Science.gov

Sample records for iridium silicides

  1. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  2. Progress in doping of ruthenium silicide (Ru2Si3)

    NASA Technical Reports Server (NTRS)

    Vining, C. B.; Allevato, C. E.

    1992-01-01

    Ruthenium silicide is currently under development as a promising thermoelectric material suitable for space power applications. Key to realizing the potentially high figure of merit values of this material is the development of appropriate doping techniques. In this study, manganese and iridium have been identified as useful p- and n-type dopants, respectively. Resistivity values have been reduced by more than 3 orders of magnitude. Anomalous Hall effect results, however, complicate interpretation of some of the results and further effort is required to achieve optimum doping levels.

  3. Iridium in natural waters

    SciTech Connect

    Anbar, A.D.; Wasserburg, G.J.; Papanastassiou, D.A.

    1996-09-13

    Iridium, commonly used as a tracer of extraterrestrial material, was measured in rivers, oceans, and an estuarine environment. The concentration of iridium in the oceans ranges from 3.0 ({+-}1.3) x 10{sup 8} to 5.7 ({+-}0.8) x 10{sup 8} atoms per kilogram. Rivers contain from 17.4 ({+-}0.9) x 10{sup 8} to 92.9 ({+-}2.2) x 10{sup 8} atoms per kilogram and supply more dissolved iridium to the oceans than do extraterrestrial sources. In the Baltic Sea, {approximately}75% of riverine iridium is removed from solution. Iron-manganese oxyhydroxides scavenge iridium under oxidizing conditions, but anoxic environments are not a major sink for iridium. The ocean residence time of iridium is between 2 x 10{sup 3} and 2 x 10{sup 4} years. 32 refs., 3 figs., 1 tab.

  4. Processing of Iridium and Iridium Alloys

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    Iridium and its alloys have been considered to be difficult to fabricate due to their high melting temperatures, limited ductility, sensitivity to impurity content, and chemical properties. The variety of processing methods used for iridium and its alloys are reviewed, including purification, melting, forming, joining, and powder metallurgy techniques. Also included are coating and forming by the methods of electroplating, chemical and physical vapor deposition, and melt particle deposition.

  5. Surface morphology of erbium silicide

    NASA Technical Reports Server (NTRS)

    Lau, S. S.; Pai, C. S.; Wu, C. S.; Kuech, T. F.; Liu, B. X.

    1982-01-01

    The surface of rare-earth silicides (Er, Tb, etc.), formed by the reaction of thin-film metal layers with a silicon substrate, is typically dominated by deep penetrating, regularly shaped pits. These pits may have a detrimental effect on the electronic performance of low Schottky barrier height diodes utilizing such silicides on n-type Si. This study suggests that contamination at the metal-Si or silicide-Si interface is the primary cause of surface pitting. Surface pits may be reduced in density or eliminated entirely through either the use of Si substrate surfaces prepared under ultrahigh vacuum conditions prior to metal deposition and silicide formation or by means of ion irradiation techniques. Silicide layers formed by these techniques possess an almost planar morphology.

  6. Silicide surface phases on gold

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1981-01-01

    The crystalline silicide layers formed on (111) and (100) surfaces of Au films on various Si single-crystal substrates are studied by LEED and AES in conjunction with sputter-depth profiling as a function of annealing temperature. On the (111) surface, three basic silicide structures are obtained corresponding to layers of various thicknesses as obtained by different preparation conditions. The (100) surface shows only two different structures. None of the structures is compatible with the various bulk silicide structures deduced from X-ray diffraction. Using LEED as a criterion for the presence or absence of silicide on the surface, smaller layer thicknesses are obtained than reported previously on the basis of AES studies.

  7. Iridium/Iridium Silicide as an Oxidation Resistant Capping Layer for Soft X-ray Mirrors

    SciTech Connect

    Prisbrey, S; Vernon, S

    2004-04-05

    Rust on a sword, tarnish on the silverware, and a loss in reflectivity for soft x-ray mirrors are all caused by oxidation that changes the desired characteristics of a material. Methods to prevent the oxidation have varied over the centuries with the default method of a protective coating being the most common. The protective coating for x-ray mirrors is usually a self-limiting oxidized layer on the surface of the material that stops further oxidation of the material by limiting the diffusion of oxygen to the material underneath.

  8. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  9. Refining Radchem Detectors: Iridium

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bredeweg, T. A.; Vieira, D. J.; Bond, E. M.; Jandel, M.; Rusev, G.; Moody, W. A.; Ullmann, J. L.; Couture, A. J.; Mosby, S.; O'Donnell, J. M.; Haight, R. C.

    2013-10-01

    Accurate determination of neutron fluence is an important diagnostic of nuclear device performance, whether the device is a commercial reactor, a critical assembly or an explosive device. One important method for neutron fluence determination, generally referred to as dosimetry, is based on exploiting various threshold reactions of elements such as iridium. It is possible to infer details about the integrated neutron energy spectrum to which the dosimetry sample or ``radiochemical detector'' was exposed by measuring specific activation products post-irradiation. The ability of radchem detectors like iridium to give accurate neutron fluence measurements is limited by the precision of the cross-sections in the production/destruction network (189Ir-193Ir). The Detector for Advanced Neutron Capture Experiments (DANCE) located at LANSCE is ideal for refining neutron capture cross sections of iridium isotopes. Recent results from a measurement of neutron capture on 193-Ir are promising. Plans to measure other iridium isotopes are underway.

  10. Iridium Interfacial Stack (IRIS)

    NASA Technical Reports Server (NTRS)

    Spry, David James (Inventor)

    2015-01-01

    An iridium interfacial stack ("IrIS") and a method for producing the same are provided. The IrIS may include ordered layers of TaSi.sub.2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.

  11. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  12. Iridium: failures & successes

    NASA Astrophysics Data System (ADS)

    Christensen, CarissaBryce; Beard, Suzette

    2001-03-01

    This paper will provide an overview of the Iridium business venture in terms of the challenges faced, the successes achieved, and the causes of the ultimate failure of the venture — bankruptcy and system de-orbit. The paper will address technical, business, and policy issues. The intent of the paper is to provide a balanced and accurate overview of the Iridium experience, to aid future decision-making by policy makers, the business community, and technical experts. Key topics will include the history of the program, the objectives and decision-making of Motorola, the market research and analysis conducted, partnering strategies and their impact, consumer equipment availability, and technical issues — target performance, performance achieved, technical accomplishments, and expected and unexpected technical challenges. The paper will use as sources trade media and business articles on the Iridium program, technical papers and conference presentations, Wall Street analyst's reports, and, where possible, interviews with participants and close observers.

  13. On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface

    NASA Astrophysics Data System (ADS)

    Fatima, Can Oguz, Ismail; ćakır, Deniz; Hossain, Sehtab; Mohottige, Rasika; Gulseren, Oguz; Oncel, Nuri

    2016-09-01

    Iridium (Ir) modified Silicon (Si) (001) surface is studied with Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Density Functional Theory (DFT). A model for Ir-silicide nanowires based on STM images and ab-initio calculations is proposed. According to our model, the Ir adatom is on the top of the substrate dimer row and directly binds to the dimer atoms. I-V curves measured at 77 K shows that the nanowires are metallic. DFT calculations confirm strong metallic nature of the nanowires.

  14. Optical properties of beta-iron silicide, ruthenium silicide and osmium silicide: Semiconducting transition metal silicides

    NASA Astrophysics Data System (ADS)

    Birdwell, Anthony Glen

    2001-09-01

    Various optical techniques were used to study the semiconducting transition metal silicides of β- FeSi2, Ru2Si3, and OsSi2. The Raman spectra of ion beam synthesized (IBS) β-FeSi 2 were shown to provide evidence of a net tensile stress in these IBS materials. Possible origins of the observed stress were suggested and a simple model was proposed in order to calculate a value of the observed stress. A correlation between the tensile stress, the nature of the band gap, and the resulting light emitting properties of IBS β-FeSi2 was suggested. The photoreflectance (PR) spectra of IBS β- FeSi2 reveals a direct gap at 0.815 eV and were shown to agree with the band gap value obtained by photoluminescence (PL) once the adjustments for the temperature difference and trap related recombination effects were made. This provides very convincing evidence for intrinsic light emission from IBS β- FeSi2. Furthermore, a model was developed that helps to clarify the variety of inconsistent results obtained by optical absorption measurements. When the results of PL and PR were inserted into this model, a good agreement was obtained with our measured optical absorption results. We also obtained PR spectra of β-FeSi 2 thin films grown by molecular beam epitaxy. These spectra reveal the multiple direct transitions near the fundamental absorption edge of β-FeSi 2 that were predicted by theory. We suggest an order of these critical point transitions following the trends reported in the theoretical investigations. Doping these β-FeSi2 thin films with small amounts of chromium was shown to have a measurable effect on the interband optical spectra. We also report on the effects of alloying β- FeSi2 with cobalt. A decrease in the critical point transitions nearest the fundamental absorption edge was observed as the cobalt concentration increased. Finally, Raman spectroscopy was used to study the vibrational properties of β-FeSi2. The measured Raman spectra agreed very well with the

  15. Improved high-temperature silicide coatings

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Stephens, J. R.; Stetson, A. R.; Wimber, R. T.

    1969-01-01

    Special technique for applying silicide coatings to refractory metal alloys improves their high-temperature protective capability. Refractory metal powders mixed with a baked-out organic binder and sintered in a vacuum produces a porous alloy layer on the surface. Exposing the layer to hot silicon converts it to a silicide.

  16. Method for refining contaminated iridium

    DOEpatents

    Heshmatpour, B.; Heestand, R.L.

    1982-08-31

    Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

  17. Method for refining contaminated iridium

    DOEpatents

    Heshmatpour, Bahman; Heestand, Richard L.

    1983-01-01

    Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

  18. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Hollis, K.J.; Kung, H.H.

    1998-11-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries.

  19. On the kinetics of platinum silicide formation

    NASA Astrophysics Data System (ADS)

    Faber, Erik J.; Wolters, Rob A. M.; Schmitz, Jurriaan

    2011-02-01

    In this work, the kinetics of platinum silicide formation for thin Pt films (50 nm) on monocrystalline ⟨100⟩ silicon is investigated via in situ resistance measurements under isothermal (197-275 °C) conditions. For Pt2Si diffusion limited growth was observed. For PtSi formation, however, no linear relation between silicide thickness and √t was found. PtSi growth over time could be described using the Avrami relation rendering Avrami exponent n =1.4±0.1. Additionally, an effective activation energy EA=1.7±0.1 eV was derived using the Avrami k values. The findings are important for obtaining well defined silicide films and silicide-to-silicon contacts.

  20. Solar abundance of iridium

    PubMed Central

    Drake, Stephen; Aller, Lawrence H.

    1976-01-01

    By a method of spectrum synthesis, which yields log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance, an attempt is made to deduce the solar iridium abundance from one relatively unblended, but fairly weak IrI line, λ 3220.78 Å. If the Corliss-Bozman f-value for this line is adopted, we find log A(Ir) = 0.82 on the scale log A(H) = 12.00. The discordance with the value found from carbonaceous chondrites may arise from faulty f-values or from difficulties arising from line blending in this far ultraviolet domain of the solar spectrum. PMID:16578735

  1. Synthesis and Design of Silicide Intermetallic Materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Vaidya, R.U.; Park, Y.

    1999-05-14

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With the Exotherm Corporation, they are developing advanced silicide powders for the fabrication of silicide materials with tailored and improved properties for industrial applications. In October 1998, the authors initiated a new activity funded by DOE/OIT on ``Molybdenum Disilicide Composites for Glass Processing Sensors''. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts.

  2. METHOD OF FORMING TANTALUM SILICIDE ON TANTALUM SURFACES

    DOEpatents

    Bowman, M.G.; Krikorian, N.H.

    1961-10-01

    A method is described for forming a non-corrosive silicide coating on tantalum. The coating is made through the heating of trirhenium silicides in contact with the tantalum object to approximately 1400 deg C at which temperature trirhenium silicide decomposes into rhenium and gaseous silicons. The silicon vapor reacts with the tantalum surface to form a tantalum silicide layer approximately 10 microns thick. (AEC)

  3. Hydridomethyl iridium complex

    DOEpatents

    Bergman, Robert G.; Buchanan, J. Michael; Stryker, Jeffrey M.; Wax, Michael J.

    1989-01-01

    A process for functionalizing methane comprising: (a) reacting methane with a hydridoalkyl metal complex of the formula: CpIr[P(R.sub.1).sub.3 ]H(R.sub.2) wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical having from 1 to 5 carbon atoms; Ir represents an iridium atom; P represents a phosphorus atom; R.sub.1 represents an alkyl group; R.sub.2 represents an alkyl group having at least two carbon atoms; and H represents a hydrogen atom, in the presence of a liquid alkane R.sub.3 H having at least three carbon atoms to form a hydridomethyl complex of the formula: CpIr[P(R.sub.1).sub.3 ]HMe where Me represents a methyl radical. (b) reacting said hydridomethyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X"X'"X"" or CHX'X"X'"; wherein X', X", X"', and X"" represent halogens selected from bromine, iodine and chlorine, to halomethyl complex of step (a) having the formula: CpIr[P(R.sub.1).sub.3 ]MeX: (c) reacting said halomethyl complex with a mercuric halide of the formula HgX.sub.2 to form a methyl mercuric halide of the formula HgMeX; and (d) reacting said methyl mercuric halide with a molecular halogen of the formula X.sub.2 to form methyl halide.

  4. Robust micromachining of compliant mechanisms using silicides

    NASA Astrophysics Data System (ADS)

    Khosraviani, Kourosh; Leung, Albert M.

    2013-01-01

    We introduce an innovative sacrificial surface micromachining process that enhances the mechanical robustness of freestanding microstructures and compliant mechanisms. This process facilitates the fabrication, and improves the assembly yield of the out-of-plane micro sensors and actuators. Fabrication of a compliant mechanism using conventional sacrificial surface micromachining results in a non-planar structure with a step between the structure and its anchor. During mechanism actuation or assembly, stress accumulation at the structure step can easily exceed the yield strength of the material and lead to the structure failure. Our process overcomes this topographic issue by virtually eliminating the step between the structure and its anchor, and achieves planarization without using chemical mechanical polishing. The process is based on low temperature and post-CMOS compatible nickel silicide technology. We use a layer of amorphous silicon (a-Si) as a sacrificial layer, which is locally converted to nickel silicide to form the anchors. High etch selectivity between silicon and nickel silicide in the xenon difluoride gas (sacrificial layer etchant) enables us to use the silicide to anchor the structures to the substrate. The formed silicide has the same thickness as the sacrificial layer; therefore, the structure is virtually flat. The maximum measured step between the anchor and the sacrificial layer is about 10 nm on a 300 nm thick sacrificial layer.

  5. Temperature-dependent structure and phase variation of nickel silicide nanowire arrays prepared by in situ silicidation

    SciTech Connect

    Liu, Hailong; She, Guangwei; Mu, Lixuan; Shi, Wensheng

    2012-12-15

    Graphical abstract: Display Omitted Highlight: ► Nickel silicides nanowire arrays prepared by a simple in situ silicidation method. ► Phases of nickel silicides could be varied by tuning the reaction temperature. ► A growth model was proposed for the nickel silicides nanowires. ► Diffusion rates of Ni and Si play a critical role for the phase variation. -- Abstract: In this paper, we report an in situ silicidizing method to prepare nickel silicide nanowire arrays with varied structures and phases. The in situ reaction (silicidation) between Si and NiCl{sub 2} led to conversion of Si nanowires to nickel silicide nanowires. Structures and phases of the obtained nickel silicides could be varied by changing the reaction temperature. At a relatively lower temperature of 700 °C, the products are Si/NiSi core/shell nanowires or NiSi nanowires, depending on the concentration of NiCl{sub 2} solution. At a higher temperature (800 °C and 900 °C), other phases of the nickel silicides, including Ni{sub 2}Si, Ni{sub 31}Si{sub 12}, and NiSi{sub 2}, were obtained. It is proposed that the different diffusion rates of Ni and Si atoms at different temperatures played a critical role in the formation of nickel silicide nanowires with different phases.

  6. Chromium silicide formation by ion mixing

    NASA Technical Reports Server (NTRS)

    Shreter, U.; So, F. C. T.; Nicolet, M.-A.

    1984-01-01

    The formation of CrSi2 by ion mixing was studied as a function of temperature, silicide thickness and irradiated interface. Samples were prepared by annealing evaporated couples of Cr on Si and Si on Cr at 450 C for short times to form Si/CrSi2/Cr sandwiches. Xenon beams with energies up to 300 keV and fluences up to 8 x 10 to the 15th per sq cm were used for mixing at temperatures between 20 and 300 C. Penetrating only the Cr/CrSi2 interface at temperatures above 150 C induces further growth of the silicide as a uniform stoichiometric layer. The growth rate does not depend on the thickness of the initially formed silicide at least up to a thickness of 150 nm. The amount of growth depends linearly on the density of energy deposited at the interface. The growth is temperature dependent with an apparent activation energy of 0.2 eV. Irradiating only through the Si/CrSi2 interface does not induce silicide growth. It is concluded that the formation of CrSi2 by ion beam mixing is an interface-limited process and that the limiting reaction occurs at the Cr/CrSi2 interface.

  7. Challenges of nickel silicidation in CMOS technologies

    SciTech Connect

    Breil, Nicolas; Lavoie, Christian; Ozcan, Ahmet; Baumann, Frieder; Klymko, Nancy; Nummy, Karen; Sun, Bing; Jordan-Sweet, Jean; Yu, Jian; Zhu, Frank; Narasimha, Shreesh; Chudzik, Michael

    2015-04-01

    In our paper, we review some of the key challenges associated with the Ni silicidation process in the most recent CMOS technologies. The introduction of new materials (e.g.SiGe), and of non-planar architectures bring some important changes that require fundamental investigation from a material engineering perspective. Following a discussion of the device architecture and silicide evolution through the last CMOS generations, we focus our study on a very peculiar defect, termed NiSi-Fangs. We describe a mechanism for the defect formation, and present a detailed material analysis that supports this mechanism. We highlight some of the possible metal enrichment processes of the nickel monosilicide such as oxidation or various RIE (Reactive Ion Etching) plasma process, leading to a metal source available for defect formation. Furthermore, we investigate the NiSi formation and re-formation silicidation differences between Si and SiGe materials, and between (1 0 0) and (1 1 1) orientations. Finally, we show that the thermal budgets post silicidation can lead to the formation of NiSi-Fangs if the structure and the processes are not optimized. Beyond the understanding of the defect and the discussion on the engineering solutions used to prevent its formation, the interest of this investigation also lies in the fundamental learning within the Ni–Pt–Si–Ge system and some additional perspective on Ni-based contacts to advanced microelectronic devices.

  8. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  9. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    PubMed Central

    2012-01-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the ‘core/shell’ interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon. PMID:22548846

  10. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Wang, Han; Guo, Huaihong; Yang, Teng; Tang, Wen-Shu; Li, Da; Ma, Song; Geng, Dianyu; Liu, Wei; Zhang, Zhidong

    2012-05-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the `core/shell' interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon.

  11. Microwave absorption properties of Ni/(C, silicides) nanocapsules.

    PubMed

    Jiang, Jingjing; Wang, Han; Guo, Huaihong; Yang, Teng; Tang, Wen-Shu; Li, Da; Ma, Song; Geng, Dianyu; Liu, Wei; Zhang, Zhidong

    2012-05-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the 'core/shell' interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon.

  12. Solution synthesis of metal silicide nanoparticles.

    PubMed

    McEnaney, Joshua M; Schaak, Raymond E

    2015-02-01

    Transition-metal silicides are part of an important family of intermetallic compounds, but the high-temperature reactions that are generally required to synthesize them preclude the formation of colloidal nanoparticles. Here, we show that palladium, copper, and nickel nanoparticles react with monophenylsilane in trioctylamine and squalane at 375 °C to form colloidal Pd(2)Si, Cu(3)Si, and Ni(2)Si nanoparticles, respectively. These metal silicide nanoparticles were screened as electrocatalysts for the hydrogen evolution reaction, and Pd(2)Si and Ni(2)Si were identified as active catalysts that require overpotentials of -192 and -243 mV, respectively, to produce cathodic current densities of -10 mA cm(-2).

  13. Silicide formation and dopant diffusion in silicon

    NASA Astrophysics Data System (ADS)

    Wittmer, M.; Fahey, P.; Cotte, J.; Iyer, S. S.; Scilla, G. J.

    1992-05-01

    Recently, we reported that formation of Pd2Si from Pd induced asymmetric diffusion of buried dopant marker layers in the silicon substrate at surprisingly low temperatures (~200 °C) [M. Wittmer, P. Fahey, G. J. Scilla, S. S. Iyer, and M. Tejwani, Phys. Rev. Lett. 66, 632 (1991)]. We concluded that asymmetric diffusion could not be readily explained within the framework of existing diffusion theories. In this investigation we have examined in detail whether the observed asymmetries in profile shapes after silicidation could be induced by the secondary-ion mass spectroscopy (SIMS) profiling technique; however, we were unable to show that asymmetries can be attributed solely to the SIMS measurements. We have also utilized high-resolution Rutherford backscattering to confirm with another profiling technique that dopant diffusion does indeed occur as a result of the silicidation process.

  14. Rare Earth Metal Silicides and exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2009-11-01

    The use of Rare Earth Metal Silicides has been seen in thermal detection since World War II. What results can be expected when Rare Earths are used with certain isotopes? More to the point can exotic isotopes of Rare Earths be made from what is known more recently about Hadrons and their construction? What if anything can be gained from manipulating isotopes with a more recent theory than that known around World War II?

  15. Fusion silicide coatings for tantalum alloys.

    NASA Technical Reports Server (NTRS)

    Warnock, R. V.; Stetson, A. R.

    1972-01-01

    Calculation of the performance of fusion silicide coatings under simulated atmospheric reentry conditions to a maximum temperature of 1810 K (2800 F). Both recently developed and commercially available coatings are included. Data are presented on oxidation rate with and without intentional defecting, the influence of the coatings on the ductile-brittle bend transition temperature, and the mechanical properties. Coatings appear capable of affording protection for at least 100 simulated cycles to 2600 F and 63 cycles to 2800 F.

  16. Iridium material for hydrothermal oxidation environments

    DOEpatents

    Hong, Glenn T.; Zilberstein, Vladimir A.

    1996-01-01

    A process for hydrothermal oxidation of combustible materials in which, during at least a part of the oxidation, corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises iridium, iridium oxide, an iridium alloy, or a base metal overlaid with an iridium coating. Iridium has been found to be highly resistant to environments encountered in the process of hydrothermal oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 800.degree. C.

  17. Electronic Structure of Iridium Clusters on Graphene

    NASA Astrophysics Data System (ADS)

    Barker, Bradford A.; Bradley, Aaron J.; Ugeda, Miguel M.; Coh, Sinisa; Zettl, Alex; Crommie, Michael F.; Cohen, Marvin L.; Louie, Steven G.

    2015-03-01

    Graphene was predicted to exhibit non-trivial Z2 topology, but its exceedingly weak spin-orbit coupling prevented this from being observed. Previous theoretical work has proposed enhancing the spin-orbit coupling strength by depositing individual adatoms adsorbed onto the surface of graphene. We show experimental evidence that the iridium adatoms cluster, with a cluster size of at least two atoms. We investigate through theoretical calculations the orientation of the iridium dimers on graphene, contrast the electronic structure of iridium dimers with iridium monomers, and compare the theoretical iridium dimer electronic structure calculations with the experimental results determined via scanning tunneling spectroscopy. This work was supported by NSF Grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.

  18. Formation, structure, and orientation of gold silicide on gold surfaces

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1976-01-01

    The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.

  19. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  20. Diffusion - Reaction: The Oxidation of Silicides in Electronics and Elsewhere

    NASA Astrophysics Data System (ADS)

    D'Heurle, F. M.

    1995-11-01

    The present article is a review of the up-to-date state of knowledge about the oxidation of silicide in film and “bulk" forms. The oxidation of silicides is analyzed with due respect to thermodynamics but the emphasis is placed on the kinetics of the process. A distinction is made between what occurs with silicide thin films used as conductors in the electronic industry, where the silicides are always in presence of excess silicon, and in the oxidation of “bulk" silicide structural parts where this condition is not encountered. Use is made of a graphical approach that was originally used to illustrate the oxidation of Si itself. The kinetic analysis provides at least a qualitative explanation of the conditions that must be met in the electronic industry to maintain the integrity of silicide layers in oxidizing atmospheres, and of the conditions that cause the occurrence of the “pest" phenomenon in structural parts. Although attention is directed mostly to silicides, it is clear that the approach and the model used are valid for other refractory compounds, so that allusions are made also to aluminides and beryllides, etc. Marker experiments to probe the motion of atoms in the silicides during oxidation are analyzed. It is suggested that the relation between electron concentrations and oxidation rates is related to the decomposition of oxygen molecules.

  1. Thermal Stability of Magnesium Silicide/Nickel Contacts

    NASA Astrophysics Data System (ADS)

    de Boor, J.; Droste, D.; Schneider, C.; Janek, J.; Mueller, E.

    2016-06-01

    Magnesium silicide-based materials are a very promising class of thermoelectric materials with excellent potential for thermoelectric waste heat recovery. For the successful application of magnesium silicide-based thermoelectric generators, the development of long-term stable contacts with low contact resistance is as important as material optimization. We have therefore studied the suitability of Ni as a contact material for magnesium silicide. Co-sintering of magnesium silicide and Ni leads to the formation of a stable reaction layer with low electrical resistance. In this paper we show that the contacts retain their low electrical contact resistance after annealing at temperatures up to 823 K for up to 168 h. By employing scanning electron microscope analysis and time-of-flight (ToF)-secondary ion mass spectrometry, we can further show that elemental diffusion is occurring to a very limited extent. This indicates long-term stability under practical operation conditions for magnesium silicide/nickel contacts.

  2. Thermal Stability of Magnesium Silicide/Nickel Contacts

    NASA Astrophysics Data System (ADS)

    de Boor, J.; Droste, D.; Schneider, C.; Janek, J.; Mueller, E.

    2016-10-01

    Magnesium silicide-based materials are a very promising class of thermoelectric materials with excellent potential for thermoelectric waste heat recovery. For the successful application of magnesium silicide-based thermoelectric generators, the development of long-term stable contacts with low contact resistance is as important as material optimization. We have therefore studied the suitability of Ni as a contact material for magnesium silicide. Co-sintering of magnesium silicide and Ni leads to the formation of a stable reaction layer with low electrical resistance. In this paper we show that the contacts retain their low electrical contact resistance after annealing at temperatures up to 823 K for up to 168 h. By employing scanning electron microscope analysis and time-of-flight (ToF)-secondary ion mass spectrometry, we can further show that elemental diffusion is occurring to a very limited extent. This indicates long-term stability under practical operation conditions for magnesium silicide/nickel contacts.

  3. On the dissolution of iridium by aluminum.

    SciTech Connect

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  4. Cosine (Cobalt Silicide Growth Through Nitrogen-Induced Epitaxy) Process For Epitaxial Cobalt Silicide Formation For High Performance Sha

    SciTech Connect

    Lim, Chong Wee; Shin, Chan Soo; Gall, Daniel; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-09-28

    A method for forming an epitaxial cobalt silicide layer on a MOS device includes sputter depositing cobalt in an ambient to form a first layer of cobalt suicide on a gate and source/drain regions of the MOS device. Subsequently, cobalt is sputter deposited again in an ambient of argon to increase the thickness of the cobalt silicide layer to a second thickness.

  5. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1996-12-03

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  6. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1998-07-14

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  7. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1998-07-14

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  8. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1996-12-03

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  9. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1997-12-02

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  10. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1997-12-02

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  11. Tungsten silicide formation from sequentially sputtered tungsten and silicon films

    NASA Astrophysics Data System (ADS)

    Molarius, J. M.; Franssila, S.; Drozdy, G.; Saarilahti, J.

    1991-11-01

    As-deposited tungsten silicide films have typically high resistivity and require annealing to lower the resistivity to practical values. Rapid thermal annealing (RTA) has emerged as the main method because impurity diffusion in silicides is extremely fast. In this study we have explored the possibility of reducing the required thermal budget for tungsten silicide annealing by sputtering multilayer W /Si films. In addition to direct technological relevance, multilayer structures offer new insights into silicide formation. We propose a hypothesis "oxygen supply to interface ratio" for explaining why multilayer W /Si structures are beneficial for silicide formation. We have prevented the possible oxygen barrier formation at the W /Si interface by diminishing the oxygen supply by several means: substrate heating during deposition, multiple thin layers, a silicon capping layer and argon purging during RTA. Tetragonal WSi 2 is formed at 700°C and no silicon-rich phases are observed. Low-resistivity WSi 2 is produced by RTA at 1000°C, 120 s. Sheet resistance values around 3 ω/□ amends the use of tungsten silicide in practical polycide structures. The ultimate resistivity of our WSi 2, 30 μω · cm, is among the lowest reported for tungsten silicide, and it is achieved in a very straightforward fashion, using typical production equipment.

  12. Boron modified molybdenum silicide and products

    DOEpatents

    Meyer, M.K.; Akinc, M.

    1999-02-02

    A boron-modified molybdenum silicide material is disclosed having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo{sub 5}Si{sub 3} phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi{sub 2} heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo{sub 5}Si{sub 3} for structural integrity. 7 figs.

  13. Boron modified molybdenum silicide and products

    DOEpatents

    Meyer, Mitchell K.; Akinc, Mufit

    1999-02-02

    A boron-modified molybdenum silicide material having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo.sub.5 Si.sub.3 phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi.sub.2 heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo.sub.5 Si.sub.3 for structural integrity.

  14. ITEP MEVVA ion beam for rhenium silicide production

    SciTech Connect

    Kulevoy, T.; Seleznev, D.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Yakushin, P.; Petrenko, S.; Gerasimenko, N.; Medetov, N.; Zaporozhan, O.

    2010-02-15

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  15. Production of Mo-99 using low-enriched uranium silicide

    SciTech Connect

    Hutter, J. C.; Srinivasan, B.; Vicek, M.; Vandegrift, G. F.

    1994-09-01

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl{sub x} alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U{sub 3}Si{sub 2} miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed.

  16. A promising new thermoelectric material - Ruthenium silicide

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Mccormack, Joseph A.; Zoltan, Andrew; Zoltan, Leslie D.

    1991-01-01

    Experimental and theoretical efforts directed toward increasing thermoelectric figure of merit values by a factor of 2 or 3 have been encouraging in several respects. An accurate and detailed theoretical model developed for n-type silicon-germanium (SiGe) indicates that ZT values several times higher than currently available are expected under certain conditions. These new, high ZT materials are expected to be significantly different from SiGe, but not unreasonably so. Several promising candidate materials have been identified which may meet the conditions required by theory. One such candidate, ruthenium silicide, currently under development at JPL, has been estimated to have the potential to exhibit figure of merit values 4 times higher than conventional SiGe materials. Recent results are summarized.

  17. Valence photoelectron spectroscopy of Gd silicides

    SciTech Connect

    Braicovich, L. ); Puppin, E.; Lindau, I. ); Iandelli, A.; Olcese, G.L.; Palenzona, A. )

    1990-02-15

    Gd{sub 3}Si{sub 5}, GdSi, and Gd{sub 5}Si{sub 3} were investigated with photoemission spectroscopy in the photon-energy range 40.8--149 eV by exploiting the energy dependence of the photoemission cross sections and the valence resonance at the crossing of the Gd 4{ital d}-4{ital f} threshold. The modification of the spectra versus photon energy, along with their stoichiometry dependence, show the relevance of covalent mixed Gd 5{ital d}--Si 3{ital sp} states in the formation of the chemical bond. In the region close to the Fermi level an increase of the {ital d} contribution is observed. These points are discussed in connection with the existing models of the silicide bond.

  18. Salt passivation during anodic iridium dissolution in chloride melts

    SciTech Connect

    Saltykova, N.A.; Pechorskaya, L.S.; Baraboshkin, A.N.; Kotovskii, S.N.; Kosikhin, L.T.

    1986-11-01

    Anodic iridium dissolution in chloride melts at 500-700/sup 0/C was studied by potentiostatic, potentiodynamic, and galvanostatic techniques. It was found that an iridium anode is passivated by hexachloroiridates, first by the iridium (III) salt and at more positive potentials by the iridium (IV) salt. Values for anode resistance during passivation by salt films were calculated. It was shown that the morphology of the dissolving anode surface is determined by the value of polarization.

  19. IRIDIUM (R): A Lockheed transition to commercial space

    NASA Technical Reports Server (NTRS)

    Tadano, Thomas N.

    1995-01-01

    At Lockheed Missiles & Space Company, the IRIDIUM commercial space program is dramatically revolutionizing spacecraft development and manufacturing processes to reduce cost while maintaining quality and reliability. This report includes the following sections: an overview of the IRIDIUM system, the Lockheed IRIDIUM project and challenges; cycle-time reduction through production reorganization; and design for manufacturing and quality.

  20. Laser spectroscopy of iridium monoboride

    NASA Astrophysics Data System (ADS)

    Ye, Jianjun; Pang, H. F.; Wong, A. M.-Y.; Leung, J. W.-H.; Cheung, A. S.-C.

    2008-04-01

    High resolution laser induced fluorescence spectrum of IrB in the spectral region between 545 and 610nm has been recorded and analyzed. Reacting laser-ablated iridium atoms with 1% B2H6 seeded in argon produced the IrB molecule. This is the first experimental observation of the IrB molecule. Four vibronic transition bands, (v,0) with v =0-3 of an electronic transition system, have been observed. Spectra of all four isotopic molecules, Ir191B10, Ir193B10, Ir191B11, and Ir193B11, were recorded. Isotopic relationships confirmed the carrier of the spectra and the vibrational quantum number assignment. Preliminary analysis of rotational lines showed that these vibronic bands are with Ω'=2 and Ω″=3. The electronic transition identified is assigned as the [16.5]Π23-XΔ33 system. Partially resolved hyperfine structure which conforms to the Hund's case aβ coupling scheme has been observed and analyzed. The bond length r0 of the lower XΔ33 state of IrB was determined to be 1.7675Å.

  1. Laser Spectroscopy of Iridium Monochloride

    NASA Astrophysics Data System (ADS)

    Linton, Colan; Adam, Allan G.; Foran, Samantha; Ma, Tongmei; Steimle, Timothy

    2016-06-01

    Iridium monochloride (IrCl) molecules have been produced in the gas phase using laser ablation sources at the University of New Brunswick (UNB) and Arizona State University (ASU). Low resolution laser induced fluorescence (LIF) spectra, obtained at UNB using a pulsed dye laser, showed three bands at 557, 545 and 534 nm which appeared to form an upper state vibrational progression. Dispersed fluorescence (DF) spectra, obtained by exciting each band at its band head frequency, showed a ground state vibrational progression extending from v=0 to 6. High resolution spectra (FWHM=0.006 wn), taken using a cw ring dye laser, showed resolved rotational lines, broadened by unresolved Ir (I=3/2) hyperfine structure, in both the 193Ir35Cl and 191Ir35Cl isotopologues. Vibrational assignments of 0-0, 1-0 and 2-0 for the three bands were determined from the isotope structure and the rotational analysis showed the transition to be ^3Φ_4 - ^3Φ_4, similar to that previously observed in IrF. Higher resolution spectra (FWHM=0.001 wn) of the 1-0 band, obtained at ASU, showed resolved hyperfine structure from which the magnetic and quadrupole hyperfine parameters in the ground and excited states were determined. The interpretation of the hyperfine parameters in terms of the electron configurations will be presented along with a comparison of the properties of IrCl and IrF.

  2. Iridium emissions from Hawaiian volcanoes

    NASA Technical Reports Server (NTRS)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  3. Silicide Nanowires for Low-Resistance CMOS Transistor Contacts.

    NASA Astrophysics Data System (ADS)

    Zollner, Stefan

    2007-03-01

    Transition metal (TM) silicide nanowires are used as contacts for modern CMOS transistors. (Our smallest wires are ˜20 nm thick and ˜50 nm wide.) While much research on thick TM silicides was conducted long ago, materials perform differently at the nanoscale. For example, the usual phase transformation sequences (e.g., Ni, Ni2Si, NiSi, NiSi2) for the reaction of thick metal films on Si no longer apply to nanostructures, because the surface and interface energies compete with the bulk energy of a given crystal structure. Therefore, a NiSi film will agglomerate into hemispherical droplets of NiSi by annealing before it reaches the lowest-energy (NiSi2) crystalline structure. These dynamics can be tuned by addition of impurities (such as Pt in Ni). The Si surface preparation is also a more important factor for nanowires than for silicidation of thick TM films. Ni nanowires formed on Si surfaces that were cleaned and amorphized by sputtering with Ar ions have a tendency to form NiSi2 pyramids (``spikes'') even at moderate temperatures (˜400^oC), while similar Ni films formed on atomically clean or hydrogen-terminated Si form uniform NiSi nanowires. Another issue affecting TM silicides is the barrier height between the silicide contact and the silicon transistor. For most TM silicides, the Fermi level of the silicide is aligned with the center of the Si band gap. Therefore, silicide contacts experience Schottky barrier heights of around 0.5 eV for both n-type and p-type Si. The resulting contact resistance becomes a significant term for the overall resistance of modern CMOS transistors. Lowering this contact resistance is an important goal in CMOS research. New materials are under investigation (for example PtSi, which has a barrier height of only 0.3 eV to p-type Si). This talk will describe recent results, with special emphasis on characterization techniques and electrical testing useful for the development of silicide nanowires for CMOS contacts. In collaboration

  4. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.

    PubMed

    Jun, Dongsuk; Kim, Soojung; Choi, Wonchul; Kim, Junsoo; Zyung, Taehyoung; Jang, Moongyu

    2015-10-01

    We fabricated silicide/silicon hetero-junction structured thermoelectric device by CMOS process for the reduction of thermal conductivity with the scatterings of phonons at silicide/silicon interfaces. Electrical conductivities, Seebeck coefficients, power factors, and temperature differences are evaluated using the steady state analysis method. Platinum silicide/silicon multilayered structure showed an enhanced Seebeck coefficient and power factor characteristics, which was considered for p-leg element. Also, erbium silicide/silicon structure showed an enhanced Seebeck coefficient, which was considered for an n-leg element. Silicide/silicon multilayered structure is promising for thermoelectric applications by reducing thermal conductivity with an enhanced Seebeck coefficient. However, because of the high thermal conductivity of the silicon packing during thermal gradient is not a problem any temperature difference. Therefore, requires more testing and analysis in order to overcome this problem. Thermoelectric generators are devices that based on the Seebeck effect, convert temperature differences into electrical energy. Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, it is only in recent years that interest has increased in energy generation.

  5. Valence Band Control of Metal Silicide Films via Stoichiometry.

    PubMed

    Streller, Frank; Qi, Yubo; Yang, Jing; Mangolini, Filippo; Rappe, Andrew M; Carpick, Robert W

    2016-07-01

    The unique electronic and mechanical properties of metal silicide films render them interesting for advanced materials in plasmonic devices, batteries, field-emitters, thermoelectric devices, transistors, and nanoelectromechanical switches. However, enabling their use requires precisely controlling their electronic structure. Using platinum silicide (PtxSi) as a model silicide, we demonstrate that the electronic structure of PtxSi thin films (1 ≤ x ≤ 3) can be tuned between metallic and semimetallic by changing the stoichiometry. Increasing the silicon content in PtxSi decreases the carrier density according to valence band X-ray photoelectron spectroscopy and theoretical density of states (DOS) calculations. Among all PtxSi phases, Pt3Si offers the highest DOS due to the modest shift of the Pt5d manifold away from the Fermi edge by only 0.5 eV compared to Pt, rendering it promising for applications. These results, demonstrating tunability of the electronic structure of thin metal silicide films, suggest that metal silicides can be designed to achieve application-specific electronic properties. PMID:27322019

  6. Epitaxial silicide formation on recoil-implanted substrates

    SciTech Connect

    Hashimoto, Shin; Egashira, Kyoko; Tanaka, Tomoya; Etoh, Ryuji; Hata, Yoshifumi; Tung, R. T.

    2005-01-15

    An epitaxy-on-recoil-implanted-substrate (ERIS) technique is presented. A disordered surface layer, generated by forward recoil implantation of {approx}0.7-3x10{sup 15} cm{sup -2} of oxygen during Ar plasma etching of surface oxide, is shown to facilitate the subsequent epitaxial growth of {approx}25-35-nm-thick CoSi{sub 2} layers on Si(100). The dependence of the epitaxial fraction of the silicide on the recoil-implantation parameters is studied in detail. A reduction in the silicide reaction rate due to recoil-implanted oxygen is shown to be responsible for the observed epitaxial formation, similar to mechanisms previously observed for interlayer-mediated growth techniques. Oxygen is found to remain inside the fully reacted CoSi{sub 2} layer, likely in the form of oxide precipitates. The presence of these oxide precipitates, with only a minor effect on the sheet resistance of the silicide layer, has a surprisingly beneficial effect on the thermal stability of the silicide layers. The agglomeration of ERIS-grown silicide layers on polycrystalline Si is significantly suppressed, likely from a reduced diffusivity due to oxygen in the grain boundaries. The implications of the present technique for the processing of deep submicron devices are discussed.

  7. Hafnium silicide formation on Si(100) upon annealing

    SciTech Connect

    Siervo, A. de; Fluechter, C. R.; Weier, D.; Schuermann, M.; Dreiner, S.; Westphal, C.; Carazzolle, M. F.; Pancotti, A.; Landers, R.; Kleiman, G. G.

    2006-08-15

    High dielectric constant materials, such as HfO{sub 2}, have been extensively studied as alternatives to SiO{sub 2} in new generations of Si based devices. Hf silicate/silicide formation has been reported in almost all literature studies of Hf based oxides on Si, using different methods of preparation. A silicate interface resembles close to the traditional Si/SiO{sub 2}. The silicate very likely forms a very sharp interface between the Si substrate and the metal oxide, and would be suitable for device applications. However, the thermal instability of the interfacial silicate/oxide film leads to silicidation, causing a dramatic loss of the gate oxide integrity. Despite the importance of the Hf silicide surface and interface with Si, only a few studies of this surface are present in the literature, and a structural determination of the surface has not been reported. This paper reports a study of the Hf silicide formation upon annealing by using a combination of XPS, LEED, and x-ray photoelectron diffraction (XPD) analyses. Our results clearly indicate the formation of a unique ordered Hf silicide phase (HfSi{sub 2}), which starts to crystallize when the annealing temperature is higher than 550 deg. C.

  8. Valence Band Control of Metal Silicide Films via Stoichiometry.

    PubMed

    Streller, Frank; Qi, Yubo; Yang, Jing; Mangolini, Filippo; Rappe, Andrew M; Carpick, Robert W

    2016-07-01

    The unique electronic and mechanical properties of metal silicide films render them interesting for advanced materials in plasmonic devices, batteries, field-emitters, thermoelectric devices, transistors, and nanoelectromechanical switches. However, enabling their use requires precisely controlling their electronic structure. Using platinum silicide (PtxSi) as a model silicide, we demonstrate that the electronic structure of PtxSi thin films (1 ≤ x ≤ 3) can be tuned between metallic and semimetallic by changing the stoichiometry. Increasing the silicon content in PtxSi decreases the carrier density according to valence band X-ray photoelectron spectroscopy and theoretical density of states (DOS) calculations. Among all PtxSi phases, Pt3Si offers the highest DOS due to the modest shift of the Pt5d manifold away from the Fermi edge by only 0.5 eV compared to Pt, rendering it promising for applications. These results, demonstrating tunability of the electronic structure of thin metal silicide films, suggest that metal silicides can be designed to achieve application-specific electronic properties.

  9. Anomalous frequency dependent diamagnetism in metal silicide

    NASA Astrophysics Data System (ADS)

    Dahal, Ashutosh; Gunasekera, Jagat; Harriger, Leland; Singh, David J.; Singh, Deepak K.; Leland Harriger Collaboration

    Discovery of superconductivity in PbO-type FeSe has generated a lot of interest. Among the samples we synthesize with similar structure, NiSi has showed anomalous but very interesting results. Nickel silicides are important electronic materials that have been used as contacts for field effect transistors, as interconnects and in nanoelectronic devices. The magnetic properties of NiSi are not well known, however. In this presentation, we report a highly unusual magnetic phenomenon in NiSi. The ac susceptibility measurements on NiSi reveal strong frequency dependence of static and dynamic susceptibilities that are primarily diamagnetic at room temperature. The static susceptibility is found to exhibit a strong frequency dependence of the diamagnetic response below 100K, while dynamic susceptibility showed peak type feature at 10KHz frequency around 50K. Detailed neutron scattering measurements on high quality powder sample of NiSi on SPINS cold spectrometer further revealed an inelastic peak around 1.5meV, even though no magnetic order is detected. The inelastic peak dissipates above 100K, which is where the static susceptibility starts to diverge with frequency. Research is supported by U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-SC0014461.

  10. Thermoelectric Properties of Higher Manganese Silicide Nanowires

    NASA Astrophysics Data System (ADS)

    Moore, Arden; Higgins, Jeremy; Zhou, Feng; Jin, Song; Shi, Li

    2009-03-01

    Higher manganese silicides (HMS) have a relatively high thermoelectric figure of merit (ZT) of about 0.7. HMS nanowires have been synthesized using a chemical vapor deposition method. In this work, the thermoelectric properties of individual HMS nanowires are measured and analyzed to determine the role of size effects on electron and phonon transport as well as potential ZT enhancement. Measurements of Seebeck coefficient, electrical conductivity, and thermal conductivity were performed using both suspended and substrate-based microdevices. Results show that the Seebeck coefficient of two as-synthesized 60 nm diameter nanowires between 300-400K is about 25-50% lower than that of single crystal bulk parallel to the c-axis, while the electrical conductivity values are about 25% lower than bulk single crystal in the same direction. The thermal conductivity of one 60 nm diameter nanowire at room temperature was found to be four times smaller than the bulk value along the c-axis. The large reduction in thermal conductivity and small to moderate impact on electrical transport may lead to HMS nanowires with enhanced ZT.

  11. Iridium-catalyzed enantioselective polyene cyclization.

    PubMed

    Schafroth, Michael A; Sarlah, David; Krautwald, Simon; Carreira, Erick M

    2012-12-19

    A highly enantioselective polycyclization method has been developed using the combination of Lewis acid activation with iridium-catalyzed allylic substitution. This strategy relies on direct use of branched, racemic allylic alcohols and furnishes a diverse and unique set of carbo- and heteropolycyclic ring systems in good yields and ≥99% ee. PMID:23193947

  12. Note: electrochemical etching of sharp iridium tips.

    PubMed

    Lalanne, Jean-Benoît; Paul, William; Oliver, David; Grütter, Peter H

    2011-11-01

    We describe an etching procedure for the production of sharp iridium tips with apex radii of 15-70 nm, as determined by scanning electron microscopy, field ion microscopy, and field emission measurements. A coarse electrochemical etch followed by zone electropolishing is performed in a relatively harmless calcium chloride solution with high success rate.

  13. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, Jr., Furn F.; Butler, Thomas A.; Brihaye, Claude

    1987-01-01

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline.

  14. Iridium-192 Production for Cancer Treatment

    SciTech Connect

    Rostelato, M.E.C.M.; Silva, C.P.G.; Rela, P.R.; Zeituni, C.A.; Lepki, V.; Feher, A.

    2004-10-05

    The purpose of this work is to settle a laboratory for Iridium -192 sources production, that is, to determine a wire activation method and to build a hot cell for the wires manipulation, quality control and packaging. The paper relates, mainly, the wire activation method and its quality control. The wire activation is carried out in our nuclear reactor, IEA- R1m.

  15. Iridium-catalyzed enantioselective polyene cyclization.

    PubMed

    Schafroth, Michael A; Sarlah, David; Krautwald, Simon; Carreira, Erick M

    2012-12-19

    A highly enantioselective polycyclization method has been developed using the combination of Lewis acid activation with iridium-catalyzed allylic substitution. This strategy relies on direct use of branched, racemic allylic alcohols and furnishes a diverse and unique set of carbo- and heteropolycyclic ring systems in good yields and ≥99% ee.

  16. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, F.F. Jr.; Butler, T.A.; Brihaye, C.

    1985-08-26

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline. 4 figs. 3 tabs.

  17. Formation of cobalt silicide by ion beam mixing

    NASA Astrophysics Data System (ADS)

    Min, Ye; Burte, Edmund P.; Ryssel, Heiner

    1991-07-01

    The formation of cobalt silicides by arsenic ion implantation through a cobalt film which causes a mixing of the metal with the silicon substrate was investigated. Furthermore, cobalt suicides were formed by rapid thermal annealing (RTA). Sheet resistance and silicide phases of implanted Co/Si samples depend on the As dose. Ion beam mixing at doses higher than 5 × 10 15 cm -2 and RTA at temperatures T ⩾ 900° C result in almost equal values of Rs. RBS and XRD spectra of these samples illustrate the formation of a homogeneous CoSi 2 layer. Significant lateral growth of cobalt silicide beyond the edge of patterned SiO 2 was observed in samples which were only subjected to an RTA process ( T ⩾ 900 ° C), while this lateral suicide growth could be reduced efficiently by As implantation prior to RTA.

  18. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  19. Identification and quantification of iron silicide phases in thin films

    SciTech Connect

    Miquita, D. R.; Gonzalez, J. C.; Silva, M. I. N. da; Rodrigues, W. N.; Moreira, M. V. B.; Paniago, R.; Ribeiro-Andrade, R.; Magalhaes-Paniago, R.; Pfannes, H.-D.; Oliveira, A. G. de

    2008-09-15

    Iron silicide samples were grown on Si (111) substrates by solid phase epitaxy and reactive deposition epitaxy. The different iron silicide phases and their correlations with the growth parameters were analyzed by x-ray photoelectron spectroscopy, conversion electron Moessbauer spectroscopy, x-ray diffraction, atomic force microscopy, and magnetic force microscopy. The authors investigated the potential of each technique for identifying and quantifying of the phases. In particular, the authors used a semiquantitative analysis of magnetic force microscopy images to spatially resolve the semiconductor {beta}-FeSi{sub 2} phase.

  20. Application of the Iridium Satellite System to Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Meza, Mike; Gupta, Om

    2008-01-01

    The next generation air transportation system will require greater air-ground communications capacity to accommodate more air traffic with increased safety and efficiency. Communications will remain primarily terrestrially based, but satellite communications will have an increased role. Inmarsat s aeronautical services have been approved and are in use for aeronautical safety communications provided by geostationary satellites. More recently the approval process for the Iridium low earth orbit constellation is nearing completion. The current Iridium system will be able to provide basic air traffic services communications suitable for oceanic, remote and polar regions. The planned second generation of the Iridium system, called Iridium NEXT, will provide enhanced capabilities and enable a greater role in the future of aeronautical communications. This paper will review the potential role of satellite communications in the future of air transportation, the Iridium approval process and relevant system testing, and the potential role of Iridium NEXT.

  1. Deposition of aluminide and silicide based protective coatings on niobium

    NASA Astrophysics Data System (ADS)

    Majumdar, S.; Arya, A.; Sharma, I. G.; Suri, A. K.; Banerjee, S.

    2010-11-01

    We compare aluminide and alumino-silicide composite coatings on niobium using halide activated pack cementation (HAPC) technique for improving its oxidation resistance. The coated samples are characterized by SEM, EDS, EPMA and hardness measurements. We observe formation of NbAl3 in aluminide coating of Nb, though the alumino-silicide coating leads to formation primarily of NbSi2 in the inner layer and a ternary compound of Nb-Si-Al in the outer layer, as reported earlier (Majumdar et al. [11]). Formation of niobium silicide is preferred over niobium aluminide during alumino-silicide coating experiments, indicating Si is more strongly bonded to Nb than Al, although equivalent quantities of aluminium and silicon powders were used in the pack chemistry. We also employ first-principles density functional pseudopotential-based calculations to calculate the relative stability of these intermediate phases and the adhesion strength of the Al/Nb and Si/Nb interfaces. NbSi2 exhibits much stronger covalent character as compared to NbAl3. The ideal work of adhesion for the relaxed Al/Nb and Si/Nb interfaces are calculated to be 3226 mJ/m2 and 3545 mJ/m2, respectively, indicating stronger Nb-Si bonding across the interface.

  2. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, J. T.; Kazaroff, J. M.; Appel, M. A.

    1989-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the melting temperature of iridium, 2400 C (4350 F).

  3. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, John T.; Kazaroff, John M.; Appel, Marshall A.

    1988-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the meltimg temperature of iridium, 2400 C (4350 F).

  4. Handling System for Iridium-192 Seeds

    NASA Technical Reports Server (NTRS)

    Carpenter, W.; Wodicka, D.

    1973-01-01

    A complete system is proposed for safe handling of iridium-192 seeds used to internally irradiate malignant growths. A vibratory hopper feeds the seeds onto a transport system for deposit in a magazine or storage area. A circular magazine consisting of segmented plastic tubing with holes in the walls to accommodate the seeds seems feasible. The magazine is indexed to stop and release a seed for calibration and deposition.

  5. Texture in thin film silicides and germanides: A review

    NASA Astrophysics Data System (ADS)

    De Schutter, B.; De Keyser, K.; Lavoie, C.; Detavernier, C.

    2016-09-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi2, C54-TiSi2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si1-xGex in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  6. Study of nickel silicide formation by physical vapor deposition techniques

    NASA Astrophysics Data System (ADS)

    Pancharatnam, Shanti

    Metal silicides are used as contacts to the highly n-doped emitter in photovoltaic devices. Thin films of nickel silicide (NiSi) are of particular interest for Si-based solar cells, as they form at lower temperature and consume less silicon. However, interfacial oxide limits the reduction in sheet resistance. Hence, different diffusion barriers were investigated with regard to optimizing the conductivity and thermal stability. The formation of NiSi, and if it can be doped to have good contact with the n-side of a p-n junction were studied. Reduction of the interfacial oxide by the interfacial Ti layer to allow the formation of NiSi was observed. Silicon was treated in dilute hydrofluoric acid for removing the surface oxide layer. Ni and a Ti diffusion barrier were deposited on Si by physical vapor deposition (PVD) methods - electron beam evaporation and sputtering. The annealing temperature and time were varied to observe the stability of the deposited film. The films were then etched to observe the retention of the silicide. Characterization was done using scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and Rutherford back scattering (RBS). Sheet resistance was measured using the four-point probe technique. Annealing temperatures from 300°C showed films began to agglomerate indicating some diffusion between Ni and Si in the Ti layer, also supported by the compositional analysis in the Auger spectra. Films obtained by evaporation and sputtering were of high quality in terms of coverage over substrate area and uniformity. Thicknesses of Ni and Ti were optimized to 20 nm and 10 nm respectively. Resistivity was low at these thicknesses, and reduced by about half post annealing at 300°C for 8 hours. Thus a low resistivity contact was obtained at optimized thicknesses of the metal layers. It was also shown that some silicide formation occurs at temperatures starting from 300°C and can thus be used to make good silicide contacts.

  7. Iridium isotope ratio measurements by negative thermal ionization mass spectrometry and atomic weight of iridium

    NASA Astrophysics Data System (ADS)

    Walczyk, Thomas; Heumann, Klaus G.

    1993-02-01

    A technique of negative thermal ionization mass spectrometry (NTI-MS) for the precise iridium isotope ratio determination is presented. IrO-2 and IrO-3 ions are formed in a double-filament (Pt) ion source using (NH4)2IrCl6 as a sample compound. The IrO-2 ion current always exceeds the IrO-3 current by a factor of about 50-300 depending on the filament temperature and the oxygen gas introduced into the ion source. IrO-3 ion currents of more than 10-11 A can be obtained at the detector side from 100 ng iridium samples. The relative standard deviation of the 191Ir/193 ratio determination is 0.06%, which is much better than the data quoted in past literature. From such data the atomic weight of iridium could be calculated to be 192.21661 ± 0.00029. This value is a great improvement when compared with the iridium atomic weight of 192.22 ± 0.03 recommended by IUPAC. Additionally, an NTI-MS technique has been developed which allows the simultaneous measurement of iridium and osmium isotope ratio from osmiridium samples without any chemical separation. The iridium isotope ratios of three osmiridium samples agree well with the ratios determined from the hexachloroiridate compound. The direct 187Os/186OS determination from osmiridium samples opens the possibility of studying the evolution of osmium in the Earth's mantle due to the radioactive decay of 187Re into 187Os.

  8. Iridium Abundances across the Ordovician-Silurian Stratotype

    NASA Astrophysics Data System (ADS)

    Wilde, Pat; Berry, William B. N.; Quinby-Hunt, Mary S.; Orth, Charles J.; Quintana, Leonard R.; Gilmore, James S.

    1986-07-01

    Chemostratigraphic analyses in the Ordovician-Silurian boundary stratotype section, bracketing a major extinction event in the graptolitic shale section at Dob's Linn, Scotland, show persistently high iridium concentrations of 0.050 to 0.250 parts per billion. There is no iridium concentration spike in the boundary interval or elsewhere in the 13 graptolite zones examined encompassing about 20 million years. Iridium correlated with chromium, both elements showing a gradual decrease with time into the middle part of the Lower Silurian. The chromium-iridium ratio averages about 106. Paleogeographic and geologic reconstructions coupled with the occurrence of ophiolites and other deep crustal rocks in the source area suggest that the high iridium and chromium concentrations observed in the shales result from terrestrial erosion of exposed upper mantle ultramafic rocks rather than from a cataclysmic extraterrestrial event.

  9. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    NASA Astrophysics Data System (ADS)

    Ozcan, Ahmet S.; Lavoie, Christian; Alptekin, Emre; Jordan-Sweet, Jean; Zhu, Frank; Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M.

    2016-04-01

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  10. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.

    PubMed

    Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles

    2015-07-10

    Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields. PMID:26086207

  11. Schottky Barrier Inhomogeneities in Nickel Silicide Transrotational Contacts

    NASA Astrophysics Data System (ADS)

    Alberti, Alessandra; Roccaforte, Fabrizio; Libertino, Sebania; Bongiorno, Corrado; La Magna, Antonino

    2011-11-01

    Ni-silicide/silicon Schottky contacts have been realised by promoting low-temperature Ni-Si interdiffusion during deposition (˜50 °C) and reaction (450 °C) on an oxygen-free [001] silicon surface. A 14 nm transrotational NiSi layer was produced made of extremely flat pseudo-epitaxial domains (˜200 nm in diameter). The current-voltage (I-V) characteristics (340-80 K) have indicated the presence of structural inhomogeneities which lower the Schottky barrier by Δ≈0.1 eV. They have been associated with the core regions of the trans-domains (wherein the silicide lattice is epitaxially aligned to that of Si) since their density (˜2.5×109 cm-2) and dimension (˜10 nm) fit the I-V curves vs temperature following the Tung's approach.

  12. Oxidation behavior of molybdenum silicides and their composites

    SciTech Connect

    Natesan, K.; Deevi, S. C.

    2000-04-03

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo{sub 5}Si{sub 3} alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi{sub 2}-Si{sub 3}N{sub 4} composites that contained 20--80 vol.% Si{sub 3}N{sub 4} were evaluated at 500--1,400 C.

  13. Infrared and Raman characterization of beta iron silicide

    NASA Astrophysics Data System (ADS)

    Lefki, K.; Muret, P.; Bustarret, E.; Boutarek, N.; Madar, R.; Chevrier, J.; Derrien, J.; Brunel, M.

    1991-12-01

    Samples of beta-iron silicide were prepared by three different methods : solid phase reaction on silicon (111), on a monocrystaline FeSi substrate, and from the melt. These samples have been characterized by x-ray diffraction and investigated by Infrared and Raman spectroscopies. The infrared and Raman lines are compared with theoretical predictions given by the factor group analysis of the silicide primitive cell, which yields the number and the symmetry of the different modes. We relate the red shift of the Infrared and Raman lines on samples with smaller lattice parameters to the presence of Iron vacancies in films deposited on silicon, in agreement with the sign of the thermoelectric power.

  14. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.

    PubMed

    Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles

    2015-07-10

    Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields.

  15. Iridium/Rhenium Parts For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Harding, John T.; Wooten, John R.

    1991-01-01

    Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.

  16. Validation of EXAFS Analysis of Iridium Compounds

    NASA Astrophysics Data System (ADS)

    Feiters, M. C.; Longo, A.; Banerjee, D.; van der Ham, C. J. M.; Hetterscheid, D. G. H.

    2016-05-01

    Results of iridium L3 edge EXAFS measurements of compounds relevant for water oxidation catalysis are compared to those of other structural techniques. The structural results from EXAFS for the Ir compounds investigated here compare well to those of other structural techniques. Multiple scattering contributions are important in the coordinated Cp* and NHC ligands as well as in the IrCl6 unit and the IrO2 rutile structure. NHC is relatively weak compared to Ir, Cl, and even Cp* and O, and often out of phase with the other contributions.

  17. Characteristics of a promising new thermoelectric material - Ruthenium silicide

    NASA Technical Reports Server (NTRS)

    Ohta, Toshitaka; Vining, Cronin B.; Allevato, Camillo E.

    1991-01-01

    A preliminary study on arc-melted samples has indicated that ruthenium silicide has the potential to obtain figure-of-merit values four times higher than that of conventional silicon-germanium material. In order to realize the high figure-of-merit values, high-quality crystal from the melt is needed. A Bridgman-like method has been employed and has realized much better crystals than arc-melted ones.

  18. Processing, Microstructure, and Properties of Multiphase Mo Silicide Alloys

    SciTech Connect

    Heatherly, L.; Liu, C.T.; Schneibel, J.H.

    1998-11-30

    Multiphase Mo silicide alloys containing T2 (Mo{sub 5}SiB{sub 2}), Mo{sub 3}Si and Mo phases where prepared by both melting and casting (M and C) and powder metallurgical (PM) processes. Glassy phases are observed in PM materials but not in M and C materials. Microstructural studies indicate that the primary phase is Mo-rich solid solution in alloys containing {le}(9.4Si+13.8B, at. %) and T2 in alloys with {ge}(9.8Si+14.6B). An eutectic composition is estimated to be close to Mo-9.6Si-14.2B. The mechanical properties of multiphase silicide alloys were determined by hardness, tensile and bending tests at room temperature. The multiphase alloy MSB-18 (Mo-9.4Si-13.8B) possesses a flexure strength distinctly higher than that of MoSi{sub 2} and other Mo{sub 5}Si{sub 3} silicide alloys containing no Mo particles. Also, MSB-18 is tougher than MoSi{sub 2} by a factor of 4.

  19. Increasing the heat resistance of vanadium by siliciding

    SciTech Connect

    Lyutyi, E.M.; Tsvikilevich, O.S.; Shirokov, V.V.; Stepanishin, V.I.

    1988-01-01

    The purpose of this article was to evaluate the influence of modifier metals on the protective properties of silicide coatings in heating of vanadium in air and also on the mechanical properties of type VnM-2 unalloyed vanadium and VTsU alloy. Coatings were produced by diffusion impregnation from molten sodium with silicon or silicides of the modifying elements. The silicides of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, chromium, tungsten, rhenium, and nickel were investigated using x-ray spectrometric and hardness investigations and x-ray diffractometric analysis. The protective properties of the coatings were determined from the relative change in weight of the samples with and without coatings during isothermal oxidation in air at 1073/sup 0/K and also by differential thermal analysis. The influence of the coating on the mechanical properties of the material was also investigated using a borosilicide coating. High-temperature vacuum annealing was assessed as a method for restoring the plastic properties and relieving the stresses of vanadium and VTsU alloy subsequent to coating.

  20. Silicidation of Niobium Deposited on Silicon by Physical Vapor Deposition

    SciTech Connect

    Coumba Ndoye, Kandabara Tapily, Marius Orlowski, Helmut Baumgart, Diefeng Gu

    2011-07-01

    Niobium was deposited by physical vapor deposition (PVD) using e-beam evaporation on bare (100) silicon substrates and SiO2 surfaces. The formation of niobium silicide was investigated by annealing PVD Nb films in the temperatures range 400–1000°C. At all elevated annealing temperatures the resistivity of Nb silicide is substantially higher than that of Nb. The Nb silicidation as a function of temperature has been investigated and different NbXSiy compounds have been characterized. It has been observed that the annealing of the Nb film on Si is accompanied by a strong volume expansion of about 2.5 of the resulting reacted film. The films' structural properties were studied using X-Ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM), which was not previously presented in the context of the extant NbSi literature. The X-Ray diffraction characterization of the Nb on Si sample annealed at 1000°C, showed the presence of hexagonal Nb5Si3 phases, with a dominant peak at the (200) plane, and NbSi2 phases. Fractal dimension calculations indicate a distinct transition from Stranski-Krastanov to Volmer-Weber film growth for NbSi formation at the annealing temperature of 600°C and above.

  1. Nanoscale contact engineering for Silicon/Silicide nanowire devices

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chen

    Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at nanoscale have indicated possible deviations from the bulk and the thin film system. Here we studied growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction. We have grown single crystal PtSi nanowires and PtSi/Si/PtSi nanowire heterostructures through solid state reaction. TEM studies show that the heterostructures have atomically sharp interfaces free of defects. Electrical measurement of PtSi nanowires shows a low resistivity of ˜28.6 μΩ·cm and a high breakdown current density beyond 108 A/cm2. Furthermore, using single-crystal PtSi/Si/PtSi nanowire heterostructures with atomically clean interfaces, we have fabricated p-channel enhancement mode transistors with the best reported performance for intrinsic silicon nanowires to date. In our results, silicide can provide a clean and no Fermi level pinning interface and then silicide can form Ohmic-contact behavior by replacing the source/drain metal with PtSi. It has been proven by our experiment by contacting PtSi with intrinsic Si nanowires (no extrinsic doping) to achieve high performance p-channel device. By utilizing the same approach, single crystal MnSi nanowires and MnSi/Si/MnSi nanowire heterojunction with atomically sharp interfaces can also been grown. Electrical transport studies on Mn

  2. Formation of Cobalt Silicide Films by Ion Beam Deposition

    SciTech Connect

    Zhang, Yanwen; McCready, David E.; Wang, Chong M.; Young, James S.; Mckinley, Mathew I.; Whitlow, Harry J.; Razpet, Alenka; Possnert, Göran; Zhang, Tonghe; Wu, Yuguang

    2006-01-01

    Thin films of cobalt silicide are widely used as metallization in very large-scale integrated electronic circuits. In this study, Co ions were deposited on Si (111) wafers by a high beam current filter metal vacuum arc deposition (FMEVAD) system. Surface silicide films were formed after annealing from 500 to 700 C for 30 minutes. Cobalt depth profiles and contaminations were determined using Rutherford backscattering spectrometry (RBS) and time-of-flight energy elastic recoil detection analysis (ToF-E ERDA). The polycrystalline cobalt silicide phases formed were characterized by grazing-incidence x-ray diffraction (GIXRD). The surface topography development and interfaces have been investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that a thin CoSi2 surface layer with both a smooth surface topography and sharp interface can be achieved by annealing at 700 C. The CoSi phase and O contamination were observed in the samples that were annealed at lower temperatures.

  3. Iridium wire grid polarizer fabricated using atomic layer deposition.

    PubMed

    Weber, Thomas; Käsebier, Thomas; Szeghalmi, Adriana; Knez, Mato; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2011-10-25

    In this work, an effective multistep process toward fabrication of an iridium wire grid polarizer for UV applications involving a frequency doubling process based on ultrafast electron beam lithography and atomic layer deposition is presented. The choice of iridium as grating material is based on its good optical properties and a superior oxidation resistance. Furthermore, atomic layer deposition of iridium allows a precise adjustment of the structural parameters of the grating much better than other deposition techniques like sputtering for example. At the target wavelength of 250 nm, a transmission of about 45% and an extinction ratio of 87 are achieved.

  4. Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation

    SciTech Connect

    Lee, J.-G.; Nagase, T.; Yasuda, H.; Mori, H.

    2015-05-21

    The synthesis of metal silicide at the metal/silicon oxide interface by electronic excitation was investigated using transmission electron microscopy. A platinum silicide, α-Pt{sub 2}Si, was successfully formed at the platinum/silicon oxide interface under 25–200 keV electron irradiation. This is of interest since any platinum silicide was not formed at the platinum/silicon oxide interface by simple thermal annealing under no-electron-irradiation conditions. From the electron energy dependence of the cross section for the initiation of the silicide formation, it is clarified that the silicide formation under electron irradiation was not due to a knock-on atom-displacement process, but a process induced by electronic excitation. It is suggested that a mechanism related to the Knotek and Feibelman mechanism may play an important role in silicide formation within the solid. Similar silicide formation was also observed at the palladium/silicon oxide and nickel/silicon oxide interfaces, indicating a wide generality of the silicide formation by electronic excitation.

  5. Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Pike, W. T.

    1992-01-01

    We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.

  6. Defect-free erbium silicide formation using an ultrathin Ni interlayer.

    PubMed

    Choi, Juyun; Choi, Seongheum; Kang, Yu-Seon; Na, Sekwon; Lee, Hoo-Jeong; Cho, Mann-Ho; Kim, Hyoungsub

    2014-08-27

    An ultrathin Ni interlayer (∼1 nm) was introduced between a TaN-capped Er film and a Si substrate to prevent the formation of surface defects during thermal Er silicidation. A nickel silicide interfacial layer formed at low temperatures and incurred uniform nucleation and the growth of a subsequently formed erbium silicide film, effectively inhibiting the generation of recessed-type surface defects and improving the surface roughness. As a side effect, the complete transformation of Er to erbium silicide was somewhat delayed, and the electrical contact property at low annealing temperatures was dominated by the nickel silicide phase with a high Schottky barrier height. After high-temperature annealing, the early-formed interfacial layer interacted with the growing erbium silicide, presumably forming an erbium silicide-rich Er-Si-Ni mixture. As a result, the electrical contact property reverted to that of the low-resistive erbium silicide/Si contact case, which warrants a promising source/drain contact application for future high-performance metal-oxide-semiconductor field-effect transistors.

  7. Formation of low resistivity titanium silicide gates in semiconductor integrated circuits

    DOEpatents

    Ishida, Emi

    1999-08-10

    A method of forming a titanium silicide (69) includes the steps of forming a transistor having a source region (58), a drain region (60) and a gate structure (56) and forming a titanium layer (66) over the transistor. A first anneal is performed with a laser anneal at an energy level that causes the titanium layer (66) to react with the gate structure (56) to form a high resistivity titanium silicide phase (68) having substantially small grain sizes. The unreacted portions of the titanium layer (66) are removed and a second anneal is performed, thereby causing the high resistivity titanium silicide phase (68) to convert to a low resistivity titanium silicide phase (69). The small grain sizes obtained by the first anneal allow low resistivity titanium silicide phase (69) to be achieved at device geometries less than about 0.25 micron.

  8. Iridium anomaly approximately synchronous with terminal eocene extinctions

    SciTech Connect

    Alvarez, W.; Asaro, F.; Michel, H.V.; Alvarez, L.W.

    1982-05-21

    An iridium anomaly has been found in coincidence with the known microtektite level in cores from Deep Sea Drilling Project site 149 in the Caribbean Sea. The iridium was probably not in the microtektites but deposited simultaneously with them; this could occur if the iridium was deposited from a dust cloud resulting from a bolide impact, as suggested for the anomaly associated with the Cretaceous-Tertiary boundary. Other workers have deduced that the microtektites are part of the North American strewn tektite field, which is dated at about 34 million years before present, and that the microtektite horizon in deep-sea cores is synchronous with the extinction of five radiolarian species. Mass extinctions also occur in terrestrial mammals within 4 million years of this time. The iridium anomaly and the tektites and microtektites are supportive of a major bolide impact about 34 million years ago.

  9. Iridium anomaly approximately synchronous with terminal eocene extinctions.

    PubMed

    Alvarez, W; Asaro, F; Michel, H V; Alvarez, L W

    1982-05-21

    An iridium anomaly has been found in coincidence with the known microtektite level in cores from Deep Sea Drilling Project site 149 in the Caribbean Sea. The iridium was probably not in the microtektites but deposited simultaneously with them; this could occur if the iridium was deposited from a dust cloud resulting from a bolide impact, as suggested for the anomaly associated with the Cretaceous-Tertiary boundary. Other workers have deduced that the microtektites are part of the North American strewn tektite field, which is dated at about 34 million years before present, and that the microtektite horizon in deep-sea cores is synchronous with the extinction of five radiolarian species. Mass extinctions also occur in terrestrial mammals within 4 million years of this time. The iridium anomaly and the tektites and microtektites are supportive of a major bolide impact about 34 million years ago.

  10. Acute radiodermatitis from occupational exposure to iridium 192

    SciTech Connect

    Becker, J.; Rosen, T. )

    1989-12-01

    Industrial radiography using the man-made radioisotope iridium 192 is commonplace in the southern states. Despite established procedures and safeguards, accidental exposure may result in typical acute radiodermatitis. We have presented a clinical example of this phenomenon.9 references.

  11. Membrane-disrupting iridium(iii) oligocationic organometallopeptides.

    PubMed

    Salvadó, Iria; Gamba, Ilaria; Montenegro, Javier; Martínez-Costas, José; Brea, Jose Manuel; Loza, María Isabel; Vázquez López, Miguel; Vázquez, M Eugenio

    2016-09-21

    A series of oligoarginine peptide derivatives containing cyclometallated iridium(iii) units display remarkable cytotoxicity, comparable to that of cisplatin. In vitro studies with unilamellar vesicles support a membrane-disrupting mechanism of action.

  12. Scattering effects on the dosimetry of iridium-192

    SciTech Connect

    Serago, C.F. Department of Radiation Oncology, University of Miami, Miami, Florida ); Houdek, P.V. ); Pisciotta, V. ); Schwade, J.G. ); Abitbol, A.A.; Lewin, A.A. Department of Radiation Oncology, University of Miami, Miami, Florida ); Poole, D.O. ); Marcial-Vega, V. )

    1991-11-01

    Dosimetry calculations for iridium-192 sources generally assume that a sufficient medium surrounds both the iridium source(s) and the point of calculation so that full scattering conditions exist. In several clinical applications the iridium sources may be anatomically located so that the full scattering requirement is not satisfied. To assess the magnitude of this problem, relative measurements were made with a small ionization chamber in phantoms near air and lung-equivalent interfaces. Dose reduction caused by decreasing the volume of scattering material near these interfaces was then evaluated for a few clinical applications. The results show that reductions on the order of 8% may be expected at the interface with minimal dose reduction within the volume of the implant itself. In addition, the results indicate the verification of source strength of iridium sources in phantom require phantom dimensions determined by the source-chamber separation distance.

  13. Low energy cyclotron production and cyclometalation chemistry of iridium-192.

    PubMed

    Langille, G; Yang, H; Zeisler, S K; Hoehr, C; Storr, T; Andreoiu, C; Schaffer, P

    2016-09-01

    This work demonstrates the labelling of a novel class of iridium lumophore with radioiridium, as proof-of-feasibility for producing and using the medically useful isotope iridium-192. Natural osmium was electroplated onto silver target backings in basic media and irradiated for up to two hours with ≤20μA of 12.8MeV protons. A range of iridium isotopes were generated, characterized and quantified using γ-spectroscopy methods. The target material was removed from the backings via oxidative dissolution with hydrogen peroxide, and the iridium radioisotopes isolated using an anion exchange resin. Both no-carrier-added as well as carrier-added formulations were then used in subsequent cyclometalation reactions. PMID:27344003

  14. Iridium anomaly approximately synchronous with terminal eocene extinctions.

    PubMed

    Alvarez, W; Asaro, F; Michel, H V; Alvarez, L W

    1982-05-21

    An iridium anomaly has been found in coincidence with the known microtektite level in cores from Deep Sea Drilling Project site 149 in the Caribbean Sea. The iridium was probably not in the microtektites but deposited simultaneously with them; this could occur if the iridium was deposited from a dust cloud resulting from a bolide impact, as suggested for the anomaly associated with the Cretaceous-Tertiary boundary. Other workers have deduced that the microtektites are part of the North American strewn tektite field, which is dated at about 34 million years before present, and that the microtektite horizon in deep-sea cores is synchronous with the extinction of five radiolarian species. Mass extinctions also occur in terrestrial mammals within 4 million years of this time. The iridium anomaly and the tektites and microtektites are supportive of a major bolide impact about 34 million years ago. PMID:17819180

  15. GPS/GNSS Interference from Iridium Data Transmitters

    NASA Astrophysics Data System (ADS)

    Berglund, H. T.; Blume, F.; Estey, L.; White, S.

    2011-12-01

    The Iridium satellite communication system broadcasts in the 1610 to 1626.5 MHz band. The L1 frequencies broadcast by GPS, Galileo and GLONASS satellites are 1575.42 MHz, 1575.42 MHz and 1602 MHz + n × 0.5625 MHz, respectively (each GLONASS satellite uses a unique frequency). The proximity of the Iridium frequency band with the L1 frequencies of the GPS, Galileo and GLONASS systems leaves GNSS receivers susceptible to interference from Iridium data transmissions. Interference from Iridium transmissions can cause cycle slips and loss of lock on the carrier and code phases, thereby degrading the quality of GNSS observations and position estimates. In 2008, UNAVCO staff members observed that the percent of slips vs. the number of observations increased as the distance between a GPS choke ring antenna (TRM29659.00) and an Iridium antenna decreased. From those observations they suggested that Iridium antennas and GPS antennas should be separated by >30 m to minimize cycle slips caused by the interference from Iridium data transmissions. A second test conducted in 2009 using a newer Trimble GNSS choke ring antenna (TRM59800.00) showed similar results to the previous test despite the wider frequency range of the newer antenna. More recent testing conducted to investigate the response of new receiver models to iridium transmissions has shown that many GNSS enabled models, when combined with GNSS enabled antennas, have increased sensitivity to interference when compared to older GPS-only models. The broader frequency spectrum of the Low Noise Amplifiers (LNA) installed in many newer GNSS antennas can increase the impact of near-band RF interference on tracking performance. Our testing has shown that the quality of data collected at sites collocated with iridium communications is highly degraded for antenna separations exceeding 100m. Using older GPS antenna models (e.g. TRM29659.00) with newer GNSS enabled receivers can reduce this effect. To mitigate the effects that

  16. Improvements in manufacture of iridium alloy materials

    NASA Astrophysics Data System (ADS)

    Ohriner, E. K.

    1992-10-01

    Iridium alloys are used as fuel-cladding material in radioisotope thermoelectric generators (RTG's). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyager 1 and 2, Galileo, and Ulysses spacecraft. This hardware was fabricated from small, 500-g drop-cast ingots. Porosity in these ingots and the resulting defects in the rolled sheets caused rejection of about 30 percent of the product. An improved manufacturing process was developed with the goal of substantially reducing the level of defects in the rolled sheets. The ingot size is increased to 10 kg and is produced by vacuum arc remelting. In addition, the ingot is hot extruded prior to rolling. Since implementation of the process in 1989, the average rate of rejection of the product has been reduced to below 10 percent.

  17. Improvements in manufacture of iridium alloy materials

    SciTech Connect

    Ohriner, E.K.

    1992-08-01

    Iridium alloys are used as fuel-cladding material in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyager 1 and 2, Galileo, and Ulysses spacecraft. This hardware was fabricated from small, 500-g drop-cast ingots. Porosity in these ingots and the resulting defects in the rolled sheets caused rejection of about 30% of the product. An improved manufacturing process was developed with the goal of substantially reducing the level of defects in the rolled sheets. The ingot size is increased to 10 kg and is produced by vacuum arc remelting. In addition, the ingot is hot extruded prior to rolling. Since implementation of the process in 1989, the average rate of rejection of the product has been reduced to below 10%.

  18. Improvements in manufacture of iridium alloy materials

    SciTech Connect

    Ohriner, E.K.

    1992-01-01

    Iridium alloys are used as fuel-cladding material in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyager 1 and 2, Galileo, and Ulysses spacecraft. This hardware was fabricated from small, 500-g drop-cast ingots. Porosity in these ingots and the resulting defects in the rolled sheets caused rejection of about 30% of the product. An improved manufacturing process was developed with the goal of substantially reducing the level of defects in the rolled sheets. The ingot size is increased to 10 kg and is produced by vacuum arc remelting. In addition, the ingot is hot extruded prior to rolling. Since implementation of the process in 1989, the average rate of rejection of the product has been reduced to below 10%.

  19. Iridium{reg_sign} worldwide personal communication system

    SciTech Connect

    Helm, J.

    1997-01-01

    The IRIDIUM system is a personal worldwide communication system designed to support portable, low power subscriber units through the use of a constellation of satellites in low earth polar orbit. The satellites are networked together to form a system which provides continuous line-of-sight communications between the IRIDIUM system and any point within 30 km of the earth{close_quote}s surface. The system architecture and operation are described. {copyright} {ital 1997 American Institute of Physics.}

  20. PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

  1. Nanomaterials of silicides and silicon for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Szczech, Jeannine Robin

    Our consumption of fossil fuels can be reduced to address the pressing concerns of global climate change by maximizing the efficiency of conversion technologies. Since many of the alternative fuel sources also being examined are intermittent in nature, it is imperative that high capacity and high power density storage devices are also developed. The conversion efficiency of current state-of-the-art thermoelectric materials is too low to meet our needs, but it may be possible to increase the conversion efficiency of thermoelectric materials by moving from the bulk to the nanoscale. The transition metal silicides, including CrSi2, beta-FeSi2 , Mg2Si and MnSi1.7, have been explored as environmentally friendly non-toxic thermoelectric materials. I began my research in the group synthesizing silicide nanowires via chemical vapor transport (CVT), and later expanded my research to include the synthesis of silicide nanocomposites for thermoelectrics and mesoporous silicon nanocomposites for use as high capacity lithium battery electrodes. Nanoscale thermoelectrics and the enhanced thermoelectric figure-of-merit ZT reported by thermoelectric researchers are reviewed in Chapter 1. Chapter 2 reviews the progress being made in the research community with nanoscale and nanostructured silicon battery anodes. The synthesis and characterization of CrSi2 nanowires synthesized via CVT is detailed in Chapter 3, followed by hyperbranched epitaxial FeSi nanostructures exhibiting merohedral twinning in Chapter 4. Nanowires are fundamentally interesting and provide insight into the changes in materials properties compared to the bulk. The synthesis of interesting nanostructured silicide materials are detailed in Chapter 5, where the conversion of diatoms into a nanostructured thermoelectric Mg2Si/MgO nanocomposite that retains the basic diatom structure after conversion is detailed. This reaction was then modified to use mesoporous silica instead of diatoms to reduce the nanocrystalline

  2. Iridium NEXT: A Global access for your sensor needs

    NASA Astrophysics Data System (ADS)

    Gupta, O. P.; Fish, C. S.

    2010-12-01

    The operational Iridium constellation is comprised of 66 satellites, used to primarily provide worldwide voice and data coverage to satellite phones, pagers and integrated transceivers. The satellites are in low Earth orbit at 781 km and inclination of 86.4 deg, resulting in unprecedented 24/7 coverage and real-time visibility of the entire globe. Recently, through funding from the National Science Foundation (NSF), Iridium has been utilized by the Johns Hopkins University Applied Physics Laboratory (APL), with help from The Boeing Company, as an infrastructure for a comprehensive network for space environment measurements. Known as the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), the Iridium-based system provides real-time magnetic field measurements using the satellites as part of a new observation network to forecast weather in space. In February 2007, Iridium announced Iridium NEXT, a novel design for a second-generation satellite constellation. Anticipated to begin launching in 2015, Iridium NEXT will maintain the existing Iridium constellation architecture of 66 cross-linked satellite LEO covering 100 percent of the globe. In the spirit of AMPERE, for commercial, government, and scientific organizations Iridium NEXT also plans to offer new earth and space observation opportunities through hosted hosted payloads on the 66 Iridium NEXT satellite network. To provide seamless support and access to this latest innovation in payload transportation, Iridium NEXT has teamed with Space Dynamics Laboratory - Utah State University which has delivered thousands of successful sensors and subsystems for over 400 space borne and aircraf based payloads. One such innovation called SensorPOD will offer unique benefits such as unprecedented spatial and temporal coverage, real-time relay of data to and from up to 5 Kg payloads in space, and access to space at a fraction of the cost of a dedicated missions such as 3U or larger Cubesats. In this

  3. Atomic size effects studied by transport in single silicide nanowires

    NASA Astrophysics Data System (ADS)

    Miccoli, I.; Edler, F.; Pfnür, H.; Appelfeller, S.; Dähne, M.; Holtgrewe, K.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.

    2016-03-01

    Ultrathin metallic silicide nanowires with extremely high aspect ratios can be easily grown, e.g., by deposition of rare earth elements on semiconducting surfaces. These wires play a pivotal role in fundamental research and open intriguing perspectives for CMOS applications. However, the electronic properties of these one-dimensional systems are extremely sensitive to atomic-sized defects, which easily alter the transport characteristics. In this study, we characterized comprehensively TbSi2 wires grown on Si(100) and correlated details of the atomic structure with their electrical resistivities. Scanning tunneling microscopy (STM) as well as all transport experiments were performed in situ using a four-tip STM system. The measurements are complemented by local spectroscopy and density functional theory revealing that the silicide wires are electronically decoupled from the Si template. On the basis of a quasiclassical transport model, the size effect found for the resistivity is quantitatively explained in terms of bulk and surface transport channels considering details of atomic-scale roughness. Regarding future applications the full wealth of these robust nanostructures will emerge only if wires with truly atomically sharp interfaces can be reliably grown.

  4. Work function characterization of solution-processed cobalt silicide

    NASA Astrophysics Data System (ADS)

    Shihab Ullah, Syed; Robinson, Matt; Hoey, Justin; Sky Driver, M.; Caruso, A. N.; Schulz, Douglas L.

    2012-06-01

    Cobalt silicide thin films were prepared by spin-coating liquid cyclohexasilane-based inks onto silicon substrates followed by a thermal treatment. The work function of the solution-processed Co-Si was determined by both capacitance-voltage (C-V) measurements of metal-oxide-semiconductor (MOS) structures as well as by ultraviolet photoemission spectroscopy (UPS). Variable frequency C-V of MOS structures with silicon oxide layers of variable thickness showed that solution-processed metal silicide films exhibit a work function of 4.36 eV with one Co-Si film on Si <1 0 0> giving a UPS-derived work function of 4.80 eV. Similar work function measurements were collected for vapor-deposited MOS capacitors where Al thin films were prepared according to standard class 100 cleanroom handling techniques. In both instances, the work function values established by the electrical measurements were lower than those measured by UPS and this difference appears to be a consequence of parasitic series resistance.

  5. Iridium complexes demonstrating broadband emission through controlled geometric distortion and applications thereof

    DOEpatents

    Li, Jian; Turner, Eric

    2016-04-12

    Iridium compounds and their uses are disclosed herein. For example, carbazole containing iridium compounds are disclosed. The compounds are useful in many devices, including, but not limited to, electroluminescent devices.

  6. DETERMINATION OF HETEROGENEOUS ELECTRON TRANSFER RATE CONSTANTS AT MICROFABRICATED IRIDIUM ELECTRODES. (R825511C022)

    EPA Science Inventory

    There has been an increasing use of both solid metal and microfabricated iridium electrodes as substrates for various types of electroanalysis. However, investigations to determine heterogeneous electron transfer rate constants on iridium, especially at an electron beam evapor...

  7. Metal silicide Schottky barriers on Si and Ge show weaker Fermi level pinning

    NASA Astrophysics Data System (ADS)

    Lin, L.; Guo, Y.; Robertson, J.

    2012-07-01

    Experimental data and ab-initio calculations find that metal silicide-silicon interfaces have weaker Fermi level pinning than simple metal-Si interfaces, which is incompatible with standard metal induced gap state (MIGS) model of Schottky barriers. We show that this arises because the MIGS in silicide interfaces are not derived from Si surface dangling bonds, but from metal "dangling bond" states in the silicide, whose energies vary with the metal. Calculations predict that rare-earth germinides will have very small barriers on n-Ge.

  8. Monocrystalline molybdenum silicide based quantum dot superlattices grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Savelli, Guillaume; Silveira Stein, Sergio; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent

    2016-09-01

    This paper presents the growth of doped monocrystalline molybdenum-silicide-based quantum dot superlattices (QDSL). This is the first time that such nanostructured materials integrating molybdenum silicide nanodots have been grown. QDSL are grown by reduced pressure chemical vapor deposition (RPCVD). We present here their crystallographic structures and chemical properties, as well as the influence of the nanostructuration on their thermal and electrical properties. Particularly, it will be shown some specific characteristics for these QDSL, such as a localization of nanodots between the layers, unlike other silicide based QDSL, an accumulation of doping atoms near the nanodots, and a strong decrease of the thermal conductivity obtained thanks to the nanostructuration.

  9. Characterization of Platinum and Iridium Oxyhydrate Surface Layers from Platinum and Iridium Foils.

    PubMed

    Johnson, Benjamin; Ranjan, Chinmoy; Greiner, Mark; Arrigo, Rosa; Schuster, Manfred Erwin; Höpfner, Britta; Gorgoi, Mihaela; Lauermann, Iver; Willinger, Marc; Knop-Gericke, Axel; Schlögl, Robert

    2016-07-01

    Platinum and iridium polycrystalline foils were oxidized electrochemically through anodization to create thin platinum and iridium hydrous oxide layers, which were analyzed through laboratory photoelectron spectroscopy during heating and time series (temperature-programmed spectroscopy). The films contain oxygen in the form of bound oxides, water, and hydroxides and were investigated by depth profiling with high-energy photoelectron spectroscopy. The Pt films are unstable and begin to degrade immediately after removal from the electrolyte to form core-shell structures with a metallic inner core and a hydrous oxide outer shell almost devoid of Pt. However, evidence was found for metastable intermediate states of degradation; therefore, it may be possible to manufacture PtOx phases with increased stability. Heating the film to even 100 °C causes accelerated degradation, which shows that stoichiometric oxides such as PtO2 or PtO are not the active species in the electrolyte. The Ir films exhibit increased stability and higher surface Ir content, and gentle heating at low temperatures leads to a decrease in defect density. Although both layers are based on noble metals, their surface structures are markedly different. The complexity of such hydrous oxide systems is discussed in detail with the goal of identifying the film composition more precisely. PMID:27226255

  10. NMOS contact resistance reduction with selenium implant into NiPt silicide

    NASA Astrophysics Data System (ADS)

    Rao, K. V.; Khaja, F. A.; Ni, C. N.; Muthukrishnan, S.; Darlark, A.; Lei, J.; Peidous, I.; Brand, A.; Henry, T.; Variam, N.; Erokhin, Y.

    2012-11-01

    A 25% reduction in NMOS contact resistance (Rc) was achieved by Selenium implantation into NiPt silicide film in VIISta Trident high-current single-wafer implanter. The Trident implanter is designed for shallow high-dose implants with high beam currents to maintain high throughput (for low CoO), with improved micro-uniformity and no energy contamination. The integration of Se implant was realized using a test chip dedicated to investigating silicide/junction related electrical properties and testable after silicidation. The silicide module processes were optimized, including the pre-clean (prior to RF PVD NiPt dep) and pre- and post-implant anneals. A 270°C soak anneal was used for RTP1, whereas a msec laser anneal was employed for RTP2 with sufficient process window (800-850°C), while maintaining excellent junction characteristics without Rs degradation.

  11. Optimisation of a smooth multilayer nickel silicide surface for ALN growth

    NASA Astrophysics Data System (ADS)

    Martin, D. M.; Enlund, J.; Yantchev, V.; Olsson, J.; Katardjiev, I.

    2008-03-01

    For use in thin film electroacoustic (TEA) technology a few hundred nanometre thick nickel silicide (NiSi) electrode would need to be fabricated. A complete fabrication process for the formation of over 200 nm thick silicide films has been optimised for use as an electroacoustic electrode. Optimisation of silicidation temperature and identification of the mono phase of silicide is demonstrated. Thick electrodes are formed by depositing multilayers of silicon and nickel pairs onto silicon (Si) substrates before rapid thermal annealing. The numbers of multilayers and relative material thicknesses are optimized for both surface roughness and electrical resistivity. The growth of textured aluminium nitride (AlN) has been investigated on the optimised surfaces.

  12. Stacked silicide/silicon mid- to long-wavelength infrared detector

    DOEpatents

    Maserjian, Joseph

    1990-03-13

    The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

  13. Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements

    PubMed Central

    2011-01-01

    We examine nickel silicide as a viable ohmic contact metallization for low-temperature, low-magnetic-field transport measurements of atomic-scale devices in silicon. In particular, we compare a nickel silicide metallization with aluminium, a common ohmic contact for silicon devices. Nickel silicide can be formed at the low temperatures (<400°C) required for maintaining atomic precision placement in donor-based devices, and it avoids the complications found with aluminium contacts which become superconducting at cryogenic measurement temperatures. Importantly, we show that the use of nickel silicide as an ohmic contact at low temperatures does not affect the thermal equilibration of carriers nor contribute to hysteresis in a magnetic field. PMID:21968083

  14. Synthetic Development of Metal Silicide Nanowires for Thermoelectric and Spintronic Applications

    NASA Astrophysics Data System (ADS)

    Higgins, Jeremy Michael

    2011-12-01

    Nanomaterials, including nanowires (NWs), are a new class of materials with the potential to lead to major changes in many aspects of human society. Innumerable applications for nanomaterials are envisioned or are being realized now. However, such new functionalities are and will continue to be predicated on our ability to precisely synthesize nanomaterials, a skill yet undeveloped in a majority of chemical systems. Metal silicides are a class of refractory intermetallic compounds composed of abundant elements with widely varying properties that are currently employed in a large range of technological applications. In this thesis, I describe my exploration of metal silicide NWs, particularly those in the Mn-Si binary system, in order to develop rational synthetic strategies for accessing binary and ternary silicide NWs and characterize their potential for thermoelectric and spintronic applications. Chapter 1 develops a common set of ideas and a common language before reviewing the current "state of the art" in silicide NW synthesis, exploring a number of the mysteries still surrounding silicide NW synthesis, and presenting silicide NW applications. Chapter 2 depicts the use of Mn(CO) 5SiCl3 as the vapor phase precursor to synthesize higher manganese silicide NWs (also known as HMS, MnSi˜1.7 MnSi2--x) for the first time, the identification of the NW subphase as Mn19Si33, and conductivity measurement on HMS NWs revealing bulk-like behavior. Chapter 3 describes employing MnCl 2 as the precursor for the first successful synthesis of MnSi NWs and transverse magnetoresistance measurements on these MnSi NWs to observe the signatures of helimagnetism in NWs for the first time. Chapter 4 is a systematic examination of silicide NW synthesis by single source precursor chemical vapor deposition, highlighting the complex interplay of substrate diffusion and vapor phase reactivity giving rise to material incorporation in silicide NWs. Chapter 5 details the direct reaction of Mn

  15. Iridium oxide-polymer nanocomposite electrode materials for water oxidation.

    PubMed

    Lattach, Youssef; Rivera, Juan Francisco; Bamine, Tahya; Deronzier, Alain; Moutet, Jean-Claude

    2014-08-13

    Nanocomposite anode materials for water oxidation have been readily synthesized by electrodeposition of iridium oxide nanoparticles into poly(pyrrole-alkylammonium) films, previously deposited onto carbon electrodes by oxidative electropolymerization of a pyrrole-alkylammonium monomer. The nanocomposite films were characterized by electrochemistry, transmission electron microscopy, and atomic force microscopy. They showed an efficient electrocatalytic activity toward the oxygen evolution reaction. Data from Tafel plots have demonstrated that the catalytic activity of the iridium oxide nanoparticles is maintained following their inclusion in the polymer matrix. Bulk electrolysis of water at carbon foam modified electrodes have shown that the iridium oxide-polymer composite presents a higher catalytic activity and a better operational stability than regular oxide films.

  16. Method for removing silicide coatings in a medium of low-melting metals

    SciTech Connect

    Filipovskii, A.V.; Tarasenko, I.V.

    1994-11-01

    We propose a method for removing silicide coatings from the surfaces of workpieces made of refractory metals. The entire volume of the silicide layer is borated in a melt based on low-melting metals. The boride layer formed as a result is characterized by a large number of defects, low mechanical strength, and high etching susceptibility. Therefore, it can easily be removed by any existing method.

  17. Europium Silicide – a Prospective Material for Contacts with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Karateeva, Christina G.; Karateev, Igor A.; Lobanovich, Eduard F.; Prutskov, Grigory V.; Parfenov, Oleg E.; Taldenkov, Alexander N.; Vasiliev, Alexander L.; Storchak, Vyacheslav G.

    2016-01-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics. PMID:27211700

  18. Status of the atomized uranium silicide fuel development at KAERI

    SciTech Connect

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H.

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  19. Europium Silicide – a Prospective Material for Contacts with Silicon

    NASA Astrophysics Data System (ADS)

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Karateeva, Christina G.; Karateev, Igor A.; Lobanovich, Eduard F.; Prutskov, Grigory V.; Parfenov, Oleg E.; Taldenkov, Alexander N.; Vasiliev, Alexander L.; Storchak, Vyacheslav G.

    2016-05-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics.

  20. Europium Silicide - a Prospective Material for Contacts with Silicon.

    PubMed

    Averyanov, Dmitry V; Tokmachev, Andrey M; Karateeva, Christina G; Karateev, Igor A; Lobanovich, Eduard F; Prutskov, Grigory V; Parfenov, Oleg E; Taldenkov, Alexander N; Vasiliev, Alexander L; Storchak, Vyacheslav G

    2016-01-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics. PMID:27211700

  1. Controlled formation and resistivity scaling of nickel silicide nanolines

    NASA Astrophysics Data System (ADS)

    Li, Bin; Luo, Zhiquan; Shi, Li; Zhou, Ji Ping; Rabenberg, Lew; Ho, Paul S.; Allen, Richard A.; Cresswell, Michael W.

    2009-02-01

    We demonstrate a top-down method for fabricating nickel mono-silicide (NiSi) nanolines (also referred to as nanowires) with smooth sidewalls and line widths down to 15 nm. Four-probe electrical measurements reveal that the room temperature electrical resistivity of the NiSi nanolines remains constant as the line widths are reduced to 23 nm. The resistivity at cryogenic temperatures is found to increase with decreasing line width. This finding can be attributed to electron scattering at the sidewalls and is used to deduce an electron mean free path of 6.3 nm for NiSi at room temperature. The results suggest that NiSi nanolines with smooth sidewalls are able to meet the requirements for implementation at the 22 nm technology node without degradation of device performance.

  2. Evaluation of nickel and molybdenum silicides for dual gate complementary metal-oxide semiconductor application

    NASA Astrophysics Data System (ADS)

    Biswas, Nivedita; Gurganus, Jason; Misra, Veena; Yang, Yan; Stemmer, Susanne

    2005-01-01

    Characteristics of NiSi and MoSi via full consumption of undoped silicon layers have been studied. Interaction of nickel (Ni) and molybdenum (Mo) silicides with SiO2 was evaluated in terms of work function and thermal stability. For nickel silicide, the work function values were low for samples annealed at 400 °C even after full consumption of silicon. The work function increased with the anneal temperature and stabilized at 600 °C to close to midgap values. Dielectric interaction as a result of silicide formation was studied using current-voltage characteristics. Low leakage currents in these stacks indicated minimum dielectric damage due to silicided gates. Silicidation of Mo was found to be incomplete as the capacitance-voltage curves were marked with larger EOT values and negative shifts in the flatband voltages even at 700 °C. Auger depth profiling, high resolution transmission electron microscopy (HRTEM) and x-ray diffraction (XRD) were used for material analysis of the silicided gate stacks.

  3. Synthesis and design of silicide intermetallic materials. 1998 annual progress report

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Vaidya, R.U.; Hollis, K.J.; Kung, H.H.

    1999-03-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of developing industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. The progress made on the program in this period is summarized.

  4. Experimental determination of the solubility of iridium in silicate melts: Preliminary results

    NASA Technical Reports Server (NTRS)

    Borisov, Alexander; Dingwell, Donald B.; Oneill, Hugh ST.C.; Palme, Herbert

    1992-01-01

    Little is known of the geochemical behavior of iridium. Normally this element is taken to be chalcophile and/or siderophile so that during planetary differentiation processes, e.g., core formation, iridium is extracted from silicate phases into metallic phases. Experimental determination of the metal/silicate partition coefficient of iridium is difficult simply because it is so large. Also there are no data on the solubility behavior of iridium in silicate melts. With information on the solubility of iridium in silicate melts it is possible, in combination with experimental data for Fe-Ir alloys, to calculate the partition coefficient between a metallic phase and a silicate melt.

  5. Synthesis of new heteroscorpionate iridium(I) and iridium(III) complexes.

    PubMed

    Roa, A E; Campos, J; Paneque, M; Salazar, V; Otero, A; Lara-Sánchez, A; Rodríguez, A M; López-Solera, I; Gómez, M V

    2015-04-21

    The reactivity of different heteroscorpionate ligands based on bis(pyrazol-1-yl)methane, with different iridium-(i) and -(iii) precursors is reported. The reaction of the heteroscorpionate lithium salts "Li(bdmpza)", [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], "Li(bdmpzdta)" [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] and "Li(S)-mbpam" [(S)-mbpam = (S)-(-)-N-α-methylbenzyl-2,2-bis(3,5-dimethylpyrazol-1-yl)acetamidate] with 1 equivalent of [IrCl3(THF)3] in THF for 18 h affords high yields of neutral and anionic heteroscorpionate chloride iridium complexes [IrCl2(bdmpza)(THF)] (), [Li(THF)4][IrCl3(bdmpzdta)] () and [IrCl2{(S)-mbpam})(THF)] (). Solution of complex in acetonitrile at room temperature leads to complex [IrCl2{(S)-mbpam})(NCCH3)] (). Complexes and were isolated as enantiopure compounds. The reaction of the lithium salt "Li(bdmpza)" with [IrCl(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)]2 in THF for 18 h gave the Ir(i) complex [Ir(bdmpza)(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)] (). The reaction of complex with CO (2 atm) at room temperature leads to a new complex of Ir(iii), [Ir(bdmpza)(k(2)-CH2C(Me)[double bond, length as m-dash]C(Me)CH2)(CO)] (). Treatment of heteroscorpionate ligand precursors "Li(bdmpza)" and "Li(bdmpzdta)" with [IrCp*Cl2]2 in THF yielded the iridium(iii) complexes [Ir2Cp*2Cl2(bdmpzx)] (x = a , x = dta ). These complexes have helical chirality due to the demands of the fixed pyrazole rings. The stereoisomerism and the self-assembly processes of these helicates have been studied in some detail in solution by NMR spectroscopy and in the solid state by X-ray diffraction. Mixtures of M- and P-handed enantiomers were obtained. Complex undergoes a decarboxylation process initiated by the HCl generated in the previous step leading to the known ionic complex [IrClCp*(bdmpm)][IrCl3Cp*] [bdmpm = bis(3,5-dimethylpyrazol-1-yl)methane] (). The

  6. Synthesis of new heteroscorpionate iridium(I) and iridium(III) complexes.

    PubMed

    Roa, A E; Campos, J; Paneque, M; Salazar, V; Otero, A; Lara-Sánchez, A; Rodríguez, A M; López-Solera, I; Gómez, M V

    2015-04-21

    The reactivity of different heteroscorpionate ligands based on bis(pyrazol-1-yl)methane, with different iridium-(i) and -(iii) precursors is reported. The reaction of the heteroscorpionate lithium salts "Li(bdmpza)", [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], "Li(bdmpzdta)" [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] and "Li(S)-mbpam" [(S)-mbpam = (S)-(-)-N-α-methylbenzyl-2,2-bis(3,5-dimethylpyrazol-1-yl)acetamidate] with 1 equivalent of [IrCl3(THF)3] in THF for 18 h affords high yields of neutral and anionic heteroscorpionate chloride iridium complexes [IrCl2(bdmpza)(THF)] (), [Li(THF)4][IrCl3(bdmpzdta)] () and [IrCl2{(S)-mbpam})(THF)] (). Solution of complex in acetonitrile at room temperature leads to complex [IrCl2{(S)-mbpam})(NCCH3)] (). Complexes and were isolated as enantiopure compounds. The reaction of the lithium salt "Li(bdmpza)" with [IrCl(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)]2 in THF for 18 h gave the Ir(i) complex [Ir(bdmpza)(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)] (). The reaction of complex with CO (2 atm) at room temperature leads to a new complex of Ir(iii), [Ir(bdmpza)(k(2)-CH2C(Me)[double bond, length as m-dash]C(Me)CH2)(CO)] (). Treatment of heteroscorpionate ligand precursors "Li(bdmpza)" and "Li(bdmpzdta)" with [IrCp*Cl2]2 in THF yielded the iridium(iii) complexes [Ir2Cp*2Cl2(bdmpzx)] (x = a , x = dta ). These complexes have helical chirality due to the demands of the fixed pyrazole rings. The stereoisomerism and the self-assembly processes of these helicates have been studied in some detail in solution by NMR spectroscopy and in the solid state by X-ray diffraction. Mixtures of M- and P-handed enantiomers were obtained. Complex undergoes a decarboxylation process initiated by the HCl generated in the previous step leading to the known ionic complex [IrClCp*(bdmpm)][IrCl3Cp*] [bdmpm = bis(3,5-dimethylpyrazol-1-yl)methane] (). The

  7. Homogeneous and heterogenized iridium water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Macchioni, Alceo

    2014-10-01

    The development of an efficient catalyst for the oxidative splitting of water into molecular oxygen, protons and electrons is of key importance for producing solar fuels through artificial photosynthesis. We are facing the problem by means of a rational approach aimed at understanding how catalytic performance may be optimized by the knowledge of the reaction mechanism of water oxidation and the fate of the catalytic site under the inevitably harsh oxidative conditions. For the purposes of our study we selected iridium water oxidation catalysts, exhibiting remarkable performance (TOF > 5 s-1 and TON > 20000). In particular, we recently focused our attention on [Cp*Ir(N,O)X] (N,O = 2-pyridincarboxylate; X = Cl or NO3) and [IrCl(Hedta)]Na water oxidation catalysts. The former exhibited a remarkable TOF whereas the latter showed a very high TON. Furthermore, [IrCl(Hedta)]Na was heterogenized onto TiO2 taking advantage of the presence of a dandling -COOH functionality. The heterogenized catalyst maintained approximately the same catalytic activity of the homogeneous analogous with the advantage that could be reused many times. Mechanistic studies were performed in order to shed some light on the rate-determining step and the transformation of catalysts when exposed to "oxidative stress". It was found that the last oxidative step, preceding oxygen liberation, is the rate-determining step when a small excess of sacrificial oxidant is used. In addition, several intermediates of the oxidative transformation of the catalyst were intercepted and characterized by NMR, X-Ray diffractometry and ESI-MS.

  8. Effects of temperature dependent pre-amorphization implantation on NiPt silicide formation and thermal stability on Si(100)

    NASA Astrophysics Data System (ADS)

    Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean; Lavoie, Christian

    2013-04-01

    Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.

  9. Effects of temperature dependent pre-amorphization implantation on NiPt silicide formation and thermal stability on Si(100)

    SciTech Connect

    Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean; Lavoie, Christian

    2013-04-29

    Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.

  10. On the size-dependent magnetism and all-optical magnetization switching of transition-metal silicide nanostructures

    SciTech Connect

    Glushkov, G. I.; Tuchin, A. V.; Popov, S. V.; Bityutskaya, L. A.

    2015-12-15

    Theoretical investigations of the electronic structure, synthesis, and all-optical magnetization switching of transition-metal silicide nanostructures are reported. The magnetic moment of the nanostructures is studied as a function of the silicide cluster size and configuration. The experimentally demonstrated magnetization switching of nanostructured nickel silicide by circularly polarized light makes it possible to create high-speed storage devices with high density data recording.

  11. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil

    NASA Astrophysics Data System (ADS)

    Liu, Zhihong; Zhang, Hui; Wang, Lei; Yang, Deren

    2008-09-01

    Nickel silicide nanowire arrays have been achieved by the decomposition of SiH4 on Ni foil at 650 °C. It is indicated that the nickel silicide nanowires consist of roots with diameter of about 100-200 nm and tips with diameter of about 10-50 nm. A Ni diffusion controlled mechanism is proposed to explain the formation of the nickel silicide nanowires. Field emission measurement shows that the turn-on field of the nickel silicide nanowire arrays is low, at about 3.7 V µm-1, and the field enhancement factor is as high as 4280, so the arrays have promising applications as emitters.

  12. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas

    DOE PAGESBeta

    Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.; Pivovar, Bryan S.

    2016-06-02

    Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less

  13. Nucleation and growth of nanoscale metal silicides in nanowires of silicon

    NASA Astrophysics Data System (ADS)

    Chou, Yi-Chia

    Transition metal silicides have been used in the SALICIDE process to form gate and source/drain contacts in MOSFET devices. How to control silicide formation in shallow junction devices and the kinetics of single silicide phase formation between the Si and metal thin films have received extensive attention and study. As the trend of miniaturization of Si devices moves from 45 rim to smaller sizes, the formation of nanoscale metal silicides has attracted renewed interest. Nanostructures in Si nanowires have been studied for basic components in electronic and optoelectronics devices, especially for biosensors. Well-defined nanoscale building blocks such as ohmic contacts and gates on Si nanowires must be developed in order to be assembled into functional circuit components in future nanotechnology. It requires a systematic study of solid state chemical reactions in the nanoscale to form these circuit components. In the dissertation, the nucleation and growth of epitaxial silicides in Si nanowires has been discussed and the comparison of silicide formation in thin films and in nanowires has been made. The difference of silicide formation between the thin film case and the nanowire case, especially the kinetics of nucleation and growth, will be emphasized. In this dissertation, I focused on the nucleation and growth of Ni and Co silicides formation in Si nanowires and used in situ high resolution transmission electron microscopy (TEM) to investigate kinetics of the silicides formation. Heterostructures of silicide/Si/silicide, such as NiSi/Si/NiSi, NiSi2/Si/NiSi2, and CoSi2/Si/CoSi 2, have been produced with sharp interfaces. Periodic multi-heterostructures of NiSi/Si and NiSi2/Si have been synthesized by in-situ TEM. The NiSi, NiSi2, and CoSi2 were found to have epitaxial growth with Si and the growth can be decomposed into nucleation periods and growth periods instead of continues growth as thin film silicides formation on Si wafers. The silicides grow atomic layer

  14. Iridium-catalyzed enantioselective hydrogenation of unsaturated heterocyclic acids.

    PubMed

    Song, Song; Zhu, Shou-Fei; Pu, Liu-Yang; Zhou, Qi-Lin

    2013-06-01

    Spiral binding: A highly enantioselective hydrogenation of unsaturated heterocyclic acids has been developed by using chiral iridium/spirophosphino oxazoline catalysts (see scheme; BArF(-) =tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, Boc=tert-butoxycarbonyl). This reaction provided an efficient method for the preparation of optically active heterocyclic acids with excellent enantioselectivities. PMID:23610004

  15. The Iridium (tm) system: Personal communications anytime, anyplace

    NASA Technical Reports Server (NTRS)

    Hatlelid, John E.; Casey, Larry

    1993-01-01

    The Iridium system is designed to provide handheld personal communications between diverse locations around the world at any time and without prior knowledge of the location of the personal units. This paper provides an overview of the system, the services it provides, its operation, and an overview of the commercial practices and relatively high volume satellite production techniques which will make the system cost effective. A constellation of 66 satellites will provide an orbiting, spherical-shell, infrastructure for this global calling capability. The satellites act as tall cellular towers and allow convenient operation for portable handheld telephones. The system will provide a full range of services including voice, paging, data, geolocation, and fax capabilities. Motorola is a world leader in the production of high volume, high quality, reliable telecommunications hardware. One of Iridium's goals is to apply these production techniques to high reliability space hardware. Concurrent engineering, high performance work teams, advanced manufacturing technologies, and improved assembly and test methods are some of the techniques that will keep the Iridium system cost effective. Mobile, global, flexible personal communications are coming that will allow anyone to call or receive a call from/to anyplace at anytime. The Iridium system will provide communications where none exist today. This connectivity will allow increased information transfer, open new markets for various business endeavors, and in general increase productivity and development.

  16. Iridium Aluminide Coats For Protection Against Ox idation

    NASA Technical Reports Server (NTRS)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Jang, Qin

    1996-01-01

    Iridium aluminide coats investigated for use in protecting some metallic substrates against oxidation at high temperatures. Investigation prompted by need for cost-effective anti-oxidation coats for walls of combustion chambers in rocket engines. Also useful in special terrestrial applications like laboratory combustion chambers and some chemical-processing chambers.

  17. The Iridium (tm) system: Personal communications anytime, anyplace

    NASA Astrophysics Data System (ADS)

    Hatlelid, John E.; Casey, Larry

    The Iridium system is designed to provide handheld personal communications between diverse locations around the world at any time and without prior knowledge of the location of the personal units. This paper provides an overview of the system, the services it provides, its operation, and an overview of the commercial practices and relatively high volume satellite production techniques which will make the system cost effective. A constellation of 66 satellites will provide an orbiting, spherical-shell, infrastructure for this global calling capability. The satellites act as tall cellular towers and allow convenient operation for portable handheld telephones. The system will provide a full range of services including voice, paging, data, geolocation, and fax capabilities. Motorola is a world leader in the production of high volume, high quality, reliable telecommunications hardware. One of Iridium's goals is to apply these production techniques to high reliability space hardware. Concurrent engineering, high performance work teams, advanced manufacturing technologies, and improved assembly and test methods are some of the techniques that will keep the Iridium system cost effective. Mobile, global, flexible personal communications are coming that will allow anyone to call or receive a call from/to anyplace at anytime. The Iridium system will provide communications where none exist today. This connectivity will allow increased information transfer, open new markets for various business endeavors, and in general increase productivity and development.

  18. Discovery of tantalum, rhenium, osmium, and iridium isotopes

    SciTech Connect

    Robinson, R.; Thoennessen, M.

    2012-09-15

    Currently, thirty-eight tantalum, thirty-eight rhenium, thirty-nine osmium, and thirty-eight iridium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  19. Mononuclear iridium dinitrogen complexes bonded to zeolite HY

    SciTech Connect

    Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia; Dixon, David A.; Gates, Bruce C.

    2014-11-07

    In this study, the adsorption of N2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N2 in H2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N2. Four supported species formed in various flowing gases: Ir(N2), Ir(N2)(N2), Ir(C2H5)(N2), and Ir(H)(N2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N2, Ir(N2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N2) formed transiently in flowing CO, and in the presence of H2, rather stable iridium hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.

  20. Achieving Zero Stress in Iridium, Chromium, and Nickle Thin Films

    NASA Technical Reports Server (NTRS)

    Broadway, David M.; Weimer, Jeffrey; Gurgew, Danielle; Lis, Tomasz; Ramsey, Brian D.; O'Dell, Stephen L.; Ames, A.; Bruni, R.

    2015-01-01

    We examine a method for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight x-ray space telescopes into the regime of sub-arc second resolution that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure, including the existence of a critical pressure that results in zero film stress. This critical pressure scales linearly with the film's density. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we have discovered a similar behavior for iridium. Additionally, we have identified zero stress in iridium shortly after island coalescence. This feature of film growth is used for achieving a total internal stress of -2.89 MPa for a 15.8 nm thick iridium film. The surface roughness of this low-stress film was examined using scanning probe microscopy (SPM) and x-ray reflectivity (XRR) at CuKa and these results presented and discussed.

  1. Magnetostratigraphy, Late devonian iridium anomaly, and impact hypotheses

    SciTech Connect

    Hurley, N.F.; Van der Voo, R. )

    1990-04-01

    Paleomagnetism, sedimentology, and fine-scale stratigraphy have been integrated to explain the origin of an iridium anomaly in the Late Devonian of Western Australia. Thermal demagnetization experiments were carried out on 93 specimens of marginal-slope limestone form the northern Canning Basin. Samples are from a condensed sequence of deep-water (> 100 m) Frutexites microstromatolites. Frutexites is a shrublike cyanobacterial organism that probably precipitated hematite, or a metastable precursor, from sea water. When plotted within the microstratigraphic framework for the study area, the observed characteristic directions from the sampled interval (14.5 cm thick) are in five discrete, layer-parallel, normal- and reversed-polarity zones. The measured northeast-southwest declinations and shallow inclinations probably record Late Devonian magnetostratigraphy on a centimetre scale. The Frutexites bed studied there occurs close to the Frasnian/Famennian (Late Devonian) boundary, a time of mass extinction of a wide variety of marine organisms throughout the world. Anomalously high iridium concentrations observed in the Frutexites bed have suggested to some authors that the mass extinction was caused by meteorite impact. This study concludes that iridium, which is present over the span of five layer-parallel magnetic reversals, was concentrated over a long period of time by biologic processes. Thus, the Canning Basin iridium anomaly may be unrelated to meteorite impact.

  2. Utilization of Low Bandwidth Iridium Modems for Polar Seismology

    NASA Astrophysics Data System (ADS)

    Parker, T.

    2012-12-01

    Transmission of realtime seismic data is a desirable goal when a rapid response is needed. However, for many science applications sample waveform data, system state of health, and the ability to command and control the seismic station are operationally adequate. Determining the optimal telemetry requirements for a remote polar seismic experiment requires balancing science objective against the expensive, over-subscribed support available in the polar environments? For example there is a significant difference in the resources needed for a permanent "monitoring" effort versus a short-term experiment. We will describe IRIS/PASSCAL's successful approach to utilizing Iridium telemetry for short-term seismic experiments and suggest viable use of an Iridium RUDICs system for higher data-rate, permanent seismic stations such as a monitoring scenario. Most seismic stations are configured to record at a rate that exceeds twice the data rate of a single Iridium Internet modem. The power requirement to run continuous Iridium telemetry better than doubles that of a standalone seismic station. Doubling station power roughly doubles station logistics by requiring an increased number of support flights for installation and service. The tradeoffs between desirable and adequate telemetry requirements and the ramifications these requirements have on support services must be considered for a successful seismic station. We describe two Iridium telemetry systems, developed by the IRIS/PASSCAL Polar Program, for use with seismic stations in Antarctica and the Arctic. The first system uses an inexpensive Iridium 9602 modem based device and short burst data (SBD) transmission to monitor station performance, provide some command and control, and return a small amount of representative seismic data. Power requirements for this SBD system are approximately 10Ah per year for a daily message. The second system uses an Iridium 9522b modem based device the DOD RUDICs system for a 2400 Baud

  3. Structure, electrochemical properties and capacitance performance of polypyrrole electrodeposited onto 1-D crystals of iridium complex

    NASA Astrophysics Data System (ADS)

    Wysocka-Żołopa, Monika; Winkler, Krzysztof

    2015-12-01

    Composites of polypyrrole and one-dimensional iridium complex crystals [(C2H5)4N]0.55[IrCl2(CO)2] were prepared by in situ two-step electrodeposition. Initially, iridium complex crystals were formed during [IrCl2(CO)2]- complex oxidation. Next, pyrrole was electropolymerized on the surface of the iridium needles. The morphology of the composite was investigated by scanning and transmission electron microscopy. At positive potentials, the iridium complex crystals and the polypyrrole were oxidized. In aprotic solvents, oxidation of the iridium complex crystals resulted in their dissolution. In water containing tetra(n-butyl)ammonium chlorides, the 1-D iridium complex crystals were reversibly oxidized. The product of the iridium complex oxidation remained on the electrode surface in crystalline form. The iridium complex needles significantly influenced the redox properties of the polymer. The polypyrrole involved electrode processes become more reversible in presence of crystals of iridium complex. The current of polypyrrole oxidation was higher compared to that of pure polypyrrole and the capacitance properties of the polymer were significantly enhanced. A specific capacitance as high as 590 F g-1 was obtained for a composite of polypyrrole and 1-D crystals of the iridium complex in water containing tetra(n-butyl)ammonium chloride. This value is approximately twice as high as the capacitance of the pure polymer deposited onto the electrode surface.

  4. Epitaxial insertion of gold silicide nanodisks during the growth of silicon nanowires.

    PubMed

    Um, Han-Don; Jee, Sang-Won; Park, Kwang-Tae; Jung, Jin-Young; Guo, Zhongyi; Lee, Jung-Ho

    2011-07-01

    Nanodisk-shaped, single-crystal gold silicide heterojunctions were inserted into silicon nanowires during vapor-liquid-solid growth using Au as a catalyst within a specific range of chlorine-to-hydrogen atomic ratio. The mechanism of nanodisk formation has been investigated by changing the source gas ratio of SiCl4 to H2. We report that an over-supply of silicon into the Au-Si liquid alloy leads to highly supersaturated solution and enhances the precipitation of Au in the silicon nanowires due to the formation of unstable phases within the liquid alloy. It is shown that the gold precipitates embedded in the silicon nanowires consisted of a metastable gold silicide. Interestingly, faceting of gold silicide was observed at the Au/Si interfaces, and silicon nanowires were epitaxially grown on the top of the nanodisk by vapor-liquid-solid growth. High resolution transmission electron microscopy confirmed that gold silicide nanodisks are epitaxially connected to the silicon nanowires in the direction of growth direction. These gold silicide nanodisks would be useful as nanosized electrical junctions for future applications in nanowire interconnections.

  5. Orientation dependence of nickel silicide formation in contacts to silicon nanowires

    NASA Astrophysics Data System (ADS)

    Dellas, N. S.; Liu, B. Z.; Eichfeld, S. M.; Eichfeld, C. M.; Mayer, T. S.; Mohney, S. E.

    2009-05-01

    The orientation dependence of Ni silicide phase formation in the silicidation of silicon nanowires (SiNWs) by Ni has been studied. SiNWs with a [112] growth direction contacted by Ni pads form θ-Ni2Si for annealing conditions from 350 to 700 °C for 2 min. The θ-Ni2Si has an epitaxial orientation of θ-Ni2Si[001]∥Si[111¯] and θ-Ni2Si(100)∥Si(112) with the SiNW. On the other hand, SiNWs with a [111] growth direction react with Ni pads to form NiSi2 with an epitaxial orientation of NiSi2[11¯0]∥Si[11¯0] and NiSi2(111)∥Si(111) after annealing at 450 °C for 2 min. The [111] SiNWs were also silicided at 700 °C for 2 min, forming the low-resistivity NiSi phase. The epitaxial phases identified in the reactions of Ni films with SiNWs suggest that lattice matching at both the silicide/Si growth front and the surface of the original SiNW may play a significant role in determining the first silicide segment to grow.

  6. Formation of optically-active, metal silicides using ion implantation and/or oxidation

    NASA Astrophysics Data System (ADS)

    Mitchell, L. J.; Holland, O. W.; Hossain, K.; Smith, E. B.; Golden, T. D.; Duggan, J. L.; McDaniel, F. D.

    2005-12-01

    While Si-based integrated circuits dominate the microelectronics marketplace, they cannot be fabricated with optical functionality since Si is indirect. Alternative materials have been used in such applications but the ability to integrate an optically active material directly onto a silicon substrate to co-opt the advances in Si technology and processing capabilities is the better solution. Many of the transition metals form silicides that are direct band gap semiconductors and, as such, may be integrated with Si to achieve the desired optical properties. Ion implantation of the transition metal into Si was used to form the desired silicide phase by reaction of the metal with the Si substrate. Depending upon the fluence the resulting implanted layer can consist of a two-phase region in which the silicide phase forms as isolated precipitates randomly oriented within a heavily dislocated Si matrix. Rutherford backscattering/ion channeling spectrometry was used to monitor this process as a function of temperature and time. A unique method for orienting the silicide precipitates to align them crystallographically with the Si substrate and eliminate the ion-induced dislocations that form during the initial implant is discussed. This method involves oxidation of the implanted region to segregate the silicide phase at the oxide interface. Initial results of Os- ions implanted into Si(1 0 0) are presented.

  7. New Manganese Silicide Mineral Phase in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Palma, R. L.; Pepin, R. O.; Kloeck, W.; Zolensky, M. E.; Messenger, S.

    2008-01-01

    Comet 26P/Grigg-Skjellerup was identified as a source of an Earth-crossing dust stream with low Earth-encounter velocities, with peak anticipated fluxes during April in 2003 and 2004 [1]. In response to this prediction, NASA performed dedicated stratospheric dust collections using high altitude aircraft to target potential interplanetary dust particles (IDPs) from this comet stream in April 2003. Several IDPs from this collection have shown unusually low noble gas abundances [2] consistent with the predicted short space exposure ages of Grigg-Skjellerup dust particles [1]. High abundances of large D enrichments [3] and presolar grains [4] in IDPs from this collection are also consistent with an origin from the comet Grigg-Skjellerup. Here we report a new mineral from one of the cluster IDPs of the "Grigg-Skjellerup" collection, L2055. Our report focuses on an unusual manganese-iron-chromium silicide phase that, to our knowledge, has not been observed previously in nature. This unique phase may also shed light on the genesis of the enigmatic low-Fe,Mn-enriched (LIME) olivine that has been previously reported in IDPs and meteorites [5].

  8. Oxidation/vaporization of silicide coated columbium base alloys

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  9. Unique lithiation and delithiation processes of nanostructured metal silicides.

    PubMed

    Zhou, Sa; Wang, Dunwei

    2010-11-23

    We report that TiSi(2) nanonet exhibits considerable activities in the reversible lithiation and delithiation processes, although bulk-sized titanium silicide is known to be inactive when used as an electrode material for lithium ion batteries. The detailed mechanism of this unique process was studied using electrochemical techniques including the electrochemical impedance spectroscopy (EIS) method. By systematic characterizations of the Nyquist plots and comparisons with the microstructure examinations, we identified the main reason for the activities as the layered crystal structure that is found stable only in TiSi(2) nanonets. The layer structure is characterized by the existence of a Si-only layer, which exhibits reactivity when exposed to lithium ions. Control studies where TiSi(2) nanowires and TiSi(2)/Si heteronanostructures were involved, respectively, were performed. Similar to bulk TiSi(2), TiSi(2) nanowires show limited reactivity in lithium ion insertion and deinsertion; the EIS characteristics of TiSi(2)/Si heteronanostructures, on the other hand, are distinctly different from those of TiSi(2) nanonets. The result supports our proposed TiSi(2) nanonet lithiation mechanism. This discovery highlights the uniqueness of nanoscale materials and will likely broaden the spectrum of electrode material choices for electrochemical energy storage.

  10. High quality factor platinum silicide microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Szypryt, P.; Mazin, B. A.; Ulbricht, G.; Bumble, B.; Meeker, S. R.; Bockstiegel, C.; Walter, A. B.

    2016-10-01

    We report on the development of microwave kinetic inductance detectors (MKIDs) using platinum silicide as the sensor material. MKIDs are an emerging superconducting detector technology, capable of measuring the arrival times of single photons to better than two microseconds and their energies to around ten percent. Previously, MKIDs have been fabricated using either sub-stoichiometric titanium nitride or aluminum, but TiN suffers from the spatial inhomogeneities in the superconducting critical temperature and Al has a low kinetic inductance fraction, causing low detector sensitivity. To address these issues, we have instead fabricated the PtSi microresonators with the superconducting critical temperatures of 944 ± 12 mK and high internal quality factors ( Q i ≳ 10 6 ). These devices show typical quasiparticle lifetimes of τ q p ≈ 30 - 40 μ s and spectral resolution, R = λ / Δ λ , of 8 at 406.6 nm. We compare PtSi MKIDs to those fabricated with TiN and detail the substantial advantages that PtSi MKIDs have to offer.

  11. Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum

    PubMed Central

    Babenko, Vitaliy; Murdock, Adrian T.; Koós, Antal A.; Britton, Jude; Crossley, Alison; Holdway, Philip; Moffat, Jonathan; Huang, Jian; Alexander-Webber, Jack A.; Nicholas, Robin J.; Grobert, Nicole

    2015-01-01

    Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 μm min−1) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials. PMID:26175062

  12. Exploitation of a Self-limiting Process for Reproducible Formation of Ultrathin Ni(1-x)Pt(x) Silicide Films

    SciTech Connect

    Z Zhang; B Yang; Y Zhu; S Gaudet; S Rossnagel; A Kellock; A Ozcan; C Murray; P Desjardins; et al.

    2011-12-31

    This letter reports on a process scheme to obtain highly reproducible Ni{sub 1-x}Pt{sub x} silicide films of 3-6 nm thickness formed on a Si(100) substrate. Such ultrathin silicide films are readily attained by sputter deposition of metal films, metal stripping in wet chemicals, and final silicidation by rapid thermal processing. This process sequence warrants an invariant amount of metal intermixed with Si in the substrate surface region independent of the initial metal thickness, thereby leading to a self-limiting formation of ultrathin silicide films. The crystallographic structure, thickness, uniformity, and morphological stability of the final silicide films depend sensitively on the initial Pt fraction.

  13. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    NASA Astrophysics Data System (ADS)

    Purwaningsih, Anik

    2014-09-01

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  14. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    SciTech Connect

    Purwaningsih, Anik

    2014-09-30

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  15. A computational investigation of nickel (silicides) as potential contact layers for silicon photovoltaic cells.

    PubMed

    Butler, Keith T; Harding, John H

    2013-10-01

    Nickel has been proposed as a low-cost alternative to silver for contacting in high-performance solar cells. Nickel at a crystalline silicon surface can form a number of silicide phases, depending on fabrication conditions. Using density functional theory calculations we calculate the Schottky barrier height (SBH) at the different possible interfaces. Depending on the silicide phase, crystallographic orientation and doping the SBH at the interface with Si can range from 0.39 to 0.70 eV. These calculations demonstrate which of the nickel (silicide) phases have potential use as contacting materials for silicon based solar cells. Furthermore, we explain the origin of the SBH tuning effect of P dopant atoms as being due to a dipole formed at the interface, demonstrating the linear relationship between the charge transfer at the interface upon doping and the concomitant modulation of the SBH.

  16. Anisotropic thermal expansion of Ni, Pd and Pt germanides and silicides

    NASA Astrophysics Data System (ADS)

    Geenen, F. A.; Knaepen, W.; Moens, F.; Brondeel, L.; Leenaers, A.; Van den Berghe, S.; Detavernier, C.

    2016-07-01

    Silicon or germanium-based transistors are nowadays used in direct contact with silicide or germanide crystalline alloys for semiconductor device applications. Since these compounds are formed at elevated temperatures, accurate knowledge of the thermal expansion of both substrate and the contact is important to address temperature depending effects such as thermal stress. Here we report the linear coefficients of thermal expansion of Ni-, Pd- and Pt-based mono-germanides, mono-silicides and di-metal-silicides as determined by powder-based x-ray diffraction between 300 and 1225 K. The investigated mono-metallic compounds, all sharing the MnP crystal structure, as well as Pd2Si and Pt2Si exhibit anisotropic expansion. By consequence, this anisotropic behaviour should be taken into account for evaluating the crystal unit’s cell at elevated temperatures.

  17. Silicide formation process of Er films with Ta and TaN capping layers.

    PubMed

    Choi, Juyun; Choi, Seongheum; Kim, Jungwoo; Na, Sekwon; Lee, Hoo-Jeong; Lee, Seok-Hee; Kim, Hyoungsub

    2013-12-11

    The phase development and defect formation during the silicidation reaction of sputter-deposited Er films on Si with ∼20-nm-thick Ta and TaN capping layers were examined. TaN capping effectively prevented the oxygen incorporation from the annealing atmosphere, which resulted in complete conversion to the ErSi2-x phase. However, significant oxygen penetration through the Ta capping layer inhibited the ErSi2-x formation, and incurred the growth of several Er-Si-O phases, even consuming the ErSi2-x layer formed earlier. Both samples produced a number of small recessed defects at an early silicidation stage. However, large rectangular or square-shaped surface defects, which were either pitlike or pyramidal depending on the capping layer identity, were developed as the annealing temperature increased. The origin of different defect generation mechanisms was suggested based on the capping layer-dependent silicidation kinetics.

  18. Self-organized patterns along sidewalls of iron silicide nanowires on Si(110) and their origin

    SciTech Connect

    Das, Debolina; Mahato, J. C.; Bisi, Bhaskar; Dev, B. N.; Satpati, B.

    2014-11-10

    Iron silicide (cubic FeSi{sub 2}) nanowires have been grown on Si(110) by reactive deposition epitaxy and investigated by scanning tunneling microscopy and scanning/transmission electron microscopy. On an otherwise uniform nanowire, a semi-periodic pattern along the edges of FeSi{sub 2} nanowires has been discovered. The origin of such growth patterns has been traced to initial growth of silicide nanodots with a pyramidal Si base at the chevron-like atomic arrangement of a clean reconstructed Si(110) surface. The pyramidal base evolves into a comb-like structure along the edges of the nanowires. This causes the semi-periodic structure of the iron silicide nanowires along their edges.

  19. Circularly polarised phosphorescent photoluminescence and electroluminescence of iridium complexes

    PubMed Central

    Li, Tian-Yi; Jing, Yi-Ming; Liu, Xuan; Zhao, Yue; Shi, Lin; Tang, Zhiyong; Zheng, You-Xuan; Zuo, Jing-Lin

    2015-01-01

    Nearly all the neutral iridium complexes widely used as dopants in PhOLEDs are racemic mixtures; however, this study observed that these complexes can be separated into stable optically active Λ and ∆ isomers and that their chirality is an intrinsic property. The circularly polarised phosphorescent photoluminescence (CPPPL) signals of Λ/Δ isomers are perfect mirror images with opposite polarisation and equal intensity exhibiting a “handedness” for the polarisation. For the first time, we applied the Λ/Δ iridium isomers as emitters in OLEDs, and the circularly polarised phosphorescent electroluminescence (CPPEL) spectra reveal completely positive or negative broad peaks consistent with the CPPPL spectra. The results demonstrate that the Λ/Δ isomers have potential application for 3D OLEDs because they can exhibit high efficiency and luminance, and 3D display technology based on circularly polarised light is the most comfortable for the eyes. PMID:26446521

  20. Olefin hydroaryloxylation catalyzed by pincer-iridium complexes.

    PubMed

    Haibach, Michael C; Guan, Changjian; Wang, David Y; Li, Bo; Lease, Nicholas; Steffens, Andrew M; Krogh-Jespersen, Karsten; Goldman, Alan S

    2013-10-01

    Aryl alkyl ethers, which are widely used throughout the chemical industry, are typically produced via the Williamson ether synthesis. Olefin hydroaryloxylation potentially offers a much more atom-economical alternative. Known acidic catalysts for hydroaryloxylation, however, afford very poor selectivity. We report the organometallic-catalyzed intermolecular hydroaryloxylation of unactivated olefins by iridium "pincer" complexes. These catalysts do not operate via the hidden Brønsted acid pathway common to previously developed transition-metal-based catalysts. The reaction is proposed to proceed via olefin insertion into an iridium-alkoxide bond, followed by rate-determining C-H reductive elimination to yield the ether product. The reaction is highly chemo- and regioselective and offers a new approach to the atom-economical synthesis of industrially important ethers and, potentially, a wide range of other oxygenates. PMID:24028199

  1. Processing and properties of iridium alloys for space power applications

    SciTech Connect

    Ohriner, E.K.

    1994-12-31

    Iridium alloys are used as fuel cladding in radioisotope thermoelectric generators due to their high-melting point, high- temperature strength, and oxidation and corrosion resistance. Although iridium has a face-centered cubic crystal structure, it undergoes a distinct ductile-to-brittle transition characteristic of many body-centered cubic metals. Improved ductility in the alloys is achieved through material purification and controlled alloy additions at the parts per million (ppm) level. A vacuum arc remelt operation produces a nearly defect-free casting, which is further processed to sheet products. A change in processing from drop castings of small arc-melted buttons to large arc-remelted ingots has substantially improved product yields. The effects of processing changes on alloy microstructure, sheet textures, oxidation effects, high-strain-rate ductility, and fabricability are discussed.

  2. Iridium alloy clad vent set manufacturing qualification studies

    SciTech Connect

    Ulrich, G.B. )

    1991-01-10

    Qualification studies have been successfully conducted to demonstrate iridium alloy Clad Vent Set (CVS) manufacturing readiness for the General Purpose Heat Source (GPHS) program at the Oak Ridge Y-12 Plant. These studies were joint comparison evaluations of both the Y-12 Plant and EG G Mound Applied Technologies, Inc. (EG G-MAT) products. Note: EG G-MAT formerly manufactured the iridium alloy CVS. The comparison evaluations involved work in a number of areas; however, only the CVS cup metallurgical evalution will be presented here. The initial metallurgical comparisons in conjunction with follow-up metallurgical work showed the Y-12 Plant CVS product to be comparable to the fully qualified (for Galileo and Ulysses missions) EG G-MAT product. This allowed the Y-12 Plant to commence pilot production of CVS components for potential use in the CRAF and CASSINI missions.

  3. Photoswitchable azobenzene-appended iridium(iii) complexes.

    PubMed

    Pérez-Miqueo, J; Altube, A; García-Lecina, E; Tron, A; McClenaghan, N D; Freixa, Z

    2016-09-21

    Iridium(iii) cyclometalated complexes have been used as models to study the effect that extended conjugation and substitution pattern has on the photochromic behavior of azobenzene-appended 2-phenylpyridyl (ppy) ligands. For this purpose four azobenzene-containing ppy ligands were synthesized. With these ligands, nine iridium(iii) complexes containing up to three appended azobenzenes were synthesized. Analysis of their photochromic behaviour by means of UV-vis and (1)H-NMR spectroscopy permitted us to conclude that the light-induced trans-to-cis isomerization of the azobenzene was strongly inhibited upon coordination to the Ir(iii) cation when the electronic conjugation was extended along the whole ligand. The use of an aliphatic spacer unit (either -CH2- or -OCH2-) between the azobenzene and the ppy fragment of the ligand sufficed to disrupt the electronic communication, and obtain photochromic organometallic complexes. PMID:27460186

  4. Method for forming metallic silicide films on silicon substrates by ion beam deposition

    DOEpatents

    Zuhr, Raymond A.; Holland, Orin W.

    1990-01-01

    Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

  5. Progress in alkaline peroxide dissolution of low-enriched uranium metal and silicide targets

    SciTech Connect

    Chen, L.; Dong, D.; Buchholz, B.A.; Vandegrift, G.F.; Wu, D.

    1996-12-31

    This paper reports recent progress on two alkaline peroxide dissolution processes: the dissolution of low-enriched uranium metal and silicide (U{sub 3}Si{sub 2}) targets. These processes are being developed to substitute low-enriched for high-enriched uranium in targets used for production of fission-product {sup 99}Mo. Issues that are addressed include (1) dissolution kinetics of silicide targets, (2) {sup 99}Mo lost during aluminum dissolution, (3) modeling of hydrogen peroxide consumption, (4) optimization of the uranium foil dissolution process, and (5) selection of uranium foil barrier materials. Future work associated with these two processes is also briefly discussed.

  6. An inert marker study for palladium silicide formation - Si moves in polycrystalline Pd2Si

    NASA Technical Reports Server (NTRS)

    Ho, K. T.; Lien, C.-D.; Shreter, U.; Nicolet, M.-A.

    1985-01-01

    A novel use of Ti marker is introduced to investigate the moving species during Pd2Si formation on 111 and 100 line-type Si substrates. Silicide formed from amorphous Si is also studied using a W marker. Although these markers are observed to alter the silicide formation in the initial stage, the moving species can be identified once a normal growth rate is resumed. It is found that Si is the dominant moving species for all three types of Si crystallinity. However, Pd will participate in mass transport when Si motion becomes obstructed.

  7. Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.

    2011-01-01

    NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.

  8. Thermal Analysis of a Uranium Silicide Miniplate Irradiation Experiment

    SciTech Connect

    Donna Post Guillen

    2009-09-01

    This paper outlines the thermal analysis for the irradiation of high density uranium-silicide (U3Si2 dispersed in an aluminum matrix and clad in aluminum) booster fuel for a Boosted Fast Flux Loop designed to provide fast neutron flux test capability in the ATR. The purpose of this experiment (designated as Gas Test Loop-1 [GTL-1]) is two-fold: (1) to assess the adequacy of the U3Si2/Al dispersion fuel and the aluminum alloy 6061 cladding, and (2) to verify stability of the fuel cladding boehmite pre-treatment at nominal power levels in the 430 to 615 W/cm2 (2.63 to 3.76 Btu/s•in2) range. The GTL-1 experiment relies on a difficult balance between achieving a high heat flux, yet keeping fuel centerline temperature below a specified maximum value throughout an entire operating cycle of the reactor. A detailed finite element model was constructed to calculate temperatures and heat flux levels and to reveal which experiment parameters place constraints on reactor operations. Analyses were performed to determine the bounding lobe power level at which the experiment could be safely irradiated, yet still provide meaningful data under nominal operating conditions. Then, simulations were conducted for nominal and bounding lobe power levels under steady-state and transient conditions with the experiment in the reactor. Reactivity changes due to a loss of commercial power with pump coast-down to emergency flow or a standard in-pile tube pump discharge break were evaluated. The time after shutdown for which the experiment can be adequately cooled by natural convection cooling was determined using a system thermal hydraulic model. An analysis was performed to establish the required in-reactor cooling time prior to removal of the experiment from the reactor. The inclusion of machining tolerances in the numerical model has a large effect on heat transfer.

  9. Mononuclear iridium dinitrogen complexes bonded to zeolite HY

    DOE PAGESBeta

    Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia; Dixon, David A.; Gates, Bruce C.

    2014-11-07

    In this study, the adsorption of N2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N2 in H2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N2. Four supported species formed in various flowing gases: Ir(N2), Ir(N2)(N2), Ir(C2H5)(N2), and Ir(H)(N2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N2, Ir(N2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N2) formed transiently in flowing CO, and in the presence of H2, rather stable iridiummore » hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.« less

  10. Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program

    NASA Astrophysics Data System (ADS)

    Viertel, Y.; Kinnersley, M.; Schumacher, I.

    2002-01-01

    The GRACE mission and the IRIDIUM mission on ROCKOT launch vehicle are presented. Two identical GRACE satellites to measure in tandem the gravitational field of the earth with previously unattainable accuracy - it's called the Gravity Research and Climate Experiment, or and is a joint project of the U.S. space agency, NASA and the German Centre for Aeronautics and Space Flight, DLR. In order to send the GRACE twins into a 500x500 km , 89deg. orbit, the Rockot launch vehicle was selected. A dual launch of two Iridium satellites was scheduled for June 2002 using the ROCKOT launch vehicle from Plesetsk Cosmodrome in Northern Russia. This launch will inject two replacement satellites into a low earth orbit (LEO) to support the maintenance of the Iridium constellation. In September 2001, Eurockot successfully carried out a "Pathfinder Campaign" to simulate the entire Iridium mission cycle at Plesetsk. The campaign comprised the transport of simulators and related equipment to the Russian port-of-entry and launch site and also included the integration and encapsulation of the simulators with the actual Rockot launch vehicle at Eurockot's dedicated launch facilities at Plesetsk Cosmodrome. The pathfinder campaign lasted four weeks and was carried out by a joint team that also included Khrunichev, Russian Space Forces and Eurockot personnel on the contractors' side. The pathfinder mission confirmed the capability of Eurockot Launch Services to perform the Iridium launch on cost and on schedule at Plesetsk following Eurockot's major investment in international standard preparation, integration and launch facilities including customer facilities and a new hotel. In 2003, Eurockot will also launch the Japanese SERVI'S-1 satellite for USEF. The ROCKOT launch vehicle is a 3 stage liquid fuel rocket whose first 2 stages have been adapted from the Russian SS-19. A third stage, called "Breeze", can be repeatedly ignited and is extraordinarily capable of manoeuvre. Rockot can place

  11. Evaluation of Molybdenum as a Surrogate for Iridium in the GPHS Weld Development

    SciTech Connect

    Stine, Andrew Martin; Pierce, Stanley W.; Moniz, Paul F.

    2015-10-17

    The welding equipment used for welding iridium containers (clads) at Los Alamos National Laboratory is twenty five years old and is undergoing an upgrade. With the upgrade, there is a requirement for requalification of the welding process, and the opportunity for process improvement. Testing of the new system and requalification will require several welds on iridium test parts and clads, and any efforts to improve the process will add to the need for iridium parts. The extreme high cost of iridium imposes a severe limitation on the extent of test welding that can be done. The 2 inch diameter, 0.027 inch thick, iridium blank disc that the clad cup is formed from, is useful for initial weld trials, but it costs $5000. The development clad sets needed for final tests and requalification cost $15,000 per set. A solution to iridium cost issue would be to do the majority of the weld development on a less expensive surrogate metal with similar weld characteristics. One such metal is molybdenum. Since its melting index (melting temperature x thermal conductivity) is closest to iridium, welds on molybdenum should be similar in size for a given weld power level. Molybdenum is inexpensive; a single 2 inch molybdenum disc costs only $9. In order to evaluate molybdenum as a surrogate for iridium, GTA welds were first developed to provide full penetration on 0.030 inch thick molybdenum discs at speeds of 20, 25, and 30 inches per minute (ipm). These weld parameters were then repeated on the standard 0.027 inch thick iridium blanks. The top surface and bottom surface (root) width and grain structure of the molybdenum and iridium welds were compared, and similarities were evident between the two metals. Due to material and thickness differences, the iridium welds were approximately 35% wider than the molybdenum welds. A reduction in iridium weld current of 35% produce welds slightly smaller than the molybdenum welds yet showed that current could be scaled according to molybdenum/iridium

  12. Methods of investigation and properties of powder materials: Thermodynamic properties of lanthanum silicides at high temperatures

    SciTech Connect

    Bolgar, A.S.; Gorbachuk, N.P.; Blinder, A.V.

    1994-09-01

    The enthalpies of five lanthanum silicides were determined over the temperature range 380-2225 K by the method of mixtures. Values of the basic thermodynamic functions of the materials were calculated and tabulated, as well as the temperatures, enthalpies, and entropies of fusion. The temperatures and enthalpies of fusion were related to the relative concentrations of silicon in the compounds.

  13. Silicide Coating Fabricated by HAPC/SAPS Combination to Protect Niobium Alloy from Oxidation.

    PubMed

    Sun, Jia; Fu, Qian-Gang; Guo, Li-Ping; Wang, Lu

    2016-06-22

    A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the outer MoSi2 layer, forming a combined silicide coating. Results show that the combined coating possessed a compact structure. The phase constitution of the combined coating prepared by HAPC and SAPS was NbSi2 and MoSi2, respectively. The adhesion strength of the combined coating increased nearly two times than that for single sprayed coating, attributing to the rougher surface of the HAPC-bond layer whose roughness increased about three times than that of the grit-blast substrate. After exposure at 1200 °C in air, the mass increasing rate for single HAPC-silicide coating was 3.5 mg/cm(2) because of the pest oxidation of niobium alloy, whereas the combined coating displayed better oxidation resistance with a mass gain of only 1.2 mg/cm(2). Even more, the combined coating could significantly improve the antioxidation ability of niobium based alloy at 1500 °C. The good oxidation resistance of the combined silicide coating was attributed to the integrity of the combined coating and the continuous SiO2 protective scale provided by the oxidation of MoSi2.

  14. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  15. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600 C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  16. Processing of transition metal silicides for high-temperature applications

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1995-12-31

    The authors review and discuss recent developments in the processing and mechanical properties of MoSi{sub 2} and its composites. High-temperature creep rates of MoSi{sub 2} and its composites are compared to those of several intermetallics and discussed in relation to grain-size effects. Thermophysical properties of MoSi{sub 2} and Si{sub 3}N{sub 4} are compared, and the need for functionally graded composites of MoSi{sub 2}-Si{sub 3}N{sub 4} is discussed. This is followed by a discussion of combustion synthesis, reaction synthesis and densification, in-situ composite development, and reactive hot extrusion of metal-silicon mixtures. In combustion synthesis, a heterogeneous reaction occurs between liquid Si and Mo powder to form MoSi{sub 2}. This technique can be applied to obtain composites and alloys of MoSi{sub 2} and various other transition-metal silicides. In-situ synthesis of a composite of MoSi{sub 2}-Al{sub 2}O{sub 3} was carried out by reacting a thermite mixture consisting of MoO{sub 3}, Al, and Si powders. X-ray characterization of the products obtained at various temperatures reveals that the mechanism consists of a reduction of MoO{sub 3} by Al to MoO{sub 2}, followed by a simultaneous oxidation of Al to Al{sub 2}O{sub 3} and a synthesis reaction between reduced Mo and Si to form MoSi{sub 2}. The rate-determining step is found to be reduction of MoO{sub 2} by Al and oxidation of Al to Al{sub 2}O{sub 3}. The thermite reaction was moderated by adding Mo and Si to the mixture of MoO{sub 3}, Al, and Si, such that the ratio of MoSi{sub 2} to the thermite was in the range of 60:40 to 90:10. Reactive extrusion of metal-silicon mixtures of 3Ni-Si and Co-2Si results in a dense product with at least two phases.

  17. Thermal Stability Study from Room Temperature to 1273 K (1000 °C) in Magnesium Silicide

    NASA Astrophysics Data System (ADS)

    Stefanaki, Eleni-Chrysanthi; Hatzikraniotis, Euripides; Vourlias, George; Chrissafis, Konstantinos; Kitis, George; Paraskevopoulos, Konstantinos M.; Polymeris, George S.

    2016-10-01

    Doped magnesium silicide has been identified as a promising and environmentally friendly advanced thermoelectric material in the temperature range between 500 K and 800 K (227 °C and 527 °C). Besides the plethora of magnesium silicide thermoelectric advantages, it is well known for its high sensitivity to oxidation. Oxidation is one of the primary instability mechanisms of degradation of high-temperature Mg2Si thermoelectric devices, as in the presence of O2, Mg2Si decomposes to form MgO and Si. In this work, commercial magnesium silicide in bulk form was used for thermal stability study from room temperature to 1273 K (1000 °C). Various techniques such as DTA-TG, PXRD, and FTIR have been applied. Moreover, the application of thermoluminescence (TL) as an effective and alternative probe for the study of oxidation and decomposition has been exploited. The latter provides qualitative but very helpful hints toward oxidation studies. The low-detection threshold of thermoluminescence, in conjunction with the chemical composition of the oxidation byproducts, consisting of MgO, Mg2SiO4, and SiO2, constitute two powerful motivations for further investigating its viable use as proxy for instability/decomposition studies of magnesium silicide. The partial oxidation reaction has been adopted due to the experimental fact that magnesium silicide is monitored throughout the heating temperature range of the present study. Finally, the role of silicon dioxide to the decomposition procedure, being in amorphous state and gradually crystallizing, has been highlighted for the first time in the literature. Mg2Si oxidation takes place in two steps, including a mild oxidation process with temperature threshold of 573 K (300 °C) and an abrupt one after 773 K (500 °C). Implications on the optimum operational temperature range for practical thermoelectric (TE) applications have also been briefly discussed.

  18. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    SciTech Connect

    Khanbabaee, B. Pietsch, U.; Lützenkirchen-Hecht, D.; Hübner, R.; Grenzer, J.; Facsko, S.

    2014-07-14

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.

  19. Iridium-based double perovskites for efficient water oxidation in acid media

    NASA Astrophysics Data System (ADS)

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J.; Wezendonk, Tim; Gascon, Jorge; Fu, W. T.; Koper, Marc T. M.

    2016-08-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2.

  20. Iridium-based double perovskites for efficient water oxidation in acid media

    PubMed Central

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J.; Wezendonk, Tim; Gascon, Jorge; Fu, W. T.; Koper, Marc T. M.

    2016-01-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2. PMID:27498694

  1. Iridium-based double perovskites for efficient water oxidation in acid media.

    PubMed

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J; Wezendonk, Tim; Gascon, Jorge; Fu, W T; Koper, Marc T M

    2016-01-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2. PMID:27498694

  2. Sensitized near-infrared emission from ytterbium(III) via direct energy transfer from iridium(III) in a heterometallic neutral complex.

    PubMed

    Mehlstäubl, Marita; Kottas, Gregg S; Colella, Silvia; De Cola, Luisa

    2008-05-14

    A tetrametallic iridium-ytterbium complex has been synthesised that shows sensitized near-infrared emission (lambda(max) = 976 nm) upon excitation of the iridium unit in the visible region (400 nm) due to efficient energy transfer from the iridium units to the Yb(III) ion. The iridium phosphorescence is quenched nearly quantitatively while the ytterbium ion emits brightly in the NIR.

  3. Iridium: Global OTH data communications for high altitude scientific ballooning

    NASA Astrophysics Data System (ADS)

    Denney, A.

    beneficial points provided by the Iridium platform include pure global accessibility (as well as polar), cost effectiveness because it is available as a COTS (Commercially Off The Shelf) technology, reliability in that the equipment must operate in extreme conditions (near space), integration and development time into current systems must be minimized. As a bonus Motorola and NAL Research Corporation are developing SBD (Short Burst Data) into the Iridium network. This may lead the way to a global IP (Internet Protocol) node based ballooning platform. The Iridium satellite data modems employ the Iridium Low-Earth Orbit (LEO) satellite network. The scope of this paper is to introduce an OTH communications alternative, albeit not necessarily a primary one, to existing ballooning platforms using COTS based emerging technologies. Design aspects, characteristics, actual flight testing statistics, principles of the Iridium modems and communication paths are described including payload and support instrumentation interfacing. Not limited to high altitude ballooning, the Iridium communications platform opens a new era in remote commanding and data retrieval.

  4. Impact of silicide layer on single photon avalanche diodes in a 130 nm CMOS process

    NASA Astrophysics Data System (ADS)

    Cheng, Zeng; Palubiak, Darek; Zheng, Xiaoqing; Deen, M. Jamal; Peng, Hao

    2016-09-01

    Single photon avalanche diode (SPAD) is an attractive solid-state optical detector that offers ultra-high photon sensitivity (down to the single photon level), high speed (sub-nanosecond dead time) and good timing performance (less than 100 ps). In this work, the impact of the silicide layer on SPAD’s characteristics, including the breakdown voltage, dark count rate (DCR), after-pulsing probability and photon detection efficiency (PDE) is investigated. For this purpose, two sets of SPAD structures in a standard 130 nm complementary metal oxide semiconductor (CMOS) process are designed, fabricated, measured and compared. A factor of 4.5 (minimum) in DCR reduction, and 5 in PDE improvements are observed when the silicide layer is removed from the SPAD structure. However, the after-pulsing probability of the SPAD without silicide layer is two times higher than its counterpart with silicide. The reasons for these changes will be discussed.

  5. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil.

    PubMed

    Liu, Zhihong; Zhang, Hui; Wang, Lei; Yang, Deren

    2008-09-17

    Nickel silicide nanowire arrays have been achieved by the decomposition of SiH(4) on Ni foil at 650 °C. It is indicated that the nickel silicide nanowires consist of roots with diameter of about 100-200 nm and tips with diameter of about 10-50 nm. A Ni diffusion controlled mechanism is proposed to explain the formation of the nickel silicide nanowires. Field emission measurement shows that the turn-on field of the nickel silicide nanowire arrays is low, at about 3.7 V µm(-1), and the field enhancement factor is as high as 4280, so the arrays have promising applications as emitters.

  6. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil.

    PubMed

    Liu, Zhihong; Zhang, Hui; Wang, Lei; Yang, Deren

    2008-09-17

    Nickel silicide nanowire arrays have been achieved by the decomposition of SiH(4) on Ni foil at 650 °C. It is indicated that the nickel silicide nanowires consist of roots with diameter of about 100-200 nm and tips with diameter of about 10-50 nm. A Ni diffusion controlled mechanism is proposed to explain the formation of the nickel silicide nanowires. Field emission measurement shows that the turn-on field of the nickel silicide nanowire arrays is low, at about 3.7 V µm(-1), and the field enhancement factor is as high as 4280, so the arrays have promising applications as emitters. PMID:21832554

  7. The solubility of hydrogen in rhodium, ruthenium, iridium and nickel.

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Oates, W. A.

    1973-01-01

    The temperature variation of the solubility of hydrogen in rhodium, ruthenium, iridium, and nickel in equilibrium with H2 gas at 1 atm pressure has been measured by a technique involving saturating the solvent metal with hydrogen, quenching, and analyzing in resultant solid solutions. The solubilities determined are small (atom fraction of H is in the range from 0.0005 to 0.00001, and the results are consistent with the simple quasi-regular model for dilute interstitial solid solutions. The relative partial enthalpy and excess entropy of the dissolved hydrogen atoms have been calculated from the solubility data and compared with well-known correlations between these quantities.

  8. Levitation of iridium and liquid mercury by ultrasound.

    PubMed

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-09-01

    Single-axis acoustic levitation of the heaviest solid (iridium, rho=22.6 g cm(-3)) and liquid (mercury, rho=13.6 g cm(-3) on the Earth is achieved by greatly enhancing both the levitation force and stability through optimizing the geometric parameters of the levitator. The acoustically levitated Pb-Sn eutectic alloy melt (rho=8.5 g cm(-3)) is highly undercooled by up to 38 K, which results in a microstructural transition of "lamellae-broken lamellae-dendrites." The drastic enhancement of levitation capability indicates a broader application range of single-axis acoustic levitation. PMID:12225198

  9. Determination of iridium in mafic rocks by atomic absorption

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.M.

    1970-01-01

    Iridium is determined in mineralized mafic rocks by atomic absorption after fire-assay concentration into a gold bead. Interelement interferences in the atomic-absorption determination are removed and Ir sensitivity is increased by buffering the solutions with a mixture of copper and sodium sulphates. Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated in the atomic-absorption determination. The sensitivity and detection limits are 3.2 and 0.25 ppm of Ir, respectively. ?? 1970.

  10. Intercalation of graphene on iridium with sodium atoms

    NASA Astrophysics Data System (ADS)

    Rut'kov, E. V.; Gall', N. R.

    2015-06-01

    It has been shown that sodium atoms deposited on the surface of graphene atop iridium at T ≤ 850 K diffuse under the graphene layer into an intercalated state and accumulate there in significant concentrations ˜(2-3) × 1014 atoms cm-2. The release of the atoms from under the graphene "carpet" takes place upon destruction of the layer at T ≥ 1800 K. The physical nature of the differences in the processes of release of atoms of different alkali metals from under graphene has been discussed.

  11. Luminescent cyclometallated iridium(III) complexes having acetylide ligands

    SciTech Connect

    Thompson, Mark E.; Bossi, Alberto; Djurovich, Peter Ivan

    2014-09-02

    The present invention relates to phosphorescent (triplet-emitting) organometallic materials. The phosphorescent materials of the present invention comprise Ir(III)cyclometallated alkynyl complexes for use as triplet light-emitting materials. The Ir(III)cyclometallated alkynyl complexes comprise at least one cyclometallating ligand and at least one alkynyl ligand bonded to the iridium. Also provided is an organic light emitting device comprising an anode, a cathode and an emissive layer between the anode and the cathode, wherein the emissive layer comprises a Ir(III)cyclometallated alkynyl complex as a triplet emitting material.

  12. Measurements of the hard-x-ray reflectivity of iridium

    SciTech Connect

    Romaine, S.; Bruni, R.; Gorenstein, P.; Zhong, Z

    2007-01-10

    In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.

  13. Dynamic high-temperature characterization of an iridium alloy in tension

    SciTech Connect

    Song, Bo; Nelson, Kevin; Jin, Helena; Lipinski, Ronald J.; Bignell, John; Ulrich, G. B.; George, E. P.

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  14. Analysis and Consequences of the Iridium 33-Cosmos 2251 Collision

    NASA Technical Reports Server (NTRS)

    Anz-Meador, P. D.; Liou, Jer-Chi

    2010-01-01

    The collision of Iridium 33 and Cosmos 2251, on 10 February 2009, was the first known unintentional hypervelocity collision in space of intact satellites. Iridium 33 was an active commercial telecommunications satellite, while Cosmos 2251 was a derelict communication satellite of the Strela-2M class. The collision occurred at a relative velocity of 11.6 km/s at an altitude of approximately 790 km over the Great Siberian Plain and near the northern apex of Cosmos 2251 s orbit. This paper describes the physical and orbital characteristics of the relevant spacecraft classes and reports upon our analysis of the resulting debris clouds size, mass, area-to-mass ratio, and relative velocity/directionality distributions. We compare these distributions to those predicted by the NASA breakup model and notable recent fragmentation events; in particular, we compare the area-to-mass ratio distribution for each spacecraft to that exhibited by the FY-1C debris cloud for the purpose of assessing the relative contribution of modern aerospace materials to debris clouds resulting from energetic collisions. In addition, we examine the long-term consequences of this event for the low Earth orbit (LEO) environment. Finally, we discuss "lessons learned", which may be incorporated into NASA s environmental models.

  15. Single step radiolytic synthesis of iridium nanoparticles onto graphene oxide

    NASA Astrophysics Data System (ADS)

    Rojas, J. V.; Molina Higgins, M. C.; Toro Gonzalez, M.; Castano, C. E.

    2015-12-01

    In this work a new approach to synthesize iridium nanoparticles on reduced graphene oxide is presented. The nanoparticles were directly deposited and grown on the surface of the carbon-based support using a single step reduction method through gamma irradiation. In this process, an aqueous isopropanol solution containing the iridium precursor, graphene oxide, and sodium dodecyl sulfate was initially prepared and sonicated thoroughly to obtain a homogeneous dispersion. The samples were irradiated with gamma rays with energies of 1.17 and 1.33 MeV emitted from the spontaneous decay of the 60Co irradiator. The interaction of gamma rays with water in the presence of isopropanol generates highly reducing species homogeneously distributed in the solution that can reduce the Ir precursor down to a zero valence state. An absorbed dose of 60 kGy was used, which according to the yield of reducing species is sufficient to reduce the total amount of precursor present in the solution. This novel approach leads to the formation of 2.3 ± 0.5 nm Ir nanoparticles distributed along the surface of the support. The oxygenated functionalities of graphene oxide served as nucleation sites for the formation of Ir nuclei and their subsequent growth. XPS results revealed that the interaction of Ir with the support occurs through Irsbnd O bonds.

  16. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    SciTech Connect

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast process conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.

  17. Iridium anomaly in the Cretaceous section of the Eastern Kamchatka

    NASA Astrophysics Data System (ADS)

    Savelyev, Dmitry; Savelyeva, Olga

    2010-05-01

    The origin of iridium anomalies is widely discussed with regard to massive fauna and flora extinction at several geologic boundaries. Two hypotheses are most popular, cosmogenic and volcanogenic. Anomalies of iridium are known at many stratigraphic levels, both at the geologic series borders and within geologic series. Our studies revealed increased content of iridium in a section of Cretaceous oceanic deposits on the Kamchatsky Mys Peninsula (Eastern Kamchatka, Russia). The investigated section (56°03.353´N, 163°00.376´E) includes interbedded jaspers and siliceous limestones overlaying pillow-basalts. These deposits belong to the Smagin Formation of the Albian-Cenomanian age. In the middle and upper parts of the section two beds of black carbonaceous rocks with sapropelic organic matter were observed. Their formation marked likely episodes of oxygen depletion of oceanic intermediate water (oceanic anoxic events). Our geochemical studies revealed an enrichment of the carbonaceous beds in a number of major and trace elements (Al2O3, TiO2, FeO, MgO, K2O, P2O5, Cu, Zn, Ni, Cr, V, Mo, Ba, Y, Zr, Nb, REE, U, Au, Pt etc.) in comparison with associating jaspers and limestones. There are likely different sources which contributed to the enrichment. It is possible however to correlate the excess of Al, Ti, Zr, Nb with volcanogenic admixture, which is absent in limestones and jaspers. A possible source of the volcanogenic material was local volcanism as suggested by the close association of the investigated section with volcanic rocks (basaltic lavas and hyaloclastites). The basalts of the Smagin Formation were previously proposed to originate during Cretaceous activity of the Hawaiian mantle plume (Portnyagin et al., Geology, 2008). Neutron activation analysis indicated increased up to 9 ppb concentration of Ir at the bottom of the lower carbonaceous bed (inorganic part of the sample was analyzed comprising 46% of the bulk rock). In other samples Ir content was below

  18. Formylated chloro-bridged iridium(III) dimers as OLED materials: opening up new possibilities.

    PubMed

    Wong, Michael Y; Xie, Guohua; Tourbillon, Clarisse; Sandroni, Martina; Cordes, David B; Slawin, Alexandra M Z; Samuel, Ifor D W; Zysman-Colman, Eli

    2015-05-14

    In this study, a series of four formyl-substituted chloro-bridged iridium(iii) dimers were prepared. Their absorption, photophysical and electrochemical properties were studied in dichloromethane solution. It was found that as the formyl content increased on the cyclometalating ligands, emission unexpectedly became brighter. Organic light-emitting diodes (OLEDs) were fabricated using each of these iridium dimers as the emitter. The OLED fabricated using the brightest of the series, 2b, as the dopant afforded a decent external quantum efficiency (EQE) of 2.6%. This suggests that chloro-bridged iridium dimers are potential candidates as solid-state emitters.

  19. Development of fused slurry silicide coatings for tantalum reentry heat shields

    NASA Technical Reports Server (NTRS)

    Warnock, R. V.; Stetson, A. R.

    1972-01-01

    A fused slurry silicide coating was developed to provide atmospheric reentry protection for the 90Ta-lOW alloy. Overlaying the silicide with a highly refractory glass greatly improved total lifetime and reliability of the coating system. Low pressure, slow cycle lifetimes in excess of 100 cycles were consistently recorded for 1700 K - 13 and 1300 N/sq m test conditions. A minimum of 25 cycles was obtained for 1810 K - 1300 N/sq m conditions. About 50 simulated reentry cycles (variable temperature, pressure, and stress) were endured by coated 1-inch miniature heat shield panels when exposed to a maximum of 1700 K and either internal or external pressure conditions.

  20. Neutron irradiated uranium silicides studied by neutron diffraction and Rietveld analysis

    SciTech Connect

    Birtcher, R.C.; Mueller, M.H.; Richardson, J.W. Jr.

    1990-11-01

    The irradiation behavior of high-density uranium silicides has been a matter of interest to the nuclear industry for use in high power or low enrichment applications. Transmission electron microscopy studies have found that heavy ion bombardment renders U{sub 3}Si and U{sub 3}Si{sub 2} amorphous at temperatures below about 250 C and that U{sub 3}Si becomes mechanically unstable suffering rapid growth by plastic flow. In this present work, crystallographic changes preceding amorphization by fission fragment damage have been studied by high-resolution neutron diffraction as a function of damage produced by uranium fission at room temperature. Initially, both silicides had tetragonal crystal structures. Crystallographic and amorphous phases were studied simultaneously by combining conventional Rietveld refinement of the crystallographic phases with Fourier-filtering analysis of the non-crystalline scattering component. 13 refs., 5 figs.

  1. Iron silicide root formation in carbon nanotubes grown by microwave PECVD.

    PubMed

    AuBuchon, Joseph F; Daraio, Chiara; Chen, Li-Han; Gapin, Andrew I; Jin, Sungho

    2005-12-29

    Aligned carbon nanotubes have been grown using microwave plasma enhanced chemical vapor deposition (PECVD). The carbon nanotubes are nucleated from iron catalyst particles which, during growth, remain adherent to the silicon substrates. By analysis with high-resolution electron microscopy, we observe iron silicide roots penetrating into the silicon substrate at the interface of the catalyst particles and the substrate, thus providing strong adhesion of the carbon nanotubes onto the substrate. The iron silicide roots assist in the attachment of the catalyst particles to the substrate and play a role in the evolution of the catalyst particle morphology and resulting base growth mode. Carbon nanotubes grown by microwave PECVD could exhibit superior electrical and thermal transport properties over other PECVD processes, so an understanding of the growth mechanism is important for utilization in device applications. PMID:16375415

  2. Subsurface structure of epitaxial rare-earth silicides imaged by STM

    NASA Astrophysics Data System (ADS)

    Rogero, C.; Martín-Gago, J. A.; Cerdá, J. I.

    2006-09-01

    We combine scanning tunneling microscopy (STM) images, density functional theory total energy calculations, and STM simulations to conclusively determine the surface structure of the Y3Si5(0001) silicide epitaxially grown on Si(111) . We observe, for the same sample, two different types of atomic resolution images exhibiting either p3m or p6 symmetry, in analogy with previous works on similar rare-earth silicide surfaces. We elucidate the long-standing controversy regarding the interpretation of these images by showing that they are mainly related to the registry of the surfacemost Si bilayer with respect to the Si vacancy network located two layers below the surface and, therefore, to the existence of two different buried structural domains. Our results demonstrate an unsual STM depth sensitivity—up to 5Å —for metallic systems.

  3. Growth of single-crystalline cobalt silicide nanowires and their field emission property

    PubMed Central

    2013-01-01

    In this work, cobalt silicide nanowires were synthesized by chemical vapor deposition processes on Si (100) substrates with anhydrous cobalt chloride (CoCl2) as precursors. Processing parameters, including the temperature of Si (100) substrates, the gas flow rate, and the pressure of reactions were varied and studied; additionally, the physical properties of the cobalt silicide nanowires were measured. It was found that single-crystal CoSi nanowires were grown at 850°C ~ 880°C and at a lower gas flow rate, while single-crystal Co2Si nanowires were grown at 880°C ~ 900°C. The crystal structure and growth direction were identified, and the growth mechanism was proposed as well. This study with field emission measurements demonstrates that CoSi nanowires are attractive choices for future applications in field emitters. PMID:23819795

  4. The formation of magnetic silicide Fe3Si clusters during ion implantation

    NASA Astrophysics Data System (ADS)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  5. Carbon mediated reduction of silicon dioxide and growth of copper silicide particles in uniform width channels

    SciTech Connect

    Pizzocchero, Filippo; Bøggild, Peter; Booth, Timothy J.

    2013-09-21

    We show that surface arc-discharge deposited carbon plays a critical intermediary role in the breakdown of thermally grown oxide diffusion barriers of 90 nm on a silicon wafer at 1035 °C in an Ar/H{sub 2} atmosphere, resulting in the formation of epitaxial copper silicide particles in ≈ 10 μm wide channels, which are aligned with the intersections of the (100) surface of the wafer and the (110) planes on an oxidized silicon wafer, as well as endotaxial copper silicide nanoparticles within the wafer bulk. We apply energy dispersive x-ray spectroscopy, in combination with scanning and transmission electron microscopy of focused ion beam fabricated lammelas and trenches in the structure to elucidate the process of their formation.

  6. Development of a fused slurry silicide coating for the protection of tantalum alloys

    NASA Technical Reports Server (NTRS)

    Packer, C. M.; Perkins, R. A.

    1974-01-01

    Results are reported of a research program to develop a reliable high-performance, fused slurry silicide protective coating for a tantalum-10 tungsten alloy for use at 1427 to 1538 C at 0.1 to 10 torr air pressure under cyclic temperature conditions. A review of silicide coating performance under these conditions indicated that the primary wear-out mode is associated with widening of hairline fissures in the coating. Consideration has been given to modifying the oxidation products that form on the coating surface to provide a seal for these fissures and to minimize their widening. On the basis of an analysis of the phase relationships between silica and various other oxides, a coating having the slurry composition 2.5Mn-33Ti-64.5Si was developed that is effective in the pressure range from 1 to 10 torr.

  7. Neutronic study on conversion of SAFARI-1 to LEU silicide fuel

    SciTech Connect

    Ball, G.; Pond, R.; Hanan, N.; Matos, J.

    1995-02-01

    This paper marks the initial study into the technical and economic feasibility of converting the SAFARI-1 reactor in South Africa to LEU silicide fuel. Several MTR assembly geometries and LEU uranium densities have been studied and compared with MEU and HEU fuels. Two factors of primary importance for conversion of SAFARI-1 to LEU fuel are the economy of the fuel cycle and the performance of the incore and excore irradiation positions.

  8. Silicide Coating Fabricated by HAPC/SAPS Combination to Protect Niobium Alloy from Oxidation.

    PubMed

    Sun, Jia; Fu, Qian-Gang; Guo, Li-Ping; Wang, Lu

    2016-06-22

    A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the outer MoSi2 layer, forming a combined silicide coating. Results show that the combined coating possessed a compact structure. The phase constitution of the combined coating prepared by HAPC and SAPS was NbSi2 and MoSi2, respectively. The adhesion strength of the combined coating increased nearly two times than that for single sprayed coating, attributing to the rougher surface of the HAPC-bond layer whose roughness increased about three times than that of the grit-blast substrate. After exposure at 1200 °C in air, the mass increasing rate for single HAPC-silicide coating was 3.5 mg/cm(2) because of the pest oxidation of niobium alloy, whereas the combined coating displayed better oxidation resistance with a mass gain of only 1.2 mg/cm(2). Even more, the combined coating could significantly improve the antioxidation ability of niobium based alloy at 1500 °C. The good oxidation resistance of the combined silicide coating was attributed to the integrity of the combined coating and the continuous SiO2 protective scale provided by the oxidation of MoSi2. PMID:27243944

  9. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    SciTech Connect

    Yuryev, V. A. Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P.; Senkov, V. M.; Nalivaiko, O. Y.; Novikau, A. G.; Gaiduk, P. I.

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  10. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    NASA Astrophysics Data System (ADS)

    Yuryev, V. A.; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P.; Senkov, V. M.; Nalivaiko, O. Y.; Novikau, A. G.; Gaiduk, P. I.

    2015-05-01

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si3N4/SiO2/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about -2%/ °C in the temperature interval from 25 to 50 °C.

  11. Durability of Silicide-Based Thermoelectric Modules at High Temperatures in Air

    NASA Astrophysics Data System (ADS)

    Funahashi, Ryoji; Matsumura, Yoko; Barbier, Tristan; Takeuchi, Tomonari; Suzuki, Ryosuke O.; Katsuyama, Shigeru; Yamamoto, Atsushi; Takazawa, Hiroyuki; Combe, Emmanuel

    2015-08-01

    Thermoelectric modules consisting of n-type Mn2.7Cr0.3Si4Al2 and p-type MnSi1.75 legs have been fabricated by use of composite pastes of Ag with Pt or Pd. For the module prepared by Ni-B plating and with Ag paste, the specific power density reached 370 mW/cm2 at a heat-source temperature of 873 K. Ni-B plating 5 μm thick on the surfaces of the silicide legs reduced both the internal resistance and degradation of the power generated by silicide modules at temperatures up to 873 K in air. This is because of oxidation of Al diffusing into the n-type legs and reaching the Ag electrodes on both the hot and cold sides. Ni-B plating can suppress Al diffusion into n-type legs. However, cracking was observed parallel to the contact surface in the middle of the Ni-B plating layer on the p-type legs. It was also found that incorporating Pt or Pd into the Ag paste effectively suppressed degradation of the contact resistance between the silicide legs and the Ag electrodes.

  12. Sub-Chronic Oral Exposure to Iridium (III) Chloride Hydrate in Female Wistar Rats: Distribution and Excretion of the Metal

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Bergamaschi, Antonio; Conti, Marcelo Enrique; Pino, Anna; Mattei, Daniela; Bocca, Beatrice; Alimonti, Alessandro

    2012-01-01

    Iridium tissue distribution and excretion in female Wistar rats following oral exposure to iridium (III) chloride hydrate in drinking water (from 1 to 1000 ng/ml) in a sub-chronic oral study were determined. Samples of urine, feces, blood and organs (kidneys, liver, lung, spleen and brain) were collected at the end of exposure. The most prominent fractions of iridium were retained in kidney and spleen; smaller amounts were found in lungs, liver and brain. Iridium brain levels were lower than those observed in other tissues but this finding can support the hypothesis of iridium capability to cross the blood brain barrier. The iridium kidney levels rose significantly with the administered dose. At the highest dose, important amounts of the metal were found in serum, urine and feces. Iridium was predominantly excreted via feces with a significant linear correlation with the ingested dose, which is likely due to low intestinal absorption of the metal. However, at the higher doses iridium was also eliminated through urine. These findings may be useful to help in the understanding of the adverse health effects, particularly on the immune system, of iridium dispersed in the environment as well as in identifying appropriate biological indices of iridium exposure. PMID:22942873

  13. Analysis and Implications of the Iridium 33-Cosmos 2251 Collision

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.

    On 2009 February 10, Iridium 33--an operational US communications satellite in low-Earth orbit--was struck and destroyed by Cosmos 2251--a long-defunct Russian communications satellite. This is the first time since the dawn of the Space Age that two satellites have collided in orbit. To better understand the circumstances of this event and the ramifications for avoiding similar events in the future, this paper provides a detailed analysis of the predictions leading up to the collision, using various data sources, and looks in detail at the collision, the evolution of the debris clouds, and the long-term implications for satellite operations. The only publicly available system available to satellite operators for screening for close approaches, SOCRATES, did predict this close approach, but it certainly wasn't the closest approach predicted for the week of February 10. In fact, at the time of the collision, SOCRATES ranked this close approach 152 of the 11,428 within 5 km of any payload. A detailed breakdown is provided to help understand the limitations of screening for close approaches using the two-line orbital element sets. Information is also provided specifically for the Iridium constellation to provide an understanding of how these limitations affect decision making for satellite operators. Post-event analysis using high-accuracy orbital data sources will be presented to show how that information might have been used to prevent this collision, had it been available and used. Analysis of the collision event, along with the distribution of the debris relative to the original orbits, will be presented to help develop an understanding of the geometry of the collision and the near-term evolution of the resulting debris clouds. Additional analysis will be presented to show the long-term evolution of the debris clouds, including orbital lifetimes, and estimate the increased risk for operations conducted by Iridium and other satellite operators in the low-Earth orbit

  14. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.

    PubMed

    Li, Houhua; Mazet, Clément

    2016-06-21

    This Account presents the development of the iridium-catalyzed isomerization of primary allylic alcohols in our laboratory over the past 8 years. Our initial interest was driven by the long-standing challenge associated with the development of a general catalyst even for the nonasymmetric version of this seemingly simple chemical transformation. The added value of the aldehyde products and the possibility to rapidly generate molecular complexity from readily accessible allylic alcohols upon a redox-economical isomerization reaction were additional sources of motivation. Certainly influenced by the success story of the related isomerization of allylic amines, most catalysts developed for the selective isomerization of allylic alcohols were focused on rhodium as a transition metal of choice. Our approach has been based on the commonly accepted precept that hydrogenation and isomerization are often competing processes, with the latter being usually suppressed in favor of the former. The cationic iridium complexes [(Cy3P)(pyridine)Ir(cod)]X developed by Crabtree (X = PF6) and Pfaltz (X = BArF) are usually considered as the most versatile catalysts for the hydrogenation of allylic alcohols. Using molecular hydrogen to generate controlled amounts of the active form of these complexes but performing the reaction in the absence of molecular hydrogen enabled deviation from the typical hydrogenation manifold and favored exclusively the isomerization of allylic alcohols into aldehydes. Isotopic labeling and crossover experiments revealed the intermolecular nature of the process. Systematic variation of the ligand on the iridium center allowed us to identify the structural features beneficial for catalytic activity. Subsequently, three generations of chiral catalysts have been investigated and enabled us to reach excellent levels of enantioselectivity for a wide range of 3,3-disubstituted aryl/alkyl and alkyl/alkyl primary allylic alcohols leading to β-chiral aldehydes. The

  15. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide

    SciTech Connect

    Chen, Xiao; Zhang, Bingsen; Li, Chuang; Shao, Zhengfeng; Su, Dangsheng; Williams, Christopher T.; Liang, Changhai

    2012-03-15

    Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1}) produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.

  16. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    PubMed

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. PMID:25293511

  17. Iridium-alloy processing experience in FY 1990

    SciTech Connect

    Ohriner, E.K.

    1991-11-01

    Iridium-alloy blanks and foil are produced at the Oak Ridge National Laboratory for use as fuel cladding material in radioisotope thermoelectric generators for space power sources. Until 1984, the material was produced from small, 500-g drop castings. A new process has been developed in which consumable electrodes of about 10 kg are melted, extruded, and then rolled to produce the sheet products. The work performed during FY 1990 included the consumable-electrode arc melting of four ingots and the extruding and rolling to sheet of four billets. Significant improvements made in the extruding and arc-melting processes during FY 1989 have been demonstrated to dramatically increase the rate of blank acceptance in nondestructive evaluations. Efforts to improve the rolling practice and to better characterize intermetallic particle distributions in the sheet are also described.

  18. Iridium-alloy processing experience in FY 1989

    SciTech Connect

    Ohriner, E.K.

    1990-11-01

    Iridium-alloy blanks and foil are produced at the Oak Ridge National Laboratory for use as fuel cladding material in radioisotope thermoelectric generators for space power sources. Until 1984, the material was produced from small 500-g drop castings. A new process has been developed in which consumable electrodes of about 10 kg are arc melted, extruded, and then rolled to produce the sheet products. The work performed during FY 1989 included the arc melting of three electrodes and the extruding and rolling to sheet of three billets. Significant improvements have been made in the extruding and arc-melting processes. Preliminary results show that these improvements have had an important effect in increasing the rate of blank acceptance in nondestructive evaluations. 4 refs., 33 figs., 11 tabs.

  19. Comparative modelling of chemical ordering in palladium-iridium nanoalloys

    SciTech Connect

    Davis, Jack B. A.; Johnston, Roy L.; Rubinovich, Leonid; Polak, Micha

    2014-12-14

    Chemical ordering in “magic-number” palladium-iridium nanoalloys has been studied by means of density functional theory (DFT) computations, and compared to those obtained by the Free Energy Concentration Expansion Method (FCEM) using derived coordination dependent bond energy variations (CBEV), and by the Birmingham Cluster Genetic Algorithm using the Gupta potential. Several compositions have been studied for 38- and 79-atom particles as well as the site preference for a single Ir dopant atom in the 201-atom truncated octahedron (TO). The 79- and 38-atom nanoalloy homotops predicted for the TO by the FCEM/CBEV are shown to be, respectively, the global minima and competitive low energy minima. Significant reordering of minima predicted by the Gupta potential is seen after reoptimisation at the DFT level.

  20. Iridium abundance maxima in the Upper Cenomanian extinction interval

    NASA Astrophysics Data System (ADS)

    Orth, C. J.; Attrep, M., Jr.; Mao, X. Y.; Kauffman, E. G.; Diner, R.

    1988-04-01

    Two iridium abundance peaks, both 0.11 ppb (whole-rock basis) over a local background of 0.017 ppb, have been found in Middle Cretaceous marine rocks near Pueblo, Colorado. They occur just below the 92-million-year-old Cenomanian-Turonian (C-T) stage boundary. No other peaks were found in 45 meters of strata (about 2.5 million years of deposition) above and below the boundary interval. The broad lower peak straddles the first in a series of extinctions of benthic and nektonic macrobiota which comprise the C-T extinction event. The sharp upper peak occurs stratigraphically about 1.2 meters above the lower peak. The excess Ir might be from meteoroid impacts.

  1. Iridium abundance maxima in the Upper Cenomanian extinction interval

    NASA Technical Reports Server (NTRS)

    Orth, C. J.; Attrep, M., Jr.; Mao, X. Y.; Kauffman, E. G.; Diner, R.

    1988-01-01

    Two iridium abundance peaks, both 0.11 ppb (whole-rock basis) over a local background of 0.017 ppb, have been found in Middle Cretaceous marine rocks near Pueblo, Colorado. They occur just below the 92-million-year-old Cenomanian-Turonian (C-T) stage boundary. No other peaks were found in 45 meters of strata (about 2.5 million years of deposition) above and below the boundary interval. The broad lower peak straddles the first in a series of extinctions of benthic and nektonic macrobiota which comprise the C-T extinction event. The sharp upper peak occurs stratigraphically about 1.2 meters above the lower peak. The excess Ir might be from meteoroid impacts.

  2. Intercalation of graphene on iridium with samarium atoms

    NASA Astrophysics Data System (ADS)

    Afanas'eva, E. Yu.; Rut'kov, E. V.; Gall, N. R.

    2016-07-01

    Intercalation of graphene on Ir (111) with Sm atoms is studied by methods of thermal desorption spectroscopy and thermionic emission. It is shown that adsorption of samarium at T = 300 K on graphene to concentrations of N ≤ 6 × 1014 atoms cm-2 followed by heating of the substrate leads to practically complete escape of adsorbate underneath the graphene layer. At N > 6 × 1014 atoms cm-2 and increasing temperature, a fraction of adsorbate remains on graphene in the form of two-dimensional "gas" and samarium islands and are desorbed in the range of temperatures of 1000-1200 K. Samarium remaining under the graphene is desorbed from the surface in the temperature range 1200-2150 K. Model conceptions for the samarium-graphene-iridium system in a wide temperature range are developed.

  3. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-01-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1–40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1–40 peptide on the basis of their emission response. PMID:26419607

  4. Synthesis of a chloro protected iridium nitrido complex.

    PubMed

    Sieh, Daniel; Schöffel, Julia; Burger, Peter

    2011-10-01

    Intramolecular activation processes of vulnerable ligand C-H bonds frequently limit the thermal stability and accessibility of late transition metal complexes with terminal metal nitrido units. In this study chloro substitution of the 2,6-ketimine N-aryl substituents (2,6-C(6)H(3)R(2), R = Cl) of the pyridine, diimine ligand is probed to increase the stability of square-planar iridium nitrido compounds. The thermal stability of iridium azido precursor and nitrido compounds was studied by a combination of thermoanalytical methods (DTG/MS and DSC) and were compared to the results for the related complexes with 2,6-dialkyl substituted N-aryl groups (R = Me, iPr). The investigations were complemented by DFT calculations, which allowed us to unravel details of the thermal decomposition pathways and provided mechanistic insights of further conversion steps and fluctional processes. The DTG/MS and DSC measurements revealed two different types of thermolysis pathways for the azido compounds. For the complexes with R = Cl and iPr substituents, two well-separated exothermic processes were observed. The first moderately exothermic loss of N(2) is followed by a second, strongly exothermic transformation. This contrasts the experimental results for the compound with 2,6-dimethyl substituents (R = Me), where both steps proceed concurrently in the same temperature range. The separation of the two thermal steps in the 2,6-dichloro substituted derivative allowed us to develop a protocol for the isolation of the highly insoluble nitrido complex, which was characterized by UV/vis, IR-spectroscopy and elemental analysis. Its constitution was further confirmed by reaction with silanes, which gave the corresponding silyl amido complexes.

  5. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    SciTech Connect

    Song, Bo; Nelson, Kevin; Lipinski, Ronald J.; Bignell, John L.; Ulrich, G. B.; George, E. P.

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  6. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.

    PubMed

    Weiland, James D; Anderson, David J; Humayun, Mark S

    2002-12-01

    Stimulating electrode materials must be capable of supplying high-density electrical charge to effectively activate neural tissue. Platinum is the most commonly used material for neural stimulation. Two other materials have been considered: iridium oxide and titanium nitride. This study directly compared the electrical characteristics of iridium oxide and titanium nitride by fabricating silicon substrate probes that differed only in the material used to form the electrode. Electrochemical measurements indicated that iridium oxide had lower impedance and a higher charge storage capacity than titanium nitride, suggesting better performance as a stimulating electrode. Direct measurement of the electrode potential in response to a biphasic current pulse confirmed that iridium oxide uses less voltage to transfer the same amount of charge, therefore using less power. The charge injection limit for titanium nitride was 0.87 mC/cm2, contradicting other reports estimating that titanium nitride was capable of injecting 22 mC/cm2. Iridium oxide charge storage was 4 mC/cm2, which is comparable to other published values for iridium oxide. Electrode efficiency will lead to an overall more efficient and effective device.

  7. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon

    SciTech Connect

    Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby; Wright, Nick; O'Neill, Anthony; Horsfall, Alton; Goss, Jonathan; Cumpson, Peter

    2013-03-21

    Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such as the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.

  8. Exploitation of a self-limiting process for reproducible formation of ultrathin Ni{sub 1-x}Pt{sub x} silicide films

    SciTech Connect

    Zhang Zhen; Zhu Yu; Rossnagel, Steve; Murray, Conal; Jordan-Sweet, Jean; Yang, Bin; Gaudet, Simon; Desjardins, Patrick; Kellock, Andrew J.; Ozcan, Ahmet; Zhang Shili; Lavoie, Christian

    2010-12-20

    This letter reports on a process scheme to obtain highly reproducible Ni{sub 1-x}Pt{sub x} silicide films of 3-6 nm thickness formed on a Si(100) substrate. Such ultrathin silicide films are readily attained by sputter deposition of metal films, metal stripping in wet chemicals, and final silicidation by rapid thermal processing. This process sequence warrants an invariant amount of metal intermixed with Si in the substrate surface region independent of the initial metal thickness, thereby leading to a self-limiting formation of ultrathin silicide films. The crystallographic structure, thickness, uniformity, and morphological stability of the final silicide films depend sensitively on the initial Pt fraction.

  9. NiSi formation at the silicide/Si interface on the NiPt/Si system

    NASA Astrophysics Data System (ADS)

    Ottaviani, G.; Tu, K. N.; Chu, W. K.; Hung, L. S.; Mayer, J. W.

    1982-07-01

    Alloy films of NiPt were e-beam codeposited on n-type Si and annealed up to 700 °C in a purified- He ambient furnace. Silicide formation was monitored using MeV4 He Rutherford backscattering and glancing-angle x-ray diffraction. At low temperatures (300-350 °C), Ni segregates at the Si/ silicide interface and the first phases detected are NiSi and PtSi. At intermediate temperatures (400- 500 °C), there is further accumulation of Ni at the Si/silicide interface, and at later stages an incursion of Pt to the interface. The barrier height increase reflects the presence of Pt. At 700 °C, the Ni and Pt redistribute to form a uniform ternary.

  10. Formation, optical properties, and electronic structure of thin Yb silicide films on Si(111)

    NASA Astrophysics Data System (ADS)

    Galkin, N. G.; Maslov, A. M.; Polyarnyi, V. O.

    2005-06-01

    Continuous very thin (2.5-3.0 nm) and thin (16-18 nm) ytterbium suicide films with some pinhole density (3×107- 1×108 cm-2) have been formed on Si(111) by solid phase epitaxy (SPE) and reactive deposition epitaxy (RDE) growth methods on templates. The stoichiometric ytterbium suicide (YbSi2) formation has shown in SPE grown films by AES and EELS data. Very thin Yb suicide films grown by RDE method had the silicon enrichment in YbSi2 suicide composition. The analysis of LEED data and AFM imaging has shown that ytterbium suicide films had non-oriented blocks with the polycrystalline structure. The analysis of scanning region length dependencies of the root mean square roughness deviation (σR(L)) for grown suicide films has shown that the formation of ytterbium suicide in SPE and RDE growth methods is determined by the surface diffusion of Yb atoms during the three-dimensional growth process. Optical functions (n, k, α, ɛ1, ɛ2, Im ɛ1-1, neff, ɛeff) of ytterbium silicide films grown on Si(1 1 1) have been calculated from transmittance and reflectance spectra in the energy range of 0.1-6.2 eV. Two nearly discrete absorption bands have been observed in the electronic structure of Yb silicide films with different composition, which connected with interband transitions on divalent and trivalent Yb states. It was established that the reflection coefficient minimum in R-spectra at energies higher 4.2 eV corresponds to the state density minimum in Yb suicide between divalent and trivalent Yb states. It was shown from optical data that Yb silicide films have the semi-metallic properties with low state densities at energies less 0.4 eV and high state densities at 0.5-2.5 eV.

  11. Combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Shafiul

    Molybdenum silicides and borosilicides are promising structural materials for gas-turbine power plants. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. For example, molybdenum disilicide (MoSi2) has excellent oxidation resistance and poor mechanical properties, while Mo-rich silicides such as Mo5Si3 (called T 1) have much better mechanical properties but poor oxidation resistance. One approach is based on the fabrication of MoSi2-T 1 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of T1. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, Mo 5SiB2 (called T2) phase is considered as an attractive material. In the thesis, MoSi2-T1 composites and materials based on T2 phase are obtained by mechanically activated SHS. Use of SHS compaction (quasi-isostatic pressing) significantly improves oxidation resistance of the obtained MoSi2-T1 composites. Combustion of Mo-Si-B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of molybdenum boride. These mixtures exhibit spin combustion, the characteristics of which are in good agreement with the spin combustion theory. Oxidation resistance of the obtained Mo-Si-B materials is independent on the concentration of Mo phase in the products so that the materials with a higher Mo content are preferable because of better mechanical properties. Also, T2 phase has been obtained by the chemical oven combustion synthesis technique.

  12. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    SciTech Connect

    Singh, S.; Solak, H.; Cerrina, F.

    1997-04-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi{sub 2} exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 {mu}{Omega}-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 {mu}{Omega}-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick {open_quotes}as is{close_quotes} industrial samples.

  13. Metal silicide/Si thin-film Schottky-diode bolometers

    NASA Astrophysics Data System (ADS)

    Yuryev, Vladimir A.; Chizh, Kirill V.; Chapnin, Valery V.; Kalinushkin, Victor P.

    2015-06-01

    Recently, we have demonstrated Ni silicide/poly-Si diodes as a budget alternative to SOI-diode temperature sensors in uncooled microbolometer FPAs. This paper introduces a solution still more suitable for industry: We have developed PtSi/poly-Si Schottky diodes for microbolometers. Ease of integration of the PtSi/poly-Si diode formation process into the CMOS technology, in analogy with the internal photoemission PtSi/Si IR FPAs, is the merit of the PtSi/poly-Si sensors. Now we demonstrate PtSi/poly-Si diode microbolometers and propose them as a promising solution for focal plane arrays.

  14. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A.; Woolman, Joseph N.; Petrovic, John J.

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  15. Optical response at 10.6 microns in tungsten silicide Schottky barrier diodes

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Boyd, Joseph T.; Jackson, Howard E.

    1987-01-01

    Optical response to radiation at a wavelength of 10.6 microns in tungsten silicide-silicon Schottky barrier diodes has been observed. Incident photons excite electrons by means of junction plasmon assisted inelastic electron tunneling. At 78 K, a peak in the second derivative of current versus junction bias voltage was observed at a voltage corresponding to the energy of photons having a wavelength of 10.6 microns. This peak increased with increasing incident laser power, saturating at the highest laser powers investigated.

  16. Ferromagnetic nickel silicide nanowires for isolating primary CD4+ T lymphocytes

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Seol, Jin-Kyeong; Lee, Mi-Ri; Hyung, Jung-Hwan; Kim, Gil-Sung; Ohgai, Takeshi; Lee, Sang-Kwon

    2012-04-01

    Direct CD4+ T lymphocytes were separated from whole mouse splenocytes using 1-dimensional ferromagnetic nickel silicide nanowires (NiSi NWs). NiSi NWs were prepared by silver-assisted wet chemical etching of silicon and subsequent deposition and annealing of Ni. This method exhibits a separation efficiency of ˜93.5%, which is comparable to that of the state-of-the-art superparamagnetic bead-based cell capture (˜96.8%). Furthermore, this research shows potential for separation of other lymphocytes, B, natural killer and natural killer T cells, and even rare tumor cells simply by changing the biotin-conjugated antibodies.

  17. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1994-01-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide

  18. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Astrophysics Data System (ADS)

    Reed, Brian D.

    1994-03-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide

  19. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors.

    PubMed

    Zhao, Qingcheng; Zhou, Yuyang; Li, Yingying; Gu, Wei; Zhang, Qi; Liu, Jian

    2016-02-01

    There has been growing interest in utilizing highly photostable iridium(III) complexes as new luminescent probes for biotechnology and life science. Herein, iridium(III) complex with carboxyl group was synthesized and activated with N-hydroxysuccinimide, followed by tagging to the amino terminate of single-stranded DNA (ssDNA). The Ir-ssDNA probe was further combined with graphene oxide (GO) nanosheets to develop a GO-based biosensor for target ssDNA detection. The quenching efficiency of GO, and the photostability of iridium(III) complex and GO-Ir-ssDNA biosensor, were also investigated. On the basis of the high luminescence quenching efficiency of GO toward iridium(III) complex, the GO-Ir-ssDNA biosensor exhibited minimal background signals, while strong emission was observed when Ir-ssDNA desorbed from GO nanosheets and formed a double helix with the specific target, leading to a high signal-to-background ratio. Moreover, it was found that luminescent intensities of iridium(III) complex and GO-Ir-ssDNA biosensor were around 15 and 3 times higher than those of the traditional carboxyl fluorescein (FAM) dye and the GO-FAM-ssDNA biosensor after UV irradiation, respectively. Our study suggested the sensitive and selective Ir-ssDNA probe was suitable for the development of highly photostable GO-based detection platforms, showing promise for application beyond the OLED (organic light emitting diode) area. PMID:26753824

  20. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Astrophysics Data System (ADS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-11-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  1. Electrodeposition of platinum-iridium alloy nanowires for hermetic packaging of microelectronics.

    PubMed

    Petrossians, Artin; Whalen, John J; Weiland, James D; Mansfeld, Florian

    2012-01-01

    An electrodeposition technique was applied for fabrication of dense platinum-iridium alloy nanowires as interconnect structures in hermetic microelectronic packaging to be used in implantable devices. Vertically aligned arrays of platinum-iridium alloy nanowires with controllable length and a diameter of about 200 nm were fabricated using a cyclic potential technique from a novel electrodeposition bath in nanoporous aluminum oxide templates. Ti/Au thin films were sputter deposited on one side of the alumina membranes to form a base material for electrodeposition. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to characterize the morphology and the chemical composition of the nanowires, respectively. SEM micrographs revealed that the electrodeposited nanowires have dense and compact structures. EDS analysis showed a 60:40% platinum-iridium nanowire composition. Deposition rates were estimated by determining nanowire length as a function of deposition time. High Resolution Transmission Electron Microscopy (HRTEM) images revealed that the nanowires have a nanocrystalline structure with grain sizes ranging from 3 nm to 5 nm. Helium leak tests performed using a helium leak detector showed leak rates as low as 1 × 10(-11) mbar L s(-1) indicating that dense nanowires were electrodeposited inside the nanoporous membranes. Comparison of electrical measurements on platinum and platinum-iridium nanowires revealed that platinum-iridium nanowires have improved electrical conductivity.

  2. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Technical Reports Server (NTRS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-01-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  3. Toward the Digital Electrochemical Recognition of Cobalt, Iridium, Nickel, and Iron Ion Collisions by Catalytic Amplification.

    PubMed

    Dick, Jeffrey E; Bard, Allen J

    2016-07-13

    We report the electrochemical detection of femtomolar amounts of cobalt, iridium, nickel, and iron ions in solution by electrocatalyst formation and amplification. The metal oxides of these ions can be formed electrochemically and can catalyze the oxidation of water. Alternatively, the reduction of metal ions to metals, such as the reduction of IrCl6(3-) to iridium, is capable of electrocatalytically reducing protons to molecular hydrogen, as shown previously with Pt. These events, which manifest themselves in amperometry, correspond to the formation of electrocatalytic nuclei on the electrode surface, capable of electrocatalytically oxidizing water or reducing protons. An analysis of the frequency of anodic blips compared to theory implies that the requirement for water oxidation is 10 ± 1 ions of cobalt, 13 ± 4 ions of iridium, and 11 ± 3 ions of nickel. A similar analysis for iridium reduction and the corresponding catalytic reduction of protons implies that 6 ± 2 ions of iridium are required for proton reduction. These numbers are confirmed in an analysis of the time of first nucleation event, i.e. the time at which the first blip on the amperometric i-t experiment occurs. We further show that the anodic blips in detecting nickel increase in intensity upon increasing amounts of iron ions in solution to a ratio of Ni/Fe of ∼5, surprisingly close to that for bulk electrocatalysts of Ni-Fe. PMID:27295309

  4. Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice.

    PubMed

    Gabrielli, Paolo; Barbante, Carlo; Plane, John M C; Varga, Anita; Hong, Sungmin; Cozzi, Giulio; Gaspari, Vania; Planchon, Frédéric A M; Cairns, Warren; Ferrari, Christophe; Crutzen, Paul; Cescon, Paolo; Boutron, Claude F

    2004-12-23

    An iridium anomaly at the Cretaceous/Tertiary boundary layer has been attributed to an extraterrestrial body that struck the Earth some 65 million years ago. It has been suggested that, during this event, the carrier of iridium was probably a micrometre-sized silicate-enclosed aggregate or the nanophase material of the vaporized impactor. But the fate of platinum-group elements (such as iridium) that regularly enter the atmosphere via ablating meteoroids remains largely unknown. Here we report a record of iridium and platinum fluxes on a climatic-cycle timescale, back to 128,000 years ago, from a Greenland ice core. We find that unexpectedly constant fallout of extraterrestrial matter to Greenland occurred during the Holocene, whereas a greatly enhanced input of terrestrial iridium and platinum masked the cosmic flux in the dust-laden atmosphere of the last glacial age. We suggest that nanometre-sized meteoric smoke particles, formed from the recondensation of ablated meteoroids in the atmosphere at altitudes >70 kilometres, are transported into the winter polar vortices by the mesospheric meridional circulation and are preferentially deposited in the polar ice caps. This implies an average global fallout of 14 +/- 5 kilotons per year of meteoric smoke during the Holocene.

  5. Earth's Radiation Imbalance from a Constellation of 66 Iridium Satellites

    NASA Astrophysics Data System (ADS)

    Chiu, J. C.; Wiscombe, W. J.

    2012-04-01

    The Earth Radiation Imbalance (ERI) at the top of the atmosphere is the primary driving force for climate change. If ERI is not zero, then Earth's temperature, both oceanic and atmospheric, will change gradually over time, tending toward a new steady state. The best estimates of current ERI from climate models range from 0.4 to 0.9 W/m2 (the imbalance being caused mainly by increasing CO2), but current satellite systems do not have the accuracy to measure ERI to even one significant digit. In this paper, we will describe a proposed constellation of 66 Earth radiation budget instruments, to be hosted on Iridium satellites. This system represents a quantum leap over current systems in several ways, in particular in providing ERI to at least one significant digit, thus enabling a crucial test of climate models. Because of its 24/7 coverage, the system will also provide ERI at three-hourly time scales without requiring extrapolations from narrowband geostationary instruments. This would allow studies of ERI's response to fast-evolving phenomena like dust storms and hurricanes. This offers a new, synoptic view of Earth radiation budget that will transform it from a monthly average into a dynamical variable alongside standard meteorological variables like temperature and pressure.

  6. High-Temperature Oxidation Behavior of Iridium-Rhenium Alloys

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1995-01-01

    The life-limiting mechanism for radiation-cooled rockets made from iridium-coated rhenium (Ir/Re) is the diffusion of Re into the Ir layer and the subsequent oxidation of the resulting Ir-Re alloy from the inner surface. In a previous study, a life model for Ir/Re rockets was developed. It incorporated Ir-Re diffusion and oxidation data to predict chamber lifetimes as a function of temperature and oxygen partial pressure. Oxidation testing at 1540 deg C suggested that a 20-wt percent Re concentration at the inner wall surface should be established as the failure criterion. The present study was performed to better define Ir-oxidation behavior as a function of Re concentration and to supplement the data base for the life model. Samples ranging from pure Ir to Ir-40 wt percent Re (Ir-40Re) were tested at 1500 deg C, in two different oxygen environments. There were indications that the oxidation rate of the Ir-Re alloy increased significantly when it went from a single-phase solid solution to a two-phase mixture, as was suggested in previous work. However, because of testing anomalies in this study, there were not enough dependable oxidation data to definitively raise the Ir/Re rocket failure criterion from 20-wt percent Re to a Re concentration corresponding to entry into the two-phase region.

  7. High Strain Rate Tensile Testing of DOP-26 Iridium

    SciTech Connect

    Schneibel, Joachim H; Carmichael Jr, Cecil Albert; George, Easo P

    2007-11-01

    The iridium alloy DOP-26 was developed through the Radioisotope Power Systems Program in the Office of Nuclear Energy of the Department of Energy. It is used for clad vent set cups containing radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for spacecraft. This report describes mechanical testing results for DOP-26. Specimens were given a vacuum recrystallization anneal of 1 hour at 1375 C and tested in tension in orientations parallel and perpendicular to the rolling direction of the sheet from which they were fabricated. The tests were performed at temperatures ranging from room temperature to 1090 C and strain rates ranging from 1 x 10{sup -3} to 50 s{sup -1}. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1 x 10{sup -4} Torr. The yield stress (YS) and the ultimate tensile stress (UTS) decreased with increasing temperature and increased with increasing strain rate. Between 600 and 1090 C, the ductility showed a slight increase with increasing temperature. Within the scatter of the data, the ductility did not depend on the strain rate. The reduction in area (RA), on the other hand, decreased with increasing strain rate. The YS and UTS values did not differ significantly for the longitudinal and transverse specimens. The ductility and RA values of the transverse specimens were marginally lower than those of the longitudinal specimens.

  8. Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells

    NASA Astrophysics Data System (ADS)

    Vismara, R.; Isabella, O.; Zeman, M.

    2016-04-01

    Barium di-silicide (BaSi2) is an abundant and inexpensive semiconductor with appealing opto-electrical properties. In this work we show that a 2-μm thick BaSi2-based thin-film solar cell can exhibit an implied photo-current density equal to 41.1 mA/cm2, which is higher than that of a state-of-the-art wafer-based c-Si hetero-junction solar cell. This performance makes BaSi2 an attractive absorber for high-performing thin-film and multi-junction solar cells. In particular, to assess the potential of barium di-silicide, we propose a thin-film double-junction solar cell based on organometallic halide perovskite (CH3NH3PbI3) as top absorber and BaSi2 as bottom absorber. The resulting modelled ultra-thin double-junction CH3NH3PbI3 / BaSi2 (< 2 μm) exhibits an implied total photo-current density equal to 38.65 mA/cm2 (19.84 mA/cm2 top cell, 18.81 mA/cm2 bottom cell) and conversion efficiencies up to 28%.

  9. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    SciTech Connect

    Trivedi, Sudhir B.; Kutcher, Susan W.; Rosemeier, Cory A.; Mayers, David; Singh, Jogender

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  10. "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe.

    PubMed

    Mingo, N; Hauser, D; Kobayashi, N P; Plissonnier, M; Shakouri, A

    2009-02-01

    We present a "nanoparticle-in-alloy" material approach with silicide and germanide fillers leading to a potential 5-fold increase in the thermoelectric figure of merit of SiGe alloys at room temperature and 2.5 times increase at 900 K. Strong reductions in computed thermal conductivity are obtained for 17 different types of silicide nanoparticles. We predict the existence of an optimal nanoparticle size that minimizes the nanocomposite's thermal conductivity. This thermal conductivity reduction is much stronger and strikingly less sensitive to nanoparticle size for an alloy matrix than for a single crystal one. At the same time, nanoparticles do not negatively affect the electronic conduction properties of the alloy. The proposed material can be monolithically integrated into Si technology, enabling an unprecedented potential for micro refrigeration on a chip. High figure-of-merit at high temperatures (ZT approximately 1.7 at 900 K) opens up new opportunities for thermoelectric power generation and waste heat recovery at large scale.

  11. Facile Preparation of a Platinum Silicide Nanoparticle-Modified Tip Apex for Scanning Kelvin Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Ting; Chen, Yu-Wei; Su, James; Wu, Chien-Ting; Hsiao, Chien-Nan; Shiao, Ming-Hua; Chang, Mao-Nan

    2015-10-01

    In this study, we propose an ultra-facile approach to prepare a platinum silicide nanoparticle-modified tip apex (PSM tip) used for scanning Kelvin probe microscopy (SKPM). We combined a localized fluoride-assisted galvanic replacement reaction (LFAGRR) and atmospheric microwave annealing (AMA) to deposit a single platinum silicide nanoparticle with a diameter of 32 nm on the apex of a bare silicon tip of atomic force microscopy (AFM). The total process was completed in an ambient environment in less than 3 min. The improved potential resolution in the SKPM measurement was verified. Moreover, the resolution of the topography is comparable to that of a bare silicon tip. In addition, the negative charges found on the PSM tips suggest the possibility of exploring the use of current PSM tips to sense electric fields more precisely. The ultra-fast and cost-effective preparation of the PSM tips provides a new direction for the preparation of functional tips for scanning probe microscopy.

  12. Geometry-dependent phase, stress state and electrical properties in nickel-silicide nanowires

    NASA Astrophysics Data System (ADS)

    Wang, C. C.; Lai, W. T.; Hsiao, Y. Y.; Chen, I. H.; George, T.; Li, P. W.

    2016-05-01

    We report that the geometry of single-crystalline Si nanowires (NWs) prior to salicidation at 500 °C is the key factor controlling the phase, stress state, and electrical resistivity of the resulting Ni x Si y NWs of width less than 100 nm. This is a radical departure from previous observations of a single phase formation for nickel silicides generated from the silicidation of bulk Si substrates. The phase transition from NiSi for large NWs ( W Si NW  =  250-450 nm) to Ni2Si for small NWs ( W Si NW  =  70-100 nm) is well correlated with the observed volumetric expansion and electrical resistivity variation with the NW width. For the extremely small dimensions of Ni x Si y NWs, we propose that the preeminent, kinetics-based Zhang and d’Heurle model for salicidation be modified to a more thermodynamically-governed, volume-expansion dependent Ni x Si y phase formation. A novel, plastic deformation mechanism is proposed to explain the observed, geometry-dependent Ni x Si y NW phase formation that also strongly influences the electrical performance of the NWs.

  13. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    SciTech Connect

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  14. Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel

    NASA Astrophysics Data System (ADS)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.

    2011-12-01

    The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (<1 μm) in the fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.

  15. Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude

    SciTech Connect

    Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta; Garcia, Gemma; Clavaguera-Mora, Maria T.; Peral, Inma; Rodríguez-Viejo, Javier

    2014-07-07

    Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5 }K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit several distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.

  16. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    NASA Astrophysics Data System (ADS)

    Harp, Jason M.; Lessing, Paul A.; Hoggan, Rita E.

    2015-11-01

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ± 0.06 g/cm3. Additional characterization of the pellets by scanning electron microscopy and X-ray diffraction has also been performed. Pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  17. Mitigation of interfacial silicide reactions for electroplated CoPt films on Si substrates

    NASA Astrophysics Data System (ADS)

    Oniku, Ololade D.; Arnold, David P.

    2015-12-01

    We report in this paper the influence of film thickness on the material and magnetic properties of electroplated CoPt permanent magnets. Layers of CoPt magnets with film thicknesses ranging from 0.5 μm to 5 μm are deposited into photoresist molds (3.5 mm x 3.5 mm square and 5 μm x 50 μm arrays) on a (100)Si substrate coated with 10 nm/100 nm Ti/Cu adhesion/seed layer. Results show an unexpected reduction in magnetic properties for films below 2 μm thick. This effect is determined to be a consequence of metal-silicide reactions at the substrate interface during annealing leading to the formation of a non-magnetic layer at the interface. Subsequently, a TiN diffusion-barrier layer is added to inhibit the silicide reaction and thereby maintain strong magnetic properties (Hci ∼800 kA/m, Mr/Ms = 0.8) in micron- thick electroplated CoPt layers.

  18. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    SciTech Connect

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  19. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    DOE PAGESBeta

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinationsmore » that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less

  20. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+-n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  1. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    PubMed Central

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  2. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    PubMed

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  3. Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity

    PubMed Central

    Lu, Lihua; Liu, Li-Juan; Chao, Wei-chieh; Zhong, Hai-Jing; Wang, Modi; Chen, Xiu-Ping; Lu, Jin-Jian; Li, Ruei-nian; Ma, Dik-Lung; Leung, Chung-Hang

    2015-01-01

    Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus. PMID:26416333

  4. Near-Infrared Phosphorescent Iridium(III) Benzonorrole Complexes Possessing Pyridine-based Axial Ligands.

    PubMed

    Maurya, Yogesh Kumar; Ishikawa, Takahiro; Kawabe, Yasunori; Ishida, Masatoshi; Toganoh, Motoki; Mori, Shigeki; Yasutake, Yuhsuke; Fukatsu, Susumu; Furuta, Hiroyuki

    2016-06-20

    Novel near-infrared phosphorescent iridium(III) complexes based on benzo-annulated N-linked corrole analogue (termed as benzonorrole) were synthesized. The structures of the complexes revealed octahedral coordination geometries involving an organometallic iridium-carbon bond with two external axial ligands. Interestingly, the iridium(III) complex exhibits near-infrared phosphorescence at room temperature at wavelengths beyond 900 nm. The significant redshift of the emission, as compared to the corrole congener, is originated from the ligand-centered triplet character. The fine-tuning of the photophysical properties of the complexes was achieved by introducing electron-donating and electron-withdrawing substituents on the axial pyridine ligands. PMID:27249778

  5. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGESBeta

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  6. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    SciTech Connect

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2015-11-18

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  7. Grain-boundary cavitation and weld-underbead cracking in DOP-26 iridium alloy

    SciTech Connect

    Mosley, W.C. Jr.

    1983-01-01

    Plutonium-238 oxide fuel pellets for the General Purpose Heat Source Radioisotopic thermoelectric generators to be used on the NASA Galileo Mission to Jupiter and the International Solar Polar Mission are produced and encapsulated in DOP-26 iridium alloy at the Savannah River Plant. DOP-26 iridium alloy was developed at the Oak Ridge National Laboratory and contains nominally 0.3 weight-percent tungsten, 60-ppM thorium and 50-ppM aluminum. Underbead cracks occasionally occur in the girth weld on the iridium alloy cladding in the area where the gas tungsten arc is quenched. A variety of electron beam techniques have been used to determine the cause of cracking. Results are discussed. (WHK)

  8. Heterogeneous Catalysis for Water Oxidation by an Iridium Complex Immobilized on Bipyridine-Periodic Mesoporous Organosilica.

    PubMed

    Liu, Xiao; Maegawa, Yoshifumi; Goto, Yasutomo; Hara, Kenji; Inagaki, Shinji

    2016-07-01

    Heterogenization of metal-complex catalysts for water oxidation without loss of their catalytic activity is important for the development of devices simulating photosynthesis. In this study, efficient heterogeneous iridium complexes for water oxidation were prepared using bipyridine-bridged periodic mesoporous organosilica (BPy-PMO) as a solid chelating ligand. The BPy-PMO-based iridium catalysts (Ir-BPy-PMO) were prepared by postsynthetic metalation of BPy-PMO and characterized through physicochemical analyses. The Ir-BPy-PMOs showed high catalytic activity for water oxidation. The turnover frequency (TOF) values for Ir-BPy-PMOs were one order of magnitude higher than those of conventional heterogeneous iridium catalysts. The reusability and stability of Ir-BPy-PMO were also examined, and detailed characterization was conducted using powder X-ray diffraction, nitrogen adsorption, (13) C DD MAS NMR spectroscopy, TEM, and XAFS methods. PMID:27168492

  9. Selective DNA purine base photooxidation by bis-terdentate iridium(III) polypyridyl and cyclometalated complexes.

    PubMed

    Jacques, Alexandre; Kirsch-De Mesmaeker, Andrée; Elias, Benjamin

    2014-02-01

    Two bis-terdentate iridium(III) complexes with polypyridyl and cyclometalated ligands have been prepared and characterized. Their spectroscopic and electrochemical properties have been studied, and a photophysical scheme addressing their properties is proposed. Different types of excited states have been considered to account for the deactivation processes in each complex. Interestingly, in the presence of mono- or polynucleotides, a photoinduced electron-transfer process from a DNA purine base (i.e., guanine or adenine) to the excited complex is shown through luminescence quenching experiments. For the first time, this work reports evidence for selective DNA purine bases oxidation by excited iridium(III) bis-terdentate complexes.

  10. High-strain-rate, high-temperature biaxial testing of DOP-26 iridium

    SciTech Connect

    George, T.G.

    1988-05-01

    High-strain-rate biaxial punch tests were performed on DOP-26 (Ir-0.3 wt.% tungsten) iridium-alloy disc given annealing and aging heat treatments. Test temperatures ranged between 600 and 1440/degree/C, and punch velocity was held constant at 45 m/s. Three types of samples were evaluated: Z-batch old-process discs, B-batch old-process discs, and B-batch new-process discs. The results indicate that batch-to-batch variations in ductility are significant and that new-process iridium is slightly more ductile than old-process material. 12 refs., 43 figs., 26 tabs.

  11. Thermocouples of molybdenum and iridium alloys for more stable vacuum-high temperature performance

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1978-01-01

    Thermocouples providing stability and performance reliability in systems involving high temperatures and vacuums by employing a bimetallic thermocouple sensor are described. Each metal of the sensor is selected from a group of metals comprising molybdenum and iridium and alloys containing only those two metals. The molybdenum, iridium thermocouple sensor alloys provide bare metal thermocouple sensors having advantageous vapor pressure compatibility and performance characteristics. The compatibility and physical characteristics of the thermocouple sensor alloys result in improved emf, temperature properties and thermocouple hot junction performance.

  12. Donor-Flexible Nitrogen Ligands for Efficient Iridium-Catalyzed Water Oxidation Catalysis.

    PubMed

    Navarro, Miquel; Li, Mo; Müller-Bunz, Helge; Bernhard, Stefan; Albrecht, Martin

    2016-05-10

    A pyridylideneamide ligand with variable donor properties owing to a pronounced zwitterionic and a neutral diene-type resonance structure was used as a dynamic ligand at a Cp* iridium center to facilitate water oxidation catalysis, a reaction that requires the stabilization of a variety of different iridium oxidation states and that is key for developing an efficient solar fuel device. The ligand imparts high activity (nearly three-fold increase of turnover frequency compared to benchmark systems), and exceptionally high turnover numbers, which indicate a robust catalytic cycle and little catalyst degradation.

  13. New Iridium Complex Coordinated with Tetrathiafulvalene Substituted Triazole-pyridine Ligand: Synthesis, Photophysical and Electrochemical Properties.

    PubMed

    Niu, Zhi-Gang; Xie, Hui; He, Li-Rong; Li, Kai-Xiu; Xia, Qing; Wu, Dong-Min; Li, Gao-Nan

    2016-01-01

    A new iridium(III) complex based on the triazole-pyridine ligand with tetrathiafulvalene unit, [Ir(ppy)2(L)]PF6 (1), has been synthesized and structurally characterized. The absorption spectra, luminescent spectra and electrochemical behaviors of L and 1 have been investigated. Complex 1 is found to be emissive at room temperature with maxima at 481 and 510 nm. The broad and structured emission bands are suggested a mixing of 3LC (3π-π*) and 3CT (3MLCT) excited states. The influence of iridium ion coordination on the redox properties of the TTF has also been investigated by cyclic voltammetry. PMID:27333555

  14. Iridium {mu}-imido/amido A-frame complexes

    SciTech Connect

    Ye, Changqing; Sharp, P.R.

    1995-01-04

    The reaction of Ir{sub 2}Cl{sub 2}(CO){sub 2}({mu}-dppm){sub 2}(dppm=bis(diphenylphosphino)methane) with 2 equiv of LiNHR yields Ir{sub 2}({mu}-NR)(CO){sub 2}({mu}-dppm){sub 2}, (1) (R=p-tolyl,Ph,p-BrC{sub 6}H{sub 4}), or its tautomer Ir{sub 2}({mu}-NHR)(CO){sub 2}({mu}-dppm)-({mu}-dppm-H), (2) (dppm-H = bis(diphenylphosphino)methanide; R= Et, Bu{sup 5}). NMR data suggest that (1) (R=p-tolyl, Ph, p-BrC{sub 6}H{sub 4}) are in equilibrium with small amounts of (2) in polar solvents. An X-ray structural determination of (1) (R = p-tolyl) shows that the imido nitrogen atom links two iridium atoms at the apex of an A-frame complex. A very short N-C distance in the imido group suggests extensive N-lone pair donation to the tolyl ring. Crystals of (1) (R = p-tolyl) from benzene are tetragonal (P4{sub 3}) with a = 21.337(1) {Angstrom},c = 14.478-(2) {Angstrom}, and Z = 4. With the exception of R=p-NO{sub 2}C{sub 6}H{sub 4}, p-BrC{sub 6}H{sub 4}, and Et, the complexes react with 1 equiv of CO at ambient temperature to form Ir{sub 2}(CO){sub 3}({mu}-dppm){sub 2} as the major metal containing product. For R = Et, the reaction generates the unstable isocyanate complex Ir{sub 2}(CO){sub 4}({mu}-dppm){sub 2} and amine except for the p-NO{sub 2}C{sub 6}H{sub 4} complex, which gives a complex mixture of products.

  15. Understanding and Improving High-Temperature Structural Properties of Metal-Silicide Intermetallics

    SciTech Connect

    Bruce S. Kang

    2005-10-10

    The objective of this project was to understand and improve high-temperature structural properties of metal-silicide intermetallic alloys. Through research collaboration between the research team at West Virginia University (WVU) and Dr. J.H. Schneibel at Oak Ridge National Laboratory (ORNL), molybdenum silicide alloys were developed at ORNL and evaluated at WVU through atomistic modeling analyses, thermo-mechanical tests, and metallurgical studies. In this study, molybdenum-based alloys were ductilized by dispersing MgAl2O4 or MgO spinel particles. The addition of spinel particles is hypothesized to getter impurities such as oxygen and nitrogen from the alloy matrix with the result of ductility improvement. The introduction of fine dispersions has also been postulated to improve ductility by acting as a dislocation source or reducing dislocation pile-ups at grain boundaries. The spinel particles, on the other hand, can also act as local notches or crack initiation sites, which is detrimental to the alloy mechanical properties. Optimization of material processing condition is important to develop the desirable molybdenum alloys with sufficient room-temperature ductility. Atomistic analyses were conducted to further understand the mechanism of ductility improvement of the molybdenum alloys and the results showed that trace amount of residual oxygen may be responsible for the brittle behavior of the as-cast Mo alloys. For the alloys studied, uniaxial tensile tests were conducted at different loading rates, and at room and elevated temperatures. Thermal cycling effect on the mechanical properties was also studied. Tensile tests for specimens subjected to either ten or twenty thermal cycles were conducted. For each test, a follow-up detailed fractography and microstructural analysis were carried out. The test results were correlated to the size, density, distribution of the spinel particles and processing time. Thermal expansion tests were carried out using thermo

  16. Iridium(I) Compounds as Prospective Anticancer Agents: Solution Chemistry, Antiproliferative Profiles and Protein Interactions for a Series of Iridium(I) N-Heterocyclic Carbene Complexes.

    PubMed

    Gothe, Yvonne; Marzo, Tiziano; Messori, Luigi; Metzler-Nolte, Nils

    2016-08-22

    A series of structurally related mono- and bis-NHC-iridium(I) (NHC: N-heterocyclic carbene) complexes have been investigated for their suitability as potential anticancer drugs. Their spectral behaviour in aqueous buffers under physiological-like conditions and their cytotoxicity against the cancer cell lines MCF-7 and HT-29 are reported. Notably, almost all complexes exhibit significant cytotoxic effects towards both cancer cell lines. In general, the cationic bis-carbene complexes show higher stability and greater anticancer activity than their neutral mono-carbene analogues with IC50 values in the high nanomolar range. Furthermore, to gain initial mechanistic insight, the interactions of these iridium(I)-NHC complexes with two model proteins, namely lysozyme and cytochrome c, were explored by HR-ESI-MS analyses. The different protein metalation patterns of the complexes can be roughly classified into two distinct groups. Those interactions give us a first idea about the possible mechanism of action of this class of compounds. Overall, our findings show that iridium(I)-NHC complexes represent very interesting candidates for further development as new metal-based anticancer drugs.

  17. Iridium(I) Compounds as Prospective Anticancer Agents: Solution Chemistry, Antiproliferative Profiles and Protein Interactions for a Series of Iridium(I) N-Heterocyclic Carbene Complexes.

    PubMed

    Gothe, Yvonne; Marzo, Tiziano; Messori, Luigi; Metzler-Nolte, Nils

    2016-08-22

    A series of structurally related mono- and bis-NHC-iridium(I) (NHC: N-heterocyclic carbene) complexes have been investigated for their suitability as potential anticancer drugs. Their spectral behaviour in aqueous buffers under physiological-like conditions and their cytotoxicity against the cancer cell lines MCF-7 and HT-29 are reported. Notably, almost all complexes exhibit significant cytotoxic effects towards both cancer cell lines. In general, the cationic bis-carbene complexes show higher stability and greater anticancer activity than their neutral mono-carbene analogues with IC50 values in the high nanomolar range. Furthermore, to gain initial mechanistic insight, the interactions of these iridium(I)-NHC complexes with two model proteins, namely lysozyme and cytochrome c, were explored by HR-ESI-MS analyses. The different protein metalation patterns of the complexes can be roughly classified into two distinct groups. Those interactions give us a first idea about the possible mechanism of action of this class of compounds. Overall, our findings show that iridium(I)-NHC complexes represent very interesting candidates for further development as new metal-based anticancer drugs. PMID:27443984

  18. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    SciTech Connect

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-08-11

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  19. Growth and thermal properties of doped monocrystalline titanium-silicide based quantum dot superlattices

    NASA Astrophysics Data System (ADS)

    Savelli, G.; Silveira Stein, S.; Bernard-Granger, G.; Faucherand, P.; Montès, L.

    2016-04-01

    This paper presents the growth mechanism of a monocrystalline silicide quantum dot superlattices (QDSL) grown by reduced pressure chemical vapor deposition (RPCVD). QDSL are made of TiSi2-based nanodots scattered in a p-doped Si90Ge10 matrix. It is the first time that the growth of a p-type monocrystalline QDSL is presented. We focus here on the growth mechanisms of QDSL and the influence of nanostructuration on their thermal properties. Thus, the dots surface deposition, the dots embedding mechanisms and the final QDSL growths are studied. The crystallographic structures and chemical properties are presented, as well as the thermal properties. It will be shown that some specific mechanisms occur such as the formation of self-formed quantum well superlattices and the dopant accumulation near the quantum dots. Finally, a slight decrease of the QDSL thermal conductivity has been measured compared to the reference sample.

  20. Modified fused silicide coatings for tantalum (Ta-10W) reentry heat shields

    NASA Technical Reports Server (NTRS)

    Packer, C. M.; Perkins, R. A.

    1973-01-01

    Results are presented of a program of research to develop a reliable, high performance, fused slurry silicide coating for the Ta-10W alloy. The effort was directed toward developing new and improved formulations for use at 2600 to 2800 F (1700 to 1811 K) in an atmospheric reentry thermal protection system with a 100-mission capability. Based on a thorough characterization of isothermal and cyclic oxidation behavior, bend transition temperatures, room- and elevated-temperature tensile properties, and creep behavior, a 2.5 Mn-33Ti-64.5Si coating (designated MTS) provides excellent protection for the Ta-10W alloy in simulated reentry environments. An extensive analysis of the oxidation behavior and characteristics of the MTS coating in terms of fundamental mechanisms also is presented.

  1. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    SciTech Connect

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  2. Friction and wear of radiofrequency-sputtered borides, silicides, and carbides

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1978-01-01

    The friction and wear properties of several refractory compound coatings were examined. These compounds were applied to 440 C bearing steel surfaces by radiofrequency (RF) sputtering. The refractory compounds were the titanium and molybdenum borides, the titanium and molybdenum silicides, and the titanium, molybdenum, and boron carbides. Friction testing was done with a pin-on-disk wear apparatus at loads from 0.1 to 5.0 newtons. Generally, the best wear properties were obtained when the coatings were bias sputtered onto 440 C disks that had been preoxidized. Adherence was improved because of the better bonding of the coatings to the iron oxide formed during preoxidation. As a class the carbides provided wear protection to the highest loads. Titanium boride coatings provided low friction and good wear properties to moderate loads.

  3. Strain-promoted growth of Mn silicide nanowires on Si(001)

    NASA Astrophysics Data System (ADS)

    Miki, Kazushi; Liu, Hongjun; Owen, James H. G.; Renner, Christoph

    2011-03-01

    We have discovered a method to promote the growth of Mn silicide nanowires on the Si(001) at 450° C. Deposition of sub-monolayer quantities of Mn onto a Si(001) surface with a high density of Bi nanolines results in the formation of nanowires, 5-10 nm wide, and up to 600 nm long. These nanowires are never formed if the same growth procedure is followed in the absence of the Bi nanolines. The Haiku core of the Bi nanoline is known to induce short-range stress in the surrounding silicon surface, straining neighbouring dimers, and repelling step edges. We discuss the possible mechanisms for this effect, including the effect of the Bi nanolines on the surface stress tensor and alteration of the available diffusion channels on the surface. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research, the Iketani Science and Technology Foundation.

  4. Comparative study of metallic silicide-germanide orthorhombic MnP systems.

    PubMed

    Connétable, Damien; Thomas, Olivier

    2013-09-01

    We present a comparative study of the structural, energetic, electronic and elastic properties of MX type MnP systems (where X=Si or Ge, and M=Pt, Pd or Ni) using first-principles calculations. The optimized ground state properties of these systems are in excellent agreement with the experimental values. A detailed comparative study of the elastic properties of polycrystalline structures is also presented. We analyze the relationship between the composition and the properties of the systems. Finally, we present the properties of NiSi1-xGex alloys. We show that these properties depend linearly on the Ge content of the alloy. This work has important consequences for semiconductor devices in which silicides, germanides and alloys thereof are used as contact materials.

  5. Fused slurry silicide coatings for columbium alloys reentry heat shields. Volume 1: Evaluation analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, B.

    1973-01-01

    The R-512E (Si-20Cr-20Fe) fused slurry silicide coating process was optimized to coat full size (20in x 20in) single face rib and corrugation stiffened panels fabricated from FS-85 columbium alloy for 100 mission space shuttle heat shield applications. Structural life under simulated space shuttle lift-off stresses and reentry conditions demonstrated reuse capability well beyond 100 flights for R-512E coated FS-85 columbium heat shield panels. Demonstrated coating damage tolerance showed no immediate structural failure on exposure. The FS-85 columbium alloy was selected from five candidate alloys (Cb-752, C-129Y, WC-3015, B-66 and FS-85) based on the evaluation tests which have designed to determine: (1) change in material properties due to coating and reuse; (2) alloy tolerance to coating damage; (3) coating emittance characteristics under reuse conditions; and (4) new coating chemistries for improved coating life.

  6. Anion effects to deliver enhanced iridium catalysts for hydrogen isotope exchange processes.

    PubMed

    Kennedy, Alan R; Kerr, William J; Moir, Rory; Reid, Marc

    2014-10-28

    Synthesis of a series of iridium(I) complexes of the type [(COD)Ir(IMes)(PPh3)]X (X = BF4, OTf, and BArF) has been established. Application of these species in mild hydrogen isotope exchange processes revealed more efficient catalysis and, further, a wider solvent scope when employing larger, more weakly coordinating counterions. PMID:25208265

  7. The growth of graphite phase on an iridium field electron emitter

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2016-06-01

    The growth of graphite on the surface of an iridium tip in pyrolysis of benzene to give a ribbed crystal has been found by the methods of field electron and desorption microscopy. The formation of a graphite crystal results in the electric field factor increasing. The adsorption of alkali metals on the surface of graphite is accompanied by the intercalation effect.

  8. Catalytic cleavage of ether C-O bonds by pincer iridium complexes.

    PubMed

    Haibach, Michael C; Lease, Nicholas; Goldman, Alan S

    2014-09-15

    The development of efficient catalytic methods to cleave the relatively unreactive C-O bonds of ethers remains an important challenge in catalysis. Building on our group's recent work, we report the dehydroaryloxylation of aryl alkyl ethers using pincer iridium catalysts. This method represents a rare fully atom-economical method for ether C-O bond cleavage. PMID:25060043

  9. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dangwal Pandey, A.; Krausert, K.; Franz, D.; Grânäs, E.; Shayduk, R.; Müller, P.; Keller, T. F.; Noei, H.; Vonk, V.; Stierle, A.

    2016-08-01

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  10. Comparative assessment of iridium oxide and platinum alloy wires using an in vitro glial scar assay.

    PubMed

    Ereifej, Evon S; Khan, Saida; Newaz, Golam; Zhang, Jinsheng; Auner, Gregory W; VandeVord, Pamela J

    2013-12-01

    The long-term effect of chronically implanted electrodes is the formation of a glial scar. Therefore, it is imperative to assess the biocompatibility of materials before employing them in neural electrode fabrication. Platinum alloy and iridium oxide have been identified as good candidates as neural electrode biomaterials due to their mechanical and electrical properties, however, effect of glial scar formation for these two materials is lacking. In this study, we applied a glial scarring assay to observe the cellular reactivity to platinum alloy and iridium oxide wires in order to assess the biocompatibility based on previously defined characteristics. Through real-time PCR, immunostaining and imaging techniques, we will advance the understanding of the biocompatibility of these materials. Results of this study demonstrate iridium oxide wires exhibited a more significant reactive response as compared to platinum alloy wires. Cells cultured with platinum alloy wires had less GFAP gene expression, lower average GFAP intensity, and smaller glial scar thickness. Collectively, these results indicated that platinum alloy wires were more biocompatible than the iridium oxide wires.

  11. A pH Sensor Based on a Stainless Steel Electrode Electrodeposited with Iridium Oxide

    ERIC Educational Resources Information Center

    Martinez, C. C. M.; Madrid, R. E.; Felice, C. J.

    2009-01-01

    A simple procedure to make an iridium oxide (IrO[subscript 2]) electrodeposited pH sensor, that can be used in a chemical, biomedical, or materials laboratory, is presented here. Some exercises, based on this sensor, that can be used to teach important concepts in the field of biomedical, biochemical, tissue, or materials engineering, are also…

  12. Potential contributions to space geodesy from the IridiumNEXT constellation

    NASA Astrophysics Data System (ADS)

    Gunter, B. C.; Encarnação, J.; Ditmar, P.; Klees, R.

    2012-12-01

    The IridiumNEXT constellation will soon replace the existing Iridium satellite telecommunication network, with initial launches set to start in 2015. In addition to the primary task of providing global telecommunication services, each IridiumNEXT satellite will also carry a hosted payload that will provide both private and public institutions the opportunity to place an instrument suite on one or all of constellation's satellites. This creates the possibility to gather continuous, global observations of Earth over the entire 15 year projected mission lifetime. Access to such a platform creates the potential to investigate many of Earth's highly dynamic processes at a spatiotemporal resolution that is simply not possible from single-satellite missions. Space geodesy is one the numerous fields that would benefit from such a mission. Precise orbits of the IridiumNEXT satellites derived through an on-board GNSS receiver (plus accelerometers and star cameras) have the potential to observe the large-scale, high-frequency variations in Earth's gravity field at time scales as short as one day. Additional positioning data from ground-based laser ranging stations would help improve the orbit determination, in addition to providing the necessary link to improve estimates of geocenter motion and reference frames. In this presentation, we will analyze the expected geodetic science returns from such a mission and will discuss the instrumental requirements needed to achieve these objectives.

  13. Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEECs).

    PubMed

    Henwood, Adam F; Zysman-Colman, Eli

    2016-08-01

    Cationic iridium(III) complexes represent the single largest class of emitters used in light emitting electrochemical cells (LEECs). In this chapter, we highlight the state-of-the-art emitters in terms of efficiency and stability in LEEC devices, highlighting blue, green, yellow/orange, red and white devices, and provide an outlook to the future of LEECs. PMID:27573388

  14. A neutron activation analysis of iridium concentration in Yamato carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Yabushita, S.; Wada, K.; Moriyama, H.; Takeuchi, K.

    1988-09-01

    Iridium concentration in extra-terrestrial bodies is an important quantity in relation to Ir-rich geological layers. Ir concentration of a Yamato carbonaceous chondrite (Y-793321) has been measured by a neutron activation method. The measurement yields a value (0.57±0.06) μg per gramme for the chondrite.

  15. Iridium complexes of new NCP pincer ligands: catalytic alkane dehydrogenation and alkene isomerization.

    PubMed

    Jia, Xiangqing; Zhang, Lei; Qin, Chuan; Leng, Xuebing; Huang, Zheng

    2014-09-28

    Iridium complexes of novel NCP pincer ligands containing pyridine and phosphinite arms have been synthesized. One Ir complex shows good catalytic activity for alkane dehydrogenation, and all complexes are highly active for olefin isomerization. A combination of the Ir complex and a (PNN)Fe pincer complex catalyzes the formation of linear alkylboronates selectively from internal olefins via sequential olefin isomerization-hydroboration.

  16. Arctic Ocean Communications: Performance Of High-Data Transmission Over The Iridium System

    NASA Astrophysics Data System (ADS)

    Wilkinson, J.; Valcic, L.; Doble, M. J.; Maksym, T. L.; Robst, J.

    2014-12-01

    The Iridium satellite communications service was launched over 15 years ago, and it is presently the "go to" service for transmitting data and voice from the polar regions. However there is very little information available regarding the metrics associated with the throughput of data via this system. During a recent campaign we released over 30 "dial-up" iridium enabled drifting buoys in a relatively small region of the Arctic Ocean. Over the past 6 months relatively large amounts of data have now been routinely downloaded (every hour) from these systems. Each platform, as well as the base station in the UK, independently monitored the throughput of data and here we present an analysis of the metrics (download speed, drop outs, power consumption etc.) associated with the transmission of data through the Iridium system. As the role of autonomous platforms in the polar region increases there is a greater need to better understand the issues associated with data transfer. Iridium is a vital component of any autonomous system and therefore the information presented here will be of value to the technological, scientific and engineering communities.

  17. Report of Iridium/{sup 238}PuO{sub 2} Compatibility Test

    SciTech Connect

    Taylor, D.H.

    2001-08-09

    This study indicates that the chemical purity of the fuel used presently to fabricate fueled clad vent sets will not present any special problems to the performance of the fueled clad vent sets as intended. However, cation impurities in the fuel can have a deleterious effect on the iridium cladding and vents and should be minimized as much as practical.

  18. In Situ Study of the Formation of Silicide Phases in Amorphous Co–Si Mixed Layers

    SciTech Connect

    Van Bockstael, C.; De Keyser, K; Demeulemeester, J; Vantomme, A; Van Meirhaeghe, R; Detavernier, C; Jordan-Sweet, J; Lavoie, C

    2010-01-01

    We investigate Co silicide phase formation when extra Si is added within an as deposited 50 nm Co film. The addition of Si is investigated for both the Co/SiO{sub 2} and Co/Si(1 0 0) system. A series of 10 Co-Si mixed films with a Si content varying from 21 to 59 at.% was prepared and investigated during annealing with in situ X-ray diffraction. The oxide system is used as reference system to identify phases that initially crystallize in an amorphous mixture of a given composition. Multiple phases can nucleate, and the temperature of crystallization depends on the Co-Si atomic ratio. Upon heating of the Co(Si)/Si system, the first reaction is a similar crystallization reaction of the Co(Si) mixture. Once the first phase is formed, one has the normal system of a silicide phase in contact with an unlimited amount of Si from the substrate, and the sequential phase formation towards CoSi{sub 2} is established. For deposited layers of composition ranging from 48%Si to 52%Si, the CoSi is the first phase to form and increasing the amount of Si leads to a remarkable improvement of the thermal stability of CoSi on Si(1 0 0). CoSi{sub 2} nucleation was extensively delayed by 150 C compared to the reaction observed from a pure Co film on Si(1 0 0). Electron backscatter diffraction measurements reveal that in this range, the gradual Si increase systematically leads to bigger CoSi grains (up to 20 {micro}m). This shows that the grain size of the CoSi precursor strongly affects the nucleation of the following CoSi{sub 2} phase. Laser-light scattering measurements suggest that adding more than 42%Si reduces the roughness of the CoSi{sub 2} layer.

  19. Nickel-affected silicon crystallization and silicidation on polyimide by multipulse excimer laser annealing

    SciTech Connect

    Alberti, A.; La Magna, A.; Spinella, C.; Privitera, V.; Cuscuna, M.; Fortunato, G.

    2010-12-15

    Nickel enhanced amorphous Si crystallization and silicidation on polyimide were studied during multipulse excimer laser annealing (ELA) from submelting to melting conditions. A {approx}8 nm thick Ni film was deposited on a 100 nm thick {alpha}-Si layer at {approx}70 deg. C in order to promote partial nickel diffusion into silicon. In the submelting regime, Ni atoms distributed during deposition in {alpha}-Si and the thermal gradient due to the presence of the plastic substrate were crucial to induce low fluence ({>=}0.08 J/cm{sup 2}) Si crystallization to a depth which is strictly related to the starting Ni profile. {Alpha}morphous-Si crystallization is not expected on pure Si at those low fluences. Additional pulses at higher fluences do not modify the double poly-Si/{alpha}-Si structure until melting conditions are reached. At a threshold of {approx}0.2 J/cm{sup 2}, melting was induced simultaneously in the polycrystalline layer as well as in the residual {alpha}-Si due to a thermal gradient of {approx}200 deg. C. Further increasing the laser fluence causes the poly-Si layer to be progressively melted to a depth which is proportional to the energy density used. As a consequence of the complete Si melting, columnar poly-Si grains are formed above 0.3 J/cm{sup 2}. For all fluences, a continuous NiSi{sub 2} layer is formed at the surface which fills the large Si grain boundaries, with the beneficial effect of flattening the poly-Si surface. The results would open the perspective of integrating Ni-silicide layers as metallic contacts on Si during {alpha}-Si-crystallization by ELA on plastic substrate.

  20. Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Nakamura-Messenger, Keiko; Clemett, Simon J.; Messenger, Scott; Jones, John H.; Palma, Russell L.; Pepin, Robert O.; Klock, Wolfgang; Zolensky, Michael E.; Tatsuoka, Hirokazu

    2011-01-01

    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs.

  1. Testing and evaluation of oxide-coated iridium/rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1993-01-01

    Iridium-coated rhenium provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase iridium/rhenium rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated iridium/rhenium, 22 N rocket chambers were tested on gaseous hydrogen/gaseous oxygen propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia or zirconia. Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of zirconia infiltrated with sol gel hafnia. The other chamber had a coating composed of an iridium/oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. The iridium/oxide composite coated chamber included testing for over 29 minutes at mixture ratio 16. The thicker-walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner-walled coatings did not experience the macrocracking and chipping of the chambers seen with the thick, monolithic coatings. However, burnthroughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stochiometric. The burn-throughs were probably the result of oxygen-diffusion through the oxide coating that allowed the underlying iridium and rhenium layers to be oxidized. The results of this test program indicated that the thin

  2. High temperature reactive ion etching of iridium thin films with aluminum mask in CF4/O2/Ar plasma

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Pin; Lisker, Marco; Kalkofen, Bodo; Burte, Edmund P.

    2016-08-01

    Reactive ion etching (RIE) technology for iridium with CF4/O2/Ar gas mixtures and aluminum mask at high temperatures up to 350 °C was developed. The influence of various process parameters such as gas mixing ratio and substrate temperature on the etch rate was studied in order to find optimal process conditions. The surface of the samples after etching was found to be clean under SEM inspection. It was also shown that the etch rate of iridium could be enhanced at higher process temperature and, at the same time, very high etching selectivity between aluminum etching mask and iridium could be achieved.

  3. Iridium and Spherules in Late Eocene Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.; Liu, S.

    2002-01-01

    We have been independently examining the Ir (FTK) and spherule (SL) contents of recently discovered late Eocene impact deposits from the south Atlantic and western Indian oceans. These include ODP Sites 1090 [14,15], 709 [lo], and 699 [Liu in prep.]. Iridium abundances at these sites are within the typical range reported for late Eocene deposits, with peak concentrations between 100 and 1000 pg/g. In Table 1 we present estimated net Ir fluences (in ng Ir/cm ) for these and nine other sites. Although there are fewer sites than the K/T boundary, the average of 9 ng Ir/cm2 is probably a good estimate of the late Eocene global flux. This is enough Ir for a 6 km comet (assuming 250 ng/g Ir, p=1.5), is sufficient to produce the Popigai or Chesapeake Bay structures, and is 16% of the flux estimated for the K/T boundary (55 ng/cm2 [ 161). Figure 1 shows the relative abundances of Ir, glassy microtektites and cpx-bearing spherules in sediments from Sites 699 and 1090, which are separated by only 3100 km. Although these two sites have similar Ir anomalies, the abundances of spherules are quite different. Site 1090 has well-defined peaks for both types of spherules, with a peak of 562 cpx spheruledg, while Site 699 contains only a few glassy microtektites and no cpx spherules. While the different abundances of spherules may reflect a heterogeneous distribution of spherules on the Earth s surface, an equally likely cause of this difference may be differential preservation of spherules in the sediment. recovered are only a trace residue of the initial impact deposit. Earlier work found 0.22 ng/g Ir in glassy microtektites from Site 689 [17], an insufficient concentration to support 0.16 ng/g in the bulk sediment at this site. We measured 15 ng/g Ir in a group of 95 cpx spherules from Site 1090 with sizes from 63 to -200 pm, a set typical of the size distribution at this site. Although this is a significant concentration it also cannot support the Ir peak. We presently lack

  4. Testing of electroformed deposited iridium/powder metallurgy rhenium rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Dickerson, Robert

    1996-01-01

    High-temperature, oxidation-resistant chamber materials offer the thermal margin for high performance and extended lifetimes for radiation-cooled rockets. Rhenium (Re) coated with iridium (Ir) allow hours of operation at 2200 C on Earth-storable propellants. One process for manufacturing Ir/Re rocket chambers is the fabrication of Re substrates by powder metallurgy (PM) and the application of Ir coatings by using electroformed deposition (ED). ED Ir coatings, however, have been found to be porous and poorly adherent. The integrity of ED Ir coatings could be improved by densification after the electroforming process. This report summarizes the testing of two 22-N, ED Ir/PM Re rocket chambers that were subjected to post-deposition treatments in an effort to densify the Ir coating. One chamber was vacuum annealed, while the other chamber was subjected to hot isostatic pressure (HIP). The chambers were tested on gaseous oxygen/gaseous hydrogen propellants, at mixture ratios that simulated the oxidizing environments of Earth-storable propellants. ne annealed ED Ir/PM Re chamber was tested for a total of 24 firings and 4.58 hr at a mixture ratio of 4.2. After only 9 firings, the annealed ED Ir coating began to blister and spall upstream of the throat. The blistering and spalling were similar to what had been experienced with unannealed, as-deposited ED Ir coatings. The HIP ED Ir/PM Re chamber was tested for a total of 91 firings and 11.45 hr at mixture ratios of 3.2 and 4.2. The HIP ED Ir coating remained adherent to the Re substrate throughout testing; there were no visible signs of coating degradation. Metallography revealed, however, thinning of the HIP Ir coating and occasional pores in the Re layer upstream of the throat. Pinholes in the Ir coating may have provided a path for oxidation of the Re substrate at these locations. The HIP ED Ir coating proved to be more effective than vacuum annealed and as-deposited ED Ir. Further densification is still required to

  5. Identification of an iridium-containing compound with a formal oxidation state of IX.

    PubMed

    Wang, Guanjun; Zhou, Mingfei; Goettel, James T; Schrobilgen, Gary J; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian

    2014-10-23

    One of the most important classifications in chemistry and within the periodic table is the concept of formal oxidation states. The preparation and characterization of compounds containing elements with unusual oxidation states is of great interest to chemists. The highest experimentally known formal oxidation state of any chemical element is at present VIII, although higher oxidation states have been postulated. Compounds with oxidation state VIII include several xenon compounds (for example XeO4 and XeO3F2) and the well-characterized species RuO4 and OsO4 (refs 2-4). Iridium, which has nine valence electrons, is predicted to have the greatest chance of being oxidized beyond the VIII oxidation state. In recent matrix-isolation experiments, the IrO4 molecule was characterized as an isolated molecule in rare-gas matrices. The valence electron configuration of iridium in IrO4 is 5d(1), with a formal oxidation state of VIII. Removal of the remaining d electron from IrO4 would lead to the iridium tetroxide cation ([IrO4](+)), which was recently predicted to be stable and in which iridium is in a formal oxidation state of IX. There has been some speculation about the formation of [IrO4](+) species, but these experimental observations have not been structurally confirmed. Here we report the formation of [IrO4](+) and its identification by infrared photodissociation spectroscopy. Quantum-chemical calculations were carried out at the highest level of theory that is available today, and predict that the iridium tetroxide cation, with a Td-symmetrical structure and a d(0) electron configuration, is the most stable of all possible [IrO4](+) isomers. PMID:25341786

  6. Identification of an iridium-containing compound with a formal oxidation state of IX

    NASA Astrophysics Data System (ADS)

    Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary J.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian

    2014-10-01

    One of the most important classifications in chemistry and within the periodic table is the concept of formal oxidation states. The preparation and characterization of compounds containing elements with unusual oxidation states is of great interest to chemists. The highest experimentally known formal oxidation state of any chemical element is at present VIII, although higher oxidation states have been postulated. Compounds with oxidation state VIII include several xenon compounds (for example XeO4 and XeO3F2) and the well-characterized species RuO4 and OsO4 (refs 2, 3, 4). Iridium, which has nine valence electrons, is predicted to have the greatest chance of being oxidized beyond the VIII oxidation state. In recent matrix-isolation experiments, the IrO4 molecule was characterized as an isolated molecule in rare-gas matrices. The valence electron configuration of iridium in IrO4 is 5d1, with a formal oxidation state of VIII. Removal of the remaining d electron from IrO4 would lead to the iridium tetroxide cation ([IrO4]+), which was recently predicted to be stable and in which iridium is in a formal oxidation state of IX. There has been some speculation about the formation of [IrO4]+ species, but these experimental observations have not been structurally confirmed. Here we report the formation of [IrO4]+ and its identification by infrared photodissociation spectroscopy. Quantum-chemical calculations were carried out at the highest level of theory that is available today, and predict that the iridium tetroxide cation, with a Td-symmetrical structure and a d0 electron configuration, is the most stable of all possible [IrO4]+ isomers.

  7. Highly Active Iridium/Iridium Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction

    SciTech Connect

    Du W.; Su D.; Wang Q.; Saxner D.; Deskins N.A.; Krzanowski J.E.; Frenkel A.I.; Teng X.

    2011-08-03

    Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir{sub 71}Sn{sub 29} catalysts with an average diameter of 2.7 {+-} 0.6 nm through a 'surfactant-free' wet chemistry approach. The complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the 'real' heterogeneous structure of Ir{sub 71}Sn{sub 29}/C particles as Ir/Ir-Sn/SnO{sub 2}, which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO{sub 2} present on the surface. The Ir{sub 71}Sn{sub 29}/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO{sub 2} on surface. Our cross-disciplinary work, from novel 'surfactant-free' synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of 'real' heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative impact on the commercialization of DEFC

  8. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties.

    PubMed

    Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Huang, Yu-Ting; Hu, Jung-Chih; Chen, Lien-Tai; Hsin, Cheng-Lun; Wu, Wen-Wei

    2013-06-01

    Copper silicide has been studied in the applications of electronic devices and catalysts. In this study, Cu3Si/Si nanowire heterostructures were fabricated through solid state reaction in an in situ transmission electron microscope (TEM). The dynamic diffusion of the copper atoms in the growth process and the formation mechanism are characterized. We found that two dimensional stacking faults (SF) may retard the growth of Cu3Si. Due to the evidence of the block of edge-nucleation (heterogeneous) by the surface oxide, center-nucleation (homogeneous) is suggested to dominate the silicidation. Furthermore, the electrical transport properties of various silicon channel length with Cu3Si/Si heterostructure interfaces and metallic Cu3Si NWs have been investigated. The observations not only provided an alternative pathway to explore the formation mechanisms and interface properties of Cu3Si/Si, but also suggested the potential application of Cu3Si at nanoscale for future processing in nanotechnology.

  9. Fabrication and characterization of periodic arrays of epitaxial Ni-silicide nanocontacts on (1 1 0)Si

    NASA Astrophysics Data System (ADS)

    Cheng, S. L.; Chang, L. H.; Chuang, C. F.; Chen, H.

    2015-07-01

    In this study, we report on the fabrication and characterization of periodic Ni and Ni-silicide nanocontact arrays on (1 1 0)Si substrates. From transmission electron microscopy and selected-area electron diffraction analysis, it is found that the epitaxial NiSi2 is the first and the only silicide phase formed in the nanoscale Ni contact/(1 1 0)Si sample after annealing at a temperature as low as 300 °C, demonstrating that the nanoscale Ni contact is more favorable for the epitaxial growth of NiSi2 phase on (1 1 0)Si. The orientation relationship between the epitaxial NiSi2 nanocontacts and the (1 1 0)Si substrate is identified as [1 1 0]NiSi2//[1 1 0]Si and (1 bar 1 1 bar)NiSi2//(1 bar 1 1 bar)Si. For the samples annealed at higher temperatures, all the epitaxial NiSi2 nanocontacts formed on (1 1 0)Si are anisotropic in shape and elongated along the crystallographic < 1 1 bar 0 > directions. The observed results can be attributed to the higher surface area to volume ratio of Ni nanocontacts and the faster growth rate along the <1 1 0> directions than along other directions. The size and periodicity of the nanocontacts can be readily controlled by adjusting the diameter of the colloidal nanosphere template. The self-assembled approach proposed here will provide the capability to fabricate other highly-ordered metal silicide nanocontact arrays and may offer potential applications in constructing silicide-based nanodevices.

  10. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    PubMed Central

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-01-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+−n homojunction through the formation of re-grown crystalline silicon layer (~5–10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method. PMID:26632759

  11. Determination of surface coverage of catalysts: Temperature programmed experiments on platinum and iridium sponge catalysts after low temperature ammonia oxidation

    SciTech Connect

    Broek, A.C.M. van den; Grondelle, J. van; Santen, R.A. van

    1999-07-25

    The activity of iridium and platinum sponge catalysts was studied in the low temperature gas phase oxidation of ammonia with oxygen. Under the reaction conditions used, iridium was found to be more active and more selective to nitrogen than platinum. Furthermore it was established from activity measurements that both catalysts lose activity as a function of time on stream due to inhibition of the surface by reaction intermediates. The used catalysts were studied by XPS and temperature programmed techniques. It was found that the surface of the catalysts had a high coverage of NH and OH and some additional NH{sub 2}. It seems most likely that the reaction mechanism proceeds through a stepwise dehydrogenation of the ammonia molecule. It appears that the last dehydrogenation step (NH by OH to N and water) is the rate determining step. The high selectivity of iridium to nitrogen can be explained by the higher activity of iridium in dissociating NO.

  12. NiPt silicide agglomeration accompanied by stress relaxation in NiSi(010) ∥ Si(001) grains

    NASA Astrophysics Data System (ADS)

    Mizuo, Mariko; Yamaguchi, Tadashi; Pagès, Xavier; Vanormelingen, Koen; Smits, Martin; Granneman, Ernst; Fujisawa, Masahiko; Hattori, Nobuyoshi

    2015-04-01

    Pt-doped Ni (NiPt) silicide agglomeration in terms of NiSi crystal orientation, Pt segregation at the NiSi/Si interface, and residual stress is studied for the first time. In the annealing of Ni monosilicide (NiSi), the growth of NiSi grains whose NiSi b-axes are aligned normal to Si(001) [NiSi(010) ∥ Si(001)] with increasing Pt segregation at the NiSi/Si interface owing to a high annealing temperature was observed. The residual stress in NiSi(010) ∥ Si(001) grains also increases with increasing annealing temperature. Furthermore, the recrystallization of NiSi(010) ∥ Si(001) grains with increasing residual stress continues through additional annealing after NiSi formation. After the annealing of NiSi(010) ∥ Si(001) grains with their strain at approximately 2%, the start of NiPt silicide agglomerates accompanied by stress relaxation was observed. This preferential recrystallization of NiSi(010) ∥ Si(001) grains with increasing residual stress is considered to enhance the NiPt silicide agglomeration.

  13. Phase formation and morphological stability of ultrathin Ni-Co-Pt silicide films formed on Si(100)

    SciTech Connect

    Xu, Peng; Wu, Dongping; Kubart, Tomas; Gao, Xindong; Zhang, Shi-Li

    2014-05-15

    Ultrathin Ni, Co, and Pt films, each no more than 4 nm in thickness, as well as their various combinations are employed to investigate the competing growth of epitaxial Co{sub 1-y}Ni{sub y}Si{sub 2} films against polycrystalline Pt{sub 1-z}Ni{sub z}Si. The phase formation critically affects the morphological stability of the resulting silicide films, with the epitaxial films being superior to the polycrystalline ones. Any combination of those metals improves the morphological stability with reference to their parent individual metal silicide films. When Ni, Co, and Pt are all included, the precise initial location of Pt does little to affect the final phase formation in the silicide films and the epitaxial growth of Co{sub 1-x}Ni{sub x}Si{sub 2} films is always perturbed, in accordance to thermodynamics that shows a preferential formation of Pt{sub 1-z}Ni{sub z}Si over that of Co{sub 1-y}Ni{sub y}Si{sub 2}.

  14. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    SciTech Connect

    He, Y.R.; Zheng, M.H.; Rapp, R.A.

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  15. Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array

    PubMed Central

    Yoo, Je-Min; Negi, Sandeep; Tathireddy, Prashant; Solzbacher, Florian; Song, Jong-In; Rieth, Loren W.

    2013-01-01

    Implantable microelectrodes provide a measure to electrically stimulate neurons in the brain and spinal cord and record their electrophysiological activity. A material with a high charge capacity such as activated or sputter-deposited iridium oxide film (AIROF or SIROF) is used as an interface. The Utah electrode array (UEA) uses SIROF for its interface material with neural tissue and oxygen plasma etching (OPE) with an aluminium foil mask to expose the active area, where the interface between the electrode and neural tissue is formed. However, deinsulation of Parylene-C using OPE has limitations, including the lack of uniformity in the exposed area and reproducibility. While the deinsulation of Parylene-C using an excimer laser is proven to be an alternative for overcoming the limitations, the iridium oxide (IrOx) suffers from fracture when high laser fluence (>1000 mJ/cm2) is used. Iridium (Ir), which has a much higher fracture resistance than IrOx, can be deposited before excimer laser deinsulation and then the exposed Ir film area can be activated by electrochemical treatment to acquire the AIROF. Characterisation of the laser-ablated Ir film and AIROF by surface analysis (X-ray photoelectron spectroscopy, scanning electron microscope, and atomic force microscope) and electrochemical analysis (electrochemical impedance spectroscopy, and cyclic voltammetry) shows that the damage on the Ir film induced by laser irradiation is significantly less than that on SIROF, and the AIROF has a high charge storage capacity. The results show the potential of the laser deinsulation technique for use in high performance AIROF-coated UEA fabrication. PMID:23458659

  16. Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions

    SciTech Connect

    Miao, Yinbin; Ye, Bei; Mei, Zhigang; Hofman, Gerard; Yacout, Abdellatif

    2015-12-10

    Uranium silicide (U3Si2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U3Si2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U3Si2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuel material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U3Si2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U3Si2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U3Si2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U3Si2 fuel as an accident

  17. Synthesis and characterization of barium silicide (BaSi2) nanowire arrays for potential solar applications

    NASA Astrophysics Data System (ADS)

    Pokhrel, Ankit; Samad, Leith; Meng, Fei; Jin, Song

    2015-10-01

    In order to utilize nanostructured materials for potential solar and other energy-harvesting applications, scalable synthetic techniques for these materials must be developed. Herein we use a vapor phase conversion approach to synthesize nanowire (NW) arrays of semiconducting barium silicide (BaSi2) in high yield for the first time for potential solar applications. Dense arrays of silicon NWs obtained by metal-assisted chemical etching were converted to single-crystalline BaSi2 NW arrays by reacting with Ba vapor at about 930 °C. Structural characterization by X-ray diffraction and high-resolution transmission electron microscopy confirm that the converted NWs are single-crystalline BaSi2. The optimal conversion reaction conditions allow the phase-pure synthesis of BaSi2 NWs that maintain the original NW morphology, and tuning the reaction parameters led to a controllable synthesis of BaSi2 films on silicon substrates. The optical bandgap and electrochemical measurements of these BaSi2 NWs reveal a bandgap and carrier concentrations comparable to previously reported values for BaSi2 thin films.In order to utilize nanostructured materials for potential solar and other energy-harvesting applications, scalable synthetic techniques for these materials must be developed. Herein we use a vapor phase conversion approach to synthesize nanowire (NW) arrays of semiconducting barium silicide (BaSi2) in high yield for the first time for potential solar applications. Dense arrays of silicon NWs obtained by metal-assisted chemical etching were converted to single-crystalline BaSi2 NW arrays by reacting with Ba vapor at about 930 °C. Structural characterization by X-ray diffraction and high-resolution transmission electron microscopy confirm that the converted NWs are single-crystalline BaSi2. The optimal conversion reaction conditions allow the phase-pure synthesis of BaSi2 NWs that maintain the original NW morphology, and tuning the reaction parameters led to a controllable

  18. Anodically Electrodeposited Iridium Oxide Films (AEIROF) from Alkaline Solutions for Electrochromic Display Devices

    NASA Astrophysics Data System (ADS)

    Yamanaka, Kazusuke

    1989-04-01

    Anodically electrodeposited iridium oxide films from alkaline solutions were investigated for application to electrochromic devices. Micro-crystalline (diameter: 15Å) films obtained by the electrolysis of aqueous alkaline solutions containing iridium chloride, oxalic acid and potassium carbonate showed good electrochromic reaction reversibility. The coloration efficiency of the films was about one third that of typical evaporated tungsten oxide films, and the response rate measured by the amount of injected charge was about double. The cycle lives of the cells, composed of electrodeposited films, 1M H3PO4-NaOH (pH{=}3˜ 5), and an activated carbon cloth, were more than 8× 106 with a 0.6 V, 1 Hz continuous square wave.

  19. The treatment of malignant diseases in Romania using stainless steel encapsulated iridium-192 sources

    NASA Astrophysics Data System (ADS)

    Stanef, I.; Matache, G.; Ciocǎltei, V.; Gheorghiev, G.

    1994-01-01

    Iridium-192 sources supplied by the Institute for Nuclear Physics and Engineering have been used in Romanian radiotherapy clinics since 1980. The source assembly is sealed in a protective stainless steel sheath which satisfies the requirements of international standards. Since this sheath acts as a filter to change the characteristic spectrum it has been necessary to determine experimentally an accurate value of the specific gamma-ray constant. Some clinical aspects of the complex treatment of carcinomas with iridium-192 are reviewed. Results of the calculation of the dose distribution around single and multiple sources are given for different applications in the treatment of carcinomas of the vaginal and uterine cervix, oral cavity, rectum and vagina.

  20. Iridium-bearing sublimates at a hot-spot volcano (Piton de la Fournaise, Indian Ocean)

    SciTech Connect

    Toutain, J.P. ); Meyer, G.

    1989-12-01

    Sublimates and incrustations derived upon the cooling of volcanic gases have been collected on various sites (Piton de la Fournaise, Poas, Momotombo, Etna, Ardoukoba and Erta-Ale). They have been analyzed for Ir and other volatile elements (Se, As, Cu, Au, Ag, Pb, Tl) by means of instrumental neutron activation analysis (INAA) and proton induced X-Ray emission (PIXE). Among the investigated volcanoes, only Piton de la Fournaise is found to release detectable amounts of iridium. Ir in Piton de la Fournaise sublimates is associated with F-minerals. This confirms its gaseous transport as a volatile fluoride compound. Iridium seems to be preferentialy released by hot-spot type volcanoes, and its detection in Piton de la Fournaise sublimates provides a positive argument in favor of a volcanic hypothesis to explain the KTB events.

  1. First Applications of DoD Iridium RUDICS in the NSF Polar Programs

    NASA Astrophysics Data System (ADS)

    Valentic, T.; Stehle, R.

    2008-12-01

    We will present the first deployment and application of the new Iridium RUDICS service to remote instrumentation projects within the National Science Foundation's polar programs. The rise of automated observing networks has increased the demand for real-time connectivity to remote instruments, not only for immediate access to data, but to also interrogate health and status. Communicating with field sites in the polar regions is complicated by the remoteness from existing infrastructure, low temperatures and limited connection options. Sites located above 78° latitude are not able to see geostationary satellites, leaving the Iridium constellation as the only one that provide a direct connection. Some others, such as Orbcomm, only provide a store-and-forward service. Iridium is often used as a dial up modem to establish a PPP connection to the Internet with data files transferred via FTP. On low-bandwidth, high-latency networks like Iridium (2400bps with ping times of seconds), this approach is time consuming and inefficient. The dial up time alone takes upwards of a minute, and standard TCP/IP and FTP protocols are hampered by the long latencies. Minimizing transmission time is important for reducing battery usage and connection costs. The new Iridium RUDICS service can be used for more efficient transfers. RUDICS is an acronym for "Router-based Unstructured Digital Inter-working Connectivity Solution" and provides a direct connection between an instrument in the field and a server on the Internet. After dialing into the Iridium gateway, a socket connection is opened to a registered port on a user's server. Bytes sent to or from the modem appear at the server's socket. The connection time is reduced to about 10 seconds because the modem training and PPP negotiation stages are eliminated. The remote device does not need to have a full TCP/IP stack, allowing smaller instruments such as data loggers to directly handle the data transmission. Alternative protocols can

  2. An inconvenient influence of iridium(III) isomer on OLED efficiency.

    PubMed

    Baranoff, Etienne; Bolink, Henk J; De Angelis, Filippo; Fantacci, Simona; Di Censo, Davide; Djellab, Karim; Grätzel, Michael; Nazeeruddin, Md Khaja

    2010-10-14

    The recently reported heteroleptic cyclometallated iridium(III) complex [Ir(2-phenylpyridine)(2)(2-carboxy-4-dimethylaminopyridine)] N984 and its isomer N984b have been studied more in detail. While photo- and electrochemical properties are very similar, DFT/TDDFT calculations show that the two isomers have different HOMO orbital characteristics. As a consequence, solution processed OLEDs made using a mixture of N984 and isomer N984b similar to vacuum processed devices show that the isomer has a dramatic detrimental effect on the performances of the device. In addition, commonly used thermogravimetric analysis is not suitable for showing the isomerization process. The isomer could impact performances of vacuum processed OLEDs using heteroleptic cyclometallated iridium(III) complexes as dopant.

  3. Research of remote control for Chinese Antarctica Telescope based on iridium satellite communication

    NASA Astrophysics Data System (ADS)

    Xu, Lingzhe; Yang, Shihai

    2010-07-01

    Astronomers are ever dreaming of sites with best seeing on the Earth surface for celestial observation, and the Antarctica is one of a few such sites only left owing to the global air pollution. However, Antarctica region is largely unaccessible for human being due to lacking of fundamental living conditions, travel facilities and effective ways of communication. Worst of all, the popular internet source as a general way of communication scarcely exists there. Facing such a dilemma and as a solution remote control and data transmission for telescopes through iridium satellite communication has been put forward for the Chinese network Antarctic Schmidt Telescopes 3 (AST3), which is currently under all round research and development. This paper presents iridium satellite-based remote control application adapted to telescope control. The pioneer work in China involves hardware and software configuration utilizing techniques for reliable and secure communication, which is outlined in the paper too.

  4. Surface studies of iridium-alloy grain boundaries associated with weld cracking

    SciTech Connect

    Mosley, W.C.

    1982-01-01

    Plutonium-238 oxide fuel pellets for the General Purpose Heat Source (GPHS) Radioisotopic Thermoelectric Generators to be used on the NASA Galileo Mission to Jupiter and the International Solar Polar Mission are produced and encapsulated in iridium alloy at the Savannah River Plant (SRP). Underbead cracks occasionally occur in the girth weld on the iridium-alloy-clad vent sets in the region where the gas tungsten arc is quenched. Grain-boundary structures and compositions were characterized by scanning electron microscopy/x-ray energy spectroscopy, electron microprobe analysis and scanning Auger microprobe analysis to determine the cause of weld quench area cracking. Results suggest that weld quench area cracking may be caused by gas porosity or liquation in the grain boundaries.

  5. The activity of platinum, iridium and rhodium drug complexes against Leishmania donovani.

    PubMed

    Croft, S L; Neal, R A; Craciunescu, D G; Certad-Fombona, G

    1992-03-01

    The activities of twenty seven Platinum, Rhodium and Iridium drug complexes were determined against Leishmania donovani amastigotes in mouse peritoneal macrophages in vitro. Eight compounds showed antileishmanial activity of which only three, Rh(III)-mepacrine, Ir(III) pyrrolidine dithiocarbamate and Ir(III) diethyl dithiocarbamate had ED50 values of less than 1 microM. The two Iridium complexes produced, respectively, a 50% and 39% suppression of L. donovani amastigotes in the liver of BALB/c mice following the subcutaneous administration of 200 mg/kg for 5 consecutive days. Ultrastructural studies suggest that the amastigote kinetoplast-mitochondrion complex is the primary site of action of the Ir and Rh complexes. PMID:1598504

  6. Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films.

    PubMed

    Wen, Rui-Tao; Niklasson, Gunnar A; Granqvist, Claes G

    2015-05-13

    Anodically colored nickel oxide (NiO) thin films are of much interest as counter electrodes in tungsten oxide based electrochromic devices such as "smart windows" for energy-efficient buildings. However, NiO films are prone to suffering severe charge density degradation upon prolonged electrochemical cycling, which can lead to insufficient device lifetime. Therefore, a means to improve the durability of NiO-based films is an important challenge at present. Here we report that the incorporation of a modest amount of iridium into NiO films [Ir/(Ir + Ni) = 7.6 atom %] leads to remarkable durability, exceeding 10000 cycles in a lithium-conducting electrolyte, along with significantly improved optical modulation during extended cycling. Structure characterization showed that the face-centered-cubic-type NiO structure remained after iridium addition. Moreover, the crystallinity of these films was enhanced upon electrochemical cycling. PMID:25919917

  7. Rhodium(i), rhodium(iii) and iridium(iii) carbaporphyrins.

    PubMed

    Adiraju, Venkata A K; Ferrence, Gregory M; Lash, Timothy D

    2016-09-21

    Treatment of a benzocarbaporphyrin with [Rh(CO)2Cl]2 in refluxing dichloromethane gave a rhodium(i) dicarbonyl complex, and further reaction in refluxing pyridine afforded an organometallic rhodium(iii) derivative. The carbaporphyrin also reacted with [Ir(COD)Cl]2 and pyridine in refluxing p-xylene to generate a related iridium(iii) compound. These novel metalated porphyrinoids retained strongly diatropic characteristics and were fully characterized by XRD. PMID:27529466

  8. Iridium complexes of new NCP pincer ligands: catalytic alkane dehydrogenation and alkene isomerization.

    PubMed

    Jia, Xiangqing; Zhang, Lei; Qin, Chuan; Leng, Xuebing; Huang, Zheng

    2014-09-28

    Iridium complexes of novel NCP pincer ligands containing pyridine and phosphinite arms have been synthesized. One Ir complex shows good catalytic activity for alkane dehydrogenation, and all complexes are highly active for olefin isomerization. A combination of the Ir complex and a (PNN)Fe pincer complex catalyzes the formation of linear alkylboronates selectively from internal olefins via sequential olefin isomerization-hydroboration. PMID:25101950

  9. Solvent free selective dehydrogenation of indolic and carbazolic molecules with an iridium pincer catalyst.

    PubMed

    Brayton, Daniel F; Jensen, Craig M

    2014-06-01

    A previously known iridium POCOP pincer catalyst was found to selectively dehydrogenate the heterocyclic portion of several indolic and carbazolic molecules. These molecules were found to have an "activity window" (172-178 °C) upon which only the heterocyclic ring underwent dehydrogenation. All reactions were run solvent free, yields for selected substrates were excellent, and the products were isolated by either distillation or alumina plug filtration. PMID:24763968

  10. Electrochemical and chemical routes to hydride loss from an iridium dihydride.

    PubMed

    Walden, A G; Kumar, A; Lease, N; Goldman, A S; Miller, A J M

    2016-06-14

    With a view towards replacing sacrificial hydrogen acceptors in alkane dehydrogenation catalysis, electrochemical methods for oxidative activation of a pincer-ligated iridium hydride intermediate were explored. A 1H(+)/2e(-) oxidation process was observed in THF solvent, with net hydride loss leading to a reactive cationic intermediate that can be trapped by chloride. Analogous reactivity was observed with the concerted hydride transfer reagent Ph3C(+), connecting chemical and electrochemical hydride loss pathways. PMID:26979786

  11. Selective Aromatic C–H Hydroxylation Enabled by η6-Coordination to Iridium(III)

    PubMed Central

    D'Amato, Erica M.; Neumann, Constanze N.; Ritter, Tobias

    2016-01-01

    We report an aromatic C–H hydroxylation protocol in which the arene is activated through η6-coordination to an iridium(III) complex. η6-Coordination of the arene increases its electrophilicity and allows for high positional selectivity of hydroxylation at the site of least electron density. Through investigation of intermediate η5-cyclohexadienyl adducts and arene exchange reactions, we evaluate incorporation of arene π-activation into a catalytic cycle for C–H functionalization. PMID:26877574

  12. Branch-Selective Alkene Hydroarylation by Cooperative Destabilization: Iridium-Catalyzed ortho-Alkylation of Acetanilides.

    PubMed

    Crisenza, Giacomo E M; Sokolova, Olga O; Bower, John F

    2015-12-01

    An iridium(I) catalyst system, modified with the wide-bite-angle and electron-deficient bisphosphine d(F) ppb (1,4-bis(di(pentafluorophenyl)phosphino)butane) promotes highly branch-selective hydroarylation reactions between diverse acetanilides and aryl- or alkyl-substituted alkenes. This provides direct and ortho-selective access to synthetically challenging anilines, and addresses long-standing issues associated with related Friedel-Crafts alkylations. PMID:26490739

  13. Transformation of a Cp*-iridium(III) precatalyst for water oxidation when exposed to oxidative stress.

    PubMed

    Zuccaccia, Cristiano; Bellachioma, Gianfranco; Bortolini, Olga; Bucci, Alberto; Savini, Arianna; Macchioni, Alceo

    2014-03-17

    The reaction of [Cp*Ir(bzpy)NO3 ] (1; bzpy=2-benzoylpyridine, Cp*=pentamethylcyclopentadienyl anion), a competent water-oxidation catalyst, with several oxidants (H2 O2 , NaIO4 , cerium ammonium nitrate (CAN)) was studied to intercept and characterize possible intermediates of the oxidative transformation. NMR spectroscopy and ESI-MS techniques provided evidence for the formation of many species that all had the intact Ir-bzpy moiety and a gradually more oxidized Cp* ligand. Initially, an oxygen atom is trapped in between two carbon atoms of Cp* and iridium, which gives an oxygen-Ir coordinated epoxide, whereas the remaining three carbon atoms of Cp* are involved in a η(3) interaction with iridium (2 a). Formal addition of H2 O to 2 a or H2 O2 to 1 leads to 2 b, in which a double MeCOH functionalization of Cp* is present with one MeCOH engaged in an interaction with iridium. The structure of 2 b was unambiguously determined in the solid state and in solution by X-ray single-crystal diffractometry and advanced NMR spectroscopic techniques, respectively. Further oxidation led to the opening of Cp* and transformation of the diol into a diketone with one carbonyl coordinated at the metal (2 c). A η(3) interaction between the three non-oxygenated carbons of "ex-Cp*" and iridium is also present in both 2 b and 2 c. Isolated 2 b and mixtures of 2 a-c species were tested in water-oxidation catalysis by using CAN as sacrificial oxidant. They showed substantially the same activity than 1 (turnover frequency values ranged from 9 to 14 min(-1) ). PMID:24523138

  14. An iridium abundance anomaly at the palynological cretaceous-tertiary boundary in northern new Mexico.

    PubMed

    Orth, C J; Gilmore, J S; Knight, J D; Pillmore, C L; Tschudy, R H; Fassett, J E

    1981-12-18

    An iridium abundance anomaly, with concentrations up to 5000 parts per trillion over a background level of 4 to 20 parts per trillion, has been located in sedimentary rocks laid down under freshwater swamp conditions in the Raton Basin of northeastern New Mexico. The anomaly occurs at the base of a coal bed, at the same stratigraphic position at which several well-known species of Cretaceous-age pollen became extinct.

  15. Branch-Selective Alkene Hydroarylation by Cooperative Destabilization: Iridium-Catalyzed ortho-Alkylation of Acetanilides

    PubMed Central

    Crisenza, Giacomo E M; Sokolova, Olga O; Bower, John F

    2015-01-01

    An iridium(I) catalyst system, modified with the wide-bite-angle and electron-deficient bisphosphine dFppb (1,4-bis(di(pentafluorophenyl)phosphino)butane) promotes highly branch-selective hydroarylation reactions between diverse acetanilides and aryl- or alkyl-substituted alkenes. This provides direct and ortho-selective access to synthetically challenging anilines, and addresses long-standing issues associated with related Friedel–Crafts alkylations. PMID:26490739

  16. Transformation of a Cp*-iridium(III) precatalyst for water oxidation when exposed to oxidative stress.

    PubMed

    Zuccaccia, Cristiano; Bellachioma, Gianfranco; Bortolini, Olga; Bucci, Alberto; Savini, Arianna; Macchioni, Alceo

    2014-03-17

    The reaction of [Cp*Ir(bzpy)NO3 ] (1; bzpy=2-benzoylpyridine, Cp*=pentamethylcyclopentadienyl anion), a competent water-oxidation catalyst, with several oxidants (H2 O2 , NaIO4 , cerium ammonium nitrate (CAN)) was studied to intercept and characterize possible intermediates of the oxidative transformation. NMR spectroscopy and ESI-MS techniques provided evidence for the formation of many species that all had the intact Ir-bzpy moiety and a gradually more oxidized Cp* ligand. Initially, an oxygen atom is trapped in between two carbon atoms of Cp* and iridium, which gives an oxygen-Ir coordinated epoxide, whereas the remaining three carbon atoms of Cp* are involved in a η(3) interaction with iridium (2 a). Formal addition of H2 O to 2 a or H2 O2 to 1 leads to 2 b, in which a double MeCOH functionalization of Cp* is present with one MeCOH engaged in an interaction with iridium. The structure of 2 b was unambiguously determined in the solid state and in solution by X-ray single-crystal diffractometry and advanced NMR spectroscopic techniques, respectively. Further oxidation led to the opening of Cp* and transformation of the diol into a diketone with one carbonyl coordinated at the metal (2 c). A η(3) interaction between the three non-oxygenated carbons of "ex-Cp*" and iridium is also present in both 2 b and 2 c. Isolated 2 b and mixtures of 2 a-c species were tested in water-oxidation catalysis by using CAN as sacrificial oxidant. They showed substantially the same activity than 1 (turnover frequency values ranged from 9 to 14 min(-1) ).

  17. Nanopatterning of metal-coated silicon surfaces via ion beam irradiation: Real time x-ray studies reveal the effect of silicide bonding

    SciTech Connect

    El-Atwani, Osman; Gonderman, Sean; Suslova, Anastassiya; Fowler, Justin; El-Atwani, Mohamad; DeMasi, Alexander; Ludwig, Karl; Paul Allain, Jean

    2013-03-28

    We investigated the effect of silicide formation on ion-induced nanopatterning of silicon with various ultrathin metal coatings. Silicon substrates coated with 10 nm Ni, Fe, and Cu were irradiated with 200 eV argon ions at normal incidence. Real time grazing incidence small angle x-ray scattering (GISAXS) and x-ray fluorescence (XRF) were performed during the irradiation process and real time measurements revealed threshold conditions for nanopatterning of silicon at normal incidence irradiation. Three main stages of the nanopatterning process were identified. The real time GISAXS intensity of the correlated peaks in conjunction with XRF revealed that the nanostructures remain for a time period after the removal of the all the metal atoms from the sample depending on the binding energy of the metal silicides formed. Ex-situ XPS confirmed the removal of all metal impurities. In-situ XPS during the irradiation of Ni, Fe, and Cu coated silicon substrates at normal incidence demonstrated phase separation and the formation of different silicide phases that occur upon metal-silicon mixing. Silicide formation leads to nanostructure formation due the preferential erosion of the non-silicide regions and the weakening of the ion induced mass redistribution.

  18. Neutron activation determination of iridium, gold, platinum, and silver in geologic samples

    USGS Publications Warehouse

    Millard, H.T.

    1987-01-01

    Low-level methods for the determination of iridium and other noble metals have become increasingly important in recent years due to interest in locating abundance anomalies associated with the Cretaceous and Tertiary (K-T) boundary. Typical iridium anomalies are in the range of 1 to 100 ??g/kg (ppb). Thus methods with detection limits near 0.1 ??g/kg should be adequate to detect K-T boundary anomalies. Radiochemical neutron activation analysis methods continue to be required although instrumental neutron activation analysis techniques employing elaborate gamma-counters are under development. In the procedure developed in this study samples irradiated in the epithermal neutron facility of the U. S. Geological Survey TRIGA Reactor (Denver, Colorado) are treated with a mini-fire assay technique. The iridium, gold, and silver are collected in a 1-gram metallic lead button. Primary contaminants at this stage are arsenic and antimony. These can be removed by heating the button with a mixture of sodium perioxide and sodium hydroxide. The resulting 0.2-gram lead bead is counted in a Compton suppression spectrometer. Carrier yields are determined by reirradiation of the lead beads. This procedure has been applied to the U.S.G.S. Standard Rock PCC-1 and samples from K-T boundary sites in the Western Interior of North America. ?? 1987 Akade??miai Kiado??.

  19. The kinetics and mechanism of the organo-iridium catalysed racemisation of amines.

    PubMed

    Stirling, Matthew J; Mwansa, Joseph M; Sweeney, Gemma; Blacker, A John; Page, Michael I

    2016-08-01

    The dimeric iodo-iridium complex [IrCp*I2]2 (Cp* = pentamethylcyclopentadiene) is an efficient catalyst for the racemisation of secondary and tertiary amines at ambient and higher temperatures with a low catalyst loading. The racemisation occurs with pseudo-first-order kinetics and the corresponding four rate constants were obtained by monitoring the time dependence of the concentrations of the (R) and (S) enantiomers starting with either pure (R) or (S) and show a first-order dependence on catalyst concentration. Low temperature (1)H NMR data is consistent with the formation of a 1 : 1 complex with the amine coordinated to the iridium and with both iodide anions still bound to the metal-ion, but at the higher temperatures used for kinetic studies binding is weak and so no saturation zero-order kinetics are observed. A cross-over experiment with isotopically labelled amines demonstrates the intermediate formation of an imine which can dissociate from the iridium complex. Replacing the iodides in the catalyst by other ligands or having an amide substituent in Cp* results in a much less effective catalysts for the racemisation of amines. The rate constants for a deuterated amine yield a significant primary kinetic isotope effect kH/kD = 3.24 indicating that hydride transfer is involved in the rate-limiting step.

  20. Half-sandwich iridium complexes for homogeneous water-oxidation catalysis.

    PubMed

    Blakemore, James D; Schley, Nathan D; Balcells, David; Hull, Jonathan F; Olack, Gerard W; Incarvito, Christopher D; Eisenstein, Odile; Brudvig, Gary W; Crabtree, Robert H

    2010-11-17

    Iridium half-sandwich complexes of the types Cp*Ir(N-C)X, [Cp*Ir(N-N)X]X, and [CpIr(N-N)X]X are catalyst precursors for the homogeneous oxidation of water to dioxygen. Kinetic studies with cerium(IV) ammonium nitrate as primary oxidant show that oxygen evolution is rapid and continues over many hours. In addition, [Cp*Ir(H(2)O)(3)]SO(4) and [(Cp*Ir)(2)(μ-OH)(3)]OH can show even higher turnover frequencies (up to 20 min(-1) at pH 0.89). Aqueous electrochemical studies on the cationic complexes having chelate ligands show catalytic oxidation at pH > 7; conversely, at low pH, there are no oxidation waves up to 1.5 V vs NHE for the complexes. H(2)(18)O isotope incorporation studies demonstrate that water is the source of oxygen atoms during cerium(IV)-driven catalysis. DFT calculations and kinetic experiments, including kinetic-isotope-effect studies, suggest a mechanism for homogeneous iridium-catalyzed water oxidation and contribute to the determination of the rate-determining step. The kinetic experiments also help distinguish the active homogeneous catalyst from heterogeneous nanoparticulate iridium dioxide.

  1. Synthesis and Electroluminescent Property of New Orange Iridium Compounds for Flexible White Organic Light Emitting Diodes.

    PubMed

    Lee, Ho Won; Jeong, Hyunjin; Kim, Young Kwan; Ha, Yunkyoung

    2015-10-01

    Recently, white organic light-emitting diodes (OLEDs) have aroused considerable attention because they have the potential of next-generation flexible displays and white illuminated applications. White OLED applications are particularly heading to the industry but they have still many problems both materials and manufacturing. Therefore, we proposed that the new iridium compounds of orange emitters could be demonstrated and also applied to flexible white OLEDs for verification of potential. First, we demonstrated the chemical properties of new orange iridium compounds. Secondly, conventional two kinds of white phosphorescent OLEDs were fabricated by following devices; indium-tin oxide coated glass substrate/4,4'-bis[N-(napthyl)-N-phenylamino]biphenyl/N,N'-dicarbazolyl-3,5-benzene doped with blue and new iridium compounds for orange emitting 8 wt%/1,3,5-tris[N-phenylbenzimidazole-2-yl]benzene/lithium quinolate/aluminum. In addition, we fabricated white OLEDs using these emitters to verify the potential on flexible substrate. Therefore, this work could be proposed that white light applications can be applied and could be extended to additional research on flexible applications. PMID:26726407

  2. Formic acid dehydrogenation with bioinspired iridium complexes: a kinetic isotope effect study and mechanistic insight.

    PubMed

    Wang, Wan-Hui; Xu, Shaoan; Manaka, Yuichi; Suna, Yuki; Kambayashi, Hide; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2014-07-01

    Highly efficient hydrogen generation from dehydrogenation of formic acid is achieved by using bioinspired iridium complexes that have hydroxyl groups at the ortho positions of the bipyridine or bipyrimidine ligand (i.e., OH in the second coordination sphere of the metal center). In particular, [Ir(Cp*)(TH4BPM)(H2 O)]SO4 (TH4BPM: 2,2',6,6'-tetrahydroxyl-4,4'-bipyrimidine; Cp*: pentamethylcyclopentadienyl) has a high turnover frequency of 39 500 h(-1) at 80 °C in a 1 M aqueous solution of HCO2 H/HCO2 Na and produces hydrogen and carbon dioxide without carbon monoxide contamination. The deuterium kinetic isotope effect study clearly indicates a different rate-determining step for complexes with hydroxyl groups at different positions of the ligands. The rate-limiting step is β-hydrogen elimination from the iridium-formate intermediate for complexes with hydroxyl groups at ortho positions, owing to a proton relay (i.e., pendent-base effect), which lowers the energy barrier of hydrogen generation. In contrast, the reaction of iridium hydride with a proton to liberate hydrogen is demonstrated to be the rate-determining step for complexes that do not have hydroxyl groups at the ortho positions.

  3. Consumable arc-melting, extruding, and rolling process for iridium sheet

    SciTech Connect

    Heestand, R.L.; Copeland, G.L.; Martin, M.M.

    1986-06-01

    An iridium alloy has been used as cladding for the /sup 238/PuO/sub 2/ fuel in radioisotope thermoelectric generators (RTGs) for recent interplanetary spacecraft such as Voyagers 1 and 2 and will be used for the Galileo and Ulysses spacecraft. The iridium alloy sheet for the fuel cladding used on these missions was fabricated by hot and cold rolling of arc-melted and drop-cast 0.5-kg ingots. Upon completion of production for these spacecraft, an opportunity was taken to conduct process improvement studies that would increase processing batch sizes, develop a more uniform product, decrease rejections due to internal delaminations and surface defects, and reduce costs. The studies to scale up and improve the fabrication process are described. In the new process, iridium is electron beam melted, alloyed by arc melting, and then consumable arc melted to form a cylindrical ingot of approximately 7 kg for extrusion. The ingot is extruded to sheet bar and hot and cold rooled into sheet. Sheet evaluated from the first two ingots showed 100% acceptance with no defects on inspection. An improved uniformity of microstructure was obtained, and chemistry was controlled within specification limits.

  4. Ultrasonic detection of laminar-type defects in iridium alloy blanks

    SciTech Connect

    Cook, K.V.; Cunningham, R.A. Jr.; Simpson, W.A. Jr.; McClung, R.W.

    1986-07-01

    Encapsulated isotopic heat sources for use in generating electrical power for space applications require flight-quality hardware material. Iridium is the chosen material for such applications, and Oak Ridge National Laboratory has been the prime supplier of iridium alloy forming blanks 52 mm in diameter by 0.66 mm thick (1.0 by 0.026 in.). Prior to the work reported here, these blanks were ultrasonically examined by using 0.9-mm-diam (0.035-in.) simulated flaw standards. However, as a result of this effort, the sensitivity of our ultrasonic pulse-echo test system has been increased. The improved ultrasonic test system permits blank inspection at the 0.5-mm-diam (0.020-in.) simulated flaw detection level. This test system was successfully demonstrated on the initial blanks provided via an improved processing route (consumable arc-melting, extruding, and rolling). The equipment modification and/or selection and the specific focused search unit immersion technique developed to provide this capability are described. The improved flaw detection capability also provides data maps of a common type of defect in iridium (delaminations).

  5. Aluminum silicide microparticles transformed from aluminum thin films by hypoeutectic interdiffusion

    PubMed Central

    2014-01-01

    Aluminum silicide microparticles with oxidized rough surfaces were formed on Si substrates through a spontaneous granulation process of Al films. This microparticle formation was caused by interdiffusion of Al and Si atoms at hypoeutectic temperatures of Al-Si systems, which was driven by compressive stress stored in Al films. The size, density, and the composition of the microparticles could be controlled by adjusting the annealing temperature, time, and the film thickness. High-density microparticles of a size around 10 μm and with an atomic ratio of Si/Al of approximately 0.8 were obtained when a 90-nm-thick Al film on Si substrate was annealed for 9 h at 550°C. The microparticle formation resulted in a rapid increase of the sheet resistance, which is a consequence of substantial consumption of Al film. This simple route to size- and composition-controllable microparticle formation may lay a foundation stone for the thermoelectric study on Al-Si alloy-based heterogeneous systems. PMID:24994964

  6. Formation of the Thermoelectric Candidate Chromium Silicide by Use of a Pack-Cementation Process

    NASA Astrophysics Data System (ADS)

    Stathokostopoulos, D.; Chaliampalias, D.; Tarani, E.; Theodorakakos, A.; Giannoulatou, V.; Polymeris, G. S.; Pavlidou, E.; Chrissafis, K.; Hatzikraniotis, E.; Paraskevopoulos, K. M.; Vourlias, G.

    2014-10-01

    Transition-metal silicides are reported to be good candidates for thermoelectric applications because of their thermal and structural stability, high electrical conductivity, and generation of thermoelectric power at elevated temperatures. Chromium disilicide (CrSi2) is a narrow-gap semiconductor and a potential p-type thermoelectric material up to 973 K with a band gap of 0.30 eV. In this work, CrSi2 was formed from Si wafers by use of a two-step, pack-cementation, chemical diffusion method. Several deposition conditions were used to investigate the effect of temperature and donor concentration on the structure of the final products. Scanning electron microscopy and x-ray diffraction analysis were performed for phase identification, and thermal stability was evaluated by means of thermogravimetric measurements. The results showed that after the first step, chromizing, the structure of the products was a mixture of several Cr-Si phases, depending on the donor (Cr) concentration during the deposition process. After the second step, siliconizing, the pure CrSi2 phase was formed as a result of Si enrichment of the initial Cr-Si phases. It was also revealed that this compound has thermoelectric properties similar to those reported elsewhere. Moreover, it was found to have exceptional chemical stability even at temperatures up to 1273 K.

  7. Enhanced power factor of higher manganese silicide via melt spin synthesis method

    SciTech Connect

    Shi, Xiaoya; Li, Qiang; Shi, Xun; Chen, Lidong; Li, Yulong; He, Ying

    2014-12-28

    We report on the thermoelectric properties of the higher manganese silicide MnSi{sub 1.75} synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example, the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describe the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5 × 10{sup 20 }cm{sup −3} at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper.

  8. Mechanical Alloying and Spark Plasma Sintering of Higher Manganese Silicides for Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Sadia, Yatir; Dinnerman, Liron; Gelbstein, Yaniv

    2013-07-01

    The present challenges in the energy crisis require finding new ways to reduce consumption of fossil fuels. Thermoelectrics can help reduce fuel consumption by producing electricity from waste heat. The higher manganese silicides (HMS) have shown promise in this field as inexpensive, nontoxic, and highly stable p-type thermoelectric materials. One of the production techniques for HMS is mechanical alloying by ball milling. In this research the effect of the ball-milling duration and speed on the phases produced was studied. Mn and Si powders were milled at speeds of 200 RPM to 800 RPM for 1 h to 7 h. X-ray diffraction (XRD) results of the samples prepared using mechanical alloying show deterioration into the MnSi phase. The sample that underwent 5 h of milling at 800 RPM showed the greatest amount of HMS phase and was subsequently spark plasma sintered. The sample showed insufficient thermoelectric properties ( ZT ≈ 0.1 at 450°C), compared with either solid-state reaction samples showing ZT ≈ 0.4 or cast samples showing ZT ≈ 0.63 at 450°C. The reduced ZT values of the mechanically alloyed and spark-plasma-sintered samples were attributed to the high relative amount of MnSi phase. The correlation between the relative amount of MnSi and the transport properties is described in detail.

  9. Enhanced power factor of higher manganese silicide via melt spin synthesis method

    DOE PAGESBeta

    Shi, Xiaoya; Shi, Xun; Li, Yulong; He, Ying; Chen, Lidong; Li, Qiang

    2014-12-30

    We report on the thermoelectric properties of the Higher Manganese Silicide MnSi₁.₇₅ (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10²⁰ cm⁻³ at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper; the maximum value is superior to those reported in the literatures.« less

  10. Status of core conversion with LEU silicide fuel in JRR-4

    SciTech Connect

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji

    1997-08-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10{sup 13}(n/cm{sup 2}/s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities.

  11. The whole-core LEU silicide fuel demonstration in the JMTR

    SciTech Connect

    Aso, Tomokazu; Akashi, Kazutomo; Nagao, Yoshiharu

    1997-08-01

    The JMTR was fully converted to LEU silicide (U{sub 3}Si{sub 2}) fuel with cadmium wires as burnable absorber in January, 1994. The reduced enrichment program for the JMTR was initiated in 1979, and the conversion to MEU (enrichment ; 45%) aluminide fuel was carried out in 1986 as the first step of the program. The final goal of the program was terminated by the present LEU conversion. This paper describes the results of core physics measurement through the conversion phase from MEU fuel core to LEU fuel core. Measured excess reactivities of the LEU fuel cores are mostly in good agreement with predicted values. Reactivity effect and burnup of cadmium wires, therefore, were proved to be well predicted. Control rod worth in the LEU fuel core is mostly less than that in the MEU fuel core. Shutdown margin was verified to be within the safety limit. There is no significant difference in temperature coefficient of reactivity between the MEU and LEU fuel cores. These results verified that the JMTR was successfully and safely converted to LEU fuel. Extension of the operating cycle period was achieved and reduction of spend fuel elements is expected by using the fuel with high uranium density.

  12. The ability of silicide coating to delay the catastrophic oxidation of vanadium under severe conditions

    NASA Astrophysics Data System (ADS)

    Chaia, N.; Mathieu, S.; Rouillard, F.; Vilasi, M.

    2015-02-01

    V-4Cr-4Ti vanadium alloy is a potential cladding material for sodium-cooled fast-neutron reactors (SFRs). However, its affinity for oxygen and the subsequent embrittlement that oxygen induces causes a need for an oxygen diffusion barrier, which can be obtained by manufacturing a multi-layered silicide coating. The present work aims to evaluate the effects of thermal cycling (using a cyclic oxidation device) and tensile and compressive stresses (using the three-point flexure test) on the coated alloy system. Tests were performed in air up to 1100 °C, which is 200 °C higher than the accidental temperature for SFR applications. The results showed that the VSi2 coating was able to protect the vanadium substrate from oxidation for more than 400 1-h cycles between 1100 °C and room temperature. The severe bending applied to the coated alloy at 950 °C using a load of 75 MPa did not lead to specimen breakage. It can be suggested that the VSi2 coating has mechanical properties compatible with the V-4Cr-4Ti alloy for SFR applications.

  13. Enhanced power factor of higher manganese silicide via melt spin synthesis method

    SciTech Connect

    Shi, Xiaoya; Shi, Xun; Li, Yulong; He, Ying; Chen, Lidong; Li, Qiang

    2014-12-30

    We report on the thermoelectric properties of the Higher Manganese Silicide MnSi₁.₇₅ (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describe the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10²⁰ cm⁻³ at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper; the maximum value is superior to those reported in the literatures.

  14. Ion-beam nanopatterning of silicon surfaces under codeposition of non-silicide-forming impurities

    NASA Astrophysics Data System (ADS)

    Moon, B.; Yoo, S.; Kim, J.-S.; Kang, S. J.; Muñoz-García, J.; Cuerno, R.

    2016-03-01

    We report experiments on surface nanopatterning of Si targets which are irradiated with 2-keV Ar+ ions impinging at near-glancing incidence, under concurrent codeposition of Au impurities simultaneously extracted from a gold target by the same ion beam. Previous recent experiments by a number of groups suggest that silicide formation is a prerequisite for pattern formation in the presence of metallic impurities. In spite of the fact that Au is known not to form stable compounds with the Si atoms, ripples nonetheless emerge in our experiments with nanometric wavelengths and small amplitudes, and with an orientation that changes with distance to the Au source. We provide results of sample analysis through Auger electron and energy-dispersive x-ray spectroscopies for their space-resolved chemical composition, and through atomic force, scanning transmission electron, and high-resolution transmission microscopies for their morphological properties. We discuss these findings in the light of current continuum models for this class of systems. The composition of and the dynamics within the near-surface amorphized layer that ensues is expected to play a relevant role to account for the unexpected formation of these surface structures.

  15. Experimental studies of thermal and chemical interactions between oxide and silicide nuclear fuels with water

    SciTech Connect

    farahani, A.A.; Corradini, M.L.

    1995-09-01

    Given some transient power/cooling mismatch is a nuclear reactor and its inability to establish the necessary core cooling, energetic fuel-coolant interactions (FCI`s commonly called `vapor explosions`) could occur as a result of the core melting and coolant contact. Although a large number of studies have been done on energetic FCI`s, very few experiments have been performed with the actual fuel materials postulated to be produced in severe accidents. Because of the scarcity of well-characterized FCI data for uranium allows in noncommercial reactors (cermet and silicide fuels), we have conducted a series of experiments to provide a data base for the foregoing materials. An existing 1-D shock-tube facility was modified to handle depleted radioactive materials (U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al). Our objectives have been to determine the effects of the initial fuel composition and temperature and the driving pressure (triggering) on the explosion work output, dynamic pressures, transient temperatures, and the hydrogen production. Experimental results indicate limited energetics, mainly thermal interactions, for these fuel materials as compared to aluminum where more chemical reactions occur between the molten aluminum and water.

  16. Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides

    SciTech Connect

    Chen, Xi; Girard, S. N.; Meng, F.; Lara-Curzio, Edgar; Jin, S; Goodenough, J. B.; Zhou, J. S.; Shi, L

    2014-01-01

    Higher manganese silicides (HMS) made of earth-abundant and non-toxic elements are regarded as promising p-type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitu- tion of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1 xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50 200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1 xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1 xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.

  17. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides

    NASA Astrophysics Data System (ADS)

    Huang, Huaqing; Liu, Jianpeng; Vanderbilt, David; Duan, Wenhui

    2016-05-01

    Based on first-principles calculations and an effective Hamiltonian analysis, we systematically investigate the electronic and topological properties of alkaline-earth compounds A X2 (A =Ca , Sr, Ba; X =Si , Ge, Sn). Taking BaSn2 as an example, we find that when spin-orbit coupling is ignored, these materials are three-dimensional topological nodal-line semimetals characterized by a snakelike nodal loop in three-dimensional momentum space. Drumheadlike surface states emerge either inside or outside the loop circle on the (001) surface depending on surface termination, while complicated double-drumhead-like surface states appear on the (010) surface. When spin-orbit coupling is included, the nodal line is gapped and the system becomes a topological insulator with Z2 topological invariants (1;001). Since spin-orbit coupling effects are weak in light elements, the nodal-line semimetal phase is expected to be achievable in some alkaline-earth germanides and silicides.

  18. Grain Growth Behavior, Tensile Impact Ductility, and Weldability of Cerium-Doped Iridium Alloys

    SciTech Connect

    McKamey, C.G.

    2002-05-28

    An iridium alloy doped with small amounts of cerium and thorium is being developed as a potential replacement for the iridium-based DOP-26 alloy (doped with thorium only) that is currently used by the National Aeronautics and Space Administration (NASA) for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the iridium-based alloy (designated as DOP-40) containing both cerium and thorium. Included within this report are data on grain growth of sheet material in vacuum and low-pressure oxygen environments, grain growth in vacuum of the clad vent set cup material, weldability, and the effect of grain size and test temperature on tensile properties. Where applicable, data for the DOP-26 alloy are included for comparison. Both grain size and grain-boundary cohesion affect the ductility of iridium alloys. In this study it was found that cerium and thorium, when added together, refine grain size more effectively than when thorium is added by itself (especially at high temperatures). In addition, the effect of cerium additions on grain-boundary cohesion is similar to that of thorium. Mechanical testing at both low ({approx} 10{sup -3}s{sup -1}) and high ({approx} 10{sup -3}s{sup -1}) strain rates showed that the Ce/Th-doped alloys have tensile ductilities that are as good or better than the DOP-26 alloy. The general conclusion from these studies is that cerium can be used to replace some of the radioactive thorium currently used in DOP-26 while maintaining or improving its metallurgical properties. The current DOP-26 alloy meets all requirements for cladding the radioactive fuel in the RTG heat source, but the

  19. Analysis of Channel Stress Induced by NiPt-Silicide in Metal-Oxide-Semiconductor Field-Effect Transistor and Its Generation Mechanism

    NASA Astrophysics Data System (ADS)

    Mizuo, Mariko; Yamaguchi, Tadashi; Kudo, Shuichi; Hirose, Yukinori; Kimura, Hiroshi; Tsuchimoto, Jun-ichi; Hattori, Nobuyoshi

    2013-09-01

    Channel stress induced by NiPt-silicide films in metal-oxide-semiconductor field-effect transistors (MOSFETs) was demonstrated using UV-Raman spectroscopy, and its generation mechanism was revealed. It was possible to accurately measure the channel stress with the Raman test structure. The channel stress depends on the source/drain doping type and the second silicide annealing method. In order to discuss the channel stress generation mechanism, NiPt-silicide microstructure analyses were performed using X-ray diffraction analysis and scanning transmission electron microscopy. The channel stress generation mechanism can be elucidated by the following two factors: the change in the NiSi lattice spacing, which depends on the annealing temperature, and the NiSi crystal orientation. The analyses of these factors are important for controlling channel stress in stress engineering for high-performance transistors.

  20. Visualization of Zn²⁺ ions in live zebrafish using a luminescent iridium(III) chemosensor.

    PubMed

    Ma, Dik-Lung; He, Hong-Zhang; Zhong, Hai-Jing; Lin, Sheng; Chan, Daniel Shiu-Hin; Wang, Liang; Lee, Simon Ming-Yuen; Leung, Chung-Hang; Wong, Chun-Yuen

    2014-08-27

    A novel luminescent cyclometalated iridium(III) complex-based chemosensor (1) bearing a zinc-specific receptor, tris(2-pyridylmethyl)amine, and the 3-phenyl-1H-pyrazole ligand has been designed and synthesized. Upon the addition of Zn(2+) ions to a solution of iridium(III) complex 1, a pronounced luminescence color change from blue to green can be observed, which may be attributed to the suppression of photoinduced electron transfer upon complexation of complex 1 with Zn(2+) ions. The interaction of iridium(III) complex 1 with Zn(2+) ions was investigated by UV-vis absorption titration, emission titration, and (1)H NMR titration. Furthermore, the iridium(III) complex 1 exhibited good selectivity for Zn(2+) over 13 other common metal ions, including K(+), Ag(+), Na(+), Ni(2+), Fe(3+), Hg(2+), Cd(2+), Mg(2+), Ca(2+), Cu(2+), Mn(2+), Co(2+), and Pb(2+) ions. The practical application of the iridium(III) complex 1 in visualizing intracellular Zn(2+) distribution in live zebrafish was also demonstrated.

  1. Iridium contents in the Late Cretaceous-Early Tertiary clays in relation to the K/T boundary, North Jordan

    NASA Astrophysics Data System (ADS)

    Abboud, Iyad Ahmed

    2016-06-01

    The mineralogy, lithology, and geochemistry of five discrete laminations across the K/T boundary of clayey shale at the Yarmouk River area, Jordan, were examined. There were no marked changes in the mineralogy of the clayey shale within the K/T boundary. This outcrop consists of more than 100 m of Maastrichtian oil shale overlying about 20 m limestone. Marly limestone included many clay laminations from organic and volcanic origins, which are considered an evidence of the K/T boundary through detected iridium anomalies. Any of these particular lamellae range from 2 mm to 5 mm in thickness. Smectite was the predominant clay mineral in smectitic shale laminations. It was located at eight meters above the K/T boundary and includes some anomalous concentrations of iridium and traces of other elements. The analysis of geochemical platinum group at the K/T boundary clays showed anomalous enrichments of iridium, compared with other carbonate rocks as a result of weathering processes of oil shale, or through concentration from weathering of basalt flows, but not pointing to an impact process. The clays in late Maastrichtian have Ir-Sc prevailed anomalies and synchronize with increasing of terrigenous and volcanogenic traced elements. Kaolin, smectite, and volkonskoite were the dominant clay minerals at the K/T boundary with high concentrations of iridium. The concentration levels of iridium in some laminations of the Yarmouk sediments ranged between 1.6 and 7.8 ppb.

  2. Infrared photodetectors with tailorable response due to resonant plasmon absorption in epitaxial silicide particles embedded in silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Dejewski, S. M.; George, T.; Jones, E. W.; Krabach, T. N.; Ksendzov, A.

    1993-01-01

    Tailorable infrared photoresponse in the 1-2 micron range are demonstrated in a device incorporating electrically floating metal silicide particles. Photons absorbed by excitation of the metallic-particle surface plasmon are shown to contribute to the photoresponse. Quantum efficiencies of roughly 0.2 percent are measured at 77 K, with dark currents of less than 2 nA/sq cm at a reverse bias of 1 V and detectivities of 4 x 10 exp 9 - 8 x 10 exp 9 cm sq rt Hz/W are obtained.

  3. Investigation of Exotic Spin Textures in Chiral Magnetic Silicide Nanowires for Spintronics Applications

    NASA Astrophysics Data System (ADS)

    DeGrave, John P.

    Chiral magnetic materials exhibit a wide array of exotic spin configurations that are incommensurate with the underlying crystal lattice and their formation results from the competition of ferromagnetic exchange interactions and weaker Dzyaloshinskii-Moriya spin-orbit interactions. One recently revealed configuration for the B20-structure type, known as a "skyrmion," is a topologically non-trivial vortex-like magnetic domain. Skyrmion domains have become of great interest for applications in future magnetic memory storage devices since they can be manipulated as particle-like entities with remarkably low electrical currents. A major question is how the formation and current-induced dynamics of skyrmion domains are affected by the nanoscale dimensions required for such applications, and we have developed several characterization techniques to address the electrical and magnetic properties of the two silicide nanowire systems, MnSi and Fe1-xCoxSi that both have the B20-structure type. We have first observed skyrmion domains in a focus ion-beam thinned MnSi nanowire specimen using Lorentz transmission electron microscopy, and we identified that the skyrmion lattice phase is stable under small applied magnetic fields between the temperatures of 6 K and 35 K. We then developed a novel Hall effect measurement method for nanowires that we used to identify the topological Hall effect which is the electrical signature of magnetic skyrmion domains. These topological Hall effect measurements reveal that the skyrmion phase is stable in pristine MnSi nanowires between 15 K and 35 K which is a significantly larger temperature window compared to the skyrmion lattice in bulk MnSi crystals (only observed between 27 K and 29.5 K). Finally, we have measured the spin polarization of conduction electrons (which can have a significant impact on the magnitude of the topological Hall effect) in Fe1-xCoxSi nanowires using Andreev reflection spectroscopy implemented with a superconducting

  4. Development of silicide coating over molybdenum based refractory alloy and its characterization

    NASA Astrophysics Data System (ADS)

    Chakraborty, S. P.; Banerjee, S.; Sharma, I. G.; Suri, A. K.

    2010-08-01

    Molybdenum based refractory alloys are potential candidate materials for structural applications in high temperature compact nuclear reactors and fusion reactors. However, these alloys being highly susceptible to oxidation in air or oxygen at elevated temperature, undergoes severe losses from highly volatile molybdenum trioxide species. Present investigation, therefore, examines the feasibility of development of silicide type of coating over molybdenum base TZM alloy shape (Mo > 99 wt.%) using pack cementation coating technique. TZM alloy was synthesized in this laboratory from oxide intermediates of MoO 2, TiO 2 and ZrO 2 in presence of requisite amount of carbon, by alumino-thermic reduction smelting technique. The arc melted and homogenized samples of TZM alloy substrate was then embedded in the chosen and intimately mixed pack composition consisting of inert matrix (Al 2O 3), coating powder (Si) and activator (NH 4Cl) taken in the judicious proportion. The sealed charge packs contained in an alumina crucible were heated at temperatures of 1000 °C for 8-16 h heating cycle to develop the coating. The coating phase was confirmed to be of made of MoSi 2 by XRD analysis. The morphology of the coating was studied by SEM characterization. It had revealed that the coating was diffusion bonded where Si from coating diffused inward and Mo from TZM substrate diffused outward to form the coating. The coating was found to be resistant to oxidation when tested in air up to 1200 °C. A maximum 100 μm of coating thickness was achieved on each side of the substrate.

  5. Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel

    SciTech Connect

    Blumenfeld, P.E.

    1995-08-01

    Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR`s uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ``hot segment`` analysis of narrow axial regions along the plate and ``hot streak`` analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about {minus}7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square ({chi}{sup 2}) test for goodness of fit to normal distributions was not satisfied.

  6. Superconductivity and long range magnetic order in ternary rare earth iron silicides

    SciTech Connect

    Vining, C.B.

    1983-01-01

    Low temperature heat capacity measurements on three superconducting ternary rare-earth iron silicides, Lu/sub 2/Fe/sub 3/Si/sub 5/, Sc/sub 2/Fe/sub 3/Si/sub 5/ and Y/sub 2/Fe/sub 3/Si/sub 5/, indicate a number of unusual features in the superconducting state of these materials. These materials show a large linear term in the superconducting heat capacity and a reduced normalized jump in the specific heat at T/sub c/. These data suggest a significant fraction of the conduction electrons in these materials do not participate in the superconducting state but instead remain normal well below the superconducting transition temperature. A two band model is proposed to explain these and previously reported anomalous properties of these materials. Low temperature heat capacity measurements on the compounds RE/sub 2/Fe/sub 3/Si/sub 5/, RE = Sm, Gd-Yb, from 0.5 K to 30 K confirm previously reported antiferromagnetic ordering temperatures for RE = Gd-Tm and indicate that the compounds Sm/sub 2/Fe/sub 3/Si/sub 5/ and Yb/sub 2/Fe/sub 3/Si/sub 5/ also order antiferromagnetically. The magnetic behavoir of Yb in this system is consistent with lattice parameter determinations which indicate Yb is in the trivalent state rather than the more usual nonmagnetic divalent state. No evidence is found in the heat capacity data, even on careful inspection, for superconductivity in any of these antiferromagnetically ordered compounds.

  7. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water

    NASA Astrophysics Data System (ADS)

    Liu, Di; Chen, Xiufang; Xu, Guoqiang; Guan, Jing; Cao, Quan; Dong, Bo; Qi, Yunfei; Li, Chunhu; Mu, Xindong

    2016-02-01

    Nitrogen-doped hierarchical porous carbons were synthesized successfully by a controllable one-pot method using glucose and dicyandiamide as carbon source and nitrogen source via hydrothermal carbonization process. The nitrogen-doped materials, possessing high nitrogen content (up to 7 wt%), large surface area (>320 m2 g-1) and excellent hierarchical nanostructure, were employed as catalyst supports for immobilization of iridium nanoparticles for bio-alcohol condensation in water. The introduction of nitrogen atoms into the carbon framework significantly improved iridium nanoparticles dispersion and stabilization. The novel iridium catalysts exhibited superior catalytic activity in the aqueous phase condensation of butanol, offering high butanol conversion of 45% with impressive 2-ethylhexanol selectivity of 97%. The heterogeneous catalysts had great advantages of easy recovery and high catalytic stability. The outstanding catalytic performance could be attributed to excellent dispersion of iridium nanoparticles, stronger iridium-support interactions and interaction of nitrogen species with alcohol substrates.

  8. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water

    PubMed Central

    Liu, Di; Chen, Xiufang; Xu, Guoqiang; Guan, Jing; Cao, Quan; Dong, Bo; Qi, Yunfei; Li, Chunhu; Mu, Xindong

    2016-01-01

    Nitrogen-doped hierarchical porous carbons were synthesized successfully by a controllable one-pot method using glucose and dicyandiamide as carbon source and nitrogen source via hydrothermal carbonization process. The nitrogen-doped materials, possessing high nitrogen content (up to 7 wt%), large surface area (>320 m2 g−1) and excellent hierarchical nanostructure, were employed as catalyst supports for immobilization of iridium nanoparticles for bio-alcohol condensation in water. The introduction of nitrogen atoms into the carbon framework significantly improved iridium nanoparticles dispersion and stabilization. The novel iridium catalysts exhibited superior catalytic activity in the aqueous phase condensation of butanol, offering high butanol conversion of 45% with impressive 2-ethylhexanol selectivity of 97%. The heterogeneous catalysts had great advantages of easy recovery and high catalytic stability. The outstanding catalytic performance could be attributed to excellent dispersion of iridium nanoparticles, stronger iridium-support interactions and interaction of nitrogen species with alcohol substrates. PMID:26912370

  9. Development of U.S. Government General Technical Requirements for UAS Flight Safety Systems Utilizing the Iridium Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Murray, Jennifer; Birr, Richard

    2010-01-01

    This slide presentation reviews the development of technical requirements for Unmanned Aircraft Systems (UAS) utilization of the Iridium Satellite Constellation to provide flight safety. The Federal Aviation Authority (FAA) required an over-the-horizon communication standard to guarantee flight safety before permitting widespread UAS flights in the National Air Space (NAS). This is important to ensure reliable control of UASs during loss-link and over-the-horizon scenarios. The core requirement was to utilize a satellite system to send GPS tracking data and other telemetry from a flight vehicle down to the ground. Iridium was chosen as the system because it is one of the only true satellite systems that has world wide coverage, and the service has a highly reliable link margin. The Iridium system, the flight modems, and the test flight are described.

  10. Techniques for Achieving Zero Stress in Thin Films of Iridium, Chromium, and Nickel

    NASA Technical Reports Server (NTRS)

    Broadway, David M.; O'Dell, Stephen L.; Ramsey, Brian D.; Weimer, Jeffrey

    2015-01-01

    We examine techniques for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The intrinsic stress is further correlated to the microstructural features and physical properties such as surface roughness and optical density at a scale appropriate to soft X-ray wavelengths. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight X-ray space telescopes into the regime of sub-arcsecond resolution through various deposition techniques that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure and deposition rate, including the existence of a critical argon process pressure that results in zero film stress which scales linearly with the atomic mass of the sputtered species. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we report this effect for iridium. In addition to stress reversal, we identify zero stress in the optical functioning iridium layer shortly after island coalescence for low process pressures at a film thickness of approximately 35nm. The measurement of the low values of stress during deposition was achieved with the aid of a sensitive in-situ instrument capable of a minimum detectable level of stress, assuming a 35nm thick film, in the range of 0.40-6.0 MPa for <111> oriented crystalline silicon substrate thicknesses of 70-280 microns, respectively.

  11. Efficient light harvesting and energy transfer in a red phosphorescent iridium dendrimer.

    PubMed

    Cho, Yang-Jin; Hong, Seong Ahn; Son, Ho-Jin; Han, Won-Sik; Cho, Dae Won; Kang, Sang Ook

    2014-12-15

    A series of red phosphorescent iridium dendrimers of the type [Ir(btp)2(pic-PCn)] (Ir-Gn; n = 0, 1, 2, and 3) with two 2-(benzo[b]thiophen-2-yl)pyridines (btp) and 3-hydroxypicolinate (pic) as the cyclometalating and ancillary ligands were prepared in good yields. Dendritic generation was grown at the 3 position of the pic ligand with 4-(9H-carbazolyl)phenyl dendrons connected to 3,5-bis(methyleneoxy)benzyloxy branches (PCn; n = 0, 2, 4, and 8). The harvesting photons on the PCn dendrons followed by efficient energy transfer to the iridium center resulted in high red emissions at ∼600 nm by metal-to-ligand charge transfer. The intensity of the phosphorescence gradually increased with increasing dendrimer generation. Steady-state and time-resolved spectroscopy were used to investigate the energy-transfer mechanism. On the basis of the fluorescence quenching rate constants of the PCn dendrons, the energy-transfer efficiencies for Ir-G1, Ir-G2, and Ir-G3 were 99, 98, and 96%, respectively. The energy-transfer efficiency for higher-generation dendrimers decreased slightly because of the longer distance between the PC dendrons and the core iridium(III) complex, indicating that energy transfer in Ir-Gn is a Förster-type energy transfer. Finally, the light-harvesting efficiencies for Ir-G1, Ir-G2, and Ir-G3 were determined to be 162, 223, and 334%, respectively.

  12. Cyclometalated iridium(III) complexes for phosphorescence sensing of biological metal ions.

    PubMed

    You, Youngmin; Cho, Somin; Nam, Wonwoo

    2014-02-17

    Phosphorescence signaling provides a valuable alternative to conventional bioimaging based on fluorescence. The benefits of using phosphorescent molecules include improved sensitivity and capabilities for effective elimination of background signals by time-gated acquisition. Cyclometalated Ir(III) complexes are promising candidates for facilitating phosphorescent bioimaging because they provide synthetic versatility and excellent phosphorescence properties. In this Forum Article, we present our recent studies on the development of phosphorescence sensors for the detection of metal ions based on cyclometalated iridium(III) complexes. The constructs contained cyclometalating (C^N) ligands with the electron densities and band-gap energies of the C^N ligand structures systematically varied. Receptors that chelated zinc, cupric, and chromium ions were tethered to the ligands to create phosphorescence sensors. The alterations in the C^N ligand structures had a profound influence on the phosphorescence responses to metal ions. Mechanistic studies suggested that the phosphorescence responses could be explained on the basis of the modulation of photoinduced electron transfer (PeT) from the receptor to the photoexcited iridium species. The PeT behaviors strictly adhered to the Rehm-Weller principle, and the occurrence of PeT was located in the Marcus-normal region. It is thus anticipated that improved responses will be obtainable by increasing the excited-state reduction potential of the iridium(III) complexes. Femtosecond transient absorption experiments provided evidence for the presence of an additional photophysical mechanism that involved metal-ion-induced alteration of the intraligand charge-transfer (ILCT) transition state. Utility of the mechanism by PeT and ILCT has been demonstrated for the phosphorescence sensing of biologically important transition-metal ions. In particular, the phosphorescence zinc sensor could report the presence of intracellular zinc pools by

  13. Intercalated samarium as an agent enabling the intercalation of oxygen under a monolayer graphene film on iridium

    NASA Astrophysics Data System (ADS)

    Afanas'eva, E. Yu.; Rut'kov, E. V.; Gall', N. R.

    2016-06-01

    Using thermal desorption time-of-flight mass spectrometry and thermionic methods, it is shown that oxygen does not intercalate under a graphene monolayer grown correctly on iridium, at least at temperatures of T = 300-400 K and exposures below 12000 L. However, if the graphene film on iridium is preliminary intercalated with samarium atoms (up to coverage of θSm = 0.2-0.45), the penetration of oxygen atoms under the graphene film is observed. The oxygen atoms in the intercalated state are chemically bonded to samarium atoms and remain under graphene up to high temperatures (~2150 K).

  14. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates

    NASA Astrophysics Data System (ADS)

    Bhatta, Umananda M.; Rath, Ashutosh; Dash, Jatis K.; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P. V.

    2009-11-01

    Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio (≈15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.

  15. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Lee, Stephen L.; André, Pascal

    2016-11-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  16. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates.

    PubMed

    Bhatta, Umananda M; Rath, Ashutosh; Dash, Jatis K; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P V

    2009-11-18

    Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst. PMID:19843987

  17. Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis.

    PubMed

    Krautwald, Simon; Schafroth, Michael A; Sarlah, David; Carreira, Erick M

    2014-02-26

    We describe the fully stereodivergent, dual catalytic α-allylation of linear aldehydes. The reaction proceeds via direct iridium-catalyzed substitution of racemic allylic alcohols with enamines generated in situ. The use of an Ir(P,olefin) complex and a diarylsilyl prolinol ether as catalysts in the presence of dimethylhydrogen phosphate as the promoter proved to be crucial for achieving high enantio- and diastereoselectivity (>99% ee, up to >20:1 dr). The utility of the method is demonstrated in a concise enantioselective synthesis of the antidepressant (-)-paroxetine. PMID:24506196

  18. Palynological and iridium anomalies at Cretaceous-Tertiary boundary, south-central Saskatchewan

    USGS Publications Warehouse

    Nichols, D.J.; Jarzen, D.M.; Orth, C.J.; Oliver, P.Q.

    1986-01-01

    The Cretaceous-Tertiary boundary in south-central Saskatchewan is marked by coincident anomalies in abundance of iridium and fern spores at the extinction level of a suite of Cretaceous pollen taxa. Evidence of disruption of the terrestrial flora includes the fern-spore abundance anomaly and local extinction of as much as 30 percent of angiosperm species. The reorganized earliest Tertiary flora is made up largely of surviving species that assumed new roles of dominance. Persistence of climatically sensitive taxa across the boundary indicates that if paleoclimate was altered by the terminal Cretaceous event, it returned quickly to the pre-event condition.

  19. Catalytic dehydrogenation of cycloalkanes to arenes by a dihydrido iridium P-C-P pincer complex

    SciTech Connect

    Gupta, M.; Hagen, C.; Cramer, R.E.; Jensen, C.M.; Kaska, W.C.

    1997-01-29

    We recently found that the iridium P-C-P pincer complex IrH{sub 2}[C{sub 6}H{sub 3}-2,6-(CH{sub 2}-PBu{sup T}{sub 2}){sub 2}] (1) is a highly active, homogeneous catalyst for the transfer dehydrogenation of cyclooctane with unusual long-term stability at temperatures as high as 200 {degree}C. This reactivity has now been extended to the catalytic transfer dehydrogenation of cycloalkanes to arenes. We report this novel catalytic activity as well as the results of an X-ray structure determination of 1. 15 refs., 1 fig., 1 tab.

  20. Salvage irradiation of oropharynx and mobile tongue about /sup 192/iridium brachytherapy in Centre Alexis Vautrin

    SciTech Connect

    Langlois, D.; Hoffstetter, S.; Malissard, L.; Pernot, M.; Taghian, A.

    1988-05-01

    Between 1972 and 1984, 123 patients were treated using /sup 192/Iridium afterloading techniques for recurrence or new cancer of the tongue or oropharynx arising in previously irradiated tissues. The actuarial local control was 67% at 2 years and 59% at 5 years. Local control of the tumor was achieved in the majority of these patients, the actuarial survival was only 48% at 2 years and 24% at 5 years. Twenty-eight patients developed mucosal necrosis. We analyzed prognostic factors for survival, local control, and complication. We proposed a selection for this salvage therapy.

  1. Iridium/Copper Co-catalyzed Anti-Stereoselective Ring Opening of Oxabenzonorbornadienes with Grignard Reagents.

    PubMed

    Cheng, Guo; Yang, Wen; Li, Yue; Yang, Dingqiao

    2016-09-01

    Cooperative catalysis has been widely considered as one of the most powerful strategies to improve synthetic efficiency. A new iridium/copper cocatalyst was developed for the ring-opening reaction of oxabenzonorbornadienes with a wide variety of Grignard reagents, which afforded the corresponding anti-2-substituted 1,2-dihydronaphthalen-1-ols in high yields (up to 99% yield) under mild conditions. The effects of catalyst loading, Lewis acid, Grignard reagent loading, and reaction temperature on the yield were investigated. To the best of our knowledge, it represents the first example of ring-opening reactions of oxabicyclic alkenes with Grignard reagent nucleophiles in a trans-stereoselective manner. PMID:27455165

  2. Theoretical studies on the photophysical properties of some Iridium (III) complexes used for OLED

    NASA Astrophysics Data System (ADS)

    Urinda, Sharmistha; Das, Goutam; Pramanik, Anup; Sarkar, Pranab

    2016-09-01

    The structural and photophysical properties of four heteroleptic Iridium (III) complexes, based on 1-phenylpyrazole ligand, have been investigated theoretically. The effect of chemical substitution on the absorption and the emission spectra of the complexes has been studied and compared with the experimental data. We observe a significant structural change in the lowest triplet excited state as compared to the ground singlet state. We compute the emission wavelength of the complexes by considering the spin-orbit coupling. Using these understandings, we predict two new complexes having deeper blue emission which are supposed to be better efficient OLED materials.

  3. Electrogenerated chemiluminescence from heteroleptic iridium(III) complexes with multicolor emission.

    PubMed

    Zhou, Yuyang; Gao, Hongfang; Wang, Xiaomei; Qi, Honglan

    2015-02-16

    Electrogenerated chemiluminescence (ECL) with different emission colors is important in the development of multichannel analytical techniques. In this report, five new heteroleptic iridium(III) complexes were synthesized, and their photophysical, electrochemical, and ECL properties were studied. Here, 2-(2,4-difluorophenyl)pyridine (dfppy, complex 1), 2-phenylbenzo[d]thiazole (bt, complex 2), and 2-phenylpyridine (ppy, complex 3) were used as the main ligands to tune the emission color, while avobenzone (avo) was used as the ancillary ligand. For comparison, complexes 4 and 5 with 2-phenylpyridine and 2-phenylbenzo[d]thiazole as the main ligand, respectively, and acetyl acetone (acac) as the ancillary ligand were also synthesized. All five iridium(III) complexes had strong intraligand absorption bands (π–π*) in the UV region (below 350 nm) and a featureless MLCT (d−π*) transition in the visible 400–500 nm range. Multicolored emissions were observed for these five iridium(III) complexes, including green, orange, and red for complexes 4, 5, 2, 1, 3, respectively. Density functional theory calculations indicate that the electronic density of the highest occupied molecular orbital is entirely located on the C^N ligands and the iridium atom, while the formation of the lowest unoccupied molecular orbital (LUMO) is complicated. The LUMO is mainly assigned to the ancillary ligand for complexes 1 and 3 but to the C^N ligand for complexes 2, 4, and 5. Cyclic voltammetry studies showed that all these complexes have a reversible oxidation wave, but no reduction waves were found in the electrochemical windows of CH2Cl2. The E1/2(ox) values of these complexes ranged from 0.642 to 0.978 V for complexes 3, 4, 2, 5, 1, (in increasing order) and are all lower than that of Ru(bpy)3(2+). Most importantly, when using tripropylamine as a coreactant, complexes 1–5 exhibited intense ECL signals with an emission wavelength centered at 616, 580, 663, 536, and 569 nm, respectively

  4. Flexible, high-density microphotodiode array with integrated sputtered iridium oxide electrodes for retinal stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Frank; Chang, Mao-Yen; Yang, Chung-Hua; Teng, Chih-Ciao; Fan, Long-Sheng

    2016-01-01

    To assess the charge-injection capacity of the sputtered iridium oxide film (SIROF) electrode on the retinal CMOS image sensor (CIS) chip, a polyimide-based flex device was designed and fabricated to package the retinal CIS chip. The polyimide-flex-based packaging process keeps the surface of photosensors clean, and the measured connection resistance meets the packaging requirement of the low-power retinal CIS chip. The in vitro experimental results show that the small SIROF electrodes can provide a biphasic charge injection per phase of 3.9 nC/ph to achieve the stimulation threshold at a polarization potential of -0.44 V.

  5. Iridium Complexes and Clusters in Dealuminated Zeolite HY: Distribution between Crystalline and Impurity Amorphous Regions

    SciTech Connect

    Martinez-Macias, Claudia; Xu, Pinghong; Hwang, Son-Jong; Lu, Jing; Chen, Cong-Yan; Browning, Nigel D.; Gates, Bruce C.

    2014-07-08

    Dealuminated zeolite HY was used to support Ir(CO)2 complexes formed from Ir(CO)2(C5H7O2). Infrared and X-ray absorption spectra and atomic-resolution electron microscopy images identify these complexes, and the images and 27Al NMR spectra identify impurity amorphous regions in the zeolite where the iridium is more susceptible to aggregation than in the crystalline regions. The results indicate a significant stability limitation of metal in amorphous impurity regions of zeolites.

  6. Iridium-Catalyzed Asymmetric Ring-Opening of Oxabenzonorbornadienes with N-Substituted Piperazine Nucleophiles.

    PubMed

    Yang, Wen; Luo, Renshi; Yang, Dingqiao

    2015-01-01

    Iridium-catalyzed asymmetric ring-opening of oxabenzonorbornadienes with N-substituted piperazines was described. The reaction afforded the corresponding ring-opening products in high yields and moderate enantioselectivities in the presence of 2.5 mol % [Ir(COD)Cl]₂ and 5.0 mol % (S)-p-Tol-BINAP. The effects of various chiral bidentate ligands, catalyst loading, solvent, and temperature on the yield and enantioselectivity were also investigated. A plausible mechanism was proposed to account for the formation of the corresponding trans-ring opened products based on the X-ray structure of product 2i. PMID:26633315

  7. Relationship between mass extinction and iridium across the Cretaceous-Paleogene boundary in New Jersey

    USGS Publications Warehouse

    Miller, K.G.; Sherrell, Robert M.; Browning, J.V.; Field, M.P.; Gallagher, W.; Olsson, R.K.; Sugarman, P.J.; Tuorto, S.; Wahyudi, H.

    2010-01-01

    We directly link iridium (Ir) anomalies in New Jersey to the mass extinction of marine plankton marking the Cretaceous-Paleogene (K-Pg) boundary. We confirm previous reports of an Ir anomaly 20 cm below the extinction of Cretaceous macrofauna (the "Pinna" bed) with new results from a muddy sand section from Tighe Park, Freehold, New Jersey (United States), but we also show that Ir anomalies correlate with marine mass extinctions at three other clay-rich New Jersey sections. Thus, we attribute the anomaly at Freehold to the downward movement of Ir and reaffirm the link between impact and mass extinction. ?? 2010 Geological Society of America.

  8. Iridium/N-heterocyclic carbene-catalyzed C–H borylation of arenes by diisopropylaminoborane

    PubMed Central

    Igarashi, Takuya

    2016-01-01

    Summary Catalytic C–H borylation of arenes has been widely used in organic synthesis because it allows the introduction of a versatile boron functionality directly onto simple, unfunctionalized arenes. We report herein the use of diisopropylaminoborane as a boron source in C–H borylation of arenes. An iridium(I) complex with 1,3-dicyclohexylimidazol-2-ylidene is found to efficiently catalyze the borylation of arenes and heteroarenes. The resulting aminoborylated products can be converted to the corresponding boronic acid derivatives simply by treatment with suitable diols or diamines. PMID:27340457

  9. Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis.

    PubMed

    Krautwald, Simon; Schafroth, Michael A; Sarlah, David; Carreira, Erick M

    2014-02-26

    We describe the fully stereodivergent, dual catalytic α-allylation of linear aldehydes. The reaction proceeds via direct iridium-catalyzed substitution of racemic allylic alcohols with enamines generated in situ. The use of an Ir(P,olefin) complex and a diarylsilyl prolinol ether as catalysts in the presence of dimethylhydrogen phosphate as the promoter proved to be crucial for achieving high enantio- and diastereoselectivity (>99% ee, up to >20:1 dr). The utility of the method is demonstrated in a concise enantioselective synthesis of the antidepressant (-)-paroxetine.

  10. Iridium-catalyzed intermolecular dehydrogenative silylation of polycyclic aromatic compounds without directing groups.

    PubMed

    Murai, Masahito; Takami, Keishi; Takai, Kazuhiko

    2015-03-16

    This study describes the iridium-catalyzed intermolecular dehydrogenative silylation of C(sp(2))-H bonds of polycyclic aromatic compounds without directing groups. The reaction produced various arylsilanes through both Si-H and C-H bond activation, with hydrogen as the sole byproduct. Reactivity was affected by the electronic nature of the aromatic compounds, and silylation of electron-deficient and polycyclic aromatic compounds proceeded efficiently. Site-selectivity was controlled predominantly by steric factors. Therefore, the current functionalization proceeded with opposite chemo- and site-selectivity compared to that observed for general electrophilic functionalization of aromatic compounds.

  11. Iridium(III)-Catalyzed Regioselective Intermolecular Unactivated Secondary Csp(3) -H Bond Amidation.

    PubMed

    Xiao, Xinsheng; Hou, Cheng; Zhang, Zhenhui; Ke, Zhuofeng; Lan, Jianyong; Jiang, Huanfeng; Zeng, Wei

    2016-09-19

    For the first time, a highly regioselective intermolecular sulfonylamidation unactivated secondary Csp(3) -H bond has been achieved using Ir(III) catalysts. The introduced N,N'-bichelating ligand plays a crucial role in enabling iridium-nitrene insertion into a secondary Csp(3) -H bond via an outer-sphere pathway. Mechanistic studies and density functional theory (DFT) calculations demonstrated that a two-electron concerted nitrene insertion was involved in this Csp(3) -H amidation process. This method tolerates a broad range of linear and branched-chain N-alkylamides, and provides efficient access to diverse γ-sulfonamido-substituted aliphatic amines. PMID:27561950

  12. Sizeable Kane-Mele-like spin orbit coupling in graphene decorated with iridium clusters

    NASA Astrophysics Data System (ADS)

    Qin, Yuyuan; Wang, Siqi; Wang, Rui; Bu, Haijun; Wang, Xuefeng; Wang, Xinran; Song, Fengqi; Wang, Baigeng; Wang, Guanghou

    2016-05-01

    The spin-orbit coupling strength of graphene can be enhanced by depositing iridium nanoclusters. Weak localization is intensely suppressed near zero fields after the cluster deposition, rather than changing to weak anti-localization. Fitting the magnetoresistance gives the spin relaxation time, which increases by two orders with the application of a back gate. The spin relaxation time is found to be proportional to the electronic elastic scattering time, demonstrating the Elliot-Yafet spin relaxation mechanism. A sizeable Kane-Mele-like coupling strength of over 5.5 meV is determined by extrapolating the temperature dependence to zero.

  13. {sup 45}Sc Solid State NMR studies of the silicides ScTSi (T=Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt)

    SciTech Connect

    Harmening, Thomas; Eckert, Hellmut; Fehse, Constanze M.; Sebastian, C. Peter; Poettgen, Rainer

    2011-12-15

    The silicides ScTSi (T=Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) were synthesized by arc-melting and characterized by X-ray powder diffraction. The structures of ScCoSi, ScRuSi, ScPdSi, and ScIrSi were refined from single crystal diffractometer data. These silicides crystallize with the TiNiSi type, space group Pnma. No systematic influences of the {sup 45}Sc isotropic magnetic shift and nuclear electric quadrupolar coupling parameters on various structural distortion parameters calculated from the crystal structure data can be detected. {sup 45}Sc MAS-NMR data suggest systematic trends in the local electronic structure probed by the scandium atoms: both the electric field gradients and the isotropic magnetic shifts relative to a 0.2 M aqueous Sc(NO{sub 3}){sub 3} solution decrease with increasing valence electron concentration and within each T group the isotropic magnetic shift decreases monotonically with increasing atomic number. The {sup 45}Sc nuclear electric quadrupolar coupling constants are generally well reproduced by quantum mechanical electric field gradient calculations using the WIEN2k code. Highlights: Black-Right-Pointing-Pointer Arc-melting synthesis of silicides ScTSi. Black-Right-Pointing-Pointer Single crystal X-ray data of ScCoSi, ScRuSi, ScPdSi, and ScIrSi. Black-Right-Pointing-Pointer {sup 45}Sc solid state NMR of silicides ScTSi.

  14. High-temperature thermochemistry of transition metal borides, silicides and related compounds. Final report

    SciTech Connect

    Klemppa, Ole J.

    2000-10-01

    Earlier this year in collaboration with Dr. Susan V. Meschel we prepared a major review paper which gives a comprehensive summary of what our laboratory has accomplished with support from DOE. This paper is No.43 in the List of Publications provided. It was presented to TMS at its National Meeting in Nashville, TN last March. A copy of the manuscript of this paper was recently mailed to DOE. It has been submitted for publication in Journal of Alloys and Compounds. This review paper summarizes our observed trends in the enthalpies of formation of TR-X and RE-X compounds (where X is a IIIB or IVB element) in their dependence of the atomic number of the transition metal (TR) and the lanthanide metal (RE). In this paper our measured enthalpies of formation for each alloy family are compared for the 3d, 4d and 5d transition metal elements. We also compare our experimental results with predicted values based on Miedema's semi-empirical model. Data are presented for the carbides, silicides, germanides and stannides in Group IVB, and for the borides and aluminides in Group IIIB. During the past year (1999-2000) we have extended our work to compounds of the 3d, 4d and 5d elements with gallium (see papers No.40, No.41, and No.45 in the List of Publications). Fig. 1 (taken from No.45) presents a systematic picture of our experimental values for the most exothermic gallide compounds formed with the transition elements. This figure is characteristic of the other systematic pictures which we have found for the two other IIIB elements which we have studied and for the four IVB elements. These figures are all presented in Ref. No.43. This paper also illustrates how the enthalpy of formation of compounds of the IIIB and IVB elements with the lanthanide elements (with the exception of Pm, Eu and Yb) depend on the atomic number of RE. Finally our results for the RE-X compounds are compared with the predictions of Gschneidner (K.A. Gschneidner, Jr., J. Less Common Metals 17, 1

  15. Narrow bandgap semiconducting silicides: Intrinsic infrared detectors on a silicon chip

    NASA Technical Reports Server (NTRS)

    Mahan, John E.

    1990-01-01

    Work done during the final report period is presented. The main technical objective was to achieve epitaxial growth on silicon of two semiconducting silicides, ReSi2 and CrSi2. ReSi2 thin films were grown on (001) silicon wafers by vacuum evaporation of rhenium onto hot substrates in ultrahigh vacuum. The preferred epitaxial relationship was found to be ReSi2(100)/Si(001) with ReSi2(010) parallel to Si(110). The lattice matching consists of a common unit mesh of 120 A(sup 2) area, and a mismatch of 1.8 percent. Transmission electron microscopy revealed the existence of rotation twins corresponding to two distinct but equivalent azimuthal orientations of the common unit mesh. MeV He(+) backscattering spectrometry revealed a minimum channeling yield of 2 percent for an approximately 1,500 A thick film grown at 650 C. Although the lateral dimension of the twins is on the order of 100 A, there is a very high degree of alignment between the ReSi2(100) and the Si(001) planes. Highly oriented films of CrSi2 were grown on (111) silicon substrates, with the matching crystallographic faces being CrSi2(001)/Si(111). The reflection high-energy electron diffraction (RHEED) patterns of the films consist of sharp streaks, symmetrically arranged. The predominant azimuthal orientation of the films was determined to be CrSi2(210) parallel to Si(110). This highly desirable heteroepitaxial relationship has been obtained previously by others; it may be described with a common unit mesh of 51 A(sup 2) and mismatch of 0.3 percent. RHEED also revealed the presence of limited film regions of a competing azimuthal orientation, CrSi2(110) parallel to Si(110). A channeling effect for MeV He(+) ions was not found for this material. Potential commercial applications of this research may be found in silicon-integrated infrared detector arrays. Optical characterizations showed that semiconducting ReSi2 is a strong absorber of infrared radiation, with the adsorption constant increasing above 2 x

  16. Iridium-catalyzed dehydrogenative decarbonylation of primary alcohols with the liberation of syngas.

    PubMed

    Olsen, Esben P K; Madsen, Robert

    2012-12-01

    A new iridium-catalyzed reaction in which molecular hydrogen and carbon monoxide are cleaved from primary alcohols in the absence of any stoichiometric additives has been developed. The dehydrogenative decarbonylation was achieved with a catalyst generated in situ from [Ir(coe)(2)Cl](2) (coe = cyclooctene) and racemic 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (rac-BINAP) in a mesitylene solution saturated with water. A catalytic amount of lithium chloride was also added to improve the catalyst turnover. The reaction has been applied to a variety of primary alcohols and gives rise to products in good to excellent yields. Ethers, esters, imides, and aryl halides are stable under the reaction conditions, whereas olefins are partially saturated. The reaction is believed to proceed by two consecutive organometallic transformations that are catalyzed by the same iridium(I)-BINAP species. First, dehydrogenation of the primary alcohol to the corresponding aldehyde takes place, which is then followed by decarbonylation to the product with one less carbon atom. PMID:23108889

  17. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    SciTech Connect

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay time is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.

  18. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    DOE PAGESBeta

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay timemore » is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.« less

  19. The kinetics and mechanism of the organo-iridium-catalysed enantioselective reduction of imines.

    PubMed

    Stirling, Matthew J; Sweeney, Gemma; MacRory, Kerry; Blacker, A John; Page, Michael I

    2016-04-14

    The iridium complex of pentamethylcyclopentadiene and (S,S)-1,2-diphenyl-N'-tosylethane-1,2-diamine is an effective catalyst for the asymmetric transfer hydrogenation of imine substrates under acidic conditions. Using the Ir catalyst and a 5 : 2 ratio of formic acid : triethylamine as the hydride source for the asymmetric transfer hydrogenation of 1-methyl-3,4-dihydroisoquinoline and its 6,7-dimethoxy substituted derivative, in either acetonitrile or dichloromethane, shows unusual enantiomeric excess (ee) profiles for the product amines. The reactions initially give predominantly the (R) enantiomer of the chiral amine products with >90% ee but which then decreases significantly during the reaction. The decrease in ee is not due to racemisation of the product amine, but because the rate of formation of the (R)-enantiomer follows first-order kinetics whereas that for the (S)-enantiomer is zero-order. This difference in reaction order explains the change in selectivity as the reaction proceeds - the rate formation of the (R)-enantiomer decreases exponentially with time while that for the (S)-enantiomer remains constant. A reaction scheme is proposed which requires rate-limiting hydride transfer from the iridium hydride to the iminium ion for the first-order rate of formation of the (R)-enantiomer amine and rate-limiting dissociation of the product for the zero-order rate of formation of the (S)-enantiomer.

  20. Treatment of carcinoma of the penis by iridium 192 wire implant

    SciTech Connect

    Daly, N.J.; Douchez, J.; Combes, P.F.

    1982-07-01

    Since 1971, a group of 22 adult patients with squamous cell carcinoma of the penis have been treated by iridium 192 wire implants. There were 6 T1 tumors, 14 T2 tumors and 2 T3; only one patient (T3) presented with local failure after implant. Local necrosis occurred in 2 patients without local tumoral recurrence, but was sufficient enough to warrant amputation. Thus 19/22 (86%) patients were locally cured with penile conservation. In these patients the most frequent posttherapeutic complication is chronic urethral stenosis (9/19 patients, 47%) requiring repeated instrumental dilations. Four patients presented with initial inguinal mestastatic nodes; only one was cured by radiosurgical treatment. Among patients without metastatic nodes at the time of diagnosis, none had delayed metastatic nodes. Three patients died of nodal evolution, 5 patients died of intercurrent disease without evidence of disease and 14 are now alive and NED. It appears that iridium 192 wire implant is the most effective conservative treatment of invasive squamous cell carcinoma of the penis; however, these results confirm that no particular treatment is required for inguinal nodal areas for patients who initially present with no disease.

  1. [Brachytherapy in France: current situation and economic outlook due to the unavailability of iridium wires].

    PubMed

    Le Vu, B; Boucher, S

    2014-10-01

    In 2013, about 6000 patients were treated with brachytherapy, the number diminishing by 2.6% per year since 2008. Prostate, breast and gynecological cancers are the most common types of cancers. Since 2008, the number of brachytherapy facilities has decreased by 18%. In medicoeconomic terms, brachytherapy faces many problems: the coding system is outdated; brachytherapy treatments cost as much as internal radiation; fees do not cover costs; since iridium wire has disappeared from the market, the technique will be transferred to more expensive high-speed or pulse dose rates. The French financing grid based on the national study of costs lags behind changes in such treatments and in the best of cases, hospitals resorting to alternatives such as in-hospital brachytherapy are funded at 46% of their additional costs. Brachytherapy is a reference technique. With intense pressure on hospital pricing, financing brachytherapy facilities will become even more problematic as a consequence of the disappearance of iridium 192 wires. The case of brachytherapy illustrates the limits of the French financing system and raises serious doubts as to its responsiveness. PMID:25195115

  2. Iridium- and Osmium-decorated Reduced Graphenes as Promising Catalysts for Hydrogen Evolution.

    PubMed

    Lim, Chee Shan; Sofer, Zdeněk; Toh, Rou Jun; Eng, Alex Yong Sheng; Luxa, Jan; Pumera, Martin

    2015-06-22

    Renewable energy sources are highly sought after as a result of numerous worldwide problems concerning the environment and the shortage of energy. Currently, the focus in the field is on the development of catalysts that are able to provide water splitting catalysis and energy storage for the hydrogen evolution reaction (HER). While platinum is an excellent material for HER catalysis, it is costly and rare. In this work, we investigated the electrocatalytic abilities of various graphene-metal hybrids to replace platinum for the HER. The graphene materials were doped with 4f metals, namely, iridium, osmium, platinum and rhenium, as well as 3d metals, namely, cobalt, iron and manganese. We discovered that a few hybrids, in particular iridium- and osmium-doped graphenes, have the potential to become competent electrocatalysts owing to their low costs and-more importantly-to their promising electrochemical performances towards the HER. One of the more noteworthy observations of this work is the superiority of these two hybrids over MoS2 , a well-known electrocatalyst for the HER. PMID:25908556

  3. Iridium-191 angiocardiography for the detection and quantitation of left-to-right shunting

    SciTech Connect

    Treves, S.; Cheng, C.; Samuel, A.; Lambrecht, R.; Babchyck, B.; Zimmerman, R.; Norwood, W.

    1980-12-01

    An osmium-191 ..-->.. iridium-191 generator that can deliver multiple doses of Ir-191m for first-pass radionuclide angiography has been developed. Iridium-191m has a physical half-life of 4.96 sec and decays with emission of 65-keV and 129-keV photons in 58 and 30% abundance, respectively. Using a gamma camera, Ir-191m radionuclide angiography was carried out, in dogs and ten patients, for the detection and quantitation of left-to-right shunting. In a one-year-old patient, 25 mCi of Ir-191m results in a whole-body radiation absorbed dose of 35 mrad. Multiple Ir-191m angiograms can be performed, seconds to minutes apart, without interference from background. The 15.4-day half-life of Os-191 permits transportation of the generator to centers far from the production facility. With the low radiation dose, high information density, and the ability to repeat studies with Ir-191m, clinical use of radionuclide angiography should be expanded.

  4. Electron-beam processing of kilogram quantities of iridium for radioisotope thermoelectric generator applications

    SciTech Connect

    Huxford, T.J.; Ohriner, E.K.

    1992-01-01

    Iridium alloys are used as fuel-cladding materials in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyagers I and 2, Galilee, and Ulysses spacecraft. An integral part of the production of iridium-sheet metal involves electron-beam (EB) processing. These processes include the degassing of powder-pressed compacts followed by multiple meltings in order to purify 500-g buttons of Ir-0.3% W alloy. Starting in 1972 and continuing into 1992, our laboratory EB processing was Performed (ca. 1970) in a 60-kW (20 kV at 3 A), two-gun system. In 1991, a new 150-kW EB gun facility was installed to complement the older unit. This paper describes how the newly installed system was qualified for production of RTG developmental work is discussed that will potentially improve the existing process by utilizing the capabilities of the new EB system.

  5. Electron-beam processing of kilogram quantities of iridium for radioisotope thermoelectric generator applications

    SciTech Connect

    Huxford, T.J.; Ohriner, E.K.

    1992-12-31

    Iridium alloys are used as fuel-cladding materials in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyagers I and 2, Galilee, and Ulysses spacecraft. An integral part of the production of iridium-sheet metal involves electron-beam (EB) processing. These processes include the degassing of powder-pressed compacts followed by multiple meltings in order to purify 500-g buttons of Ir-0.3% W alloy. Starting in 1972 and continuing into 1992, our laboratory EB processing was Performed (ca. 1970) in a 60-kW (20 kV at 3 A), two-gun system. In 1991, a new 150-kW EB gun facility was installed to complement the older unit. This paper describes how the newly installed system was qualified for production of RTG developmental work is discussed that will potentially improve the existing process by utilizing the capabilities of the new EB system.

  6. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Technological Aspects

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.; Chiu, C. J-Y.

    2012-01-01

    Iridium Communications Inc. is launching a new generation of polar orbiting communication satellites in 2015-2017. Iridium will provide a hosted payload bay on each of the 66 satellites (plus 6 in-space spares). This offers the potential for a paradigm shift in the way we measure Earth radiation imbalance from space, as well as massive cost savings. Because the constellation provides 24/7 global coverage, there is no need to account for diurnal cycle via extrapolations from uncalibrated narrowband geostationary imagers. And the spares can be rolled over to view the Sun and deep space, then transfer their calibration to the other members of the constellation during the frequent cross-overs. In part using simulations of the constellation viewing realistic Earth scenes, this presentation will address the technological aspects of such a constellation: (1) the calibration strategy; (2) the highly-accurate and stable radiometers for measuring outgoing flux; and (3) the GRACE-inspired algorithms for representing the outgoing flux field in spherical harmonics and thus achieving rv500-km spatial resolution and two-hour temporal resolution.

  7. High-Performance Computer Modeling of the Cosmos-Iridium Collision

    SciTech Connect

    Olivier, S; Cook, K; Fasenfest, B; Jefferson, D; Jiang, M; Leek, J; Levatin, J; Nikolaev, S; Pertica, A; Phillion, D; Springer, K; De Vries, W

    2009-08-28

    This paper describes the application of a new, integrated modeling and simulation framework, encompassing the space situational awareness (SSA) enterprise, to the recent Cosmos-Iridium collision. This framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel, high-performance computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the application of this framework to the recent collision of the Cosmos and Iridium satellites, including (1) detailed hydrodynamic modeling of the satellite collision and resulting debris generation, (2) orbital propagation of the simulated debris and analysis of the increased risk to other satellites (3) calculation of the radar and optical signatures of the simulated debris and modeling of debris detection with space surveillance radar and optical systems (4) determination of simulated debris orbits from modeled space surveillance observations and analysis of the resulting orbital accuracy, (5) comparison of these modeling and simulation results with Space Surveillance Network observations. We will also discuss the use of this integrated modeling and simulation framework to analyze the risks and consequences of future satellite collisions and to assess strategies for mitigating or avoiding future incidents, including the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.

  8. Establishment of the platinum-iridium kilogram mass standards at NMIJ after the Extraordinary Calibrations

    NASA Astrophysics Data System (ADS)

    Mizushima, Shigeki; Fujii, Kenichi

    2016-04-01

    The Bureau International des Poids et Mesures has carried out calibrations of the platinum-iridium kilogram mass standards by referencing the international prototype of the kilogram for the first time since the third periodic verification of national prototypes of the kilogram was carried out in 1988-92. This calibration campaign was designated ‘Extraordinary Calibrations’ in the second phase, in which two platinum-iridium kilogram mass standards of the National Metrology Institute of Japan were calibrated with a standard uncertainty of 3.5 μg. By adding these new calibration data into our data sets from 1991, we established our mass unit with a standard uncertainty of 3.3 μg by least-squares analysis using an exponential model, which is useful for compensating for mass increase after cleaning the mass standards. Moreover, it was found that our established mass unit following the Extraordinary Calibrations shifted against our previously maintained mass unit by  -20.8 μg as of the beginning of 2015. The analysis with a linear model revealed that the amount of mass increase over time of some standards was significantly smaller than that suggested at the third periodic verification of national prototypes of the kilogram. The analysis with the exponential model gave an exponent of 0.217 with a standard uncertainty of 0.057. This suggests that the mass increase due to surface contamination cannot be explained by a diffusion-limited process.

  9. Determination of the amount of physical adsorption of water vapour on platinum-iridium surfaces

    NASA Astrophysics Data System (ADS)

    Mizushima, S.; Ueda, K.; Ooiwa, A.; Fujii, K.

    2015-08-01

    This paper presents the measurement of the physical adsorption of water vapour on platinum-iridium surfaces using a vacuum mass comparator. This value is of importance for redefining the kilogram, which will be realized under vacuum in the near future. Mirror-polished artefacts, consisting of a reference artefact and a test artefact, were manufactured for this experiment. The surface area difference between the reference and test artefacts was 226.2 cm2. This surface area difference was approximately 3.2 times the geometric surface area of the prototype of the kilogram made of platinum-iridium (71.7 cm2). The measurement results indicate that the amount of physical adsorption at a relative humidity of 50% is 0.0129 μg cm{{-}2} , with a standard uncertainty of 0.0016 μg cm{{-}2} . This value is 0.03 to 0.16 times that observed in other studies.

  10. Results of an Iridium-Based Data Communication System Providing Internet Access to Polar Expeditions

    NASA Astrophysics Data System (ADS)

    Mohammad, A.; Frost, V.; Braaten, D.

    2003-12-01

    The Polar Radar for Ice Sheet Measurements (PRISM) Project at the University of Kansas has developed and field-tested a versatile communications system for use by researchers in high-latitude Polar Regions. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. We also have a very strong public outreach and educational program aimed at K-12 educators and students that requires data, voice and video feeds from Polar field locations in near real time. Hence, PRISM requires a robust communications system for use in the field between a base camp and the mobile remote sensing system, and from the field back to the University of Kansas and onto the Internet. The communication system that has been developed is truly mobile and is relatively inexpensive. We initially considered various satellite services during the design phase of this project. The two feasible options for high-latitude locations were Iridium, with its low-bit-rate service (2.4 Kb/s), and Inmarsat/Intelsat with broadband service. We selected the Iridium option for testing and development because it provided coverage in both Antarctica and Greenland. To achieve higher capacity communications, the multilink point-to-point protocol (MLPPP) implemented in Linux was tuned to operate efficiently over the Iridium satellite system. This mechanism combines multiple channels to obtain a seamless data connection with a capacity equal to the sum of the individual link rates. We used four Iridium modems to obtain an aggregate capacity of about 9.6 Kb/s. Standard Internet protocols (TCP/IP) were then used to provide end-to-end connectivity. The communications system field experiments were conducted at the NorthGRIP ice core drilling camp in Greenland (75° 06' N, 42° 20

  11. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  12. Application of AirCell Cellular AMPS Network and Iridium Satellite System Dual Mode Service to Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The AirCell/Iridium dual mode service is evaluated for potential applications to Air Traffic Management (ATM) communication needs. The AirCell system which is largely based on the Advanced Mobile Phone System (AMPS) technology, and the Iridium FDMA/TDMA system largely based on the Global System for Mobile Communications(GSM) technology, can both provide communication relief for existing or future aeronautical communication links. Both have a potential to serve as experimental platforms for future technologies via a cost effective approach. The two systems are well established in the entire CONUS and globally hence making it feasible to utilize in all regions, for all altitudes, and all classes of aircraft. Both systems have been certified for air usage. The paper summarizes the specifications of the AirCell/Iridium system, as well as the ATM current and future links, and application specifications. the paper highlights the scenarios, applications, and conditions under which the AirCell/Iridium technology can be suited for ATM Communication.

  13. A Hexakis Terpyridine-Fullerene Ligand in Six-Fold Ruthenium, Iridium, and Iron Complexes: Synthesis and Electrochemical Properties.

    PubMed

    Yan, Weibo; Réthoré, Céline; Menning, Sebastian; Brenner-Weiß, Gerald; Muller, Thierry; Pierrat, Philippe; Bräse, Stefan

    2016-08-01

    An unprecedented straightforward route to six-fold terpyridine ligands around C60 , the latter being regioselectively functionalized in pseudo-octahedral positions using a six-fold Bingel reaction, is reported. Ruthenium, iridium, and iron complexes have been synthesized, and unambiguously characterized by NMR, MS, and cyclic voltammetry. PMID:27189254

  14. Enhancement of activity of RuSex electrocatalyst by modification with nanostructured iridium towards more efficient reduction of oxygen

    NASA Astrophysics Data System (ADS)

    Dembinska, Beata; Kiliszek, Malgorzata; Elzanowska, Hanna; Pisarek, Marcin; Kulesza, Pawel J.

    2013-12-01

    Electrocatalytic activity of carbon (Vulcan XC-72) supported selenium-modified ruthenium, RuSex/C, nanoparticles for reduction of oxygen was enhanced through intentional decoration with iridium nanostructures (dimensions, 2-3 nm). The catalytic materials were characterized in oxygenated 0.5 mol dm-3 H2SO4 using cyclic and rotating ring disk voltammetric techniques as well as using transmission electron microscopy and scanning electron microscopy equipped with X-ray dispersive analyzer. Experiments utilizing gas diffusion electrode aimed at mimicking conditions existing in the low-temperature fuel cell. Upon application of our composite catalytic system, the reduction of oxygen proceeded at more positive potentials, and higher current densities were observed when compared to the behavior of the simple iridium-free system (RuSex/C) investigated under the analogous conditions. The enhancement effect was more pronounced than that one would expect from simple superposition of voltammetric responses for the oxygen reduction at RuSex/C and iridium nanostructures studied separately. Nanostructured iridium acted here as an example of a powerful catalyst for the reduction of H2O2 (rather than O2) and, when combined with such a moderate catalyst as ruthenium-selenium (for O2 reduction), it produced an integrated system of increased electrocatalytic activity in the oxygen reduction process. The proposed system retained its activity in the presence of methanol that could appear in a cathode compartment of alcohol fuel cell.

  15. Thinking Problems of the Present Collision Warning Work by Analyzing the Intersection Between Cosmos 2251 and Iridium 33

    NASA Astrophysics Data System (ADS)

    Wang, R. L.; Liu, W.; Yan, R. D.; Gong, J. C.

    2013-08-01

    After Cosmos 2251 and Iridium 33 collision breakup event, the institutions at home and abroad began the collision warning analysis for the event. This paper compared the results from the different research units and discussed the problems of the current collision warning work, then gave the suggestions of further study.

  16. Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Gelbstein, Yaniv; Tunbridge, Jonathan; Dixon, Richard; Reece, Mike J.; Ning, Huanpo; Gilchrist, Robert; Summers, Richard; Agote, Iñigo; Lagos, Miguel A.; Simpson, Kevin; Rouaud, Cedric; Feulner, Peter; Rivera, Sergio; Torrecillas, Ramon; Husband, Mark; Crossley, Julian; Robinson, Ivan

    2014-06-01

    Cost-effective highly efficient nanostructured n-type Mg2Si1- x Sn x and p-type higher manganese silicide (HMS) compositions were prepared for the development of practical waste heat generators for automotive and marine thermoelectric applications, in the frame of the European Commission (EC)-funded PowerDriver project. The physical, mechanical, and structural properties were fully characterized as part of a database-generation exercise required for the thermoelectric converter design. A combination of high maximal ZT values of ˜0.6 and ˜1.1 for the HMS and Mg2Si1- x Sn x compositions, respectively, and adequate mechanical properties was obtained.

  17. Oxygen impurity effects at metal/silicide interfaces - Formation of silicon oxide and suboxides in the Ni/Si system

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.; Scott, D. M.; Nicolet, M.-A.; Mayer, J. W.

    1981-01-01

    The effect of implanted oxygen impurities on the Ni/Ni2Si interface is investigated using X-ray photoelectron spectroscopy, He-4(+) backscattering and O(d, alpha)-16 N-14 nuclear reactions. Oxygen dosages corresponding to concentrations of 1, 2, and 3 atomic percent were implanted into Ni films evaporated on Si substrates. The oxygen, nickel, and silicon core lines were monitored as a function of time during in situ growth of the Ni silicide to determine the chemical nature of the diffusion barrier which forms in the presence of oxygen impurities. Analysis of the Ni, Si, and O core levels demonstrates that the formation of SiO2 is responsible for the Ni diffusion barrier rather than Ni oxide or mixed oxides, such as Ni2SiO4. It is determined that 2.2 x 10 to the 16th O/qu cm is sufficient to prevent Ni diffusion under UHV annealing conditions.

  18. Oxidation at through-hole defects in fused slurry silicide coated columbium alloys FS-85 and Cb-752

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1973-01-01

    Metal recession and interstitial contamination at 0.08-centimeter-diameter through-hole intentional defects in fused slurry silicide coated FS-85 and Cb-752 columbium alloys were studied to determine the tolerance of these materials to coating defects. Five external pressure reentry simulation exposures to 1320 C and 4.7 x 1,000 N/sq m (maximum pressure) resulted in a consumed metal zone having about twice the initial defect diameter for both alloys with an interstitial contamination zone extending about three to four initial defect diameters. Self-healing occurred in the 1.33 x 10 N/sq m, 1320 C exposures and to a lesser extent in internal pressure reentry cycles to 1320 C and 1.33 x 100 N/sq m (maximum pressure).

  19. CEOS: A Small, Low Cost Spectrometer for Use on the Iridium NEXT Constellation

    NASA Astrophysics Data System (ADS)

    Murphy, S. D.; Slagowski, S.; Greenbaum, A.; Landis, D.; Mustard, J. F.; Chance, K.

    2012-12-01

    As part of the proposed GEOScan sensor payload to be placed onboard the Iridium NEXT constellation; a small, low cost spectrometer will be included. The Compact Earth Observing Spectrometer (CEOS) is an ultraviolet-visible and near infrared (UV/VIS/NIR) optical spectrometer ideally suited for detailed earth observations. CEOS is derived from a spectrometer originally designed for NASA's O/OREOS mission, a CubeSat launched in November 2010 that is still performing extended science operations. It is also slated to be the key science payload component of VIOLET, a CubeSat mission designed to characterize the spectral characteristics of the upper atmosphere. The CEOS has several unique design elements that allow for high performance over a broad range of environmental conditions. The CEOS design allows for a range of customizations to tune the instrument performance for a wide range of science applications. The baseline instrument provides 200-1000 nm spectral coverage with 1 nm FWHM optical resolution, which is ideal for wide variety of science objectives. However by simply exchanging gratings in the instrument, it can be customized for narrower spectral range with significantly higher resolution. The CEOS instrument will also add a significant feature to allow for more detailed earth science observations. The optical portion of the spectrometer will be augmented with a second optical path designed to measure spectra from 1000 - 2000 nm. This will make the finished instrument capable of detailed spectral measurements from 200 - 2000 nm, covering the ultraviolet through near-infrared. The instrument will be designed to allow the independent operation of both the UV/VIS and NIR portions of the instrument to provide flexibility in science data product volumes. We will describe the design of this spectrometer as well as discuss the details of its design heritage. In addition to Iridium NEXT, we will describe other platforms that this spectrometer may be suited for. We

  20. Migration of Single Iridium Atoms and Tri-iridium Clusters on MgO Surfaces. Aberration-Corrected STEM Imaging and ab-initio Calculations

    SciTech Connect

    Han, Chang W.; Iddir, Hakim; Uzun, Alper; Curtiss, Larry A.; Browning, Nigel D.; Gates, Bruce C.; Ortalan, Volkan

    2015-11-06

    To address the challenge of fast, direct atomic-scale visualization of the diffusion of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as ~0.1 s per frame) to visualize the diffusion of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir3 cluster on MgO(110). Sequential Z-contrast images elucidate the diffusion mechanisms, including the hopping of Ir1 and the rotational migration of Ir3 as two Ir atoms remain anchored to the surface. Density functional theory (DFT) calculations provided estimates of the diffusion energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow real-time visualization and fundamental understanding of surface diffusion phenomena pertaining to supported catalysts and other materials.

  1. Oxidation preventative capping layer for deep-ultra-violet and soft x-ray multilayers

    DOEpatents

    Prisbrey, Shon T.

    2004-07-06

    The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSi.sub.x) and iridium molybdenide (IrMo.sub.x).

  2. Iridium abundance maxima at the latest Ordovician mass extinction horizon, Yangtze Basin, China: Terrestrial or extraterrestrial

    SciTech Connect

    Kun Wang; Chatterton, B.D.E. ); Attrep, M. Jr; Orth, C.J. )

    1992-01-01

    Neutron activation analyses of the Chinese Ordovician/Silurian (O/S) boundary sections at two distant localities in the Yangtze Basin, spanning the horizon of a major latest Ordovician global extinction event, show the maxima of iridium abundances to be coincident with the extinction horizon at the base of the graptolite Glyptograptus persculputs zone. The 0.23 ppb Ir maximum in the Yichang type section is almost as large as the late Eocene impact Ir anomaly. However, the authors have observed that the Ir abundances in the Chinese sections are closely correlated with the sedimentation rates, and therefore have concluded that Ir maxima do not indicate a cataclysmic extraterrestrial impact at this extinction level.

  3. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    PubMed Central

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  4. Anion-Anion Bonding and Topology in Ternary Iridium Tin Selenides

    NASA Astrophysics Data System (ADS)

    Trump, Benjamin; Tutmaher, Jake; McQueen, Tyrel

    Iridium compounds have been under intense scrutiny due to strong relativistic effects (spin-orbit coupling) which have comparable energy scales to crystal field stabilization and electron correlations, which could lead to non-trivial behavior. Here we report the synthesis, characterization, and physical properties of two new, and one known, Ir-Sn-Se compounds. Resistivity, specific heat, and magnetization measurements show that all three have insulating and diamagnetic behavior, indicative of low spin 5d6 Ir3+. Furthermore, electronic structures calculations on Ir2Sn3Se3 show a single, spherical, non-spin-orbit split valence band that supports mobile p-type carriers, and imply that Ir2Sn3Se3 is topologically non-trivial under tensile strain, due to inversion of Ir- d and Se- p states. Work supported by NSF, Division of Materials Research (DMR), Solid State Chemistry (SSMC), CAREER Grant under Award DMR-1253562, and the ICDD Ludo Frevel Crystallography Scholarship.

  5. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    NASA Astrophysics Data System (ADS)

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  6. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation.

    PubMed

    Bower, John F; Krische, Michael J

    2011-01-01

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds. PMID:21822399

  7. Iridium-catalyzed hydrogen production from monosaccharides, disaccharide, cellulose, and lignocellulose.

    PubMed

    Li, Yang; Sponholz, Peter; Nielsen, Martin; Junge, Henrik; Beller, Matthias

    2015-03-01

    Hydrogen constitutes an important feedstock for clean-energy technologies as well as for production of bulk and fine chemicals. Hence, the development of novel processes to convert easily available biomass into H2 is of general interest. Herein, we demonstrate a one-pot protocol hydrogen generation from monosaccharides, disaccharide, and extremely demanding cellulose and lignocellulose substrates by using a pincer-type iridium catalyst. Applying ppm amounts of this catalyst, hydrogen is produced at temperatures lower than 120 °C. More specifically, catalyst turnover numbers (TONs) for lignocellulose from bamboo reached up to about 3000. Interestingly, even (used) cigarette filters, which are composed of cellulose acetate, produce hydrogen under optimized conditions.

  8. Iridium Catalyzed Dehydrogenation of Substituted Amine Boranes: Kinetics, Thermodynamics and Implications for Hydrogen Storage.

    SciTech Connect

    Dietrich, Brandon L.; Goldberg, Karen I.; Heinekey, D. M.; Autrey, Thomas; Linehan, John C.

    2008-10-06

    Dehydrogenation of ammonia borane (AB) and methylamine-borane (MeAB) is catalyzed efficiently by the iridium pincer complex (η3-1,3-(OPtBu2)2C6H3)Ir(H)2 (1). With MeAB and with MeAB/AB mixtures, rapid release of one equivalent of H2 is observed to yield soluble oligomeric products at rates similar to those previously reported for the dehydrogenation of AB catalyzed by 1. The rapid dehydrogenation reaction has allowed the experimental determination of the reaction enthalpy (ΔH) for the dehydrogenation of AB, MeAB, and AB/MeAB mixtures by calorimetry. The reactions are significantly more exothermic than suggested by some computational studies. This work was supported by the U.S. Department of Energy (DOE) as part of the Center of Excellence for Chemical Hydrogen Storage. PNNL is operated by Battelle for DOE.

  9. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE PAGESBeta

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; Neyerlin, K. C.; Kocha, Shyam S.; Pylypenko, Svitlana; Xu, Hui; Pivovar, Bryan S.

    2016-07-15

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  10. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary.

    PubMed

    Olsen, P E; Kent, D V; Sues, H-D; Koeberl, C; Huber, H; Montanari, A; Rainforth, E C; Fowell, S J; Szajna, M J; Hartline, B W

    2002-05-17

    Analysis of tetrapod footprints and skeletal material from more than 70 localities in eastern North America shows that large theropod dinosaurs appeared less than 10,000 years after the Triassic-Jurassic boundary and less than 30,000 years after the last Triassic taxa, synchronous with a terrestrial mass extinction. This extraordinary turnover is associated with an iridium anomaly (up to 285 parts per trillion, with an average maximum of 141 parts per trillion) and a fern spore spike, suggesting that a bolide impact was the cause. Eastern North American dinosaurian diversity reached a stable maximum less than 100,000 years after the boundary, marking the establishment of dinosaur-dominated communities that prevailed for the next 135 million years.

  11. Iridium-catalyzed reductive carbon-carbon bond cleavage reaction on a curved pyridylcorannulene skeleton.

    PubMed

    Tashiro, Shohei; Yamada, Mihoko; Shionoya, Mitsuhiko

    2015-04-27

    The cleavage of CC bonds in π-conjugated systems is an important method for controlling their shape and coplanarity. An efficient way for the cleavage of an aromatic CC bond in a typical buckybowl corannulene skeleton is reported. The reaction of 2-pyridylcorannulene with a catalytic amount of IrCl3 ⋅n H2 O in ethylene glycol at 250 °C resulted in a structural transformation from the curved corannulene skeleton to a strain-free flat benzo[ghi]fluoranthene skeleton through a site-selective CC cleavage reaction. This cleavage reaction was found to be driven by both the coordination of the 2-pyridyl substituent to iridium and the relief of strain in the curved corannulene skeleton. This finding should facilitate the design of carbon nanomaterials based on CC bond cleavage reactions.

  12. Iridium-Catalyzed, Hydrosilyl-Directed Borylation of Unactivated Alkyl C-H Bonds.

    PubMed

    Larsen, Matthew A; Cho, Seung Hwan; Hartwig, John

    2016-01-27

    We report the iridium-catalyzed borylation of primary and secondary alkyl C-H bonds directed by a Si-H group to form alkylboronate esters site selectively. The reactions occur with high selectivity at primary C-H bonds γ to the hydrosilyl group to form primary alkyl bisboronate esters. In the absence of such primary C-H bonds, the borylation occurs selectively at a secondary C-H bond γ to the hydrosilyl group, and these reactions of secondary C-H bonds occur with high diastereoselectivity. The hydrosilyl-containing alkyl boronate esters formed by this method undergo transformations selectively at the carbon-boron or carbon-silicon bonds of these products under distinct conditions to give the products of amination, oxidation, and arylation.

  13. Conodont survival and low iridium abundances across the Permian-Triassic boundary in South China

    SciTech Connect

    Clark, D.L.; Wang, C.Y.; Orth, C.J.; Gilmore, J.S.

    1986-08-29

    The Permian-Triassic sedimentary sequence of China includes one of the most complete and fossiliferous Paleozoic-Mesozoic boundaries known. Closely spaced sampling across the boundary, which is an important extinction event for most organisms, has produced good conodont faunas that show little diversity change. A drop in conodont abundance is the only apparent response to the extinction event. A low concentration of iridium in the boundary clay (0.002 part per billion +/- 20 percent), as well as in samples immediately below and above, that range form 0.004 to 0.034 part per billion do not support the proposal of an extraterrestrial impact event at this boundary in China. 21 references, 2 tables.

  14. Noisy CO oxidation on Iridium(111) surfaces. Experiments explained by theory under realistic assumptions

    NASA Astrophysics Data System (ADS)

    Wehner, S.; Cisternas, J.; Descalzi, O.; Küppers, J.

    2014-01-01

    Noise is an everywhere phenomenon. Its influence could be described theoretically quite easily, but is hard to measure in an experiment. Catalytic reactions on surfaces can be described by nonlinear reaction-diffusion equations. For one of such surface reactions - CO oxidation on Iridium(111) surfaces - the probability distribution of CO2 rates around the mean value - showing the influence of noise - could be measured directly in a ultra high vacuum (UHV) experiment. This opens the way to address such a fundamental phenomenon like noise by all three modern methods of physics - experimental, computational and analytical. We show the measured effect of colored noise on a bistable surface reaction and explain all observations directly with the underlying theoretical description - the Langmuir-Hinshelwood reaction scheme - by solving the equations under realistic assumptions. It is a great pleasure to dedicate this work to Prof. Dr. Helmut R. Brand on the occasion of his 60th birthday.

  15. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    PubMed Central

    Bower, John F.; Krische, Michael J.

    2011-01-01

    The formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C–C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile–nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C–H bonds. PMID:21822399

  16. Hot rocket plume experiment - Survey and conceptual design. [of rhenium-iridium bipropellants

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Luan, Taylor W.; Dowdy, Mack W.

    1992-01-01

    Attention is given to a space-borne engine plume experiment study to fly an experiment which will both verify and quantify the reduced contamination from advanced rhenium-iridium earth-storable bipropellant rockets (hot rockets) and provide a correlation between high-fidelity, in-space measurements and theoretical plume and surface contamination models. The experiment conceptual design is based on survey results from plume and contamination technologists throughout the U.S. With respect to shuttle use, cursory investigations validate Hitchhiker availability and adaptability, adequate remote manipulator system (RMS) articulation and dynamic capability, acceptable RMS attachment capability, adequate power and telemetry capability, and adequate flight altitude and attitude/orbital capability.

  17. Anodic Deposition of a Robust Iridium-Based Water-Oxidation Catalyst from Organometallic Precursors

    SciTech Connect

    Blakemore, James D; Schley, Nathan D; Olack, G.; Incarvito, Christopher D; Brudvig, Gary W; Crabtree, Robert H

    2011-01-01

    Artificial photosynthesis, modeled on natural light-driven oxidation of water in Photosystem II, holds promise as a sustainable source of reducing equivalents for producing fuels. Few robust water-oxidation catalysts capable of mediating this difficult four-electron, four-proton reaction have yet been described. We report a new method for generating an amorphous electrodeposited material, principally consisting of iridium and oxygen, which is a robust and long-lived catalyst for water oxidation, when driven electrochemically. The catalyst material is generated by a simple anodic deposition from Cp*Ir aqua or hydroxo complexes in aqueous solution. This work suggests that organometallic precursors may be useful in electrodeposition of inorganic heterogeneous catalysts.

  18. Spin-orbit coupled jeff=1/2 iridium moments on the geometrically frustrated fcc lattice

    DOE PAGESBeta

    Cook, A. M.; Matern, S.; Hickey, C.; Aczel, A. A.; Paramekanti, A.

    2015-07-01

    Motivated by experiments on La2ZnIrO6 and La2MgIrO6, we study the magnetism of spin-orbit coupled jeff = 1/2 iridium moments on the three-dimensional geometrically-frustrated face-centered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. Using Luttinger-Tisza and Monte Carlo simulations, we find a rich variety of orders, including collinear A-type antiferromagnetism, collinear stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and determine their magnetic ordering transition temperatures. We argue that thermodynamic data on these iridates underscore the presence of a dominant Kitaev exchange, and suggest a possible resolution to the puzzle of why La2ZnIrO6,more » but not La2MgIrO6, exhibits 'weak' ferromagnetism.« less

  19. Self-Aligned Guard Rings For Schottky-Barrier Diodes

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon

    1990-01-01

    Proposed self-aligned guard ring increases active area of Schottky-barrier infrared detector. Concept developed for silicide Schottky-barrier diodes in which platinum silicide or iridium silicide Schottky-contacts provide cutoff wavelengths of about 6 or 10 micrometers. Grid of silicon dioxide doped with phosphorus etched on silicon wafer, and phosphorus from grid diffused into substrate, creating n-type guard rings. Silicide layers formed in open areas of grid. Overlap of guard rings and silicide layers small.

  20. Nd2K2IrO7 and Sm2K2IrO7: Iridium(VI) Oxides Prepared under Ambient Pressure

    SciTech Connect

    Mugavero, III, S.; Smith, M; Yoon, W; zur Loye, H

    2009-01-01

    The most-oxidized iridium oxides known to date are prepared in a hydroxide flux under normal pressure. They contain iridium centers exclusively in the +VI oxidation state and are characterized crystallographically. The picture shows the structure of the Ln2K2IrO7 (Ln=Nd, Sm) and its structural components: IrO6 octahedra (black), KO10 polyhedra (beige), LnO10 polyhedra (blue).

  1. Method of making a long life high current density cathode from tungsten and iridium powders using a quaternary compound as the impregnant

    SciTech Connect

    Branovich, L.E.; Smith, B.; Freemen, G.L.; Eckart, D.W.

    1990-09-18

    This patent describes a method of making a long life high current density cathode. It is suitable for operation in microwave devices. It is made from tungsten and iridium powders using a quaternary compound including barium, oxygen, a metal selected from the group consisting of osmium, iridium, rhodium, and rhenium, and a metal selected from the group consisting of strontium, calcium, scandium, and titanium as the impregnant.

  2. Bond Fission and Non-Radiative Decay in Iridium(III) Complexes.

    PubMed

    Zhou, Xiuwen; Burn, Paul L; Powell, Benjamin J

    2016-06-01

    We investigate the role of metal-ligand bond fission in the nonradiative decay of excited states in iridium(III) complexes with applications in blue organic light-emitting diodes (OLEDs). We report density functional theory (DFT) calculations of the potential energy surfaces upon lengthening an iridium-nitrogen (Ir-N) bond. In all cases we find that for bond lengths comparable to those of the ground state the lowest energy state is a triplet with significant metal-to-ligand change transfer character ((3)MLCT). But, as the Ir-N bond is lengthened there is a sudden transition to a regime where the lowest excited state is a triplet with significant metal centered character ((3)MC). Time-dependent DFT relativistic calculations including spin-orbit coupling perturbatively show that the radiative decay rate from the (3)MC state is orders of magnitude slower than that from the (3)MLCT state. The calculated barrier height between the (3)MLCT and (3)MC regimes is clearly correlated with previously measured nonradiative decay rates, suggesting that thermal population of the (3)MC state is the dominant nonradiative decay process at ambient temperature. In particular, fluorination both drives the emission of these complexes to a deeper blue color and lowers the (3)MLCT-(3)MC barrier. If the Ir-N bond is shortened in the (3)MC state another N atom is pushed away from the Ir, resulting in the breaking of this bond, suggesting that once the Ir-N bond breaks the damage to the complex is permanent-this will have important implications for the lifetimes of devices using this type of complex as the active material. The consequences of these results for the design of more efficient blue phosphors for OLED applications are discussed. PMID:27175618

  3. Cationic iridium(III) complexes with two carbene-based cyclometalating ligands: cis versus trans isomers.

    PubMed

    Monti, Filippo; La Placa, Maria Grazia I; Armaroli, Nicola; Scopelliti, Rosario; Grätzel, Michael; Nazeeruddin, Mohammad Khaja; Kessler, Florian

    2015-03-16

    A series of cationic iridium(III) complexes with two carbene-based cyclometalating ligands and five different N^N bipyridine and 1,10-phenanthroline ancillary ligands is presented. For the first time--in the frame of a rarely studied class of bis(heteroleptic) iridium complexes with two carbene-based cyclometalating ligands--a pair of cis and trans isomers has been isolated. All complexes (trans-1-5 and cis-3) were characterized by (1)H NMR, (13)C NMR, (31)P NMR, and HRMS (ESI-TOF); in addition, crystal structures of cis-3 and trans-4 are reported and discussed. Cyclic voltammetric studies show that the whole series exhibits highly reversible oxidation and reduction processes, suggesting promising potential for optoelectronic applications. Ground-state DFT and TD-DFT calculations nicely predict the blue shift experimentally observed in the room-temperature absorption and emission spectra of cis-3, compared to the trans complexes. In CH3CN, cis-3 displays a 4-fold increase in photoluminescence quantum yield (PLQY) with respect to trans-3, as a consequence of drastically slower nonradiative rate constant. By contrast, at 77 K, the emission properties of all the compounds, including the cis isomer, are much more similar, with a pronounced hypsochromic shift for the trans complexes. A similar behavior is found in solid state (1% w/w poly(methyl methacrylate) matrix), with all complexes displaying PLQY of ∼70-80%, comparable emission lifetimes (τ ≈ 1.3 μs), and a remarkable rigidochromic shift. To rationalize the more pronounced nonradiative deactivation (and smaller PLQY) observed for photoexcited trans complexes, comparative temperature-dependent emission studies in the range of 77-450 K for cis-3 and trans-3 were made in propylene glycol, showing that solvation effects are primarily responsible for the observed behavior.

  4. Charged bis-cyclometalated iridium(III) complexes with carbene-based ancillary ligands.

    PubMed

    Monti, Filippo; Kessler, Florian; Delgado, Manuel; Frey, Julien; Bazzanini, Federico; Accorsi, Gianluca; Armaroli, Nicola; Bolink, Henk J; Ortí, Enrique; Scopelliti, Rosario; Nazeeruddin, Md Khaja; Baranoff, Etienne

    2013-09-16

    Charged cyclometalated (C(^)N) iridium(III) complexes with carbene-based ancillary ligands are a promising family of deep-blue phosphorescent compounds. Their emission properties are controlled primarily by the main C(^)N ligands, in contrast to the classical design of charged complexes where N(^)N ancillary ligands with low-energy π* orbitals, such as 2,2'-bipyridine, are generally used for this purpose. Herein we report two series of charged iridium complexes with various carbene-based ancillary ligands. In the first series the C(^)N ligand is 2-phenylpyridine, whereas in the second one it is 2-(2,4-difluorophenyl)-pyridine. One bis-carbene (:C(^)C:) and four different pyridine-carbene (N(^)C:) chelators are used as bidentate ancillary ligands in each series. Synthesis, X-ray crystal structures, and photophysical and electrochemical properties of the two series of complexes are described. At room temperature, the :C(^)C: complexes show much larger photoluminescence quantum yields (ΦPL) of ca. 30%, compared to the N(^)C: analogues (around 1%). On the contrary, all of the investigated complexes are bright emitters in the solid state both at room temperature (1% poly(methyl methacrylate) matrix, ΦPL 30-60%) and at 77 K. Density functional theory calculations are used to rationalize the differences in the photophysical behavior observed upon change of the ancillary ligands. The N(^)C:-type complexes possess a low-lying triplet metal-centered ((3)MC) state mainly deactivating the excited state through nonradiative processes; in contrast, no such state is present for the :C(^)C: analogues. This finding is supported by temperature-dependent excited-state lifetime measurements made on representative N(^)C: and :C(^)C: complexes.

  5. Sol-Gel Deposition of Iridium Oxide for Biomedical Micro-Devices

    PubMed Central

    Nguyen, Cuong M.; Rao, Smitha; Yang, Xuesong; Dubey, Souvik; Mays, Jeffrey; Cao, Hung; Chiao, Jung-Chih

    2015-01-01

    Flexible iridium oxide (IrOx)-based micro-electrodes were fabricated on flexible polyimide substrates using a sol-gel deposition process for utilization as integrated pseudo-reference electrodes for bio-electrochemical sensing applications. The fabrication method yields reliable miniature on-probe IrOx electrodes with long lifetime, high stability and repeatability. Such sensors can be used for long-term measurements. Various dimensions of sol-gel iridium oxide electrodes including 1 mm × 1 mm, 500 μm × 500 μm, and 100 μm × 100 μm were fabricated. Sensor longevity and pH dependence were investigated by immersing the electrodes in hydrochloric acid, fetal bovine serum (FBS), and sodium hydroxide solutions for 30 days. Less pH dependent responses, compared to IrOx electrodes fabricated by electrochemical deposition processes, were measured at 58.8 ± 0.4 mV/pH, 53.8 ± 1.3 mV/pH and 48 ± 0.6 mV/pH, respectively. The on-probe IrOx pseudo-reference electrodes were utilized for dopamine sensing. The baseline responses of the sensors were higher than the one using an external Ag/AgCl reference electrode. Using IrOx reference electrodes integrated on the same probe with working electrodes eliminated the use of cytotoxic Ag/AgCl reference electrode without loss in sensitivity. This enables employing such sensors in long-term recording of concentrations of neurotransmitters in central nervous systems of animals and humans. PMID:25686309

  6. Osmium, ruthenium, iridium and uranium in silicates and chromite from the eastern Bushveld Complex, South Africa

    USGS Publications Warehouse

    Gijbels, R.h.; Millard, H.T.; Desborough, G.A.; Bartel, A.J.

    1974-01-01

    Osmium, ruthenium, iridium and uranium contents were determined in eight ortho pyroxene, seven plagioclase, and three chromite mineral separates from the eastern Bushveld Complex. Neutron activation analysis was used to measure the platinum metals, and uranium was determined by a fission track technique. The platinum metals were found to be present within each mine??ral in the proportions Os:Ru:Ir = 1:7:1, while the concentrations of these metals in the minerals are in the ratios orthopyroxene:plagioclase:chromite = 1:16:700. The concentration of uranium was found to range from 11 to 66 ppb (parts per billion) and not to vary significantly from mineral to mineral. The data for the platinum metals are consistent with a model in which the eastern Bushveld Complex was formed by the fractional crystallization of two separately injected magmas. A computer fit of this model to these data indicates that the initial concentrations of Os, Ru and Ir in the first magma were 0.24, 2.0 and 0.21 ppb and in the second magma were 0.16, 1.1 and 0.18 ppb, respectively. The fit also yields the distribution coefficients for the partitioning between the liquid and cumulus orthopyroxene, cumulus plagioclase and cumulus chromite. These coefficients (mineral/liquid) for osmium are 4.5, 66 and 2700; for ruthenium, they are 5, 65 and 2700; and for iridium, they are 4, 60 and 1600. To make this fit, it was necessary to hypothesize the existence of two types of chromite: one type with a large distribution coefficient, presumably formed as a cumulus phase at high temperature, and another, more prevalent type with a smaller distribution coefficient, which may have been formed by postcumulus growth at a lower temperature. This hypothesis is supported by data for coexisting chromite-silicate pairs, which indicate that the chromite grains expelled these platinum metals as they cooled. ?? 1974.

  7. Mobility of iridium in terrestrial environments: Implications for the interpretation of impact-related mass-extinctions

    NASA Astrophysics Data System (ADS)

    Martín-Peinado, F. J.; Rodríguez-Tovar, F. J.

    2010-08-01

    Traditionally, iridium has been considered an element of low mobility, but its behavior is still debated. Ir concentration in a soil affected by a catastrophic mining spill in 1998 that covered the soil with a layer of tailings offers the opportunity to analyse an exceptional Ir-bearing horizon 10 years after deposition. This has enabled comparisons with the values of past Ir-bearing horizons associated to impact-related mass-extinction events. Iridium concentration in the tailings (0.349 ppm) was 5-fold higher than the anomaly in the K-Pg at The Moody Creek Mine section (the highest values obtained from terrestrial sections). The oxidative weathering of the tailings caused the release of Ir and infiltration into the soil. Iridium distribution in depth indicates redistribution throughout the profile in relation to the change in the physico-chemical properties of the soil. With regard to the background concentration in the soil (0.056 ppm), anomalous values of Ir (0.129 ppm) can be detected to 11 cm below the layer of tailings. The correlation analysis between the Ir concentration and the main properties and constituents of the soils indicated a significant correlation with sulfur, iron, clay content, and pH. Selective extractions were made to study the forms in which Ir can be mobilized in the soil. The residual/insoluble fraction was >90% of the total Ir concentration in soil. Soluble-in-water concentration of Ir (1.5% of total) was detected in the uppermost 2-3 cm of the soil, which were directly affected by the leaching of acidic waters coming from the oxidation of the pyrite tailings. Iridium retention in the affected part of the soil reached 9% of the total Ir concentration; this retention could be related to the amorphous iron forms dissolved by the oxalic-oxalate extraction. However, according to our research, original Ir abundance could be secondarily modified, and then a direct analysis of the iridium values recorded in sediments could induce

  8. Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction

    NASA Astrophysics Data System (ADS)

    Zhu, Shiyang; Chu, H. S.; Lo, G. Q.; Bai, P.; Kwong, D. L.

    2012-02-01

    An all-silicon photodetector integrated in a silicon-on-insulator waveguide for the telecom regime is proposed. The device is based on internal photoemission from electrically floating metal silicide nanoparticles (NPs) embedded in the space charge region of a Si p-n junction. Numerical simulation indicates that the light absorption could be enhanced if localized surface plasmon resonances are excited on the metal silicide nanoparticles, thus enabling to shrink the detector's footprint to a submicron scale. A proof-of-concept detector fabricated using standard silicon complementary metal-oxide-semiconductor technology exhibits a peak responsivity of ˜30 mA/W at 5-V reverse bias and a 3-dB bandwidth of ˜6 GHz. It is expected that the overall performance would be significantly improved by optimization of both the detector's configuration and the fabrication parameters.

  9. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    SciTech Connect

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang; Delaire, Olivier A.; Chen, Xi; Weathers, Annie; Mukhopadhyay, Saikat; Shi, Li

    2015-04-15

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.

  10. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    SciTech Connect

    Zheng, M.; He, Y.R.; Rapp, R.A.

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  11. Interaction transfer of silicon atoms forming Co silicide for Co/√(3)×√(3)R30°-Ag/Si(111) and related magnetic properties

    SciTech Connect

    Chang, Cheng-Hsun-Tony; Fu, Tsu-Yi; Tsay, Jyh-Shen

    2015-05-07

    Combined scanning tunneling microscopy, Auger electron spectroscopy, and surface magneto-optic Kerr effect studies were employed to study the microscopic structures and magnetic properties for ultrathin Co/√(3)×√(3)R30°-Ag/Si(111). As the annealing temperature increases, the upward diffusion of Si atoms and formation of Co silicides occurs at temperature above 400 K. Below 600 K, the √(3)×√(3)R30°-Ag/Si(111) surface structure persists. We propose an interaction transferring mechanism of Si atoms across the √(3)×√(3)R30°-Ag layer. The upward transferred Si atoms react with Co atoms to form Co silicide. The step height across the edge of the island, a separation of 0.75 nm from the analysis of the 2 × 2 structure, and the calculations of the normalized Auger signal serve as strong evidences for the formation of CoSi{sub 2} at the interface. The interaction transferring mechanism for Si atoms enhances the possibility of interactions between Co and Si atoms. The smoothness of the surface is advantage for that the easy axis of magnetization for Co/√(3)×√(3)R30°-Ag/Si(111) is in the surface plane. This provides a possible way of growing flat magnetic layers on silicon substrate with controllable silicide formation and shows potential applications in spintronics devices.

  12. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R2 = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis. PMID:26778273

  13. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Zhong, Hai-Jing; He, Bingyong; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A panel of six luminescent iridium(III) complexes were synthesized and evaluated for their ability to act as G-quadruplex-selective probes. The novel iridium(III) complex 1 was found to be highly selective for G-quadruplex DNA, and was employed for the construction of a label-free G-quadruplex-based adenosine detection assay in aqueous solution. Two different detection strategies were investigated for adenosine detection, and the results showed that initial addition of adenosine to the adenosine aptamer gave superior results. The assay exhibited a linear response for adenosine in the concentration range of 5 to 120 μM (R2 = 0.992), and the limit of detection for adenosine was 5 μM. Moreover, this assay was highly selective for adenosine over other nucleosides, and exhibited potential use for biological sample analysis.

  14. Dicarba-closo-dodecarborane-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium: biological relevance and synthetic strategies.

    PubMed

    Barry, Nicolas P E; Sadler, Peter J

    2012-04-21

    This review describes how the incorporation of dicarba-closo-dodecarboranes into half-sandwich complexes of ruthenium, osmium, rhodium and iridium might lead to the development of a new class of compounds with applications in medicine. Such a combination not only has unexplored potential in traditional areas such as Boron Neutron Capture Therapy agents, but also as pharmacophores for the targeting of biologically important proteins and the development of targeted drugs. The synthetic pathways used for the syntheses of dicarba-closo-dodecarboranes-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium are also reviewed. Complexes with a wide variety of geometries and characteristics can be prepared. Examples of addition reactions on the metal centre, B-H activation, transmetalation reactions and/or direct formation of metal-metal bonds are discussed (103 references).

  15. Solution-processable deep red-emitting supramolecular phosphorescent polymer with novel iridium complex for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liang, Aihui; Huang, Gui; Wang, Zhiping; Wu, Wenjin; Zhong, Yu; Zhao, Shan

    2016-07-01

    A novel bis(dibenzo-24-crown-8)-functionalized iridium complex with an emission peak at 665 nm was synthesized. Several deep red-emitting supramolecualr phosphorescent polymers (SPPs) as a class of solutionprocessable electroluminescent (EL) emitters were formed by utilizing the efficient non-bonding self-assembly between the resulting iridium complex and bis(dibenzylammonium)-tethered monomers. These SPPs show an intrinsic glass transition with a T g of ca. 90 °C. The photophysical and electroluminescent properties are strongly dependent on the hosts' structures of the supramolecular phosphorescent polymers. The polymer light-emitting diode based on SPP3 displayed a maximal external quantum efficiency (EQE) of 2.14% ph·el-1 and the Commission Internationale de L'Eclairage (CIE) coordinates of (0.70, 0.29).

  16. Solution-processable deep red-emitting supramolecular phosphorescent polymer with novel iridium complex for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liang, Aihui; Huang, Gui; Wang, Zhiping; Wu, Wenjin; Zhong, Yu; Zhao, Shan

    2016-09-01

    A novel bis(dibenzo-24-crown-8)-functionalized iridium complex with an emission peak at 665 nm was synthesized. Several deep red-emitting supramolecualr phosphorescent polymers (SPPs) as a class of solutionprocessable electroluminescent (EL) emitters were formed by utilizing the efficient non-bonding self-assembly between the resulting iridium complex and bis(dibenzylammonium)-tethered monomers. These SPPs show an intrinsic glass transition with a T g of ca. 90 °C. The photophysical and electroluminescent properties are strongly dependent on the hosts' structures of the supramolecular phosphorescent polymers. The polymer light-emitting diode based on SPP3 displayed a maximal external quantum efficiency (EQE) of 2.14% ph·el-1 and the Commission Internationale de L'Eclairage (CIE) coordinates of (0.70, 0.29).

  17. Luminescence switch-on assay of interferon-gamma using a G-quadruplex-selective iridium(III) complex.

    PubMed

    Lin, Sheng; He, Bingyong; Yang, Chao; Leung, Chung-Hang; Mergny, Jean-Louis; Ma, Dik-Lung

    2015-11-18

    In this study, we synthesized a series of 9 luminescent iridium(III) complexes and studied their ability to function as luminescent probes for G-quadruplex DNA. The iridium(III) complex 8 [Ir(pbtz)2(dtbpy)]PF6 (where pbtz = 2-phenylbenzo[d]thiazole; dtbpy = 4,4'-di-tert-butyl-2,2'-bipyridine) showed high selectivity for G-quadruplex DNA over single-stranded and double-stranded DNA, and was subsequently utilized for the development of a label-free oligonucleotide-based assay for interferon-gamma (IFN-γ), an important biomarker for a range of immune and infectious diseases, in aqueous solution. We further demonstrated that this assay could monitor IFN-γ levels even in the presence of cellular debris. This assay represents the first G-quadruplex-based assay for IFN-γ detection described in the literature.

  18. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    PubMed

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  19. Highly regio- and enantioselective synthesis of N-substituted 2-pyridones: iridium-catalyzed intermolecular asymmetric allylic amination.

    PubMed

    Zhang, Xiao; Yang, Ze-Peng; Huang, Lin; You, Shu-Li

    2015-02-01

    The first iridium-catalyzed intermolecular asymmetric allylic amination reaction with 2-hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N-substituted 2-pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2-hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98% yield and 99% ee. PMID:25504907

  20. Iridium-catalysed dehydrocoupling of aryl phosphine-borane adducts: synthesis and characterisation of high molecular weight poly(phosphinoboranes).

    PubMed

    Paul, Ursula S D; Braunschweig, Holger; Radius, Udo

    2016-06-30

    The thermal dehydrogenative coupling of aryl phosphine-borane adducts with iridium complexes bearing a bis(phosphinite) pincer ligand is reported. This catalysis produces high molecular weight poly(phosphinoboranes) [ArPH-BH2]n (Ar = Ph, (p)Tol, Mes). Furthermore, we investigated the reactivity of these pincer complexes towards primary phosphines and their respective borane adducts on a stoichiometric scale. PMID:27320239

  1. Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes.

    PubMed

    Kang, Peng; Zhang, Sheng; Meyer, Thomas J; Brookhart, Maurice

    2014-08-11

    An iridium pincer dihydride catalyst was immobilized on carbon nanotube-coated gas diffusion electrodes (GDEs) by using a non-covalent binding strategy. The as-prepared GDEs are efficient, selective, durable, gas permeable electrodes for electrocatalytic reduction of CO2 to formate. High turnover numbers (ca. 54,000) and turnover frequencies (ca. 15 s(-1)) were enabled by the novel electrode architecture in aqueous solutions saturated in CO2 with added HCO3(-).

  2. Spectroscopic characterization of alumina-supported bis(allyl)iridium complexes : site-isolation, reactivity, and decomposition studies.

    SciTech Connect

    Trovitch, R. J.; Guo, N.; Janicke, M. T.; Li, H.; Marshall, C. L.; Miller, J. T.; Sattelberger, A. P.; John, K. D.; Baker, R. T.; LANL; Univ. of Ottawa

    2010-01-01

    The covalent attachment of tris(allyl)iridium to partially dehydroxylated ?-alumina is found to proceed via surface hydroxyl group protonation of one allyl ligand to form an immobilized bis(allyl)iridium moiety, (?AlO)Ir(allyl)2, as characterized by CP-MAS 13C NMR, inductively coupled plasma-mass spectrometry, and Ir L3 edge X-ray absorption spectroscopy. Extended X-ray absorption fine-structure (EXAFS) measurements taken on unsupported Ir(allyl)3 and several associated tertiary phosphine addition complexes suggest that the ?3-allyl ligands generally account for an Ir-C coordination number of 2 rather than 3, with an average Ir-C distance of 2.16 A. Using this knowledge, combined EXAFS and X-ray absorption near-edge structure studies reveal that a small amount of Ir0 is also formed upon reaction of Ir(allyl)3 with the surface. It was found that the addition of either 2,6-dimethylphenyl isocyanide or carbon monoxide to the supported complex allows spectroscopic identification of the supported bis(allyl)iridium complexes, (?AlO)Ir(allyl)2(CNAr) [Ar = 2,6-(CH3)2C6H4] and (?AlO)Ir(allyl)2(CO)2, respectively. Although samples of the supported bis(allyl)iridium complex are active for the dehydrogenation of cyclohexane to benzene at temperatures between 180 and 220C, in situ temperature-programmed reaction XAFS and continuous-flow reactor studies suggest that Ir0 nanoparticles, rather than a well-defined Ir3+ complex, are responsible for the observed activity.

  3. Secondary interactions or ligand scrambling? Subtle steric effects govern the iridium(I) coordination chemistry of phosphoramidite ligands.

    PubMed

    Osswald, Tina; Rüegger, Heinz; Mezzetti, Antonio

    2010-01-25

    The like and unlike isomers of phosphoramidite (P*) ligands are found to react differently with iridium(I), which is a key to explaining the apparently inconsistent results obtained by us and other research groups in a variety of catalytic reactions. Thus, the unlike diastereoisomer (aR,S,S)-[IrCl(cod)(1 a)] (2 a; cod=1,5-cyclooctadiene, 1 a=(aR,S,S)-(1,1'-binaphthalene)-2,2'-diyl bis(1-phenylethyl)phosphoramidite) forms, upon chloride abstraction, the monosubstituted complex (aR,S,S)-[Ir(cod)(1,2-eta-1 a,kappaP)](+) (3 a), which contains a chelating P* ligand that features an eta(2) interaction between a dangling phenyl group and iridium. Under analogous conditions, the like analogue (aR,R,R)-1 a' gives the disubstituted species (aR,R,R)-[Ir(cod)(1 a',kappaP)(2)](+) (4 a') with monodentate P* ligands. The structure of 3 a was assessed by a combination of X-ray and NMR spectroscopic studies, which indicate that it is the configuration of the binaphthol moiety (and not that of the dangling benzyl N groups) that determines the configuration of the complex. The effect of the relative configuration of the P* ligand on its iridium(I) coordination chemistry is discussed in the context of our preliminary catalytic results and of apparently random results obtained by other groups in the iridium(I)-catalyzed asymmetric allylic alkylation of allylic acetates and in rhodium(I)-catalyzed asymmetric cycloaddition reactions. Further studies with the unlike ligand (aS,R,R)-(1,1'-binaphthalene)-2,2'-diyl bis{[1-(1-naphthalene-1-yl)ethyl]phosphoramidite} (1 b) showed a yet different coordination mode, that is, the eta(4)-arene-metal interaction in (aS,R,R)-[Ir(cod)(1,2,3,4-eta-1 b,kappaP)](+) (3 b).

  4. Spectroscopic characterization of alumina-supported bis(allyl)iridium complexes: site-isolation, reactivity, and decomposition studies.

    PubMed

    Trovitch, Ryan J; Guo, Neng; Janicke, Michael T; Li, Hongbo; Marshall, Christopher L; Miller, Jeffrey T; Sattelberger, Alfred P; John, Kevin D; Baker, R Thomas

    2010-03-01

    The covalent attachment of tris(allyl)iridium to partially dehydroxylated gamma-alumina is found to proceed via surface hydroxyl group protonation of one allyl ligand to form an immobilized bis(allyl)iridium moiety, (=AlO)Ir(allyl)(2), as characterized by CP-MAS (13)C NMR, inductively coupled plasma-mass spectrometry, and Ir L(3) edge X-ray absorption spectroscopy. Extended X-ray absorption fine-structure (EXAFS) measurements taken on unsupported Ir(allyl)(3) and several associated tertiary phosphine addition complexes suggest that the eta(3)-allyl ligands generally account for an Ir-C coordination number of 2 rather than 3, with an average Ir-C distance of 2.16 A. Using this knowledge, combined EXAFS and X-ray absorption near-edge structure studies reveal that a small amount of Ir(0) is also formed upon reaction of Ir(allyl)(3) with the surface. It was found that the addition of either 2,6-dimethylphenyl isocyanide or carbon monoxide to the supported complex allows spectroscopic identification of the supported bis(allyl)iridium complexes, (=AlO)Ir(allyl)(2)(CNAr) [Ar = 2,6-(CH(3))(2)C(6)H(4)] and (=AlO)Ir(allyl)(2)(CO)(2), respectively. Although samples of the supported bis(allyl)iridium complex are active for the dehydrogenation of cyclohexane to benzene at temperatures between 180 and 220 degrees C, in situ temperature-programmed reaction XAFS and continuous-flow reactor studies suggest that Ir(0) nanoparticles, rather than a well-defined Ir(3+) complex, are responsible for the observed activity. PMID:20112918

  5. Iridium-Catalyzed Allylic Amination Route to α-Aminoboronates: Illustration of the Decisive Role of Boron Substituents

    PubMed Central

    Touchet, Sabrina; Molander, Gary A.; Carboni, Bertrand; Bouillon, Alexandre

    2012-01-01

    The development of a new route to α-aminoboronates using an iridium-catalyzed allylic amination on boronated substrates is described. Unlike the boronate group, the trifluoroborato substituent was found to govern the regioselectivity exclusively in favor of branched products. The transformation of an allylic substitution product into an α-aminoboronic ester in an efficient way validated the implementation of this approach. PMID:22350584

  6. Solvent-Dependent Structure of Iridium Dihydride Complexes: Different Geometries at Low and High Dielectricity of the Medium.

    PubMed

    Polukeev, Alexey V; Marcos, Rocío; Ahlquist, Mårten S G; Wendt, Ola F

    2016-03-14

    The hydride iridium pincer complex [(PCyP)IrH2] (PCyP=cis-1,3-bis[(di-tert-butylphosphino)methyl]cyclohexane, 1) reveals remarkably solvent-dependent hydride chemical shifts, isotope chemical shifts, JHD and T1(min), with rHH increasing upon moving to more polar medium. The only known example of such behaviour (complex [(POCOP)IrH2], POCOP=2,6-(tBu2PO)2C6H3) was explained by the coordination of a polar solvent molecule to the iridium (J. Am. Chem. Soc. 2006, 128, 17114). Based on the existence of an agostic bond between α-C-H and iridium in 1 in all solvents, we argue that the coordination of solvent can be rejected. DFT calculations revealed that the structures of 1 and [(POCOP)IrH2] depend on the dielectric permittivity of the medium and these compounds adopt trigonal-bipyramidal geometries in non-polar media and square-pyramidal geometries in polar media. PMID:26880293

  7. Using iridium films to compensate for piezo-electric materials processing stresses in adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Ames, A.; Bruni, R.; Cotroneo, V.; Johnson-Wilke, R.; Kester, T.; Reid, P.; Romaine, S.; Tolier-McKinstry, S.; Wilke, R. H. T.

    2015-09-01

    Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 μm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating.

  8. Method of making a cathode from tungsten and iridium powders using a strontium peroxide containing material as the impregnant

    SciTech Connect

    Branovich, L.E.; Freeman, G.L.; Smith, B.

    1988-11-25

    This invention relates in general to a method of making a long-life high-current-density cathode and in particular, to a method of making such a cathode from a mixture of tungsten and iridium powders using a strontium peroxide containing material as the impregnant. The general object of this invention is to provide an improved method of making a long life high current density cathode. A more specific object of the invention is to provide such a method in which lower temperatures can be used than were used in S.N. 204,327 for the impregnation of the tungsten-iridium billet. It has now been found that the aforementioned objects can be attained by a method that uses a strontium peroxide-containing material as the impregnant. More particularly, according to the invention, a suitable porous billet of tungsten, or tungsten-iridium, or tungsten-osmium or tungsten-rhodium is impregnated with a strontium peroxide containing material in a hydrogen atmosphere and slowly heated to above 215 C to decompose the strontium peroxide, SrO/sub 2/ to form strontium oxide, SrO, and oxygen, O/sub 2/.

  9. Structural characterization and comparison of iridium, platinum and gold/palladium ultra-thin film coatings for STM of biomolecules

    SciTech Connect

    Sebring, R.; Arendt, P.; Imai, B.; Bradbury, E.M.; Gatewood, J.; Panitz, J.; Yau, P.

    1997-10-30

    Scanning tunneling microscopy (STM) is capable of atomic resolution and is ideally suited for imaging surfaces with uniform work function. A biological sample on a conducting substrate in air does not meet this criteria and requires a conductive coating for stable and reproducible STM imaging. In this paper, the authors describe the STM and transmission electron microscopy (TEM) characterization of ultra-thin ion-beam sputtered films of iridium and cathode sputtered gold/palladium and platinum films on highly ordered pyrolytic graphite (HOPG) which were developed for use as biomolecule coatings. The goals were the development of metal coatings sufficiently thin and fine grained that 15--20 {angstrom} features of biological molecules could be resolved using STM, and the development of a substrate/coating system which would allow complementary TEM information to be obtained for films and biological molecules. The authors demonstrate in this paper that ion-beam sputtered iridium on highly ordered pyrolytic graphite (HOPG) has met both these goals. The ion-beam sputtered iridium produced a very fine grained (< 10 {angstrom}) continuous film at 5--6 {angstrom} thickness suitable for stable air STM imaging. In comparison, cathode sputtered platinum produced 16 {angstrom} grains with the thinnest continuous film at 15 {angstrom} thickness, and the sputtered gold/palladium produced 25 {angstrom} grains with the thinnest continuous film at 18 {angstrom} thickness.

  10. Conducting atomic force microscopy studies of nanoscale cobalt silicide Schottky barriers on Si(111) and Si(100)

    NASA Astrophysics Data System (ADS)

    Tedesco, J. L.; Rowe, J. E.; Nemanich, R. J.

    2009-04-01

    Cobalt silicide (CoSi2) islands have been formed by the deposition of thin films (˜0.1-0.3 nm) of cobalt on clean Si(111) and Si(100) substrates in ultrahigh vacuum (UHV) followed by annealing to ˜880 °C. Conducting atomic force microscopy has been performed on these islands to characterize and measure their current-voltage (I-V) characteristics. Current-voltage curves were analyzed using standard thermionic emission theory to obtain the Schottky barrier heights and ideality factors between the silicide islands and the silicon substrates. Current-voltage measurements were performed ex situ for one set of samples (termed "passivated surfaces") where the silicon surface surrounding the islands was passivated with a native oxide. Other samples (termed "clean surfaces") remained in UHV, while I-V curves were recorded. By comparing the barrier heights and ideality factors for islands on passivated surfaces and clean surfaces, the effects of the nonpassivated surfaces on conduction have been studied. The barrier heights measured from CoSi2 islands on clean surfaces are found to be ˜0.2-0.3 eV below barrier heights measured from similar islands on passivated surfaces. The main cause of the reduced Schottky barrier in the clean surface samples is attributed to Fermi level pinning by nonpassivated surface states of the clean silicon surface. However, the measured barrier heights of the islands are equivalent on both clean Si(111) and Si(100) surfaces, suggesting that the nonpassivated surface is influenced by cobalt impurities. Furthermore, the barrier heights of islands on the clean surfaces are lower than what can be explained by Fermi level pinning alone, suggesting the presence of additional reductions in the Schottky barrier heights. These variations are greater than what can be attributed to experimental error, and the additional barrier height lowering is primarily attributed to spreading resistance effects. Schottky barrier inhomogeneity is also identified as a

  11. Convergent beam electron diffraction investigation of strain induced by Ti self-aligned silicides in shallow trench Si isolation structures

    NASA Astrophysics Data System (ADS)

    Armigliato, Aldo; Spessot, Alessio; Balboni, Roberto; Benedetti, Alessandro; Carnevale, Gianpietro; Frabboni, Stefano; Mastracchio, Gianfranco; Pavia, Giuseppe

    2006-03-01

    The deformation induced onto silicon by the formation of Ti self-aligned silicides (salicides) in shallow trench isolation structures has been investigated by the convergent beam electron diffraction technique (CBED) in the transmission electron microscope (TEM). The splitting of the high order Laue zone (HOLZ) lines in the CBED patterns taken in TEM cross sections close to the salicide/silicon interface has been explained assuming that the salicide grains induce a local bending of the lattice planes of the underlying matrix. This bending, which affects in opposite sense the silicon areas below adjacent grains, decreases with the distance from the interface, eventually vanishing at a depth of 300-400 nm. The proposed strain field has been implemented into a fully dynamical simulation of the CBED patterns and has proved to be able to reproduce both the asymmetry of the HOLZ line splitting and the associated subsidiary fringes. This model is confirmed by the shift of a Bragg contour observed in large angle CBED patterns, taken in a cross section cut along a perpendicular direction. The whole experimental results cannot be explained by just a strain relaxation of the TEM cross section, induced by the salicide film onto the underlying silicon.

  12. Disorder-Sensitive Superconductivity and Bonding Network in the Iron-Silicide Superconductor Lu2Fe3Si5

    NASA Astrophysics Data System (ADS)

    Watanabe, Tadataka; Okuyama, Hiroaki; Takase, Kouichi; Takano, Yoshiki; Yoshida, Fumiko; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2010-03-01

    Iron silicide superconductor Lu2Fe3Si5 exhibits relatively high Tc = 6.0 K among Fe-based substances. Recent specific heat, penetration depth, and thermal conductivity measurements have provided evidences for the multigap superconductivity. We have studied non-magnetic and magnetic impurity effects on superconductivity in Lu2Fe3Si5 by investigating Tc variations in non-magnetic (Lu1-xScx)2Fe3Si5, (Lu1-xYx)2Fe3Si5 and magnetic (Lu1-xDyx)2Fe3Si5. Small amount of non-magnetic impurities (Sc and Y) on the Lu-site rapidly depresses Tc in accordance with the increase in the residual resistivity. Such a disorder-sensitive superconductivity strongly suggests the sign reversal of the superconducting order parameter. Lu2Fe3Si5 has a complicated crystal structure compared to other multigap superconductors such as MgB2 and iron pnictides. Thus it is important to map out the accurate bonding network in the crystal structure for the better understanding of the electronic structure. We have observed the charge density distribution of Lu2Fe3Si5 by analyzing the synchrotron radiation powder diffraction data using the maximum entropy method/Rietveld method.

  13. Crystal Structure and Thermoelectric Properties of Lightly Vanadium-Substituted Higher Manganese Silicides (Mn1-x V x )Si γ )

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzuru; Hamada, Haruki; Hayashi, Kei; Yubuta, Kunio

    2016-09-01

    To further enhance the thermoelectric (TE) properties of higher manganese silicides (HMSs), dissipation of layered precipitates of MnSi phase as well as optimization of hole carrier concentration are critical. We have prepared a lightly vanadium-substituted solid solution of HMS, (Mn1-x V x )Si γ , by a melt growth method. A 2% substitution of manganese with vanadium is found to dissipate MnSi precipitates effectively, resulting in a substantial increase in the electrical conductivity from 280 S/cm to 706 S/cm at 800 K. The resulting TE power factor reaches 2.4 mW/K2-m at 800 K, more than twice that of the V-free sample. The total thermal conductivity did not change significantly with increasing x owing to a reduction of the lattice contribution. As a consequence, the dimensionless figure of merit zT of the melt-grown samples increased from 0.26 ± 0.01 for x = 0 to 0.59 ± 0.01 for x = 0.02 at around 800 K.

  14. Relationship between an iridium anomaly and the North American microtektite layer in core RC9--58 from the Caribbean Sea

    SciTech Connect

    Glass, B.P.; DuBois, D.L.; Ganapathy, R.

    1982-11-15

    In a previous publication, an iridium anomaly was reported in core RC9--58 from the Caribbean Sea, about 30 cm below the peak abundance of North American microtektites. In order to determine more precisely the relationship between the iridium anomaly and the North American microtektite layer, we searched for microtektites in the samples that were used for the iridium studies. We found that the North American microtektite layer is actually two layers, with the peak abundances separated by 25 cm. The upper layer consists of 'normal' North American microtektites and the lower layer consists of previously described clinopyroxene-bearing spherules. The iridium anomaly was found to correlate with the lower layer. Although the two layers appear to be the result of two separate events, several lines of evidence suggest that they were produced by a single event. The separation into two layers may have been produced by differential settling in the sediment due to density variations. The correlation between the iridium anomaly and the North American microtektite layer supports the terrestrial impact origin for tektites.

  15. Mechanistic Insights into the Formation of Dodecanethiolate-Stabilized Magnetic Iridium Nanoparticles: Thiosulfate vs Thiol Ligands

    PubMed Central

    2015-01-01

    The synthesis of stable and isolable iridium nanoparticles with an average core size of ∼1.2 ± 0.3 nm was achieved by employing sodium S-dodecylthiosulfate as a ligand precursor during the modified Brust–Schiffrin reaction. Transmission electron microscopy (TEM) of the isolated Ir nanoparticles revealed a high degree of monodispersity. Further characterizations with 1H NMR, FT-IR, UV–vis spectroscopy, thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) confirmed that the synthesized Ir nanoparticles are stabilized by dodecanethiolate ligands produced upon the adsorption/cleavage of S-dodecylthiosulfate on the growing Ir nanoparticle surface. By comparison, synthetic attempts employing dodecanethiol as a stabilizing ligand led to the formation of Ir-thiolate species (Ir(SR)3) as an intermediate and Ir-hydroxide species at the completion of reaction. Mechanistic investigations of these two reactions using S-dodecylthiosulfate and dodecanethiol provided deeper understandings on the novelty of thiosulfate ligands, which allow the successful formation of stable thiolate-capped Ir nanoparticles. Moreover, these Ir nanoparticles were shown to have strong magnetic properties. PMID:25018790

  16. A vapor-pressure study of the systems formed by polonium with palladium and iridium

    SciTech Connect

    Abakumou, A.S.; Khokhlou, A.D.; Malysheu, M.L.; Reznikova, N.F.

    1985-11-01

    Direct thermal vacuum synthesis shows that polonium vapor does not react with iridium when they are heated together to 1000/sup 0/C. Polonium vapor begins to be absorbed appreciably by palladium at 340-350/sup 0/C. The radiotensimetric method has been used in examining the thermal stabilities of polonium-palladium comounds, which has shown that there are three intermetallides PdPo, Pd/sub 2/Po, and Pd/sub 3/Po, which dissociate to release elemental polonium. The dissociation temperature increases as the polonium content of the compound decreases and is in the range 390-700/sup 0/C. The temperature dependence of the polonium vapor pressure in the dissociation is described by the following: PdPo log P /SUB Pa/ = (7.31 + or - 0.08) -- (4520 + or -40)/T, and at 460580/sup 0/C, ..delta..H = 86.3 + or - 0.7 kJ/mol; Pd/sub 2/Po log P /SUB Pa/ = (7.42 + or - 0.01) -- (6080 + or 10)/T at 725900/sup 0/C, ..delta..H = 116 + or - 0.2 kJ/mol; Pd/sub 3/Po log P /SUB Pa/ = (9.18 + or - 0.01) -- (8620 + or 1000/sup 0/C, ..delta..H = 164 + or - 1 kJ/mol. The properties of these compounds are compared with those of the corresponding tellurides and of the polonium-nickel and poloniumplatinum systems.

  17. Plastic Straining of Iridium Alloy DOP-26 During Cup Sizing Operations

    SciTech Connect

    Ohriner, Evan Keith; Ulrich, George B; Sabau, Adrian S

    2007-09-01

    DOP-26 iridium alloy cups are used for fuel cladding for radioisotope power systems. The cups are deep drawn and recrystallized prior to final fabrication operations. This study characterizes the plastic deformation of cups during a sizing operation following the recrystallization heat treatment. The purpose of the sizing operation is to achieve the specified roundness, diameter, and radius dimensions of the cup. The operation introduces various levels of plastic strain in the cup. Plastic strain can be a cause of inhomogeneous or abnormal grain growth during subsequent exposure to elevated temperature during the service life of the fueled clad. This is particularly true in the case of cups which have irregularities in the cup walls from the deep drawing operations. Diameter and roundness measurements were made on two cups both before and after sizing. Plastic strain levels were calculated using the ABAQUSTM finite element software. The calculated plastic strain levels in both cups were below 0.025, a value shown to be below the critical strain for abnormal grain growth during a simulated service exposure. The calculated maximum plastic strain was found to increase with increased applied sizing load and was not sensitive to the input value for the clearance between the cup and the sizing die. The calculated geometry of the sized cups was in good agreement with the measurements on the finished cups.

  18. UV/ozone cleaning of platinum/iridium kilogram mass prototypes

    NASA Astrophysics Data System (ADS)

    Berry, James; Downes, Stephen; Davidson, Stuart

    2010-08-01

    Platinum-iridium (Pt/Ir) kilogram mass prototypes are known to gain contamination from the environment in which they are stored. The current method of cleaning these mass prototypes is called nettoyage-lavage and involves the physical rubbing of a kilogram with a chamois leather cloth soaked in a solvent followed by removal of any solvent residue using a jet of steam water. The manual nature of the technique means the effectiveness of the cleaning process is reliant on the human operative. An alternative cleaning method involving exposure to ultraviolet light and ozone (UV/O3) has been tested on Pt/Ir foils and kilogram mass prototypes. The changes to the surface of the Pt/Ir foils as a result of this process have been quantified using x-ray photoelectron spectroscopy and have shown a clear reduction in the quantity of carbonaceous contamination. Variation of the UV intensity, ozone concentration and exposure duration enabled the optimum cleaning conditions to be established. The UV/O3 cleaning method was then used to clean two Pt/Ir kilogram mass prototypes and gravimetric weighing of the kilograms before and after cleaning gave the amount of contamination removed. These gravimetric weighing results demonstrated that UV/O3 cleaning was as effective as the nettoyage-lavage process.

  19. En route to phosphonato iridium(i) complexes: the decisive effect of an intramolecular hydrogen bond.

    PubMed

    Passarelli, Vincenzo; Pérez-Torrente, Jesús J; Oro, Luis A

    2016-01-21

    Pentacoordinated iridium(i) complexes of formula IrCl(SiNP)(tfbb) (1) and IrCl(HNP)2(tfbb) (2) (SiNP = SiMe2{N(4-C6H4CH3)PPh2}2; HNP = NH(4-C6H4CH3)PPh2) have been prepared and fully characterised. Both feature a distorted square pyramidal coordination polyhedron at the metal centre in the solid state and are fluxional in solution. Their reaction with trimethyl phosphite yields the derivatives [Ir(SiNP){P(OMe)3}(tfbb)]Cl ([3]Cl) and Ir{PO(OMe)2}(HNP)2(tfbb) (4). The course of the reaction between IrCl(HNP)2(tfbb) (2) and trimethyl phosphite was elucidated by NMR spectroscopy and DFT calculations, showing that the intermediate [Ir(HNP)2{P(OMe)3}(tfbb)](+) ((5+)) forms and further reacts with the chloride anion yielding the phosphonato derivative 4 and methyl chloride. The decisive role of the N-H group in the formation of the phosphonato ligand has been established by IR and NMR spectroscopic measurements and by DFT calculations.

  20. Elastic, magnetic and electronic properties of iridium phosphide Ir2P.

    PubMed

    Wang, Pei; Wang, Yonggang; Wang, Liping; Zhang, Xinyu; Yu, Xiaohui; Zhu, Jinlong; Wang, Shanmin; Qin, Jiaqian; Leinenweber, Kurt; Chen, Haihua; He, Duanwei; Zhao, Yusheng

    2016-01-01

    Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B0 = 306(6) GPa and its pressure derivative B0' = 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first - principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well-sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. In addition, a spin glass behavior is indicated by magnetic susceptibility measurements. PMID:26905444