Science.gov

Sample records for iridium silicides

  1. Phase diagram and electrical behavior of silicon-rich iridium silicide compounds

    NASA Technical Reports Server (NTRS)

    Allevato, C. E.; Vining, Cronin B.

    1992-01-01

    The iridium-silicon phase diagram on the silicon-rich side was investigated by means of X-ray powder diffraction, density, differential thermal analysis, metalography, microprobe analysis, and electrical resistivity. Attempts were made to prepare eight previously reported silicon-rich iridium silicide compounds by arc melting and Bridgman-like growth. However, microprobe analysis identified only four distinct compositions: IrSi, Ir3Si4, Ir3Si5 and IrSi sub about 3. The existence of Ir4Si5 could not be confirmed in this study, even though the crystal structure has been previously reported. Differential thermal analysis (DTA) in conjunction with X-ray powder diffraction confirm polymorphism in IrSi sub about 3, determined to have orthorhombic and monoclinic unit cells in the high and low temperature forms. A eutectic composition alloy of 83 +/- 1 atomic percent silicon was observed between IrSi sub about 3 and silicon. Ir3Si4 exhibits distinct metallic behavior while Ir3Si5 is semiconducting. Both and IrSi and IrSi sub about 3 exhibit nearly temperature independent electrical resistivities on the order of 5-10 x 10 exp -6 ohms-m.

  2. Phase diagram and electrical behavior of silicon-rich iridium silicide compounds

    NASA Technical Reports Server (NTRS)

    Allevato, C. E.; Vining, Cronin B.

    1992-01-01

    The iridium-silicon phase diagram on the silicon-rich side was investigated by means of X-ray powder diffraction, density, differential thermal analysis, metalography, microprobe analysis, and electrical resistivity. Attempts were made to prepare eight previously reported silicon-rich iridium silicide compounds by arc melting and Bridgman-like growth. However, microprobe analysis identified only four distinct compositions: IrSi, Ir3Si4, Ir3Si5 and IrSi sub about 3. The existence of Ir4Si5 could not be confirmed in this study, even though the crystal structure has been previously reported. Differential thermal analysis (DTA) in conjunction with X-ray powder diffraction confirm polymorphism in IrSi sub about 3, determined to have orthorhombic and monoclinic unit cells in the high and low temperature forms. A eutectic composition alloy of 83 +/- 1 atomic percent silicon was observed between IrSi sub about 3 and silicon. Ir3Si4 exhibits distinct metallic behavior while Ir3Si5 is semiconducting. Both and IrSi and IrSi sub about 3 exhibit nearly temperature independent electrical resistivities on the order of 5-10 x 10 exp -6 ohms-m.

  3. Bibliography on silicides. Special report

    SciTech Connect

    Gilp, B.F.; Desai, P.D.; Ho, C.Y.

    1993-07-01

    This report is an annotated bibliography of over 750 documents on silicides. Documents published from 1952 to early 1993 are covered. Bibliographic information is organized in alphabetical order by silicide type, i.e. chromium silicides, cobalt silicides, etc. Within each chapter information is reported for specific silicides. A miscellaneous section contains silicides which are neither specifically identified nor warrant a separate section. Chapters are also included for commercially designated silicides and for those silicides which are neither properly identified nor have enough data to warrant a separate chapter. Each section is complete and selfcontained for efficient use. Bibliography, Silicides, Coatings, Molybdenum silicides, Tantalum silicides, Titanium silicides, Tungsten silicides, Vanadium silicides, Chromium silicides, Zirconium silicides, Iron silicides, Niobium silicides.

  4. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  5. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  6. Ceramic-silicide composites

    SciTech Connect

    Petrovic, J.J.

    1998-12-01

    The area of ceramic-silicide composites represents a merging of structural ceramics and structural silicides. Such ceramic-silicide composites can possess the desirable characteristics of both classes of compounds. Important structural ceramics are materials such as Si{sub 3}N{sub 4}, SiC, Al{sub 2}O{sub 3}, and ZrO{sub 2}, which possess covalent, ionic, or mixed covalent-ionic atomic bonding. An important structural silicide is MoSi{sub 2}, which possesses mixed covalent-metallic bonding. The arena of ceramic-silicide composites encompasses both composites where the structural silicide is the matrix and the structural ceramic is the reinforcement, and composites where the structural ceramic is the matrix and the structural silicide is the reinforcement. In the former area, MoSi{sub 2}-SiC, MoSi{sub 2}-ZrO{sub 2}, and MoSi{sub 2}-Al{sub 2}O{sub 3} composites are discussed. In the latter area, Si{sub 3}N{sub 4}-MoSi{sub 2} composites are described.

  7. Progress in doping of ruthenium silicide (Ru2Si3)

    NASA Technical Reports Server (NTRS)

    Vining, C. B.; Allevato, C. E.

    1992-01-01

    Ruthenium silicide is currently under development as a promising thermoelectric material suitable for space power applications. Key to realizing the potentially high figure of merit values of this material is the development of appropriate doping techniques. In this study, manganese and iridium have been identified as useful p- and n-type dopants, respectively. Resistivity values have been reduced by more than 3 orders of magnitude. Anomalous Hall effect results, however, complicate interpretation of some of the results and further effort is required to achieve optimum doping levels.

  8. Progress in doping of ruthenium silicide (Ru2Si3)

    NASA Technical Reports Server (NTRS)

    Vining, C. B.; Allevato, C. E.

    1992-01-01

    Ruthenium silicide is currently under development as a promising thermoelectric material suitable for space power applications. Key to realizing the potentially high figure of merit values of this material is the development of appropriate doping techniques. In this study, manganese and iridium have been identified as useful p- and n-type dopants, respectively. Resistivity values have been reduced by more than 3 orders of magnitude. Anomalous Hall effect results, however, complicate interpretation of some of the results and further effort is required to achieve optimum doping levels.

  9. Metal silicide nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Lih-Juann; Wu, Wen-Wei

    2015-07-01

    The growth, properties and applications of metal silicide nanowires (NWs) have been extensively investigated. The investigations have led to significant advance in the understanding of one-dimensional (1D) metal silicide systems. For example, CoSi is paramagnetic in bulk form, but ferromagnetic in NW geometry. In addition, the helimagnetic phase and skyrmion state in MnSi are stabilized by NW morphology. The influencing factors on the growth of silicide phase have been elucidated for Ni-Si, Pt-Si, and Mn-Si systems. Promising results were obtained for spintronics, non-volatile memories, field emitter, magnetoresistive sensor, thermoelectric generator and solar cells. However, the main thrust has been in microelectronic devices and integrated circuits. Transistors of world-record small size have been fabricated. Reconfigurable Si NW transistors, dually active Si NW transistors and circuits with equal electron and hole transport have been demonstrated. Furthermore, multifunctional devices and logic gates with undoped Si NWs were reported. It is foreseen that practical applications will be realized in the near future.

  10. Surface morphology of erbium silicide

    NASA Technical Reports Server (NTRS)

    Lau, S. S.; Pai, C. S.; Wu, C. S.; Kuech, T. F.; Liu, B. X.

    1982-01-01

    The surface of rare-earth silicides (Er, Tb, etc.), formed by the reaction of thin-film metal layers with a silicon substrate, is typically dominated by deep penetrating, regularly shaped pits. These pits may have a detrimental effect on the electronic performance of low Schottky barrier height diodes utilizing such silicides on n-type Si. This study suggests that contamination at the metal-Si or silicide-Si interface is the primary cause of surface pitting. Surface pits may be reduced in density or eliminated entirely through either the use of Si substrate surfaces prepared under ultrahigh vacuum conditions prior to metal deposition and silicide formation or by means of ion irradiation techniques. Silicide layers formed by these techniques possess an almost planar morphology.

  11. Iridium in natural waters

    SciTech Connect

    Anbar, A.D.; Wasserburg, G.J.; Papanastassiou, D.A.

    1996-09-13

    Iridium, commonly used as a tracer of extraterrestrial material, was measured in rivers, oceans, and an estuarine environment. The concentration of iridium in the oceans ranges from 3.0 ({+-}1.3) x 10{sup 8} to 5.7 ({+-}0.8) x 10{sup 8} atoms per kilogram. Rivers contain from 17.4 ({+-}0.9) x 10{sup 8} to 92.9 ({+-}2.2) x 10{sup 8} atoms per kilogram and supply more dissolved iridium to the oceans than do extraterrestrial sources. In the Baltic Sea, {approximately}75% of riverine iridium is removed from solution. Iron-manganese oxyhydroxides scavenge iridium under oxidizing conditions, but anoxic environments are not a major sink for iridium. The ocean residence time of iridium is between 2 x 10{sup 3} and 2 x 10{sup 4} years. 32 refs., 3 figs., 1 tab.

  12. Silicide surface phases on gold

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1981-01-01

    The crystalline silicide layers formed on (111) and (100) surfaces of Au films on various Si single-crystal substrates are studied by LEED and AES in conjunction with sputter-depth profiling as a function of annealing temperature. On the (111) surface, three basic silicide structures are obtained corresponding to layers of various thicknesses as obtained by different preparation conditions. The (100) surface shows only two different structures. None of the structures is compatible with the various bulk silicide structures deduced from X-ray diffraction. Using LEED as a criterion for the presence or absence of silicide on the surface, smaller layer thicknesses are obtained than reported previously on the basis of AES studies.

  13. Silicide surface phases on gold

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1981-01-01

    The crystalline silicide layers formed on (111) and (100) surfaces of Au films on various Si single-crystal substrates are studied by LEED and AES in conjunction with sputter-depth profiling as a function of annealing temperature. On the (111) surface, three basic silicide structures are obtained corresponding to layers of various thicknesses as obtained by different preparation conditions. The (100) surface shows only two different structures. None of the structures is compatible with the various bulk silicide structures deduced from X-ray diffraction. Using LEED as a criterion for the presence or absence of silicide on the surface, smaller layer thicknesses are obtained than reported previously on the basis of AES studies.

  14. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  15. Iridium Interfacial Stack - IrIS

    NASA Technical Reports Server (NTRS)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  16. Processing of Iridium and Iridium Alloys

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    Iridium and its alloys have been considered to be difficult to fabricate due to their high melting temperatures, limited ductility, sensitivity to impurity content, and chemical properties. The variety of processing methods used for iridium and its alloys are reviewed, including purification, melting, forming, joining, and powder metallurgy techniques. Also included are coating and forming by the methods of electroplating, chemical and physical vapor deposition, and melt particle deposition.

  17. Iridium/Iridium Silicide as an Oxidation Resistant Capping Layer for Soft X-ray Mirrors

    SciTech Connect

    Prisbrey, S; Vernon, S

    2004-04-05

    Rust on a sword, tarnish on the silverware, and a loss in reflectivity for soft x-ray mirrors are all caused by oxidation that changes the desired characteristics of a material. Methods to prevent the oxidation have varied over the centuries with the default method of a protective coating being the most common. The protective coating for x-ray mirrors is usually a self-limiting oxidized layer on the surface of the material that stops further oxidation of the material by limiting the diffusion of oxygen to the material underneath.

  18. Composition of CVD tungsten silicides

    SciTech Connect

    Hara, T.; Takahashi, H.; Ishizawa, Y.

    1987-05-01

    The composition of tungsten silicide (WSi/sub x/) deposited by chemical vapor deposition on silicon and silicon dioxide substrates was studied. The composition x changed from 2.7 to 2.2 with varying WF/sub 6/ flow rate from 6 to 20 cm/sup 3//min in the deposition on silicon. When annealing was performed at 1000C, the dissociation of excess silicon occurred from the nonstoichiometric silicide in the layer on the silicon. As a result, the composition of each layer, which was different when deposited, tended toward the same composition of around 2.1. This result indicated the formation of near-stoichiometric silicide as a result of annealing.

  19. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  20. The oxidation of titanium silicide

    NASA Astrophysics Data System (ADS)

    Sandwick, Thom; Rajan, Krishna

    1990-11-01

    This paper investigates the morphology changes that occur with the oxidation of a ti-tanium silicide—polysilicon system. These changes were studied as a function of poly-silicon doping and silicide formation parameters. Emphasis was placed on transmission electron microscopy studies of the samples by planar and cross sectional techniques. Various surface analysis methods have also been used to characterize the films. This study helps to define the possible use and shortcomings of a self aligned titanium silicide insulator. The results show that varying quality insulators result, dependent largely on the initial conditions of the titanium silicide. After oxidation the Auger and TEM anal-ysis show that in all cases some form of silicon dioxide was created, but typically a considerable amount of titanium oxide was also present. For instance, it was apparent that more titanium oxide formed on the samples RTA’ed for 1 min at 700° C than the 5 min at 800° C and considerably more on the arsenic doped sample than the boron doped. The silicide also had morphology changes as the result of the oxidation. There was a phase change from the C49 to C54 phase for the 1 min at 700° C samples as would be expected at the time and temperature of the oxidation. There also was a sig-nificant amount of agglomeration and epitaxial growth observed. Further work is re-quired to completely characterize these phenomena.

  1. Luminogenic iridium azide complexes.

    PubMed

    Ohata, Jun; Vohidov, Farrukh; Aliyan, Amirhossein; Huang, Kewei; Martí, Angel A; Ball, Zachary T

    2015-10-21

    The synthesis and characterization of luminogenic, bioorthogonal iridium probes is described. These probes exhibit long photoluminescence lifetimes amenable to time-resolved applications. A simple, modular synthesis via 5-azidophenanthroline allows structural variation and allows optimization of cell labeling.

  2. On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface

    SciTech Connect

    Fatima,; Hossain, Sehtab; Mohottige, Rasika; Oncel, Nuri E-mail: nuri.oncel@und.edu; Can Oguz, Ismail; Gulseren, Oguz E-mail: nuri.oncel@und.edu; Çakır, Deniz

    2016-09-07

    Iridium (Ir) modified Silicon (Si) (001) surface is studied with Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Density Functional Theory (DFT). A model for Ir-silicide nanowires based on STM images and ab-initio calculations is proposed. According to our model, the Ir adatom is on the top of the substrate dimer row and directly binds to the dimer atoms. I-V curves measured at 77 K shows that the nanowires are metallic. DFT calculations confirm strong metallic nature of the nanowires.

  3. On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface

    NASA Astrophysics Data System (ADS)

    Fatima, Can Oguz, Ismail; ćakır, Deniz; Hossain, Sehtab; Mohottige, Rasika; Gulseren, Oguz; Oncel, Nuri

    2016-09-01

    Iridium (Ir) modified Silicon (Si) (001) surface is studied with Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Density Functional Theory (DFT). A model for Ir-silicide nanowires based on STM images and ab-initio calculations is proposed. According to our model, the Ir adatom is on the top of the substrate dimer row and directly binds to the dimer atoms. I-V curves measured at 77 K shows that the nanowires are metallic. DFT calculations confirm strong metallic nature of the nanowires.

  4. Iridium Interfacial Stack (IRIS)

    NASA Technical Reports Server (NTRS)

    Spry, David James (Inventor)

    2015-01-01

    An iridium interfacial stack ("IrIS") and a method for producing the same are provided. The IrIS may include ordered layers of TaSi.sub.2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.

  5. Iridium: failures & successes

    NASA Astrophysics Data System (ADS)

    Christensen, CarissaBryce; Beard, Suzette

    2001-03-01

    This paper will provide an overview of the Iridium business venture in terms of the challenges faced, the successes achieved, and the causes of the ultimate failure of the venture — bankruptcy and system de-orbit. The paper will address technical, business, and policy issues. The intent of the paper is to provide a balanced and accurate overview of the Iridium experience, to aid future decision-making by policy makers, the business community, and technical experts. Key topics will include the history of the program, the objectives and decision-making of Motorola, the market research and analysis conducted, partnering strategies and their impact, consumer equipment availability, and technical issues — target performance, performance achieved, technical accomplishments, and expected and unexpected technical challenges. The paper will use as sources trade media and business articles on the Iridium program, technical papers and conference presentations, Wall Street analyst's reports, and, where possible, interviews with participants and close observers.

  6. Improved high-temperature silicide coatings

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Stephens, J. R.; Stetson, A. R.; Wimber, R. T.

    1969-01-01

    Special technique for applying silicide coatings to refractory metal alloys improves their high-temperature protective capability. Refractory metal powders mixed with a baked-out organic binder and sintered in a vacuum produces a porous alloy layer on the surface. Exposing the layer to hot silicon converts it to a silicide.

  7. Luminogenic iridium azide complexes

    PubMed Central

    Ohata, Jun; Vohidov, Farrukh; Aliyan, Amirhossein; Huang, Kewei; Martí, Angel A.

    2015-01-01

    The synthesis and characterization of luminogenic, bioorthogonal iridium probes is described. These probes exhibit long fluorescent lifetimes amenable to time-resolved applications. A simple, modular synthesis via 5-azidophenanthroline allows structural variation and allows optimization of cell labeling. PMID:26325066

  8. Hydridomethyl iridium complex

    SciTech Connect

    Bergman, R.G; Buchanan, J.M.; Stryker, J.M.; Wax, M.J.

    1989-07-18

    This patent describes a hydridomethyl complex of the formula: CpIr(P(R{sub 1}){sub 3})HMe. Cp represents a cyclopentadienyl or alkyl cyclopentadienyl radical; Ir represents an iridium atom; P represents a phosphorus atom; R{sub 1} represents an alkyl group; and Me represents a methyl group.

  9. The Effect of the Dose and Energy of a Pre-Silicide Implant on Nickel Silicide Formation

    SciTech Connect

    Rice, Jeffrey H.

    2008-11-03

    Pre-silicide implants have been used to increase the thermal stability of nickel silicide (NiSi) and to improve device performance. This study evaluates the effect of the dose, energy and species of a pre-silicide ion implant on NiSi phase formation. The resulting silicide was evaluated using sheet resistance, scanning electron Microscope (SEM) cross-sections, and Rutherford Backscattering Spectroscopy (RBS) analysis. It was found that a high dose argon implant will completely inhibit the silicide formation.

  10. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Hollis, K.J.; Kung, H.H.

    1998-11-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries.

  11. Ensuring the Consistency of Silicide Coatings

    NASA Technical Reports Server (NTRS)

    Ramani, V.; Lampson, F. K.

    1982-01-01

    Diagram specifies optimum fusing time for given thicknesses of refractory metal-silicide coatings on columbium C-103 substrates. Adherence to indicated fusion times ensures consistent coatings and avoids underdiffusion and overdiffusion. Accuracy of diagram has been confirmed by tests.

  12. Synthesis and Design of Silicide Intermetallic Materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Vaidya, R.U.; Park, Y.

    1999-05-14

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With the Exotherm Corporation, they are developing advanced silicide powders for the fabrication of silicide materials with tailored and improved properties for industrial applications. In October 1998, the authors initiated a new activity funded by DOE/OIT on ``Molybdenum Disilicide Composites for Glass Processing Sensors''. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts.

  13. Large hysteretic magnetoresistance of silicide nanostructures

    NASA Astrophysics Data System (ADS)

    Kim, T.; Naser, B.; Chamberlin, R. V.; Schilfgaarde, M. V.; Bennett, P. A.; Bird, J. P.

    2007-11-01

    We demonstrate a large (as much as 100%) and strongly hysteretic magnetoresistance (MR) in nominally nonferromagnetic silicide films and nanowires. This unusual MR is quenched above a few kelvins, where conventional behavior due to weak antilocalization is recovered. The dynamic characteristics of this effect are suggestive of weakly interacting, localized paramagnetic moments that form at the surface oxide of the silicide nanostructures, with dramatic consequences for transport when the system size is reduced to the nanoscale.

  14. Dopant diffusion in tungsten silicide

    SciTech Connect

    Pan, P.; Hsieh, N.; Geipel, H.J. Jr.; Slusser, G.J.

    1982-04-01

    The dopant (B, P, and As) redistribution in a silicide on polycrystalline silicon structure after annealing at 800 and 1000 /sup 0/C was studied. The distribution of boron was found to be quite different from these of phosphorus and arsenic. At 1000 /sup 0/C, the distribution coefficient for boron at the WSi/sub 2//polycrystalline silicon interface was found to be 2.7. The solubilities of phosphorus and arsenic in WSi/sub 2/ at 1000 /sup 0/C were estimated to be 6 x 10/sup 19/ and 1.6 x 10/sup 19/ atoms/cm/sup 3/, respectively. At 800 /sup 0/C, the diffusion coefficient for the dopants was found to be equal to, or greater than 3.3 x 10/sup -12/ cm/sup 2//s, which is at least three orders of magnitude larger than in silicon.

  15. Metrology Of Silicide Contacts For Future CMOS

    NASA Astrophysics Data System (ADS)

    Zollner, Stefan; Gregory, Richard B.; Kottke, M. L.; Vartanian, Victor; Wang, Xiang-Dong; Theodore, David; Fejes, P. L.; Conner, J. R.; Raymond, Mark; Zhu, Xiaoyan; Denning, Dean; Bolton, Scott; Chang, Kyuhwan; Noble, Ross; Jahanbani, Mohamad; Rossow, Marc; Goedeke, Darren; Filipiak, Stan; Garcia, Ricardo; Jawarani, Dharmesh; Taylor, Bill; Nguyen, Bich-Yen; Crabtree, P. E.; Thean, Aaron

    2007-09-01

    Silicide materials (NiSi, CoSi2, TiSi2, etc) are used to form low-resistance contacts between the back-end (W plugs and Cu interconnects) and front-end portions (silicon source, drain, and gate regions) of integrated CMOS circuits. At the 65 nm node, a transition from CoSi2 to NiSi was necessary because of the unique capability of NiSi to form narrow silicide nanowires on active (monocrystalline) and gate (polycrystalline) lines. Like its predecessors TiSi2 and CoSi2, NiSi is a mid-gap silicide, i.e., the Fermi level of the NiSi metal is pinned half-way between the conduction and valence band edges in silicon. This leads to a Schottky barrier between the silicide and silicon source-drain regions, which creates undesirable parasitic resistances. For future CMOS generations, band-edge silicides, such as PtSi for contacts to p-type or rare earth silicides for contacts to n-type Si will be needed. This paper reviews metrology and characterization techniques for NiSi process control for development and manufacturing, with special emphasis on x-ray reflectance and x-ray fluorescence. We also report measurement methods useful for development of a PtSi PMOS module.

  16. Method for refining contaminated iridium

    DOEpatents

    Heshmatpour, Bahman; Heestand, Richard L.

    1983-01-01

    Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

  17. Method for refining contaminated iridium

    DOEpatents

    Heshmatpour, B.; Heestand, R.L.

    1982-08-31

    Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

  18. Iridium thin films deposited via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Chen, Chenglin

    High purity Ir thin films for future applications as transition-edge sensors were deposited on Si (100) via pulsed laser deposition. The iridium deposition rate was investigated and found to have a high value with the pulsed laser power higher than 4.2×10 9 W/cm 2 . At this laser intensity range, the PLD Ir films were deposited at substrate temperature ranging from 100 to 700°C. Ir thin films' characteristics were investigated at both room temperature and low temperature with the emphasis on study of the effect of the substrate temperature during deposition on the structure and morphology of the films. The PLD films exhibited a (110) preferentially oriented polycrystalline structure. Their average grain size increased from about 30 to 110 nm as the deposition temperature was raised from 100 to 600°C. With a 700°C substrate temperature the grain size jumped to 500 nm. Iridium silicide was found in the film deposited at 700°C substrate temperature. This indicated a critical deposition temperature between 600 and 700°C. A 50 mK platform was built for low temperature measurements. At low temperature, the Residual Resistance Ratio (RRR) of the Ir thin films had a typical value of 1.50. A typical transition curve of the film showed a transition temperature higher and wider than expected.

  19. Electrochemical deposition of iridium and iridium-nickel-alloys

    NASA Astrophysics Data System (ADS)

    Näther, J.; Köster, F.; Freudenberger, R.; Schöberl, C.; Lampke, T.

    2017-03-01

    To develop durable and reliable electronic contacts, precious metals are still very important for finish plating of contact surfaces. The lesser-known iridium might be an interesting alternative to substitute gold alloys, platinum or rhodium for applications with highest demands to wear and corrosion resistance such as sliding and plug contacts. As matters stand there is no commercial electrolyte for iridium plating. Initial investigation screened the parameter range for different iridium compounds when an iridium layer occurred on the substrates. This approach showed that the oxidation state of iridium is crucial to reach contenting deposits. Best results came from Ir(IV) electrolyte with high bromine concentration coming from the starting compound, while electrolytes made from Ir(III) compounds gave very poor deposits. In subsequent experiments different organic compounds were added to the electrolytes to improve plating efficiency and stability of the solutions. So found electrolytes gave crack-free deposits up to two microns with a micro-hardness of 600 HV. To reduce the iridium content in the layer, iridium-nickel-alloys were investigated, finding that a nickel-content of 10 wt% raised the layer hardness to more than 900 HV.

  20. METHOD OF FORMING TANTALUM SILICIDE ON TANTALUM SURFACES

    DOEpatents

    Bowman, M.G.; Krikorian, N.H.

    1961-10-01

    A method is described for forming a non-corrosive silicide coating on tantalum. The coating is made through the heating of trirhenium silicides in contact with the tantalum object to approximately 1400 deg C at which temperature trirhenium silicide decomposes into rhenium and gaseous silicons. The silicon vapor reacts with the tantalum surface to form a tantalum silicide layer approximately 10 microns thick. (AEC)

  1. Iridium at Kilauea

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Trace-element anomalies observed in rocks located stratigraphically at the Cretaceous-Tertiary boundary are considered significant evidence that the boundary is a record of a large meteorite impact (Science, 208, 1095-1108, 1980). In particular, trace metals, including iridium and other members of the platinum metals group, are thought to be enriched in rocks alien to the earth's surface. These elements are indeed enriched in meteorites relative to earth crustal rocks, but new evidence from analyses of the January 1983 eruption of Kilauea suggest that the analogy may be invalid. W.H. Zoller, J.R. Parrington, and J.M. Phelan Kotra reported neutron activation analyses of airborne particulate matter collected at the Mauna Loa Observatory and found “strikingly” large concentrations of iridium in addition to element concentrations expected from volcanic emissions (Science, 222, 1118, 1983). The only other platinum-group trace metal analyzed was gold, which was also found to be anomalously high. They concede that they need more data of other platinum group elements and more data on other volcanos, but the implication is that the Cretacious-Tertiary boundary may well be volcanic, not due to a large meteorite impact.

  2. Iridium Satellite Signal Exploitation

    NASA Astrophysics Data System (ADS)

    McDonough, Peter

    2010-03-01

    The Iridium Satellite constellation is unique to satellite communication networks in that it allows for transmission of data between satellites instead of relying on transmission by the bent pipe methodology. As such, this network is far more secure than other satellite communication networks, and forces interception to occur within the locale of the transmission from modem to satellite or within the locale of the downlink from the satellite other modem. The purpose of this project was to demonstrate the security weaknesses within the Iridium protocol, showing that it was possible to track one of these satellites with a high gain antenna, resulting in the ability to anticipate transmission, to acquire the location of that transmission, and to uncover the content of that transmission. This project was completed as part of the summer student program at the Southwest Research Institute. The presentation will demonstrate the thought process used in chronological order, essentially demonstrating how I achieved the result from my point of view as the summer progressed.

  3. Phase transformations in ion-irradiated silicides

    NASA Technical Reports Server (NTRS)

    Hewett, C. A.; Lau, S. S.; Suni, I.; Hung, L. S.

    1985-01-01

    The present investigation has three objectives. The first is concerned with the phase transformation of CoSi2 under ion implantation and the subsequent crystallization characteristics during annealing, taking into account epitaxial and nonepitaxial recrystallization behavior. The second objective is related to a study of the general trend of implantation-induced damage and crystallization behavior for a number of commonly used silicides. The last objective involves a comparison of the recrystallization behavior of cosputtered refractory silicides with that of the ion-implanted silicides. It was found that epitaxial regrowth of ion-irradiated CoSi2 occurred for samples with an epitaxial seed left at the Si/CoSi2 interface. A structural investigation of CoSi2 involving transmission electron microscopy (TEM) showed that after high-dose implantation CoSi2 is amorphous.

  4. Temperature-dependent structure and phase variation of nickel silicide nanowire arrays prepared by in situ silicidation

    SciTech Connect

    Liu, Hailong; She, Guangwei; Mu, Lixuan; Shi, Wensheng

    2012-12-15

    Graphical abstract: Display Omitted Highlight: ► Nickel silicides nanowire arrays prepared by a simple in situ silicidation method. ► Phases of nickel silicides could be varied by tuning the reaction temperature. ► A growth model was proposed for the nickel silicides nanowires. ► Diffusion rates of Ni and Si play a critical role for the phase variation. -- Abstract: In this paper, we report an in situ silicidizing method to prepare nickel silicide nanowire arrays with varied structures and phases. The in situ reaction (silicidation) between Si and NiCl{sub 2} led to conversion of Si nanowires to nickel silicide nanowires. Structures and phases of the obtained nickel silicides could be varied by changing the reaction temperature. At a relatively lower temperature of 700 °C, the products are Si/NiSi core/shell nanowires or NiSi nanowires, depending on the concentration of NiCl{sub 2} solution. At a higher temperature (800 °C and 900 °C), other phases of the nickel silicides, including Ni{sub 2}Si, Ni{sub 31}Si{sub 12}, and NiSi{sub 2}, were obtained. It is proposed that the different diffusion rates of Ni and Si atoms at different temperatures played a critical role in the formation of nickel silicide nanowires with different phases.

  5. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  6. Chromium silicide formation by ion mixing

    NASA Technical Reports Server (NTRS)

    Shreter, U.; So, F. C. T.; Nicolet, M.-A.

    1984-01-01

    The formation of CrSi2 by ion mixing was studied as a function of temperature, silicide thickness and irradiated interface. Samples were prepared by annealing evaporated couples of Cr on Si and Si on Cr at 450 C for short times to form Si/CrSi2/Cr sandwiches. Xenon beams with energies up to 300 keV and fluences up to 8 x 10 to the 15th per sq cm were used for mixing at temperatures between 20 and 300 C. Penetrating only the Cr/CrSi2 interface at temperatures above 150 C induces further growth of the silicide as a uniform stoichiometric layer. The growth rate does not depend on the thickness of the initially formed silicide at least up to a thickness of 150 nm. The amount of growth depends linearly on the density of energy deposited at the interface. The growth is temperature dependent with an apparent activation energy of 0.2 eV. Irradiating only through the Si/CrSi2 interface does not induce silicide growth. It is concluded that the formation of CrSi2 by ion beam mixing is an interface-limited process and that the limiting reaction occurs at the Cr/CrSi2 interface.

  7. Chromium silicide formation by ion mixing

    NASA Technical Reports Server (NTRS)

    Shreter, U.; So, F. C. T.; Nicolet, M.-A.

    1984-01-01

    The formation of CrSi2 by ion mixing was studied as a function of temperature, silicide thickness and irradiated interface. Samples were prepared by annealing evaporated couples of Cr on Si and Si on Cr at 450 C for short times to form Si/CrSi2/Cr sandwiches. Xenon beams with energies up to 300 keV and fluences up to 8 x 10 to the 15th per sq cm were used for mixing at temperatures between 20 and 300 C. Penetrating only the Cr/CrSi2 interface at temperatures above 150 C induces further growth of the silicide as a uniform stoichiometric layer. The growth rate does not depend on the thickness of the initially formed silicide at least up to a thickness of 150 nm. The amount of growth depends linearly on the density of energy deposited at the interface. The growth is temperature dependent with an apparent activation energy of 0.2 eV. Irradiating only through the Si/CrSi2 interface does not induce silicide growth. It is concluded that the formation of CrSi2 by ion beam mixing is an interface-limited process and that the limiting reaction occurs at the Cr/CrSi2 interface.

  8. Challenges of nickel silicidation in CMOS technologies

    SciTech Connect

    Breil, Nicolas; Lavoie, Christian; Ozcan, Ahmet; Baumann, Frieder; Klymko, Nancy; Nummy, Karen; Sun, Bing; Jordan-Sweet, Jean; Yu, Jian; Zhu, Frank; Narasimha, Shreesh; Chudzik, Michael

    2015-04-01

    In our paper, we review some of the key challenges associated with the Ni silicidation process in the most recent CMOS technologies. The introduction of new materials (e.g.SiGe), and of non-planar architectures bring some important changes that require fundamental investigation from a material engineering perspective. Following a discussion of the device architecture and silicide evolution through the last CMOS generations, we focus our study on a very peculiar defect, termed NiSi-Fangs. We describe a mechanism for the defect formation, and present a detailed material analysis that supports this mechanism. We highlight some of the possible metal enrichment processes of the nickel monosilicide such as oxidation or various RIE (Reactive Ion Etching) plasma process, leading to a metal source available for defect formation. Furthermore, we investigate the NiSi formation and re-formation silicidation differences between Si and SiGe materials, and between (1 0 0) and (1 1 1) orientations. Finally, we show that the thermal budgets post silicidation can lead to the formation of NiSi-Fangs if the structure and the processes are not optimized. Beyond the understanding of the defect and the discussion on the engineering solutions used to prevent its formation, the interest of this investigation also lies in the fundamental learning within the Ni–Pt–Si–Ge system and some additional perspective on Ni-based contacts to advanced microelectronic devices.

  9. Hydridomethyl iridium complex

    DOEpatents

    Bergman, Robert G.; Buchanan, J. Michael; Stryker, Jeffrey M.; Wax, Michael J.

    1989-01-01

    A process for functionalizing methane comprising: (a) reacting methane with a hydridoalkyl metal complex of the formula: CpIr[P(R.sub.1).sub.3 ]H(R.sub.2) wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical having from 1 to 5 carbon atoms; Ir represents an iridium atom; P represents a phosphorus atom; R.sub.1 represents an alkyl group; R.sub.2 represents an alkyl group having at least two carbon atoms; and H represents a hydrogen atom, in the presence of a liquid alkane R.sub.3 H having at least three carbon atoms to form a hydridomethyl complex of the formula: CpIr[P(R.sub.1).sub.3 ]HMe where Me represents a methyl radical. (b) reacting said hydridomethyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X"X'"X"" or CHX'X"X'"; wherein X', X", X"', and X"" represent halogens selected from bromine, iodine and chlorine, to halomethyl complex of step (a) having the formula: CpIr[P(R.sub.1).sub.3 ]MeX: (c) reacting said halomethyl complex with a mercuric halide of the formula HgX.sub.2 to form a methyl mercuric halide of the formula HgMeX; and (d) reacting said methyl mercuric halide with a molecular halogen of the formula X.sub.2 to form methyl halide.

  10. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    PubMed Central

    2012-01-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the ‘core/shell’ interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon. PMID:22548846

  11. Iridium in sea-water.

    PubMed

    Fresco, J; Weiss, H V; Phillips, R B; Askeland, R A

    1985-08-01

    Iridium in sea-water has been measured (after isolation from the saline matrix by reduction with magnesium) by neutron bombardment, radiochemical purification and high-resolution gamma-ray spectroscopy. The concentration obtained in a Pacific coastal water was 1.02 +/- 0.26 x 10(-14) g per g of sea-water. At such extremely low concentrations, seawater is an extremely unlikely source for anomalously high iridium concentrations measured in the Cretaceous-Tertiary boundary layer of deep-sea sediments.

  12. Silicidation of Ni(Yb) Film on Si(001)

    NASA Astrophysics Data System (ADS)

    Luo, Jia; Jiang, Yu-Long; Ru, Guo-Ping; Li, Bing-Zong; Chu, Paul K.

    2008-03-01

    The influence of the addition of Yb to Ni on the silicidation of Ni was investigated. The Ni(Yb) film was deposited on a Si(001) substrate by co-sputtering, and silicidation was performed by rapid thermal annealing (RTA). After silicidation, the sheet resistance of the silicide film was measured by the four-point probe method. X-ray diffraction and micro-Raman spectroscopy were employed to identify the silicide phases, and the redistribution of Yb after RTA was characterized by Rutherford backscattering spectrometry and Auger electron spectroscopy. The influence of the Yb addition on the Schottky barrier height (SBH) of the silicide/Si diode was examined by current voltage measurements. The experimental results reveal that the addition of Yb can suppress the formation of the high-resistivity Ni2Si phase, but the formation of low-resistivity NiSi phase is not affected. Furthermore, after silicidation, most of the Yb atoms accumulate in the surface layer and only a small number of Yb atoms pile up at the silicide/Si(001) interface. It is believed that the accumulation of a small amount of Yb at the silicide/Si(001) interface results in the SBH reduction observed in the Ni(Yb)Si/Si diode.

  13. Fusion silicide coatings for tantalum alloys.

    NASA Technical Reports Server (NTRS)

    Warnock, R. V.; Stetson, A. R.

    1972-01-01

    Calculation of the performance of fusion silicide coatings under simulated atmospheric reentry conditions to a maximum temperature of 1810 K (2800 F). Both recently developed and commercially available coatings are included. Data are presented on oxidation rate with and without intentional defecting, the influence of the coatings on the ductile-brittle bend transition temperature, and the mechanical properties. Coatings appear capable of affording protection for at least 100 simulated cycles to 2600 F and 63 cycles to 2800 F.

  14. Iridium-Catalyzed Allylic Substitution

    NASA Astrophysics Data System (ADS)

    Hartwig, John F.; Pouy, Mark J.

    Iridium-catalyzed asymmetric allylic substitution has become a valuable method to prepare products from the addition of nucleophiles at the more substituted carbon of an allyl unit. The most active and selective catalysts contain a phosphoramidite ligand possessing at least one arylethyl substituent on the nitrogen atom of the ligand. In these systems, the active catalyst is generated by a base-induced cyclometalation at the methyl group of this substituent to generate an iridium metalacycle bound by the COD ligand of the [Ir(COD)Cl]2 precursor and one additional labile dative ligand. Such complexes catalyze the reactions of linear allylic esters with alkylamines, arylamines, phenols, alcohols, imides, carbamates, ammonia, enolates and enolate equivalents, as well as typical stabilized carbon nucleophiles generated from malonates and cyanoesters. Iridium catalysts for enantioselective allylic substitution have also been generated from phosphorus ligands with substituents bound by heteroatoms, and an account of the studies of such systems, along with a description of the development of iridium catalysts is included.

  15. IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORATION 5 LBF CLASS ROCKET CHAMBER 25 LBF CLASS 75 HFC 25 TAC CERAMIC COMPOSITE ROCKET CHAMBER FROM REFRACTURY COMPOSITES INC. PURCHASE ORDER C-551941-

  16. Formation, structure, and orientation of gold silicide on gold surfaces

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1976-01-01

    The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.

  17. Initial development of high-temperature titanium silicide alloys

    SciTech Connect

    Liu, C.T.; Lee, E.H.; Henson, T.J.

    1988-01-01

    Mechanical and metallurgical properties of Ti/sub 5/Si/sub 3/ and its alloys were studied for the purpose of developing high-temperature silicides for structural use. Titanium silicides are extremely hard and brittle. Microcracks that formed transgranularly were observed in the silicide and its alloys, indicating a poor cleavage strength for Ti/sub 5/Si/sub 3/. Microalloying with boron and carbon gave no apparent beneficial effect. The tendency for cracking can be reduced by lowering the silicon content or by alloying with 2 to 4% Cr and 4% Zr. In particular, almost no cracks were observed in the alloy Ti-33Si-4Zr-4Cr (at. %). Titanium silicide has a hardness of 980 dph. The hardness shows a slight increase with zirconium additions and a decrease with chromium additions. Tensile tests indicate that the silicide and its alloys are brittle even at 1000/degree/C. All alloys fractured with a strength less than 100 MPa. Among the silicides tested, the alloys containing 4 to 8% Cr have better fracture strength. The fracture mode of the silicide alloys is mainly transgranular with a cleavage appearance. The silicides showed basically a parabolic oxidation rate at 800/degree/C, with an oxidation rate higher by an order of magnitude than that of nickel aluminides. 10 figs., 5 tabs.

  18. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  19. Formation, structure, and orientation of gold silicide on gold surfaces

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1976-01-01

    The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.

  20. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  1. Thermal Stability of Magnesium Silicide/Nickel Contacts

    NASA Astrophysics Data System (ADS)

    de Boor, J.; Droste, D.; Schneider, C.; Janek, J.; Mueller, E.

    2016-10-01

    Magnesium silicide-based materials are a very promising class of thermoelectric materials with excellent potential for thermoelectric waste heat recovery. For the successful application of magnesium silicide-based thermoelectric generators, the development of long-term stable contacts with low contact resistance is as important as material optimization. We have therefore studied the suitability of Ni as a contact material for magnesium silicide. Co-sintering of magnesium silicide and Ni leads to the formation of a stable reaction layer with low electrical resistance. In this paper we show that the contacts retain their low electrical contact resistance after annealing at temperatures up to 823 K for up to 168 h. By employing scanning electron microscope analysis and time-of-flight (ToF)-secondary ion mass spectrometry, we can further show that elemental diffusion is occurring to a very limited extent. This indicates long-term stability under practical operation conditions for magnesium silicide/nickel contacts.

  2. Cosine (Cobalt Silicide Growth Through Nitrogen-Induced Epitaxy) Process For Epitaxial Cobalt Silicide Formation For High Performance Sha

    DOEpatents

    Lim, Chong Wee; Shin, Chan Soo; Gall, Daniel; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-09-28

    A method for forming an epitaxial cobalt silicide layer on a MOS device includes sputter depositing cobalt in an ambient to form a first layer of cobalt suicide on a gate and source/drain regions of the MOS device. Subsequently, cobalt is sputter deposited again in an ambient of argon to increase the thickness of the cobalt silicide layer to a second thickness.

  3. The growth and applications of silicides for nanoscale devices

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chen; Chen, Yu; Huang, Yu

    2012-02-01

    Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at the nanoscale have indicated possible deviations from the bulk and the thin film system. Here we present a review of fabrication, growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction.Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at the nanoscale have indicated possible deviations from the bulk and the thin film system. Here we present a review of fabrication, growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction. This article was submitted as part of a collection highlighting papers on the `Recent Advances in Semiconductor Nanowires Research' from ICMAT 2011.

  4. Thermoelectric properties of higher manganese silicides

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chih; Venkataraman, Vijay Shankar; Kee, Hae-Young

    2015-03-01

    Higher manganese silicides (HMS) are promising thermoelectric materials that may be broadly deployable because of the abundance of the constituent elements and their non-toxic nature. We study the thermoelectric properties of HMS using density functional theory calculations and tight-binding models to fit these calculations. We estimate charge carrier density and mobility, and compare with experimental data. Theoretically obtained thermal and electrical conductivities, and the Seebeck coefficients are presented. Possible scattering mechanisms and relations to figure of merit are also discussed. NSERC CREATE - HEATER Program.

  5. Miniaturized platinum silicide focal plane array camera

    NASA Astrophysics Data System (ADS)

    Landry, Joseph W.; Stetson, Norman B.

    1994-07-01

    With the introduction of the Inframetrics InfraCAM, a new standard is established for small, lightweight, low power, hand- held, high sensitivity, high resolution thermal imaging systems. A unique design approach to video processing as well as the compact and efficient Inframetrics patented Sterling cycle microcooler allow the unit to require less than 5 watts of power during operation. The unit is smaller than most commercially available `palm-corders' with both the sensor and processing electronics housed in the same package. This paper reviews both the architecture and performance of our 256 X 256 platinum silicide array based imager.

  6. Thermodynamic properties of higher lanthanum silicide

    SciTech Connect

    Polotskaya, R.I.

    1988-07-01

    The thermodynamic properties of lanthanum disilicide were examined for the first time in the 960-1050/sup 0/K range by measuring the electromotive force of a galvanic cell based on LaSn, the chlorides of potassium, sodium, and lanthanum, and lanthanum silicide and silicon. Reference electrodes were used to prevent lanthanum interaction with the electrolyte. The alloys were melted in an electric arc furnace in purified argon from lanthanum and silicon and followed by two-stage annealing. It was found that the resulting value of the enthalpy formation differed from the estimated value for lanthanum disilicide calculated by Miedema's model.

  7. Irradiation behaviour of uranium silicide compounds

    NASA Astrophysics Data System (ADS)

    Finlay, M. R.; Hofman, G. L.; Snelgrove, J. L.

    2004-02-01

    A study of the irradiation behaviour of uranium silicide and other related inter-metallic uranium compounds is presented. This study was motivated by the recent discovery that U 3Si 2 undergoes a crystalline to amorphous transformation during irradiation. Such information renders a previously developed fuel swelling model based on the crystalline state of U 3Si 2 invalid. This is of particular significance since low enriched U 3Si 2 dispersion fuels are widely used in research reactors. While such a finding does not alter the well established, stable and benign behaviour of U 3Si 2 during irradiation, it does indicate that a different interpretation of that behaviour is required.

  8. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1996-12-03

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  9. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1998-07-14

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  10. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1997-12-02

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  11. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1996-12-03

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  12. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1998-07-14

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  13. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1997-12-02

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  14. Joule-assisted silicidation for short-channel silicon nanowire devices.

    PubMed

    Mongillo, Massimo; Spathis, Panayotis; Katsaros, Georgios; Gentile, Pascal; Sanquer, Marc; De Franceschi, Silvano

    2011-09-27

    We report on a technique enabling electrical control of the contact silicidation process in silicon nanowire devices. Undoped silicon nanowires were contacted by pairs of nickel electrodes, and each contact was selectively silicided by means of the Joule effect. By a real-time monitoring of the nanowire electrical resistance during the contact silicidation process we were able to fabricate nickel-silicide/silicon/nickel-silicide devices with controlled silicon channel length down to 8 nm.

  15. The crystal morphology effect of Iridium tris-acetylacetonate on MOCVD iridium coatings

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Hao, Yupeng; Yu, Xiaodong; Tan, Chengwen

    2017-07-01

    Iridium tris-acetylacetonate is the most commonly used precursor for the metal organic chemical vapour deposition (MOCVD) of iridium coating. In this paper, the crystal morphology effect of iridium tris-acetylacetonate on iridium coatings prepared by MOCVD was studied. Two kinds of Ir(acac)3 crystalline powder were prepared. A precursor sublimation experiment in a fixed bed reactor and an iridium deposition experiment in a cold-wall atmospheric CVD reactor were designed. It is found that the volatility of the hexagonal columnar crystals is better than that of the tetragonal flake crystals under the experimental conditions. It’s due to the hexagonal columnar crystals exposed more crystal faces than the tetragonal flake crystals, increasing its contact area with the transport gas. An adequate supply of iridium tris-acetylacetonate during the pre-deposition period contributed to obtain an iridium coating with a smooth and uniform continuity surface.

  16. Formation of titanium silicides by high dose ion implantation

    NASA Astrophysics Data System (ADS)

    Salvi, V. P.; Vidwans, S. V.; Rangwala, A. A.; Arora, B. M.; Kuldeep; Jain, Animesh K.

    1987-09-01

    We have investigated titanium silicide formation using high dose (˜ 2 × 10 21 ions/m 2) ion implantation of 30 keV, 48Ti + ions a room temperature into two different types of Si substrates: (a) n-type <111> single crystals and (b) amorphous Si films (˜ 200 nm thick) vacuum deposited onto a thermally grown SiO 2 layer. XRD and RBS techniques were employed to characterize various silicide phases and their depth distribution in as-implanted as well as in annealed samples. We find that a mixture of TiSi, TiSi 2 and Ti 5Si 4 silicides is formed by high dose implantation. Out of these, TiSi; was found to be the dominant phase. The composition of these silicide layers is practically uniform with depth and remains unaltered on heat treatment up to 750° C. The electrical properties of silicide layers have also been investigated using sheet resistance measurements. The resistivity of as-implanted layers is rather high ( ˜ 10 μΩ m), but drops sharply by nearly a factor of 20 after a post-implantation anneal above 800° C. The resistivity of silicide layers thus obtained compare well with silicides prepared by other techniques.

  17. Initial surface silicidation on Ni(110)

    NASA Astrophysics Data System (ADS)

    Fukuda, T.; Kishida, I.; Umezawa, K.

    2017-05-01

    Initial silicide formation on a Ni(110) surface was studied by scanning tunneling microscopy (STM) in an ultrahigh vacuum. Less than 0.5 ML of Si deposition initiated a Si-Ni mixed layer by displacing substrate Ni, and dark sites were formed in the STM images. A 0.5 ML-Si deposited surface showed that Si and Ni were alternately aligned in a close-packed [ 1 1 bar 0 ] row whereas Si pairs aligned along the [ 001 ] direction forming p(1×2), obliquely aligned forming c(2×2), or even straightly-and-obliquely aligned forming c(4×2) superstructures. A first-principles total energy calculation showed that the p(1×2) and c(4×2) structures had almost the same energy while the c(2×2) structure gave 13 meV/1×1 higher energy. Because a Si-Si bond in the close-packed [ 1 1 bar 0 ] row is energetically unfavorable, Si deposition of more than 0.5 ML did not further replace the substrate Ni, but silicide islands were nucleated along with a trench structure.

  18. Boron modified molybdenum silicide and products

    DOEpatents

    Meyer, Mitchell K.; Akinc, Mufit

    1999-02-02

    A boron-modified molybdenum silicide material having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo.sub.5 Si.sub.3 phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi.sub.2 heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo.sub.5 Si.sub.3 for structural integrity.

  19. Boron modified molybdenum silicide and products

    DOEpatents

    Meyer, M.K.; Akinc, M.

    1999-02-02

    A boron-modified molybdenum silicide material is disclosed having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo{sub 5}Si{sub 3} phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi{sub 2} heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo{sub 5}Si{sub 3} for structural integrity. 7 figs.

  20. ITEP MEVVA ion beam for rhenium silicide production

    SciTech Connect

    Kulevoy, T.; Seleznev, D.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Yakushin, P.; Petrenko, S.; Gerasimenko, N.; Medetov, N.; Zaporozhan, O.

    2010-02-15

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  1. Iridium material for hydrothermal oxidation environments

    DOEpatents

    Hong, Glenn T.; Zilberstein, Vladimir A.

    1996-01-01

    A process for hydrothermal oxidation of combustible materials in which, during at least a part of the oxidation, corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises iridium, iridium oxide, an iridium alloy, or a base metal overlaid with an iridium coating. Iridium has been found to be highly resistant to environments encountered in the process of hydrothermal oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 800.degree. C.

  2. OMCVD of cobalt and cobalt silicide

    NASA Astrophysics Data System (ADS)

    Dormans, G. J. M.; Meekes, G. J. B. M.; Staring, E. G. J.

    1991-11-01

    Cobalt and cobalt silicide layers were deposited by OMCVD using the Co precursors Co(C 5H 5) 2, Co 2(CO) 8, Co(C 5H 5)(CO) 2 and CoCF 3(CO) 4, and the Si precursors SiH 4 and Si 2H 6. Strongly textured (111)-β Co layers were grown from Co(C 5H 5) 2, Co(C 5H 5)(CO) 2 and CoCF 3(CO) 4 at temperatures above 300°C in H 2 at atmospheric pressure. Growth from Co(C 5H 5) 2 is inhibited on Si substrates. For temperatures ≥600°C the Co layers deposited from Co(C 5H 5)(CO) 2 react with the Si(100) substrate to form CoSi 2(00 l) aligned with the substrate orientation. Co 2(CO) 8 gives amorphous Co between 200 and 300°C. The upper temperature is set by the occurrence of homogeneous gas-phase reactions at atmospheric reactor pressure. Cobalt silicide layers can be grown from CO 2(CO) 8 and (di)silane at temperatures between 200 and 400°C. The Co/Si ratio in the layers decreases with increasing temperature and is independent of the gas-phase Co/Si ratio. Stoichiometric CoSi 2 is obtained at ~ 300°C. Both Co(C 5H 5) 2 and Co(C 5H 5)(CO) 2 react with (di)silane, leading to the incorporation of carbon in the layer. The Co/Si ration and the carbon content in the layers are practically independent of the deposition conditions. With CoCF 3(CO) 4 no contamination-free silicide could be grown. The carbon incorporation with Co(C 5H 5) 2 and Co(C 5H 5)(CO) 2 can be avoided by a pulsed growth method in which the Co precursor and the Si precursor are introduced alternately into the reactor. With Co(C 5H 5) 2 the growth is then inhibited on Si substrates.

  3. Titanium silicide formation on boron-implanted silicon

    SciTech Connect

    Chow, T.P.; Goehner, R.; Katz, W.; Smith, G.

    1985-08-01

    Thin film interaction between Ti and boron-implanted silicon substrates at 650/sup 0/-900/sup 0/ C was investigated. The compositional properties were examined with Rutherford backscattering spectrometry and secondary ion mass spectrometry, the structural properties with x-ray diffraction, and the electrical properties with sheet resistance measurements. At 650/sup 0/ C, incomplete Ti/Si reaction led to significant amounts of intermediate silicide phases (Ti/sub 5/Si/sub 3/ and TiSi) and hence higher sheet resistance. Annealing at 700/sup 0/ C or higher resulted in conversion of the titanium film into predominantly TiSi/sub 2/ and a lower sheet resistance. Boron was found to redistribute into the silicide layer during annealing, leading to an accumulation on the surface and a depletion at the silicide/silicon interface. The diffusion kinetics of boron through titanium silicide are compared with those of other p- and n-type dopants.

  4. Growth and stability of copper silicide thin films

    NASA Astrophysics Data System (ADS)

    Hymes, Stephen William

    1999-11-01

    Copper silicide has been investigated as a candidate material in copper-based multilevel interconnects (MLI)for application in Ultra Large Scale Integration (ULSI). The selective formation of a passivating copper silicide surface layer on a copper thin film is achieved by exposure of the copper film to a dilute silane mixture at elevated temperature. The morphology and kinetics of the surface silicide and subsequent thermal stability in inert and oxidizing ambient were investigated using RBS, XRD and other conventional characterization techniques. Consequently, a preliminary evaluation of this material for application in future microelectronics is made. With respect to growth product formation and morphology, a continuous, uniform, homogenous eta'' -Cu3Si film is formed in the presence of an in-situ 30 sec, 50 watt 3% H2/Ar preclean and silane exposure above 200 C. Silane exposure of the copper film above 300 C leads to the initial formation of gamma-Cu 5Si, as the Cu3Si is no longer stable in the presence of excess underlying copper, until such time that no unreacted copper remains at which point eta''-Cu3 Si again nucleates and grows at the expense of the more copper-rich silicide. The growth kinetics of this surface silicide were also determined. A kinetically limited growth above 1000 sccm of 2% SiH4/Ar is evidenced by saturation of the growth thickness dependence on flow rate. A linear time dependence exists over the low temperature regime corresponding to eta ''-Cu3Si growth. The temperature dependence indicates a reaction rate which is Arrhenius with an apparent activation energy of Ea = 0.87 +/- 0.19 eV. The partial pressure exponent, q, for silane is found to be q = 0.13 +/- .10 while no dependence on the growth rate is found upon total pressure. Evaluation of the silicide surface layer was then performed with respect to stability in inert and oxidizing media. As-formed copper silicide/copper bilayers were annealed in a static air ambient and the oxidation

  5. TCP Performance Enhancement Over Iridium

    NASA Technical Reports Server (NTRS)

    Torgerson, Leigh; Hutcherson, Joseph; McKelvey, James

    2007-01-01

    In support of iNET maturation, NASA-JPL has collaborated with NASA-Dryden to develop, test and demonstrate an over-the-horizon vehicle-to-ground networking capability, using Iridium as the vehicle-to-ground communications link for relaying critical vehicle telemetry. To ensure reliability concerns are met, the Space Communications Protocol Standards (SCPS) transport protocol was investigated for its performance characteristics in this environment. In particular, the SCPS-TP software performance was compared to that of the standard Transmission Control Protocol (TCP) over the Internet Protocol (IP). This paper will report on the results of this work.

  6. TCP Performance Enhancement Over Iridium

    NASA Technical Reports Server (NTRS)

    Torgerson, Leigh; Hutcherson, Joseph; McKelvey, James

    2007-01-01

    In support of iNET maturation, NASA-JPL has collaborated with NASA-Dryden to develop, test and demonstrate an over-the-horizon vehicle-to-ground networking capability, using Iridium as the vehicle-to-ground communications link for relaying critical vehicle telemetry. To ensure reliability concerns are met, the Space Communications Protocol Standards (SCPS) transport protocol was investigated for its performance characteristics in this environment. In particular, the SCPS-TP software performance was compared to that of the standard Transmission Control Protocol (TCP) over the Internet Protocol (IP). This paper will report on the results of this work.

  7. A promising new thermoelectric material - Ruthenium silicide

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Mccormack, Joseph A.; Zoltan, Andrew; Zoltan, Leslie D.

    1991-01-01

    Experimental and theoretical efforts directed toward increasing thermoelectric figure of merit values by a factor of 2 or 3 have been encouraging in several respects. An accurate and detailed theoretical model developed for n-type silicon-germanium (SiGe) indicates that ZT values several times higher than currently available are expected under certain conditions. These new, high ZT materials are expected to be significantly different from SiGe, but not unreasonably so. Several promising candidate materials have been identified which may meet the conditions required by theory. One such candidate, ruthenium silicide, currently under development at JPL, has been estimated to have the potential to exhibit figure of merit values 4 times higher than conventional SiGe materials. Recent results are summarized.

  8. Valence photoelectron spectroscopy of Gd silicides

    SciTech Connect

    Braicovich, L. ); Puppin, E.; Lindau, I. ); Iandelli, A.; Olcese, G.L.; Palenzona, A. )

    1990-02-15

    Gd{sub 3}Si{sub 5}, GdSi, and Gd{sub 5}Si{sub 3} were investigated with photoemission spectroscopy in the photon-energy range 40.8--149 eV by exploiting the energy dependence of the photoemission cross sections and the valence resonance at the crossing of the Gd 4{ital d}-4{ital f} threshold. The modification of the spectra versus photon energy, along with their stoichiometry dependence, show the relevance of covalent mixed Gd 5{ital d}--Si 3{ital sp} states in the formation of the chemical bond. In the region close to the Fermi level an increase of the {ital d} contribution is observed. These points are discussed in connection with the existing models of the silicide bond.

  9. The next step in chemical propulsion: Oxide-iridium/rhenium combustion chambers

    SciTech Connect

    Fortini, Arthur J.; Tuffias, Robert H.

    1999-01-22

    Chemical propulsion systems are currently limited by materials issues. Until recently, the state-of-the-art material for liquid propellant combustion chambers was silicide-coated niobium. However, combustion chamber performance demands have exceeded the capabilities of this material system, requiring development of better materials. The iridium/rhenium combustion chamber, comprising a rhenium structural shell with an iridium inner liner for oxidation protection, represents the current state of the art in high-performance, high temperature, long-life propulsion systems using nitrogen tetroxide/monomethyl hydrazine propellant. However, oxygen/hydrogen (O{sub 2}/H{sub 2}) and new 'green' monopropellants under development to replace hydrazine will be significantly more oxidizing at operating temperature. For these more highly aggressive combustion environments, Ultramet has shown that substantial additional life can be obtained by lining the interior of the combustion chamber with a refractory metal oxide, which functions as a thermal and gas diffusion barrier and provides dramatically increased oxidation resistance. Ultramet has fabricated numerous 22-N (5-lb{sub f}) thrust chambers with this oxide-iridium/rhenium architecture that have been hot-fire tested at NASA Lewis Research Center in O{sub 2}/H{sub 2} propellant at mixture ratios of 6 and 16, with steady-state exterior wall temperatures ranging from 2433 to 2899 K, comprising the most severe temperature and oxidizing conditions ever utilized. Of the seven chambers tested to date, three failed due to facility problems, and two never failed. The best-performing chamber was hot-fired for 13,595 seconds (227 minutes; 3.8 hours) and showed no visible signs of degradation. Additional chambers are being fabricated for future testing.

  10. The next step in chemical propulsion: Oxide-iridium/rhenium combustion chambers

    NASA Astrophysics Data System (ADS)

    Fortini, Arthur J.; Tuffias, Robert H.

    1999-01-01

    Chemical propulsion systems are currently limited by materials issues. Until recently, the state-of-the-art material for liquid propellant combustion chambers was silicide-coated niobium. However, combustion chamber performance demands have exceeded the capabilities of this material system, requiring development of better materials. The iridium/rhenium combustion chamber, comprising a rhenium structural shell with an iridium inner liner for oxidation protection, represents the current state of the art in high-performance, high temperature, long-life propulsion systems using nitrogen tetroxide/monomethyl hydrazine propellant. However, oxygen/hydrogen (O2/H2) and new ``green'' monopropellants under development to replace hydrazine will be significantly more oxidizing at operating temperature. For these more highly aggressive combustion environments, Ultramet has shown that substantial additional life can be obtained by lining the interior of the combustion chamber with a refractory metal oxide, which functions as a thermal and gas diffusion barrier and provides dramatically increased oxidation resistance. Ultramet has fabricated numerous 22-N (5-lbf) thrust chambers with this oxide-iridium/rhenium architecture that have been hot-fire tested at NASA Lewis Research Center in O2/H2 propellant at mixture ratios of 6 and 16, with steady-state exterior wall temperatures ranging from 2433 to 2899 K, comprising the most severe temperature and oxidizing conditions ever utilized. Of the seven chambers tested to date, three failed due to facility problems, and two never failed. The best-performing chamber was hot-fired for 13,595 seconds (227 minutes; 3.8 hours) and showed no visible signs of degradation. Additional chambers are being fabricated for future testing.

  11. On the dissolution of iridium by aluminum.

    SciTech Connect

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  12. Nano-structured silicide formation by focused ion beam implantation and integration of silver metallization with thin film silicide layers

    NASA Astrophysics Data System (ADS)

    Mitan, Martin M.

    Nano-structured silicide formation was mediated through ion implantation. Silicide structures with dimensions of 170 nm were produced on (100) silicon substrates by ion implantation of 200 KeV As++ through a thin cobalt film on SiO2/Si structure. A selective reaction barrier at the Si/Co interface comprising of a thin (˜2 nm) oxide (SiO 2) prevents unwanted reactions. Ion-beam mixing was instrumental in the fracturing of the oxide layer, thereby allowing the migration of metal atoms across the SiO2/Co boundary for the silicidation reaction to proceed during subsequent rapid thermal anneal (RTA) treatments. A threshold dose of 3 x 1015 cm-2 was required for process initiation. Four-terminal resistance test structures were formed for electrical measurements. Resistivity values obtained ranged from 12 to 23 muO-cm, improving with increased ion dose. Application of this method can facilitate a wide variety of silicide structures. Part two of this study focused on the reliability study of silver metalization with silicides. Silicide thin films of CoSi2 and NiSi were prepared by solid phase reactions utilizing the bi-layer technique. Silver thin films were then deposited on the silicides to evaluate the thermal stability of the films during vacuum annealing. Rutherford backscattering spectrometry of annealed films revealed Ag film changes to occur at 700°C. No changes in the silicide thin films could be detected. Scanning electron microscopy of annealed films shows grain coarsening of the Ag film with increasing anneal temperature. At 650°C, voids begin to appear in the film. Increasing anneal temperature up to 700°C agglomerates the film. X-ray diffraction glancing angle scans revealed no phase changes in annealed films. The as-deposited case and 700°C both show the same reflection peaks being present. Secondary ion mass spectroscopy depth profiling revealed trace amounts of Ag at the silicide/silicon interface following a heat treatment. This occurrence appears to

  13. Enantioselective, iridium-catalyzed monoallylation of ammonia.

    PubMed

    Pouy, Mark J; Stanley, Levi M; Hartwig, John F

    2009-08-19

    Highly enantioselective, iridium-catalyzed monoallylations of ammonia are reported. These reactions occur with electron-neutral, -rich, and -poor cinnamyl carbonates, alkyl and trityloxy-substituted allylic carbonates, and dienyl carbonates in moderate to good yields and excellent enantioselectivities. This process is enabled by the use of an iridium catalyst that does not require a Lewis acid for activation and that is stable toward a large excess of ammonia. This selective formation of primary allylic amines allows for one-pot syntheses of heterodiallylamines and allylic amides that are not otherwise accessible via iridium-catalyzed allylic amination without the use of blocking groups and protective group manipulations.

  14. Determining the Altitude of Iridium Flares

    NASA Technical Reports Server (NTRS)

    Foster, James; Owe, Manfred

    1999-01-01

    Iridium flares have nothing to do with the element iridium. Iridium is also the name of a telecommunications company that has been launching satellites into low orbits around the Earth. These satellites are being used for a new type of wireless phone and paging service. Flares have been observed coming from these satellites. These flares have the potential, especially when the full fleet of satellites is in orbit, to disrupt astronomical observations. The paper reviews using simple trigonometry how to calculate the altitude of one of these satellites.

  15. Enantioselective, Iridium-Catalyzed Monoallylation of Ammonia

    PubMed Central

    Pouy, Mark J.; Stanley, Levi M.; Hartwig, John F.

    2009-01-01

    Highly enantioselective, iridium-catalyzed monoallylations of ammonia are reported. These reactions occur with electron-neutral, -rich, and -poor cinnamyl carbonates, alkyl and trityloxy-substituted allylic carbonates, and dienyl carbonates in moderate to good yields and excellent enantioselectivities. This process is enabled by the use of an iridium catalyst that does not require a Lewis acid for activation and that is stable toward a large excess of ammonia. This selective formation of primary allylic amines allows for one-pot syntheses of heterodiallylamines and allylic amides that are not otherwise accessible via iridium-catalyzed allylic amination without the use of blocking groups and protective group manipulations. PMID:19722644

  16. Determining the Altitude of Iridium Flares

    NASA Technical Reports Server (NTRS)

    Foster, James; Owe, Manfred

    1999-01-01

    Iridium flares have nothing to do with the element iridium. Iridium is also the name of a telecommunications company that has been launching satellites into low orbits around the Earth. These satellites are being used for a new type of wireless phone and paging service. Flares have been observed coming from these satellites. These flares have the potential, especially when the full fleet of satellites is in orbit, to disrupt astronomical observations. The paper reviews using simple trigonometry how to calculate the altitude of one of these satellites.

  17. Silicide Nanowires for Low-Resistance CMOS Transistor Contacts.

    NASA Astrophysics Data System (ADS)

    Zollner, Stefan

    2007-03-01

    Transition metal (TM) silicide nanowires are used as contacts for modern CMOS transistors. (Our smallest wires are ˜20 nm thick and ˜50 nm wide.) While much research on thick TM silicides was conducted long ago, materials perform differently at the nanoscale. For example, the usual phase transformation sequences (e.g., Ni, Ni2Si, NiSi, NiSi2) for the reaction of thick metal films on Si no longer apply to nanostructures, because the surface and interface energies compete with the bulk energy of a given crystal structure. Therefore, a NiSi film will agglomerate into hemispherical droplets of NiSi by annealing before it reaches the lowest-energy (NiSi2) crystalline structure. These dynamics can be tuned by addition of impurities (such as Pt in Ni). The Si surface preparation is also a more important factor for nanowires than for silicidation of thick TM films. Ni nanowires formed on Si surfaces that were cleaned and amorphized by sputtering with Ar ions have a tendency to form NiSi2 pyramids (``spikes'') even at moderate temperatures (˜400^oC), while similar Ni films formed on atomically clean or hydrogen-terminated Si form uniform NiSi nanowires. Another issue affecting TM silicides is the barrier height between the silicide contact and the silicon transistor. For most TM silicides, the Fermi level of the silicide is aligned with the center of the Si band gap. Therefore, silicide contacts experience Schottky barrier heights of around 0.5 eV for both n-type and p-type Si. The resulting contact resistance becomes a significant term for the overall resistance of modern CMOS transistors. Lowering this contact resistance is an important goal in CMOS research. New materials are under investigation (for example PtSi, which has a barrier height of only 0.3 eV to p-type Si). This talk will describe recent results, with special emphasis on characterization techniques and electrical testing useful for the development of silicide nanowires for CMOS contacts. In collaboration

  18. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.

    PubMed

    Jun, Dongsuk; Kim, Soojung; Choi, Wonchul; Kim, Junsoo; Zyung, Taehyoung; Jang, Moongyu

    2015-10-01

    We fabricated silicide/silicon hetero-junction structured thermoelectric device by CMOS process for the reduction of thermal conductivity with the scatterings of phonons at silicide/silicon interfaces. Electrical conductivities, Seebeck coefficients, power factors, and temperature differences are evaluated using the steady state analysis method. Platinum silicide/silicon multilayered structure showed an enhanced Seebeck coefficient and power factor characteristics, which was considered for p-leg element. Also, erbium silicide/silicon structure showed an enhanced Seebeck coefficient, which was considered for an n-leg element. Silicide/silicon multilayered structure is promising for thermoelectric applications by reducing thermal conductivity with an enhanced Seebeck coefficient. However, because of the high thermal conductivity of the silicon packing during thermal gradient is not a problem any temperature difference. Therefore, requires more testing and analysis in order to overcome this problem. Thermoelectric generators are devices that based on the Seebeck effect, convert temperature differences into electrical energy. Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, it is only in recent years that interest has increased in energy generation.

  19. Epitaxial silicide formation on recoil-implanted substrates

    SciTech Connect

    Hashimoto, Shin; Egashira, Kyoko; Tanaka, Tomoya; Etoh, Ryuji; Hata, Yoshifumi; Tung, R. T.

    2005-01-15

    An epitaxy-on-recoil-implanted-substrate (ERIS) technique is presented. A disordered surface layer, generated by forward recoil implantation of {approx}0.7-3x10{sup 15} cm{sup -2} of oxygen during Ar plasma etching of surface oxide, is shown to facilitate the subsequent epitaxial growth of {approx}25-35-nm-thick CoSi{sub 2} layers on Si(100). The dependence of the epitaxial fraction of the silicide on the recoil-implantation parameters is studied in detail. A reduction in the silicide reaction rate due to recoil-implanted oxygen is shown to be responsible for the observed epitaxial formation, similar to mechanisms previously observed for interlayer-mediated growth techniques. Oxygen is found to remain inside the fully reacted CoSi{sub 2} layer, likely in the form of oxide precipitates. The presence of these oxide precipitates, with only a minor effect on the sheet resistance of the silicide layer, has a surprisingly beneficial effect on the thermal stability of the silicide layers. The agglomeration of ERIS-grown silicide layers on polycrystalline Si is significantly suppressed, likely from a reduced diffusivity due to oxygen in the grain boundaries. The implications of the present technique for the processing of deep submicron devices are discussed.

  20. Hafnium silicide formation on Si(100) upon annealing

    SciTech Connect

    Siervo, A. de; Fluechter, C. R.; Weier, D.; Schuermann, M.; Dreiner, S.; Westphal, C.; Carazzolle, M. F.; Pancotti, A.; Landers, R.; Kleiman, G. G.

    2006-08-15

    High dielectric constant materials, such as HfO{sub 2}, have been extensively studied as alternatives to SiO{sub 2} in new generations of Si based devices. Hf silicate/silicide formation has been reported in almost all literature studies of Hf based oxides on Si, using different methods of preparation. A silicate interface resembles close to the traditional Si/SiO{sub 2}. The silicate very likely forms a very sharp interface between the Si substrate and the metal oxide, and would be suitable for device applications. However, the thermal instability of the interfacial silicate/oxide film leads to silicidation, causing a dramatic loss of the gate oxide integrity. Despite the importance of the Hf silicide surface and interface with Si, only a few studies of this surface are present in the literature, and a structural determination of the surface has not been reported. This paper reports a study of the Hf silicide formation upon annealing by using a combination of XPS, LEED, and x-ray photoelectron diffraction (XPD) analyses. Our results clearly indicate the formation of a unique ordered Hf silicide phase (HfSi{sub 2}), which starts to crystallize when the annealing temperature is higher than 550 deg. C.

  1. Metal silicide/poly-Si Schottky diodes for uncooled microbolometers

    PubMed Central

    2013-01-01

    Nickel silicide Schottky diodes formed on polycrystalline Si 〈P〉 films are proposed as temperature sensors of monolithic uncooled microbolometer infrared focal plane arrays. The structure and composition of nickel silicide/polycrystalline silicon films synthesized in a low-temperature process are examined by means of transmission electron microscopy. The Ni silicide is identified as a multi-phase compound composed of 20% to 40% of Ni3Si, 30% to 60% of Ni2Si, and 10% to 30% of NiSi with probable minor content of NiSi2 at the silicide/poly-Si interface. Rectification ratios of the Schottky diodes vary from about 100 to about 20 for the temperature increasing from 22℃ to 70℃; they exceed 1,000 at 80 K. A barrier of around 0.95 eV is found to control the photovoltage spectra at room temperature. A set of barriers is observed in photo-electromotive force spectra at 80 K and attributed to the Ni silicide/poly-Si interface. Absolute values of temperature coefficients of voltage and current are found to vary from 0.3%℃ to 0.6%/℃ for forward bias and around 2.5%/℃ for reverse bias of the diodes. PMID:23594606

  2. Epitaxial titanium silicide islands and nanowires

    NASA Astrophysics Data System (ADS)

    He, Zhian; Stevens, M.; Smith, David J.; Bennett, P. A.

    2003-02-01

    The growth of titanium silicide islands formed by reactive deposition of Ti on Si(1 1 1) at T˜850 °C has been studied using atomic force microscopy and transmission electron microscopy. The predominant shape is very long and narrow, and can be considered to be a nanowire (NW). Other flat-topped structures coexist with the NWs, including small equilateral triangles and large rectangular plates. Most NWs are oriented along Si <2 2 0> directions, with typical dimensions 20 nm wide, 10 nm high and several microns long. A minority of NWs are oriented along Si <2 2 4> . These latter tend to break up into chains of small segments with regular size and spacing. Growth at lower temperature or higher deposition rate results in smaller and more numerous NWs. Length appears to be limited by intersection with other NWs oriented 120° apart. The junction between NWs appears to be incoherent in most cases. The triangular islands are positively identified as fully relaxed C54 TiSi 2, while the chains are relaxed C49 TiSi 2. The dominant NW structure is incommensurate and is tentatively identified as C49 TiSi 2.

  3. Ferromagnetic properties of manganese doped iron silicide

    NASA Astrophysics Data System (ADS)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  4. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  5. Formation of cobalt silicide by ion beam mixing

    NASA Astrophysics Data System (ADS)

    Min, Ye; Burte, Edmund P.; Ryssel, Heiner

    1991-07-01

    The formation of cobalt silicides by arsenic ion implantation through a cobalt film which causes a mixing of the metal with the silicon substrate was investigated. Furthermore, cobalt suicides were formed by rapid thermal annealing (RTA). Sheet resistance and silicide phases of implanted Co/Si samples depend on the As dose. Ion beam mixing at doses higher than 5 × 10 15 cm -2 and RTA at temperatures T ⩾ 900° C result in almost equal values of Rs. RBS and XRD spectra of these samples illustrate the formation of a homogeneous CoSi 2 layer. Significant lateral growth of cobalt silicide beyond the edge of patterned SiO 2 was observed in samples which were only subjected to an RTA process ( T ⩾ 900 ° C), while this lateral suicide growth could be reduced efficiently by As implantation prior to RTA.

  6. Oxidation resistance of composite silicide coatings on niobium

    SciTech Connect

    Gloshko, P.I.; Kurtsev, N.F.; Lisichenko, V.I.; Nadtoka, V.N.; Petrenko, M.I.; Zmii, V.I.

    1986-07-01

    This paper reports the oxidation of NbSi/sub 2/-MoSi/sub 2/ composite silicide coatings produced by diffusive siliconizing of molybdenum films on a niobium surface. Molybdenum-coated niobium was siliconized and an x-ray microspectral analysis of the composite silicide coating showed the phase composition to be an ca 80-um-thick outer molybdenum disilicide film with a characteristic coarsely crystalline columnar structure, and inner ca 20-um film of niobium disilicide consisting of the tiny columnar crystals, and a substrate/coating interface comprising a thin, 2-3 um film of lower silicide, i.e., Nb/sub 5/Si/sub 3/. The average grain sizes, unit cell parameters, and x-ray determined densities of the Mo films obtained by various methods are shown.

  7. IRIDIUM (R): A Lockheed transition to commercial space

    NASA Technical Reports Server (NTRS)

    Tadano, Thomas N.

    1995-01-01

    At Lockheed Missiles & Space Company, the IRIDIUM commercial space program is dramatically revolutionizing spacecraft development and manufacturing processes to reduce cost while maintaining quality and reliability. This report includes the following sections: an overview of the IRIDIUM system, the Lockheed IRIDIUM project and challenges; cycle-time reduction through production reorganization; and design for manufacturing and quality.

  8. IRIDIUM (R): A Lockheed transition to commercial space

    NASA Technical Reports Server (NTRS)

    Tadano, Thomas N.

    1995-01-01

    At Lockheed Missiles & Space Company, the IRIDIUM commercial space program is dramatically revolutionizing spacecraft development and manufacturing processes to reduce cost while maintaining quality and reliability. This report includes the following sections: an overview of the IRIDIUM system, the Lockheed IRIDIUM project and challenges; cycle-time reduction through production reorganization; and design for manufacturing and quality.

  9. Passivation of copper by silicide formation in dilute silane

    NASA Astrophysics Data System (ADS)

    Hymes, S.; Murarka, S. P.; Shepard, C.; Lanford, W. A.

    1992-05-01

    The formation of copper silicide by reaction of silane with sputtered copper films has been observed at temperatures as low as 300 °C. The growth kinetics have been monitored by both sheet resistance and x-ray diffraction techniques. Cu5Si is the first phase to form followed next by Cu3Si, coincident with the loss of the original copper layer. The silicide layer provides significant oxidation protection for the underlying copper up to 550 °C in air.

  10. Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires

    NASA Astrophysics Data System (ADS)

    Hsu, Hsun-Feng; Chen, Chun-An; Liu, Shang-Wu; Tang, Chun-Kai

    2017-03-01

    Ni-silicide/Si nanowires were fabricated by atomic force microscope nano-oxidation on silicon-on-insulator substrates, selective wet etching, and reactive deposition epitaxy. Ni-silicide nanocrystal-modified Si nanowire and Ni-silicide/Si heterostructure multi-stacked nanowire were formed by low- and high-coverage depositions of Ni, respectively. The Ni-silicide/Si Schottky junction and Ni-silicide region were attributed high- and low-resistance parts of nanowire, respectively, causing the resistance of the Ni-silicide nanocrystal-modified Si nanowire and the Ni-silicide/Si heterostructure multi-stacked nanowire to be a little higher and much lower than that of Si nanowire. An O2 sensing device was formed from a nanowire that was mounted on Pt electrodes. When the nanowires exposed to O2, the increase in current in the Ni-silicide/Si heterostructure multi-stacked nanowire was much larger than that in the other nanowires. The Ni-silicide nanocrystal-modified Si nanowire device had the highest sensitivity. The phenomenon can be explained by the formation of a Schottky junction at the Ni-silicide/Si interface in these two types of Ni-Silicide/Si nanowire and the formation of a hole channel at the silicon nanowire/native oxide interface after exposing the nanowires to O2.

  11. Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires.

    PubMed

    Hsu, Hsun-Feng; Chen, Chun-An; Liu, Shang-Wu; Tang, Chun-Kai

    2017-12-01

    Ni-silicide/Si nanowires were fabricated by atomic force microscope nano-oxidation on silicon-on-insulator substrates, selective wet etching, and reactive deposition epitaxy. Ni-silicide nanocrystal-modified Si nanowire and Ni-silicide/Si heterostructure multi-stacked nanowire were formed by low- and high-coverage depositions of Ni, respectively. The Ni-silicide/Si Schottky junction and Ni-silicide region were attributed high- and low-resistance parts of nanowire, respectively, causing the resistance of the Ni-silicide nanocrystal-modified Si nanowire and the Ni-silicide/Si heterostructure multi-stacked nanowire to be a little higher and much lower than that of Si nanowire. An O2 sensing device was formed from a nanowire that was mounted on Pt electrodes. When the nanowires exposed to O2, the increase in current in the Ni-silicide/Si heterostructure multi-stacked nanowire was much larger than that in the other nanowires. The Ni-silicide nanocrystal-modified Si nanowire device had the highest sensitivity. The phenomenon can be explained by the formation of a Schottky junction at the Ni-silicide/Si interface in these two types of Ni-Silicide/Si nanowire and the formation of a hole channel at the silicon nanowire/native oxide interface after exposing the nanowires to O2.

  12. Laser Spectroscopy of Iridium Monochloride

    NASA Astrophysics Data System (ADS)

    Linton, Colan; Adam, Allan G.; Foran, Samantha; Ma, Tongmei; Steimle, Timothy

    2016-06-01

    Iridium monochloride (IrCl) molecules have been produced in the gas phase using laser ablation sources at the University of New Brunswick (UNB) and Arizona State University (ASU). Low resolution laser induced fluorescence (LIF) spectra, obtained at UNB using a pulsed dye laser, showed three bands at 557, 545 and 534 nm which appeared to form an upper state vibrational progression. Dispersed fluorescence (DF) spectra, obtained by exciting each band at its band head frequency, showed a ground state vibrational progression extending from v=0 to 6. High resolution spectra (FWHM=0.006 wn), taken using a cw ring dye laser, showed resolved rotational lines, broadened by unresolved Ir (I=3/2) hyperfine structure, in both the 193Ir35Cl and 191Ir35Cl isotopologues. Vibrational assignments of 0-0, 1-0 and 2-0 for the three bands were determined from the isotope structure and the rotational analysis showed the transition to be ^3Φ_4 - ^3Φ_4, similar to that previously observed in IrF. Higher resolution spectra (FWHM=0.001 wn) of the 1-0 band, obtained at ASU, showed resolved hyperfine structure from which the magnetic and quadrupole hyperfine parameters in the ground and excited states were determined. The interpretation of the hyperfine parameters in terms of the electron configurations will be presented along with a comparison of the properties of IrCl and IrF.

  13. In vitro study of iridium electrodes for neural stimulation.

    PubMed

    Aryan, Naser Pour; Brendler, Christian; Rieger, Viola; Schleehauf, Sebastian; Heusel, Gerhard; Rothermel, Albrecht

    2012-01-01

    Iridium is one of the main electrode materials for applications like neural stimulation. Iridium has a higher charge injection capacity when activated and transformed into AIROF (activated iridium oxide film) using specific electrical signals. Activation is not possible in stimulating devices, if they do not include the necessary circuitry for activation. We introduce a method for iridium electrode activation requiring minimum additional on-chip hardware. In the main part, the lifetime behavior of iridium electrodes is investigated. These results may be interesting for applications not including on-chip activation hardware, and also because activation has drawbacks such as worse mechanical properties and reproducibility of AIROF.

  14. Silicide Schottky Contacts to Silicon: Screened Pinning at Defect Levels

    SciTech Connect

    Drummond, T.J.

    1999-03-11

    Silicide Schottky contacts can be as large as 0.955 eV (E{sub v} + 0.165 eV) on n-type silicon and as large as 1.05 eV (E{sub c} {minus} 0.07 eV) on p-type silicon. Current models of Schottky barrier formation do not provide a satisfactory explanation of occurrence of this wide variation. A model for understanding Schottky contacts via screened pinning at defect levels is presented. In the present paper it is shown that most transition metal silicides are pinned approximately 0.48 eV above the valence band by interstitial Si clusters. Rare earth disilicides pin close to the divacancy acceptor level 0.41 eV below the conduction band edge while high work function silicides of Ir and Pt pin close to the divacancy donor level 0.21 eV above the valence band edge. Selection of a particular defect pinning level depends strongly on the relative positions of the silicide work function and the defect energy level on an absolute energy scale.

  15. Microwave assisted synthesis of technologically important transition metal silicides

    SciTech Connect

    Vaidhyanathan, B.; Rao, K.J.

    1997-12-01

    A novel, simple, clean and fast microwave assisted method of preparing important transition metal silicides (MoSi{sub 2}, WSi{sub 2}, CoSi{sub 2}, and TiSi{sub 2}) has been described. Amorphous carbon is used both as a microwave susceptor and as a preventer of oxidation. {copyright} {ital 1997 Materials Research Society.}

  16. Deposition of aluminide and silicide based protective coatings on niobium

    NASA Astrophysics Data System (ADS)

    Majumdar, S.; Arya, A.; Sharma, I. G.; Suri, A. K.; Banerjee, S.

    2010-11-01

    We compare aluminide and alumino-silicide composite coatings on niobium using halide activated pack cementation (HAPC) technique for improving its oxidation resistance. The coated samples are characterized by SEM, EDS, EPMA and hardness measurements. We observe formation of NbAl3 in aluminide coating of Nb, though the alumino-silicide coating leads to formation primarily of NbSi2 in the inner layer and a ternary compound of Nb-Si-Al in the outer layer, as reported earlier (Majumdar et al. [11]). Formation of niobium silicide is preferred over niobium aluminide during alumino-silicide coating experiments, indicating Si is more strongly bonded to Nb than Al, although equivalent quantities of aluminium and silicon powders were used in the pack chemistry. We also employ first-principles density functional pseudopotential-based calculations to calculate the relative stability of these intermediate phases and the adhesion strength of the Al/Nb and Si/Nb interfaces. NbSi2 exhibits much stronger covalent character as compared to NbAl3. The ideal work of adhesion for the relaxed Al/Nb and Si/Nb interfaces are calculated to be 3226 mJ/m2 and 3545 mJ/m2, respectively, indicating stronger Nb-Si bonding across the interface.

  17. Analysis of Nickel Silicides by SIMS and LEAP

    SciTech Connect

    Ronsheim, Paul; McMurray, Jeff; Flaitz, Philip; Parks, Christopher

    2007-09-26

    Ni-silicides formed by a variety of processing techniques were studied with secondary ion mass spectroscopy (SIMS) and local electrode atom probe (LEAP registered ) analysis. SIMS provided 1-D chemical analysis over an approximately 60 micron diameter area. LEAP provided 3-D atom identities and locations over an approximately 100-150 nm diameter area. It was determined that the 200 deg. C drive-in anneal results in a Ni{sub 3}Si{sub 2} phase, which is converted to NiSi at temperatures between 360 deg. C-400 deg. C. LEAP detects no As or Pt segregation after the 200 deg. C drive-in anneal, but did quantify As segregation of up to 7% of the material composition just inside the NiSi-Si interface after the phase-formation anneal. The presence of oxygen at the interface results in a silicide chemical surface roughness of up to 3.5 nm as compared to 0.5 nm with a clean, non-oxidized surface. Silicide stability was demonstrated over the phase-formation-temperature range of 360 deg. C - 400 deg. C including when a second rapid thermal anneal step was used. LEAP analysis was also able to quantify the surface roughness of the interface as a function of anneal temperature and the non-uniform Pt and As distribution across the silicide surface as viewed in 2-D surface projection.

  18. Annealing Increases Stability Of Iridium Thermocouples

    NASA Technical Reports Server (NTRS)

    Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.; Ahmed, Shaffiq

    1989-01-01

    Metallurgical studies carried out on samples of iridium versus iridium/40-percent rhodium thermocouples in condition received from manufacturer. Metallurgical studies included x-ray, macroscopic, resistance, and metallographic studies. Revealed large amount of internal stress caused by cold-working during manufacturing, and large number of segregations and inhomogeneities. Samples annealed in furnace at temperatures from 1,000 to 2,000 degree C for intervals up to 1 h to study effects of heat treatment. Wire annealed by this procedure found to be ductile.

  19. Annealing Increases Stability Of Iridium Thermocouples

    NASA Technical Reports Server (NTRS)

    Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.; Ahmed, Shaffiq

    1989-01-01

    Metallurgical studies carried out on samples of iridium versus iridium/40-percent rhodium thermocouples in condition received from manufacturer. Metallurgical studies included x-ray, macroscopic, resistance, and metallographic studies. Revealed large amount of internal stress caused by cold-working during manufacturing, and large number of segregations and inhomogeneities. Samples annealed in furnace at temperatures from 1,000 to 2,000 degree C for intervals up to 1 h to study effects of heat treatment. Wire annealed by this procedure found to be ductile.

  20. Texture in thin film silicides and germanides: A review

    NASA Astrophysics Data System (ADS)

    De Schutter, B.; De Keyser, K.; Lavoie, C.; Detavernier, C.

    2016-09-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi2, C54-TiSi2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si1-xGex in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  1. Texture in thin film silicides and germanides: A review

    SciTech Connect

    De Schutter, B. De Keyser, K.; Detavernier, C.; Lavoie, C.

    2016-09-15

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi{sub 2}, C54-TiSi{sub 2}, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si{sub 1−x}Ge{sub x} in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  2. Electronic Transitions of Iridium Monoboride

    NASA Astrophysics Data System (ADS)

    Cheung, A. S.-C.; Pang, H. F.; Ng, Y. W.; Chen, G.

    2010-06-01

    Laser induced fluorescence spectrum of iridium monoboride (IrB) in the spectral region between 420 and 480nm has been studied. New electronic transition system observed at 435nm has been assigned to be the [22.3] ^3Φ3 - X^3Δ3μ transition. Isotopic relationship confirmed the vibrational numbering. Molecular constants obtained will be reported. Resolved fluorescence spectrum of the [22.3] ^3Φ3 - X^3Δ3 transition showed that the ΔG1/2 of the X^3Δ3 state is 917 cm-1. Theoretical study using complete active space self-consistent field (CASSCF) calculations followed by MS-CASPT2 including scalar relativistic effect has been performed to the IrB molecule; molecular bond length, electronic configurations and relative energies of the ground and low-lying electronic states have been obtained. Our computed results indicated that the ground state of IrB is an inverted X^3Δ state with a bond length, r_0, equal to1.767 Å, which is in very good agreement with our experimental determination earlier. The electronic configuration giving rises to the ground state is 1σ^2 2σ^21π^4 3σ^11δ^3. Our calculations also showed that the earlier observed [16.5] ^3Π state and the [22.3] ^3Φ state in this work are the (2)^3Π and the (2)^3Φ states, respectively. The molecular properties obtained in our calculations agree reasonably well with those determined. Financial support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 701008P) is gratefully acknowledged

  3. Iridium emissions from Hawaiian volcanoes

    NASA Technical Reports Server (NTRS)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  4. Iridium-Catalyzed Arylative Cyclization of Alkynones by 1,4-Iridium Migration**

    PubMed Central

    Partridge, Benjamin M; Solana González, Jorge; Lam, Hon Wai

    2014-01-01

    1,4-Metal migrations enable the remote functionalization of C—H bonds, and have been utilized in a wide variety of valuable synthetic methods. The vast majority of existing examples involve the 1,4-migration of palladium or rhodium. Herein, the stereoselective synthesis of complex polycycles by the iridium-catalyzed arylative cyclization of alkynones with arylboronic acids is described. To our knowledge, these reactions involve the first reported examples of 1,4-iridium migration. PMID:24842318

  5. Nanoscale contact engineering for Silicon/Silicide nanowire devices

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chen

    Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at nanoscale have indicated possible deviations from the bulk and the thin film system. Here we studied growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction. We have grown single crystal PtSi nanowires and PtSi/Si/PtSi nanowire heterostructures through solid state reaction. TEM studies show that the heterostructures have atomically sharp interfaces free of defects. Electrical measurement of PtSi nanowires shows a low resistivity of ˜28.6 μΩ·cm and a high breakdown current density beyond 108 A/cm2. Furthermore, using single-crystal PtSi/Si/PtSi nanowire heterostructures with atomically clean interfaces, we have fabricated p-channel enhancement mode transistors with the best reported performance for intrinsic silicon nanowires to date. In our results, silicide can provide a clean and no Fermi level pinning interface and then silicide can form Ohmic-contact behavior by replacing the source/drain metal with PtSi. It has been proven by our experiment by contacting PtSi with intrinsic Si nanowires (no extrinsic doping) to achieve high performance p-channel device. By utilizing the same approach, single crystal MnSi nanowires and MnSi/Si/MnSi nanowire heterojunction with atomically sharp interfaces can also been grown. Electrical transport studies on Mn

  6. Iridium-192 Production for Cancer Treatment

    SciTech Connect

    Rostelato, M.E.C.M.; Silva, C.P.G.; Rela, P.R.; Zeituni, C.A.; Lepki, V.; Feher, A.

    2004-10-05

    The purpose of this work is to settle a laboratory for Iridium -192 sources production, that is, to determine a wire activation method and to build a hot cell for the wires manipulation, quality control and packaging. The paper relates, mainly, the wire activation method and its quality control. The wire activation is carried out in our nuclear reactor, IEA- R1m.

  7. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, Jr., Furn F.; Butler, Thomas A.; Brihaye, Claude

    1987-01-01

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline.

  8. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, F.F. Jr.; Butler, T.A.; Brihaye, C.

    1985-08-26

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline. 4 figs. 3 tabs.

  9. Note: Electrochemical etching of sharp iridium tips

    NASA Astrophysics Data System (ADS)

    Lalanne, Jean-Benoît; Paul, William; Oliver, David; Grütter, Peter H.

    2011-11-01

    We describe an etching procedure for the production of sharp iridium tips with apex radii of 15-70 nm, as determined by scanning electron microscopy, field ion microscopy, and field emission measurements. A coarse electrochemical etch followed by zone electropolishing is performed in a relatively harmless calcium chloride solution with high success rate.

  10. Investigation into Self-Organizational Tendencies of Cobalt- and Titanium-Silicide Nanostructures on Si Surfaces

    DTIC Science & Technology

    2008-09-22

    properties , directly affects interaction with the deposited metal adatoms, and in conjunction with the metal deposition method, determines the silicide ...formation kinetics and the properties of the silicide /silicon interface. Morphological and statistical characteristics, and the resulting collective...Report 3. DATES COVERED (From – To) 1 April 2007 - 01-Apr-08 4. TITLE AND SUBTITLE Self-Organization of Cobalt Silicide Nanostructures into 2D

  11. High-Performance Thin-Film Transistors Using Ni Silicide for Liquid-Crystal Displays

    DTIC Science & Technology

    2000-07-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11297 TITLE: High-Performance Thin-Film Transistors Using Ni Silicide ...report: ADP011297 thru ADP011332 UNCLASSIFIED Invited Paper High-performance thin-film transistors using Ni silicide for liquid- crystal displays Jin...Jang, Jai I1 Ryu, and Kyu Sik Cho Department of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130-701, Korea ABSTRACT The Ni- silicide of a

  12. High-temperature properties of a silicon nitride-intermetallic silicide composite

    SciTech Connect

    Matsumoto, R.L.K.; Weaver, G.G.

    1991-10-01

    Ceramic composites composed of a silicon nitride matrix containing a dispersed silicide phase have been fabricated. While many silicides are brittle at room temperature, they become ductile at high temperatures as they undergo a brittle-to-ductile transition. In contrast to composites having silicides as the matrix phase, the material examined contains dispersed cobalt silicide particulates and has room temperature toughness of 10 MPa sq rt m. The toughness increases to 12 MPa sq rt m at 800 C. When the brittle-to-ductile transition temperature is exceeded, the toughness at 1100 C drops to 6 MPa sq rt m. 13 refs.

  13. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    SciTech Connect

    Ozcan, Ahmet S.; Lavoie, Christian; Jordan-Sweet, Jean; Alptekin, Emre; Zhu, Frank; Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M.

    2016-04-21

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  14. Application of the Iridium Satellite System to Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Meza, Mike; Gupta, Om

    2008-01-01

    The next generation air transportation system will require greater air-ground communications capacity to accommodate more air traffic with increased safety and efficiency. Communications will remain primarily terrestrially based, but satellite communications will have an increased role. Inmarsat s aeronautical services have been approved and are in use for aeronautical safety communications provided by geostationary satellites. More recently the approval process for the Iridium low earth orbit constellation is nearing completion. The current Iridium system will be able to provide basic air traffic services communications suitable for oceanic, remote and polar regions. The planned second generation of the Iridium system, called Iridium NEXT, will provide enhanced capabilities and enable a greater role in the future of aeronautical communications. This paper will review the potential role of satellite communications in the future of air transportation, the Iridium approval process and relevant system testing, and the potential role of Iridium NEXT.

  15. Oxidation behavior of molybdenum silicides and their composites

    SciTech Connect

    Natesan, K.; Deevi, S. C.

    2000-04-03

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo{sub 5}Si{sub 3} alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi{sub 2}-Si{sub 3}N{sub 4} composites that contained 20--80 vol.% Si{sub 3}N{sub 4} were evaluated at 500--1,400 C.

  16. Schottky Barrier Inhomogeneities in Nickel Silicide Transrotational Contacts

    NASA Astrophysics Data System (ADS)

    Alberti, Alessandra; Roccaforte, Fabrizio; Libertino, Sebania; Bongiorno, Corrado; La Magna, Antonino

    2011-11-01

    Ni-silicide/silicon Schottky contacts have been realised by promoting low-temperature Ni-Si interdiffusion during deposition (˜50 °C) and reaction (450 °C) on an oxygen-free [001] silicon surface. A 14 nm transrotational NiSi layer was produced made of extremely flat pseudo-epitaxial domains (˜200 nm in diameter). The current-voltage (I-V) characteristics (340-80 K) have indicated the presence of structural inhomogeneities which lower the Schottky barrier by Δ≈0.1 eV. They have been associated with the core regions of the trans-domains (wherein the silicide lattice is epitaxially aligned to that of Si) since their density (˜2.5×109 cm-2) and dimension (˜10 nm) fit the I-V curves vs temperature following the Tung's approach.

  17. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.

    PubMed

    Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles

    2015-07-10

    Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields.

  18. Characteristics of a promising new thermoelectric material - Ruthenium silicide

    NASA Technical Reports Server (NTRS)

    Ohta, Toshitaka; Vining, Cronin B.; Allevato, Camillo E.

    1991-01-01

    A preliminary study on arc-melted samples has indicated that ruthenium silicide has the potential to obtain figure-of-merit values four times higher than that of conventional silicon-germanium material. In order to realize the high figure-of-merit values, high-quality crystal from the melt is needed. A Bridgman-like method has been employed and has realized much better crystals than arc-melted ones.

  19. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  20. Silicide-matrix materials for high-temperature applications

    SciTech Connect

    Meschter, P.J.; Schwartz, D.S. )

    1989-11-01

    Intermetallic-matrix composites are attractive alternatives to carbon/carbon and ceramic/ceramic composities for applications up to 1,600 C. Recent work on the intermetallic compounds MoSi2 and Ti5Si3 has included determination of their mechanical properties and deformation behavior, selection of thermodynamically compatible high-strength and ductile reinforcements, and strengthening and toughening mechanisms in silicide-matrix composites for high-temperature service. 11 refs.

  1. Carbon nanotube cantilevers on self-aligned copper silicide nanobeams

    NASA Astrophysics Data System (ADS)

    Parajuli, Omkar; Kumar, Nitin; Kipp, Dylan; Hahm, Jong-in

    2007-04-01

    In this letter, the authors describe both a growth method for self-aligning copper silicide (Cu3Si) nanobeams and their use as active catalysts for carbon nanotube (CNT) synthesis via chemical vapor deposition. In the unique geometry of these useful structures, CNT cantilevers are anchored firmly to the Cu3Si nanobeams. The resulting CNT-Cu3Si structures may improve accuracy and reliability of CNT applications in nanoelectromechanical systems.

  2. Processing, Microstructure, and Properties of Multiphase Mo Silicide Alloys

    SciTech Connect

    Heatherly, L.; Liu, C.T.; Schneibel, J.H.

    1998-11-30

    Multiphase Mo silicide alloys containing T2 (Mo{sub 5}SiB{sub 2}), Mo{sub 3}Si and Mo phases where prepared by both melting and casting (M and C) and powder metallurgical (PM) processes. Glassy phases are observed in PM materials but not in M and C materials. Microstructural studies indicate that the primary phase is Mo-rich solid solution in alloys containing {le}(9.4Si+13.8B, at. %) and T2 in alloys with {ge}(9.8Si+14.6B). An eutectic composition is estimated to be close to Mo-9.6Si-14.2B. The mechanical properties of multiphase silicide alloys were determined by hardness, tensile and bending tests at room temperature. The multiphase alloy MSB-18 (Mo-9.4Si-13.8B) possesses a flexure strength distinctly higher than that of MoSi{sub 2} and other Mo{sub 5}Si{sub 3} silicide alloys containing no Mo particles. Also, MSB-18 is tougher than MoSi{sub 2} by a factor of 4.

  3. Silicidation of Niobium Deposited on Silicon by Physical Vapor Deposition

    SciTech Connect

    Coumba Ndoye, Kandabara Tapily, Marius Orlowski, Helmut Baumgart, Diefeng Gu

    2011-07-01

    Niobium was deposited by physical vapor deposition (PVD) using e-beam evaporation on bare (100) silicon substrates and SiO2 surfaces. The formation of niobium silicide was investigated by annealing PVD Nb films in the temperatures range 400–1000°C. At all elevated annealing temperatures the resistivity of Nb silicide is substantially higher than that of Nb. The Nb silicidation as a function of temperature has been investigated and different NbXSiy compounds have been characterized. It has been observed that the annealing of the Nb film on Si is accompanied by a strong volume expansion of about 2.5 of the resulting reacted film. The films' structural properties were studied using X-Ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM), which was not previously presented in the context of the extant NbSi literature. The X-Ray diffraction characterization of the Nb on Si sample annealed at 1000°C, showed the presence of hexagonal Nb5Si3 phases, with a dominant peak at the (200) plane, and NbSi2 phases. Fractal dimension calculations indicate a distinct transition from Stranski-Krastanov to Volmer-Weber film growth for NbSi formation at the annealing temperature of 600°C and above.

  4. Increasing the heat resistance of vanadium by siliciding

    SciTech Connect

    Lyutyi, E.M.; Tsvikilevich, O.S.; Shirokov, V.V.; Stepanishin, V.I.

    1988-01-01

    The purpose of this article was to evaluate the influence of modifier metals on the protective properties of silicide coatings in heating of vanadium in air and also on the mechanical properties of type VnM-2 unalloyed vanadium and VTsU alloy. Coatings were produced by diffusion impregnation from molten sodium with silicon or silicides of the modifying elements. The silicides of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, chromium, tungsten, rhenium, and nickel were investigated using x-ray spectrometric and hardness investigations and x-ray diffractometric analysis. The protective properties of the coatings were determined from the relative change in weight of the samples with and without coatings during isothermal oxidation in air at 1073/sup 0/K and also by differential thermal analysis. The influence of the coating on the mechanical properties of the material was also investigated using a borosilicide coating. High-temperature vacuum annealing was assessed as a method for restoring the plastic properties and relieving the stresses of vanadium and VTsU alloy subsequent to coating.

  5. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, J. T.; Kazaroff, J. M.; Appel, M. A.

    1989-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the melting temperature of iridium, 2400 C (4350 F).

  6. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, John T.; Kazaroff, John M.; Appel, Marshall A.

    1988-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the meltimg temperature of iridium, 2400 C (4350 F).

  7. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, J. T.; Kazaroff, J. M.; Appel, M. A.

    1989-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the melting temperature of iridium, 2400 C (4350 F).

  8. Iridium and Radio Astronomy in Europe

    NASA Astrophysics Data System (ADS)

    Cohen, R. J.

    2004-06-01

    An account is given of the coordination of the Iridium mobile satellite system with the radio astronomy service in Europe, from the initial exploratory discussions at Jodrell Bank in 1991 to the signing of the so-called ``Interim Agreement'' in Paris in 1999. The technical issue of unwanted emissions from the Iridium downlink into the frequency band 1610.6-1613.8 MHz was not resolved, so the coordination agreement amounts to time sharing, albeit on more favourable terms for radio astronomy than agreements negotiated elsewhere. The European agreement fully recognizes the heavy use of the frequency band in European radio astronomy, and carries the promise that ``from 1 January 2006, European radioastronomers shall be able to collect measurement data consistent with the recommendation ITU-R RA.769-1.'' Some personal observations on the events are offered.

  9. Iridium versus Iridium: Nanocluster and Monometallic Catalysts Carrying the Same Ligand Behave Differently.

    PubMed

    Cano, Israel; Martínez-Prieto, Luis M; Chaudret, Bruno; van Leeuwen, Piet W N M

    2017-01-26

    A specific secondary phosphine oxide (SPO) ligand (tert-butyl(phenyl)phosphine oxide) was employed to generate two iridium catalysts, an Ir-SPO complex and IrNPs (iridium nanoparticles) ligated with SPO ligands, which were compared mutually and with several supported iridium catalysts with the aim to establish the differences in their catalytic properties. The Ir-SPO-based catalysts showed totally different activities and selectivities in the hydrogenation of various substituted aldehydes, in which H2 is likely cleaved by a metal-ligand cooperation, that is, the SPO ligand and a neighboring metal centre operate in tandem to activate the hydrogen molecule. In addition, the supported IrNPs behave very differently from both Ir-SPO catalysts. This study exemplifies perfectly the advantages and disadvantages related to the use of the main types of catalysts, and thus the dissimilarities between them.

  10. The Chemical Vapor Deposition of Iridium.

    DTIC Science & Technology

    1981-07-01

    accepted types are made of porous tungsten impregnated with barium calcium aluminates (Levi, 1955; Brodie and Jenkins, 1956). The emission capability of the...not only does the chemical composition of the pore ends and the bulk material undergo alteration, but the crystal structure of the tungsten (Maloney... hexafluoride to iridium metal or IrF 6 species. In our work, IrF 6 was prepared and stored in fluorine-passivated apparatus, and between runs maintained at

  11. Sputtered iridium oxide for stimulation electrode coatings.

    PubMed

    Mokwa, Wilfried; Wessling, Boerge; Schnakenberg, Uwe

    2007-01-01

    This work deals with the reactive RF-powered sputter deposition of iridium oxide for use as the active stimulation layer in functional medical implants. The oxygen gettered by the growing films is determined by an approach based on generic curves. Films deposited at different stages of oxygen integration show strong differences in electrochemical behaviour, caused by different morphologies. The dependence of electrochemical activity on morphology is further illustrated by RF sputtering onto heated substrates, as well as DC sputtering onto cold substrates.

  12. Handling System for Iridium-192 Seeds

    NASA Technical Reports Server (NTRS)

    Carpenter, W.; Wodicka, D.

    1973-01-01

    A complete system is proposed for safe handling of iridium-192 seeds used to internally irradiate malignant growths. A vibratory hopper feeds the seeds onto a transport system for deposit in a magazine or storage area. A circular magazine consisting of segmented plastic tubing with holes in the walls to accommodate the seeds seems feasible. The magazine is indexed to stop and release a seed for calibration and deposition.

  13. Facile cyclometallation of a mesitylsilylene: synthesis and preliminary catalytic activity of iridium(iii) and iridium(v) iridasilacyclopentenes.

    PubMed

    Cabeza, Javier A; García-Álvarez, Pablo; González-Álvarez, Laura

    2017-09-14

    Reactions of the mesityl-amidinato-silylene Si((t)Bu2bzam)Mes (1; (t)Bu2bzam = N,N'-bis(tert-butyl)benzamidinato; Mes = mesityl) with three different iridium precursors led, at room temperature, to two iridium(iii) and one iridium(v) complexes featuring one (Ir(III)) or two (Ir(V)) cyclometallated silylene ligands. The iridium(iii) complexes are active catalyst precursors for H/D exchange and dehydrogenative borylation of arene C-H bonds.

  14. Benzo annulated cycloheptatriene PCP pincer iridium complexes.

    PubMed

    Leis, Wolfgang; Wernitz, Sophie; Reichart, Benedikt; Ruckerbauer, David; Wielandt, Johannes Wolfram; Mayer, Hermann A

    2014-08-28

    The benzo annulated cycloheptatriene PCP pincer ligand was prepared in five steps. Treatment of with Ir(CO)3Cl gave the meridional cyclometalated chlorohydrido carbonyl iridium complexes which differ in their arrangement of the H, Cl, and CO ligands around iridium. Storing in THF led to isomerization processes. Hydrogen shifts from the sp(3)-CH carbon bound to iridium into the ligand backbone produced the three isomers . Reductive elimination of HCl from these complexes resulted in the square planar Ir(i) carbonyl complexes . Abstraction of the hydrogen from the sp(3)-CH-Ir fragment could be achieved either by treatment of with Ph3CBF4 or by the elimination of H2 which is initiated by CF3SO3H. The mass spectrometric characterisation of using fast atom bombardment reveals a complex fragmentation pattern. These different "fragment" ions were further investigated by electro-spray ionisation (tandem) mass spectrometry in high and low resolution. The identified compounds were attributed to structures by DFT calculations.

  15. Silicide phase formation in Ni/Si system: Depth-resolved positron annihilation and Rutherford backscattering study

    SciTech Connect

    Abhaya, S.; Amarendra, G.; Panigrahi, B.K.; Nair, K.G.M.

    2006-02-01

    Silicidation in Ni/Si thin-film junction has been investigated using depth-resolved positron annihilation spectroscopy (PAS) and Rutherford backscattering spectrometry (RBS). Identification of various silicide phases from an analysis of the positron annihilation parameters is consistent with the RBS results. Absence of vacancy defects in the silicide region is clearly brought out by PAS00.

  16. Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Pike, W. T.

    1992-01-01

    We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.

  17. Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation

    SciTech Connect

    Lee, J.-G.; Nagase, T.; Yasuda, H.; Mori, H.

    2015-05-21

    The synthesis of metal silicide at the metal/silicon oxide interface by electronic excitation was investigated using transmission electron microscopy. A platinum silicide, α-Pt{sub 2}Si, was successfully formed at the platinum/silicon oxide interface under 25–200 keV electron irradiation. This is of interest since any platinum silicide was not formed at the platinum/silicon oxide interface by simple thermal annealing under no-electron-irradiation conditions. From the electron energy dependence of the cross section for the initiation of the silicide formation, it is clarified that the silicide formation under electron irradiation was not due to a knock-on atom-displacement process, but a process induced by electronic excitation. It is suggested that a mechanism related to the Knotek and Feibelman mechanism may play an important role in silicide formation within the solid. Similar silicide formation was also observed at the palladium/silicon oxide and nickel/silicon oxide interfaces, indicating a wide generality of the silicide formation by electronic excitation.

  18. Formation of low resistivity titanium silicide gates in semiconductor integrated circuits

    DOEpatents

    Ishida, Emi

    1999-08-10

    A method of forming a titanium silicide (69) includes the steps of forming a transistor having a source region (58), a drain region (60) and a gate structure (56) and forming a titanium layer (66) over the transistor. A first anneal is performed with a laser anneal at an energy level that causes the titanium layer (66) to react with the gate structure (56) to form a high resistivity titanium silicide phase (68) having substantially small grain sizes. The unreacted portions of the titanium layer (66) are removed and a second anneal is performed, thereby causing the high resistivity titanium silicide phase (68) to convert to a low resistivity titanium silicide phase (69). The small grain sizes obtained by the first anneal allow low resistivity titanium silicide phase (69) to be achieved at device geometries less than about 0.25 micron.

  19. Synthesis of benzimidazoles via iridium-catalyzed acceptorless dehydrogenative coupling.

    PubMed

    Sun, Xiang; Lv, Xiao-Hui; Ye, Lin-Miao; Hu, Yu; Chen, Yan-Yan; Zhang, Xue-Jing; Yan, Ming

    2015-07-21

    Iridium-catalyzed acceptorless dehydrogenative coupling of tertiary amines and arylamines has been developed. A number of benzimidazoles were prepared in good yields. An iridium-mediated C-H activation mechanism is suggested. This finding represents a novel strategy for the synthesis of benzimidazoles.

  20. Variation of iridium in a differentiated tholeiitic dolerite

    USGS Publications Warehouse

    Greenland, L.P.

    1971-01-01

    Iridium has been determined in a drill core from the Great Lake (Tasmania) dolerite sheet. Iridium decreases systematically from the mafic dolerites (0.25 ppb) to the granophyres (0.006 ppb). The trend with differentiation closely parallels that of chromium. ?? 1971.

  1. Iridium enrichment in airborne particles from kilauea volcano: january 1983.

    PubMed

    Zoller, W H; Parrington, J R; Kotra, J M

    1983-12-09

    Airborne particulate matter from the January 1983 eruption of Kilauea volcano was inadvertently collected on air filters at Mauna Loa Observatory at a sampling station used to observe particles in global circulation. Analyses of affected samples revealed unusually large concentrations of selenium, arsenic, indium, gold, and sulfur, as expected for volcanic emissions. Strikingly large concentrations of iridium were also observed, the ratio of iridium to aluminum being 17,000 times its value in Hawaiian basalt. Since iridium enrichments have not previously been observed in volcanic emissions, the results for Kilauea suggest that it is part of an unusual volcanic system which may be fed by magma from the mantle. The iridium enrichment appears to be linked with the high fluorine content of the volcanic gases, which suggests that the iridium is released as a volatile IrF(6).

  2. Nanomaterials of silicides and silicon for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Szczech, Jeannine Robin

    Our consumption of fossil fuels can be reduced to address the pressing concerns of global climate change by maximizing the efficiency of conversion technologies. Since many of the alternative fuel sources also being examined are intermittent in nature, it is imperative that high capacity and high power density storage devices are also developed. The conversion efficiency of current state-of-the-art thermoelectric materials is too low to meet our needs, but it may be possible to increase the conversion efficiency of thermoelectric materials by moving from the bulk to the nanoscale. The transition metal silicides, including CrSi2, beta-FeSi2 , Mg2Si and MnSi1.7, have been explored as environmentally friendly non-toxic thermoelectric materials. I began my research in the group synthesizing silicide nanowires via chemical vapor transport (CVT), and later expanded my research to include the synthesis of silicide nanocomposites for thermoelectrics and mesoporous silicon nanocomposites for use as high capacity lithium battery electrodes. Nanoscale thermoelectrics and the enhanced thermoelectric figure-of-merit ZT reported by thermoelectric researchers are reviewed in Chapter 1. Chapter 2 reviews the progress being made in the research community with nanoscale and nanostructured silicon battery anodes. The synthesis and characterization of CrSi2 nanowires synthesized via CVT is detailed in Chapter 3, followed by hyperbranched epitaxial FeSi nanostructures exhibiting merohedral twinning in Chapter 4. Nanowires are fundamentally interesting and provide insight into the changes in materials properties compared to the bulk. The synthesis of interesting nanostructured silicide materials are detailed in Chapter 5, where the conversion of diatoms into a nanostructured thermoelectric Mg2Si/MgO nanocomposite that retains the basic diatom structure after conversion is detailed. This reaction was then modified to use mesoporous silica instead of diatoms to reduce the nanocrystalline

  3. Transient and End Silicide Phase Formation in Thin Film Ni/polycrystalline-Si Reactions for Fully Silicided Gate Applications

    SciTech Connect

    Kittl,J.; Pawlak, M.; Torregiani, C.; Lauwers, A.; Demeurisse, C.; Vrancken, C.; Absil, P.; Biesemans, S.; Coia, C.; et. al

    2007-01-01

    The Ni/polycrystalline-Si thin film reaction was monitored by in situ x-ray diffraction during ramp annealings, obtaining a detailed view of the formation and evolution of silicide phases in stacks of interest for fully silicided gate applications. Samples consisted of Ni (30-170 nm)/polycrystalline-Si (100 nm)/SiO2 (10-30 nm) stacks deposited on (100) Si. The dominant end phase (after full silicidation) was found to be well controlled by the deposited Ni to polycrystalline-Si thickness ratio (tNi/tSi), with formation of NiSi2 ( {approx} 600 C), NiSi ( {approx} 400 C), Ni3Si2 ( {approx} 500 C), Ni2Si, Ni31Si12 ( {approx} 420 C), and Ni3Si ( {approx} 600 C) in stacks with tNi/tSi of 0.3, 0.6, 0.9, 1.2, 1.4, and 1.7, respectively. NiSi and Ni31Si12 were observed to precede formation of NiSi2 and Ni3Si, respectively, as expected for the phase sequence conventionally reported. Formation of Ni2Si was observed at early stages of the reaction. These studies revealed, in addition, the formation of transient phases that appeared and disappeared in narrow temperature ranges, competing with formation of the phases expected in the conventional phase sequence. These included the transient formation of NiSi and Ni31Si12 in stacks in which these phases are not expected to form (e.g., tNi/tSi of 1.7 and 0.9, respectively), at temperatures similar to those in which these phases normally grow.

  4. Iridium/Rhenium Parts For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Harding, John T.; Wooten, John R.

    1991-01-01

    Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.

  5. Iridium Film For Charge-Coupled Device

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.

    1990-01-01

    Usability extended to different environments. Application of thin film of iridium to back surface of back-surface-illuminated charge-coupled device expected to increase and stabilize quantum efficiency at wavelengths less than 4,500 Angstrom. Enhances quantum efficiency according to principle discussed in "Metal Film Increases CCD Output" (NPO-16815). Does not react with hydrogen, so device need not be kept in oxygen: Advantage where high absorption of ultraviolet light by oxygen undesirable; for example, when device used to make astronomical observations from high altitudes.

  6. Iridium/Rhenium Parts For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Harding, John T.; Wooten, John R.

    1991-01-01

    Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.

  7. Iridium Film For Charge-Coupled Device

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.

    1990-01-01

    Usability extended to different environments. Application of thin film of iridium to back surface of back-surface-illuminated charge-coupled device expected to increase and stabilize quantum efficiency at wavelengths less than 4,500 Angstrom. Enhances quantum efficiency according to principle discussed in "Metal Film Increases CCD Output" (NPO-16815). Does not react with hydrogen, so device need not be kept in oxygen: Advantage where high absorption of ultraviolet light by oxygen undesirable; for example, when device used to make astronomical observations from high altitudes.

  8. Chemically enhanced ion etching on refractory metal silicides

    SciTech Connect

    O'Brien, W.L.; Rhodin, T.N.; Rathbun, L.C.

    1988-05-01

    Mechanisms of chemically enhanced ion etching on TiSi/sub 2/ and MoSi/sub 2/ were studied using high-resolution (250 ns) direct time-of-flight (TOF) spectroscopy and steady-state surface techniques (Auger electron spectroscopy and x-ray photoelectron spectroscopy). Argon ion pulses (4 ..mu..s, 0.2 mA/cm/sup 2/) were used in combination with a high-pressure chlorine gas doser (1 x 10/sup -5/ Torr) to study ion etchant product distributions. Ion product TOF distributions were interpreted in terms of the collisional cascade model with corrections for ionization probability. Surface chemical and compositional changes were measured after etching the silicide surfaces. Differences in TOF distributions of the same species from different substrates (e.g., Si from Si, TiSi/sub 2/ and MoSi/sub 2/) are discussed on the basis of these chemical and compositional changes. Etching mechanisms for the silicides are discussed by comparison to the etching of the elemental surfaces.

  9. Work function characterization of solution-processed cobalt silicide

    NASA Astrophysics Data System (ADS)

    Shihab Ullah, Syed; Robinson, Matt; Hoey, Justin; Sky Driver, M.; Caruso, A. N.; Schulz, Douglas L.

    2012-06-01

    Cobalt silicide thin films were prepared by spin-coating liquid cyclohexasilane-based inks onto silicon substrates followed by a thermal treatment. The work function of the solution-processed Co-Si was determined by both capacitance-voltage (C-V) measurements of metal-oxide-semiconductor (MOS) structures as well as by ultraviolet photoemission spectroscopy (UPS). Variable frequency C-V of MOS structures with silicon oxide layers of variable thickness showed that solution-processed metal silicide films exhibit a work function of 4.36 eV with one Co-Si film on Si <1 0 0> giving a UPS-derived work function of 4.80 eV. Similar work function measurements were collected for vapor-deposited MOS capacitors where Al thin films were prepared according to standard class 100 cleanroom handling techniques. In both instances, the work function values established by the electrical measurements were lower than those measured by UPS and this difference appears to be a consequence of parasitic series resistance.

  10. Silicene-type Surface Reconstruction on C40 Hexagonal Silicides

    NASA Astrophysics Data System (ADS)

    Volders, Cameron; Reinke, Petra

    Silicene has emerged as the next two-dimensional material possessing a Dirac type electronic structure making it a prime candidate for integration in electronic devices. The study of silicene is relatively new and many aspects have yet to be fully understood. Here we present a scanning tunneling microscopy (STM) study of a Silicene-type surface reconstruction observed on nanometer scale hexagonal-MoSi2 crystallites. This surface reconstruction is specific to the C40 structure of h-MoSi2 and can initially be defined as a geometric silicene while the coupling between the silicene surface and the silicide bulk is under investigation. The lateral dimensions correspond to a superstructure where the silicene hexagons are slightly buckled and two of the six Si atoms are visible in the STM images creating a honeycomb pattern. The local electronic structure of the silicene is currently being studied with ST spectroscopy and the impact of confinement will be addressed. These results open an alternative route to Silicene growth by using surface reconstructions on metallic and semiconducting C40 silicide structures, which is promising for direct device integration on Si-platforms.

  11. Nonuniformity effects in a hybrid platinum silicide imaging device

    NASA Astrophysics Data System (ADS)

    Dereniak, E. L.; Perry, D. L.

    1991-09-01

    The objective of this project was twofold. The first objective was to characterize the Hughes Aircraft Company CRC-365 platinum silicide imaging device in a staring infrared sensor system. The CRC-365 is a hybrid 256 x 256 IR focal plane array that operates in the 3-5 micrometer thermal infrared band. A complete sensor and computer interface were built for these tests, using plans provided by the Rome Laboratory at Hanscom Air Force Base, Massachusetts. Testing of the device revealed largely satisfactory performance, with notable exceptions in the areas of temporal response, temporal noise, and electrical crosstalk. The second objective of this research was to advance the understanding of how detector nonuniformity effects reduce the performance of sensors of this type. Notable accomplishments in this included a complete linear analysis of corrected thermal imaging in platinum silicide sensors, a nonlinear analysis of the CRC-365s expected performance, analysis of its actual performance when operated with nonuniformity correction, and the development of a new figure of merit. It was demonstrated that the CRC-365 is capable of maintaining background-noise-limited performance over at least a 40 K target temperature range, when operated with two-point nonuniformity correction.

  12. Nonuniformity effects in a hybrid platinum silicide imaging device

    NASA Astrophysics Data System (ADS)

    Dereniak, Eustace L.; Perry, David L.

    1992-05-01

    The objective of this project was twofold. The first objective was to characterize the Hughes Aircraft Company CRC-365 platinum silicide imaging device in a starting infrared sensor system. The CRC-365 is a hybrid 256 x 256 IR focal plane array that operates in the 3-5 micrometer thermal infrared band. A complete sensor and computer interface were built for these tests, using, plans provided by the Rome Laboratory at Hanscom AFB. Testing of the device revealed largely satisfactory performance, with notable exception in the areas of temporal response, temporal noise, and electrical crosstalk. The second objective of this research was to advance the understanding of how detector nonuniformity effects reduce the performance of sensors of this type. Notable accomplishments in this area included a complete linear analysis of corrected thermal imaging in platinum silicide sensors, a nonlinear analysis of the CRC-365's expected performance, analysis of its actual performance when operated with nonuniformity correction, and the development of a new figure of merit. It was demonstrated that the CRC-365 is capable of maintaining background-noise-limited performance over at least a 40 K target temperature range, when operated with two-point nonuniformity correction.

  13. Continuous and Collective Grain Rotation in Nanoscale Thin Films during Silicidation

    NASA Astrophysics Data System (ADS)

    Richard, M.-I.; Fouet, J.; Texier, M.; Mocuta, C.; Guichet, C.; Thomas, O.

    2015-12-01

    Texture evolution is an important issue in materials and nanosciences. Understanding it is fundamental for controlling the final orientation, which in fine controls the desired properties of nanodevices. Here, we reveal the formation of a peculiar texture during the silicidation of nanoscale Pd thin films. We demonstrate that the crystallographic relationship observed between the silicide and the Si(001) substrate, named gyroaxy, evolves continuously and collectively during silicidation. This continuous rotation of the nanosized grains over a wide angular range is proposed to be associated with a diffusional mechanism.

  14. Process for stabilization of titanium silicide particulates within titanium aluminide containing metal matrix composites

    SciTech Connect

    Christodoulou, L.; Williams, J.C.; Riley, M.A.

    1990-04-10

    This paper describes a method for forming a final composite material comprising titanium silicide particles within a titanium aluminide containing matrix. It comprises: contacting titanium, silicon and aluminum at a temperature sufficient to initiate a reaction between the titanium and silicon to thereby form a first composite comprising titanium silicide particles dispersed within an aluminum matrix; admixing the first composite with titanium and zirconium to form a mixture; heating the mixture to a temperature sufficient to convert at least a portion of the aluminum matrix to titanium aluminide; and recovering a final composite material comprising titanium silicide particles dispersed within a titanium aluminide containing matrix.

  15. Conformal Ni-silicide formation over three-dimensional device structures

    SciTech Connect

    Zhu Zhiwei; Zhang Shili; Gao Xindong; Kubart, Tomas; Zhang Zhibin; Wu Dongping

    2012-07-30

    This letter reports on conformal formation of ultrathin Ni-silicide films over a three-dimension structure relevant to the most advanced tri-gate transistor architecture. This is achieved by combining ionization of the sputtered Ni atoms with application of an appropriate bias to the Si substrate during the sputter-deposition of Ni films. In comparison, use of ordinary DC sputtering for Ni deposition results in thinner or less uniform silicide films on the vertical sidewalls than on the top surface of the three-dimensional structure. The roughened Si sidewall surface is ascribed to be responsible for a deteriorated thermal stability of the resultant silicide films.

  16. Diminiode thermionic conversion with 111-iridium electrodes

    NASA Technical Reports Server (NTRS)

    Koeger, E. W.; Bair, V. L.; Morris, J. F.

    1976-01-01

    Preliminary data indicating thermionic-conversion potentialities for a 111-iridium emitter and collector spaced 0.2 mm apart are presented. These results comprise output densities of current and of power as functions of voltage for three sets of emitter, collector, and reservoir temperatures: 1553, 944, 561 K; 1605, 898, 533 K; and 1656, 1028, 586 K. For the 1605 K evaluation, estimates produced work-function values of 2.22 eV for the emitter and 1.63 eV for the collector with a 2.0-eV barrier index (collector work function plus interelectrode voltage drop) corresponding to the maximum output of 5.5 W/sq cm at 0.24 volt. The current, voltage curve for the 1656 K 111-iridium diminiode yields a 6.2 W/sq cm maximum at 0.25 volt and is comparable with the 1700 K envelope for a diode with an etched-rhenium emitter and a 0.025-mm electrode gap made by TECO and evaluated by NASA.

  17. Ab initio phase diagram of iridium

    NASA Astrophysics Data System (ADS)

    Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.

    2016-09-01

    The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.

  18. Iridium wire grid polarizer fabricated using atomic layer deposition.

    PubMed

    Weber, Thomas; Käsebier, Thomas; Szeghalmi, Adriana; Knez, Mato; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2011-10-25

    In this work, an effective multistep process toward fabrication of an iridium wire grid polarizer for UV applications involving a frequency doubling process based on ultrafast electron beam lithography and atomic layer deposition is presented. The choice of iridium as grating material is based on its good optical properties and a superior oxidation resistance. Furthermore, atomic layer deposition of iridium allows a precise adjustment of the structural parameters of the grating much better than other deposition techniques like sputtering for example. At the target wavelength of 250 nm, a transmission of about 45% and an extinction ratio of 87 are achieved.

  19. Phase control of iridium and iridium oxide thin films in atomic layer deposition

    SciTech Connect

    Kim, Sung-Wook; Kwon, Se-Hun; Kwak, Dong-Kee; Kang, Sang-Won

    2008-01-15

    The atomic layer deposition of iridium (Ir) and iridium oxide (IrO{sub 2}) films was investigated using an alternating supply of (ethylcyclopentadienyl)(1,5-cyclooctadiene) iridium and oxygen gas at temperatures between 230 and 290 deg. C. The phase transition between Ir and IrO{sub 2} occurred at the critical oxygen partial pressure during the oxygen injection pulse. The oxygen partial pressure was controlled by the O{sub 2}/(Ar+O{sub 2}) ratio or deposition pressures. The resistivity of the deposited Ir and IrO{sub 2} films was about 9 and 120 {mu}{omega} cm, respectively. In addition, the critical oxygen partial pressure for the phase transition between Ir and IrO{sub 2} was increased with increasing the deposition temperature. Thus, the phase of the deposited film, either Ir or IrO{sub 2}, was controlled by the oxygen partial pressure and the deposition temperature. However, the formation of a thin Ir layer was detected between the IrO{sub 2} and SiO{sub 2} substrate. To remove this interfacial layer, the oxygen partial pressure is increased to a severe condition. And the impurity contents were below the detection limit of Auger electron spectroscopy in both Ir and IrO{sub 2} films.

  20. Controlled assembly of graphene-capped nickel, cobalt and iron silicides

    NASA Astrophysics Data System (ADS)

    Vilkov, O.; Fedorov, A.; Usachov, D.; Yashina, L. V.; Generalov, A. V.; Borygina, K.; Verbitskiy, N. I.; Grüneis, A.; Vyalikh, D. V.

    2013-07-01

    The unique properties of graphene have raised high expectations regarding its application in carbon-based nanoscale devices that could complement or replace traditional silicon technology. This gave rise to the vast amount of researches on how to fabricate high-quality graphene and graphene nanocomposites that is currently going on. Here we show that graphene can be successfully integrated with the established metal-silicide technology. Starting from thin monocrystalline films of nickel, cobalt and iron, we were able to form metal silicides of high quality with a variety of stoichiometries under a Chemical Vapor Deposition grown graphene layer. These graphene-capped silicides are reliably protected against oxidation and can cover a wide range of electronic materials/device applications. Most importantly, the coupling between the graphene layer and the silicides is rather weak and the properties of quasi-freestanding graphene are widely preserved.

  1. Controlled assembly of graphene-capped nickel, cobalt and iron silicides.

    PubMed

    Vilkov, O; Fedorov, A; Usachov, D; Yashina, L V; Generalov, A V; Borygina, K; Verbitskiy, N I; Grüneis, A; Vyalikh, D V

    2013-01-01

    The unique properties of graphene have raised high expectations regarding its application in carbon-based nanoscale devices that could complement or replace traditional silicon technology. This gave rise to the vast amount of researches on how to fabricate high-quality graphene and graphene nanocomposites that is currently going on. Here we show that graphene can be successfully integrated with the established metal-silicide technology. Starting from thin monocrystalline films of nickel, cobalt and iron, we were able to form metal silicides of high quality with a variety of stoichiometries under a Chemical Vapor Deposition grown graphene layer. These graphene-capped silicides are reliably protected against oxidation and can cover a wide range of electronic materials/device applications. Most importantly, the coupling between the graphene layer and the silicides is rather weak and the properties of quasi-freestanding graphene are widely preserved.

  2. Controlled assembly of graphene-capped nickel, cobalt and iron silicides

    PubMed Central

    Vilkov, O.; Fedorov, A.; Usachov, D.; Yashina, L. V.; Generalov, A. V.; Borygina, K.; Verbitskiy, N. I.; Grüneis, A.; Vyalikh, D. V.

    2013-01-01

    The unique properties of graphene have raised high expectations regarding its application in carbon-based nanoscale devices that could complement or replace traditional silicon technology. This gave rise to the vast amount of researches on how to fabricate high-quality graphene and graphene nanocomposites that is currently going on. Here we show that graphene can be successfully integrated with the established metal-silicide technology. Starting from thin monocrystalline films of nickel, cobalt and iron, we were able to form metal silicides of high quality with a variety of stoichiometries under a Chemical Vapor Deposition grown graphene layer. These graphene-capped silicides are reliably protected against oxidation and can cover a wide range of electronic materials/device applications. Most importantly, the coupling between the graphene layer and the silicides is rather weak and the properties of quasi-freestanding graphene are widely preserved. PMID:23835625

  3. Stacked silicide/silicon mid- to long-wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

  4. Stacked silicide/silicon mid- to long-wavelength infrared detector

    DOEpatents

    Maserjian, Joseph

    1990-03-13

    The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

  5. Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements

    PubMed Central

    2011-01-01

    We examine nickel silicide as a viable ohmic contact metallization for low-temperature, low-magnetic-field transport measurements of atomic-scale devices in silicon. In particular, we compare a nickel silicide metallization with aluminium, a common ohmic contact for silicon devices. Nickel silicide can be formed at the low temperatures (<400°C) required for maintaining atomic precision placement in donor-based devices, and it avoids the complications found with aluminium contacts which become superconducting at cryogenic measurement temperatures. Importantly, we show that the use of nickel silicide as an ohmic contact at low temperatures does not affect the thermal equilibration of carriers nor contribute to hysteresis in a magnetic field. PMID:21968083

  6. Monoalkylation of acetonitrile by primary alcohols catalyzed by iridium complexes.

    PubMed

    Anxionnat, Bruno; Pardo, Domingo Gomez; Ricci, Gino; Cossy, Janine

    2011-08-05

    The monoalkylation of acetonitrile by primary alcohols was achieved in a one-pot sequence in the presence of iridium catalysts. A diversity of nitriles has been obtained from aryl- and alkyl-methanols in excellent yield.

  7. Iridium abundances across the ordovician-silurian stratotype.

    PubMed

    Wilde, P; Berry, W B; Quinby-Hunt, M S; Orth, C J; Quintana, L R; Gilmore, J S

    1986-07-18

    Chemostratigraphic analyses in the Ordovician-Silurian boundary stratotype section, bracketing a major extinction event in the graptolitic shale section at Dob's Linn, Scotland, show persistently high iridium concentrations of 0.050 to 0.250 parts per billion. There is no iridiumn concentration spike in the boundary interval or elsewhere in the 13 graptolite zones examined encompassing about 20 million years. Iridium correlated with chromium, both elements showing a gradual decrease with time into the middle part of the Lower Silurian. The chromium-iridium ratio averages about 10(6). Paleogeographic and geologic reconstructions coupled with the occurrence of ophiolites and other deep crustal rocks in the source area suggest that the high iridium and chromium concentrations observed in the shales result from terrestrial erosion of exposed upper mantle ultramafic rocks rather than from a cataclysmic extraterrestrial event.

  8. Acute radiodermatitis from occupational exposure to iridium 192

    SciTech Connect

    Becker, J.; Rosen, T. )

    1989-12-01

    Industrial radiography using the man-made radioisotope iridium 192 is commonplace in the southern states. Despite established procedures and safeguards, accidental exposure may result in typical acute radiodermatitis. We have presented a clinical example of this phenomenon.9 references.

  9. GPS/GNSS Interference from Iridium Data Transmitters

    NASA Astrophysics Data System (ADS)

    Berglund, H. T.; Blume, F.; Estey, L.; White, S.

    2011-12-01

    The Iridium satellite communication system broadcasts in the 1610 to 1626.5 MHz band. The L1 frequencies broadcast by GPS, Galileo and GLONASS satellites are 1575.42 MHz, 1575.42 MHz and 1602 MHz + n × 0.5625 MHz, respectively (each GLONASS satellite uses a unique frequency). The proximity of the Iridium frequency band with the L1 frequencies of the GPS, Galileo and GLONASS systems leaves GNSS receivers susceptible to interference from Iridium data transmissions. Interference from Iridium transmissions can cause cycle slips and loss of lock on the carrier and code phases, thereby degrading the quality of GNSS observations and position estimates. In 2008, UNAVCO staff members observed that the percent of slips vs. the number of observations increased as the distance between a GPS choke ring antenna (TRM29659.00) and an Iridium antenna decreased. From those observations they suggested that Iridium antennas and GPS antennas should be separated by >30 m to minimize cycle slips caused by the interference from Iridium data transmissions. A second test conducted in 2009 using a newer Trimble GNSS choke ring antenna (TRM59800.00) showed similar results to the previous test despite the wider frequency range of the newer antenna. More recent testing conducted to investigate the response of new receiver models to iridium transmissions has shown that many GNSS enabled models, when combined with GNSS enabled antennas, have increased sensitivity to interference when compared to older GPS-only models. The broader frequency spectrum of the Low Noise Amplifiers (LNA) installed in many newer GNSS antennas can increase the impact of near-band RF interference on tracking performance. Our testing has shown that the quality of data collected at sites collocated with iridium communications is highly degraded for antenna separations exceeding 100m. Using older GPS antenna models (e.g. TRM29659.00) with newer GNSS enabled receivers can reduce this effect. To mitigate the effects that

  10. Synthetic Development of Metal Silicide Nanowires for Thermoelectric and Spintronic Applications

    NASA Astrophysics Data System (ADS)

    Higgins, Jeremy Michael

    2011-12-01

    Nanomaterials, including nanowires (NWs), are a new class of materials with the potential to lead to major changes in many aspects of human society. Innumerable applications for nanomaterials are envisioned or are being realized now. However, such new functionalities are and will continue to be predicated on our ability to precisely synthesize nanomaterials, a skill yet undeveloped in a majority of chemical systems. Metal silicides are a class of refractory intermetallic compounds composed of abundant elements with widely varying properties that are currently employed in a large range of technological applications. In this thesis, I describe my exploration of metal silicide NWs, particularly those in the Mn-Si binary system, in order to develop rational synthetic strategies for accessing binary and ternary silicide NWs and characterize their potential for thermoelectric and spintronic applications. Chapter 1 develops a common set of ideas and a common language before reviewing the current "state of the art" in silicide NW synthesis, exploring a number of the mysteries still surrounding silicide NW synthesis, and presenting silicide NW applications. Chapter 2 depicts the use of Mn(CO) 5SiCl3 as the vapor phase precursor to synthesize higher manganese silicide NWs (also known as HMS, MnSi˜1.7 MnSi2--x) for the first time, the identification of the NW subphase as Mn19Si33, and conductivity measurement on HMS NWs revealing bulk-like behavior. Chapter 3 describes employing MnCl 2 as the precursor for the first successful synthesis of MnSi NWs and transverse magnetoresistance measurements on these MnSi NWs to observe the signatures of helimagnetism in NWs for the first time. Chapter 4 is a systematic examination of silicide NW synthesis by single source precursor chemical vapor deposition, highlighting the complex interplay of substrate diffusion and vapor phase reactivity giving rise to material incorporation in silicide NWs. Chapter 5 details the direct reaction of Mn

  11. Iridium{reg_sign} worldwide personal communication system

    SciTech Connect

    Helm, J.

    1997-01-01

    The IRIDIUM system is a personal worldwide communication system designed to support portable, low power subscriber units through the use of a constellation of satellites in low earth polar orbit. The satellites are networked together to form a system which provides continuous line-of-sight communications between the IRIDIUM system and any point within 30 km of the earth{close_quote}s surface. The system architecture and operation are described. {copyright} {ital 1997 American Institute of Physics.}

  12. Synthesis and characterization of nitrides of iridium and palladiums

    SciTech Connect

    Crowhurst, Jonathan C.; Goncharov, Alexander F.; Sadigh, B.; Zaug, J.M.; Aberg, D.; Meng, Yue; Prakapenka, Vitali B.

    2008-08-14

    We describe the synthesis of nitrides of iridium and palladium using the laser-heated diamond anvil cell. We have used the in situ techniques of x-ray powder diffraction and Raman scattering to characterize these compounds and have compared our experimental findings where possible to the results of first-principles theoretical calculations. We suggest that palladium nitride is isostructural with pyrite, while iridium nitride has a monoclinic symmetry and is isostructural with baddeleyite.

  13. Status of the atomized uranium silicide fuel development at KAERI

    SciTech Connect

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H.

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  14. Work function characterization of solution-processed cobalt silicide

    DOE PAGES

    Ullah, Syed Shihab; Robinson, Matt; Hoey, Justin; ...

    2012-05-08

    Cobalt silicide thin films were prepared by spin-coating Si6H12-based inks onto various substrates followed by a thermal treatment. The work function of the solution processed Co-Si was determined by both capacitance-voltage (C-V) measurements of metal-oxide-semiconductor (MOS) structures as well as by ultraviolet photoelectron spectroscopy (UPS). The UPS-derived work function was 4.80 eV for a Co-Si film on Si (100) while C-V of MOS structures yielded a work function of 4.36 eV where the metal was solution-processed Co-Si, the oxide was SiO2 and the semiconductor was a B-doped Si wafer.

  15. Europium Silicide – a Prospective Material for Contacts with Silicon

    NASA Astrophysics Data System (ADS)

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Karateeva, Christina G.; Karateev, Igor A.; Lobanovich, Eduard F.; Prutskov, Grigory V.; Parfenov, Oleg E.; Taldenkov, Alexander N.; Vasiliev, Alexander L.; Storchak, Vyacheslav G.

    2016-05-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics.

  16. Silicide formation and the generation of point defects in silicon

    NASA Astrophysics Data System (ADS)

    Svensson, B. G.; Aboelfotoh, M. O.; Lindström, J. L.

    1991-06-01

    The annealing behavior of the divacancy (V2) acceptor levels in silicon is investigated with the use of Schottky-barrier structures formed by the deposition of copper on n-type silicon irradiated with 2-MeV electrons. At temperatures below ~150 °C an anomalously high annealing rate of the V2 centers is observed, and we believe that the fast-diffusing interstitial Cu+ passivates their electrical activity and forms neutral complexes. In the temperature range 150-200 °C, where the metal-rich silicide η'-Cu3Si forms, the concentration of V2 remains almost constant, and we find no evidence for the injection of silicon self-interstitials during the formation of η'-Cu3Si, in contrast to recent experiments.

  17. Capping of rare earth silicide nanowires on Si(001)

    SciTech Connect

    Appelfeller, Stephan; Franz, Martin; Kubicki, Milan; Dähne, Mario; Reiß, Paul; Niermann, Tore; Lehmann, Michael; Schubert, Markus Andreas

    2016-01-04

    The capping of Tb and Dy silicide nanowires grown on Si(001) was studied using scanning tunneling microscopy and cross-sectional high-resolution transmission electron microscopy. Several nanometers thick amorphous Si films deposited at room temperature allow an even capping, while the nanowires maintain their original structural properties. Subsequent recrystallization by thermal annealing leads to more compact nanowire structures and to troughs in the Si layer above the nanowires, which may even reach down to the nanowires in the case of thin Si films, as well as to V-shaped stacking faults forming along (111) lattice planes. This behavior is related to strain due to the lattice mismatch between the Si overlayer and the nanowires.

  18. Postirradiation analysis of experimental uranium-silicide dispersion fuel plates

    SciTech Connect

    Hofman, G.L.; Neimark, L.A.

    1985-01-01

    Low-enriched uranium silicide dispersion fuel plates were irradiated to maximum burnups of 96% of /sup 235/U. Fuel plates containing 33 v/o U/sub 3/Si and U/sub 3/Si/sub 2/ behaved very well up to this burnup. Plates containing 33 v/o U/sub 3/Si-Al pillowed between 90 and 96% burnup of the fissile atoms. More highly loaded U/sub 3/Si-Al plates, up to 50 v/o were found to pillow at lower burnups. Plates containing 40 v/o U/sub 3/Si showed an increase swelling rate around 85% burnup. 5 refs., 10 figs.

  19. A DFT study of hypercoordinated copper silicide nanotubes

    NASA Astrophysics Data System (ADS)

    Ai, Ling-Yan; Zhao, Hui-Yan; Wang, Jing; Liu, Ying

    2017-03-01

    The stability and electronic structures of copper silicide nanotubes (CuSiNTs) are calculated using first-principles density functional theory. Here these CuSiNTs of various different diameters, chiral vectors and morphologies were obtained by rolling up a novel two-dimensional hypercoordinated Cu2Si monolayer with high stability (Yang et al., J. Am. Chem. Soc. 137 (2015) 2757-2762). Electronic structure calculations showed that these CuSiNTs are conductors independent of their chiral vectors, diameters and morphologies. In addition, molecular dynamics (MD) simulations of the (6, 0) tube and the (8, 4) tube were performed. It was found that the (8, 4) tube has very good thermal stability and that its structure does not break down during MD simulations at initial temperatures up to 1500 K. Based on their electrical conductivity and good thermal stability, these CuSiNTs are promising candidates to envision application as metallic connections in nanoscale electronic devices.

  20. Silicon-nanowire transistors with intruded nickel-silicide contacts.

    PubMed

    Weber, Walter M; Geelhaar, Lutz; Graham, Andrew P; Unger, Eugen; Duesberg, Georg S; Liebau, Maik; Pamler, Werner; Chèze, Caroline; Riechert, Henning; Lugli, Paolo; Kreupl, Franz

    2006-12-01

    Schottky barrier field effect transistors based on individual catalytically-grown and undoped Si-nanowires (NW) have been fabricated and characterized with respect to their gate lengths. The gate length was shortened by the axial, self-aligned formation of nickel-silicide source and drain segments along the NW. The transistors with 10-30 nm NW diameters displayed p-type behaviour, sustained current densities of up to 0.5 MA/cm2, and exhibited on/off current ratios of up to 10(7). The on-currents were limited and kept constant by the Schottky contacts for gate lengths below 1 microm, and decreased exponentially for gate lengths exceeding 1 microm.

  1. Pt redistribution during Ni(Pt) silicide formation

    SciTech Connect

    Demeulemeester, J.; Smeets, D.; Vantomme, A.; Van Bockstael, C.; Detavernier, C.; Comrie, C. M.; Barradas, N. P.; Vieira, A.

    2008-12-29

    We report on a real-time Rutherford backscattering spectrometry study of the erratic redistribution of Pt during Ni silicide formation in a solid phase reaction. The inhomogeneous Pt redistribution in Ni(Pt)Si films is a consequence of the low solubility of Pt in Ni{sub 2}Si compared to NiSi and the limited mobility of Pt in NiSi. Pt further acts as a diffusion barrier and resides in the Ni{sub 2}Si grain boundaries, significantly slowing down the Ni{sub 2}Si and NiSi growth kinetics. Moreover, the observed incorporation of a large amount of Pt in the NiSi seeds indicates that Pt plays a major role in selecting the crystallographic orientation of these seeds and thus in the texture of the resulting Ni{sub 1-x}Pt{sub x}Si film.

  2. Silicide/silicon Schottky barriers under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Werner, Jürgen H.

    1989-04-01

    We investigate several silicide/silicon Schottky barrier heights under hydrostatic pressures up to 10 kbar. The barriers of polycrystalline TiSi2, PtSi, and WTi on n-type Si decrease with -1.l3, -1.35, and -1.42 meV/kbar, respectively. The coefficients for A- and B-type NiSi2/Si amount to -0.77 and -0.89 meV/kbar and are too small to support models which ascribe the l40 meV barrier difference of these two types to different interface bond lengths. The pressure coefficients are, on the other hand, within a range of predictions of Cardona and Christensen which are based on pure bulk properties.

  3. Europium Silicide – a Prospective Material for Contacts with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Karateeva, Christina G.; Karateev, Igor A.; Lobanovich, Eduard F.; Prutskov, Grigory V.; Parfenov, Oleg E.; Taldenkov, Alexander N.; Vasiliev, Alexander L.; Storchak, Vyacheslav G.

    2016-01-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics. PMID:27211700

  4. Controlled formation and resistivity scaling of nickel silicide nanolines.

    PubMed

    Li, Bin; Luo, Zhiquan; Shi, Li; Zhou, JiPing; Rabenberg, Lew; Ho, Paul S; Allen, Richard A; Cresswell, Michael W

    2009-02-25

    We demonstrate a top-down method for fabricating nickel mono-silicide (NiSi) nanolines (also referred to as nanowires) with smooth sidewalls and line widths down to 15 nm. Four-probe electrical measurements reveal that the room temperature electrical resistivity of the NiSi nanolines remains constant as the line widths are reduced to 23 nm. The resistivity at cryogenic temperatures is found to increase with decreasing line width. This finding can be attributed to electron scattering at the sidewalls and is used to deduce an electron mean free path of 6.3 nm for NiSi at room temperature. The results suggest that NiSi nanolines with smooth sidewalls are able to meet the requirements for implementation at the 22 nm technology node without degradation of device performance.

  5. Development of molecular dynamics potential for uranium silicide fuels

    SciTech Connect

    Yu, Jianguo; Zhang, Yongfeng; Hales, Jason D.

    2016-09-01

    Use of uranium–silicide (U-Si) in place of uranium dioxide (UO2) is one of the promising concepts being proposed to increase the accident tolerance of nuclear fuels. This is due to a higher thermal conductivity than UO2 that results in lower centerline temperatures. U-Si also has a higher fissile density, which may enable some new cladding concepts that would otherwise require increased enrichment limits to compensate for their neutronic penalty. However, many critical material properties for U-Si have not been determined experimentally. For example, silicide compounds (U3Si2 and U3Si) are known to become amorphous under irradiation. There was clear independent experimental evidence to support a crystalline to amorphous transformation in those compounds. However, it is still not well understood how the amorphous transformation will affect on fuel behavior. It is anticipated that modeling and simulation may deliver guidance on the importance of various properties and help prioritize experimental work. In order to develop knowledge-based models for use at the engineering scale with a minimum of empirical parameters and increase the predictive capabilities of the developed model, inputs from atomistic simulations are essential. First-principles based density functional theory (DFT) calculations will provide the most reliable information. However, it is probably not possible to obtain kinetic information such as amorphization under irradiation directly from DFT simulations due to size and time limitations. Thus, a more feasible way may be to employ molecular dynamics (MD) simulation. Unfortunately, so far no MD potential is available for U-Si to discover the underlying mechanisms. Here, we will present our recent progress in developing a U-Si potential from ab initio data. This work is supported by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program funded by the U.S. Department of Energy, Office of Nuclear Energy.

  6. Copper silicide formation by rapid thermal processing and induced room-temperature Si oxide growth

    NASA Astrophysics Data System (ADS)

    Setton, M.; Van der Spiegel, J.; Rothman, B.

    1990-07-01

    The growth of copper silicide has been studied by rapid thermal processing (RTP) of 500 Å of Cu on Si substrates. Interaction between the diffusing metal and Si starts at 250-300 °C. Annealing at higher temperatures yields complete silicidation to Cu3Si. This leads to strong modifications of the Auger line shapes of both Si and Cu. A plasmon peak located 20 eV below the main peak is the fingerprint in the Cu spectrum. Strong features at 80, 85.6, 89.2, and 93.2 eV as well as a 1 eV shift of the 90.4 eV peak appear in the Si L2,3VV spectrum. Whether for Cu films annealed in nitrogen or in vacuum, exposure of the silicide to air results in the growth of silicon oxide at room temperature and continues until the silicide layer is totally converted. This repeatable and controllable oxidation of silicon is accompanied by changes in resistivity and color reflecting the extent of the process. For Cu/CoSi2/Si structures, the cobalt silicide acts as a transport medium for the growth of the copper silicide and also serves as a cap preventing the oxidation of the final CoSi2/Cu3Si/Si contacts

  7. Kinetics of nickel silicide growth in silicon nanowires: From linear to square root growth

    SciTech Connect

    Yaish, Y. E.; Beregovsky, M.; Katsman, A.; Cohen, G. M.

    2011-05-01

    The common practice for nickel silicide formation in silicon nanowires (SiNWs) relies on axial growth of silicide along the wire that is initiated from nickel reservoirs at the source and drain contacts. In the present work the silicide intrusions were studied for various parameters including wire diameter (25-50 nm), annealing time (15-120 s), annealing temperature (300-440 deg. C), and the quality of the initial Ni/Si interface. The silicide formation was investigated by high-resolution scanning electron microscopy, high-resolution transmission electron microscopy (TEM), and atomic force microscopy. The main part of the intrusion formed at 420 deg. C consists of monosilicide NiSi, as was confirmed by energy dispersive spectroscopy STEM, selected area diffraction TEM, and electrical resistance measurements of fully silicided SiNWs. The kinetics of nickel silicide axial growth in the SiNWs was analyzed in the framework of a diffusion model through constrictions. The model calculates the time dependence of the intrusion length, L, and predicts crossover from linear to square root time dependency for different wire parameters, as confirmed by the experimental data.

  8. Synthesis and design of silicide intermetallic materials. 1998 annual progress report

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Vaidya, R.U.; Hollis, K.J.; Kung, H.H.

    1999-03-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of developing industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. The progress made on the program in this period is summarized.

  9. On the Extreme Oxidation States of Iridium.

    PubMed

    Pyykkö, Pekka; Xu, Wen-Hua

    2015-06-22

    It has recently been suggested that the oxidation states of Ir run from the putative -III in the synthesized solid Na3 [Ir(CO)3 ] to the well-documented +IX in the species IrO4 (+) . Furthermore, [Ir(CO)3 ](3-) was identified as an 18-electron species. A closer DFT study now finds support for this picture: The orbitals spanned by the 6s,6p,5d orbitals of the iridium are all occupied. Although some have considerable ligand character, the deviations from 18 e leave the orbital symmetries unchanged. The isoelectronic systems from Os(-IV) to Au(-I) behave similarly, suggesting further possible species. To paraphrase Richard P. Feynmann "there is plenty of room at the bottom".

  10. Solventless synthesis of iridium(0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Redón, R.; Ramírez-Crescencio, F.; Fernández-Osorio, A. L.

    2011-11-01

    In this article, we present the results of a solvent-free synthesis of iridium(0) nanoparticles, both water washed and unwashed. IrCl3 and NaBH4, as starting materials, are mixed using an agate mortar and milled for 15 min until a black powder is obtained, which is heated in a nitrogen-controlled atmosphere oven at 200 °C for 2 h. If the product of the reaction is not washed before heating, NaBH4 and IrO2 impurities are observed. On the other hand, if the reaction product is washed before the heating, the obtained powder is free of impurities. We study the effect of the variation in reducing agent concentration and the annealing temperature used after the reaction. In all cases, the calculated particle size is less than 10 nm.

  11. Laser Induced Fluorescence Spectrum of Iridium Monophosphide

    NASA Astrophysics Data System (ADS)

    Pang, H. F.; Liu, Anwen; Cheung, A. S.-C.

    2009-06-01

    Laser induced fluorescence spectrum of IrP in the spectral region between 380-600 nm has been studied. Reacting laser ablated iridium atoms with 1% PH_3 seeded in argon produced the IrP molecule. A few vibronic transitions have been recorded. Preliminary analysis of the rotational structure indicated that these vibronic bands are with Ω^' = 0 and Ω^'' = 0 and is likely to be ^{1}Σ - X ^{1}Σ transition. Vibrational separation of the excited state is estimated to be about 442 cm^{-1}. The ground state bond length is determined to be 1.766 Å. This work represents the first experimental investigation of the spectra of IrP.

  12. PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

  13. Effects of temperature dependent pre-amorphization implantation on NiPt silicide formation and thermal stability on Si(100)

    SciTech Connect

    Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean; Lavoie, Christian

    2013-04-29

    Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.

  14. On the size-dependent magnetism and all-optical magnetization switching of transition-metal silicide nanostructures

    SciTech Connect

    Glushkov, G. I.; Tuchin, A. V.; Popov, S. V.; Bityutskaya, L. A.

    2015-12-15

    Theoretical investigations of the electronic structure, synthesis, and all-optical magnetization switching of transition-metal silicide nanostructures are reported. The magnetic moment of the nanostructures is studied as a function of the silicide cluster size and configuration. The experimentally demonstrated magnetization switching of nanostructured nickel silicide by circularly polarized light makes it possible to create high-speed storage devices with high density data recording.

  15. Iridium NEXT: A Global access for your sensor needs

    NASA Astrophysics Data System (ADS)

    Gupta, O. P.; Fish, C. S.

    2010-12-01

    The operational Iridium constellation is comprised of 66 satellites, used to primarily provide worldwide voice and data coverage to satellite phones, pagers and integrated transceivers. The satellites are in low Earth orbit at 781 km and inclination of 86.4 deg, resulting in unprecedented 24/7 coverage and real-time visibility of the entire globe. Recently, through funding from the National Science Foundation (NSF), Iridium has been utilized by the Johns Hopkins University Applied Physics Laboratory (APL), with help from The Boeing Company, as an infrastructure for a comprehensive network for space environment measurements. Known as the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), the Iridium-based system provides real-time magnetic field measurements using the satellites as part of a new observation network to forecast weather in space. In February 2007, Iridium announced Iridium NEXT, a novel design for a second-generation satellite constellation. Anticipated to begin launching in 2015, Iridium NEXT will maintain the existing Iridium constellation architecture of 66 cross-linked satellite LEO covering 100 percent of the globe. In the spirit of AMPERE, for commercial, government, and scientific organizations Iridium NEXT also plans to offer new earth and space observation opportunities through hosted hosted payloads on the 66 Iridium NEXT satellite network. To provide seamless support and access to this latest innovation in payload transportation, Iridium NEXT has teamed with Space Dynamics Laboratory - Utah State University which has delivered thousands of successful sensors and subsystems for over 400 space borne and aircraf based payloads. One such innovation called SensorPOD will offer unique benefits such as unprecedented spatial and temporal coverage, real-time relay of data to and from up to 5 Kg payloads in space, and access to space at a fraction of the cost of a dedicated missions such as 3U or larger Cubesats. In this

  16. Iridium complexes demonstrating broadband emission through controlled geometric distortion and applications thereof

    DOEpatents

    Li, Jian; Turner, Eric

    2016-04-12

    Iridium compounds and their uses are disclosed herein. For example, carbazole containing iridium compounds are disclosed. The compounds are useful in many devices, including, but not limited to, electroluminescent devices.

  17. DETERMINATION OF HETEROGENEOUS ELECTRON TRANSFER RATE CONSTANTS AT MICROFABRICATED IRIDIUM ELECTRODES. (R825511C022)

    EPA Science Inventory

    There has been an increasing use of both solid metal and microfabricated iridium electrodes as substrates for various types of electroanalysis. However, investigations to determine heterogeneous electron transfer rate constants on iridium, especially at an electron beam evapor...

  18. DETERMINATION OF HETEROGENEOUS ELECTRON TRANSFER RATE CONSTANTS AT MICROFABRICATED IRIDIUM ELECTRODES. (R825511C022)

    EPA Science Inventory

    There has been an increasing use of both solid metal and microfabricated iridium electrodes as substrates for various types of electroanalysis. However, investigations to determine heterogeneous electron transfer rate constants on iridium, especially at an electron beam evapor...

  19. Oxygen chemisorption and oxide formation on Ni silicide surfaces at room temperature

    NASA Astrophysics Data System (ADS)

    Valeri, S.; Del Pennino, U.; Lomellini, P.; Sassaroli, P.

    1984-10-01

    Auger spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) have been used in a comparative study of the room temperature oxidation of Ni silicides of increasing silicon content, from Ni3Si to NiSi2. The results were compared with those for the oxidation of pure Si and Ni. All suicide surfaces in the exposure range between 0.2 and 104 L follow two-step oxidation kinetics: the first step is characterized by an oxygen uptake rate higher than in the second one. Attention was focused on the oxygen induced modifications of metal and silicon AES and XPS spectra in silicides, which are indicative of changes in the local electronic structure and in the chemical bonding. In general oxygen bonds with silicon leaving the metal unaffected; however, at high exposures, characteristic feature of the Ni-oxygen bonds appear in the Ni(MVV) Auger line of the Ni-rich silicides. The presence of Ni atoms enhances considerably the Si oxidation process in silicides with respect to pure Si, in terms both of a higher Si oxidation state and a higher oxygen uptake; this enhancement is stronger in Ni-rich silicides than in Si-rich silicides. The oxygen induced contributions in the Si(LVV) Auger line show structures at 76 and 83 eV, and those in the Si 2p photoemission spectra show binding energy shifts between -1 and -3.8 eV; we conclude that the oxidation products are mainly silicon suboxides, like Si2O3 and SiO; only on Ni3 Si at 104 L, a significant contribution of SiO2 was found. The Ni catalytic effect on Si oxidation has been discussed in terms of the suicide heat of formation, of the breaking of the silicon sp3 configuration in silicides and of the metal atom dissociative effect on the O2 molecule.

  20. Iron Silicide Formation by Precipitation in a Silicon Bicrystal

    NASA Astrophysics Data System (ADS)

    Portier, X.; Ihlal, A.; Rizk, R.

    1997-05-01

    Segregation and precipitation of iron in a = 25 silicon bicrystal have been carefully investigated by means of high resolution electron microscopy and energy dispersive X-ray analyses, in combination with capacitance and electron beam induced current measurements. After intentional incorporation of iron in the bicrystal by a simple heating procedure, it was shown that a non-equilibrium segregation of iron has occurred after rapid cooling whereas iron precipitates have been produced upon slow cooling. The silicides are formed mainly at the grain boundary area and they were found to belong to the -FeSi cubic or -FeSi2 tetragonal phases. Each precipitate is simply oriented with respect to one of the two grains without any preference between them. The orientation relationships were found in perfect agreement with those observed for the corresponding iron silicides that are epitaxially grown on oriented silicon substrates. Barrier and recombinative effects on the contaminated (1200 °C) and slowly cooled samples have been detected. These effects have been associated with the formation of iron silicides at the grain boundary. La ségrégation ainsi que la précipitation de siliciures de fer au joint de grains = 25 de silicium ont été etudiées en utilisant la dispersion d'énergie des électrons, la microscopie électronique en transmission haute résolution ainsi que des mesures électriques capacitives et des mesures de courants induits par faisceau d'électrons. A la suite d'une contamination volontaire par diffusion thermique du fer au sein du bicristal, nous avons montré qu'une ségrégation hors-équilibre d'atomes de fer est obtenue après un refroidissement rapide alors qu'un refroidissement lent a pour conséquence la formation de siliciures de fer. Ces petits cristaux de siliciures croissent de préférence au niveau du joint de grains et ils ont pour phase, la phase cubique -FeSi ou la phase quadratique α-FeSi2. Chaque précipité est orienté simplement

  1. Silicide-phase evolution and platinum redistribution during silicidation of Ni0.95Pt0.05/Si(100) specimens

    NASA Astrophysics Data System (ADS)

    Adusumilli, Praneet; Seidman, David N.; Murray, Conal E.

    2012-09-01

    We investigated the temporal evolution of nickel-silicide phase-formation and the simultaneous redistribution of platinum during silicidation of a 10 nm thick Ni0.95Pt0.05 film on a Si(100) substrate. Grazing incidence x-ray diffraction (GIXRD) and atom-probe tomography (APT) measurements were performed on as-deposited films and after rapid thermal annealing (RTA) at 320 or 420 °C for different times. Observation of the Ni2Si phase in as-deposited films, both with and without platinum alloying, is attributed to surface preparation. RTA at 320 °C for 5 s results in the formation of the low-resistivity NiSi intermetallic phase and nickel-rich phases, Ni2Si and Ni3Si2, as demonstrated by GIXRD measurements. At 420 °C for 5 s, the NiSi phase grows outward from the silicide/Si(100) interface by consuming the nickel-rich silicide phases. On increasing the annealing time at 420 °C to 30 min, this reaction is driven towards completion. The nickel-silicide/silicon interface is reconstructed in three-dimensions employing APT and its chemical root-mean-square roughness, based on a silicon isoconcentration surface, decreases to 0.6 nm with the formation of the NiSi phase during silicidation. Pt redistribution is affected by the simultaneous reaction between Ni and Si during silicidation, and it influences the resulting microstructure and thermal stability of the NiSi phase. Short-circuit diffusion of Pt via grain boundaries in NiSi is observed, which affects the resultant grain size, morphology, and possibly the preferred orientation of the NiSi grains. Pt segregates at the NiSi/Si(100) heterophase interface and may be responsible for the morphological stabilization of NiSi against agglomeration to temperatures greater than 650 °C. The Gibbsian interfacial excess of Pt at the NiSi/Si(100) interface after RTA at 420 °C for 5 s is 1.2 ± 0.01 atoms nm-2 and then increases to 2.1 ± 0.02 atoms nm-2 after 30 min at 420 °C, corresponding to a decrease in the interfacial free

  2. Highly fluorescent and biocompatible iridium nanoclusters for cellular imaging.

    PubMed

    Vankayala, Raviraj; Gollavelli, Ganesh; Mandal, Badal Kumar

    2013-08-01

    Highly fluorescent iridium nanoclusters were synthesized and investigated its application as a potential intracellular marker. The iridium nanoclusters were prepared with an average size of ~2 nm. Further, these nanoclusters were refluxed with aromatic ligands, such as 2,2'-binaphthol (BINOL) in order to obtain fluorescence properties. The photophysical properties of these bluish-green emitting iridium nanoclusters were well characterized by using UV-Visible, fluorescence and lifetime decay measurements. The emission spectrum for these nanoclusters exhibit three characteristic peaks at 449, 480 and 515 nm. The fluorescence quantum yield of BINOL-Ir NCs were estimated to be 0.36 and the molar extinction co-efficients were in the order of 10(6) M(-1)cm(-1). In vitro cytotoxicity studies in HeLa cells reveal that iridium nanoclusters exhibited good biocompatibility with an IC50 value of ~100 μg/ml and also showed excellent co-localization and distribution throughout the cytoplasm region without entering into the nucleus. This research has opened a new window in developing the iridium nanoparticle based intracellular fluorescent markers and has wide scope to act as biomedical nanocarrier to carry many biological molecules and anticancer drugs.

  3. Influence of Ni silicide phases on effective work function modulation with Al-pileup in the Ni fully silicided gate/HfSiON system

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yoshinori; Yoshiki, Masahiko; Koga, Junji; Nishiyama, Akira; Koyama, Masato

    2009-08-01

    Influences of Ni silicide phases on the effective work function (Φeff) modulation effect with Al incorporation has been investigated in the Ni silicide/HfSiON systems. We formed metal-insulator-semiconductor capacitors with Al incorporated Ni silicide (NiSi, Ni2Si, and Ni3Si) gates on HfSiON by Al solid-phase diffusion (Al-SPD) process or Al ion implantation (I/I) process. In the Al-SPD process, Al is deposited on Ni silicide gate. In the Al-I/I process, Al ions were doped in the upper part of Ni silicide layer. In both cases, we performed Al drive-in annealing under the condition of 450 °C for 30 min in N2 ambient. It is found that the flat-band voltage (Vfb) values of Al incorporated NiSi and Ni2Si gates shift negatively and identical independent of Al incorporation processes. A highly concentrated Al piled-up layer, which induces Φeff modulation to Al-Φeff value, seems to correspond to the Vfb modulation. On the other hand, Al incorporation has little influence on Φeff at the Ni3Si/HfSiON interface. We revealed that a lower Al diffusion coefficient in Ni3Si phase reduces the Al interface density at the Ni3Si/HfSiON interface. In addition, Al piled-up layer is inherently unstable at the Ni3Si/HfSiON interface, which is confirmed from the detailed investigation about thermal stability of Al piled-up layer by using phase change process from NiSi to Ni3Si phase.

  4. Characterization of Platinum and Iridium Oxyhydrate Surface Layers from Platinum and Iridium Foils.

    PubMed

    Johnson, Benjamin; Ranjan, Chinmoy; Greiner, Mark; Arrigo, Rosa; Schuster, Manfred Erwin; Höpfner, Britta; Gorgoi, Mihaela; Lauermann, Iver; Willinger, Marc; Knop-Gericke, Axel; Schlögl, Robert

    2016-07-07

    Platinum and iridium polycrystalline foils were oxidized electrochemically through anodization to create thin platinum and iridium hydrous oxide layers, which were analyzed through laboratory photoelectron spectroscopy during heating and time series (temperature-programmed spectroscopy). The films contain oxygen in the form of bound oxides, water, and hydroxides and were investigated by depth profiling with high-energy photoelectron spectroscopy. The Pt films are unstable and begin to degrade immediately after removal from the electrolyte to form core-shell structures with a metallic inner core and a hydrous oxide outer shell almost devoid of Pt. However, evidence was found for metastable intermediate states of degradation; therefore, it may be possible to manufacture PtOx phases with increased stability. Heating the film to even 100 °C causes accelerated degradation, which shows that stoichiometric oxides such as PtO2 or PtO are not the active species in the electrolyte. The Ir films exhibit increased stability and higher surface Ir content, and gentle heating at low temperatures leads to a decrease in defect density. Although both layers are based on noble metals, their surface structures are markedly different. The complexity of such hydrous oxide systems is discussed in detail with the goal of identifying the film composition more precisely. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of silicide/silicon hetero-junction structure on thermal conductivity and Seebeck coefficient.

    PubMed

    Choi, Wonchul; Park, Young-Sam; Hyun, Younghoon; Zyung, Taehyoung; Kim, Jaehyeon; Kim, Soojung; Jeon, Hyojin; Shin, Mincheol; Jang, Moongyu

    2013-12-01

    We fabricated a thermoelectric device with a silicide/silicon laminated hetero-structure by using RF sputtering and rapid thermal annealing. The device was observed to have Ohmic characteristics by I-V measurement. The temperature differences and Seebeck coefficients of the proposed silicide/silicon laminated and bulk structure were measured. The laminated thermoelectric device shows suppression of heat flow from the hot to cold side. This is supported by the theory that the atomic mass difference between silicide and silicon creates a scattering center for phonons. The major impact of our work is that phonon transmission is suppressed at the interface between silicide and silicon without degrading electrical conductivity. The estimated thermal conductivity of the 3-layer laminated device is 126.2 +/- 3.7 W/m. K. Thus, by using the 3-layer laminated structure, thermal conductivity is reduced by around 16% compared to bulk silicon. However, the Seebeck coefficient of the thermoelectric device is degraded compared to that of bulk silicon. It is understood that electrical conductivity is improved by using silicide as a scattering center.

  6. SO2 adsorption on silica supported iridium

    NASA Astrophysics Data System (ADS)

    Bounechada, Djamela; Anderson, David P.; Skoglundh, Magnus; Carlsson, Per-Anders

    2017-02-01

    The interaction of SO2 with Ir/SiO2 was studied by simultaneous in situ diffuse reflectance infrared Fourier transform spectroscopy and mass spectrometry, exposing the sample to different SO2 concentrations ranging from 10 to 50 ppm in the temperature interval 200-400 °C. Evidences of adsorption of sulfur species in both absence and presence of oxygen are found. For a pre-reduced sample in the absence of oxygen, SO2 disproportionates such that the iridium surface is rapidly saturated with adsorbed S while minor amounts of formed SO3 may adsorb on SiO2. Adding oxygen to the feed leads to the oxidation of sulfide species that either (i) desorb as SO2 and/or SO3, (ii) remain at metal sites in the form of adsorbed SO2, or (iii) spillover to the oxide support and form sulfates (SO42-). Notably, significant formation of sulfates on silica is possible only in the presence of both SO2 and O2, suggesting that SO2 oxidation to SO3 is a necessary first step in the mechanism of formation of sulfates on silica. During the formation of sulfates, a concomitant removal/rearrangement of surface silanol groups is observed. Finally, the interaction of SO2 with Ir/SiO2 depends primarily on the temperature and type of gas components but only to a minor extent on the inlet SO2 concentration.

  7. Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum

    PubMed Central

    Babenko, Vitaliy; Murdock, Adrian T.; Koós, Antal A.; Britton, Jude; Crossley, Alison; Holdway, Philip; Moffat, Jonathan; Huang, Jian; Alexander-Webber, Jack A.; Nicholas, Robin J.; Grobert, Nicole

    2015-01-01

    Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 μm min−1) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials. PMID:26175062

  8. Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum.

    PubMed

    Babenko, Vitaliy; Murdock, Adrian T; Koós, Antal A; Britton, Jude; Crossley, Alison; Holdway, Philip; Moffat, Jonathan; Huang, Jian; Alexander-Webber, Jack A; Nicholas, Robin J; Grobert, Nicole

    2015-07-15

    Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 μm min(-1)) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials.

  9. Ion beam-induced interfacial growth in Si and silicides

    NASA Astrophysics Data System (ADS)

    Fortuna, F.; Nédellec, P.; Ruault, M. O.; Bernas, H.; Lin, X. W.; Boucaud, P.

    1995-12-01

    We review the mechanisms and consequences of ion beam-induced epitaxial crystallization (IBIEC) in the transition metal- or rare earth-implanted {aSi}/{cSi} systems, as determined from in situ transmission electron microscopy (TEM) during irradiation, combined with channeling, high resolution TEM and optical measurements. IBIEC experiments on nm-size crystals confirm previously measured low values of interface roughness in IBIEC. We have performed interfacial growth simulations which indicate that the IBIEC process is, in fact, interface roughness-limited. They also suggest that interfacial growth processes are similar in several respects to surface growth processes, and that they largely determine (i) the growth habit of silicide precipitation, which is dominated by the interfacial energy, (ii) the possibility of trapping a large fraction of the impurities in non-equilibrium sites, leading to significant supersaturation. A consequence of this effect is to allow incorporation of large (over 300-fold supersaturation) Er concentrations in the substitutional sites of the Si lattice, leading to room-temperature photoluminescence (without any oxygen co-implantation). Evidence of a new, thermally induced instability in interfacial growth is presented: it displays both intermittency and very high growth rates, and is strongly affected by ion irradiation.

  10. New Manganese Silicide Mineral Phase in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Palma, R. L.; Pepin, R. O.; Kloeck, W.; Zolensky, M. E.; Messenger, S.

    2008-01-01

    Comet 26P/Grigg-Skjellerup was identified as a source of an Earth-crossing dust stream with low Earth-encounter velocities, with peak anticipated fluxes during April in 2003 and 2004 [1]. In response to this prediction, NASA performed dedicated stratospheric dust collections using high altitude aircraft to target potential interplanetary dust particles (IDPs) from this comet stream in April 2003. Several IDPs from this collection have shown unusually low noble gas abundances [2] consistent with the predicted short space exposure ages of Grigg-Skjellerup dust particles [1]. High abundances of large D enrichments [3] and presolar grains [4] in IDPs from this collection are also consistent with an origin from the comet Grigg-Skjellerup. Here we report a new mineral from one of the cluster IDPs of the "Grigg-Skjellerup" collection, L2055. Our report focuses on an unusual manganese-iron-chromium silicide phase that, to our knowledge, has not been observed previously in nature. This unique phase may also shed light on the genesis of the enigmatic low-Fe,Mn-enriched (LIME) olivine that has been previously reported in IDPs and meteorites [5].

  11. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    SciTech Connect

    Miao, Yinbin; Mo, Kun; Yacout, Abdellatif; Harp, Jason

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  12. High quality factor platinum silicide microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Szypryt, P.; Mazin, B. A.; Ulbricht, G.; Bumble, B.; Meeker, S. R.; Bockstiegel, C.; Walter, A. B.

    2016-10-01

    We report on the development of microwave kinetic inductance detectors (MKIDs) using platinum silicide as the sensor material. MKIDs are an emerging superconducting detector technology, capable of measuring the arrival times of single photons to better than two microseconds and their energies to around ten percent. Previously, MKIDs have been fabricated using either sub-stoichiometric titanium nitride or aluminum, but TiN suffers from the spatial inhomogeneities in the superconducting critical temperature and Al has a low kinetic inductance fraction, causing low detector sensitivity. To address these issues, we have instead fabricated the PtSi microresonators with the superconducting critical temperatures of 944 ± 12 mK and high internal quality factors ( Q i ≳ 10 6 ). These devices show typical quasiparticle lifetimes of τ q p ≈ 30 - 40 μ s and spectral resolution, R = λ / Δ λ , of 8 at 406.6 nm. We compare PtSi MKIDs to those fabricated with TiN and detail the substantial advantages that PtSi MKIDs have to offer.

  13. Oxidation/vaporization of silicide coated columbium base alloys

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  14. Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum

    NASA Astrophysics Data System (ADS)

    Babenko, Vitaliy; Murdock, Adrian T.; Koós, Antal A.; Britton, Jude; Crossley, Alison; Holdway, Philip; Moffat, Jonathan; Huang, Jian; Alexander-Webber, Jack A.; Nicholas, Robin J.; Grobert, Nicole

    2015-07-01

    Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 μm min-1) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials.

  15. Silicide induced ion beam patterning of Si(001).

    PubMed

    Engler, Martin; Frost, Frank; Müller, Sven; Macko, Sven; Will, Moritz; Feder, René; Spemann, Daniel; Hübner, René; Facsko, Stefan; Michely, Thomas

    2014-03-21

    Low energy ion beam pattern formation on Si with simultaneous co-deposition of Ag, Pd, Pb, Ir, Fe or C impurities was investigated by in situ scanning tunneling microscopy as well as ex situ atomic force microscopy, scanning electron microscopy, transmission electron microscopy and Rutherford backscattering spectrometry. The impurities were supplied by sputter deposition. Additional insight into the mechanism of pattern formation was obtained by more controlled supply through e-beam evaporation. For the situations investigated, the ability of the impurity to react with Si, i.e. to form a silicide, appears to be a necessary, but not a sufficient condition for pattern formation. Comparing the effects of impurities with similar mass and nuclear charge, the collision kinetics is shown to be not of primary importance for pattern formation. To understand the observed phenomena, it is necessary to assume a bi-directional coupling of composition and height fluctuations. This coupling gives rise to a sensitive dependence of the final morphology on the conditions of impurity supply. Because of this history dependence, the final morphology cannot be uniquely characterized by a steady state impurity concentration.

  16. Experimental determination of the solubility of iridium in silicate melts: Preliminary results

    NASA Technical Reports Server (NTRS)

    Borisov, Alexander; Dingwell, Donald B.; Oneill, Hugh ST.C.; Palme, Herbert

    1992-01-01

    Little is known of the geochemical behavior of iridium. Normally this element is taken to be chalcophile and/or siderophile so that during planetary differentiation processes, e.g., core formation, iridium is extracted from silicate phases into metallic phases. Experimental determination of the metal/silicate partition coefficient of iridium is difficult simply because it is so large. Also there are no data on the solubility behavior of iridium in silicate melts. With information on the solubility of iridium in silicate melts it is possible, in combination with experimental data for Fe-Ir alloys, to calculate the partition coefficient between a metallic phase and a silicate melt.

  17. Experimental determination of the solubility of iridium in silicate melts: Preliminary results

    NASA Technical Reports Server (NTRS)

    Borisov, Alexander; Dingwell, Donald B.; Oneill, Hugh ST.C.; Palme, Herbert

    1992-01-01

    Little is known of the geochemical behavior of iridium. Normally this element is taken to be chalcophile and/or siderophile so that during planetary differentiation processes, e.g., core formation, iridium is extracted from silicate phases into metallic phases. Experimental determination of the metal/silicate partition coefficient of iridium is difficult simply because it is so large. Also there are no data on the solubility behavior of iridium in silicate melts. With information on the solubility of iridium in silicate melts it is possible, in combination with experimental data for Fe-Ir alloys, to calculate the partition coefficient between a metallic phase and a silicate melt.

  18. Field desorption of Na and Cs from graphene on iridium

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2015-08-01

    Field electron and desorption microscopy has been used to study specific features of the field desorption of sodium and cesium ions adsorbed on the surface of iridium with graphene. It was found that adsorbed sodium atoms most strongly reduce the work function on graphene islands situated over densely packed faces of iridium. A strong electric field qualitatively similarly affects the sodium and cesium desorption processes from a field emitter to give two desorption phases and has no noticeable effect on the disintegration of the graphene layer.

  19. Iridium Complexes as a Roadblock for DNA Polymerase during Amplification.

    PubMed

    Chandra, Falguni; Kumar, Prashant; Tripathi, Suman Kumar; Patra, Srikanta; Koner, Apurba L

    2016-07-05

    Iridium-based metal complexes containing polypyridyl-pyrazine ligands show properties of DNA intercalation. They serve as roadblocks to DNA polymerase activity, thereby inhibiting the polymerization process. Upon the addition of increasing concentrations of these iridium complexes, a rapid polymerase chain reaction (PCR)-based assay reveals the selective inhibition of the DNA polymerization process. This label-free approach to study the inhibition of fundamental cellular processes via physical roadblock can offer an alternative route toward cancer therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Corrosion-resistant iridium-platinum anode material for high polarization application in corrosive acids

    SciTech Connect

    Farmer, J.; Summers, L.; Lewis, P.

    1993-09-08

    The present invention relates to highly corrosion resistant components for use in an electrochemical cell. Specifically, these components are resistant to corrosion under very extreme conditions such as exposure to aqua regia in the presence of a constant current density of 100mA/m{sup 2}. The components are comprised of an iridium-platinum alloy that comprises less than 30% iridium. In a preferred embodiment of the present invention, the iridium-platinum alloy comprises 15-20% iridium. In another preferred embodiment of the present invention, the iridium-platinum alloy is deposited on the surface of an electrochemical cell component by magnetron sputtering. The present invention also relates to a method for conducting an electrochemical reaction in the presence of highly corrosive acids under a high degree of polarization wherein the electrochemical cell comprises a component, preferably the anode, containing an iridium-platinum alloy that comprises less than 30% iridium.

  1. Thermal stability of copper silicide passivation layers in copper-based multilevel interconnects

    NASA Astrophysics Data System (ADS)

    Hymes, S.; Kumar, K. S.; Murarka, S. P.; Ding, P. J.; Wang, W.; Lanford, W. A.

    1998-04-01

    Copper thin films were exposed to a dilute silane mixture at temperatures in the range of 190-363 °C. The resulting silicide surface layers were characterized by four-point probe, Rutherford backscattering spectrometry, and x-ray diffraction. A definitive stability regime is observed in which progressively higher copper content phases exist with increasing temperature. Cu3Si, formed in silane, on annealing converts to Cu5Si and eventually to no silicide layer by a silicon diffusion reaction that in an inert ambient drives silicon into underlying copper to form a solid solution. In oxidizing ambients, a similar phenomenon occurs but now silicon also diffuses to surfaces where it oxidizes to form a self-passivating SiO2 layer on surface. These results have important implications governing integration of copper silicide as a passivation layer and silicon hydride based dielectric deposition in copper-based multilevel interconnect in ultralarge scale integration.

  2. Tuning magnetic response of epitaxial iron-silicide nanoislands by controlled self-assembled growth

    NASA Astrophysics Data System (ADS)

    Goldfarb, I.; Camus, Y.; Dascalu, M.; Cesura, F.; Chalasani, R.; Kohn, A.

    2017-07-01

    We investigated the dependence of the magnetic response from epitaxial Si-rich iron-silicide nanostructures on their geometry. By varying substrate orientation and deposition parameters, we altered the growth kinetics and the lattice matching conditions at the silicide/silicon interface. These affected the silicide nanoisland crystal structure, size, shape, and proximity due to spatial ordering and, consequently, their magnetic response in terms of shape and opening of the respective hysteresis loops. In particular, we demonstrated correlation between magnetic anisotropy, expressed as the hysteresis coercive field, and the nanoisland spatial length-to-width aspect ratio. This correlation is explained by the contribution of undercoordinated island edge atoms to the overall measured magnetic behavior of the nanoisland arrays. Further, the island self-ordering along periodic surface steps adds dipolar interactions between the otherwise superparamagnetic nanoislands, consequently resulting in a magnetic response resembling that of a superspin glass.

  3. Self-organized patterns along sidewalls of iron silicide nanowires on Si(110) and their origin

    SciTech Connect

    Das, Debolina; Mahato, J. C.; Bisi, Bhaskar; Dev, B. N.; Satpati, B.

    2014-11-10

    Iron silicide (cubic FeSi{sub 2}) nanowires have been grown on Si(110) by reactive deposition epitaxy and investigated by scanning tunneling microscopy and scanning/transmission electron microscopy. On an otherwise uniform nanowire, a semi-periodic pattern along the edges of FeSi{sub 2} nanowires has been discovered. The origin of such growth patterns has been traced to initial growth of silicide nanodots with a pyramidal Si base at the chevron-like atomic arrangement of a clean reconstructed Si(110) surface. The pyramidal base evolves into a comb-like structure along the edges of the nanowires. This causes the semi-periodic structure of the iron silicide nanowires along their edges.

  4. Homogeneous and heterogenized iridium water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Macchioni, Alceo

    2014-10-01

    The development of an efficient catalyst for the oxidative splitting of water into molecular oxygen, protons and electrons is of key importance for producing solar fuels through artificial photosynthesis. We are facing the problem by means of a rational approach aimed at understanding how catalytic performance may be optimized by the knowledge of the reaction mechanism of water oxidation and the fate of the catalytic site under the inevitably harsh oxidative conditions. For the purposes of our study we selected iridium water oxidation catalysts, exhibiting remarkable performance (TOF > 5 s-1 and TON > 20000). In particular, we recently focused our attention on [Cp*Ir(N,O)X] (N,O = 2-pyridincarboxylate; X = Cl or NO3) and [IrCl(Hedta)]Na water oxidation catalysts. The former exhibited a remarkable TOF whereas the latter showed a very high TON. Furthermore, [IrCl(Hedta)]Na was heterogenized onto TiO2 taking advantage of the presence of a dandling -COOH functionality. The heterogenized catalyst maintained approximately the same catalytic activity of the homogeneous analogous with the advantage that could be reused many times. Mechanistic studies were performed in order to shed some light on the rate-determining step and the transformation of catalysts when exposed to "oxidative stress". It was found that the last oxidative step, preceding oxygen liberation, is the rate-determining step when a small excess of sacrificial oxidant is used. In addition, several intermediates of the oxidative transformation of the catalyst were intercepted and characterized by NMR, X-Ray diffractometry and ESI-MS.

  5. Progress in alkaline peroxide dissolution of low-enriched uranium metal and silicide targets

    SciTech Connect

    Chen, L.; Dong, D.; Buchholz, B.A.; Vandegrift, G.F.; Wu, D.

    1996-12-31

    This paper reports recent progress on two alkaline peroxide dissolution processes: the dissolution of low-enriched uranium metal and silicide (U{sub 3}Si{sub 2}) targets. These processes are being developed to substitute low-enriched for high-enriched uranium in targets used for production of fission-product {sup 99}Mo. Issues that are addressed include (1) dissolution kinetics of silicide targets, (2) {sup 99}Mo lost during aluminum dissolution, (3) modeling of hydrogen peroxide consumption, (4) optimization of the uranium foil dissolution process, and (5) selection of uranium foil barrier materials. Future work associated with these two processes is also briefly discussed.

  6. An inert marker study for palladium silicide formation - Si moves in polycrystalline Pd2Si

    NASA Technical Reports Server (NTRS)

    Ho, K. T.; Lien, C.-D.; Shreter, U.; Nicolet, M.-A.

    1985-01-01

    A novel use of Ti marker is introduced to investigate the moving species during Pd2Si formation on 111 and 100 line-type Si substrates. Silicide formed from amorphous Si is also studied using a W marker. Although these markers are observed to alter the silicide formation in the initial stage, the moving species can be identified once a normal growth rate is resumed. It is found that Si is the dominant moving species for all three types of Si crystallinity. However, Pd will participate in mass transport when Si motion becomes obstructed.

  7. Optical anisotropy of quasi-1D rare-earth silicide nanostructures on Si(001)

    NASA Astrophysics Data System (ADS)

    Chandola, S.; Speiser, E.; Esser, N.; Appelfeller, S.; Franz, M.; Dähne, M.

    2017-03-01

    Rare earth metals are known to interact strongly with Si(001) surfaces to form different types of silicide nanostructures. Using STM to structurally characterize Dy and Tb silicide nanostructures on vicinal Si(001), it will be shown that reflectance anisotropy spectroscopy (RAS) can be used as an optical fingerprint technique to clearly distinguish between the formation of a semiconducting two-dimensional wetting layer and the metallic one-dimensional nanowires. Moreover, the distinctive spectral features can be related to structural units of the nanostructures. RAS spectra of Tb and Dy nanostructures are found to show similar features.

  8. Self-organized growth and magnetic properties of epitaxial silicide nanoislands

    NASA Astrophysics Data System (ADS)

    Tripathi, J. K.; Levy, R.; Camus, Y.; Dascalu, M.; Cesura, F.; Chalasani, R.; Kohn, A.; Markovich, G.; Goldfarb, I.

    2017-01-01

    Self-organized transition-metal (Ni and Fe) and rare-earth (Er) silicide nanostructures were grown on Si(1 1 1) and Si(0 0 1) surfaces under low coverage conditions, in a ;solid phase; and ;reactive deposition; epitaxial regimes. Island evolution was continuously monitored in-situ, using real-time scanning tunneling microscopy and surface electron diffraction. After anneal of a Ni/Si(1 1 1) surface at 700 °C, we observed small hemispherical Ni-silicide nanoislands ∼10 nm in diameter decorating surface steps in a self-ordered fashion and pinning them. Fe-silicide nanoislands formed after a 550 °C anneal of a Fe-covered surface, were also self-ordered along the surface step-bunches, however were significantly larger (∼70 × 10 nm) and exhibited well-developed three-dimensional polyhedral shapes. Ni-silicide islands were sparsely distributed, separated by about ∼100 nm from one another, on average, whereas Fe-silicide islands were more densely packed, with only ∼50 nm mean separation distance. In spite of the above differences between both types of island in size, shape, and number density, the self-ordering in both cases was close to ideal, with practically no islands nucleated on terraces. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, in particular in Fe-silicide islands with ∼1.9 μB/Fe atom, indicating stronger ferromagnetic coupling of individual magnetic moments, contrary to Ni-silicide islands with the calculated moments of only ∼ 0.5μB /Ni atom. To elucidate the effects of the island size, shape, and lateral ordering on the measured magnetic response, we have controllably changed the island morphology by varying deposition methods and conditions and even using differently oriented Si substrates. We have also begun experimenting with rare-earth silicide islands. In the forthcoming experiments we intend to compare the magnetic response of these variously built and composed islands and correlate

  9. An inert marker study for palladium silicide formation - Si moves in polycrystalline Pd2Si

    NASA Technical Reports Server (NTRS)

    Ho, K. T.; Lien, C.-D.; Shreter, U.; Nicolet, M.-A.

    1985-01-01

    A novel use of Ti marker is introduced to investigate the moving species during Pd2Si formation on 111 and 100 line-type Si substrates. Silicide formed from amorphous Si is also studied using a W marker. Although these markers are observed to alter the silicide formation in the initial stage, the moving species can be identified once a normal growth rate is resumed. It is found that Si is the dominant moving species for all three types of Si crystallinity. However, Pd will participate in mass transport when Si motion becomes obstructed.

  10. Method for forming metallic silicide films on silicon substrates by ion beam deposition

    DOEpatents

    Zuhr, Raymond A.; Holland, Orin W.

    1990-01-01

    Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

  11. Crystal Structure of Silicides in a Ti - 0.7 WT.% Si Nanostructured Alloy

    NASA Astrophysics Data System (ADS)

    Ivanov, M. B.; Manokhin, S. S.; Kolobova, A. Yu.

    2017-09-01

    Using warm, lengthwise grooved-roll processing of the Ti - 0.7 wt.% Si alloy, a nanostructured state is formed in it at 873 K with the grain-subgrain elements measuring about 280 nm. The titanium silicides precipitating during the dynamic strain-induced aging of the alloy are investigated by the methods of high-resolution scanning electron microscopy. It is found that the shape of the silicides is close to spherical, they have an FCClattice and an incoherent interface with the matrix.

  12. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas

    SciTech Connect

    Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.; Pivovar, Bryan S.

    2016-06-02

    Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparative studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.

  13. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas

    DOE PAGES

    Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.; ...

    2016-06-02

    Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less

  14. Thermal Analysis of a Uranium Silicide Miniplate Irradiation Experiment

    SciTech Connect

    Donna Post Guillen

    2009-09-01

    This paper outlines the thermal analysis for the irradiation of high density uranium-silicide (U3Si2 dispersed in an aluminum matrix and clad in aluminum) booster fuel for a Boosted Fast Flux Loop designed to provide fast neutron flux test capability in the ATR. The purpose of this experiment (designated as Gas Test Loop-1 [GTL-1]) is two-fold: (1) to assess the adequacy of the U3Si2/Al dispersion fuel and the aluminum alloy 6061 cladding, and (2) to verify stability of the fuel cladding boehmite pre-treatment at nominal power levels in the 430 to 615 W/cm2 (2.63 to 3.76 Btu/s•in2) range. The GTL-1 experiment relies on a difficult balance between achieving a high heat flux, yet keeping fuel centerline temperature below a specified maximum value throughout an entire operating cycle of the reactor. A detailed finite element model was constructed to calculate temperatures and heat flux levels and to reveal which experiment parameters place constraints on reactor operations. Analyses were performed to determine the bounding lobe power level at which the experiment could be safely irradiated, yet still provide meaningful data under nominal operating conditions. Then, simulations were conducted for nominal and bounding lobe power levels under steady-state and transient conditions with the experiment in the reactor. Reactivity changes due to a loss of commercial power with pump coast-down to emergency flow or a standard in-pile tube pump discharge break were evaluated. The time after shutdown for which the experiment can be adequately cooled by natural convection cooling was determined using a system thermal hydraulic model. An analysis was performed to establish the required in-reactor cooling time prior to removal of the experiment from the reactor. The inclusion of machining tolerances in the numerical model has a large effect on heat transfer.

  15. The Iridium (tm) system: Personal communications anytime, anyplace

    NASA Technical Reports Server (NTRS)

    Hatlelid, John E.; Casey, Larry

    1993-01-01

    The Iridium system is designed to provide handheld personal communications between diverse locations around the world at any time and without prior knowledge of the location of the personal units. This paper provides an overview of the system, the services it provides, its operation, and an overview of the commercial practices and relatively high volume satellite production techniques which will make the system cost effective. A constellation of 66 satellites will provide an orbiting, spherical-shell, infrastructure for this global calling capability. The satellites act as tall cellular towers and allow convenient operation for portable handheld telephones. The system will provide a full range of services including voice, paging, data, geolocation, and fax capabilities. Motorola is a world leader in the production of high volume, high quality, reliable telecommunications hardware. One of Iridium's goals is to apply these production techniques to high reliability space hardware. Concurrent engineering, high performance work teams, advanced manufacturing technologies, and improved assembly and test methods are some of the techniques that will keep the Iridium system cost effective. Mobile, global, flexible personal communications are coming that will allow anyone to call or receive a call from/to anyplace at anytime. The Iridium system will provide communications where none exist today. This connectivity will allow increased information transfer, open new markets for various business endeavors, and in general increase productivity and development.

  16. Achieving Zero Stress in Iridium, Chromium, and Nickle Thin Films

    NASA Technical Reports Server (NTRS)

    Broadway, David M.; Weimer, Jeffrey; Gurgew, Danielle; Lis, Tomasz; Ramsey, Brian D.; O'Dell, Stephen L.; Ames, A.; Bruni, R.

    2015-01-01

    We examine a method for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight x-ray space telescopes into the regime of sub-arc second resolution that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure, including the existence of a critical pressure that results in zero film stress. This critical pressure scales linearly with the film's density. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we have discovered a similar behavior for iridium. Additionally, we have identified zero stress in iridium shortly after island coalescence. This feature of film growth is used for achieving a total internal stress of -2.89 MPa for a 15.8 nm thick iridium film. The surface roughness of this low-stress film was examined using scanning probe microscopy (SPM) and x-ray reflectivity (XRR) at CuKa and these results presented and discussed.

  17. Magnetostratigraphy, Late devonian iridium anomaly, and impact hypotheses

    SciTech Connect

    Hurley, N.F.; Van der Voo, R. )

    1990-04-01

    Paleomagnetism, sedimentology, and fine-scale stratigraphy have been integrated to explain the origin of an iridium anomaly in the Late Devonian of Western Australia. Thermal demagnetization experiments were carried out on 93 specimens of marginal-slope limestone form the northern Canning Basin. Samples are from a condensed sequence of deep-water (> 100 m) Frutexites microstromatolites. Frutexites is a shrublike cyanobacterial organism that probably precipitated hematite, or a metastable precursor, from sea water. When plotted within the microstratigraphic framework for the study area, the observed characteristic directions from the sampled interval (14.5 cm thick) are in five discrete, layer-parallel, normal- and reversed-polarity zones. The measured northeast-southwest declinations and shallow inclinations probably record Late Devonian magnetostratigraphy on a centimetre scale. The Frutexites bed studied there occurs close to the Frasnian/Famennian (Late Devonian) boundary, a time of mass extinction of a wide variety of marine organisms throughout the world. Anomalously high iridium concentrations observed in the Frutexites bed have suggested to some authors that the mass extinction was caused by meteorite impact. This study concludes that iridium, which is present over the span of five layer-parallel magnetic reversals, was concentrated over a long period of time by biologic processes. Thus, the Canning Basin iridium anomaly may be unrelated to meteorite impact.

  18. Iridium Aluminide Coats For Protection Against Ox idation

    NASA Technical Reports Server (NTRS)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Jang, Qin

    1996-01-01

    Iridium aluminide coats investigated for use in protecting some metallic substrates against oxidation at high temperatures. Investigation prompted by need for cost-effective anti-oxidation coats for walls of combustion chambers in rocket engines. Also useful in special terrestrial applications like laboratory combustion chambers and some chemical-processing chambers.

  19. The Iridium (tm) system: Personal communications anytime, anyplace

    NASA Astrophysics Data System (ADS)

    Hatlelid, John E.; Casey, Larry

    The Iridium system is designed to provide handheld personal communications between diverse locations around the world at any time and without prior knowledge of the location of the personal units. This paper provides an overview of the system, the services it provides, its operation, and an overview of the commercial practices and relatively high volume satellite production techniques which will make the system cost effective. A constellation of 66 satellites will provide an orbiting, spherical-shell, infrastructure for this global calling capability. The satellites act as tall cellular towers and allow convenient operation for portable handheld telephones. The system will provide a full range of services including voice, paging, data, geolocation, and fax capabilities. Motorola is a world leader in the production of high volume, high quality, reliable telecommunications hardware. One of Iridium's goals is to apply these production techniques to high reliability space hardware. Concurrent engineering, high performance work teams, advanced manufacturing technologies, and improved assembly and test methods are some of the techniques that will keep the Iridium system cost effective. Mobile, global, flexible personal communications are coming that will allow anyone to call or receive a call from/to anyplace at anytime. The Iridium system will provide communications where none exist today. This connectivity will allow increased information transfer, open new markets for various business endeavors, and in general increase productivity and development.

  20. Iridium alloy Clad Vent Set manufacturing qualification studies

    NASA Astrophysics Data System (ADS)

    Ulrich, George B.

    Metallurgical qualification studies to demonstrate the manufacturing readiness of the iridium alloy Clad Vent Set (CVS) for the General Purpose Heat Source program at the Oak Ridge Y-12 Plant are described. Microstructural data for various materials/test conditions are presented.

  1. Origins of Regioselectivity in Iridium Catalyzed Allylic Substitution.

    PubMed

    Madrahimov, Sherzod T; Li, Qian; Sharma, Ankit; Hartwig, John F

    2015-12-02

    Detailed studies on the origin of the regioselectivity for formation of branched products over linear products have been conducted with complexes containing the achiral triphenylphosphite ligand. The combination of iridium and P(OPh)3 was the first catalytic system shown to give high regioselectivity for the branched product with iridium and among the most selective for forming branched products among any combination of metal and ligand. We have shown the active catalyst to be generated from [Ir(COD)Cl]2 and P(OPh)3 by cyclometalation of the phenyl group on the ligand and have shown such species to be the resting state of the catalyst. A series of allyliridium complexes ligated by the resulting P,C ligand have been generated and shown to be competent intermediates in the catalytic system. We have assessed the potential impact of charge, metal-iridium bond length, and stability of terminal vs internal alkenes generated by attack at the branched and terminal positions of the allyl ligand, respectively. These factors do not distinguish the regioselectivity for attack on allyliridium complexes from that for attack on allylpalladium complexes. Instead, detailed computational studies suggest that a series of weak, attractive, noncovalent interactions, including interactions of H-bond acceptors with a vinyl C-H bond of the alkene ligand, favor formation of the branched product with the iridium catalyst. This conclusion underscores the importance of considering attractive interactions, as well as repulsive steric interactions, when seeking to rationalize selectivities.

  2. Iridium alloy clad vent set manufacturing qualification studies

    SciTech Connect

    Ulrich, G.B.

    1990-06-15

    In 1987 the Department of Energy-Office of Special Applications (DOE-OSA) decided to transfer the iridium alloy Clad Vent Set (CVS) manufacturing for the General Purpose Heat Source (GPHS) program from EG G Mound Applied Technologies, Inc. (EG G-MAT) to the Oak Ridge Y-12 Plant operated by Martin Marietta Energy Systems, Inc. (Energy Systems). The reason for this transfer was to consolidate the GPHS program iridium hardware manufacturing. The CVS starting stock of iridium powder, foil, and blanks were already being manufactured at another Energy Systems facility - the Oak Ridge National Laboratory (ORNL). Since 1987 CVS manufacturing technology transfer efforts have taken place between EG G-MAT and Energy Systems. EG G-MAT retained all of their tooling, but they supplied all the necessary product drawings, specifications, and procedures, as well as their tooling drawings. Most of the tooling designs and processing steps were duplicated at the Y-12 Plant. Minor changes were required in both tooling design and processing steps, to accommodate particular health, safety, environmental, and manufacturing requirements at the Y-12 Plant. In order to evaluate the effects of the key Y-12 Plant processing modifications, four joint Y-12 Plant/EG G-MAT iridium CVS manufacturing qualification studies were organized. The successful completion of these studies allowed the Y-12 Plant to commence pilot production of CVS components for the CRAF and CASSINI missions. The CVS cup metallurgical qualification work will be presented here.

  3. Iridium Aluminide Coats For Protection Against Ox idation

    NASA Technical Reports Server (NTRS)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Jang, Qin

    1996-01-01

    Iridium aluminide coats investigated for use in protecting some metallic substrates against oxidation at high temperatures. Investigation prompted by need for cost-effective anti-oxidation coats for walls of combustion chambers in rocket engines. Also useful in special terrestrial applications like laboratory combustion chambers and some chemical-processing chambers.

  4. Remote Sensing Missions for Earth Observation on Iridium NEXT

    NASA Astrophysics Data System (ADS)

    Gupta, O. P.

    2009-12-01

    A unique opportunity exists to host up to 66 earth observation sensors on Iridium’s proposed NEXT LEO constellation in a manner that can revolutionize earth observation and weather predictions. A constellation approach to sensing, using the real-time communications backbone of Iridium, will enable unprecedented geospatial and temporal sampling for now-casting of weather on a global basis as well as global climate monitoring. The NEXT constellation, which, like Iridium’s current LEO constellation, is expected to consist of 66 interconnected satellites in 6 near polar orbiting planes, provides a unique platform for hosting a variety of earth observation missions. Several remote sensing missions were recommended by Group on Earth Observations (GEO), NASA, NOAA, and ESA for consideration by Iridium during 2008. These include GPS radio occultation sensors, earth radiation budget measurements, altimetry, ocean and land imaging, and troposphere and stratospheric winds measurements including polar winds measurements. These missions are also considered high priority climate missions by the Decadal Survey. Study teams consisting of Iridium, NASA/JPL and multiple industrial partners of Iridium have conducted detailed studies of these missions for compatibility with NEXT. These studies have established technical feasibility, unique benefits from a constellation approach, and cost effectiveness for these solutions on NEXT.

  5. Mononuclear iridium dinitrogen complexes bonded to zeolite HY

    SciTech Connect

    Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia; Dixon, David A.; Gates, Bruce C.

    2014-11-07

    In this study, the adsorption of N2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N2 in H2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N2. Four supported species formed in various flowing gases: Ir(N2), Ir(N2)(N2), Ir(C2H5)(N2), and Ir(H)(N2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N2, Ir(N2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N2) formed transiently in flowing CO, and in the presence of H2, rather stable iridium hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.

  6. Electrodeposited iridium oxide for neural stimulation and recording electrodes.

    PubMed

    Meyer, R D; Cogan, S F; Nguyen, T H; Rauh, R D

    2001-03-01

    Iridium oxide films formed by electrodeposition onto noniridium metal substrates are compared with activated iridium oxide films (AIROFs) as a low impedance, high charge capacity coating for neural stimulation and recording electrodes. The electrodeposited iridium oxide films (EIROFs) were deposited on Au, Pt, PtIr, and 316 LVM stainless steel substrates from a solution of IrCl4, oxalic acid, and K2CO3. A deposition protocol involving 50 potential sweeps at 50 mV/s between limits of 0.0 V and 0.55 V (versus Ag AgCl) followed by potential pulsing between the same limits produced adherent films with a charge storage capacity of >25 mC/cm2. Characterization by cyclic voltammetry and impedance spectroscopy revealed no differences in the electrochemical behavior of EIROF on non-Ir substrates and AIROF. The mechanical stability of the oxides was evaluated by ultrasonication in distilled water followed by dehydration and rehydration. Stability under charge injection was evaluated using 200 micros, 5.9 A/cm2 (1.2 mC/cm2) cathodal pulses. Loss of iridium oxide charge capacity was comparable for AIROFs and the EIROFs, ranging from 1% to 8% of the capacity immediately after activation or deposition. The EIROFs were deposited and evaluated on silicon microprobe electrodes and on metallized polyimide electrodes being developed for neural recording and stimulation applications.

  7. Discovery of tantalum, rhenium, osmium, and iridium isotopes

    SciTech Connect

    Robinson, R.; Thoennessen, M.

    2012-09-15

    Currently, thirty-eight tantalum, thirty-eight rhenium, thirty-nine osmium, and thirty-eight iridium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  8. Acid induced acetylacetonato replacement in biscyclometalated iridium(III) complexes.

    PubMed

    Li, Yanfang; Liu, Yang; Zhou, Ming

    2012-04-07

    Biscyclometalated iridium(III) complexes with an ancillary acetylacetone ligand, Ir(L)(2)(acac), (L = 2-(benzo[b]thiophen-2-yl)pyridine (btp), 1-phenylisoquinoline (piq), 2-phenylbenzothiazole (bt), 2-phenylpyridine (ppy), acac = deprotonated acetylacetone), demonstrate spectroscopic changes in their UV-Vis absorption and luminescent emission under acidic conditions. Such changes were found to be the same as those observed when certain mercury salts exist in the systems. Because some iridium(III) complexes have sulfur-containing ligands (i.e., btp and bt), a question was then raised as for whether or not the spectroscopic changes are associated with the specific affinity of Hg(2+) to the sulfur atom. Extensive studies performed in this work unambiguously proved that the observed spectroscopic changes were solely the results of the acid induced departure of acac and the follow-up coordination of solvent acetonitrile to the iridium(III) center and that the generally anticipated Hg(2+)-S affinity and its effect on the photophysical properties of iridium(III) luminophores did not play a role.

  9. Utilization of Low Bandwidth Iridium Modems for Polar Seismology

    NASA Astrophysics Data System (ADS)

    Parker, T.

    2012-12-01

    Transmission of realtime seismic data is a desirable goal when a rapid response is needed. However, for many science applications sample waveform data, system state of health, and the ability to command and control the seismic station are operationally adequate. Determining the optimal telemetry requirements for a remote polar seismic experiment requires balancing science objective against the expensive, over-subscribed support available in the polar environments? For example there is a significant difference in the resources needed for a permanent "monitoring" effort versus a short-term experiment. We will describe IRIS/PASSCAL's successful approach to utilizing Iridium telemetry for short-term seismic experiments and suggest viable use of an Iridium RUDICs system for higher data-rate, permanent seismic stations such as a monitoring scenario. Most seismic stations are configured to record at a rate that exceeds twice the data rate of a single Iridium Internet modem. The power requirement to run continuous Iridium telemetry better than doubles that of a standalone seismic station. Doubling station power roughly doubles station logistics by requiring an increased number of support flights for installation and service. The tradeoffs between desirable and adequate telemetry requirements and the ramifications these requirements have on support services must be considered for a successful seismic station. We describe two Iridium telemetry systems, developed by the IRIS/PASSCAL Polar Program, for use with seismic stations in Antarctica and the Arctic. The first system uses an inexpensive Iridium 9602 modem based device and short burst data (SBD) transmission to monitor station performance, provide some command and control, and return a small amount of representative seismic data. Power requirements for this SBD system are approximately 10Ah per year for a daily message. The second system uses an Iridium 9522b modem based device the DOD RUDICs system for a 2400 Baud

  10. Structure, electrochemical properties and capacitance performance of polypyrrole electrodeposited onto 1-D crystals of iridium complex

    NASA Astrophysics Data System (ADS)

    Wysocka-Żołopa, Monika; Winkler, Krzysztof

    2015-12-01

    Composites of polypyrrole and one-dimensional iridium complex crystals [(C2H5)4N]0.55[IrCl2(CO)2] were prepared by in situ two-step electrodeposition. Initially, iridium complex crystals were formed during [IrCl2(CO)2]- complex oxidation. Next, pyrrole was electropolymerized on the surface of the iridium needles. The morphology of the composite was investigated by scanning and transmission electron microscopy. At positive potentials, the iridium complex crystals and the polypyrrole were oxidized. In aprotic solvents, oxidation of the iridium complex crystals resulted in their dissolution. In water containing tetra(n-butyl)ammonium chlorides, the 1-D iridium complex crystals were reversibly oxidized. The product of the iridium complex oxidation remained on the electrode surface in crystalline form. The iridium complex needles significantly influenced the redox properties of the polymer. The polypyrrole involved electrode processes become more reversible in presence of crystals of iridium complex. The current of polypyrrole oxidation was higher compared to that of pure polypyrrole and the capacitance properties of the polymer were significantly enhanced. A specific capacitance as high as 590 F g-1 was obtained for a composite of polypyrrole and 1-D crystals of the iridium complex in water containing tetra(n-butyl)ammonium chloride. This value is approximately twice as high as the capacitance of the pure polymer deposited onto the electrode surface.

  11. Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide.

    PubMed

    Zhu, Shiyang; Lo, G Q; Kwong, D L

    2011-08-15

    An ultracompact integrated silicide Schottky barrier detector (SBD) is designed and theoretically investigated to electrically detect the surface plasmon polariton (SPP) propagating along horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides at the telecommunication wavelength of 1550 nm. An ultrathin silicide layer inserted between the silicon core and the insulator, which can be fabricated precisely using the well-developed self-aligned silicide process, absorbs the SPP power effectively if a suitable silicide is chosen. Moreover, the Schottky barrier height in the silicide-silicon-silicide configuration can be tuned substantially by the external voltage through the Schottky effect owing to the very narrow silicon core. For a TaSi(2) detector with optimized dimensions, numerical simulation predicts responsivity of ~0.07 A/W, speed of ~60 GHz, dark current of ~66 nA at room temperature, and minimum detectable power of ~-29 dBm. The design also suggests that the device's size can be reduced and the overall performances will be further improved if a silicide with smaller permittivity is used.

  12. The Fabrication, Microstructural Characterization, and Internal Photoresponse of Platinum Silicide/P-Type Silicon and Iridium Silicide/P-Type Silicon Schottky Barrier Photodetectors for Infrared Focal Plane Arrays

    DTIC Science & Technology

    1991-10-01

    the spectral region of interest. This fact has motivated studies of both the fundamental limitations governing Schottky detector performance and the...to suffer from this problem. In addition to the sort of fundamental obstacle just discussed, IrSi arrays have been beset by other difficulties...distribution function. 5.6 Diffusion theory may be derived from fundamental transport theory under the assumption that the diffusing particles undergo

  13. Iridium-based electrocatalytic systems for the determination of insulin.

    PubMed

    Pikulski, M; Gorski, W

    2000-07-01

    Two electrochemical catalytic systems for the determination of insulin were developed. The homogeneous system was based on the oxidation of insulin by chloro complexes of iridium(IV). Kinetic studies revealed that the aquation of iridium complexes activated them toward the oxidation of insulin in acidic solutions; e.g., the rate constant was equal to 25, 900, and 8,400 L mol(-1) s(-1) for the oxidation of insulin by the IrCl62-, Ir(H2O)CI5-, and Ir(H2O)2Cl4 complexes, respectively. The inertness of the iridium complexes argued for the outer-sphere mechanism of the homogeneous oxidation reaction. Electroplating of aquated iridium complexes on the glassy carbon electrode resulted in the formation of the iridium oxide (IrOx) surface film, which was used in the heterogeneous detection system for insulin. The catalytic activity of the IrOx film toward insulin oxidation was ascribed to a combination of electron-transfer mediation and oxygen transfer which was related to the acid/base chemistry of the film. The IrOx film electrode was used as an amperometric detector for flow injection analysis of insulin in pH 7.40 phosphate buffer. Linear least-squares calibration curves over the range 0.05-0.50 microM (five points) had slopes of 35.2 +/- 0.4 nA microM(-1) and correlation coefficients of 0.999. The detection limit for insulin was 20 nM using the criterion of a signal of 3 times the peak-to-peak noise. The advantageous properties of the detector based on the IrOx film are its inherent stability at physiological pH, high catalytic activity toward insulin oxidation, and simplicity of preparation.

  14. Impact of laser anneal on NiPt silicide texture and chemical composition

    NASA Astrophysics Data System (ADS)

    Feautrier, C.; Ozcan, A. S.; Lavoie, C.; Valery, A.; Beneyton, R.; Borowiak, C.; Clément, L.; Pofelski, A.; Salem, B.

    2017-06-01

    We have combined synchrotron X-ray pole figure measurements and transmission electron microscopy (TEM) nano-beam diffraction to study the impact of millisecond laser anneal on the texture and microstructure of NiPt silicide thin films. The powerful use of nano-beam diffraction in plan-view geometry allows here for both a mapping of grain orientation and intra-grain measurements even if these crystalline grains become very small. With this unique combination of local and large-scale probes, we find that silicide formation on n and p doped substrates using laser annealing results in smaller grains compared with the films processed using standard rapid thermal annealing. The laser annealed samples also result in grains that are more epitaxially oriented with respect to the Si substrate. For n-type substrate, the film is dominated by (020) and (013) oriented fibers with significant levels of intra-grain bending (transrotation) observed in both types of grains. For p-type substrates, mostly epitaxially aligned grains are detected. TEM coupled with energy-dispersive X-ray analysis was also used to study the elemental distribution in the silicide samples. Here, we confirm that laser anneal leads to a larger accumulation of platinum at the silicide-substrate interface and modifies the distribution of dopants throughout the film.

  15. Electronic properties of Co and Ni silicides: a theoretical approach using extended Huckel method

    NASA Astrophysics Data System (ADS)

    Galvan, D. H.; Posada Amarillas, A.; Samaniego Reyna, J. C.; García-Méndez, M.; Farías, M. H.

    2004-11-01

    Calculations of electronic structure, total and projected density of states (DOS), crystal orbital overlap population (COOP), and average net charge, and also Mulliken population analysis, were performed to study electronic properties of Co and Ni silicides. Analysis of the energy bands depicts metallic behavior for both silicides.The projected DOS yields an indication that hybridization occurs for Co and Ni silicides. The hybridized band in CoSi2 is composed of Co d and p orbitals and Si p and s orbitals, while in NiSi2 the hybridized band is formed by Ni d and p orbitals with Si p orbitals. The fact that the Fermi energy crosses a small part of the DOS, as is the case of CoSi2, yields an indication of the different electronic properties of CoSi2 when compared to NiSi2. The hybridization is stronger in CoSi2 than in NiSi2. Mulliken population analysis provides an indication that a smaller charge distribution exists in NiSi2 when compared to CoSi2. This difference in charge distribution accounts for the different electronic behavior, in agreement with the DOS analysis. Moreover, COOP analysis provides an indication of the existence of covalent bonding between M and Si (M = Ni, Co), this being stronger in Co than in Ni silicides. Furthermore, the average net charge in both compounds yields an indication that there is a charge transfer from M towards Si.

  16. Magneto-Transport Studies of Molecular Beam Epitaxial Grown Osmium Silicides

    NASA Astrophysics Data System (ADS)

    Cottier, Ryan; Zhao, Wei; Amir, Fatima; Hossain, Khalid; Anibou, Noureddine; Donner, Wolfgang; Golding, Terry

    2006-03-01

    Semiconducting transition metal silicides present a possible solution to on-chip integration of optical and electronic Si-based circuitry. Two phases of osmium silicide (OsSi2 and Os2Si3) are predicted to have promising optical characteristics but require additional development to fully determine their feasibility for high-quality devices. This study has been motivated by reports that OsSi2 has a bandgap between 1.4--1.8eV [1, 2] and Os2Si3 may have a direct bandgap of 0.95 eV [3] or 2.3 eV [1]. In this paper we will present temperature dependent (20 < T < 300 K) magneto Hall measurements of molecular beam epitaxial grown osmium silicide thin films. Os and Si were coevaporated onto Si(100) substrates at varying growth rates and temperatures. XRD was performed in order to identify the silicide phases present. We will discuss our results in relation to the known phase diagrams and our growth parameters. [1] L. Schellenberg et al., J. Less-Common Met. 144, 341 (1988). [2] K. Mason and G. Müller-Vogt, J. Appl. Phys. 63, 34 (1983). [3] A. B. Filonov et al., Phys. Rev. B 60(24), 16494 (1999).

  17. Rocket-propellant burn tests of silicide-coated niobium and tantalum

    SciTech Connect

    Curtis, P.G.; Krikorian, O.H.; Helm, F.H.

    1988-04-20

    Coatings designed to protect refractory metals in fire situations were tested on niobium and tantalum in a furnace and in a rocket-fuel flame. The best performance was obtained from Cr-Si-type silicide coatings applied by the pack-cementation process. The main mode of failure of the coated parts was corrosion by molten stainless steel rather than oxidation.

  18. Influence of Rapid Thermal Ramp Rate on Phase Transformation of Titanium Silicides

    SciTech Connect

    Bailey, Glenn; Hu, Yao, Zhi; Smith, Paul Martin; Tay, Sing Pin; Thakur, Randhir; Yang, Jiting

    1999-05-03

    ULSI technology requires low resistance, stable silicides formed on small geometry lines. Titanium disilicide (TiSiz), which is the most widely used silicide for ULSI applications, exists in two crystallographic phases: the high resistance, metastable C49 phase and the low resistance, stable C54 phase. The major issue with TiSiz is the increasing thermal budget required to transform the C49 phase into the low resistance C54 phase as linewiths decrease below 0.25 pm. Annealing above 900"C to obtain this transformation often results in thermal degradation, so it is desirable to reduce the transformation temperature. The transformation temperature has been shown to be a fi.mction of many factors including microstructure, grain size, and impurities. In this paper we report an investig+ion of rapid thermal silicidation of titanium films (250, 400, and 600 A) on single crystalline silicon at temperatures from 300 to 1000"C. The ramp rates for these experiments are 5, 30, 70, and 200oC/s. The transformation temperature decreases as the ramp rate increases and as the initial film thickness increases. Scanning electron microscopy (SEM) is used to analyze the resultant film microstructure. The ramp rate influence on Ti silicidation is also investigated on polycrystalline Si lines with widths ranging from 0.27 to 3.0 pm.

  19. Silicide Coating Fabricated by HAPC/SAPS Combination to Protect Niobium Alloy from Oxidation.

    PubMed

    Sun, Jia; Fu, Qian-Gang; Guo, Li-Ping; Wang, Lu

    2016-06-22

    A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the outer MoSi2 layer, forming a combined silicide coating. Results show that the combined coating possessed a compact structure. The phase constitution of the combined coating prepared by HAPC and SAPS was NbSi2 and MoSi2, respectively. The adhesion strength of the combined coating increased nearly two times than that for single sprayed coating, attributing to the rougher surface of the HAPC-bond layer whose roughness increased about three times than that of the grit-blast substrate. After exposure at 1200 °C in air, the mass increasing rate for single HAPC-silicide coating was 3.5 mg/cm(2) because of the pest oxidation of niobium alloy, whereas the combined coating displayed better oxidation resistance with a mass gain of only 1.2 mg/cm(2). Even more, the combined coating could significantly improve the antioxidation ability of niobium based alloy at 1500 °C. The good oxidation resistance of the combined silicide coating was attributed to the integrity of the combined coating and the continuous SiO2 protective scale provided by the oxidation of MoSi2.

  20. Properties of SiO2 grown on Ti, Co, Ni, Pd, and Pt silicides

    NASA Astrophysics Data System (ADS)

    Bartur, M.; Nicolet, M.-A.

    1984-01-01

    Successful utilization of silicides for VLSI applcations depends strongly on the formation of electrically insulating oxide on top of the silicide (1) . It is found that almost all silicides on a Si substrate can be oxidized to form an SiO2 layer on their surface. In this paper, we present some of the properties of such SiO2 layers formed on TiSi2, CoSi2, NiSi2, Pd2Si, and PtSi on a substrate following dry and wet oxidation. Electrical parameters that were investigated are the dielectric constant, dielectric strength (breakdown field), and pinhole density. The dielectric constant was found to be 3.49 ± 0.24, which is similar to the values reported for SiO2 grown on Si. The dielectric strength of the oxide layers depends on the polarity of the applied voltage, as is the case for oxide grown on poly-Si. Pinhole density in this oxide was also estimated and is less than 40 per cm2. The oxide density and stoichiometry were evaluated using Rutherford Backscattering Spectrometry (RBS) and DEKTAK, and compared to SiO2 grown on . The conclusion we have reached is that oxides grown on almost all the silicides investigated (except PdSi), hold promise for integrated circuit application. The main problem is the suicide roughness, induced by the thermal oxidation, that reduces the dielectric breakdown field.

  1. In situ real-time studies of nickel silicide phase formation

    NASA Astrophysics Data System (ADS)

    Tinani, Manisha

    2000-10-01

    Metal silicides have attracted considerable attention in recent years as low resistivity metal contact and interconnect materials in microelectronics. Historically, polycrystalline silicon has been used as the gate contact material. However, as device size decreases, the higher resistance of polycrystalline silicon can degrade device performance. Metal silicides provide low metal like resistivities and high temperature stability. Ideal silicides for practical applications need to have stable phases, low processing temperatures and mechanical compatibility with silicon, in order to reduce defects and roughness at the silicon-silicide interface. NiSi, one of the nickel silicide phases, fulfills all these criteria. It has a resistivity of 14muO-cm, and a large processing temperature window (350--750°C). NiSi actually surpasses other commonly used silicides such as COSi2 and TiSi2 1 in these properties, while avoiding problems generally faced with these silicides2. Prior to the use of NiSi, its formation mechanism must be understood. The objective of this research is to develop analytical procedures to monitor phase transformations, in our case NiSi, in real-time, using non-destructive techniques. To this end, we studied the formation of NiSi films on Si using Rutherford Backscattering spectrometry, atomic force microscopy, X-ray photoelectron spectroscopy, and real-time single wavelength and spectroscopic ellipsometry. Several nickel silicide phases (Ni2Si, NiSi, NiSi2), with different properties, form in various temperature ranges below 1000°C. Three phases, Ni2Si, NiSi, NiSi2, were identified in this temperature range, and their optical databases in the 2--4 eV range were established. We demonstrated that we can identify the phases and the extent of phase formation from optical data obtained via spectroscopic ellipsometry in real-time, and modeled the data using the optical databases established. We have also observed the onset of agglomeration of the silicide for

  2. Thermal Stability Study from Room Temperature to 1273 K (1000 °C) in Magnesium Silicide

    NASA Astrophysics Data System (ADS)

    Stefanaki, Eleni-Chrysanthi; Hatzikraniotis, Euripides; Vourlias, George; Chrissafis, Konstantinos; Kitis, George; Paraskevopoulos, Konstantinos M.; Polymeris, George S.

    2016-10-01

    Doped magnesium silicide has been identified as a promising and environmentally friendly advanced thermoelectric material in the temperature range between 500 K and 800 K (227 °C and 527 °C). Besides the plethora of magnesium silicide thermoelectric advantages, it is well known for its high sensitivity to oxidation. Oxidation is one of the primary instability mechanisms of degradation of high-temperature Mg2Si thermoelectric devices, as in the presence of O2, Mg2Si decomposes to form MgO and Si. In this work, commercial magnesium silicide in bulk form was used for thermal stability study from room temperature to 1273 K (1000 °C). Various techniques such as DTA-TG, PXRD, and FTIR have been applied. Moreover, the application of thermoluminescence (TL) as an effective and alternative probe for the study of oxidation and decomposition has been exploited. The latter provides qualitative but very helpful hints toward oxidation studies. The low-detection threshold of thermoluminescence, in conjunction with the chemical composition of the oxidation byproducts, consisting of MgO, Mg2SiO4, and SiO2, constitute two powerful motivations for further investigating its viable use as proxy for instability/decomposition studies of magnesium silicide. The partial oxidation reaction has been adopted due to the experimental fact that magnesium silicide is monitored throughout the heating temperature range of the present study. Finally, the role of silicon dioxide to the decomposition procedure, being in amorphous state and gradually crystallizing, has been highlighted for the first time in the literature. Mg2Si oxidation takes place in two steps, including a mild oxidation process with temperature threshold of 573 K (300 °C) and an abrupt one after 773 K (500 °C). Implications on the optimum operational temperature range for practical thermoelectric (TE) applications have also been briefly discussed.

  3. Further thermodynamic assessment for synthesizing transition metal silicides by the combustion synthesis process

    SciTech Connect

    Bhaduri, S.B.; Qian, Z.B.; Radhakrishnan, R.

    1994-01-15

    It is now recognized that the silicide based materials can perform well under high temperature oxidizing conditions in the range of 1,200--1,600 C. The range of potential uses described in the literature for aerospace, automobile to power generation equipment is extremely broad. In fact, the silicides offer an alternative class of materials to the engineering ceramics such as SiC and Si{sub 3}N{sub 4}. In their previous paper, the authors argued that combustion synthesis (CS) may prove to be a viable method for producing transition metal silicides; it drew attention to the advantages of the process in comparison to conventional processes. This paper will expand their previous thermodynamic assessment in two ways: (1) encompass a larger number of silicides for which thermodynamic data are readily available and (2) perform thermodynamic calculations in order to obtain a correlation between thermodynamic quantities that characterize the materials in question. Previously, the authors stopped short of these calculations by obtaining experimental data from Russian literature. In the present case, experimental data are not available for many of the silicides. Consequently, thermodynamic calculations, for the first time, predict the possibility of synthesizing some of the materials in question by the CS process. Being predictions, the calculated values may be larger than experimental values (if and when available). Nonetheless, these predictions may prove to be important because thermodynamics dictates whether a reaction will propagate or quench itself. These calculations can be used as a classification tool in distinguishing between the energetic systems and the sluggish ones.

  4. Microstructure and mechanical properties of metal/oxide and metal/silicide interfaces

    SciTech Connect

    Shaw, L.; Miracle, D.; Abbaschian, R.

    1995-12-01

    Fracture energies of Al{sub 2}O{sub 3}/Nb interfaces and MoSi{sub 2}/Nb interfaces with and without Al{sub 2}O{sub 3} coating were measured using sandwich-type chevron-notched specimens. The relations between the mechanical properties, microstructures, types of bonds at the interface and processing routes were explored. The fracture energy of the Al{sub 2}O{sub 3}/Nb interface was determined to be 9 J/m{sup 2} and changed to 16 J/m{sup 2} when Nb was pre-oxidized before the formation of the Al{sub 2}O{sub 3}/Nb interface. The fracture energy of the MoSi{sub 2}/Nb interface could not be determined directly because of the formation of the interfacial compounds. However, the fracture energy at the MoSi{sub 2}/Nb interfacial region was found to depend on the interfacial bond strength, roughness of interfaces and microstructure of interfacial compounds. The interfacial fracture energies of Al{sub 2}O{sub 3} with silicides, MoSi{sub 2}, Nb{sub 5}Si{sub 3}, or (Nb, Mo)Si{sub 2} were estimated to be about 16 J/m{sup 2}, while the interfacial fracture energies between two silicides or between Nb and a silicide were larger than 34 J/m{sup 2}. The measured fracture energies between two silicides or between Nb and a silicide were larger than 34 J/m{sup 2}. The measured fracture energies of the various interfaces are discussed in terms of the interfacial microstructures and types of bonds at the interfaces.

  5. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    NASA Astrophysics Data System (ADS)

    Purwaningsih, Anik

    2014-09-01

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  6. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    SciTech Connect

    Purwaningsih, Anik

    2014-09-30

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  7. Electrochemical synthesis of an iridium powder with a large specific surface area

    NASA Astrophysics Data System (ADS)

    Zaykov, Yu. P.; Isakov, A. V.; Apisarov, A. P.; Nikitina, A. O.

    2017-02-01

    The synthesis of iridium powder in a molten NaCl-KCl medium at 700°C is carried out for the first time. The influence of the ratio of the cathode to the anode current density ( i c/ i a) on the structure and the morphology of the iridium powder is investigated. Single-phase and polycrystalline iridium powders with a specific surface of 16.8 m2/g are produced. The phase composition and the surface texture of the deposits are studied. The specific surface and the particle size of iridium powders as functions of the ratio i c/ i a are analyzed.

  8. Fused slurry silicide coatings for columbium alloy reentry heat shields. Volume 2: Experimental and coating process details

    NASA Technical Reports Server (NTRS)

    Fitzgerald, B.

    1973-01-01

    The experimental and coating process details are presented. The process specifications which were developed for the formulation and application of the R-512E fused slurry silicide coating using either an acrylic or nitrocellulose base slurry system is also discussed.

  9. Impact of silicide layer on single photon avalanche diodes in a 130 nm CMOS process

    NASA Astrophysics Data System (ADS)

    Cheng, Zeng; Palubiak, Darek; Zheng, Xiaoqing; Deen, M. Jamal; Peng, Hao

    2016-09-01

    Single photon avalanche diode (SPAD) is an attractive solid-state optical detector that offers ultra-high photon sensitivity (down to the single photon level), high speed (sub-nanosecond dead time) and good timing performance (less than 100 ps). In this work, the impact of the silicide layer on SPAD’s characteristics, including the breakdown voltage, dark count rate (DCR), after-pulsing probability and photon detection efficiency (PDE) is investigated. For this purpose, two sets of SPAD structures in a standard 130 nm complementary metal oxide semiconductor (CMOS) process are designed, fabricated, measured and compared. A factor of 4.5 (minimum) in DCR reduction, and 5 in PDE improvements are observed when the silicide layer is removed from the SPAD structure. However, the after-pulsing probability of the SPAD without silicide layer is two times higher than its counterpart with silicide. The reasons for these changes will be discussed.

  10. Iridium alloy clad vent set manufacturing qualification studies

    NASA Astrophysics Data System (ADS)

    Ulrich, George B.

    1991-01-01

    Qualification studies have been successfully conducted to demonstrate iridium alloy Clad Vent Set (CVS) manufacturing readiness for the General Purpose Heat Source (GPHS) program at the Oak Ridge Y-12 Plant. These studies were joint comparison evaluations of both the Y-12 Plant and EG&G Mound G-MAT) products. Note: EG&G-MAT formerly manufactured the iridium alloy CVS. The comparison evaluations involved work in a number of areas; however, only the CVS cup metallurgical evalution will be presented here. The initial metallurgical comparisons in conjunction with follow-up metallurgical work showed the Y-12 Plant CVS product to be comparable to the fully qualified (for Galileo and Ulysses missions) EG&G-MAT product. This allowed the Y-12 Plant to commence pilot production of CVS components for potential use in the CRAF and CASSINI missions.

  11. Blistering during the atomic layer deposition of iridium

    SciTech Connect

    Genevée, Pascal E-mail: a.szeghalmi@uni-jena.de; Ahiavi, Ernest; Janunts, Norik; Pertsch, Thomas; Kley, Ernst-Bernhard; Szeghalmi, Adriana E-mail: a.szeghalmi@uni-jena.de; Oliva, Maria

    2016-01-15

    The authors report on the formation of blisters during the atomic layer deposition of iridium using iridium acetylacetonate and oxygen precursors. Films deposited on fused silica substrates led to sparsely distributed large blisters while in the case of silicon with native oxide additional small blisters with a high density was observed. It is found that the formation of blisters is favored by a higher deposition temperature and a larger layer thickness. Postdeposition annealing did not have a significant effect on the formation of blisters. Finally, changing purge duration during the film growth allowed us to avoid blistering and evidenced that impurities released from the film in gas phase were responsible for the formation of blisters.

  12. Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids.

    PubMed

    Zhu, Shou-Fei; Zhou, Qi-Lin

    2017-04-04

    Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h(-1)), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm

  13. Iridium-catalyzed C-H borylation of pyridines.

    PubMed

    Sadler, Scott A; Tajuddin, Hazmi; Mkhalid, Ibraheem A I; Batsanov, Andrei S; Albesa-Jove, David; Cheung, Man Sing; Maxwell, Aoife C; Shukla, Lena; Roberts, Bryan; Blakemore, David C; Lin, Zhenyang; Marder, Todd B; Steel, Patrick G

    2014-10-07

    The iridium-catalysed C-H borylation is a valuable and attractive method for the preparation of aryl and heteroaryl boronates. However, application of this methodology for the preparation of pyridyl and related azinyl boronates can be challenged by low reactivity and propensity for rapid protodeborylation, particularly for a boronate ester ortho to the azinyl nitrogen. Competition experiments have revealed that the low reactivity is due to inhibition of the active catalyst through coordination of the azinyl nitrogen lone pair at the vacant site on the iridium. This effect can be overcome through the incorporation of a substituent at C-2. Moreover, when this is sufficiently electron-withdrawing protodeborylation is sufficiently slowed to permit isolation and purification of the C-6 boronate ester. Following functionalization, reduction of the directing C-2 substituent provides the product arising from formal ortho borylation of an unhindered pyridine ring.

  14. Water-soluble iridium phosphorescent complexes for OLED applications

    NASA Astrophysics Data System (ADS)

    Eum, Min-Sik; Yoon, Heekoo; Kim, Tae Hyung

    2012-09-01

    Newly prepared water-soluble iridium phosphorescent complexes, trans-[Ir(ppy)(PAr3)2(H)L]0,+ (ppy = bidentate 2-phenylpyridinato anionic ligand; L= Cl (1), CO (2), CN- (3); H being trans to the nitrogen of ppy ligand; PAr3 (TPPTS) = P(m-C6H4SO3Na)3), have been synthesized and characterized. Those complexes containing water-soluble phosphine ligands can emit any color region as altering cyclometalated ligands in aqueous media with high quantum efficiencies. Even though these water-soluble phosphorescent iridium complexes can be the sensing probe for toxic CO gas and CN anion, they will be capable of promising materials in the solution processible OLED applications.

  15. Circularly polarised phosphorescent photoluminescence and electroluminescence of iridium complexes

    NASA Astrophysics Data System (ADS)

    Li, Tian-Yi; Jing, Yi-Ming; Liu, Xuan; Zhao, Yue; Shi, Lin; Tang, Zhiyong; Zheng, You-Xuan; Zuo, Jing-Lin

    2015-10-01

    Nearly all the neutral iridium complexes widely used as dopants in PhOLEDs are racemic mixtures; however, this study observed that these complexes can be separated into stable optically active Λ and ∆ isomers and that their chirality is an intrinsic property. The circularly polarised phosphorescent photoluminescence (CPPPL) signals of Λ/Δ isomers are perfect mirror images with opposite polarisation and equal intensity exhibiting a “handedness” for the polarisation. For the first time, we applied the Λ/Δ iridium isomers as emitters in OLEDs, and the circularly polarised phosphorescent electroluminescence (CPPEL) spectra reveal completely positive or negative broad peaks consistent with the CPPPL spectra. The results demonstrate that the Λ/Δ isomers have potential application for 3D OLEDs because they can exhibit high efficiency and luminance, and 3D display technology based on circularly polarised light is the most comfortable for the eyes.

  16. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    NASA Technical Reports Server (NTRS)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  17. Superconducting iridium thin films as transition edge sensors

    NASA Astrophysics Data System (ADS)

    Bogorin, Daniela F.

    Transition edge sensors are the detectors of choice for a wide range of applications; from dark matter search, neutrino search, to cosmic radiation detection from near infrared to millimeter wavelengths. We are developing transition edge sensors using superconducting iridium thin films and we are proposing their use for future dark matter and neutrino search experiments. Our Ir films are deposited using an radio frequency (RF) magnetron sputtering and photolithographic techniques and measured using an adiabatic refrigerator capable of reaching temperatures of a few tens of mK. This thesis presents a detailed description of superconducting iridium thin films from the fabrication process to the characterization of the film properties at room temperature and low temperature. Alternative options for the bias circuit used to read out the TES signals will be discussed, we are proposing the use of RLC resonant circuits and transformers instead of SQUIDS.

  18. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    NASA Technical Reports Server (NTRS)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  19. Prototyping iridium coated mirrors for x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Emmerich, Florian; Stehlíková, Veronika; Inneman, Adolf

    2017-05-01

    X-ray astronomy uses space-based telescopes to overcome the disturbing absorption of the Eart&hacute;s atmosphere. The telescope mirrors are operating at grazing incidence angles and are coated with thin metal films of high-Z materials to get sufficient reflectivity for the high-energy radiation to be observed. In addition the optical payload needs to be light-weighted for launcher mass constrains. Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. The X-ray telescopes currently developed within this Bavarian- Czech project are of Lobster eye type optical design. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The deposition of the iridium films is based on a magnetron sputtering process. Sputtering with different parameters, especially by variation of the argon gas pressure, leads to iridium films with different properties. In addition to investigations of the uncoated mirror substrates the achieved surface roughness has been studied. Occasional delamination of the iridium films due to high stress levels is prevented by chromium sublayers. Thereby the sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.

  20. Olefin oxygenation by water on an iridium center.

    PubMed

    Ghatak, Tapas; Sarkar, Mithun; Dinda, Shrabani; Dutta, Indranil; Rahaman, S M Wahidur; Bera, Jitendra K

    2015-05-20

    Oxygenation of 1,5-cyclooctadiene (COD) is achieved on an iridium center using water as a reagent. A hydrogen-bonding interaction with an unbound nitrogen atom of the naphthyridine-based ligand architecture promotes nucleophilic attack of water to the metal-bound COD. Irida-oxetane and oxo-irida-allyl compounds are isolated, products which are normally accessed from reactions with H2O2 or O2. DFT studies support a ligand-assisted water activation mechanism.

  1. Iridium-Catalyzed Regioselective and Enantioselective Allylation of Trimethylsiloxyfuran

    PubMed Central

    Chen, Wenyong; Hartwig, John F.

    2012-01-01

    We report the regioselective and enantioselective allylation of an ester enolate, trimethylsiloxyfuran. This enolate reacts in the 3-position with linear aromatic allylic carbonates or aliphatic allylic benzoates to form the branched substitution products in the presence of a metallacyclic iridium catalyst. This process provides access to synthetically important 3-substituted butenolides in enantioenriched form. Stoichiometric reactions of the allyliridium intermediate imply that the trimethylsiloxyfuran is activated by the carboxylate leaving group. PMID:22954355

  2. Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.

    2011-01-01

    NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.

  3. Growth and characterization of self-assembled epitaxial transition-metal silicide nanowires

    NASA Astrophysics Data System (ADS)

    He, Zhian

    This dissertation involves the growth and microstructure characterization of self-assembled epitaxial silicide nanowires (NWs). It has been discovered that many metal/Si systems (Ti-Si(111), Dy/Si(110), Dy/Si(111), Co/Si(001), Co/Si(110), Co/Si(111), Ni/Si(111), Ni/Si(110), etc.) show self-assembled epitaxial silicide nanowire formation behavior during the ultra-high vacuum (UHV) reactive epitaxy process, in addition to the previously known rare-earth/Si(001) system. Most nanowires have dimensions of approximately 20 nm wide, 5 nm high and 1 um long. The dimensions and densities of the nanowires change considerably with growth temperature, deposition rate, and coverage. Transmission electron microscopy (TEM) reveals that most of these silicide nanowires are defect-free single crystals and form atomically flat interfaces with the Si substrate. Most silicide nanowires (COSi2/Si, NiSi2/Si(110), TiSi 2/Si(111) DYSi2/Si(110), etc.) grow into the Si substrate along inclined Si{111}, forming a V-shaped groove in the Si substrate. In several silicide nanowire systems (DySi2/Si(111), DySi2/S1(001), NiSi2/Si(111), etc.), however, the nanowires grow on top of the substrate. For these systems, the nanowires can be aligned to a single orientation using a stepped substrate. The growth mode (in-growth versus growth on top of the substrate surface) plays a significant role in the formation of nanowires and islands. Growth on the substrate usually produces islands that share the symmetry of the substrate in shape or in structure, whereas in-growth islands show less dependency on the surface symmetry (i.e. they adopt an asymmetric island shape and are less sensitive to surface steps). It has been proven that the silicides do not need to satisfy the requirement as specified in the "classic model" to form nanowires. A new nanowire formation mechanism is proposed in this work. This mechanism requires coherent growth of overlayer islands into the substrate along inclined close

  4. Sputtered iridium oxide films (SIROFs) for neural stimulation electrodes

    PubMed Central

    Cogan, Stuart F.; Ehrlich, Julia; Plante, Timothy D.; Smirnov, Anton; Shire, Douglas B.; Gingerich, Marcus; Rizzo, Joseph F.

    2009-01-01

    Sputtered iridium oxide films (SIROFs) deposited by DC reactive sputtering from an iridium metal target have been characterized in vitro for their potential as neural recording and stimulation electrodes. SIROFs were deposited over gold metallization on flexible multielectrode arrays fabricated on thin (15 µm) polyimide substrates. SIROF thickness and electrode areas of 200–1300 nm and 1960–125600 µm2, respectively, were investigated. The charge-injection capacities of the SIROFs were evaluated in an inorganic interstitial fluid model in response to charge-balanced, cathodal-first current pulses. Charge injection capacities were measured as a function of cathodal pulse width (0.2 – 1 ms) and potential bias in the interpulse period (0.0 to 0.7 V vs. Ag|AgCl). Depending on the pulse parameters and electrode area, charge-injection capacities ranged from 1–9 mC/cm2, comparable with activated iridium oxide films (AIROFs) pulsed under similar conditions. Other parameters relevant to the use of SIROF on nerve electrodes, including the thickness dependence of impedance (0.05–105 Hz) and the current necessary to maintain a bias in the interpulse region were also determined. PMID:17271216

  5. Mononuclear iridium dinitrogen complexes bonded to zeolite HY

    DOE PAGES

    Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia; ...

    2014-11-07

    In this study, the adsorption of N2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N2 in H2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N2. Four supported species formed in various flowing gases: Ir(N2), Ir(N2)(N2), Ir(C2H5)(N2), and Ir(H)(N2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N2, Ir(N2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N2) formed transiently in flowing CO, and in the presence of H2, rather stable iridiummore » hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.« less

  6. Mono- and bis-tolylterpyridine iridium(III) complexes

    SciTech Connect

    Hinkle, Lindsay M.; Young, Jr., Victor G.; Mann, Kent R.

    2012-01-20

    The first structure report of trichlorido[4'-(p-tolyl)-2,2':6',2{double_prime}-terpyridine]iridium(III) dimethyl sulfoxide solvate, [IrCl{sub 3}(C{sub 22}H{sub 17}N{sub 3})] {center_dot} C{sub 2}H{sub 6}OS, (I), is presented, along with a higher-symmetry setting of previously reported bis[4'-(p-tolyl)-2,2':6',2{double_prime}-terpyridine]iridium(III) tris(hexafluoridophosphate) acetonitrile disolvate, [Ir(C{sub 22}H{sub 17}N{sub 3})2](PF{sub 6}){sub 3} {center_dot} 2C{sub 2}H{sub 3}N, (II) [Yoshikawa, Yamabe, Kanehisa, Kai, Takashima & Tsukahara (2007). Eur. J. Inorg. Chem. pp. 1911-1919]. For (I), the data were collected with synchrotron radiation and the dimethyl sulfoxide solvent molecule is disordered over three positions, one of which is an inversion center. The previously reported structure of (II) is presented in the more appropriate C2/c space group. The iridium complex and one PF{sub 6}{sup -} anion lie on twofold axes in this structure, making half of the molecule unique.

  7. Evaluation of Molybdenum as a Surrogate for Iridium in the GPHS Weld Development

    SciTech Connect

    Stine, Andrew Martin; Pierce, Stanley W.; Moniz, Paul F.

    2015-10-17

    The welding equipment used for welding iridium containers (clads) at Los Alamos National Laboratory is twenty five years old and is undergoing an upgrade. With the upgrade, there is a requirement for requalification of the welding process, and the opportunity for process improvement. Testing of the new system and requalification will require several welds on iridium test parts and clads, and any efforts to improve the process will add to the need for iridium parts. The extreme high cost of iridium imposes a severe limitation on the extent of test welding that can be done. The 2 inch diameter, 0.027 inch thick, iridium blank disc that the clad cup is formed from, is useful for initial weld trials, but it costs $5000. The development clad sets needed for final tests and requalification cost $15,000 per set. A solution to iridium cost issue would be to do the majority of the weld development on a less expensive surrogate metal with similar weld characteristics. One such metal is molybdenum. Since its melting index (melting temperature x thermal conductivity) is closest to iridium, welds on molybdenum should be similar in size for a given weld power level. Molybdenum is inexpensive; a single 2 inch molybdenum disc costs only $9. In order to evaluate molybdenum as a surrogate for iridium, GTA welds were first developed to provide full penetration on 0.030 inch thick molybdenum discs at speeds of 20, 25, and 30 inches per minute (ipm). These weld parameters were then repeated on the standard 0.027 inch thick iridium blanks. The top surface and bottom surface (root) width and grain structure of the molybdenum and iridium welds were compared, and similarities were evident between the two metals. Due to material and thickness differences, the iridium welds were approximately 35% wider than the molybdenum welds. A reduction in iridium weld current of 35% produce welds slightly smaller than the molybdenum welds yet showed that current could be scaled according to molybdenum/iridium

  8. Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program

    NASA Astrophysics Data System (ADS)

    Viertel, Y.; Kinnersley, M.; Schumacher, I.

    2002-01-01

    The GRACE mission and the IRIDIUM mission on ROCKOT launch vehicle are presented. Two identical GRACE satellites to measure in tandem the gravitational field of the earth with previously unattainable accuracy - it's called the Gravity Research and Climate Experiment, or and is a joint project of the U.S. space agency, NASA and the German Centre for Aeronautics and Space Flight, DLR. In order to send the GRACE twins into a 500x500 km , 89deg. orbit, the Rockot launch vehicle was selected. A dual launch of two Iridium satellites was scheduled for June 2002 using the ROCKOT launch vehicle from Plesetsk Cosmodrome in Northern Russia. This launch will inject two replacement satellites into a low earth orbit (LEO) to support the maintenance of the Iridium constellation. In September 2001, Eurockot successfully carried out a "Pathfinder Campaign" to simulate the entire Iridium mission cycle at Plesetsk. The campaign comprised the transport of simulators and related equipment to the Russian port-of-entry and launch site and also included the integration and encapsulation of the simulators with the actual Rockot launch vehicle at Eurockot's dedicated launch facilities at Plesetsk Cosmodrome. The pathfinder campaign lasted four weeks and was carried out by a joint team that also included Khrunichev, Russian Space Forces and Eurockot personnel on the contractors' side. The pathfinder mission confirmed the capability of Eurockot Launch Services to perform the Iridium launch on cost and on schedule at Plesetsk following Eurockot's major investment in international standard preparation, integration and launch facilities including customer facilities and a new hotel. In 2003, Eurockot will also launch the Japanese SERVI'S-1 satellite for USEF. The ROCKOT launch vehicle is a 3 stage liquid fuel rocket whose first 2 stages have been adapted from the Russian SS-19. A third stage, called "Breeze", can be repeatedly ignited and is extraordinarily capable of manoeuvre. Rockot can place

  9. N-H activation of hydrazines by iridium(I). Double N-H activation to form iridium aminonitrene complexes.

    PubMed

    Huang, Zheng; Zhou, Jianrong Steve; Hartwig, John F

    2010-08-25

    Iridium(I) complexes of aromatic (PCP) and aliphatic (D(t)BPP) pincer ligands undergo single cleavage of the N-H bonds of hydrazine derivatives to form hydrazido complexes and geminal double cleavage to form unusual late transition metal aminonitrene complexes. In some cases, the cleavage of the N-N bond in the hydrazine is also observed. Oxidative additions of the N-H bonds of benzophenone hydrazone and 1-aminopiperidine to iridium(I) complexes give the corresponding hydridoiridium(III) hydrazido complexes within minutes. The complex containing an aromatic pincer ligand, (PCP)Ir(H)(NHNC(5)H(10)), slowly undergoes a second N-H bond cleavage at the alpha-N-H bond and elimination of hydrogen to generate an aminonitrene complex and dihydrogen in high yield. The reactions of the (PCP)Ir(I) fragment containing an aromatic pincer ligand with methyl-substituted hydrazines form a mixture of aminonitrene complexes, isocyanide iridium(III) dihydride complexes, and ammonia. The latter two products are likely formed by initial oxidative addition of the methyl C-H bond and the subsequent N-N bond cleavage. Reactions of the aminonitrene complex with CO or reagents that undergo oxidative addition (MeI and PhOH) lead to release of the "isodiazine" fragment to give tetrazene and tetrazine derivatives.

  10. Neutron irradiated uranium silicides studied by neutron diffraction and Rietveld analysis

    SciTech Connect

    Birtcher, R.C.; Mueller, M.H.; Richardson, J.W. Jr.

    1990-11-01

    The irradiation behavior of high-density uranium silicides has been a matter of interest to the nuclear industry for use in high power or low enrichment applications. Transmission electron microscopy studies have found that heavy ion bombardment renders U{sub 3}Si and U{sub 3}Si{sub 2} amorphous at temperatures below about 250 C and that U{sub 3}Si becomes mechanically unstable suffering rapid growth by plastic flow. In this present work, crystallographic changes preceding amorphization by fission fragment damage have been studied by high-resolution neutron diffraction as a function of damage produced by uranium fission at room temperature. Initially, both silicides had tetragonal crystal structures. Crystallographic and amorphous phases were studied simultaneously by combining conventional Rietveld refinement of the crystallographic phases with Fourier-filtering analysis of the non-crystalline scattering component. 13 refs., 5 figs.

  11. Remarkable rare-earth metal silicide oxides with planar Si6 rings.

    PubMed

    Wang, Limin; Tang, Zhongjia; Lorenz, Bernd; Guloy, Arnold M

    2008-08-27

    New rare-earth silicide oxides, La10Si8O3 (1) and Ce10Si8O3 (2), were synthesized through high-temperature reactions of the pure elements under controlled oxygen atmosphere conditions. The remarkable silicides crystallize in a unique crystal structure (space group P6/mmm; a = 10.975(3) A (La) and 10.844(1) A (Ce); c = 4.680(1) A (La) and 4.561(1) A (Ce)) that features a 3-D framework of corner-shared O-centered (La/Ce)6 octahedra, reminiscent of hexagonal tungsten bronzes, with planar Si6 rings enclosed within its hexagonal channels. Band structure calculations indicate the compounds are metallic, with optimized La-Si bonds, and a benzene-like [Si6]6- anion. Compound 1 exhibits temperature independent paramagnetism. Compound 2 exhibits Curie-Weiss paramagnetism, and an antiferromagnetic ordering below 7 K.

  12. On the diffraction pattern of bundled rare-earth silicide Nanowires on Si(001).

    PubMed

    Timmer, Frederic; Bahlmann, Jascha; Wollschlaeger, Joachim

    2017-08-24

    Motivated by the complex diffraction pattern observed for bundled rare-earth silicide nanowires on the Si(001) surface we investigate the influence of the width and the spacing distribution of the nanowires on the diffraction pattern. The diffraction pattern of the bundled rare-earth silicide nanowires is analyzed by the binary surface technique applying a kinematic approach to diffraction. Assuming a categorical distribution for the (individual) nanowire size and a Poisson distribution for the size of the spacing between adjacent nanowire-bundles we are able to determine the parameters of these distributions and derive an expression for the distribution of the nanowire-bundle size. Additionally, the comparison of our simulations to the experimental diffraction pattern reveal that a (1 × 1)-periodicity on top of the nanowires has to be assumed for a good match. © 2017 IOP Publishing Ltd.

  13. Effect of Saturation Pressure Difference on Metal–Silicide Nanopowder Formation in Thermal Plasma Fabrication

    PubMed Central

    Shigeta, Masaya; Watanabe, Takayuki

    2016-01-01

    A computational investigation using a unique model and a solution algorithm was conducted, changing only the saturation pressure of one material artificially during nanopowder formation in thermal plasma fabrication, to highlight the effects of the saturation pressure difference between a metal and silicon. The model can not only express any profile of particle size–composition distribution for a metal–silicide nanopowder even with widely ranging sizes from sub-nanometers to a few hundred nanometers, but it can also simulate the entire growth process involving binary homogeneous nucleation, binary heterogeneous co-condensation, and coagulation among nanoparticles with different compositions. Greater differences in saturation pressures cause a greater time lag for co-condensation of two material vapors during the collective growth of the metal–silicide nanopowder. The greater time lag for co-condensation results in a wider range of composition of the mature nanopowder.

  14. Development of fused slurry silicide coatings for tantalum reentry heat shields

    NASA Technical Reports Server (NTRS)

    Warnock, R. V.; Stetson, A. R.

    1972-01-01

    A fused slurry silicide coating was developed to provide atmospheric reentry protection for the 90Ta-lOW alloy. Overlaying the silicide with a highly refractory glass greatly improved total lifetime and reliability of the coating system. Low pressure, slow cycle lifetimes in excess of 100 cycles were consistently recorded for 1700 K - 13 and 1300 N/sq m test conditions. A minimum of 25 cycles was obtained for 1810 K - 1300 N/sq m conditions. About 50 simulated reentry cycles (variable temperature, pressure, and stress) were endured by coated 1-inch miniature heat shield panels when exposed to a maximum of 1700 K and either internal or external pressure conditions.

  15. Study of optical and luminescence properties of silicon — semiconducting silicide — silicon multilayer nanostructures

    NASA Astrophysics Data System (ADS)

    Galkin, N. G.; Galkin, K. N.; Dotsenko, , S. A.; Goroshko, D. L.; Shevlyagin, A. V.; Chusovitin, E. A.; Chernev, I. M.

    2017-01-01

    By method of in situ differential spectroscopy it was established that at the formation of monolayer Fe, Cr, Ca, Mg silicide and Mg stannide islands on the atomically clean silicon surface an appearance of loss peaks characteristic for these materials in the energy range of 1.1-2.6 eV is observed. An optimization of growth processes permit to grow monolithic double nanoheterostructures (DNHS) with embedded Fe, Cr and Ca nanocrystals, and also polycrystalline DNHS with NC of Mg silicide and Mg stannide and Ca disilicide. By methods of optical spectroscopy and Raman spectroscopy it was shown that embedded NC form intensive peaks in the reflectance spectra at energies up to 2.5 eV and Raman peaks. In DNS with β-FeSi2 NC a photoluminescence and electroluminescence at room temperature were firstly observed.

  16. Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Zhang, Zhang; Liu, Lifeng; Shimizu, Tomohiro; Senz, Stephan; Gösele, Ulrich

    2010-02-01

    Silicon nanotubes (SiNTs) are compatible with Si-based semiconductor technology. In particular, the small diameters and controllable structure of such nanotubes are remaining challenges. Here we describe a method to fabricate SiNTs intrinsically connected with cobalt silicide ends based on highly ordered anodic aluminum oxide (AAO) templates. Size and growth direction of the SiNTs can be well controlled via the templates. The growth of SiNTs is catalyzed by the Co nanoparticles reduced on the pore walls of the AAO after annealing, with a controllable thickness at a given growth temperature and time. Simultaneously, cobalt silicide forms on the bottom side of the SiNTs.

  17. Cobalt silicide formation caused by arsenic ion beam mixing and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Ye, Min; Burte, Edmund; Tsien, Pei-Hsin; Ryssel, Heiner

    1991-04-01

    Ion beam mixing and rapid thermal annealing (RTA) were used to prepare low resistivity (≈ 23 μΩ cm) cobalt disilicide, CoSi 2, layers. Through-metal As + ion implantation causes some mixing between Co and Si resulting in the formation of cobalt suicides. By using RTA, the silicide formation happens in the phase sequence Co 2Si, CoSi and CoSi 2. Samples which were only subjected to a one-step high temperature RTA process ( T ≥. 900°C, 1s) show significant lateral growth of cobalt suicides. By ion beam mixing of Co and Si this lateral silicide growth could be reduced efficiently. Furthermore one can get a very homogeneous CoSi 2 layer.

  18. Low-temperature ordering of FePt by formation of silicides in underlayers

    NASA Astrophysics Data System (ADS)

    Lai, Chih-Huang; Chiang, C. C.; Yang, C. H.

    2005-05-01

    A low-temperature ordering of FePt was achieved by introducing dynamic stress. The ordering temperature of FePt was reduced to 300°C by using a Cu underlayer on the HF-cleaned Si (001) substrate. An in-plane coercivity as high as 6900Oe can be obtained after post-annealing at 300°C. The formation of copper silicide, Cu3Si, during post-annealing induces a dynamic stress on FePt films, which greatly reduces the ordering temperature. Pt silicides also help to reduce the ordering temperature. The low-temperature ordering of FePt can be realized with Si /Cu underlayers on glass substrates.

  19. Carbon mediated reduction of silicon dioxide and growth of copper silicide particles in uniform width channels

    SciTech Connect

    Pizzocchero, Filippo; Bøggild, Peter; Booth, Timothy J.

    2013-09-21

    We show that surface arc-discharge deposited carbon plays a critical intermediary role in the breakdown of thermally grown oxide diffusion barriers of 90 nm on a silicon wafer at 1035 °C in an Ar/H{sub 2} atmosphere, resulting in the formation of epitaxial copper silicide particles in ≈ 10 μm wide channels, which are aligned with the intersections of the (100) surface of the wafer and the (110) planes on an oxidized silicon wafer, as well as endotaxial copper silicide nanoparticles within the wafer bulk. We apply energy dispersive x-ray spectroscopy, in combination with scanning and transmission electron microscopy of focused ion beam fabricated lammelas and trenches in the structure to elucidate the process of their formation.

  20. Development of a fused slurry silicide coating for the protection of tantalum alloys

    NASA Technical Reports Server (NTRS)

    Packer, C. M.; Perkins, R. A.

    1974-01-01

    Results are reported of a research program to develop a reliable high-performance, fused slurry silicide protective coating for a tantalum-10 tungsten alloy for use at 1427 to 1538 C at 0.1 to 10 torr air pressure under cyclic temperature conditions. A review of silicide coating performance under these conditions indicated that the primary wear-out mode is associated with widening of hairline fissures in the coating. Consideration has been given to modifying the oxidation products that form on the coating surface to provide a seal for these fissures and to minimize their widening. On the basis of an analysis of the phase relationships between silica and various other oxides, a coating having the slurry composition 2.5Mn-33Ti-64.5Si was developed that is effective in the pressure range from 1 to 10 torr.

  1. Barrierless Cu-Ni-Mo Interconnect Films with High Thermal Stability Against Silicide Formation

    NASA Astrophysics Data System (ADS)

    Li, X. N.; Liu, L. J.; Zhang, X. Y.; Chu, J. P.; Wang, Q.; Dong, C.

    2012-12-01

    Cu-Ni-Mo alloys were investigated to increase thermal stability against silicide formation. The alloy compositions were chosen such that an insoluble element (Mo) solute was dissolved into Cu via a third element Ni which is soluble in both Cu and Ni. Thin-film Cu-Ni-Mo alloys were prepared by magnetron sputtering. The films with Mo/Ni ratio of 1/12 exhibited low electrical resistivities in combination with high thermal stabilities against silicide formation, in support of a tentative "cluster-plus-glue-atom" model for stable solid solutions. In particular, a (Mo1/13Ni12/13)0.3Cu99.7 sample reached a minimum resistivity of 2.6 μΩ cm after 400°C/1 h annealing and remained highly conductive with resistivities below 3 μΩ cm even after 400°C/40 h annealing. These alloys are promising candidates for future interconnect materials.

  2. Optical characteristics of an epitaxial Fe3Si/Si(111) iron silicide film

    NASA Astrophysics Data System (ADS)

    Tarasov, I. A.; Popov, Z. I.; Varnakov, S. N.; Molokeev, M. S.; Fedorov, A. S.; Yakovlev, I. A.; Fedorov, D. A.; Ovchinnikov, S. G.

    2014-07-01

    The dispersion of the relative permittivity ɛ of a 27-nm-thick epitaxial Fe3Si iron silicide film has been measured within the E = 1.16-4.96 eV energy range using the spectroscopic ellipsometry technique. The experimental data are compared to the relative permittivity calculated in the framework of the density functional theory using the GGA-PBE approximation. For Fe3Si, the electronic structure and the electronic density of states (DOS) are calculated. The analysis of the frequencies corresponding to the transitions between the DOS peaks demonstrates qualitative agreement with the measured absorption peaks. The analysis of the single wavelength laser ellipsometry data obtained in the course of the film growth demonstrates that a continuous layer of Fe3Si iron silicide film is formed if the film thickness achieves 5 nm.

  3. Study of optical and luminescence properties of silicon — semiconducting silicide — silicon multilayer nanostructures

    NASA Astrophysics Data System (ADS)

    Galkin, N. G.; Galkin, K. N.; Dotsenko, , S. A.; Goroshko, D. L.; Shevlyagin, A. V.; Chusovitin, E. A.; Chernev, I. M.

    2016-12-01

    By method of in situ differential spectroscopy it was established that at the formation of monolayer Fe, Cr, Ca, Mg silicide and Mg stannide islands on the atomically clean silicon surface an appearance of loss peaks characteristic for these materials in the energy range of 1.1-2.6 eV is observed. An optimization of growth processes permit to grow monolithic double nanoheterostructures (DNHS) with embedded Fe, Cr and Ca nanocrystals, and also polycrystalline DNHS with NC of Mg silicide and Mg stannide and Ca disilicide. By methods of optical spectroscopy and Raman spectroscopy it was shown that embedded NC form intensive peaks in the reflectance spectra at energies up to 2.5 eV and Raman peaks. In DNS with β-FeSi2 NC a photoluminescence and electroluminescence at room temperature were firstly observed.

  4. Neutronic study on conversion of SAFARI-1 to LEU silicide fuel

    SciTech Connect

    Ball, G.; Pond, R.; Hanan, N.; Matos, J.

    1995-02-01

    This paper marks the initial study into the technical and economic feasibility of converting the SAFARI-1 reactor in South Africa to LEU silicide fuel. Several MTR assembly geometries and LEU uranium densities have been studied and compared with MEU and HEU fuels. Two factors of primary importance for conversion of SAFARI-1 to LEU fuel are the economy of the fuel cycle and the performance of the incore and excore irradiation positions.

  5. Self-assembled rare-earth silicide nanowires on Si(001)

    SciTech Connect

    Nogami, J.; Liu, B. Z.; Katkov, M. V.; Ohbuchi, C.; Birge, Norman O.

    2001-06-15

    This paper presents scanning tunneling microscope images of several rare-earth metal silicides grown on silicon (001). For certain of the metals studied (Dy, Ho), an anisotropy in lattice match with the substrate results in the formation of nanowires. These nanowires have desirable properties such as nanometer lateral dimension, crystalline structure with a low density of defects, and micrometer scale length. Tunneling spectroscopy on the nanowires indicates that they are metallic.

  6. Practical field repair of fused slurry silicide coating for space shuttle t.p.s.

    NASA Technical Reports Server (NTRS)

    Reznik, B. D.

    1971-01-01

    Study of short-time high-temperature diffusion treatments as part of a program of development of methods of reapplying fused slurry silicide coating in the field. The metallographic structure and oxidation behavior of R512E applied to Cb-752 coated under simulated field repair conditions was determined. Oxidation testing in reduced pressure environment has shown that performance equivalent to furnace-processed specimens can be obtained in a two-minute diffusion at 2700 F.

  7. Isothermal Diagrams of Precipitation of Silicide and Aluminide Phases in Refractory Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Popov, A. A.; Popova, M. A.

    2017-03-01

    Processes of precipitation of silicides and aluminides in commercial titanium alloys under different modes of heat treatment are studied. The effect of alloying on the types of precipitating particles is considered. The temperature ranges of formation of intermetallics are determined and the possible mechanisms of transformation of particles of different types are discussed. A schematic isothermal diagram of decomposition of metastable phases in refractory titanium alloys is suggested.

  8. Phosphorescent Imaging of Living Cells Using a Cyclometalated Iridium(III) Complex

    PubMed Central

    Ma, Dik-Lung; Zhong, Hai-Jing; Fu, Wai-Chung; Chan, Daniel Shiu-Hin; Kwan, Hiu-Yee; Fong, Wang-Fun; Chung, Lai-Hon; Wong, Chun-Yuen; Leung, Chung-Hang

    2013-01-01

    A cell permeable cyclometalated iridium(III) complex has been developed as a phosphorescent probe for cell imaging. The iridium(III) solvato complex [Ir(phq)2(H2O]2)] preferentially stains the cytoplasm of both live and dead cells with a bright luminescence. PMID:23457478

  9. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  10. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600 C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  11. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600 C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  12. Real-Time Characterization of Formation and Breakup of Iridium Clusters in Highly Dealuminated Zeolite Y

    SciTech Connect

    Uzun, Alper; Gates, Bruce C.

    2009-01-15

    The chemistry of formation of iridium clusters from mononuclear iridium diethylene complexes anchored in dealuminated Y zeolite, and their subsequent breakup -- all including changes in the metal-metal, metal-support, and metal-ligand interactions -- is demonstrated by time-resolved EXAFS, XANES, and IR spectroscopy.

  13. Large-area Co-silicide nanodot arrays produced by colloidal nanosphere lithography and thermal annealing.

    PubMed

    Cheng, S L; Wong, S L; Lu, S W; Chen, H

    2008-09-01

    We report here the successful fabrication of large-area size-tunable periodic arrays of cobalt and Co-silicide nanodots on silicon substrates by employing the colloidal nanosphere lithography (NSL) technique and heat treatments. The growth of low-resistivity epitaxial CoSi(2) was found to be more favorable for the samples with smaller Co nanodot sizes. The sizes of the epitaxial CoSi(2) nanodots can be tuned from 50 to 100 nm by varying the diameter of the colloidal spheres and annealing temperatures. The epitaxial CoSi(2) nanodots were found to grow with an epitaxial orientation with respect to the (001)Si substrates: [001]CoSi(2)//[001]Si and (200)CoSi(2)//(400)Si. From the results of planview HRTEM, XTEM, and SAED analysis, the epitaxial CoSi(2) nanodots were identified to be inverse pyramids in shape, and the average sizes of the faceted silicide nanodots were measured to decrease with annealing temperature. The observed results present the exciting prospect that with appropriate controls, the colloidal NSL technique promises to facilitate the growth of a variety of well-ordered silicide nanodots with selected shape, size, and periodicity.

  14. Silicide/Silicon Heterointerfaces, Reaction Kinetics and Ultra-short Channel Devices

    NASA Astrophysics Data System (ADS)

    Tang, Wei

    Nickel silicide is one of the electrical contact materials widely used on very large scale integration (VLSI) of Si devices in microelectronic industry. This is because the silicide/silicon interface can be formed in a highly controlled manner to ensure reproducibility of optimal structural and electrical properties of the metal-Si contacts. These advantages can be inherited to Si nanowire (NW) field-effect transistors (FET) device. Due to the technological importance of nickel silicides, fundamental materials science of nickel silicides formation (Ni-Si reaction), especially in nanoscale, has raised wide interest and stimulate new insights and understandings. In this dissertation, in-situ transmission electron microscopy (TEM) in combination with FET device characterization will be demonstrated as useful tools in nano-device fabrication as well as in gaining insights into the process of nickel silicide formation. The shortest transistor channel length (17 nm) fabricated on a vapor-liquid-solid (VLS) grown silicon nanowire (NW) has been demonstrated by controlled reaction with Ni leads on an in-situ transmission electron microscope (TEM) heating stage at a moderate temperature of 400 ºC. NiSi2 is the leading phase, and the silicide-silicon interface is an atomically sharp type-A interface. At such channel lengths, high maximum on-currents of 890 (microA/microm) and a maximum transconductance of 430 (microS/microm) were obtained, which pushes forward the performance of bottom-up Si NW Schottky barrier field-effect transistors (SB-FETs). Through accurate control over the silicidation reaction, we provide a systematic study of channel length dependent carrier transport in a large number of SB-FETs with channel lengths in the range of (17 nm -- 3.6 microm). Our device results corroborate with our transport simulations and reveal a characteristic type of short channel effects in SB-FETs, both in on- and off-state, which is different from that in conventional MOSFETs

  15. High current metal ion implantation to synthesize some conducting metal-silicides

    SciTech Connect

    Liu, B. X.; Gao, K. Y.

    1999-06-10

    High current metal-ion implantation by a metal vapor vacuum arc ion source was conducted to synthesize some conducting metal-silicides. It was found that C54-TiSi{sub 2}, ZrSi{sub 2}, NiSi{sub 2}, CoSi{sub 2}, {beta}-FeSi{sub 2}, NbSi{sub 2} and TaSi{sub 2} layers on Si wafers with good electric properties could be obtained directly after implantation. In comparison, the formation of some other silicides like {alpha}-FeSi{sub 2}, NbSi{sub 2}, TaSi{sub 2}, tetragonal-WSi{sub 2} and tetragonal-MoSi{sub 2} required an additional post-annealing to improve their crystallinity and thus their electric properties. Interestingly, the NiSi{sub 2} layers of superior electric properties were obtained at a selected Ni-ion current density of 35 {mu}A/cm{sup 2}. At this current, a beam heating raised the Si wafer to a specific temperature of 380 deg. C, at which the size difference between NiSi{sub 2} and Si lattices was nil. The resistivity of the NiSi{sub 2} layers so obtained was much lower than that of the Ni-disilicide formed by solid-state reaction at >750 deg. C. The formation mechanism of the above metal-silicides and the associated electric properties will also be discussed.

  16. Palladium silicide formation under the influence of nitrogen and oxygen impurities

    NASA Technical Reports Server (NTRS)

    Ho, K. T.; Lien, C.-D.; Nicolet, M.-A.

    1985-01-01

    The effect of impurities on the growth of the Pd2Si layer upon thermal annealing of a Pd film on 100 line-type and amorphous Si substrates is investigated. Nitrogen and oxygen impurities are introduced into either Pd or Si which are subsequently annealed to form Pd2Si. The complementary techniques of Rutherford backscattering spectrometry, and N-15(p, alpha)C-12 or O-18(p, alpha)N-15 nuclear reaction, are used to investigate the behavior of nitrogen or oxygen and the alterations each creates during silicide formation. Both nitrogen and oxygen retard the silicide growth rate if initially present in Si. When they are initially in Pd, there is no significant retardation; instead, an interesting snow-plowing effect of N or O by the reaction interface of Pd2Si is observed. By using N implanted into Si as a marker, Pd and Si appear to trade roles as the moving species when the silicide front reaches the nitrogen-rich region.

  17. Palladium silicide formation under the influence of nitrogen and oxygen impurities

    NASA Technical Reports Server (NTRS)

    Ho, K. T.; Lien, C.-D.; Nicolet, M.-A.

    1985-01-01

    The effect of impurities on the growth of the Pd2Si layer upon thermal annealing of a Pd film on 100 line-type and amorphous Si substrates is investigated. Nitrogen and oxygen impurities are introduced into either Pd or Si which are subsequently annealed to form Pd2Si. The complementary techniques of Rutherford backscattering spectrometry, and N-15(p, alpha)C-12 or O-18(p, alpha)N-15 nuclear reaction, are used to investigate the behavior of nitrogen or oxygen and the alterations each creates during silicide formation. Both nitrogen and oxygen retard the silicide growth rate if initially present in Si. When they are initially in Pd, there is no significant retardation; instead, an interesting snow-plowing effect of N or O by the reaction interface of Pd2Si is observed. By using N implanted into Si as a marker, Pd and Si appear to trade roles as the moving species when the silicide front reaches the nitrogen-rich region.

  18. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    SciTech Connect

    Yuryev, V. A. Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P.; Senkov, V. M.; Nalivaiko, O. Y.; Novikau, A. G.; Gaiduk, P. I.

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  19. Nickel silicide for Ni/Cu contact mono-silicon solar cells

    NASA Astrophysics Data System (ADS)

    Min, Seon Kyu; Kim, Dong Ho; Lee, Soo Hong

    2013-07-01

    A solar cell contact needs to be as thin as possible and have high conductivity since a thick contact causes shading loss and reduced current. Plating is a very suitable method for making a metal contact, and nickel is a high conductivity metal which is easy to form into a contact using electroless plating. After the nickel is plated on the silicon substrate, the nickel contact should be fired in order to form nickel silicide. Nickel silicide is used for the seed layer of the Cu contact for silicon solar cells. In this study, we replaced the screen-printed contact of the Passivated Emitter Solar Cell (PESC) with a Ni/Cu contact that has a selective emitter. The nickel layer was used as the seed layer, adhesion layer, and Cu diffusion barrier. The main contact was formed by plating the copper. The firing conditions of a conventional furnace were varied in order to form nickel silicide. Consequently, we achieved the best solar cell efficiency of 18.15%.

  20. Low-Temperature Wet Conformal Nickel Silicide Deposition for Transistor Technology through an Organometallic Approach.

    PubMed

    Lin, Tsung-Han; Margossian, Tigran; De Marchi, Michele; Thammasack, Maxime; Zemlyanov, Dmitry; Kumar, Sudhir; Jagielski, Jakub; Zheng, Li-Qing; Shih, Chih-Jen; Zenobi, Renato; De Micheli, Giovanni; Baudouin, David; Gaillardon, Pierre-Emmanuel; Copéret, Christophe

    2017-02-08

    The race for performance of integrated circuits is nowadays facing a downscale limitation. To overpass this nanoscale limit, modern transistors with complex geometries have flourished, allowing higher performance and energy efficiency. Accompanying this breakthrough, challenges toward high-performance devices have emerged on each significant step, such as the inhomogeneous coverage issue and thermal-induced short circuit issue of metal silicide formation. In this respect, we developed a two-step organometallic approach for nickel silicide formation under near-ambient temperature. Transmission electron and atomic force microscopy show the formation of a homogeneous and conformal layer of NiSix on pristine silicon surface. Post-treatment decreases the carbon content to a level similar to what is found for the original wafer (∼6%). X-ray photoelectron spectroscopy also reveals an increasing ratio of Si content in the layer after annealing, which is shown to be NiSi2 according to X-ray absorption spectroscopy investigation on a Si nanoparticle model. I-V characteristic fitting reveals that this NiSi2 layer exhibits a competitive Schottky barrier height of 0.41 eV and series resistance of 8.5 Ω, thus opening an alternative low-temperature route for metal silicide formation on advanced devices.

  1. Sensitized near-infrared emission from ytterbium(III) via direct energy transfer from iridium(III) in a heterometallic neutral complex.

    PubMed

    Mehlstäubl, Marita; Kottas, Gregg S; Colella, Silvia; De Cola, Luisa

    2008-05-14

    A tetrametallic iridium-ytterbium complex has been synthesised that shows sensitized near-infrared emission (lambda(max) = 976 nm) upon excitation of the iridium unit in the visible region (400 nm) due to efficient energy transfer from the iridium units to the Yb(III) ion. The iridium phosphorescence is quenched nearly quantitatively while the ytterbium ion emits brightly in the NIR.

  2. Iridium-based double perovskites for efficient water oxidation in acid media

    PubMed Central

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J.; Wezendonk, Tim; Gascon, Jorge; Fu, W. T.; Koper, Marc T. M.

    2016-01-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2. PMID:27498694

  3. Iridium-based double perovskites for efficient water oxidation in acid media

    NASA Astrophysics Data System (ADS)

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J.; Wezendonk, Tim; Gascon, Jorge; Fu, W. T.; Koper, Marc T. M.

    2016-08-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2.

  4. Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes.

    PubMed

    Cogan, S F; Plante, T D; Ehrlich, J

    2004-01-01

    Iridium oxide films formed by electrochemical activation of iridium metal (AIROF) or by electrochemical deposition (EIROF) are being evaluated as low-impedance charge-injection coatings for neural stimulation and recording. Iridium oxide may also be deposited by reactive sputtering from iridium metal in an oxidizing plasma. The characterization of sputtered iridium oxide films (SIROFs) as coatings for nerve electrodes is reported. SIROFs were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and potential transient measurements during charge-injection. The surface morphology of the SIROF transitions from smooth to highly nodular with increasing film thickness from 80 nm to 4600 nm. Charge-injection capacities exceed 0.75 mC/cm(2) with 0.75 ms current pulses in thicker films. The SIROF was deposited on both planar and non-planar substrates and photolithographically patterned by lift-off.

  5. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide

    SciTech Connect

    Chen, Xiao; Zhang, Bingsen; Li, Chuang; Shao, Zhengfeng; Su, Dangsheng; Williams, Christopher T.; Liang, Changhai

    2012-03-15

    Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1}) produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.

  6. Thermal transport across metal silicide-silicon interfaces: An experimental comparison between epitaxial and nonepitaxial interfaces

    NASA Astrophysics Data System (ADS)

    Ye, Ning; Feser, Joseph P.; Sadasivam, Sridhar; Fisher, Timothy S.; Wang, Tianshi; Ni, Chaoying; Janotti, Anderson

    2017-02-01

    Silicides are used extensively in nano- and microdevices due to their low electrical resistivity, low contact resistance to silicon, and their process compatibility. In this work, the thermal interface conductance of TiSi2, CoSi2, NiSi, and PtSi are studied using time-domain thermoreflectance. Exploiting the fact that most silicides formed on Si(111) substrates grow epitaxially, while most silicides on Si(100) do not, we study the effect of epitaxy, and show that for a wide variety of interfaces there is no dependence of interface conductance on the detailed structure of the interface. In particular, there is no difference in the thermal interface conductance between epitaxial and nonepitaxial silicide/silicon interfaces, nor between epitaxial interfaces with different interface orientations. While these silicide-based interfaces yield the highest reported interface conductances of any known interface with silicon, none of the interfaces studied are found to operate close to the phonon radiation limit, indicating that phonon transmission coefficients are nonunity in all cases and yet remain insensitive to interfacial structure. In the case of CoSi2, a comparison is made with detailed computational models using (1) full-dispersion diffuse mismatch modeling (DMM) including the effect of near-interfacial strain, and (2) an atomistic Green' function (AGF) approach that integrates near-interface changes in the interatomic force constants obtained through density functional perturbation theory. Above 100 K, the AGF approach significantly underpredicts interface conductance suggesting that energy transport does not occur purely by coherent transmission of phonons, even for epitaxial interfaces. The full-dispersion DMM closely predicts the experimentally observed interface conductances for CoSi2, NiSi, and TiSi2 interfaces, while it remains an open question whether inelastic scattering, cross-interfacial electron-phonon coupling, or other mechanisms could also account for

  7. Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution

    PubMed Central

    Hartwig, John F.; Stanley, Levi M.

    2010-01-01

    Conspectus Enantioselective allylic substitution reactions comprise some of the most versatile methods for preparing enantiomerically enriched materials. These reactions form products that contain multiple functionalities by creating carbon–nitrogen, carbon–oxygen, carbon–carbon, and carbon–sulfur bonds. For many years, the development of catalysts for allylic substitution focused on palladium complexes. However, studies of complexes of other metals have revealed selectivities that often complement those of palladium systems. Most striking is the observation that reactions with unsymmetrical allylic electrophiles that typically occur with palladium catalysts at the less hindered site of an allylic electrophile occur at the more hindered site with catalysts based on other metals. In this Account, we describe an iridium precursor and a phosphoramidite ligand that catalyze reactions with a particularly broad scope of nucleophiles. The active form of this iridium catalyst is not generated by the simple binding of the phosphoramidite ligand to the metal precursor. Instead, the initial phosphoramidite and iridium precursor react in the presence of base to form a metallacyclic species that is the active catalyst. This species is generated either in situ or separately in isolated form by reactions with added base. The identification of the structure of the active catalyst led to the development of simplified catalysts as well as the most active form of the catalyst now available, which is stabilized by a loosely bound ethylene. Most recently, this structure was used to prepare intermediates containing allyl ligands, the structures of which provide a model for the enantioselectivities discussed here. Initial studies from our laboratory on the scope of iridium-catalyzed allylic substitution showed that reactions of primary and secondary amines, including alkylamines, benzylamines, and allylamines, and reactions of phenoxides and alkoxides occurred in high yields

  8. Bias-enhanced nucleation of diamond on iridium: A comprehensive study of the first stages by sequential surface analysis

    NASA Astrophysics Data System (ADS)

    Chavanne, A.; Arnault, J.-C.; Barjon, J.; Arabski, J.

    2011-03-01

    The chemical evolution of the iridium surface along the successive steps of BEN was investigated using electron spectroscopy techniques (XPS, AES). To this end, a sequential study was carried out in an UHV analysis chamber connected to a MPCVD reactor. First, experimental results were obtained on iridium surfaces exposed to a methane plasma without bias. They show a sp 2 carbon layer formation on iridium, probably due to the segregation during cooling of carbon solubilized at high temperature in iridium. In this scenario, the iridium surface would be uncovered by carbon as BEN starts. Then, the consequences of BEN were observed: (i) formation of a thicker carbon layer at the iridium surface due to carbon segregation and sub-implantation (ii) chemical modification of iridium neighboring within the first nanometers; (iii) diamond nucleation.

  9. Methanol dehydrogenation by iridium N-heterocyclic carbene complexes.

    PubMed

    Campos, Jesús; Sharninghausen, Liam S; Manas, Michael G; Crabtree, Robert H

    2015-06-01

    A series of homogeneous iridium bis(N-heterocyclic carbene) catalysts are active for three transformations involving dehydrogenative methanol activation: acceptorless dehydrogenation, transfer hydrogenation, and amine monoalkylation. The acceptorless dehydrogenation reaction requires base, yielding formate and carbonate, as well as 2-3 equivalents of H2. Of the few homogeneous systems known for this reaction, our catalysts tolerate air and employ simple ligands. Transfer hydrogenation of ketones and imines from methanol is also possible. Finally, N-monomethylation of anilines occurs through a "borrowing hydrogen" reaction. Notably, this reaction is highly selective for the monomethylated product.

  10. The solubility of hydrogen in rhodium, ruthenium, iridium and nickel.

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Oates, W. A.

    1973-01-01

    The temperature variation of the solubility of hydrogen in rhodium, ruthenium, iridium, and nickel in equilibrium with H2 gas at 1 atm pressure has been measured by a technique involving saturating the solvent metal with hydrogen, quenching, and analyzing in resultant solid solutions. The solubilities determined are small (atom fraction of H is in the range from 0.0005 to 0.00001, and the results are consistent with the simple quasi-regular model for dilute interstitial solid solutions. The relative partial enthalpy and excess entropy of the dissolved hydrogen atoms have been calculated from the solubility data and compared with well-known correlations between these quantities.

  11. Measurements of the hard-x-ray reflectivity of iridium

    SciTech Connect

    Romaine, S.; Bruni, R.; Gorenstein, P.; Zhong, Z

    2007-01-10

    In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.

  12. Levitation of iridium and liquid mercury by ultrasound.

    PubMed

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-09-02

    Single-axis acoustic levitation of the heaviest solid (iridium, rho=22.6 g cm(-3)) and liquid (mercury, rho=13.6 g cm(-3) on the Earth is achieved by greatly enhancing both the levitation force and stability through optimizing the geometric parameters of the levitator. The acoustically levitated Pb-Sn eutectic alloy melt (rho=8.5 g cm(-3)) is highly undercooled by up to 38 K, which results in a microstructural transition of "lamellae-broken lamellae-dendrites." The drastic enhancement of levitation capability indicates a broader application range of single-axis acoustic levitation.

  13. Iridium-Catalyzed Kinetic Asymmetric Transformations of Racemic Allylic Benzoates

    PubMed Central

    Stanley, Levi M.; Bai, Chen; Ueda, Mitsuhiro; Hartwig, John F.

    2010-01-01

    Versatile methods for iridium-catalyzed, kinetic asymmetric substitution of racemic, branched allylic esters are reported. These reactions occur with a variety of aliphatic, aryl, and heteroaryl allylic benzoates to form the corresponding allylic substitution products in high yields (74–96%) with good to excellent enantioselectivity (84–98% ee) with a scope that encompasses a range of anionic carbon and heteroatom nucleophiles. These kinetic asymmetric processes occur with distinct stereochemical courses for racemic aliphatic and aromatic allylic benzoates, and the high reactivity of branched allylic benzoates enables enantioselective allylic substitutions that are slow or poorly selective with linear allylic electrophiles. PMID:20552969

  14. Luminescent cyclometallated iridium(III) complexes having acetylide ligands

    DOEpatents

    Thompson, Mark E.; Bossi, Alberto; Djurovich, Peter Ivan

    2014-09-02

    The present invention relates to phosphorescent (triplet-emitting) organometallic materials. The phosphorescent materials of the present invention comprise Ir(III)cyclometallated alkynyl complexes for use as triplet light-emitting materials. The Ir(III)cyclometallated alkynyl complexes comprise at least one cyclometallating ligand and at least one alkynyl ligand bonded to the iridium. Also provided is an organic light emitting device comprising an anode, a cathode and an emissive layer between the anode and the cathode, wherein the emissive layer comprises a Ir(III)cyclometallated alkynyl complex as a triplet emitting material.

  15. Luminescent iridium(III) complexes as novel protein staining agents.

    PubMed

    Jia, Junli; Fei, Hao; Zhou, Ming

    2012-05-01

    This article reports a new class of luminescent metal complexes, biscyclometalated iridium(III) complexes with an ancillary bathophenanthroline disulfonate ligand, for staining protein bands that are separated by electrophoresis. The performances of these novel staining agents have been studied in comparison with tris(bathophenanthroline disulfonate) ruthenium(II) tetrasodium salt (i.e. RuBPS) using a commercially available imaging system. The staining agents showed different limits of detection, linear dynamic ranges, and protein-to-protein variations. The overall performances of all three stains were found to be better than or equivalent to RuBPS under the experimental conditions.

  16. Broadband iridium wire grid polarizer for UV applications.

    PubMed

    Weber, Thomas; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2011-02-15

    In this Letter, we present an iridium wire grid polarizer with a large spectral working range from IR down to the UV spectral region. The required grating period of 100 nm for an application below a wavelength of 300 nm was realized using a spatial frequency doubling technique based on ultrafast electron beam writing. The optical performance of the polarizer at a wavelength of 300 nm is a transmittance of almost 60% and an extinction ratio of about 30 (15 dB). Furthermore, the oxidation resistance is discussed.

  17. Determination of iridium in mafic rocks by atomic absorption

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.M.

    1970-01-01

    Iridium is determined in mineralized mafic rocks by atomic absorption after fire-assay concentration into a gold bead. Interelement interferences in the atomic-absorption determination are removed and Ir sensitivity is increased by buffering the solutions with a mixture of copper and sodium sulphates. Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated in the atomic-absorption determination. The sensitivity and detection limits are 3.2 and 0.25 ppm of Ir, respectively. ?? 1970.

  18. An experimental study of the influence of oxygen on silicide formation with tungsten deposited from tungsten hexafluoride

    NASA Astrophysics Data System (ADS)

    Zhang, S.-L.; Smith, U.; Buchta, R.; Östling, M.

    1991-01-01

    Tungsten disilicide (WSi2) was formed by annealing tungsten films deposited by low-pressure chemical vapor deposition on <100>-silicon substrates. The influence of oxygen on the silicidation rate was studied. Si wafers with different oxygen content in the form of Czochralski, float-zone, and epitaxial wafers were used. Oxygen was also ion implanted into either the silicon substrate or the as-deposited tungsten film. The Rutherford backscattering technique was used to follow the progress of the silicidation. The silicidation rate was found to be dependent on the oxygen content of the Si substrates. The rate was lowest for Czochralski substrates and highest for float-zone substrates. Secondary ion mass spectroscopy was used to study the oxygen and fluorine profiles in the films prior to and after silicidation. Growth of WSi2 was found to be retarded concurrently with a pile-up of fluorine at the tungsten side of the W/WSi2 interface and a gettering of oxygen from the annealing atmosphere at the interface. Growth of WSi2 was then transferred to the tungsten surface. Oxygen implantation into silicon and tungsten, respectively, reduced the rate of silicide formation. Oxygen implantation into tungsten altered the distribution of fluorine and suppressed WSi2 growth at the tungsten surface. The observations led to a conceptual model, which ascribes the retardation in the growth of the inner WSi2 to a``poisoning'' effect caused by the increase of oxygen and fluorine levels at the interface.

  19. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon

    SciTech Connect

    Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby; Wright, Nick; O'Neill, Anthony; Horsfall, Alton; Goss, Jonathan; Cumpson, Peter

    2013-03-21

    Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such as the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.

  20. The deposition of aluminide and silicide coatings on {gamma}-TiAl using the halide-activated pack cementation method

    SciTech Connect

    Munro, T.C; Gleeson, B.

    1996-12-01

    The halide-activated pack cementation method (HAPC) was utilized to deposit aluminide and silicide coatings on nominally stoichiometric {gamma}-TiAl. The deposition temperature was 1,000 C and deposition times ranged from 2 to 12 hours. The growth rates of the coatings were diffusion controlled, with the rate of aluminide growth being about a factor of 2 greater than that of silicide growth. The aluminide coating was inward growing and consisted of a thick, uniform outer layer of TiAl{sub 3} and a thin inner layer of TiAl{sub 2}, with the rate-controlling step being the diffusion of aluminum from the pack into the substrate. Annealing experiments at 1,100 C showed that the interdiffusion between the aluminide coating and the {gamma}-TiAl substrate was rapid. In contrast to the aluminide coating, the silicide coating was nonuniform and porous, consisting primarily of TiSi{sub 2}, TiSi, and Ti{sub 5}Si{sub 4}, with the rate-controlling step for the coating growth believed to be the diffusion of aluminum into the {gamma}-TiAl ahead of the silicide/{gamma}-TiAl interface. The microstructural evolution of the aluminide and silicide coating structures is discussed qualitatively.

  1. Structure and nucleation mechanism of nickel silicide on Si(111) derived from surface extended-x-ray-absorption fine structure p

    SciTech Connect

    Comin, F.; Rowe, J.E.; Citrin, P.H.

    1983-12-26

    Based on the direct structure determination of the silicide formed at room temperature from <1 monolayer of Ni deposited on Si(111) and from Ni coverages up to five monolayers, a model for silicide growth and interface formation is presented. The model forms a basis for understanding many of the photoemission, ion scattering, and microscopy results from this system.

  2. Dynamic high-temperature characterization of an iridium alloy in tension

    SciTech Connect

    Song, Bo; Nelson, Kevin; Jin, Helena; Lipinski, Ronald J.; Bignell, John; Ulrich, G. B.; George, E. P.

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  3. Exploitation of a self-limiting process for reproducible formation of ultrathin Ni{sub 1-x}Pt{sub x} silicide films

    SciTech Connect

    Zhang Zhen; Zhu Yu; Rossnagel, Steve; Murray, Conal; Jordan-Sweet, Jean; Yang, Bin; Gaudet, Simon; Desjardins, Patrick; Kellock, Andrew J.; Ozcan, Ahmet; Zhang Shili; Lavoie, Christian

    2010-12-20

    This letter reports on a process scheme to obtain highly reproducible Ni{sub 1-x}Pt{sub x} silicide films of 3-6 nm thickness formed on a Si(100) substrate. Such ultrathin silicide films are readily attained by sputter deposition of metal films, metal stripping in wet chemicals, and final silicidation by rapid thermal processing. This process sequence warrants an invariant amount of metal intermixed with Si in the substrate surface region independent of the initial metal thickness, thereby leading to a self-limiting formation of ultrathin silicide films. The crystallographic structure, thickness, uniformity, and morphological stability of the final silicide films depend sensitively on the initial Pt fraction.

  4. Probing Transition-Metal Silicides as PGM-Free Catalysts for Hydrogen Oxidation and Evolution in Acidic Medium

    PubMed Central

    Mittermeier, Thomas; Madkikar, Pankaj; Wang, Xiaodong; Gasteiger, Hubert A.; Piana, Michele

    2017-01-01

    In this experimental study, we investigate various transition-metal silicides as platinum-group-metal-(PGM)-free electrocatalysts for the hydrogen oxidation reaction (HOR), and for the hydrogen evolution reaction (HER) in acidic environment for the first time. Using cyclic voltammetry in 0.1 M HClO4, we first demonstrate that the tested materials exhibit sufficient stability against dissolution in the relevant potential window. Further, we determine the HOR and HER activities for Mo, W, Ta, Ni and Mo-Ni silicides in rotating disk electrode experiments. In conclusion, for the HOR only Ni2Si shows limited activity, and the HER activity of the investigated silicides is considerably lower compared to other PGM-free HER catalysts reported in the literature. PMID:28773022

  5. Microindentation hardness evaluation of iridium alloy clad vent set cups

    SciTech Connect

    Ulrich, G.B.; DeRoos, L.F.; Stinnette, S.E. )

    1993-01-15

    An iridium alloy, DOP-26, is used as cladding for [sup 238]PuO[sub 2] fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration's Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors.

  6. Microindentation hardness evaluation of iridium alloy clad vent set cups

    SciTech Connect

    Ulrich, G.B.; DeRoos, L.F.; Stinnette, S.E.

    1992-05-15

    An iridium alloy, DOP-26, is used as cladding for {sup 238}PuO{sup 2} fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration`s Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors.

  7. Microindentation hardness evaluation of iridium alloy clad vent set cups

    SciTech Connect

    Ulrich, G.B.; DeRoos, L.F.; Stinnette, S.E.

    1992-05-15

    An iridium alloy, DOP-26, is used as cladding for {sup 238}PuO{sup 2} fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration's Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors.

  8. Microindentation hardness evaluation of iridium alloy clad vent set cups

    NASA Astrophysics Data System (ADS)

    Ulrich, George B.; DeRoos, Larry F.; Stinnette, Samuel E.

    1993-01-01

    An iridium alloy, DOP-26, is used as cladding for 238PuO2 fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration's Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors.

  9. Iridium and tantalum foils for spaceflight neutron dosimetry.

    NASA Technical Reports Server (NTRS)

    English, R. A.; Liles, E. D.

    1972-01-01

    Description of a two-foil system of iridium and tantalum which can measure thermal and intermediate energy neutrons at flux densities of 1 neutron/sq cm-sec over a ten-day lunar mission (1,000,000 neutrons/sq cm). The foils are chemically inert and nontoxic, weigh less than 1 g each, and require only routine gamma pulse height analysis for activation measurement. Detection of fluences below 1,000,000 neutrons/sq cm are achieved for counts of foil activity made as late as two months following neutron exposure. Tantalum foils flown in Apollo 11 indicated a mean dose equivalent to the astronauts of less than 16 mrem from thermal plus intermediate energy neutrons, while nuclear emulsion track analysis indicated approximately 17 mrem from neutrons of energy greater than 0.6 MeV. Iridium foils flown on Apollo 12 indicated dose equivalents of 1.8 to 2.8 mrem from thermal neutrons, excluding tissue thermalized SNAP-27 neutrons.

  10. Asymmetric Hydrogenation of Isoxazolium Triflates with a Chiral Iridium Catalyst.

    PubMed

    Ikeda, Ryuhei; Kuwano, Ryoichi

    2016-06-13

    The iridium catalyst [IrCl(cod)]2 -phosphine-I2 (cod=1,5-cyclooctadiene) selectively reduced isoxazolium triflates to isoxazolines or isoxazolidines in the presence of H2 . The iridium-catalyzed hydrogenation proceeded in high-to-good enantioselectivity when an optically active phosphine-oxazoline ligand was used. The 3-substituted 5-arylisoxazolium salts were transformed into 4-isoxazolines with up to 95:5 enantiomeric ratio (e.r.). Chiral cis-isoxazolidines were obtained in up to 89:11 e.r., with no formation of their trans isomers, when the substrates had a primary alkyl substituent at the 5-position. The mechanistic studies indicate that the hydridoiridium(III) species prefers to deliver its hydride to the C5 atom of the isoxazole ring. The hydride attack leads to the formation of the chiral isoxazolidine via a 3-isoxazoline intermediate. Meanwhile, in the selective formation of 4-isoxazolines, hydride attack at the C5 atom may be obstructed by steric hindrance from the 5-aryl substituent. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysis and Consequences of the Iridium 33-Cosmos 2251 Collision

    NASA Technical Reports Server (NTRS)

    Anz-Meador, P. D.; Liou, Jer-Chi

    2010-01-01

    The collision of Iridium 33 and Cosmos 2251, on 10 February 2009, was the first known unintentional hypervelocity collision in space of intact satellites. Iridium 33 was an active commercial telecommunications satellite, while Cosmos 2251 was a derelict communication satellite of the Strela-2M class. The collision occurred at a relative velocity of 11.6 km/s at an altitude of approximately 790 km over the Great Siberian Plain and near the northern apex of Cosmos 2251 s orbit. This paper describes the physical and orbital characteristics of the relevant spacecraft classes and reports upon our analysis of the resulting debris clouds size, mass, area-to-mass ratio, and relative velocity/directionality distributions. We compare these distributions to those predicted by the NASA breakup model and notable recent fragmentation events; in particular, we compare the area-to-mass ratio distribution for each spacecraft to that exhibited by the FY-1C debris cloud for the purpose of assessing the relative contribution of modern aerospace materials to debris clouds resulting from energetic collisions. In addition, we examine the long-term consequences of this event for the low Earth orbit (LEO) environment. Finally, we discuss "lessons learned", which may be incorporated into NASA s environmental models.

  12. Testing of Wrought Iridium/Chemical Vapor Deposition Rhenium Rocket

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Schneider, Steven J.

    1996-01-01

    A 22-N class, iridium/rhenium (Ir/Re) rocket chamber, composed of a thick (418 miocrometer) wrought iridium (Ir) liner and a rhenium substrate deposited via chemical vapor deposition, was tested over an extended period on gaseous oxygen/gaseous hydrogen (GO2/GH2) propellants. The test conditions were designed to produce species concentrations similar to those expected in an Earth-storable propellant combustion environment. Temperatures attained in testing were significantly higher than those expected with Earth-storable propellants, both because of the inherently higher combustion temperature of GO2/GH2 propellants and because the exterior surface of the rocket was not treated with a high-emissivity coating that would be applied to flight class rockets. Thus the test conditions were thought to represent a more severe case than for typical operational applications. The chamber successfully completed testing (over 11 hr accumulated in 44 firings), and post-test inspections showed little degradation of the Ir liner. The results indicate that use of a thick, wrought Ir liner is a viable alternative to the Ir coatings currently used for Ir/Re rockets.

  13. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    SciTech Connect

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast process conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.

  14. Phosphorescent Neutral Iridium (III) Complexes for Organic Light-Emitting Diodes.

    PubMed

    Bin Mohd Yusoff, Abd Rashid; Huckaba, Aron J; Nazeeruddin, Mohammad Khaja

    2017-04-01

    The development of transition metal complexes for application in light-emitting devices is currently attracting significant research interest. Among phosphorescent emitters, those involving iridium (III) complexes have proven to be exceedingly useful due to their relatively short triplet lifetime and high phosphorescence quantum yields. The emission wavelength of iridium (III) complexes significantly depends on the ligands, and changing the electronic nature and the position of the ligand substituents can control the properties of the ligands. In this chapter, we discuss recent developments of phosphorescent transition metal complexes for organic light-emitting diode applications focusing solely on the development of iridium metal complexes.

  15. Formylated chloro-bridged iridium(III) dimers as OLED materials: opening up new possibilities.

    PubMed

    Wong, Michael Y; Xie, Guohua; Tourbillon, Clarisse; Sandroni, Martina; Cordes, David B; Slawin, Alexandra M Z; Samuel, Ifor D W; Zysman-Colman, Eli

    2015-05-14

    In this study, a series of four formyl-substituted chloro-bridged iridium(iii) dimers were prepared. Their absorption, photophysical and electrochemical properties were studied in dichloromethane solution. It was found that as the formyl content increased on the cyclometalating ligands, emission unexpectedly became brighter. Organic light-emitting diodes (OLEDs) were fabricated using each of these iridium dimers as the emitter. The OLED fabricated using the brightest of the series, 2b, as the dopant afforded a decent external quantum efficiency (EQE) of 2.6%. This suggests that chloro-bridged iridium dimers are potential candidates as solid-state emitters.

  16. Identification of an Iridium(III)-Based Inhibitor of Tumor Necrosis Factor-α.

    PubMed

    Kang, Tian-Shu; Mao, Zhifeng; Ng, Chan-Tat; Wang, Modi; Wang, Wanhe; Wang, Chunming; Lee, Simon Ming-Yuen; Wang, Yitao; Leung, Chung-Hang; Ma, Dik-Lung

    2016-04-28

    The novel iridium(III) complex 1 was verified as a potent inhibitor of the TNF-α-TNFR protein-protein interaction in vitro and in cellulo. The iridium(III) center plays a critical role in organizing the structure of the bioactive metal complex, as the isolated ligands were found to be completely inactive. Both iridium enantiomers inhibited TNF-α-induced NF-κB activity and TNF-α-TNFR binding. 1 represents a promising scaffold for the further development of more potent organometallic TNF-α inhibitors.

  17. Iridium anomaly in the Cretaceous section of the Eastern Kamchatka

    NASA Astrophysics Data System (ADS)

    Savelyev, Dmitry; Savelyeva, Olga

    2010-05-01

    The origin of iridium anomalies is widely discussed with regard to massive fauna and flora extinction at several geologic boundaries. Two hypotheses are most popular, cosmogenic and volcanogenic. Anomalies of iridium are known at many stratigraphic levels, both at the geologic series borders and within geologic series. Our studies revealed increased content of iridium in a section of Cretaceous oceanic deposits on the Kamchatsky Mys Peninsula (Eastern Kamchatka, Russia). The investigated section (56°03.353´N, 163°00.376´E) includes interbedded jaspers and siliceous limestones overlaying pillow-basalts. These deposits belong to the Smagin Formation of the Albian-Cenomanian age. In the middle and upper parts of the section two beds of black carbonaceous rocks with sapropelic organic matter were observed. Their formation marked likely episodes of oxygen depletion of oceanic intermediate water (oceanic anoxic events). Our geochemical studies revealed an enrichment of the carbonaceous beds in a number of major and trace elements (Al2O3, TiO2, FeO, MgO, K2O, P2O5, Cu, Zn, Ni, Cr, V, Mo, Ba, Y, Zr, Nb, REE, U, Au, Pt etc.) in comparison with associating jaspers and limestones. There are likely different sources which contributed to the enrichment. It is possible however to correlate the excess of Al, Ti, Zr, Nb with volcanogenic admixture, which is absent in limestones and jaspers. A possible source of the volcanogenic material was local volcanism as suggested by the close association of the investigated section with volcanic rocks (basaltic lavas and hyaloclastites). The basalts of the Smagin Formation were previously proposed to originate during Cretaceous activity of the Hawaiian mantle plume (Portnyagin et al., Geology, 2008). Neutron activation analysis indicated increased up to 9 ppb concentration of Ir at the bottom of the lower carbonaceous bed (inorganic part of the sample was analyzed comprising 46% of the bulk rock). In other samples Ir content was below

  18. Silicon-germanium and platinum silicide nanostructures for silicon based photonics

    NASA Astrophysics Data System (ADS)

    Storozhevykh, M. S.; Dubkov, V. P.; Arapkina, L. V.; Chizh, K. V.; Mironov, S. A.; Chapnin, V. A.; Yuryev, V. A.

    2017-05-01

    This paper reports a study of two types of silicon based nanostructures prospective for applications in photonics. The first ones are Ge/Si(001) structures forming at room temperature and reconstructing after annealing at 600°C. Germanium, being deposited from a molecular beam at room temperature on the Si(001) surface, forms a thin granular film composed of Ge particles with sizes of a few nanometers. A characteristic feature of these films is that they demonstrate signs of the 2 x 1 structure in their RHEED patterns. After short-term annealing at 600°C under the closed system conditions, the granular films reconstruct to heterostructures consisting of a Ge wetting layer and oval clusters of Ge. A mixed type c(4x2) + p(2x2) reconstruction typical to the low-temperature MBE (Tgr < 600°C) forms on the wetting layer. Long-term annealing of granular films at the same conditions results in formation of c(4x2)-reconstructed wetting layer typical to high-temperature MBE (Tgr < 600°C) and huge clusters of Ge. The other type of the studied nanostructures is based on Pt silicides. This class of materials is one of the friendliest to silicon technology. But as silicide film thickness reaches a few nanometers, low resistivity becomes of primary importance. Pt3Si has the lowest sheet resistance among the Pt silicides. However, the development of a process of thin Pt3Si films formation is a challenging task. This paper describes formation of a thin Pt3Si/Pt2Si structures at room temperature on poly-Si films. Special attention is paid upon formation of poly-Si and amorphous Si films on Si3N4 substrates at low temperatures.

  19. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    SciTech Connect

    Singh, S.; Solak, H.; Cerrina, F.

    1997-04-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi{sub 2} exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 {mu}{Omega}-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 {mu}{Omega}-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick {open_quotes}as is{close_quotes} industrial samples.

  20. Combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Shafiul

    Molybdenum silicides and borosilicides are promising structural materials for gas-turbine power plants. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. For example, molybdenum disilicide (MoSi2) has excellent oxidation resistance and poor mechanical properties, while Mo-rich silicides such as Mo5Si3 (called T 1) have much better mechanical properties but poor oxidation resistance. One approach is based on the fabrication of MoSi2-T 1 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of T1. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, Mo 5SiB2 (called T2) phase is considered as an attractive material. In the thesis, MoSi2-T1 composites and materials based on T2 phase are obtained by mechanically activated SHS. Use of SHS compaction (quasi-isostatic pressing) significantly improves oxidation resistance of the obtained MoSi2-T1 composites. Combustion of Mo-Si-B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of molybdenum boride. These mixtures exhibit spin combustion, the characteristics of which are in good agreement with the spin combustion theory. Oxidation resistance of the obtained Mo-Si-B materials is independent on the concentration of Mo phase in the products so that the materials with a higher Mo content are preferable because of better mechanical properties. Also, T2 phase has been obtained by the chemical oven combustion synthesis technique.

  1. Formation, optical properties, and electronic structure of thin Yb silicide films on Si(111)

    NASA Astrophysics Data System (ADS)

    Galkin, N. G.; Maslov, A. M.; Polyarnyi, V. O.

    2005-06-01

    Continuous very thin (2.5-3.0 nm) and thin (16-18 nm) ytterbium suicide films with some pinhole density (3×107- 1×108 cm-2) have been formed on Si(111) by solid phase epitaxy (SPE) and reactive deposition epitaxy (RDE) growth methods on templates. The stoichiometric ytterbium suicide (YbSi2) formation has shown in SPE grown films by AES and EELS data. Very thin Yb suicide films grown by RDE method had the silicon enrichment in YbSi2 suicide composition. The analysis of LEED data and AFM imaging has shown that ytterbium suicide films had non-oriented blocks with the polycrystalline structure. The analysis of scanning region length dependencies of the root mean square roughness deviation (σR(L)) for grown suicide films has shown that the formation of ytterbium suicide in SPE and RDE growth methods is determined by the surface diffusion of Yb atoms during the three-dimensional growth process. Optical functions (n, k, α, ɛ1, ɛ2, Im ɛ1-1, neff, ɛeff) of ytterbium silicide films grown on Si(1 1 1) have been calculated from transmittance and reflectance spectra in the energy range of 0.1-6.2 eV. Two nearly discrete absorption bands have been observed in the electronic structure of Yb silicide films with different composition, which connected with interband transitions on divalent and trivalent Yb states. It was established that the reflection coefficient minimum in R-spectra at energies higher 4.2 eV corresponds to the state density minimum in Yb suicide between divalent and trivalent Yb states. It was shown from optical data that Yb silicide films have the semi-metallic properties with low state densities at energies less 0.4 eV and high state densities at 0.5-2.5 eV.

  2. Planar chiral metamaterial design utilizing metal-silicides for giant circular dichroism and polarization rotation in the infrared region

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Zhong, Kesong; Ma, Hongfeng; Li, Yun; Sui, Chenghua; Wang, Juanzhuan; Shi, Yi

    2017-01-01

    A planar chiral metamaterial (PCMM) comprizing double-layer sandwich structure utilizing metal-silicides in the shape of windmill is proposed in the infrared region (IR). Giant circular dichroism (CD) and polarization rotation are observed simultaneously. Furthermore, the effect of Drude model parameters (ωp,ωτ) of metal-silicides on CD and optical activity are also investigated. The results show that CD and optical activity reach maximum if ωp and ωτ are in the distribution of narrow trumpet shape.

  3. A preliminary study of factors affecting the calibration stability of the iridium versus iridium-40 percent rhodium thermocouple

    NASA Technical Reports Server (NTRS)

    Ahmed, Shaffiq; Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.

    1987-01-01

    An iridium versus iridium-40% rhodium thermocouple was studied. Problems associated with the use of this thermocouple for high temperature applications (up to 2000 C) were investigated. The metallurgical studies included X-ray, macroscopic, resistance, and metallographic studies. The thermocouples in the as-received condition from the manufacturer revealed large amounts of internal stress caused by cold working during manufacturing. The thermocouples also contained a large amount of inhomogeneities and segregations. No phase transformations were observed in the alloy up to 1100 C. It was found that annealing the thermocouple at 1800 C for two hours, and then at 1400 C for 2 to 3 hours yielded a fine grain structure, relieving some of the strains, and making the wire more ductile. It was also found that the above annealing procedure stabilized the thermal emf behavior of the thermocouple for application below 1800 C (an improvement from + or - 1% to + or - 0.02% within the range of the test parameters used).

  4. Optical response at 10.6 microns in tungsten silicide Schottky barrier diodes

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Boyd, Joseph T.; Jackson, Howard E.

    1987-01-01

    Optical response to radiation at a wavelength of 10.6 microns in tungsten silicide-silicon Schottky barrier diodes has been observed. Incident photons excite electrons by means of junction plasmon assisted inelastic electron tunneling. At 78 K, a peak in the second derivative of current versus junction bias voltage was observed at a voltage corresponding to the energy of photons having a wavelength of 10.6 microns. This peak increased with increasing incident laser power, saturating at the highest laser powers investigated.

  5. In situ integration of freestanding zinc oxide nanorods using copper silicide nanobeams

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Parajuli, Omkar; Hahm, Jong-in

    2007-10-01

    In this letter, we describe an in situ integration method to produce freestanding zinc oxide nanorods (ZnO NRs) on copper silicide nanobeams (Cu3Si NBs). The integration of ZnO NRs with Cu3Si NBs is straightforwardly achieved immediately after ZnO NR synthesis by exploiting self-assembled Cu3Si NBs as catalysts. The resulting ZnO NRs on Cu3Si NBs exhibit atomic defect-free structures with superb optical quality which, in turn, can be beneficial when applied in micro- and nanoelectromechanical systems.

  6. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A.; Woolman, Joseph N.; Petrovic, John J.

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  7. Ferromagnetic nickel silicide nanowires for isolating primary CD4+ T lymphocytes

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Seol, Jin-Kyeong; Lee, Mi-Ri; Hyung, Jung-Hwan; Kim, Gil-Sung; Ohgai, Takeshi; Lee, Sang-Kwon

    2012-04-01

    Direct CD4+ T lymphocytes were separated from whole mouse splenocytes using 1-dimensional ferromagnetic nickel silicide nanowires (NiSi NWs). NiSi NWs were prepared by silver-assisted wet chemical etching of silicon and subsequent deposition and annealing of Ni. This method exhibits a separation efficiency of ˜93.5%, which is comparable to that of the state-of-the-art superparamagnetic bead-based cell capture (˜96.8%). Furthermore, this research shows potential for separation of other lymphocytes, B, natural killer and natural killer T cells, and even rare tumor cells simply by changing the biotin-conjugated antibodies.

  8. The effect of fabrication variables on the irradiation performance of uranium silicide dispersion fuel plates

    SciTech Connect

    Hofman, G.L.; Neimark, L.A.; Olquin, F.L.

    1986-11-01

    The effect of fabrication variables on the irradiation behavior of uranium silicide-aluminum dispersion fuel plates is examined. The presence of minor amounts of metallic uranium-silicon was found to have no detrimental effect, so that extensive annealing to remove this phase appears unnecessary. Uniform fuel dispersant loading, low temperature during plate rolling, and cold-worked metallurgical condition of the fuel plates all result in a higher burnup threshold for breakaway swelling in highly-loaded U/sub 3/Si fueled plates.

  9. Modeling, fabrication, and characterization of tungsten silicide wire-grid polarizer in infrared region.

    PubMed

    Yamada, Itsunari; Nishii, Junji; Saito, Mitsunori

    2008-09-10

    We designed and fabricated a tungsten silicide wire-grid polarizer. To examine its polarization characteristics, the transmission spectra of the polarizer were simulated using the effective medium theory. The polarizer was fabricated based on the simulation results. The transverse magnetic (TM) polarization transmittance of the fabricated polarizer was greater than 50% over the 5 mum wavelength, and the ratio of TM and transverse electric transmittance was greater than 100 (20 dB) in the infrared range. This fabricated polarizer has higher durability and better compatibility with microfabrication processes than conventional infrared polarizers.

  10. Investigations of iridium-mediated reversible C-H bond cleavage: characterization of a 16-electron iridium(III) methyl hydride complex.

    PubMed

    Bernskoetter, Wesley H; Hanson, Susan Kloek; Buzak, Sara K; Davis, Zoe; White, Peter S; Swartz, Rodney; Goldberg, Karen I; Brookhart, Maurice

    2009-06-24

    New iridium complexes of a tridentate pincer ligand, 2,6-bis(di-tert-butylphosphinito)pyridine (PONOP), have been prepared and used in the study of hydrocarbon C-H bond activation. Intermolecular oxidative addition of a benzene C-H bond was directly observed with [(PONOP)Ir(I)(cyclooctene)][PF(6)] at ambient temperature, resulting in a cationic five-coordinate iridium(III) phenyl hydride product. Protonation of the (PONOP)Ir(I) methyl complex yielded the corresponding iridium(III) methyl hydride cation, a rare five-coordinate, 16-valence electron transition metal alkyl hydride species which was characterized by X-ray diffraction. Kinetic studies of C-H bond coupling and reductive elimination reactions from the five-coordinate complexes have been carried out. Exchange NMR spectroscopy measurements established a barrier of 17.8(4) kcal/mol (22 degrees C) for H-C(aryl) bond coupling in the iridium(III) phenyl hydride cation and of 9.3(4) kcal/mol (-105 degrees C) for the analogous H-C(alkyl) coupling in the iridium(III) methyl hydride cation. The origin of the higher barrier of H-C(aryl) relative to H-C(alkyl) bond coupling is proposed to be influenced by a hindered rotation about the Ir-C(aryl) bond, a result of the sterically demanding PONOP ligand.

  11. Triply Halide-Bridged Dinuclear Iridium(III) Complexes with Chiral Diphosphine Ligands as New Easy-to-Handle Iridium Catalysts for Asymmetric Hydrogenation of Imines and N-Heteroaromatics.

    PubMed

    Mashima, Kazushi; Higashida, Kosuke; Iimuro, Atsuhiro; Nagae, Haruki; Kita, Yusuke

    2016-12-01

    Iridium(III) complexes bearing chiral ligands have proved to be active species in asymmetric hydrogenation of C=N bonds, though there are only a few iridium(III) precursors. We prepared triply halide-bridged dinuclear iridium complexes bearing chiral diphosphine ligands by simple treatment of the iridium(I) precursor, chiral diphosphine, and aqueous hydrogen halide. The strong advantage of these dinuclear iridium complexes is that they are air and moisture stable, leading to easy handling in asymmetric synthesis. The dinuclear iridium complexes exhibited high catalytic activity toward asymmetric hydrogenation of imines and N-heteroaromatics. Moreover, we demonstrated the application of triply halide-bridged dinuclear ruthenium(II) and rhodium(III) catalyst precursors for the asymmetric hydrogenation of ketonic substrates and simple olefins, respectively. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Neutral iridium catalysts with chiral phosphine-carboxy ligands for asymmetric hydrogenation of unsaturated carboxylic acids.

    PubMed

    Yang, Shuang; Che, Wen; Wu, Hui-Ling; Zhu, Shou-Fei; Zhou, Qi-Lin

    2017-03-01

    We developed neutral iridium catalysts with chiral spiro phosphine-carboxy ligands (SpiroCAP) for asymmetric hydrogenation of unsaturated carboxylic acids. Different from the cationic Crabtree-type catalysts, the iridium catalysts with chiral spiro phosphine-carboxy ligands are neutral and do not require the use of a tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF(-)) counterion, which is necessary for stabilizing cationic Crabtree-type catalysts. Another advantage of the neutral iridium catalysts is that they have high stability and have a long lifetime in air. The new iridium catalysts with chiral spiro phosphine-carboxy ligands exhibit unprecedented high enantioselectivity (up to 99.4% ee) in the asymmetric hydrogenations of various unsaturated carboxylic acids, particularly for 3-alkyl-3-methylenepropionic acids, which are challenging substrates for other chiral catalysts.

  13. Synthesis and luminescence properties of iridium(III) azide- and triazole-bisterpyridine complexes.

    PubMed

    Goldstein, Daniel C; Peterson, Joshua R; Cheng, Yuen Yap; Clady, Raphael G C; Schmidt, Timothy W; Thordarson, Pall

    2013-07-26

    We describe here the synthesis of azide-functionalised iridium(III) bisterpyridines using the "chemistry on the complex" strategy. The resulting azide-complexes are then used in the copper(I)-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition "click chemistry" reaction to from the corresponding triazole-functionalised iridium(III) bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III) bisterpyridines, but this effect can be reversed by the addition of copper(II) sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III) bisterpyridines can be functionalized for use in "click chemistry" facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.

  14. Cyclometalated iridium(III) polypyridine dibenzocyclooctyne complexes as the first phosphorescent bioorthogonal probes.

    PubMed

    Lo, Kenneth Kam-Wing; Chan, Bruce Ting-Ngok; Liu, Hua-Wei; Zhang, Kenneth Yin; Li, Steve Po-Yam; Tang, Tommy Siu-Ming

    2013-05-14

    We report the synthesis, photophysical behavior, and biological properties of new cyclometalated iridium(iii) polypyridine complexes appended with a dibenzocyclooctyne (DIBO) moiety; these complexes have been utilized as the first phosphorescent bioorthogonal probes for azide-modified biomolecules.

  15. Iridium-catalyzed hydrogen transfer: synthesis of substituted benzofurans, benzothiophenes, and indoles from benzyl alcohols.

    PubMed

    Anxionnat, Bruno; Gomez Pardo, Domingo; Ricci, Gino; Rossen, Kai; Cossy, Janine

    2013-08-02

    An iridium-catalyzed hydrogen transfer has been developed in the presence of p-benzoquinone, allowing the synthesis of a diversity of substituted benzofurans, benzothiophenes, and indoles from substituted benzylic alcohols.

  16. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    PubMed

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.

    PubMed

    Li, Houhua; Mazet, Clément

    2016-06-21

    This Account presents the development of the iridium-catalyzed isomerization of primary allylic alcohols in our laboratory over the past 8 years. Our initial interest was driven by the long-standing challenge associated with the development of a general catalyst even for the nonasymmetric version of this seemingly simple chemical transformation. The added value of the aldehyde products and the possibility to rapidly generate molecular complexity from readily accessible allylic alcohols upon a redox-economical isomerization reaction were additional sources of motivation. Certainly influenced by the success story of the related isomerization of allylic amines, most catalysts developed for the selective isomerization of allylic alcohols were focused on rhodium as a transition metal of choice. Our approach has been based on the commonly accepted precept that hydrogenation and isomerization are often competing processes, with the latter being usually suppressed in favor of the former. The cationic iridium complexes [(Cy3P)(pyridine)Ir(cod)]X developed by Crabtree (X = PF6) and Pfaltz (X = BArF) are usually considered as the most versatile catalysts for the hydrogenation of allylic alcohols. Using molecular hydrogen to generate controlled amounts of the active form of these complexes but performing the reaction in the absence of molecular hydrogen enabled deviation from the typical hydrogenation manifold and favored exclusively the isomerization of allylic alcohols into aldehydes. Isotopic labeling and crossover experiments revealed the intermolecular nature of the process. Systematic variation of the ligand on the iridium center allowed us to identify the structural features beneficial for catalytic activity. Subsequently, three generations of chiral catalysts have been investigated and enabled us to reach excellent levels of enantioselectivity for a wide range of 3,3-disubstituted aryl/alkyl and alkyl/alkyl primary allylic alcohols leading to β-chiral aldehydes. The

  18. Analysis and Implications of the Iridium 33-Cosmos 2251 Collision

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.

    On 2009 February 10, Iridium 33--an operational US communications satellite in low-Earth orbit--was struck and destroyed by Cosmos 2251--a long-defunct Russian communications satellite. This is the first time since the dawn of the Space Age that two satellites have collided in orbit. To better understand the circumstances of this event and the ramifications for avoiding similar events in the future, this paper provides a detailed analysis of the predictions leading up to the collision, using various data sources, and looks in detail at the collision, the evolution of the debris clouds, and the long-term implications for satellite operations. The only publicly available system available to satellite operators for screening for close approaches, SOCRATES, did predict this close approach, but it certainly wasn't the closest approach predicted for the week of February 10. In fact, at the time of the collision, SOCRATES ranked this close approach 152 of the 11,428 within 5 km of any payload. A detailed breakdown is provided to help understand the limitations of screening for close approaches using the two-line orbital element sets. Information is also provided specifically for the Iridium constellation to provide an understanding of how these limitations affect decision making for satellite operators. Post-event analysis using high-accuracy orbital data sources will be presented to show how that information might have been used to prevent this collision, had it been available and used. Analysis of the collision event, along with the distribution of the debris relative to the original orbits, will be presented to help develop an understanding of the geometry of the collision and the near-term evolution of the resulting debris clouds. Additional analysis will be presented to show the long-term evolution of the debris clouds, including orbital lifetimes, and estimate the increased risk for operations conducted by Iridium and other satellite operators in the low-Earth orbit

  19. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-01-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1–40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1–40 peptide on the basis of their emission response. PMID:26419607

  20. Concepts for Cost-Effective Enhanced Cryosat Continuity: Opportunity in the Iridium PRIME Context

    NASA Astrophysics Data System (ADS)

    Le Roy, Y.; Caubet, E.; Silverstrin, P.; Legrand, C.

    2016-08-01

    The Iridium-PRIME offer, recently initiated by the Iridium company, consists in hosting payloads on customized low cost Iridium-NEXT platforms on which the main telecom mission antenna (L-band) is removed. This leaves significant resources in terms of mass, volume and power consumption to host up to three payloads on these customized platforms. The Iridium-PRIME satellites will be inserted in the Iridium-NEXT constellation to take benefit of the low cost operation service (command, control and data telemetry through the life time of the Iridium-PRIME mission). Given the synergy between schedules of the Iridium-PRIME program (launches starting around 2020) and of a possible CryoSat Follow-On (FO) mission (launch around 2022) and the adequacy of the available on-board resources for such a mission, ESA tasked Thales Alenia Space, as responsible for the SIRAL radar instrument of the currently in-orbit CryoSat mission, to study the feasibility of a concept for enhanced continuity of CryoSat on an Iridium- PRIME satellite as potential low-cost fast-track solution. The study aimed to define a cost-effective topographic payload including not only the SIRAL radar but also the necessary sub-systems to retrieve the SIRAL antenna baseline attitude (star trackers) with high accuracy and to perform a Precise Orbit Determination (POD). All these aspects are presented in this paper. In addition, possible evolutions/improvements of the Ku-band radar instrument were analysed and are presented: adding a Ka-band nadir measurement capability and a Ku-band or Ka-band wide swath mode measurement capability. The transmission issue for the SIRAL science data is also discussed in the paper.

  1. Multidirectional Synthesis of Substituted Indazoles via Iridium-Catalyzed C-H Borylation.

    PubMed

    Sadler, Scott A; Hones, Andrew C; Roberts, Bryan; Blakemore, David; Marder, Todd B; Steel, Patrick G

    2015-05-15

    In the absence of a steric directing group, iridium-catalyzed C-H borylation of N-protected indazoles occurs rapidly and selectively at C-3 and the resulting boronate esters can be utilized in a range of downstream conversions. The functional group tolerance of the iridium-catalyzed C-H borylation reaction enables simple and efficient multidirectional syntheses of substituted indazoles to be realized.

  2. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-09-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1-40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1-40 peptide on the basis of their emission response.

  3. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes.

    PubMed

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-09-30

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1-40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1-40 peptide on the basis of their emission response.

  4. Self-aligned silicides for Ohmic contacts in complementary metal-oxide-semiconductor technology: TiSi2, CoSi2, and NiSi

    NASA Astrophysics Data System (ADS)

    Zhang, S.-L.; Smith, U.

    2004-07-01

    Metal silicides continue to play an indispensable role during the remarkable development of microelectronics. Along with several other technological innovations, the implementation of the self-aligned silicide technology paved the way for a rapid and successful miniaturization of device dimensions for metal-oxide-semiconductor field-effect transistors (MOSFETs) in pace with the Moore's law. The use of silicides has also evolved from creating reliable contacts for diodes, to generating high-conductivity current paths for local wiring, and lately to forming low-resistivity electrical contacts for MOSFETs. With respect to the choice of silicides for complementary metal-oxide-semiconductor (CMOS) technology, a convergence has become clear with the self-alignment technology using only a limited number of silicides, namely TiSi2, CoSi2, and NiSi. The present work discusses the advantages and limitations of TiSi2, CoSi2, and NiSi using the development trend of CMOS technology as a measure. Specifically, the reactive diffusion and phase formation of these silicides in the three terminals of a MOSFET, i.e., gate, source, and drain, are analyzed. This work ends with a brief discussion about future trends of metal silicides in micro/nanoelectronics with reference to potential material aspects and device structures outlined in the International Technology Roadmap for Semiconductors. .

  5. Iridium NEXT partnership for Earth observation: exploiting global satellite constellations for new remote sensing capabilities

    NASA Astrophysics Data System (ADS)

    Gupta, Om P.

    2008-08-01

    A unique opportunity exists to host up to 66 earth observation sensors on the Iridium NEXT LEO constellation in a manner that can revolutionize earth observation and weather predictions. A constellation approach to sensing, using the real-time communications backbone of Iridium, will enable unprecedented geospatial and temporal sampling for now-casting of weather on a global basis as well as global climate monitoring. The Iridium NEXT constellation, with 66 interconnected satellites in 6 near polar orbiting planes, provides a unique platform for hosting a variety of earth observation missions. The opportunity is proposed as a Public-Private Partnership (PPP) allowing for the sharing of infrastructure by government agencies. This has the potential to augment current and planned climate and weather observation programs in a very cost effective manner not achievable in any other way. Iridium, with the assistance of the Group on Earth Observations (GEO), NASA, NOAA, and ESA, has evaluated a number of sensing missions that would be a good fit to the Iridium NEXT constellation. These include GPS radio occultation sensors, earth radiation budget measurements, radio altimetry, tropospheric and stratospheric winds measurements including polar winds measurements, and atmospheric chemistry. Iridium NEXT launches start in 2013 and constellation operational life will extend beyond 2030. Detailed feasibility studies on specific missions are planned to begin later this year.

  6. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    SciTech Connect

    Song, Bo; Nelson, Kevin; Lipinski, Ronald J.; Bignell, John L.; Ulrich, G. B.; George, E. P.

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  7. Possibility to realize spin-orbit-induced correlated physics in iridium fluorides

    NASA Astrophysics Data System (ADS)

    Rossi, M.; Retegan, M.; Giacobbe, C.; Fumagalli, R.; Efimenko, A.; Kulka, T.; Wohlfeld, K.; Gubanov, A. I.; Moretti Sala, M.

    2017-06-01

    Recent theoretical predictions of "unprecedented proximity" of the electronic ground state of iridium fluorides to the SU(2) symmetric jeff=1 /2 limit, relevant for superconductivity in iridates, motivated us to investigate their crystal and electronic structure. To this aim, we performed high-resolution x-ray powder diffraction, Ir L3-edge resonant inelastic x-ray scattering, and quantum chemical calculations on Rb2[IrF6] and other iridium fluorides. Our results are consistent with the Mott insulating scenario predicted by Birol and Haule [Phys. Rev. Lett. 114, 096403 (2015), 10.1103/PhysRevLett.114.096403], but we observe a sizable deviation of the jeff=1 /2 state from the SU(2) symmetric limit. Interactions beyond the first coordination shell of iridium are negligible, hence the iridium fluorides do not show any magnetic ordering down to at least 20 K. A larger spin-orbit coupling in iridium fluorides compared to oxides is ascribed to a reduction of the degree of covalency, with consequences on the possibility to realize spin-orbit-induced strongly correlated physics in iridium fluorides.

  8. Photochemical Oxidative Growth of Iridium Oxide Nanoparticles on CdSe@CdS Nanorods.

    PubMed

    Kalisman, Philip; Nakibli, Yifat; Amirav, Lilac

    2016-02-11

    We demonstrate a procedure for the photochemical oxidative growth of iridium oxide catalysts on the surface of seeded cadmium selenide-cadmium sulfide (CdSe@CdS) nanorod photocatalysts. Seeded rods are grown using a colloidal hot-injection method and then moved to an aqueous medium by ligand exchange. CdSe@CdS nanorods, an iridium precursor and other salts are mixed and illuminated. The deposition process is initiated by absorption of photons by the semiconductor particle, which results with formation of charge carriers that are used to promote redox reactions. To insure photochemical oxidative growth we used an electron scavenger. The photogenerated holes oxidize the iridium precursor, apparently in a mediated oxidative pathway. This results in the growth of high quality crystalline iridium oxide particles, ranging from 0.5 nm to about 3 nm, along the surface of the rod. Iridium oxide grown on CdSe@CdS heterostructures was studied by a variety of characterization methods, in order to evaluate its characteristics and quality. We explored means for control over particle size, crystallinity, deposition location on the CdS rod, and composition. Illumination time and excitation wavelength were found to be key parameters for such control. The influence of different growth conditions and the characterization of these heterostructures are described alongside a detailed description of their synthesis. Of significance is the fact that the addition of iridium oxide afforded the rods astounding photochemical stability under prolonged illumination in pure water (alleviating the requirement for hole scavengers).

  9. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    SciTech Connect

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  10. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    SciTech Connect

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  11. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    DOE PAGES

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinationsmore » that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less

  12. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    NASA Astrophysics Data System (ADS)

    Harp, Jason M.; Lessing, Paul A.; Hoggan, Rita E.

    2015-11-01

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ± 0.06 g/cm3. Additional characterization of the pellets by scanning electron microscopy and X-ray diffraction has also been performed. Pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  13. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    SciTech Connect

    Trivedi, Sudhir B.; Kutcher, Susan W.; Rosemeier, Cory A.; Mayers, David; Singh, Jogender

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  14. Geometry-dependent phase, stress state and electrical properties in nickel-silicide nanowires

    NASA Astrophysics Data System (ADS)

    Wang, C. C.; Lai, W. T.; Hsiao, Y. Y.; Chen, I. H.; George, T.; Li, P. W.

    2016-05-01

    We report that the geometry of single-crystalline Si nanowires (NWs) prior to salicidation at 500 °C is the key factor controlling the phase, stress state, and electrical resistivity of the resulting Ni x Si y NWs of width less than 100 nm. This is a radical departure from previous observations of a single phase formation for nickel silicides generated from the silicidation of bulk Si substrates. The phase transition from NiSi for large NWs ( W Si NW  =  250-450 nm) to Ni2Si for small NWs ( W Si NW  =  70-100 nm) is well correlated with the observed volumetric expansion and electrical resistivity variation with the NW width. For the extremely small dimensions of Ni x Si y NWs, we propose that the preeminent, kinetics-based Zhang and d’Heurle model for salicidation be modified to a more thermodynamically-governed, volume-expansion dependent Ni x Si y phase formation. A novel, plastic deformation mechanism is proposed to explain the observed, geometry-dependent Ni x Si y NW phase formation that also strongly influences the electrical performance of the NWs.

  15. Plasma-enhanced etching of tungsten, tungsten silicide, and molybdenum in chlorine-containing discharges

    SciTech Connect

    Fischl, D.S.

    1988-01-01

    Thin films of tungsten, tungsten silicide, and molybdenum were etched both within and downstream from Cl{sub 2} discharges. Without a discharge, molecular chlorine did not etch the films. Experimental conditions ranged from 0.1 to 1.0 Torr pressure, 30 to 180{degree}C electrode temperature, 0.2 to 1.0 W/cm{sup 2} power density, and 3 to 200 sccm flow rate. In-discharge etch rates varied from 10 to 90 nm/min for tungsten (W), 10 to 450 nm/min for tungsten silicide (WSi{sub x}), and 1 to 8 nm/min for molybdenum (Mo). Small additions of BCl{sub 3}, during W and WSi{sub x} etching, significantly increased the etch rates and improved the reproducibility. When samples were positioned downstream from a Cl{sub 2} discharge, etching proceeded solely by chemical reaction of the film with chlorine atoms. Downstream and in-plasma tungsten etch rates were approximately equal at 110{degree}C, but the chlorine atom etch rate dropped more rapidly than the in-plasma etch rate as temperature decreased. In contrast, molybdenum etched faster by atoms alone than in the plasma, although atom etching was not observed below 100{degree}C. Reactions of tungsten with a modulated beam of chlorine atoms and molecules were also studied.

  16. Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude

    SciTech Connect

    Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta; Garcia, Gemma; Clavaguera-Mora, Maria T.; Peral, Inma; Rodríguez-Viejo, Javier

    2014-07-07

    Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5 }K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit several distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.

  17. Study of copper silicide retardation effects on copper diffusion in silicon

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Gong, H.; Liu, R.; Wee, A. T. S.; Cha, C. L.; See, A.; Chan, L.

    2001-10-01

    A B-buried layer with a dose of 1×1014atoms/cm2 was introduced into p-doped Si at a depth of 2.2 μm to enhance copper diffusion via its inherent gettering effect. Copper was then introduced into silicon either via a low-energy implantation followed by a thermal anneal, or through the thermal drive in of physical vapor deposited (PVD) copper film. Secondary ion mass spectrometry depth profiling of both annealed samples later indicated that while substantial amounts of copper was gettered by the B layer in the former sample, no copper was gettered by the B-buried layer in the latter sample. Further analysis with an x-ray diffraction technique showed that copper silicide, Cu3Si was formed in the latter sample. It is thus surmised that the formation of this silicide layer impeded the diffusion of copper towards the B-buried layer. This work investigates the cause of CuSix formation and the underlying reasons for the lower mobility of Cu in PVD Cu film samples.

  18. Facile Preparation of a Platinum Silicide Nanoparticle-Modified Tip Apex for Scanning Kelvin Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Ting; Chen, Yu-Wei; Su, James; Wu, Chien-Ting; Hsiao, Chien-Nan; Shiao, Ming-Hua; Chang, Mao-Nan

    2015-10-01

    In this study, we propose an ultra-facile approach to prepare a platinum silicide nanoparticle-modified tip apex (PSM tip) used for scanning Kelvin probe microscopy (SKPM). We combined a localized fluoride-assisted galvanic replacement reaction (LFAGRR) and atmospheric microwave annealing (AMA) to deposit a single platinum silicide nanoparticle with a diameter of 32 nm on the apex of a bare silicon tip of atomic force microscopy (AFM). The total process was completed in an ambient environment in less than 3 min. The improved potential resolution in the SKPM measurement was verified. Moreover, the resolution of the topography is comparable to that of a bare silicon tip. In addition, the negative charges found on the PSM tips suggest the possibility of exploring the use of current PSM tips to sense electric fields more precisely. The ultra-fast and cost-effective preparation of the PSM tips provides a new direction for the preparation of functional tips for scanning probe microscopy.

  19. Rare Earth Metal Silicides Synthesized by High Current Metal Ion Implantation

    NASA Astrophysics Data System (ADS)

    Cheng, X. Q.; Wang, R. S.; Tang, X. J.; Liu, B. X.

    2003-08-01

    The YSi2, LaSi2, CeSi2, PrSi2, NdSi2, SmSi2, GdSi2, TbSi2, DySi2, and ErSi2 layers were formed on Si wafers by respective high current metal-ion implantation using a metal vacuum vapor arc (MEVVA) ion source and the formation temperature was considerable lower than the critical temperatures (300-350°C) required for the rare earth metal silicides by solid-state reaction. It was found that the crystalline structures could be improved with increasing slightly the formation temperature as well as the implantation dose. Concerning the growth kinetics, in some cases, fractal patterns were observed on Si surfaces and the branches of the fractals consisted of the grains of respective precipitated silicides. Interestingly, the fractal dimension increased with formation temperature and eventually approached to a value of 2.0, corresponding to a continuous layer, which was required in practical application. The formation mechanism as well as the growth kinetics was discussed in terms of the far-from-equilibrium process involved in the MEVVA ion implantation.

  20. Mitigation of interfacial silicide reactions for electroplated CoPt films on Si substrates

    NASA Astrophysics Data System (ADS)

    Oniku, Ololade D.; Arnold, David P.

    2015-12-01

    We report in this paper the influence of film thickness on the material and magnetic properties of electroplated CoPt permanent magnets. Layers of CoPt magnets with film thicknesses ranging from 0.5 μm to 5 μm are deposited into photoresist molds (3.5 mm x 3.5 mm square and 5 μm x 50 μm arrays) on a (100)Si substrate coated with 10 nm/100 nm Ti/Cu adhesion/seed layer. Results show an unexpected reduction in magnetic properties for films below 2 μm thick. This effect is determined to be a consequence of metal-silicide reactions at the substrate interface during annealing leading to the formation of a non-magnetic layer at the interface. Subsequently, a TiN diffusion-barrier layer is added to inhibit the silicide reaction and thereby maintain strong magnetic properties (Hci ∼800 kA/m, Mr/Ms = 0.8) in micron- thick electroplated CoPt layers.

  1. Crystal structure of the ternary silicide Gd2Re3Si5.

    PubMed

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-12-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta-silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo-octa-hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti-prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re-Re distance of 2.78163 (5) Å and isolated squares with an Re-Re distance of 2.9683 (6) Å.

  2. Kinetic analysis of the combustion synthesis of molybdenum and titanium silicides

    NASA Astrophysics Data System (ADS)

    Wang, Lily L.; Munir, Z. A.

    1995-05-01

    The temperature profiles associated with the passage of self-propagating combustion waves during the synthesis of MoSi2 and Ti5Si3 were determined. From these profiles, kinetic analyses of the combustion synthesis process for these two silicides were made. The synthesis is associated with high heating rates: 1.3 × 104 and 4.9 × 104 K·s-1 for MoSi2 and Ti5Si3, respectively. The width of the combustion zone was determined as 1.3 and 1.8 mm for the silicides of Mo and Ti, respectively. The degree of conversion, η, and its spatial distribution and the conversion rate, ∂η/∂t, were determined. However, because of the inherent characteristics of wave propagation in MoSi2, only in the case of Ti5Si3 could the activation energy be calculated. An average value of 190 kJ µ mol-1 was determined for titanium suicide.

  3. Plasma-enhanced deposition and processing of transition metals and transition metal silicides for VLSI

    NASA Astrophysics Data System (ADS)

    Hess, D. W.

    1986-05-01

    Radiofrequency (rf) discharges have been used to deposit films of tungsten, molybdenum and titanium silicide. As-deposited tungsten films, from tungsten hexafluoride and hydrogen source gases, were metastable (beta W), with significant (>1 atomic percent) fluorine incorporation. Film resistivities were 40-55 micro ohm - cm due to the beta W, but dropped to about 8 micro ohm cm after a short heat treatment at 700 C which resulted in a phase transition to alpha W (bcc form). The high resistivity (>10,000 micro ohm) associated with molybdenum films deposited from molybdenum hexafluoride and hydrogen appeared to be a result of the formation of molybdenum trifluoride in the deposited material. Titanium silicide films formed from a discharge of titanium tetrachloride, silane, and hydrogen, displayed resistivities of about 150 micro ohm cm, due to small amounts of oxygen and chlorine incorporated during deposition. Plasma etching studies of tungsten films with fluorine containing gases suggest that the etchant species for tungsten in these discharges are fluorine atoms.

  4. Study of temperature dependent zirconium silicide phases in Zr/Si structure by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Faruque, Sk Abdul Kader Md; Ranjan Bhattachryya, Satya; Sinha, Anil Kumar; Chakraborty, Supratic

    2016-02-01

    The differential scanning calorimetry (DSC) technique is employed to study the formation of different silicide compounds of Zr thin-film deposited on a 100 μm-thick Si (1 0 0) substrate by dc sputtering. A detailed analysis shows that silicide layers start growing at  ∼246 °C that changes to stable ZrSi2 at 627 °C via some compounds with different stoichiometric ratios of Zr and Si. It is further observed that oxygen starts reacting with Zr at  ∼540 °C but a stoichiometric ZrO2 film is formed after complete consumption of Zr metal at 857 °C. A further rise in temperature changes a part of ZrSi2 to Zr-Silicate. The synchrotron radiation-based grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy studies also corroborate the above findings. Atomic force microscopy is also carried out on the samples. It is evident from the observations that an intermixing and nucleation of Zr and Si occur at lower temperature prior to the formation of the interfacial silicate layer. Zr-Silicate formation takes place only at a higher temperature.

  5. Absorption enhancement in amorphous silicon thin films via plasmonic resonances in nickel silicide nanoparticles

    NASA Astrophysics Data System (ADS)

    Hachtel, Jordan; Shen, Xiao; Pantelides, Sokrates; Sachan, Ritesh; Gonzalez, Carlos; Dyck, Ondrej; Fu, Shaofang; Kalnayaraman, Ramki; Rack, Phillip; Duscher, Gerd

    2013-03-01

    Silicon is a near ideal material for photovoltaics due to its low cost, abundance, and well documented optical properties. The sole detriment of Si in photovoltaics is poor absorption in the infrared. Nanoparticle surface plasmon resonances are predicted to increase absorption by scattering to angles greater than the critical angle for total internal reflection (16° for a Si/air interface), trapping the light in the film. Experiments confirm that nickel silicide nanoparticles embedded in amorphous silicon increases absorption significantly in the infrared. However, it remains to be seen if electron-hole pair generation is increased in the solar cell, or whether the light is absorbed by the nanoparticles themselves. The nature of the absorption is explored by a study of the surface plasmon resonances through electron energy loss spectrometry and scanning transmission electron microscopy experiments, as well as first principles density functional theory calculations. Initial experimental results do not show strong plasmon resonances on the nanoparticle surfaces. Calculations of the optical properties of the nickel silicide particles in amorphous silicon are performed to understand why this resonance is suppressed. Work supported by NSF EPS 1004083 (TN-SCORE).

  6. Interfacial structure of two-dimensional epitaxial Er silicide on Si(111)

    NASA Astrophysics Data System (ADS)

    Tuilier, M. H.; Wetzel, P.; Pirri, C.; Bolmont, D.; Gewinner, G.

    1994-07-01

    Auger-electron diffraction (AED) and surface-extended x-ray-absorption fine structure (SEXAFS) have been used to obtain a complete description of the atomic structure of a two-dimensional epitaxial Er silicide layer on Si(111). AED reveals that a monolayer of Er is located underneath a buckled Si double layer. The relevant Er-Si interlayer spacings are determined by means of single scattering cluster simulations and a R-factor analysis to be 1.92+/-0.05 Å to the first and 2.70+/-0.05 Å to the second Si top layer. Er near-neighbor bond lengths and coordination numbers are obtained independently from polarization-dependent SEXAFS. The SEXAFS data, when combined with the Si top-layer geometry inferred from AED, permit the determination of the atomic positions at the silicide/Si(111) interface. The Er is found to reside in relaxed T4 sites of Si(111) with a single Er-Si distance of 3.09+/-0.04 Å to the first- and second-layer Si atoms of the substrate.

  7. Ultra-low Contact Resistivity of PtHf Silicide Utilizing Dopant Segregation Process

    NASA Astrophysics Data System (ADS)

    Ohmi, Shun-ichiro; Chen, Mengyi; Masahiro, Yasushi

    2016-12-01

    We investigated the dopant segregation (DS) process for PtHf silicide to realize low contact resistivity. After the patterning of SiO2 hard mask and heavily doped n+ diffusion region formation on p-Si(100) substrates, 20 nm-thick PtHf-alloy thin film with 10 nm-thick HfN encapsulating layer was deposited in situ utilizing a PtHf-alloy target by RF magnetron sputtering at room temperature. Then, PH3 ion implantation was carried out for DS followed by silicidation at 450-500°C/5-60 min in N2/4.9%H2 ambient. After Al electrode formation, a sintering process was carried out at 400°C/20 min in N2/4.9%H2 ambient. Ultra-low contact resistivity was achieved for fabricated PtHSi with a DS process on the order of 2.5 × 10-8 Ω cm2 evaluated by the cross-bridge Kelvin resistor method.

  8. "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe.

    PubMed

    Mingo, N; Hauser, D; Kobayashi, N P; Plissonnier, M; Shakouri, A

    2009-02-01

    We present a "nanoparticle-in-alloy" material approach with silicide and germanide fillers leading to a potential 5-fold increase in the thermoelectric figure of merit of SiGe alloys at room temperature and 2.5 times increase at 900 K. Strong reductions in computed thermal conductivity are obtained for 17 different types of silicide nanoparticles. We predict the existence of an optimal nanoparticle size that minimizes the nanocomposite's thermal conductivity. This thermal conductivity reduction is much stronger and strikingly less sensitive to nanoparticle size for an alloy matrix than for a single crystal one. At the same time, nanoparticles do not negatively affect the electronic conduction properties of the alloy. The proposed material can be monolithically integrated into Si technology, enabling an unprecedented potential for micro refrigeration on a chip. High figure-of-merit at high temperatures (ZT approximately 1.7 at 900 K) opens up new opportunities for thermoelectric power generation and waste heat recovery at large scale.

  9. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.

    PubMed

    Habicht, S; Zhao, Q T; Feste, S F; Knoll, L; Trellenkamp, S; Ghyselen, B; Mantl, S

    2010-03-12

    We present electrical characterization of nickel monosilicide (NiSi) contacts formed on strained and unstrained silicon nanowires (NWs), which were fabricated by top-down processing of initially As(+) implanted and activated strained and unstrained silicon-on-insulator (SOI) substrates. The resistivity of doped Si NWs and the contact resistivity of the NiSi to Si NW contacts are studied as functions of the As(+) ion implantation dose and the cross-sectional area of the wires. Strained silicon NWs show lower resistivity for all doping concentrations due to their enhanced electron mobility compared to the unstrained case. An increase in resistivity with decreasing cross section of the NWs was observed for all implantation doses. This is ascribed to the occurrence of dopant deactivation. Comparing the silicidation of uniaxially tensile strained and unstrained Si NWs shows no difference in silicidation speed and in contact resistivity between NiSi/Si NW. Contact resistivities as low as 1.2 x 10(-8) Omega cm(-2) were obtained for NiSi contacts to both strained and unstrained Si NWs. Compared to planar contacts, the NiSi/Si NW contact resistivity is two orders of magnitude lower.

  10. Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells

    NASA Astrophysics Data System (ADS)

    Vismara, R.; Isabella, O.; Zeman, M.

    2016-04-01

    Barium di-silicide (BaSi2) is an abundant and inexpensive semiconductor with appealing opto-electrical properties. In this work we show that a 2-μm thick BaSi2-based thin-film solar cell can exhibit an implied photo-current density equal to 41.1 mA/cm2, which is higher than that of a state-of-the-art wafer-based c-Si hetero-junction solar cell. This performance makes BaSi2 an attractive absorber for high-performing thin-film and multi-junction solar cells. In particular, to assess the potential of barium di-silicide, we propose a thin-film double-junction solar cell based on organometallic halide perovskite (CH3NH3PbI3) as top absorber and BaSi2 as bottom absorber. The resulting modelled ultra-thin double-junction CH3NH3PbI3 / BaSi2 (< 2 μm) exhibits an implied total photo-current density equal to 38.65 mA/cm2 (19.84 mA/cm2 top cell, 18.81 mA/cm2 bottom cell) and conversion efficiencies up to 28%.

  11. High-Pressure Synthesis and Characterization of Iridium Trihydride

    NASA Astrophysics Data System (ADS)

    Scheler, Thomas; Marqués, Miriam; Konôpková, Zuzana; Guillaume, Christophe L.; Howie, Ross T.; Gregoryanz, Eugene

    2013-11-01

    We have performed in situ synchrotron x-ray diffraction studies of the iridium-hydrogen system up to 125 GPa. At 55 GPa, a phase transition in the metal lattice from the fcc to a distorted simple cubic phase is observed. The new phase is characterized by a drastically increased volume per metal atom, indicating the formation of a metal hydride, and substantially decreased bulk modulus of 190 GPa (383 GPa for pure Ir). Ab initio calculations show that the hydrogen atoms occupy the face-centered positions in the metal matrix, making this the first known noninterstitial noble metal hydride and, with a stoichiometry of IrH3, the one with the highest volumetric hydrogen content. Computations also reveal that several energetically competing phases exist, which can all be seen as having distorted simple cubic lattices. Slow kinetics during decomposition at pressures as low as 6 GPa suggest that this material is metastable at ambient pressure and low temperatures.

  12. Intercalation of graphene on iridium with samarium atoms

    NASA Astrophysics Data System (ADS)

    Afanas'eva, E. Yu.; Rut'kov, E. V.; Gall, N. R.

    2016-07-01

    Intercalation of graphene on Ir (111) with Sm atoms is studied by methods of thermal desorption spectroscopy and thermionic emission. It is shown that adsorption of samarium at T = 300 K on graphene to concentrations of N ≤ 6 × 1014 atoms cm-2 followed by heating of the substrate leads to practically complete escape of adsorbate underneath the graphene layer. At N > 6 × 1014 atoms cm-2 and increasing temperature, a fraction of adsorbate remains on graphene in the form of two-dimensional "gas" and samarium islands and are desorbed in the range of temperatures of 1000-1200 K. Samarium remaining under the graphene is desorbed from the surface in the temperature range 1200-2150 K. Model conceptions for the samarium-graphene-iridium system in a wide temperature range are developed.

  13. Comparative modelling of chemical ordering in palladium-iridium nanoalloys.

    PubMed

    Davis, Jack B A; Johnston, Roy L; Rubinovich, Leonid; Polak, Micha

    2014-12-14

    Chemical ordering in "magic-number" palladium-iridium nanoalloys has been studied by means of density functional theory (DFT) computations, and compared to those obtained by the Free Energy Concentration Expansion Method (FCEM) using derived coordination dependent bond energy variations (CBEV), and by the Birmingham Cluster Genetic Algorithm using the Gupta potential. Several compositions have been studied for 38- and 79-atom particles as well as the site preference for a single Ir dopant atom in the 201-atom truncated octahedron (TO). The 79- and 38-atom nanoalloy homotops predicted for the TO by the FCEM/CBEV are shown to be, respectively, the global minima and competitive low energy minima. Significant reordering of minima predicted by the Gupta potential is seen after reoptimisation at the DFT level.

  14. Cyclometalated iridium(III) complexes with deoxyribose substituents.

    PubMed

    Maity, Ayan; Choi, Jung-Suk; Teets, Thomas S; Deligonul, Nihal; Berdis, Anthony J; Gray, Thomas G

    2013-11-18

    Fundamental study of enzymatic nucleoside transport suffers for lack of optical probes that can be tracked noninvasively. Nucleoside transporters are integral membrane glycoproteins that mediate the salvage of nucleosides and their passage across cell membranes. The substrate recognition site is the deoxyribose sugar, often with little distinction among nucleobases. Reported here are nucleoside analogues in which emissive, cyclometalated iridium(III) complexes are "clicked" to C-1 of deoxyribose in place of canonical nucleobases. The resulting complexes show visible luminescence at room temperature and 77 K with microsecond-length triplet lifetimes. A representative complex is crystallographically characterized. Transport and luminescence are demonstrated in cultured human carcinoma (KB3-1) cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Iridium-alloy processing experience in FY 1990

    SciTech Connect

    Ohriner, E.K.

    1991-11-01

    Iridium-alloy blanks and foil are produced at the Oak Ridge National Laboratory for use as fuel cladding material in radioisotope thermoelectric generators for space power sources. Until 1984, the material was produced from small, 500-g drop castings. A new process has been developed in which consumable electrodes of about 10 kg are melted, extruded, and then rolled to produce the sheet products. The work performed during FY 1990 included the consumable-electrode arc melting of four ingots and the extruding and rolling to sheet of four billets. Significant improvements made in the extruding and arc-melting processes during FY 1989 have been demonstrated to dramatically increase the rate of blank acceptance in nondestructive evaluations. Efforts to improve the rolling practice and to better characterize intermetallic particle distributions in the sheet are also described.

  16. Iridium-alloy processing experience in FY 1989

    SciTech Connect

    Ohriner, E.K.

    1990-11-01

    Iridium-alloy blanks and foil are produced at the Oak Ridge National Laboratory for use as fuel cladding material in radioisotope thermoelectric generators for space power sources. Until 1984, the material was produced from small 500-g drop castings. A new process has been developed in which consumable electrodes of about 10 kg are arc melted, extruded, and then rolled to produce the sheet products. The work performed during FY 1989 included the arc melting of three electrodes and the extruding and rolling to sheet of three billets. Significant improvements have been made in the extruding and arc-melting processes. Preliminary results show that these improvements have had an important effect in increasing the rate of blank acceptance in nondestructive evaluations. 4 refs., 33 figs., 11 tabs.

  17. Large Deformation Change in Iridium Isotopes from Laser Spectroscopy

    SciTech Connect

    D. Verney; L. Cabaret; J. Crawford; H.T. Duong; J. Genevey; G. Hubert; F. Ibrahim; M. Krieg; F. Le Blanc; J.K.P. Lee; G. Le Scornet; D. Lunney; J. Obert; J. Oms; J. Pinard; J.C. Putaux; B. Roussiere; J. Sauvage; V. Sebastian

    1999-12-31

    Laser spectroscopy measurements have been performed on neutron-deficient iridium isotopes. The hyperfine structure and isotope shift of the optical Ir I transition 5d{sup 7}6s{sup 2} {sup 4}F{sub 9/2} {yields}5d{sup 7}6s6p {sup 6}F{sub 11/2} have been studied for the {sup 182-189}Ir, {sup 186}Ir{sup m} and {sup 191,193}Ir isotopes. The nuclear magnetic and quadrupole moments were obtained from the hyperfine splitting measurements and the changes of the mean square charge radii from the isotope shift measurements. A large deformation change between {sup 187}Ir and {sup 186}Ir and between {sup 186}Ir{sup m} and {sup 186}Ir{sup g} has been observed.

  18. Iridium abundance maxima in the Upper Cenomanian extinction interval

    NASA Technical Reports Server (NTRS)

    Orth, C. J.; Attrep, M., Jr.; Mao, X. Y.; Kauffman, E. G.; Diner, R.

    1988-01-01

    Two iridium abundance peaks, both 0.11 ppb (whole-rock basis) over a local background of 0.017 ppb, have been found in Middle Cretaceous marine rocks near Pueblo, Colorado. They occur just below the 92-million-year-old Cenomanian-Turonian (C-T) stage boundary. No other peaks were found in 45 meters of strata (about 2.5 million years of deposition) above and below the boundary interval. The broad lower peak straddles the first in a series of extinctions of benthic and nektonic macrobiota which comprise the C-T extinction event. The sharp upper peak occurs stratigraphically about 1.2 meters above the lower peak. The excess Ir might be from meteoroid impacts.

  19. Comparative modelling of chemical ordering in palladium-iridium nanoalloys

    SciTech Connect

    Davis, Jack B. A.; Johnston, Roy L.; Rubinovich, Leonid; Polak, Micha

    2014-12-14

    Chemical ordering in “magic-number” palladium-iridium nanoalloys has been studied by means of density functional theory (DFT) computations, and compared to those obtained by the Free Energy Concentration Expansion Method (FCEM) using derived coordination dependent bond energy variations (CBEV), and by the Birmingham Cluster Genetic Algorithm using the Gupta potential. Several compositions have been studied for 38- and 79-atom particles as well as the site preference for a single Ir dopant atom in the 201-atom truncated octahedron (TO). The 79- and 38-atom nanoalloy homotops predicted for the TO by the FCEM/CBEV are shown to be, respectively, the global minima and competitive low energy minima. Significant reordering of minima predicted by the Gupta potential is seen after reoptimisation at the DFT level.

  20. Iridium abundance maxima in the Upper Cenomanian extinction interval

    NASA Technical Reports Server (NTRS)

    Orth, C. J.; Attrep, M., Jr.; Mao, X. Y.; Kauffman, E. G.; Diner, R.

    1988-01-01

    Two iridium abundance peaks, both 0.11 ppb (whole-rock basis) over a local background of 0.017 ppb, have been found in Middle Cretaceous marine rocks near Pueblo, Colorado. They occur just below the 92-million-year-old Cenomanian-Turonian (C-T) stage boundary. No other peaks were found in 45 meters of strata (about 2.5 million years of deposition) above and below the boundary interval. The broad lower peak straddles the first in a series of extinctions of benthic and nektonic macrobiota which comprise the C-T extinction event. The sharp upper peak occurs stratigraphically about 1.2 meters above the lower peak. The excess Ir might be from meteoroid impacts.

  1. Iridium-catalyzed reductive nitro-Mannich cyclization.

    PubMed

    Gregory, Alex W; Chambers, Alan; Hawkins, Alison; Jakubec, Pavol; Dixon, Darren J

    2015-01-02

    A new chemoselective reductive nitro-Mannich cyclization reaction sequence of nitroalkyl-tethered lactams has been developed. Relying on the rapid and chemoselective iridium(I)-catalyzed reduction of lactams to the corresponding enamine, subsequent nitro-Mannich cyclization of tethered nitroalkyl functionality provides direct access to important alkaloid natural-product-like structures in yields up to 81 % and in diastereoselectivities that are typically good to excellent. An in-depth understanding of the reaction mechanism has been gained through NMR studies and characterization of reaction intermediates. The new methodology has been applied to the total synthesis of (±)-epi-epiquinamide in four steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Feasibility Analysis on the Utilization of the Iridium Satellite Communications Network for Resident Space Objects in Low Earth Orbit

    DTIC Science & Technology

    2013-03-21

    turquoise -colored plane (containing Iridium_68) and orange-colored plane (containing Iridium_40) compared to the spacing between the turquoise -colored...plane and the white-colored plane (containing Iridium_11). The turquoise -colored and orange-colored planes can be thought of as planes one and six...United States, the turquoise - colored plane is descending, or transiting north to south, and the orange-colored plane is ascending, or transiting

  3. Cytotoxic activity and protein binding through an unusual oxidative mechanism by an iridium(I)-NHC complex.

    PubMed

    Gothe, Y; Marzo, T; Messori, L; Metzler-Nolte, N

    2015-02-21

    A new NHC iridium(I) complex (1) showing significant antiproliferative properties in vitro is described here. Its crystal structure, solution behaviour and interactions with the model proteins cytochrome c (cyt c) and lysozyme were investigated. High resolution ESI-MS measurements suggest that this iridium(i) complex acts as a prodrug and binds cyt c tightly through an unusual "oxidative" mechanism. Eventually, an iridium(III)-NHC fragment is found associated to the protein.

  4. The Electric Dipole Moment of Iridium Monosilicide, IrSi

    NASA Astrophysics Data System (ADS)

    Le, Anh; Steimle, Timothy C.; Cheng, Lan; Stanton, John F.

    2013-06-01

    The optical spectrum of iridium monosilicide (IrSi) was recently observed using REMPI spectroscopy in the range 17200 to 23850 cm^{-1}. The observation was supported by an ab initio calculation which predicted a X^{2}Δ_{5/2} state. Here, we report on the analysis of the optical Stark effect for the X^{2}Δ_{5/2} and [16.0]1.5 (v=6) states. The (6,0)[16.0]1.5 - X^{2}Δ_{5/2} and the (7,0)[16.0]3.5- X^{2}Δ_{5/2} bands of IrSi have been recorded using high-resolution laser-induced fluorescence spectroscopy. The observed optical Stark shifts for the ^{193}IrSi and ^{191}IrSi isotopologues were analyzed to produce the electric dipole moments of -0.4139(64)D and 0.7821(63)D for the X^{2}Δ_{5/2} and [16.0]1.5 (v=6) states, respectively. The negative sign of electric dipole moment of the X^{2}Δ_{5/2} state is supported by high-level quantum-chemical calculations employing all-electron scalar-relativistic CCSD(T) method augmented with spin-orbit corrections as well as corrections due to full triple excitations. In particular, electron-correlation effects have been shown to be essential in the prediction of the negative sign of the dipole moment. A comparison with other iridium containing molecules will be made. Maria A. Garcia, Carolin Vietz, Fernando Ruipérez, Michael D. Morse, and Ivan Infante, Kimika Fakultatea, Euskal Herriko. J. Chem. Phys., (submitted)

  5. Iridium-Coated Rhenium Radiation-Cooled Rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.; Schneider, Steven J.

    1997-01-01

    Radiation-cooled rockets are used for a range of low-thrust propulsion functions, including apogee insertion, attitude control, and repositioning of satellites, reaction control of launch vehicles, and primary propulsion for planetary space- craft. The key to high performance and long lifetimes for radiation-cooled rockets is the chamber temperature capability. The material system that is currently used for radiation-cooled rockets, a niobium alloy (C103) with a fused silica coating, has a maximum operating temperature of 1370 C. Temperature limitations of C103 rockets force the use of fuel film cooling, which degrades rocket performance and, in some cases, imposes a plume contamination issue from unburned fuel. A material system composed of a rhenium (Re) substrate and an iridium (Ir) coating has demonstrated operation at high temperatures (2200 C) and for long lifetimes (hours). The added thermal margin afforded by iridium-coated rhenium (Ir/Re) allows reduction or elimination of fuel film cooling. This, in turn, leads to higher performance and cleaner spacecraft environments. There are ongoing government- and industry-sponsored efforts to develop flight Ir/ Re engines, with the primary focus on 440-N, apogee insertion engines. Complementing these Ir/Re engine development efforts is a program to address specific concerns and fundamental characterization of the Ir/Re material system, including (1) development of Ir/Re rocket fabrication methods, (2) establishment of critical Re mechanical properly data, (3) development of reliable joining methods, and (4) characterization of Ir/Re life-limiting mechanisms.

  6. New yellow-emitting phosphorescent cyclometalated iridium(III) complex

    NASA Astrophysics Data System (ADS)

    Ivanov, P.; Tomova, R.; Petrova, P.; Stanimirov, S.; Petkov, I.

    2012-12-01

    We have synthesized a new yellow iridium complex Iridium(III) bis[2-phenylbenzothiazolato-N,C2']-(1-phenylicosane-1,3-dionate) (bt)2Ir(bsm), based on the benzothiazole derivative. The synthesized molecule was identified by 1H NMR and elemental analysis. The UV-Visible absorption and photoluminescence (PL) spectra of (bt)Ir2(bsm) in CH2Cl2 solution were found at 273 nm and 559 nm, respectively. The complex was used as a dopant into a hole-transporting layer (HTL) in a multilayered organic light emitting device (OLED) structure: ITO/doped-HTL/EL/ETL/M. ITO was a transparent anode of In2O3:SnO2, M- a metallic Al cathode, HTL- 4,4'-bis(9H-carbazol-9-yl)biphenyl (CBP) incorporated in poly(N-vinylcarbazole) (PVK) matrix, EL- electroluminescent layer of bis(8-hydroxy-2-methylquinoline)-(4-phenylphenoxy)aluminum (BAlq) and ETL- electron-transporting layer of tris(8-hydroxyquinolinato)aluminum (Alq3). The electroluminescent (EL) spectra of OLEDs were basically the sum of the emissions of BAlq at 496 nm and the emission of (bt)2Ir(bsm) at 559 nm. With increasing (bt)2Ir(bsm) concentration, the relative electroluminescent intensity of greenish-blue emission (at 496 nm) decreased, while the yellow (at 559 nm) - increased and CIE coordinates of the device shifted from (0.21, 0.33) at 0 wt % to (0.40, 0.48) at 8 wt % of the dopant. It was found that OLED with 0.5 wt % (bt)2Ir(bsm) had the best performance and stable color chromaticity at various voltages.

  7. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    PubMed Central

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  8. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    PubMed

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  9. Thermal compatibility studies of unirradiated uranium silicide dispersed in aluminum. [Reduced Enrichment for Research and Test Reactor

    SciTech Connect

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1984-09-01

    Powder metallurgy dispersions of uranium silicides in an aluminum matrix have been developed by the international Reduced Enrichment for Research and Test Reactors program as a new generation of proliferation-resistant fuels. A major issue of concern is the compatibility of the fuel with the matrix material and the dimensional stability of this fuel type. A total of 45 miniplate-type fuel plates were annealed at 400/sup 0/C for up to 1981 hours. A data base for the thermal compatibility of unirradiated uranium silicide dispersed in aluminum was established. No modification tested of a standard fuel plate showed any significant reduction of the plate swelling. The cause of the thermal growth of silicide fuel plates was determined to be a two-step process: (1) the reaction of the uranium silicide with aluminum to form U(AlSi)/sub 3/ and (2) the release of hydrogen and subsequent creep and pillowing of the fuel plate. 9 references, 4 figures, 6 tables.

  10. Shallow-junction diode formation by implantation of arsenic and boron through titanium-silicide films and rapid thermal annealing

    SciTech Connect

    Rubin, L.; Herbots, N. . Center for Materials Science and Engineering); Hoffman, D. ); Ma, D. )

    1990-01-01

    The authors have studied the performance of diodes fabricated on n-type and p-type Si substrates by implanting As or B through a low-resistivity titanium-silicide layer. The effects of varying the implant dose, energy, and post-implant thermal treatment were investigated. After implantation, a rapid thermal anneal was found to be sufficient in removing most of the implant damage and activating the dopants, which resulted in N{sup +} {minus} p and p{sup +} {minus} n junctions under a low-resistivity silicide layer. The n{sup +} {minus} p junctions were as shallow as 1000 {angstrom} with reverse leakage currents as low as 5.5 {mu}A/cm{sup 2}. A conventional furnace anneal resulted in a further reduction of this leakage. Shallow p{sub +} {minus} n junctions could not be formed with boron implantation because of the large projected range of boron ions at the lowest available energy. Ti silicide films thinner than 600 {angstrom} exhibited a sharp rise in sheet resistivity after a furnace anneal, whereas thicker films exhibited more stable behavior. This is attributed to coalescence of the films. High-temperature furnace annealing diffused some of the dopants into the silicide film, reducing the surface concentrations at the TiSi{sub 2}-Si interface.

  11. Intercalation synthesis of graphene-capped iron silicide atop Ni(111): Evolution of electronic structure and ferromagnetic ordering

    NASA Astrophysics Data System (ADS)

    Grebenyuk, G. S.; Vilkov, O. Yu.; Rybkin, A. G.; Gomoyunova, M. V.; Senkovskiy, B. V.; Usachov, D. Yu.; Vyalikh, D. V.; Molodtsov, S. L.; Pronin, I. I.

    2017-01-01

    A new method for synthesis of graphene-protected iron silicides has been tested, which consists in formation of graphene on Ni(111) followed by two-step intercalation of the system with Fe and Si. Characterization of the samples was performed in situ by low-energy electron diffraction, angular-resolved photoelectron spectroscopy, core-level photoelectron spectroscopy with synchrotron radiation and magnetic linear dichroism in photoemission of Fe 3p electrons. It is shown, that at 400 °C the intercalation of graphene/Ni(111) with iron occurs in a range up to 14 ML. The graphene layer strongly interacts with the topmost Fe atoms and stabilizes the fcc structure of the film. The in-plane ferromagnetic ordering of the film has a threshold nature and arises after the intercalation of 5 ML Fe due to the thickness-driven spin reorientation transition. Subsequent intercalation of graphene/Fe/Ni(111) with Si leads to the formation of the inhomogeneous system consisted of intercalated and nonintercalated areas. The intercalated islands coalesce at 2 ML Si when a Fe-Si solid solution covered with the Fe3Si surface silicide is formed. The Fe3Si silicide is ferromagnetic and has an ordered (√3 × √3)R30° structure. The graphene layer is weakly electronically coupled to the silicide phase keeping its remarkable properties ready for use.

  12. Improvement of power conversion efficiency in photovoltaic-assisted UHF rectifiers by non-silicide technique applied to photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kotani, Koji

    2015-04-01

    Non-silicide PV cell structures were successfully applied to the photovoltaic (PV)-assisted UHF rectifier, which is one example realization of the “synergistic ambient energy harvesting” concept. Silicide blocking of PV cell area was experimentally verified to be effective for increasing photo-generated bias voltage, which resulted in the improved power conversion efficiency (PCE) of the rectifier by enhanced VTH compensation effect. Increase in both transparency of light and quantum efficiency of PV cells obtained by eliminating silicide layer affects the PCE improvement almost equally. 25.8% of PCE was achieved under the conditions of an RF input power of -20 dBm, a frequency of 920 MHz, an output load of 47 kΩ, and a typical indoor light irradiance level of 1 W/m2. In addition, when the non-silicide PV cell technique was applied to the voltage-boosted PV-cell structures, 32.1% peak PCE was achieved at 10 W/m2.

  13. In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silicon.

    PubMed

    Bhaskaran, M; Sriram, S; Perova, T S; Ermakov, V; Thorogood, G J; Short, K T; Holland, A S

    2009-01-01

    This article reports on the in situ analysis of nickel silicide (NiSi) thin films formed by thermal processing of nickel thin films deposited on silicon substrates. The in situ techniques employed for this study include micro-Raman spectroscopy (microRS) and X-ray diffraction (XRD); in both cases the variations for temperatures up to 350 degrees C has been studied. Nickel silicide thin films formed by vacuum annealing of nickel on silicon were used as a reference for these measurements. In situ analysis was carried out on nickel thin films on silicon, while the samples were heated from room temperature to 350 degrees C. Data was gathered at regular temperature intervals and other specific points of interest (such as 250 degrees C, where the reaction between nickel and silicon to form Ni(2)Si is expected). The transformations from the metallic state, through the intermediate reaction states, until the desired metal-silicon reaction product is attained, are discussed. The evolution of nickel silicide from the nickel film can be observed from both the microRS and XRD in situ studies. Variations in the evolution of silicide from metal for different silicon substrates are discussed, and these include (100) n-type, (100) p-type, and (110) p-type silicon substrates.

  14. Understanding and Improving High-Temperature Structural Properties of Metal-Silicide Intermetallics

    SciTech Connect

    Bruce S. Kang

    2005-10-10

    The objective of this project was to understand and improve high-temperature structural properties of metal-silicide intermetallic alloys. Through research collaboration between the research team at West Virginia University (WVU) and Dr. J.H. Schneibel at Oak Ridge National Laboratory (ORNL), molybdenum silicide alloys were developed at ORNL and evaluated at WVU through atomistic modeling analyses, thermo-mechanical tests, and metallurgical studies. In this study, molybdenum-based alloys were ductilized by dispersing MgAl2O4 or MgO spinel particles. The addition of spinel particles is hypothesized to getter impurities such as oxygen and nitrogen from the alloy matrix with the result of ductility improvement. The introduction of fine dispersions has also been postulated to improve ductility by acting as a dislocation source or reducing dislocation pile-ups at grain boundaries. The spinel particles, on the other hand, can also act as local notches or crack initiation sites, which is detrimental to the alloy mechanical properties. Optimization of material processing condition is important to develop the desirable molybdenum alloys with sufficient room-temperature ductility. Atomistic analyses were conducted to further understand the mechanism of ductility improvement of the molybdenum alloys and the results showed that trace amount of residual oxygen may be responsible for the brittle behavior of the as-cast Mo alloys. For the alloys studied, uniaxial tensile tests were conducted at different loading rates, and at room and elevated temperatures. Thermal cycling effect on the mechanical properties was also studied. Tensile tests for specimens subjected to either ten or twenty thermal cycles were conducted. For each test, a follow-up detailed fractography and microstructural analysis were carried out. The test results were correlated to the size, density, distribution of the spinel particles and processing time. Thermal expansion tests were carried out using thermo

  15. NbOsSi and TaOsSi - Two new superconducting ternary osmium silicides

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Heletta, Lukas; Heymann, Gunter; Huppertz, Hubert; Eckert, Hellmut; Pöttgen, Rainer

    2017-06-01

    The new equiatomic silicides NbOsSi and TaOsSi as well as ZrOsSi, TIrSi (T = Zr, Hf, Nb, Ta) and TPtSi (T = Nb, Ta) were prepared from the elements by arc-melting. These silicides crystallize with the orthorhombic TiNiSi type structure, space group Pnma. Irregularly shaped crystals of ZrOsSi, NbOsSi, TaOsSi, ZrIrSi and HfIrSi were separated from the annealed samples and investigated by single-crystal X-ray diffraction (a = 640.46(7), b = 404.07(5), c = 743.66(8) pm, wR2 = 0.0285, 390 F2 values, 20 variables for ZrOsSi; a = 629.78(6), b = 388.72(4), c = 727.48(7) pm, wR2 = 0.0350, 397 F2 values, 20 variables for NbOsSi, a = 626.80(6), b = 389.36(4), c = 726.22(7) pm, wR2 = 0.0501, 385 F2 values, 20 variables for TaOsSi, a = 653.48(8), b = 395.35(4), c = 739.19(8) pm, wR2 = 0.0427, 413 F2 values, 20 variables for ZrIrSi and a = 646.34(12), b = 393.57(7), c = 736.8(14) pm, wR2 = 0.0582, 371 F2 values, 20 variables for HfIrSi). The striking structural motifs in the new osmium compounds are three-dimensional [OsSi] networks (Os-Si: 240-251 pm) in which the osmium atoms have strongly distorted tetrahedral silicon coordination. High-pressure/high-temperature experiments (9.5 GPa/1520 K) on TaOsSi gave no hint for a structural phase transition. Temperature dependent measurements of the magnetic susceptibility and the electrical conductivity of NbOsSi and TaOsSi showed superconductivity below TC = 3.5 and 5.5 K, respectively. 29Si solid state MAS NMR investigations of the prepared silicides approved the structural models and showed a correlation between the observed 29Si resonance shifts and the electronegativity of the involved refractory metal.

  16. Identification of reaction products in the low-pressure chemical vapor deposition of molybdenum silicide

    SciTech Connect

    Gaczi, P.J.; Reynolds, G.J. )

    1989-09-01

    The gaseous species produced by low-pressure chemical vapor deposition of molybdenum silicide in a cold wall reactor were identified by mass spectroscopy. Lowering the ionizing electron energy made possible the unambiguous assignment of the mass spectra to individual species and also permitted useful quantitative estimates to be made. Thermodynamic calculations using the computer program SOLGASMIX were carried out on the M-Si-H-F (M = Mo, W) quaternary system. Both experiment and calculation indicate that the fluorosilanes were the major gaseous reaction by-products, with SiHF{sub 3} being the most abundant for the experimental conditions investigated here. The changes in the process with substrate temperature were also investigated and are discussed with reference to both thermodynamic and kinetic effects.

  17. Rare-earth silicide thin films on the Si(111) surface

    NASA Astrophysics Data System (ADS)

    Sanna, S.; Dues, C.; Schmidt, W. G.; Timmer, F.; Wollschläger, J.; Franz, M.; Appelfeller, S.; Dähne, M.

    2016-05-01

    Rare-earth induced layered structures on the Si(111) surface are investigated by a combined approach consisting of ab initio thermodynamics, electron and x-ray diffraction experiments, angle-resolved photoelectron spectroscopy, and scanning tunneling microscopy. Our density functional theory calculations predict the occurrence of structures with different periodicity, depending on the rare-earth availability. Microscopic structural models are assigned to the different silicide phases on the basis of stability criteria. The thermodynamically stable theoretical models are then employed to interpret the experimental results. The agreement between the simulated and measured scanning tunneling microscopy images validates the proposed structural models. The electronic properties of the surfaces are discussed on the basis of the calculated electronic band structure and photoelectron spectroscopy data.

  18. Metal gettering by boron-silicide precipitates in boron-implanted silicon

    SciTech Connect

    Myers, S.M.; Petersen, G.A.; Headley, T.J.; Michael, J.R.; Aselage, T.A.; Seager, C.H.

    1996-09-01

    We show that Fe, Co, Cu, and Au impurities in Si are strongly gettered to boron-silicide precipitates formed by supersaturation B implantation and annealing. Effective binding free energies relative to interstitial solution range form somewhat above 1 to more than 2 eV. The B-Si precipitates formed at temperatures {le}1100{degrees}C lack long range structural order but closely resemble and icosahedral B{sub 3}Si phase in composition, local bonding, and chemical potential. Evidence indicates that the metal atoms go into solution in the B-Si phase, and this is interpreted in terms of the novel bonding and structural characteristics of B-rich icosahedral compounds.

  19. Crystalline structures and misfit strain inside Er silicide nanocrystals self-assembled on Si(001) substrates.

    PubMed

    Ding, Tao; Wu, Yueqin; Song, Junqiang; Li, Juan; Huang, Han; Zou, Jin; Cai, Qun

    2011-06-17

    The morphology and crystalline structure of Er silicide nanocrystals self-assembled on the Si(001) substrate were investigated using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). It was found that the nanowires and nanorods formed at 630 °C has dominant hexagonal AlB(2)-type structure, while inside the nanoislands self-organized at 800 °C the tetragonal ThSi(2)-type structure is prevalent. The lattice analysis via cross-sectional high-resolution TEM demonstrated that internal misfit strain plays an important role in controlling the growth of nanocrystals. With the relaxation of strain, the nanoislands could evolve from a pyramid-like shape into a truncated-hut-like shape.

  20. Interaction of copper metallization with rare-earth metals and silicides

    SciTech Connect

    Molnar, G. L.; Peto, G.; Zsoldos, E.; Horvath, Z. E.

    2001-07-01

    Solid-phase reactions of copper films with underlying gadolinium, erbium, and erbium{endash}silicide layers on Si(100) substrates were investigated. For the phase analysis, x-ray diffraction and cross-sectional transmission electron microscopy were used. In the case of Cu/Gd/Si(100), an orthorhombic GdSi{sub 2} formed, and, at higher temperatures, copper aggregated into islands. Annealed Cu/Er/Si(100) samples resulted in a hexagonal Er{sub 5}Si{sub 3} phase. In the Cu/ErSi{sub 2{minus}x}/Si system, the copper catalyzes the transformation of the highly oriented hexagonal ErSi{sub 2{minus}x} phase into hexagonal Er{sub 5}Si{sub 3}. Diverse phase developments of the samples with Gd and Er are based on reactivity differences of the two rare-earth metals. {copyright} 2001 American Institute of Physics.

  1. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-08-11

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  2. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  3. Modified fused silicide coatings for tantalum (Ta-10W) reentry heat shields

    NASA Technical Reports Server (NTRS)

    Packer, C. M.; Perkins, R. A.

    1973-01-01

    Results are presented of a program of research to develop a reliable, high performance, fused slurry silicide coating for the Ta-10W alloy. The effort was directed toward developing new and improved formulations for use at 2600 to 2800 F (1700 to 1811 K) in an atmospheric reentry thermal protection system with a 100-mission capability. Based on a thorough characterization of isothermal and cyclic oxidation behavior, bend transition temperatures, room- and elevated-temperature tensile properties, and creep behavior, a 2.5 Mn-33Ti-64.5Si coating (designated MTS) provides excellent protection for the Ta-10W alloy in simulated reentry environments. An extensive analysis of the oxidation behavior and characteristics of the MTS coating in terms of fundamental mechanisms also is presented.

  4. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-06-06

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  5. Fused slurry silicide coatings for columbium alloys reentry heat shields. Volume 1: Evaluation analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, B.

    1973-01-01

    The R-512E (Si-20Cr-20Fe) fused slurry silicide coating process was optimized to coat full size (20in x 20in) single face rib and corrugation stiffened panels fabricated from FS-85 columbium alloy for 100 mission space shuttle heat shield applications. Structural life under simulated space shuttle lift-off stresses and reentry conditions demonstrated reuse capability well beyond 100 flights for R-512E coated FS-85 columbium heat shield panels. Demonstrated coating damage tolerance showed no immediate structural failure on exposure. The FS-85 columbium alloy was selected from five candidate alloys (Cb-752, C-129Y, WC-3015, B-66 and FS-85) based on the evaluation tests which have designed to determine: (1) change in material properties due to coating and reuse; (2) alloy tolerance to coating damage; (3) coating emittance characteristics under reuse conditions; and (4) new coating chemistries for improved coating life.

  6. Microstructure development and high-temperature oxidation of silicide coatings for refractory niobium alloys

    NASA Astrophysics Data System (ADS)

    Novak, Mark David

    Niobium alloys are candidate thermostructural materials in hypersonic flight applications because of excellent mechanical properties at elevated temperature; however, their susceptibility to oxidation requires the use of coatings. Multiphase silicide coatings containing iron, chromium, niobium, and silicon have historically been successful in protecting niobium in oxidizing environments, although little scientific understanding of this coating system is provided in publically available literature. Research efforts in process development, microstructural characterization, oxidation testing, and thermodynamic modeling have led to clarification of the coating microstructure, microstructural evolution, and the performance of the coating in oxidizing environments. These research efforts have led to strategies for improving coating performance, including surface planarization and modifying the coating with a dispersion of submicron alumina particles.

  7. Strain-promoted growth of Mn silicide nanowires on Si(001)

    NASA Astrophysics Data System (ADS)

    Miki, Kazushi; Liu, Hongjun; Owen, James H. G.; Renner, Christoph

    2011-03-01

    We have discovered a method to promote the growth of Mn silicide nanowires on the Si(001) at 450° C. Deposition of sub-monolayer quantities of Mn onto a Si(001) surface with a high density of Bi nanolines results in the formation of nanowires, 5-10 nm wide, and up to 600 nm long. These nanowires are never formed if the same growth procedure is followed in the absence of the Bi nanolines. The Haiku core of the Bi nanoline is known to induce short-range stress in the surrounding silicon surface, straining neighbouring dimers, and repelling step edges. We discuss the possible mechanisms for this effect, including the effect of the Bi nanolines on the surface stress tensor and alteration of the available diffusion channels on the surface. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research, the Iketani Science and Technology Foundation.

  8. Low resistivity metal silicide nanowires with extraordinarily high aspect ratio for future nanoelectronic devices.

    PubMed

    Chen, Sheng-Yu; Yeh, Ping-Hung; Wu, Wen-Wei; Chen, Uei-Shin; Chueh, Yu-Lun; Yang, Yu-Chen; Gwo, Shangir; Chen, Lih-Juann

    2011-11-22

    One crucial challenge for the integrated circuit devices to go beyond the current technology has been to find the appropriate contact and interconnect materials. NiSi has been commonly used in the 45 nm devices mainly because it possesses the lowest resistivity among all metal silicides. However, for devices of even smaller dimension, its stability at processing temperature is in doubt. In this paper, we show the growth of high-quality nanowires of NiSi(2), which is a thermodynamically stable phase and possesses low resistivity suitable for future generation electronics devices. The origin of low resistivity for the nanowires has been clarified to be due to its defect-free single-crystalline structure instead of surface and size effects. © 2011 American Chemical Society

  9. Friction and wear of radiofrequency-sputtered borides, silicides, and carbides

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1978-01-01

    The friction and wear properties of several refractory compound coatings were examined. These compounds were applied to 440 C bearing steel surfaces by radiofrequency (RF) sputtering. The refractory compounds were the titanium and molybdenum borides, the titanium and molybdenum silicides, and the titanium, molybdenum, and boron carbides. Friction testing was done with a pin-on-disk wear apparatus at loads from 0.1 to 5.0 newtons. Generally, the best wear properties were obtained when the coatings were bias sputtered onto 440 C disks that had been preoxidized. Adherence was improved because of the better bonding of the coatings to the iron oxide formed during preoxidation. As a class the carbides provided wear protection to the highest loads. Titanium boride coatings provided low friction and good wear properties to moderate loads.

  10. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1994-01-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide

  11. Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires

    NASA Astrophysics Data System (ADS)

    Banerjee, Archan; Baker, Luke J.; Doye, Alastair; Nord, Magnus; Heath, Robert M.; Erotokritou, Kleanthis; Bosworth, David; Barber, Zoe H.; MacLaren, Ian; Hadfield, Robert H.

    2017-08-01

    We report on the optimisation of amorphous molybdenum silicide thin film growth for superconducting nanowire single-photon detector (SNSPD) applications. Molybdenum silicide was deposited via co-sputtering from Mo and Si targets in an Ar atmosphere. The superconducting transition temperature (T c) and sheet resistance (R s) were measured as a function of thickness and compared to several theoretical models for disordered superconducting films. Superconducting and optical properties of amorphous materials are very sensitive to short- (up to 1 nm) and medium-range order (˜1-3 nm) in the atomic structure. Fluctuation electron microscopy studies showed that the films assumed an A15-like medium-range order. Electron energy loss spectroscopy indicates that the film stoichiometry was close to Mo83Si17, which is consistent with reports that many other A15 structures with the nominal formula A 3 B show a significant non-stoichiometry with A:B > 3:1. Optical properties from ultraviolet (270 nm) to infrared (2200 nm) wavelengths were measured via spectroscopic ellipsometry for 5 nm thick MoSi films indicating high long wavelength absorption. We also measured the current density as a function of temperature for nanowires patterned from a 10 nm thick MoSi film. The current density at 3.6 K is 3.6 × 105 A cm-2 for the widest wire studied (2003 nm), falling to 2 × 105 A cm-2 for the narrowest (173 nm). This investigation confirms the excellent suitability of MoSi for SNSPD applications and gives fresh insight into the properties of the underlying materials.

  12. Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Nakamura-Messenger, Keiko; Clemett, Simon J.; Messenger, Scott; Jones, John H.; Palma, Russell L.; Pepin, Robert O.; Klock, Wolfgang; Zolensky, Michael E.; Tatsuoka, Hirokazu

    2011-01-01

    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs.

  13. Molybdenum Silicide Formation on Single Crystal, Polycrystalline and Amorphous Silicon: Growth, Structure and Electrical Properties

    NASA Astrophysics Data System (ADS)

    Doland, Charles Michael

    The solid state reactions that occur between a thin metal film and a silicon substrate are of scientific and technological interest. The initial interactions are poorly understood, yet the final state may critically depend on the initial interactions. In this work, the reactions of thin molybdenum films on amorphous, polycrystalline, and single crystal silicon substrates were studied, with an emphasis on the initial interdiffusion and the nucleation of the crystalline silicide phase. Our research was carried out in an ultrahigh vacuum (UHV) system in order to minimize effects of contaminants. In situ Raman scattering and Auger electron spectroscopy were used to probe the structure and composition of the films. Electron microscopy, low energy electron diffraction and Schottky barrier height measurements were used to obtain additional information. The hexagonal phase of the disilicide (h-MoSi _2) is the first phase formed. This occurs after 30 minute annealing at 400^ circC on clean samples. Impurities interfere with this reaction, but substrate crystallinity has no effect. The hexagonal phase transforms to the tetragonal phase (t-MoSi_2) after 800 ^circC annealing for all substrate types. Contamination retards this reaction, resulting in films containing both phases. For the thin films in this study, the transformation to t-MoSi_2 is accompanied by agglomeration of the films. From bulk thermodynamics, t-MoSi_2 is expected to be the first phase formed, but h -MoSi_2 is the first phase observed. This phase nucleates before t-MoSi_2, due to a lower silicide-silicon interfacial energy. Detailed knowledge of interfacial energies and effects of impurities are required to understand the initial phases of thin film solid state reactions.

  14. Nickel-affected silicon crystallization and silicidation on polyimide by multipulse excimer laser annealing

    SciTech Connect

    Alberti, A.; La Magna, A.; Spinella, C.; Privitera, V.; Cuscuna, M.; Fortunato, G.

    2010-12-15

    Nickel enhanced amorphous Si crystallization and silicidation on polyimide were studied during multipulse excimer laser annealing (ELA) from submelting to melting conditions. A {approx}8 nm thick Ni film was deposited on a 100 nm thick {alpha}-Si layer at {approx}70 deg. C in order to promote partial nickel diffusion into silicon. In the submelting regime, Ni atoms distributed during deposition in {alpha}-Si and the thermal gradient due to the presence of the plastic substrate were crucial to induce low fluence ({>=}0.08 J/cm{sup 2}) Si crystallization to a depth which is strictly related to the starting Ni profile. {Alpha}morphous-Si crystallization is not expected on pure Si at those low fluences. Additional pulses at higher fluences do not modify the double poly-Si/{alpha}-Si structure until melting conditions are reached. At a threshold of {approx}0.2 J/cm{sup 2}, melting was induced simultaneously in the polycrystalline layer as well as in the residual {alpha}-Si due to a thermal gradient of {approx}200 deg. C. Further increasing the laser fluence causes the poly-Si layer to be progressively melted to a depth which is proportional to the energy density used. As a consequence of the complete Si melting, columnar poly-Si grains are formed above 0.3 J/cm{sup 2}. For all fluences, a continuous NiSi{sub 2} layer is formed at the surface which fills the large Si grain boundaries, with the beneficial effect of flattening the poly-Si surface. The results would open the perspective of integrating Ni-silicide layers as metallic contacts on Si during {alpha}-Si-crystallization by ELA on plastic substrate.

  15. Template-directed atomically precise self-organization of perfectly ordered parallel cerium silicide nanowire arrays on Si(110)-16 × 2 surfaces

    PubMed Central

    2013-01-01

    The perfectly ordered parallel arrays of periodic Ce silicide nanowires can self-organize with atomic precision on single-domain Si(110)-16 × 2 surfaces. The growth evolution of self-ordered parallel Ce silicide nanowire arrays is investigated over a broad range of Ce coverages on single-domain Si(110)-16 × 2 surfaces by scanning tunneling microscopy (STM). Three different types of well-ordered parallel arrays, consisting of uniformly spaced and atomically identical Ce silicide nanowires, are self-organized through the heteroepitaxial growth of Ce silicides on a long-range grating-like 16 × 2 reconstruction at the deposition of various Ce coverages. Each atomically precise Ce silicide nanowire consists of a bundle of chains and rows with different atomic structures. The atomic-resolution dual-polarity STM images reveal that the interchain coupling leads to the formation of the registry-aligned chain bundles within individual Ce silicide nanowire. The nanowire width and the interchain coupling can be adjusted systematically by varying the Ce coverage on a Si(110) surface. This natural template-directed self-organization of perfectly regular parallel nanowire arrays allows for the precise control of the feature size and positions within ±0.2 nm over a large area. Thus, it is a promising route to produce parallel nanowire arrays in a straightforward, low-cost, high-throughput process. PMID:24188092

  16. Improvement of heavy dopant doped Ni-silicide using ytterbium interlayer for nano-scale MOSFETS with an ultra shallow junction.

    PubMed

    Shin, Hong-Sik; Oh, Se-Kyung; Kang, Min-Ho; Li, Shi-Guang; Lee, Ga-Won; Lee, Hi-Deok

    2011-07-01

    In this paper, a novel Ni silicide with Yb interlayer (Yb/Ni/TiN) on a boron cluster (B18H22) implanted source/drain junction is proposed for the first time, and its thermal stability characteristics are analyzed in depth. The proposed Ni-silicide exhibits a wider RTP temperature window for uniform sheet resistance, surface roughness and better thermal stability than the conventional structure (Ni/TiN). In addition, the cross-sectional profile of the proposed Ni-silicide showed less agglomeration despite the high temperature post-silicidation annealing, and it can be said that the proposed structure was little dependence on the temperature post-silicidation annealing. The improvement of Ni silicide properties is analyzed and found to be due to the formation of the rare earth metal--NiSi (YbNi2Si2), whose peaks were confirmed by XRD. The junction leakage current of the p + -n junction with Yb/Ni/TiN and B18H22 implantation is smaller than that with Ni/TiN by almost one order of magnitude as well as improving the thermal stability of ultra shallow junction.

  17. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Technical Reports Server (NTRS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-01-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  18. Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice.

    PubMed

    Gabrielli, Paolo; Barbante, Carlo; Plane, John M C; Varga, Anita; Hong, Sungmin; Cozzi, Giulio; Gaspari, Vania; Planchon, Frédéric A M; Cairns, Warren; Ferrari, Christophe; Crutzen, Paul; Cescon, Paolo; Boutron, Claude F

    2004-12-23

    An iridium anomaly at the Cretaceous/Tertiary boundary layer has been attributed to an extraterrestrial body that struck the Earth some 65 million years ago. It has been suggested that, during this event, the carrier of iridium was probably a micrometre-sized silicate-enclosed aggregate or the nanophase material of the vaporized impactor. But the fate of platinum-group elements (such as iridium) that regularly enter the atmosphere via ablating meteoroids remains largely unknown. Here we report a record of iridium and platinum fluxes on a climatic-cycle timescale, back to 128,000 years ago, from a Greenland ice core. We find that unexpectedly constant fallout of extraterrestrial matter to Greenland occurred during the Holocene, whereas a greatly enhanced input of terrestrial iridium and platinum masked the cosmic flux in the dust-laden atmosphere of the last glacial age. We suggest that nanometre-sized meteoric smoke particles, formed from the recondensation of ablated meteoroids in the atmosphere at altitudes >70 kilometres, are transported into the winter polar vortices by the mesospheric meridional circulation and are preferentially deposited in the polar ice caps. This implies an average global fallout of 14 +/- 5 kilotons per year of meteoric smoke during the Holocene.

  19. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Technical Reports Server (NTRS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-01-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  20. Solution-processable phosphorescence based on iridium-cored small molecules with the trifluoromethyl group

    NASA Astrophysics Data System (ADS)

    Zhang, Wenguan; He, Zhiqun; Wang, Yongsheng; Zhao, Shengmin

    2015-04-01

    A novel cyclometallated ligand 2-(4-(2‧-ethylhexyloxy)phenyl)-5-trifluoromethyl-pyridine (EHO-5CF3-ppy) was synthesized, and two solution-processable iridium complexes bis[2-(4-(2‧-ethylhexyloxy)phenyl)-5-trifluoromethylpyridinto-C3, N] iridium (acetylacetonate) (EHO-5CF3-ppy)2Ir(acac) (5) and bis[2-(4-(2‧-ethylhexyl-oxy)phenyl)-5-trifluoromethylpyridinto-C3, N] iridium (2-picolinic acid) (EHO-5CF3-ppy)2Ir(pic) (6) were afforded. Trifluoromethyl and dendritic ethylhexyloxy group were incorporated into iridium ligands to tune luminescent color, to reduce luminescence quenching and to improve the solution-processable property. Photoluminescent spectra of 5 and 6 in tetrahydrofuran peaked at around 540 and 523 nm. Electrophosphorescent devices were fabricated using 5 and 6 as dopant emitters (2%), which exhibited electroluminescent (EL) peaks at 536 and 524 nm, and current efficiencies of 10.4 and 16.7 cd/A, respectively. With the concentration of iridium complexes increasing to 8%, the main EL peak showed a 4 nm of red shift and a distinct shoulder peak occurred at 583 nm for 5 or 560 nm for 6, respectively. Maximum external quantum efficiencies of the devices at the concentration of 2% and 8% were 2.8% and 4.2% for 5, 4.7% and 4.8% for 6. These indicated that 5 and 6 were efficient solution-processable emitters.

  1. Peptide-functionalized luminescent iridium complexes for lifetime imaging of CXCR4 expression.

    PubMed

    Kuil, Joeri; Steunenberg, Peter; Chin, Patrick T K; Oldenburg, Joppe; Jalink, Kees; Velders, Aldrik H; van Leeuwen, Fijs W B

    2011-08-16

    The chemokine receptor 4 (CXCR4) is over-expressed in 23 types of cancer in which it plays a role in, among others, the metastatic spread. For this reason it is a potential biomarker for the field of diagnostic oncology. The antagonistic Ac-TZ14011 peptide, which binds to CXCR4, has been conjugated to luminescent iridium dyes to allow for CXCR4 visualization. The iridium dyes are cyclometalated octahedral iridium(III) 2-phenylpyridine complexes that can be functionalized with one, two or three targeting Ac-TZ14011 peptides. Confocal microscopy and fluorescence lifetime imaging microscopy (FLIM) showed that the peptide-iridium complex conjugates can be used to visualize CXCR4 expression in tumor cells. The CXCR4 receptor affinity and specific cell binding of the mono-, di- and trimeric peptide derivatives were assessed by using flow cytometry. The three derivatives possessed nanomolar receptor affinity and could distinguish between cell lines with different CXCR4 expression levels. This yields the first example of a neutral iridium(III) complex functionalized with peptides for FLIM-based visualization of a cancer associated membrane receptor. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrodeposition of platinum-iridium alloy nanowires for hermetic packaging of microelectronics.

    PubMed

    Petrossians, Artin; Whalen, John J; Weiland, James D; Mansfeld, Florian

    2012-01-01

    An electrodeposition technique was applied for fabrication of dense platinum-iridium alloy nanowires as interconnect structures in hermetic microelectronic packaging to be used in implantable devices. Vertically aligned arrays of platinum-iridium alloy nanowires with controllable length and a diameter of about 200 nm were fabricated using a cyclic potential technique from a novel electrodeposition bath in nanoporous aluminum oxide templates. Ti/Au thin films were sputter deposited on one side of the alumina membranes to form a base material for electrodeposition. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to characterize the morphology and the chemical composition of the nanowires, respectively. SEM micrographs revealed that the electrodeposited nanowires have dense and compact structures. EDS analysis showed a 60:40% platinum-iridium nanowire composition. Deposition rates were estimated by determining nanowire length as a function of deposition time. High Resolution Transmission Electron Microscopy (HRTEM) images revealed that the nanowires have a nanocrystalline structure with grain sizes ranging from 3 nm to 5 nm. Helium leak tests performed using a helium leak detector showed leak rates as low as 1 × 10(-11) mbar L s(-1) indicating that dense nanowires were electrodeposited inside the nanoporous membranes. Comparison of electrical measurements on platinum and platinum-iridium nanowires revealed that platinum-iridium nanowires have improved electrical conductivity.

  3. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors.

    PubMed

    Zhao, Qingcheng; Zhou, Yuyang; Li, Yingying; Gu, Wei; Zhang, Qi; Liu, Jian

    2016-02-02

    There has been growing interest in utilizing highly photostable iridium(III) complexes as new luminescent probes for biotechnology and life science. Herein, iridium(III) complex with carboxyl group was synthesized and activated with N-hydroxysuccinimide, followed by tagging to the amino terminate of single-stranded DNA (ssDNA). The Ir-ssDNA probe was further combined with graphene oxide (GO) nanosheets to develop a GO-based biosensor for target ssDNA detection. The quenching efficiency of GO, and the photostability of iridium(III) complex and GO-Ir-ssDNA biosensor, were also investigated. On the basis of the high luminescence quenching efficiency of GO toward iridium(III) complex, the GO-Ir-ssDNA biosensor exhibited minimal background signals, while strong emission was observed when Ir-ssDNA desorbed from GO nanosheets and formed a double helix with the specific target, leading to a high signal-to-background ratio. Moreover, it was found that luminescent intensities of iridium(III) complex and GO-Ir-ssDNA biosensor were around 15 and 3 times higher than those of the traditional carboxyl fluorescein (FAM) dye and the GO-FAM-ssDNA biosensor after UV irradiation, respectively. Our study suggested the sensitive and selective Ir-ssDNA probe was suitable for the development of highly photostable GO-based detection platforms, showing promise for application beyond the OLED (organic light emitting diode) area.

  4. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Astrophysics Data System (ADS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-11-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  5. Efficient asymmetric transfer hydrogenation of ketones in ethanol with chiral iridium complexes of spiroPAP ligands as catalysts.

    PubMed

    Liu, Wei-Peng; Yuan, Ming-Lei; Yang, Xiao-Hui; Li, Ke; Xie, Jian-Hua; Zhou, Qi-Lin

    2015-04-11

    Highly efficient iridium catalyzed asymmetric transfer hydrogenation of simple ketones with ethanol as a hydrogen donor has been developed. By using chiral spiro iridium catalysts (S)- a series of alkyl aryl ketones were hydrogenated to chiral alcohols with up to 98% ee.

  6. Mono- and dinuclear cationic iridium(III) complexes bearing a 2,5-dipyridylpyrazine (2,5-dpp) ligand.

    PubMed

    Donato, Loïc; McCusker, Catherine E; Castellano, Felix N; Zysman-Colman, Eli

    2013-08-05

    The synthesis, X-ray structures, photophysical, and electrochemical characterization of mono- (1) and dinuclear (2) cationic iridium(III) complexes bearing a 2,5-dipyridylpyrazine (2,5-dpp) ancillary ligand are reported. Upon the complexation of a first equivalent of iridium, the photoluminescence shifts markedly into the deep red (λem = 710 nm, ΦPL = 0.9%) compared to other cationic iridium complexes such as [Ir(ppy)2(bpy)]PF6. With the coordination of a second equivalent of iridium, room temperature luminescence is completely quenched. Both 1 and 2 are luminescent at low temperatures but with distinct excited state decay kinetics; the emission of 2 is significantly red-shifted compared to 1. Emission both at 298 and 77 K results from a mixed charge-transfer state. Density functional theory (DFT) calculations and electrochemical behavior point to an electronic communication between the two iridium complexes.

  7. High-Temperature Oxidation Behavior of Iridium-Rhenium Alloys

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1995-01-01

    The life-limiting mechanism for radiation-cooled rockets made from iridium-coated rhenium (Ir/Re) is the diffusion of Re into the Ir layer and the subsequent oxidation of the resulting Ir-Re alloy from the inner surface. In a previous study, a life model for Ir/Re rockets was developed. It incorporated Ir-Re diffusion and oxidation data to predict chamber lifetimes as a function of temperature and oxygen partial pressure. Oxidation testing at 1540 deg C suggested that a 20-wt percent Re concentration at the inner wall surface should be established as the failure criterion. The present study was performed to better define Ir-oxidation behavior as a function of Re concentration and to supplement the data base for the life model. Samples ranging from pure Ir to Ir-40 wt percent Re (Ir-40Re) were tested at 1500 deg C, in two different oxygen environments. There were indications that the oxidation rate of the Ir-Re alloy increased significantly when it went from a single-phase solid solution to a two-phase mixture, as was suggested in previous work. However, because of testing anomalies in this study, there were not enough dependable oxidation data to definitively raise the Ir/Re rocket failure criterion from 20-wt percent Re to a Re concentration corresponding to entry into the two-phase region.

  8. Iridium profiles and delivery across the Cretaceous/Paleogene boundary

    NASA Astrophysics Data System (ADS)

    Esmeray-Senlet, Selen; Miller, Kenneth G.; Sherrell, Robert M.; Senlet, Turgay; Vellekoop, Johan; Brinkhuis, Henk

    2017-01-01

    We examined iridium (Ir) anomalies at the Cretaceous/Paleogene (K/Pg) boundary in siliciclastic shallow marine cores of the New Jersey Coastal Plain, USA, that were deposited at an intermediate distance (∼2500 km) from the Chicxulub, Mexico crater. Although closely spaced and generally biostratigraphically complete, the cores show heterogeneity in terms of preservation of the ejecta layers, maximum concentration of Ir measured (∼0.1-2.4 ppb), and total thickness of the Ir-enriched interval (11-119 cm). We analyzed the shape of the Ir profiles with a Lagrangian particle-tracking model of sediment mixing. Fits between the mixing model and measured Ir profiles, as well as visible burrows in the cores, show that the shape of the Ir profiles was determined primarily by sediment mixing via bioturbation. In contrast, Tighe Park 1 and Bass River cores show post-depositional remobilization of Ir by geochemical processes. There is a strong inverse relationship between the maximum concentration of Ir measured and the thickness of the sediments over which Ir is spread. We show that the depth-integrated Ir inventory is similar in the majority of the cores, indicating that the total Ir delivery at time of the K/Pg event was spatially homogeneous over this region. Though delivered through a near-instantaneous source, stratospheric dispersal, and settling, our study shows that non-uniform Ir profiles develop due to changes in the regional delivery and post-depositional modification by bioturbation and geochemical processes.

  9. Phosphorescent sensor for phosphorylated peptides based on an iridium complex.

    PubMed

    Kang, Jung Hyun; Kim, Hee Jin; Kwon, Tae-Hyuk; Hong, Jong-In

    2014-07-03

    A bis[(4,6-difluorophenyl)pyridinato-N,C(2')]iridium(III) picolinate (FIrpic) derivative coupled with bis(Zn(2+)-dipicolylamine) (ZnDPA) was developed as a sensor (1) for phosphorylated peptides, which are related to many cellular mechanisms. As a control, a fluorescent sensor (2) based on anthracene coupled to ZnDPA was also prepared. When the total negative charge on the phosphorylated peptides was changed to -2, -4, and -6, the emission intensity of sensor 1 gradually increased by factors of up to 7, 11, and 16, respectively. In contrast, there was little change in the emission intensity of sensor 1 upon the addition of a neutral phosphorylated peptide, non-phosphorylated peptides, or various anions such as CO3(2-), NO3(-), SO4(2-), phosphate, azide, and pyrophosphate. Furthermore, sensor 1 could be used to visually discriminate between phosphorylated peptides and adenosine triphosphate in aqueous solution under a UV-vis lamp, unlike fluorescent sensor 2. This enhanced luminance of phosphorescent sensor 1 upon binding to a phosphorylated peptide is attributed to a reduction in the repulsion between the Zn(2+) ions due to the phenoxy anion, its strong metal-to-ligand charge transfer character, and a reduction in self-quenching.

  10. High Strain Rate Tensile Testing of DOP-26 Iridium

    SciTech Connect

    Schneibel, Joachim H; Carmichael Jr, Cecil Albert; George, Easo P

    2007-11-01

    The iridium alloy DOP-26 was developed through the Radioisotope Power Systems Program in the Office of Nuclear Energy of the Department of Energy. It is used for clad vent set cups containing radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for spacecraft. This report describes mechanical testing results for DOP-26. Specimens were given a vacuum recrystallization anneal of 1 hour at 1375 C and tested in tension in orientations parallel and perpendicular to the rolling direction of the sheet from which they were fabricated. The tests were performed at temperatures ranging from room temperature to 1090 C and strain rates ranging from 1 x 10{sup -3} to 50 s{sup -1}. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1 x 10{sup -4} Torr. The yield stress (YS) and the ultimate tensile stress (UTS) decreased with increasing temperature and increased with increasing strain rate. Between 600 and 1090 C, the ductility showed a slight increase with increasing temperature. Within the scatter of the data, the ductility did not depend on the strain rate. The reduction in area (RA), on the other hand, decreased with increasing strain rate. The YS and UTS values did not differ significantly for the longitudinal and transverse specimens. The ductility and RA values of the transverse specimens were marginally lower than those of the longitudinal specimens.

  11. Earth's Radiation Imbalance from a Constellation of 66 Iridium Satellites

    NASA Astrophysics Data System (ADS)

    Chiu, J. C.; Wiscombe, W. J.

    2012-04-01

    The Earth Radiation Imbalance (ERI) at the top of the atmosphere is the primary driving force for climate change. If ERI is not zero, then Earth's temperature, both oceanic and atmospheric, will change gradually over time, tending toward a new steady state. The best estimates of current ERI from climate models range from 0.4 to 0.9 W/m2 (the imbalance being caused mainly by increasing CO2), but current satellite systems do not have the accuracy to measure ERI to even one significant digit. In this paper, we will describe a proposed constellation of 66 Earth radiation budget instruments, to be hosted on Iridium satellites. This system represents a quantum leap over current systems in several ways, in particular in providing ERI to at least one significant digit, thus enabling a crucial test of climate models. Because of its 24/7 coverage, the system will also provide ERI at three-hourly time scales without requiring extrapolations from narrowband geostationary instruments. This would allow studies of ERI's response to fast-evolving phenomena like dust storms and hurricanes. This offers a new, synoptic view of Earth radiation budget that will transform it from a monthly average into a dynamical variable alongside standard meteorological variables like temperature and pressure.

  12. Reforming catalyst of separate platinum-containing and iridium-containing particles

    SciTech Connect

    Schoennagel, H.J.

    1981-04-21

    Catalyst compositions are provided comprising a refractory support, about 0.1 to about 2 percent by weight of platinum, about 0.1 to about 2 percent by weight of iridium and about 0.1 to about 5 weight percent of halogen where the platinum and iridium are contained on separate particles of said support. The relative weight ratio of the particles containing platinum and those containing iridium is between about 10:1 to about 1:10. The compositions are useful as hydrocarbon conversion catalysts and are especially applicable for use in catalyzing the reforming of naphtha petroleum fractions. There is also disclosed a reforming process conducted in the presence of hydrogen, under reforming conditions, in the presence of the above catalyst.

  13. Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.

    2006-09-01

    Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.

  14. C-H activation of ethers by pyridine tethered PCsp3P-type iridium complexes.

    PubMed

    Cui, Peng; Babbini, Dominic C; Iluc, Vlad M

    2016-06-14

    Iridium PCsp3P complexes featuring a novel bis(2-diphenylphosphinophenyl)-2-pyridylmethane ligand (PC(Py)HP) are reported. C-H activation reactions between the dihydride complex [(PC(Py)P)Ir(H)2] and tetrahydrofuran or methyl tert-butyl ether in the presence of a hydrogen acceptor, norbornene (NBE), at ambient temperature led exclusively to the hydrido oxyalkyl complexes, [(PC(Py)P)IrH(C4H7O)] and [(PC(Py)P)IrH(CH2O(t)Bu)], respectively. The internal pyridine donor is important and stabilizes these species by coordination to the iridium center. The coordination of pyridine to the iridium center is labile, however, and its dissociation occurs in the presence of a suitable substrate, as demonstrated by the intramolecular nucleophilic attack of pyridine on a vinylidene intermediate generated from PhC[triple bond, length as m-dash]CH.

  15. Heterogeneous Catalysis for Water Oxidation by an Iridium Complex Immobilized on Bipyridine-Periodic Mesoporous Organosilica.

    PubMed

    Liu, Xiao; Maegawa, Yoshifumi; Goto, Yasutomo; Hara, Kenji; Inagaki, Shinji

    2016-07-04

    Heterogenization of metal-complex catalysts for water oxidation without loss of their catalytic activity is important for the development of devices simulating photosynthesis. In this study, efficient heterogeneous iridium complexes for water oxidation were prepared using bipyridine-bridged periodic mesoporous organosilica (BPy-PMO) as a solid chelating ligand. The BPy-PMO-based iridium catalysts (Ir-BPy-PMO) were prepared by postsynthetic metalation of BPy-PMO and characterized through physicochemical analyses. The Ir-BPy-PMOs showed high catalytic activity for water oxidation. The turnover frequency (TOF) values for Ir-BPy-PMOs were one order of magnitude higher than those of conventional heterogeneous iridium catalysts. The reusability and stability of Ir-BPy-PMO were also examined, and detailed characterization was conducted using powder X-ray diffraction, nitrogen adsorption, (13) C DD MAS NMR spectroscopy, TEM, and XAFS methods.

  16. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    SciTech Connect

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  17. Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity.

    PubMed

    Lu, Lihua; Liu, Li-juan; Chao, Wei-chieh; Zhong, Hai-Jing; Wang, Modi; Chen, Xiu-Ping; Lu, Jin-Jian; Li, Ruei-nian; Ma, Dik-Lung; Leung, Chung-Hang

    2015-09-29

    Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus.

  18. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGES

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; ...

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  19. Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity

    PubMed Central

    Lu, Lihua; Liu, Li-Juan; Chao, Wei-chieh; Zhong, Hai-Jing; Wang, Modi; Chen, Xiu-Ping; Lu, Jin-Jian; Li, Ruei-nian; Ma, Dik-Lung; Leung, Chung-Hang

    2015-01-01

    Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus. PMID:26416333

  20. Activation of C-H bonds in nitrones leads to iridium hydrides with antitumor activity.

    PubMed

    Song, Xiaoda; Qian, Yong; Ben, Rong; Lu, Xiang; Zhu, Hai-Liang; Chao, Hui; Zhao, Jing

    2013-08-22

    We report the design and synthesis of a series of new cyclometalated iridium hydrides derived from the C-H bond activation of aromatic nitrones and the biological evaluation of these iridium hydrides as antitumor agents. The nitrone ligands are based on the structure of a popular antioxidant, α-phenyl-N-tert-butylnitrone (PBN). Compared to cisplatin, the iridium hydrides exhibit excellent antitumor activity on HepG2 cells. The metal-coordinated compound with the most potent anticancer activity, 2f, was selected for further analysis because of its ability to induce apoptosis and interact with DNA. During in vitro studies and in vivo efficacy analysis with tumor xenograft models in Institute of Cancer Research (ICR) mice, complex 2f exhibited antitumor activity that was markedly superior to that of cisplatin. Our results suggest, for the first time, that metal hydrides could be a new type of metal-based antitumor agent.