoma). The discovery of global D-C Ir anomalies argues for an impact-extinction model. However, nonchondritic ratios of Ir to other important elements and a lack of physical evidence (shocked quartz, microtektites) do not support such a scenario. The fact that all Ir abundance maxima are at sharp redox boundaries in these sections leads us to conclude that the Ir anomalies likely resulted from a sudden change in paleo-redox conditions during deposition and/or early diagenesis. 36 refs., 2 figs., 1 tab.

  14. CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand

    SciTech Connect

    Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi; Suna, Yuki; Wang, Wan -Hui; Muckerman, James T.; Fujita, Etsuko; Himeda, Yuichiro

    2015-02-18

    In this study, the catalytic cycle for the production of formic acid by CO₂ hydrogenation and the reverse reaction has received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO₂ hydrogenation catalyzed by iridium complexes bearing N^N-bidentate ligands is reported. We describe how a ligand containing hydroxyl groups as proton-responsive substituents enhances catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interaction. In particular, [(Cp*IrCl)₂(TH2BPM)]Cl₂ (Cp* = pentamethyl cyclopentadienyl, TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) promotes enormously the catalytic hydrogenation of CO₂ by these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands are applied to CO₂ hydrogenation. The catalytic efficiencies of the azole-type complexes are much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH₂)]SO₄. Furthermore, the introduction of one or more hydroxyl groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxyl pyrimidine, and 4-pyrazolyl-2,6-dihydroxyl pyrimidine enhanced catalytic activity. It is clear that the incorporation of electron-donating hydroxyl groups into proton-responsive ligands is effective for promoting the hydrogenation of CO₂.

  15. Local structure of Iridium organometallic catalysts covalently bonded to carbon nanotubes.

    NASA Astrophysics Data System (ADS)

    Blasco, J.; Cuartero, V.; Subías, G.; Jiménez, M. V.; Pérez-Torrente, J. J.; Oro, L. A.; Blanco, M.; Álvarez, P.; Blanco, C.; Menéndez, R.

    2016-05-01

    Hybrid catalysts based on Iridium N-heterocyclic carbenes anchored to carbon nanotubes (CNT) have been studied by XAFS spectroscopy. Oxidation of CNT yields a large amount of functional groups, mainly hydroxyl groups at the walls and carboxylic groups at the tips, defects and edges. Different kinds of esterification reactions were performed to functionalize oxidized CNT with imidazolium salts. Then, the resulting products were reacted with an Ir organometallic compound to form hybrid catalysts efficient in hydrogen transfer processes. XANES spectroscopy agree with the presence of Ir(I) in these catalysts and the EXAFS spectra detected differences in the local structure of Ir atoms between the initial Ir organometallic compound and the Ir complexes anchored to the CNT. Our results confirm that the halide atom, present in the Ir precursor, was replaced by oxygen from -OH groups at the CNT wall in the first coordination shell of Ir. The lability of this group accounts for the good recyclability and the good efficiency shown by these hybrid catalysts.

  16. Intracatheter hyperthermia and iridium-192 radiotherapy in the treatment of bile duct carcinoma.

    PubMed

    Wong, J Y; Vora, N L; Chou, C K; McDougall, J A; Chan, K W; Findley, D O; Forell, B W; Luk, K H; Philben, V J; Beatty, J D

    1988-02-01

    We report a case of a patient with locally advanced bile duct carcinoma treated with 4500 cGy external beam radiotherapy, followed 3 weeks later by intracatheter 915 MHz microwave hyperthermia and radiotherapy delivered through a biliary U-tube placed at the time of surgery. Heating was to 43-45 degrees C for 1 hour followed immediately by intracatheter Iridium-192 seeds to deliver 5000 cGy over a 72 hour period. Prior to treatment, a thermal dosimetry study in phanton was conducted, using the same type of U-tube catheter tubing as in the patient. Orthogonal X rays of the patient's porta hepatis region were used to reconstruct the catheter geometry in the phantom. Proper insertion depth was determined thermographically to obtain maximum heating at the center of the tumor. The maximum SAR was 8.8 watts per kilogram per watt input. During the treatment, the average power applied was 30 W. Six months after therapy, the patient is asymptomatic. Although alkaline phosphatase, SGOT and SGPT have remained elevated, bilirubin has returned to normal and computerized tomographic scans and cholangiograms remain stable. A duodenal ulcer developed after therapy and is healing well with conservative medical management. This case demonstrates that hyperthermia applied through biliary drainage catheters is technically feasible and clinically tolerated. We believe the use of intracatheter hyperthermia in conjunction with external and/or intracatheter radiotherapy in selected patients with unresectable bile duct carcinomas warrants further study.

  17. A vapor-pressure study of the systems formed by polonium with palladium and iridium

    SciTech Connect

    Abakumou, A.S.; Khokhlou, A.D.; Malysheu, M.L.; Reznikova, N.F.

    1985-11-01

    Direct thermal vacuum synthesis shows that polonium vapor does not react with iridium when they are heated together to 1000/sup 0/C. Polonium vapor begins to be absorbed appreciably by palladium at 340-350/sup 0/C. The radiotensimetric method has been used in examining the thermal stabilities of polonium-palladium comounds, which has shown that there are three intermetallides PdPo, Pd/sub 2/Po, and Pd/sub 3/Po, which dissociate to release elemental polonium. The dissociation temperature increases as the polonium content of the compound decreases and is in the range 390-700/sup 0/C. The temperature dependence of the polonium vapor pressure in the dissociation is described by the following: PdPo log P /SUB Pa/ = (7.31 + or - 0.08) -- (4520 + or -40)/T, and at 460580/sup 0/C, ..delta..H = 86.3 + or - 0.7 kJ/mol; Pd/sub 2/Po log P /SUB Pa/ = (7.42 + or - 0.01) -- (6080 + or 10)/T at 725900/sup 0/C, ..delta..H = 116 + or - 0.2 kJ/mol; Pd/sub 3/Po log P /SUB Pa/ = (9.18 + or - 0.01) -- (8620 + or 1000/sup 0/C, ..delta..H = 164 + or - 1 kJ/mol. The properties of these compounds are compared with those of the corresponding tellurides and of the polonium-nickel and poloniumplatinum systems.

  18. Solvent-Dependent Thermochemistry of an Iridium/Ruthenium H2 Evolution Catalyst.

    PubMed

    Brereton, Kelsey R; Pitman, Catherine L; Cundari, Thomas R; Miller, Alexander J M

    2016-11-21

    The hydricity of the heterobimetallic iridium/ruthenium catalyst [Cp*Ir(H)(μ-bpm)Ru(bpy)2](3+) (1, where Cp* = η(5)-pentamethylcyclopentadienyl, bpm = 2,2'-bipyrimidine, and bpy = 2,2'-bipyridine) has been determined in both acetonitrile (63.1 kcal mol(-1)) and water (29.7 kcal mol(-1)). Hydride 1 features a large increase in the hydride donor ability when the solvent is changed from acetonitrile to water. The acidity of 1, in contrast, is essentially solvent-independent because 1 remains strongly acidic in both solvents. On the basis of an X-ray crystallographic study, spectroscopic analysis, and time-dependent density functional theory calculations, the disparate reactivity trends are ascribed to substantial delocalization of the electron density onto both the bpm and bpy ligands in the conjugate base of 1, [Cp*Ir(μ-bpm)Ru(bpy)2](2+) (3). The H2 evolution tendencies of 1 are considered in the context of thermodynamic parameters.

  19. High-level ab initio computations of the absorption spectra of organic iridium complexes.

    PubMed

    Plasser, Felix; Dreuw, Andreas

    2015-02-12

    The excited states of fac-tris(phenylpyridinato)iridium [Ir(ppy)3] and the smaller model complex Ir(C3H4N)3 are computed using a number of high-level ab initio methods, including the recently implemented algebraic diagrammatic construction method to third-order ADC(3). A detailed description of the states is provided through advanced analysis methods, which allow a quantification of different charge transfer and orbital relaxation effects and give extended insight into the many-body wave functions. Compared to the ADC(3) benchmark an unexpected striking difference of ADC(2) is found for Ir(C3H4N)3, which derives from an overstabilization of charge transfer effects. Time-dependent density functional theory (TDDFT) using the B3LYP functional shows an analogous but less severe error for charge transfer states, whereas the ωB97 results are in good agreement with ADC(3). Multireference configuration interaction computations, which are in reasonable agreement with ADC(3), reveal that static correlation does not play a significant role. In the case of the larger Ir(ppy)3 complex, results at the TDDFT/B3LYP and TDDFT/ωB97 levels of theory are presented. Strong discrepancies between the two functionals, which are found with respect to the energies, characters, as well as the density of the low lying states, are discussed in detail and compared to experiment.

  20. Superconductivity in the ternary iridium-arsenide BaIr2As2

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Chuan; Ruan, Bin-Bin; Yu, Jia; Pan, Bo-Jin; Mu, Qing-Ge; Liu, Tong; Chen, Gen-Fu; Ren, Zhi-An

    2017-03-01

    Here we report the synthesis and discovery of superconductivity in a novel ternary iridium-arsenide compound BaIr2As2. The polycrystalline BaIr2As2 sample was first synthesized by a high temperature and high pressure method. Crystal structural analysis indicates that BaIr2As2 crystallizes in the ThCr2Si2-type layered tetragonal structure with space group I4/mmm (No. 139), and the lattice parameters were refined to be a = 4.052(9) Å and c = 12.787(8) Å. By the electrical resistivity and magnetic susceptibility measurements we found type-II superconductivity in the new BaIr2As2 compound with a T c (critical temperature) of 2.45 K, and an upper critical field μ 0 H c2(0) about 0.2 T. Low temperature specific heat measurements gave a Debye temperature of about 202 K and a distinct specific jump with ΔC e /γT c = 1.36, which is close to the value of BCS weak coupling limit and confirms the bulk superconductivity in this new BaIr2As2 compound.