Sample records for iridoid glucoside aucubin

  1. Identification of Iridoid Glucoside Transporters in Catharanthus roseus

    PubMed Central

    Larsen, Bo; Fuller, Victoria L.; Pollier, Jacob; Van Moerkercke, Alex; Schweizer, Fabian; Payne, Richard; Colinas, Maite; O’Connor, Sarah E.; Goossens, Alain; Halkier, Barbara A.

    2017-01-01

    Abstract Monoterpenoid indole alkaloids (MIAs) are plant defense compounds and high-value pharmaceuticals. Biosynthesis of the universal MIA precursor, secologanin, is organized between internal phloem-associated parenchyma (IPAP) and epidermis cells. Transporters for intercellular transport of proposed mobile pathway intermediates have remained elusive. Screening of an Arabidopsis thaliana transporter library expressed in Xenopus oocytes identified AtNPF2.9 as a putative iridoid glucoside importer. Eight orthologs were identified in Catharanthus roseus, of which three, CrNPF2.4, CrNPF2.5 and CrNPF2.6, were capable of transporting the iridoid glucosides 7-deoxyloganic acid, loganic acid, loganin and secologanin into oocytes. Based on enzyme expression data and transporter specificity, we propose that several enzymes of the biosynthetic pathway are present in both IPAP and epidermis cells, and that the three transporters are responsible for transporting not only loganic acid, as previously proposed, but multiple intermediates. Identification of the iridoid glucoside-transporting CrNPFs is an important step toward understanding the complex orchestration of the seco-iridioid pathway. PMID:28922750

  2. Iridoid glucosides from the aerial parts of Globularia alypum L. (Globulariaceae).

    PubMed

    Es-Safi, Nour-Eddine; Khlifi, Samira; Kollmann, Albert; Kerhoas, Lucien; El Abbouyi, Ahmed; Ducrot, Paul-Henri

    2006-01-01

    From the hydromethanolic extract of the aerial parts of Globularia alypum grown in Morocco, a new chlorinated iridoid glucoside, globularioside has been isolated beside 5 known iridoid glycosides, globularin, globularicisin, globularidin, globularinin and globularimin. This is the first report of a chlorinated iridoid in G. alypum and in the Globulareaceae. Unlike all other known 7-chlorinated iridoid glucosides where the chlorine atom exhibits an alpha configuration, globularioside incorporate the chlorine atom as a 7beta substituent. The structures of the isolated compounds were established on the basis of ESI-MS, MS-MS, 1D and 2D NMR spectral analysis.

  3. Glucosides from Vitex agnus-castus.

    PubMed

    Kuruüzüm-Uz, Ayşe; Ströch, Karsten; Demirezer, L Omür; Zeeck, Axel

    2003-08-01

    The methanolic extract of the flowering stems of Vitex agnus-castus yielded three new iridoids: 6'-O-foliamenthoylmussaenosidic acid (agnucastoside A), 6'-O-(6,7-dihydrofoliamenthoyl)mussaenosidic acid (agnucastoside B) and 7-O-trans-p-coumaroyl-6'-O-trans-caffeoyl-8-epiloganic acid (agnucastoside C) in addition to four known iridoids (aucubin, agnuside, mussaenosidic acid and 6'-O-p-hydroxybenzoylmussaenosidic acid) and one known phenylbutanone glucoside (myzodendrone). The structure elucidations were mainly done by spectroscopic methods (1D and 2D NMR spectra) and MS data interpretation. The purified compounds were tested for biological activities against various microorganisms and cancer cell lines.

  4. Iridoids from Pentas lanceolata.

    PubMed

    Schripsema, Jan; Caprini, Geisa Paulino; van der Heijden, Rob; Bino, Raoul; de Vos, Ric; Dagnino, Denise

    2007-09-01

    From the aerial parts of Pentas lanceolata, belonging to the family Rubiaceae, a series of iridoid glucosides was isolated by preparative HPLC. Seven iridoid glucosides were identified. Besides asperuloside and asperulosidic acid, characteristic iridoids for Rubiaceae, five new iridoids were isolated, namely, tudoside (1), 13R-epi-gaertneroside (2), 13R-epi-epoxygaertneroside (3), and a mixture of E-uenfoside (4) and Z-uenfoside (5). Further, it was shown that the compound reported as citrifolinin B (6) is in fact the same as tudoside and should be revised. Also, the configuration of the previously reported iridoids gaertneroside and epoxygaertneroside has been elucidated.

  5. Iridoid and phenylethanoid glycosides from Phlomis tuberosa L.

    PubMed

    Ersöz, T; Ivancheva, S; Akbay, P; Sticher, O; Caliş, I

    2001-01-01

    A new iridoid glucoside, 8-O-acetylshanzhiside (1), was isolated from the aerial parts of Phlomis tuberosa, together with two known iridoid glucosides, shanzhiside methyl ester and lamalbide. The known phenylethanoid glycosides acteoside and forsythoside B were also obtained and characterized. The structure of 1 was determined by means of 1D- and 2D-NMR spectroscopic evidence.

  6. Characterization and identification of iridoid glucosides, flavonoids and anthraquinones in Hedyotis diffusa by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Liu, E-Hu; Zhou, Ting; Li, Guo-Bin; Li, Jing; Huang, Xiu-Ning; Pan, Feng; Gao, Ning

    2012-01-01

    The multiple bioactive constituents in Hedyotis diffusa Willd. (H. diffusa) were extracted and characterized by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS(n)). The optimized separation condition was obtained using an Agilent ZorBax SB-C18 column (4.6×150 mm, 5 μm) and gradient elution with water (containing 0.1% formic acid) and acetonitrile (containing 0.1% formic acid), under which baseline separation for the majority of compounds was achieved. Among the compounds detected, 14 iridoid glucosides, 10 flavonoids, 7 anthraquinones, 1 coumarin and 1 triterpene were unambiguously identified or tentatively characterized based on their retention times and mass spectra in comparison with the data from standards or references. The fragmentation behavior for different types of constituents was also investigated, which could contribute to the elucidation of these constituents in H. diffusa. The present study reveals that even more iridoid glycosides were found in H. diffusa than hitherto assumed. The occurrence of two iridoid glucosides and five flavonoids in particular has not yet been described. This paper marks the first report on the structural characterization of chemical compounds in H. diffusa by a developed HPLC-ESI-MS(n) method. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major.

    PubMed

    Pankoke, Helga; Buschmann, Torsten; Müller, Caroline

    2013-10-01

    The typical defense compounds of Plantaginaceae are the iridoid glycosides, which retard growth and/or enhance mortality of non-adapted herbivores. In plants, glycosidic defense compounds and hydrolytic enzymes often form a dual defense system, in which the glycosides are activated by the enzymes to exert biological effects. Yet, little is known about the activating enzymes in iridoid glycoside-containing plants. To examine the role of plant-derived β-glucosidases in the dual defense system of two common plantain species, Plantago lanceolata and Plantago major, we determined the concentration of iridoid glycosides as well as the β-glucosidase activity in leaves of different age. To investigate the presence of other leaf metabolites potentially involved in plant defense, we used a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. According to the optimal defense hypothesis, more valuable parts such as young leaves should be better protected than less valuable parts. Therefore, we expected that both, the concentrations of defense compounds as well as the β-glucosidase activity, should be highest in younger leaves and decrease with increasing leaf age. Both species possessed β-glucosidase activity, which hydrolyzed aucubin, one of the two most abundant iridoid glycosides in both plant species, with high activity. In line with the optimal defense hypothesis, the β-glucosidase activity in both Plantago species as well as the concentration of defense-related metabolites such as iridoid glycosides correlated negatively to leaf age. When leaf extracts were incubated with bovine serum albumin and aucubin, SDS-PAGE revealed a protein-denaturing effect of the leaf extracts of both plantain species, suggesting that iridoid glycosides and plant β-glucosidase interact in a dual defense system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. [Iridoid glycosides from buds of Jasminum officinale L. var. grandiflorum].

    PubMed

    Zhao, Gui-qin; Yin, Zhi-feng; Liu, Yu-cui; Li, Hong-bo

    2011-10-01

    The study on the buds of Jasminum officinale L. var. grandiflorum was carried out to look for anti-HBV constituents. The isolation and purification were performed by HPLC and chromatography on silica gel, polyamide and Sephadex LH-20 column. The structures were elucidated on the basis of physicochemical properties and spectral analysis. Six iridoid glycosides were identified as jasgranoside B (1), 6-O-methy-catalpol (2), deacetyl asperulosidic acid (3), aucubin (4), 8-dehydroxy shanzhiside (5), and loganin (6). Jasgranoside B (1) is a new compound. Compounds 2-6 were isolated from Jasminum officinale L. var. grandiflorum for the first time.

  9. Aucubin protects against pressure overload-induced cardiac remodelling via the β3 -adrenoceptor-neuronal NOS cascades.

    PubMed

    Wu, Qing-Qing; Xiao, Yang; Duan, Ming-Xia; Yuan, Yuan; Jiang, Xiao-Han; Yang, Zheng; Liao, Hai-Han; Deng, Wei; Tang, Qi-Zhu

    2018-05-01

    Aucubin, the predominant component of Eucommia ulmoides Oliv., has been shown to have profound effects on oxidative stress. As oxidative stress has previously been demonstrated to contribute to acute and chronic myocardial injury, we tested the effects of aucubin on cardiac remodelling and heart failure. Initially, H9c2 cardiomyocytes and neonatal rat cardiomyocytes pretreated with aucubin (1, 3, 10, 25 and 50 μM) were challenged with phenylephrine. Secondly, the transverse aorta was constricted in C57/B6 and neuronal NOS (nNOS)-knockout mice, then aucubin (1 or 5 mg·kg -1 body weight day -1 ) was injected i.p. for 25 days. Hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, histological analyses and hypertrophic markers. Oxidative stress was evaluated by examining ROS generation, oxidase activity and NO generation. NOS expression was determined by Western blotting. Aucubin effectively suppressed cardiac remodelling; in mice, aucubin substantially inhibited pressure overload-induced cardiac hypertrophy, fibrosis and inflammation, whereas knocking out nNOS abolished these cardioprotective effects of aucubin. Blocking or knocking down the β 3 -adrenoceptor abolished the protective effects of aucubin in vitro. Furthermore, aucubin enhanced the protective effects of a β 3 -adrenoceptor agonist in vitro by increasing cellular cAMP levels, whereas treatment with an adenylate cyclase (AC) inhibitor abolished the cardioprotective effects of aucubin. Aucubin suppresses oxidative stress during cardiac remodelling by increasing the expression of nNOS in a process that requires activation of the β 3 -adrenoceptor/AC/cAMP pathway. These findings suggest that aucubin could have potential as a treatment for cardiac remodelling and heart failure. © 2018 The British Pharmacological Society.

  10. [The 14 plants in Issenheim's altarpiece. An updated pharmaco-chemical approach].

    PubMed

    Trépardoux, Francis

    2010-01-01

    Fourteen vegetal species were identified by Kühn in 1948 among which scrophualaria, veronica, lamium and vincetoxicum. These exhibit antigangrenous, antiinflammatory and antimicrobial activities due to iridoid components, mainly aucubin, catalpol and harpagosid.

  11. Inverted stereocontrol of iridoid synthase in snapdragon

    PubMed Central

    Kries, Hajo; Kellner, Franziska; Kamileen, Mohamed Omar; O'Connor, Sarah E.

    2017-01-01

    The natural product class of iridoids, found in various species of flowering plants, harbors astonishing chemical complexity. The discovery of iridoid biosynthetic genes in the medicinal plant Catharanthus roseus has provided insight into the biosynthetic origins of this class of natural product. However, not all iridoids share the exact five- to six-bicyclic ring scaffold of the Catharanthus iridoids. For instance, iridoids in the ornamental flower snapdragon (Antirrhinum majus, Plantaginaceae family) are derived from the C7 epimer of this scaffold. Here we have cloned and characterized the iridoid synthase enzyme from A. majus (AmISY), the enzyme that is responsible for converting 8-oxogeranial into the bicyclic iridoid scaffold in a two-step reduction–cyclization sequence. Chiral analysis of the reaction products reveals that AmISY reduces C7 to generate the opposite stereoconfiguration in comparison with the Catharanthus homologue CrISY. The catalytic activity of AmISY thus explains the biosynthesis of 7-epi-iridoids in Antirrhinum and related genera. However, although the stereoselectivity of the reduction step catalyzed by AmISY is clear, in both AmISY and CrISY, the cyclization step produces a diastereomeric mixture. Although the reduction of 8-oxogeranial is clearly enzymatically catalyzed, the cyclization step appears to be subject to less stringent enzyme control. PMID:28701463

  12. Inverted stereocontrol of iridoid synthase in snapdragon.

    PubMed

    Kries, Hajo; Kellner, Franziska; Kamileen, Mohamed Omar; O'Connor, Sarah E

    2017-09-01

    The natural product class of iridoids, found in various species of flowering plants, harbors astonishing chemical complexity. The discovery of iridoid biosynthetic genes in the medicinal plant Catharanthus roseus has provided insight into the biosynthetic origins of this class of natural product. However, not all iridoids share the exact five- to six-bicyclic ring scaffold of the Catharanthus iridoids. For instance, iridoids in the ornamental flower snapdragon ( Antirrhinum majus , Plantaginaceae family) are derived from the C7 epimer of this scaffold. Here we have cloned and characterized the iridoid synthase enzyme from A. majus (AmISY), the enzyme that is responsible for converting 8-oxogeranial into the bicyclic iridoid scaffold in a two-step reduction-cyclization sequence. Chiral analysis of the reaction products reveals that AmISY reduces C7 to generate the opposite stereoconfiguration in comparison with the Catharanthus homologue CrISY. The catalytic activity of AmISY thus explains the biosynthesis of 7-epi-iridoids in Antirrhinum and related genera. However, although the stereoselectivity of the reduction step catalyzed by AmISY is clear, in both AmISY and CrISY, the cyclization step produces a diastereomeric mixture. Although the reduction of 8-oxogeranial is clearly enzymatically catalyzed, the cyclization step appears to be subject to less stringent enzyme control. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness.

    PubMed

    Richardson, Leif L; Bowers, M Deane; Irwin, Rebecca E

    2016-02-01

    Plants produce an array of secondary metabolites that play important ecological roles as anti-herbivore and anti-pathogen defenses. Many herbivores experience physiological costs when they consume secondary metabolites, yet some also benefit, for example when these chemicals confer resistance to parasites and predators. Secondary metabolites are often present in nectar and pollen, which is paradoxical given that floral rewards are important in the attraction of mutualists rather than deterrence of antagonists. Motivated by studies of interactions among plants, herbivores, and parasites, as well as research showing that secondary metabolites can reduce bee disease, we characterized the occurrence of two iridoid glycosides, aucubin and catalpol, in floral rewards and other tissues of the bee pollinated plant, Chelone glabra. We then experimentally investigated effects of nectar iridoid glycoside concentrations on the foraging behavior of bumble bee pollinators naturally afflicted by a parasitoid fly and a protozoan intestinal parasite, and subsequent effects on an estimate of plant reproduction. We found that floral nectar had lower iridoid glycoside concentrations than leaves, pollen, and corollas, and that, compared to those plant parts, the relative ratio of the two primary iridoid glycosides, aucubin and catalpol, was reversed in nectar. Whether bees carried parasitoid fly larvae did not affect their response to nectar chemistry; however, there was a significant interaction between protozoan parasite infection and nectar treatment, with infected bees foraging longer at flowers with high compared to low nectar iridoid glycoside concentrations. Parasitized bees were also more likely to return to inflorescences with high iridoid glycoside nectar. Consequently, flowers in the high iridoid glycoside nectar treatment donated significantly more pollen to conspecific stigmas than did flowers in the low iridoid glycoside treatment, suggesting an increase in male plant

  14. The rate of aucubin, a secondary metabolite in Plantago lanceolata and potential nitrification inhibitor, needed to reduce ruminant urine patch nitrous oxide emissions

    NASA Astrophysics Data System (ADS)

    Gardiner, C. A.; Clough, T.; Cameron, K.; Di, H.; Edwards, G. R.

    2017-12-01

    Nitrous oxide (N2O) losses derived from grazing ruminant livestock urine patches account for 40% of global N2O emissions. It has been shown that Plantago lanceolata, an herb species used in grazed pastures, contains an active secondary metabolite (aucubin) that has the potential to be excreted by grazing ruminants and inhibit nitrification in the urine patch, a key step in soil N2O production. However, the urinary excretion rate of aucubin needed to significantly reduce urine patch N2O emissions remains unknown. Aucubin was dissolved in bovine urine at three rates (47, 243, and 486 kg ha-1), based on rates used in Dietz et al. (2013) and the calculated highest potential aucubin application rate, from Gardiner et al. (2017). A control, along with a urine treatment and the three aucubin treatments (all urine applied at 700 kg N ha-1), was applied to 20 g soil and incubated in the laboratory for 35 d. Soils were monitored for surface pH, inorganic N concentration (NH4+/NO3-), and gas (N2O and CO2) fluxes. This experiment is currently underway and the results will be presented at the conference. Dietz M, Machill S, Hoffmann H, Schmidtke K 2013. Inhibitory effects of Plantago lanceolata L. on soil N mineralization. Plant and Soil 368: 445-458. Gardiner CA, Clough TJ, Cameron KC, Di HJ, Edwards GR, de Klein CAM 2017. The potential inhibitory effects of Plantago lanceolata and its active secondary metabolite aucubin on soil nitrification and nitrous oxide emissions under ruminant urine patch conditions. Manuscript submitted for publication.

  15. seco-iridoids from Calycophyllum spruceanum (Rubiaceae).

    PubMed

    Cardona Zuleta, Luz Margarita; Cavalheiro, Alberto José; Siqueira Silva, Dulce Helena; Furlan, Maysa; Marx Young, Maria Claudia; Albuquerque, Sérgio; Castro-Gamboa, Ian; da Silva Bolzani, Vanderlan

    2003-09-01

    Three seco-iridoids 7-methoxydiderroside, 6'-O-acetyldiderroside and 8-O-tigloyldiderroside, were isolated from the wood bark of Calycophyllum spruceanum together with the known iridoids loganetin, loganin and the seco-iridoids secoxyloganin, kingiside and diderroside. Their structures were elucidated by means of NMR and MS spectral data analysis. Using NOE correlations and coupling constants, the relative stereochemistry of the new derivatives was established. 7-Methoxydiderroside, 6'-O-acetyldiderroside and the known secoxyloganin and diderroside showed in vitro activity against trypomastigote forms of Trypanosoma cruzi, with IC(50) values of 59.0, 90.2, 74,2 and 84.9 microg/mL, respectively and were compared to the standard gentian violet (IC(50) 7.5 microg/ml).

  16. Eucommia ulmoides Oliver Extract, Aucubin, and Geniposide Enhance Lysosomal Activity to Regulate ER Stress and Hepatic Lipid Accumulation

    PubMed Central

    Lee, Hwa-Young; Lee, Geum-Hwa; Lee, Mi-Rin; Kim, Hye-Kyung; Kim, Nan-young; Kim, Seung-Hyun; Lee, Yong-Chul; Kim, Hyung-Ryong; Chae, Han-Jung

    2013-01-01

    Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE) on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER) stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia. PMID:24349058

  17. Profiling of iridoid glycosides in Vaccinium species by UHPLC-MS.

    PubMed

    Heffels, Peter; Müller, Laura; Schieber, Andreas; Weber, Fabian

    2017-10-01

    The iridoid profile of four Vaccinium species was investigated using UHPLC-MS to obtain further information about this group of species for phytochemical characterization. Fruits of bog bilberry (Vaccinium uliginosum L.) showed 14 different iridoid glycosides with a total amount of 20mg/kg fresh weight (FW), whereas bilberry (Vaccinium myrtillus L.) contained 11 iridoid glycosides and a total amount of 127mg/kg FW. Highbush blueberry (Vaccinium corymbosum L.) and lowbush blueberry (Vaccinium angustifolium L.) contained none of the investigated iridoid glycosides. Among the different iridoids, the isomers scandoside and deacetylasperulosidic acid as well as a dihydro derivative thereof were described for the first time in the Ericaceae family. The p-coumaroyl isomers of scandoside, deacetylasperulosidic acid and dihydromonotropein are reported for the first time in V. myrtillus and V. uliginosum. Monotropein and its p-coumaroyl isomers were found for the first time in V. uliginosum. The comparison of iridoid profiles in bilberry fruit and juice samples revealed constant proportions throughout the juice processing. Quantification and profile determination of iridoids may be used for species differentiation and thus for authentication purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Extraction of aucubin from seeds of Eucommia ulmoides Oliv. using supercritical carbon dioxide.

    PubMed

    Li, Hui; Hu, Jiangyu; Ouyang, Hui; Li, Yanan; Shi, Hui; Ma, Chengjin; Zhang, Yongkang

    2009-01-01

    Supercritical CO2 was used as solvent for the extraction of aucubin from the seeds of Eucommia ulmoides Oliv. The co-solvent composition was tested and extraction conditions were optimized. Results showed that the best co-solvent was a water-ethanol mixture (1 + 3, v/v), and the highest yield was obtained when the extraction was performed under 26 MPa at extraction and separation temperatures of 55 and 30 degrees C for 120 min, using 6 mL co-solvent/g material at a CO2 flow rate of 20 L/h. In a comparison of the supercritical CO2 and Soxhlet extraction methods, the Soxhlet method needed 3 h to extract 10 g material, whereas the supercritical CO2 extraction technique needed only 2 h to extract 100 g material, thus showing a high extraction capability. The supercritical CO2 extraction produced a higher yield, with a lower cost for the extraction. Owing to the advantages of low extraction temperature, high yield, and ease of separating the product from the solvent, supercritical CO2 extraction is likely to be developed into an ideal technique for the extraction of aucubin, a compound with thermal instability, from the seeds of this plant.

  19. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  20. Iridoids and sesquiterpenoids from the roots of Valeriana officinalis.

    PubMed

    Wang, Peng-Cheng; Hu, Jiang-Miao; Ran, Xin-Hui; Chen, Zhong-Quan; Jiang, He-Zhong; Liu, Yu-Qing; Zhou, Jun; Zhao, You-Xing

    2009-09-01

    Two new iridoids, volvaltrates A and B (1 and 2), and three new sesquiterpenoids, E-(-)-3beta,4beta-epoxyvalerenal (3), E-(-)-3beta,4beta-epoxyvalerenyl acetate (4), and mononorvalerenone (5), together with five known iridoids and two known sesquiterpenoids were isolated from the roots of Valeriana officinalis. The structures and relative configurations of 1-5 were elucidated by spectroscopic evidence. Compound 1 was an unusual iridoid with an oxygen bridge connecting C-3 and C-10, forming a cage-like structure, and compound 5 was a mononorsesquiterpenoid.

  1. The seco-iridoid pathway from Catharanthus roseus

    PubMed Central

    Miettinen, Karel; Dong, Lemeng; Navrot, Nicolas; Schneider, Thomas; Burlat, Vincent; Pollier, Jacob; Woittiez, Lotte; van der Krol, Sander; Lugan, Raphaël; Ilc, Tina; Verpoorte, Robert; Oksman-Caldentey, Kirsi-Marja; Martinoia, Enrico; Bouwmeester, Harro; Goossens, Alain; Memelink, Johan; Werck-Reichhart, Danièle

    2014-01-01

    The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications. PMID:24710322

  2. Differential iridoid production as revealed by a diversity panel of 84 cultivated and wild blueberry species.

    PubMed

    Leisner, Courtney P; Kamileen, Mohamed O; Conway, Megan E; O'Connor, Sarah E; Buell, C Robin

    2017-01-01

    Cultivated blueberry (Vaccinium corymbosum, Vaccinium angustifolium, Vaccinium darrowii, and Vaccinium virgatum) is an economically important fruit crop native to North America and a member of the Ericaceae family. Several species in the Ericaceae family including cranberry, lignonberry, bilberry, and neotropical blueberry species have been shown to produce iridoids, a class of pharmacologically important compounds present in over 15 plant families demonstrated to have a wide range of biological activities in humans including anti-cancer, anti-bacterial, and anti-inflammatory. While the antioxidant capacity of cultivated blueberry has been well studied, surveys of iridoid production in blueberry have been restricted to fruit of a very limited number of accessions of V. corymbosum, V. angustifolium and V. virgatum; none of these analyses have detected iridoids. To provide a broader survey of iridoid biosynthesis in cultivated blueberry, we constructed a panel of 84 accessions representing a wide range of cultivated market classes, as well as wild blueberry species, and surveyed these for the presence of iridoids. We identified the iridoid glycoside monotropein in fruits and leaves of all 13 wild Vaccinium species, yet only five of the 71 cultivars. Monotropein positive cultivars all had recent introgressions from wild species, suggesting that iridoid production can be targeted through breeding efforts that incorporate wild germplasm. A series of diverse developmental tissues was also surveyed in the diversity panel, demonstrating a wide range in iridoid content across tissues. Taken together, this data provides the foundation to dissect the molecular and genetic basis of iridoid production in blueberry.

  3. Differential iridoid production as revealed by a diversity panel of 84 cultivated and wild blueberry species

    PubMed Central

    Kamileen, Mohamed O.; Conway, Megan E.; O’Connor, Sarah E.; Buell, C. Robin

    2017-01-01

    Cultivated blueberry (Vaccinium corymbosum, Vaccinium angustifolium, Vaccinium darrowii, and Vaccinium virgatum) is an economically important fruit crop native to North America and a member of the Ericaceae family. Several species in the Ericaceae family including cranberry, lignonberry, bilberry, and neotropical blueberry species have been shown to produce iridoids, a class of pharmacologically important compounds present in over 15 plant families demonstrated to have a wide range of biological activities in humans including anti-cancer, anti-bacterial, and anti-inflammatory. While the antioxidant capacity of cultivated blueberry has been well studied, surveys of iridoid production in blueberry have been restricted to fruit of a very limited number of accessions of V. corymbosum, V. angustifolium and V. virgatum; none of these analyses have detected iridoids. To provide a broader survey of iridoid biosynthesis in cultivated blueberry, we constructed a panel of 84 accessions representing a wide range of cultivated market classes, as well as wild blueberry species, and surveyed these for the presence of iridoids. We identified the iridoid glycoside monotropein in fruits and leaves of all 13 wild Vaccinium species, yet only five of the 71 cultivars. Monotropein positive cultivars all had recent introgressions from wild species, suggesting that iridoid production can be targeted through breeding efforts that incorporate wild germplasm. A series of diverse developmental tissues was also surveyed in the diversity panel, demonstrating a wide range in iridoid content across tissues. Taken together, this data provides the foundation to dissect the molecular and genetic basis of iridoid production in blueberry. PMID:28609455

  4. Plant community diversity influences allocation to direct chemical defence in Plantago lanceolata.

    PubMed

    Mraja, Anne; Unsicker, Sybille B; Reichelt, Michael; Gershenzon, Jonathan; Roscher, Christiane

    2011-01-01

    Forecasting the consequences of accelerating rates of changes in biodiversity for ecosystem functioning requires a mechanistic understanding of the relationships between the structure of biological communities and variation in plant functional characteristics. So far, experimental data of how plant species diversity influences the investment of individual plants in direct chemical defences against herbivores and pathogens is lacking. We used Plantago lanceolata as a model species in experimental grasslands differing in species richness and composition (Jena Experiment) to investigate foliar concentrations of the iridoid glycosides (IG), catalpol and its biosynthetic precursor aucubin. Total IG and aucubin concentrations decreased, while catalpol concentrations increased with increasing plant diversity in terms of species or functional group richness. Negative plant diversity effects on total IG and aucubin concentrations correlated with increasing specific leaf area of P. lanceolata, suggesting that greater allocation to light acquisition reduced the investment into these carbon-based defence components. In contrast, increasing leaf nitrogen concentrations best explained increasing concentrations of the biosynthetically more advanced IG, catalpol. Observed levels of leaf damage explained a significant proportion of variation in total IG and aucubin concentrations, but did not account for variance in catalpol concentrations. Our results clearly show that plants growing in communities of varying species richness and composition differ in their defensive chemistry, which may modulate plant susceptibility to enemy attack and consequently their interactions with higher trophic level organisms.

  5. Comparison of pharmacokinetic behavior of two iridoid glycosides in rat plasma after oral administration of crude Cornus officinals and its jiuzhipin by high performance liquid chromatography triple quadrupole mass spectrometry combined with multiple reactions monitoring mode

    PubMed Central

    Chen, Xiaocheng; Cao, Gang; Jiang, Jianping

    2014-01-01

    Objective: The present study examined the pharmacokinetic profiles of two iridoid glycosides named morroniside and loganin in rat plasma after oral administration of crude and processed Cornus officinals. Materials and Methods: A rapid, selective and specific high-performance liquid chromatography/electrospray ionization tandem mass spectrometry with multiple reactions monitoring mode was developed to simultaneously investigate the pharmacokinetic profiles of morroniside and loganin in rat plasma after oral administration of crude C. officinals and its jiuzhipin. Results: The morroniside and loganin in crude and processed C. officinals could be simultaneously determined within 7.4 min. Linear calibration curves were obtained over the concentration ranges of 45.45-4800 ng/mL for all the analytes. The intra-and inter-day precisions relative standard deviation was lesser than 2.84% and 4.12%, respectively. Conclusion: The pharmacokinetic parameters of two iridoid glucosides were also compared systematically between crude and processed C. officinals. This paper provides the theoretical proofs for further explaining the processing mechanism of Traditional Chinese Medicines. PMID:24914290

  6. [Development and research advances of iridoids from Valeriana jatamansi and their bioactivity].

    PubMed

    Zhang, Ning-ning; Ding, Guang-zhi

    2015-05-01

    Valeriana jatamansi (syn. V. wallichii), a traditional Chinese medicine recorded in Chinese Pharmacopeia (1977 and 2010 edition), has been used for treatment of a variety of conditions including sleep problems, obesity, nervous disorders, epilepsy, insanity, snake poisoning, eye trouble, and skin diseases. Also, it was used as an important substitute for the European V. officinalis, whose root preparation, popularly known as valerian, has been employed as a mild sedative for a long time. In recent years, much attention has been draw to the iridoids, one of the major bioactive constituents of V. jatamansi, leading to the discovery of a series of new iridoids with anti-tumor and neuroprotective activities. Their action machnism also has been discussed. This paper summerized the iridoids and their bioactivities from V. jatamansi in recent years, which could provide basic foundation for development and research of V. jatamansi.

  7. A chemical-biological study reveals C9-type iridoids as novel heat shock protein 90 (Hsp90) inhibitors.

    PubMed

    Dal Piaz, Fabrizio; Vassallo, Antonio; Temraz, Abeer; Cotugno, Roberta; Belisario, Maria A; Bifulco, Giuseppe; Chini, Maria G; Pisano, Claudio; De Tommasi, Nunziatina; Braca, Alessandra

    2013-02-28

    The potential of heat shock protein 90 (Hsp90) as a therapeutic target for numerous diseases has made the identification and optimization of novel Hsp90 inhibitors an emerging therapeutic strategy. A surface plasmon resonance (SPR) approach was adopted to screen some iridoids for their Hsp90 α binding capability. Twenty-four iridoid derivatives, including 13 new natural compounds, were isolated from the leaves of Tabebuia argentea and petioles of Catalpa bignonioides. Their structures were elucidated by NMR, electrospray ionization mass spectrometry, and chemical methods. By means of a panel of chemical and biological approaches, four iridoids were demonstrated to bind Hsp90 α. In particular, the dimeric iridoid argenteoside A was shown to efficiently inhibit the chaperone in biochemical and cellular assays. Our results disclose C9-type iridoids as a novel class of Hsp90 inhibitors.

  8. Determination and comparative analysis of major iridoids in different parts and cultivation sources of Morinda citrifolia.

    PubMed

    Deng, Shixin; West, Brett J; Palu, 'Afa K; Jensen, C Jarakae

    2011-01-01

    Noni is a medicinal plant with a long history of use as a folk remedy in many tropical areas, and is attracting more attention worldwide. A comprehensive study on the major phytochemicals in different plant parts (fruit, leaf, seed, root and flower) and sources is of great value for fully understanding their diverse medicinal benefits. To quantitatively determine the major iridoid components in different parts of noni plants, and compare iridoids in noni fruits collected from different tropical areas worldwide. The optimal chromatographic conditions were achieved on a C(18) column with gradient elution using 0.1% formic acid aqueous formic acid and acetonitrile at 235  nm. The selective HPLC method was validated for precision, linearity, limit of detection, limit of quantitation and accuracy. Deacetylasperulosidic acid (DAA) was found to be the major iridoid in noni fruit. In order of predominance, DAA concentrations in different parts of the noni plant were dried noni fruit > fruit juice > seed > flower > leaf > root. The order of predominance for asperulosidic acid (AA) concentration was dried noni fruit > leaf > flower > root > fruit juice > seed. DAA and AA contents of methanolic extracts of noni fruits collected from different tropical regions were 13.8-42.9 and 0.7-8.9  mg/g, respectively, with French Polynesia containing the highest total iridoids and the Dominican Republic containing the lowest. Iridoids DAA and AA are found to be present in leaf, root, seed and flower of noni plants, and were identified as the major components in noni fruit. Given the great variation of iridoid contents in noni fruit grown in different tropical areas worldwide, geographical factors appear to have significant effects on fruit composition. The iridoids in noni fruit were stable at the temperatures used during pasteurisation and, therefore, may be useful marker compounds for identity and quality testing of commercial noni products. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Alkyl Glucosides in Contact Dermatitis.

    PubMed

    Loranger, Camille; Alfalah, Maisa; Ferrier Le Bouedec, Marie-Christine; Sasseville, Denis

    Ecologically sound because they are synthesized from natural and renewable sources, the mild surfactants alkyl glucosides are being rediscovered by the cosmetic industry. They are currently found in rinse-off products such as shampoos, liquid cleansers, and shower gels, but also in leave-on products that include moisturizers, deodorants, and sunscreens. During the past 15 years, numerous cases of allergic contact dermatitis have been published, mostly to lauryl and decyl glucosides, and these compounds are considered emergent allergens. Interestingly, the sunscreen Tinosorb M contains decyl glucoside as a hidden allergen, and most cases of allergic contact dermatitis reported to this sunscreen ingredient are probably due to sensitization to decyl glucoside. This article will review the chemistry of alkyl glucosides, their sources of exposure, as well as their cutaneous adverse effects reported in the literature and encountered in various patch testing centers.

  10. Studies of the structure-antioxidant activity relationships and antioxidant activity mechanism of iridoid valepotriates and their degradation products

    PubMed Central

    Wang, Feifei; Zhang, Yumei; Wu, Shouhai; He, Yi; Dai, Zhong; Liu, Bin

    2017-01-01

    Oxidative stress has been associated with diverse diseases, including obesity, cancer and neurodegeneration. In fact, Valeriana jatamansi Jones (valerian) and its extracts possess strong antioxidant activities that extend their application in clinical practice to the treatment of these illnesses, even though the underlying mechanisms are not well understood. Iridoid valepotriate, a characteristic iridoid ester in valerian with poor chemical stability, possesses considerable antioxidant components. The original compounds and their degradation products have been found to exhibit strong antioxidant activities. However, the relationship between their structure and antioxidant effects and the mechanism underlying their oxidation resistance remain unclear. A forced degradation study using three iridoid valepotriates (valtrate, acevaltrate and 1-β acevaltrate) was performed in this work, and the structures of their degradation products were estimated by TLC-MS and LC-MS. Comparison of the antioxidant activities of the iridoid valepotriates before and after forced degradation revealed that degradation reduced the activities of the iridoid valepotriates in free radical scavenging and cytotoxic and cell apoptosis tests. The results suggested that the oxirane nucleus is important for defining the antioxidant profile of iridoid valepotriate. We uncovered possible mechanisms that could explain the antioxidant activities, including the generation of two hydroxyl groups through intramolecular transfer of an H• from an oxirane ring and a reduction in ROS levels through interactions with GABAergic signalling pathways. PMID:29232391

  11. Enzymatic Synthesis of Acylphloroglucinol 3-C-Glucosides from 2-O-Glucosides using a C-Glycosyltransferase from Mangifera indica.

    PubMed

    Chen, Dawei; Sun, Lili; Chen, Ridao; Xie, Kebo; Yang, Lin; Dai, Jungui

    2016-04-18

    A green and cost-effective process for the convenient synthesis of acylphloroglucinol 3-C-glucosides from 2-O-glucosides was exploited using a novel C-glycosyltransferase (MiCGTb) from Mangifera indica. Compared with previously characterized CGTs, MiCGTb exhibited unique de-O-glucosylation promiscuity and high regioselectivity toward structurally diverse 2-O-glucosides of acylphloroglucinol and achieved high yields of C-glucosides even with a catalytic amount of uridine 5'-diphosphate (UDP). These findings demonstrate for the first time the significant potential of a single-enzyme approach to the synthesis of bioactive C-glucosides from both natural and unnatural acylphloroglucinol 2-O-glucosides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fragmentation study of iridoid glucosides through positive and negative electrospray ionization, collision-induced dissociation and tandem mass spectrometry.

    PubMed

    Es-Safi, Nour-Eddine; Kerhoas, Lucien; Ducrot, Paul-Henri

    2007-01-01

    Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds. Copyright (c) 2007 John Wiley & Sons, Ltd.

  13. Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside.

    PubMed

    Fanzone, Martín; González-Manzano, Susana; Pérez-Alonso, Joaquín; Escribano-Bailón, María Teresa; Jofré, Viviana; Assof, Mariela; Santos-Buelga, Celestino

    2015-05-15

    Malbec is a wine grape variety of great phenolic potential characterized for its high levels of anthocyanins and dihydroflavonols. To evaluate the possible implication of dihydroflavonols in the expression of red wine color through reactions of copigmentation or condensation, assays were carried out in wine model systems with different malvidin-3-O-glucoside:dihydroquercetin-3-O-glucoside molar ratios. The addition of increasing levels of dihydroquercetin-3-O-glucoside to a constant malvidin-3-O-glucoside concentration resulted in a hyperchromic effect associated with a darkening of the anthocyanin solutions, greater quantity of color and visual saturation, perceptible to the human eye. Copigmentation and thermodynamic measurements showed that dihydroquercetin-3-O-glucoside can act as an anthocyanin copigment, similar to other usual wine components like flavanols or phenolic acids, although apparently less efficient than flavonols. The high levels of dihydroflavonols existing in Malbec wines in relation to other non-anthocyanin phenolics should make this family of compounds particularly important to explain the color expression in Malbec young red wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 172.816... § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the methyl glucoside-coconut oil ester...

  15. Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm.

    PubMed

    Puttick, G M; Bowers, M D

    1988-01-01

    The behavioral and physiological effects of plant allelochemicals have been difficult to demonstrate; it is not often clear whether the compounds are deterrent, toxic, or both. In this study, we compared the qualitative and quantitative effects of several iridoid glycosides on a generalist lepidopteran herbivore,Spodoptera eridania (Noctuidae). Larval growth and survivorship and larval preference or avoidance were measured on artificial diets containing different iridoid glycosides at different concentrations. We also tested the toxicity/deterrence of these compounds. We found that iridoid glycosides retarded larval growth significantly at relatively low concentrations and that they were usually avoided in preference tests. The toxicity/ deterrence test did not always reflect the results of these other tests. The merits of using a variety of methods for determining deterrence and/or toxicity of plant allelochemicals are discussed.

  16. Iridoids as chemical markers of false ipecac (Ronabea emetica), a previously confused medicinal plant.

    PubMed

    Berger, Andreas; Fasshuber, Hannes; Schinnerl, Johann; Robien, Wolfgang; Brecker, Lothar; Valant-Vetschera, Karin

    2011-12-08

    Several roots or rhizomes of rubiaceous species are reportedly used as the emetic and antiamoebic drug ipecac. True ipecac (Carapichea ipecacuanha) is chemically well characterized, in contrast to striated or false ipecac derived from the rhizomes of Ronabea emetica (syn. Psychotria emetica). Besides its previous use as substitute of ipecac, the latter species is applied in traditional medicine of Panama and fruits of its relative Ronabea latifolia are reported as curare additives from Colombia. Compounds of Ronabea emetica were isolated using standard chromatographic techniques, and structurally characterized by NMR spectroscopy and mass spectrometry. Organ specific distribution in Ronabea emetica as well as in Ronabea latifolia was further assessed by comparative HPLC analysis. Four iridoid-glucosides, asperuloside (1), 6α-hydroxygeniposide (2), deacetylasperulosidic acid (3) and asperulosidic acid (4) were extracted from leaves of Ronabea emetica. Rhizomes, used in traditional medicine, were dominated by 3. HPLC profiles of Ronabea latifolia were largely corresponding. These results contrast to the general tendency of producing emetine-type and indole alkaloids in species of Psychotria and closely related genera and merit chemotaxonomic significance, characterizing the newly delimited genus Ronabea. The aim of the work was to resolve the historic problem of adulteration of ipecac by establishing the chemical profile of Ronabea emetica, the false ipecac, as one of its less known sources. The paper demonstrates that different sources of ipecac can be distinguished by their phytochemistry, thus contributing to identifying adulterations of true ipecac. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Iridoid glycosides from Gardeniae Fructus for treatment of ankle sprain.

    PubMed

    Chen, Quan Cheng; Zhang, Wei Yun; Youn, Uijoung; Kim, Hongjin; Lee, IkSoo; Jung, Hyun-Ju; Na, MinKyun; Min, Byung-Sun; Bae, KiHwan

    2009-04-01

    The iridoid glycosides, genipin 1-O-beta-D-isomaltoside (1) and genipin 1,10-di-O-beta-D-glucopyranoside (2), together with six known iridoid glycosides, genipin 1-O-beta-D-gentiobioside (3), geniposide (4), scandoside methyl ester (5), deacetylasperulosidic acid methyl ester (6), 6-O-methyldeacetylasperulosidic acid methyl ester (7), and gardenoside (8) were isolated from an EtOH extract of Gardeniae Fructus. The structures and relative stereochemistries of the metabolites were elucidated on the basis of 1D- and 2D-NMR spectroscopic techniques, high-resolution mass spectrometry, and chemical evidence. Geniposide (4), one of the main compounds of Gardeniae Fructus, was tested for treatment of ankle sprain using an ankle sprain model in rats. From the second to fifth day, the geniposide (4) (100mg/ml) treated group exhibited significant differences (p<0.01) with approximately 21-34% reduction in swelling ratio compared with those of the vehicle treated control group. This indicated the potential effect of geniposide (4) for the treatment of disorders such as ankle sprain.

  18. Enzymatic synthesis of novel phloretin glucosides.

    PubMed

    Pandey, Ramesh Prasad; Li, Tai Feng; Kim, Eun-Hee; Yamaguchi, Tokutaro; Park, Yong Il; Kim, Joong Su; Sohng, Jae Kyung

    2013-06-01

    A UDP-glycosyltransferase from Bacillus licheniformis was exploited for the glycosylation of phloretin. The in vitro glycosylation reaction confirmed the production of five phloretin glucosides, including three novel glucosides. Consequently, we demonstrated the application of the same glycosyltransferase for the efficient whole-cell biocatalysis of phloretin in engineered Escherichia coli.

  19. Enzymatic Synthesis of Novel Phloretin Glucosides

    PubMed Central

    Pandey, Ramesh Prasad; Li, Tai Feng; Kim, Eun-Hee; Yamaguchi, Tokutaro; Park, Yong Il; Kim, Joong Su

    2013-01-01

    A UDP-glycosyltransferase from Bacillus licheniformis was exploited for the glycosylation of phloretin. The in vitro glycosylation reaction confirmed the production of five phloretin glucosides, including three novel glucosides. Consequently, we demonstrated the application of the same glycosyltransferase for the efficient whole-cell biocatalysis of phloretin in engineered Escherichia coli. PMID:23542617

  20. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 178.3600 Section 178.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified...

  1. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  2. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  3. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  4. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  5. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  6. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  7. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  8. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  9. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  10. A new isoflavone glucoside from Pterocarpus santalinus.

    PubMed

    Krishnaveni, K S; Srinivasa Rao, J V

    2000-01-01

    A new isoflavone glucoside (1) together with the known santal has been isolated from the heartwood of Pterocarpus santalinus. Based on spectral methods, the structure of the new compound was elucidated as 4',5-dihydroxy 7-O-methyl isoflavone 3'-O-beta-D-glucoside.

  11. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  12. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  13. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  14. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  15. Fragmentation study of iridoid glycosides including epimers by liquid chromatography-diode array detection/electrospray ionization mass spectrometry and its application in metabolic fingerprint analysis of Gardenia jasminoides Ellis.

    PubMed

    Zhou, Tingting; Liu, Hua; Wen, Jun; Fan, Guorong; Chai, Yifeng; Wu, Yutian

    2010-09-15

    A high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD/ESI-MS) method was applied to the characterization of ten iridoid glycosides in Gardenia jasminoides Ellis, a traditional Chinese medicine. During the process of structural elucidation, two groups of isomers including two epimers were structurally characterized and differentiated according to their distinctive fragmentation patterns which were closely related to their isomeric differentiations. Subsequently, the major compounds were purified by multi-dimensional chromatography and semi-preparative HPLC and the structure identification was confirmed with NMR techniques. The major fragmentation pathways of iridoid glycosides in Gardenia jasminoides Ellis obtained through the MS data were schemed systematically, which provided the best sensitivity and specificity for characterization of the iridoid glycosides especially the isomers so far. Based on the fragmentation patterns of iridoid glycosides concluded, seven major iridoid glycosides were characterized in rat plasma after intravenous administration of Gardenia jasminoides Ellis. Copyright 2010 John Wiley & Sons, Ltd.

  16. Effects of phenylpropanoid and iridoid glycosides on free radical-induced impairment of endothelium-dependent relaxation in rat aortic rings.

    PubMed

    Ismailoglu, U B; Saracoglu, I; Harput, U S; Sahin-Erdemli, I

    2002-02-01

    The protective effect of phenylpropanoid glycosides, forsythoside B and alyssonoside, and the iridoid glycoside lamiide, isolated from the aerial parts of Phlomis pungens var. pungens, against free radical-induced impairment of endothelium-dependent relaxation in isolated rat aorta was investigated. Aortic rings were exposed to free radicals by the electrolysis of the physiological bathing solution. Free radical-induced inhibition of the endothelium-dependent relaxation in response to acetylcholine was countered by incubation of the aortic rings before electrolysis with the aqueous extract (200 microg/ml), phenylpropanoid fraction (100 microg/ml) and iridoid fraction (150 microg/ml) of P. pungens var. pungens. Major components of the phenylpropanoid fraction forsythoside B and alyssonoside also prevented the inhibition of the acetylcholine response, at 10(-4) M concentration. However, the major component of iridoid fraction lamiide was found ineffective at the same concentration. The protective activity of phenylpropanoid glycosides against the free radical-induced impairment of endothelium-dependent relaxation may be related to their free radical scavenging property.

  17. A new acylated isoflavone glucoside from Pterocarpus santalinus.

    PubMed

    Krishnaveni, K S; Srinivasa Rao, J V

    2000-09-01

    Phytochemical investigation on the constituents of heartwood of Pterocarpus santalinus resulted in the isolation of a new acylated isoflavone glucoside. The structure of the new compound was elucidated on the basis of spectral studies as 4',5-dihydroxy-7-O-methyl isoflavone 3'-O-D-(3''-E-cinnamoyl)glucoside.

  18. Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides.

    PubMed

    Schmidt, Sabine; Rainieri, Sandra; Witte, Simone; Matern, Ulrich; Martens, Stefan

    2011-03-01

    Baker's yeast (Saccharomyces cerevisiae) whole-cell bioconversions of naringenin 7-O-β-glucoside revealed considerable β-glucosidase activity, which impairs any strategy to generate or modify flavonoid glucosides in yeast transformants. Up to 10 putative glycoside hydrolases annotated in the S. cerevisiae genome database were overexpressed with His tags in yeast cells. Examination of these recombinant, partially purified polypeptides for hydrolytic activity with synthetic chromogenic α- or β-glucosides identified three efficient β-glucosidases (EXG1, SPR1, and YIR007W), which were further assayed with natural flavonoid β-glucoside substrates and product verification by thin-layer chromatography (TLC) or high-performance liquid chromatography (HPLC). Preferential hydrolysis of 7- or 4'-O-glucosides of isoflavones, flavonols, flavones, and flavanones was observed in vitro with all three glucosidases, while anthocyanins were also accepted as substrates. The glucosidase activities of EXG1 and SPR1 were completely abolished by Val168Tyr mutation, which confirmed the relevance of this residue, as reported for other glucosidases. Most importantly, biotransformation experiments with knockout yeast strains revealed that only EXG1 knockout strains lost the capability to hydrolyze flavonoid glucosides.

  19. [Chemical and biological evaluation of the effect of plant extracts against Plasmodium berghei].

    PubMed

    Castro, O; Barrios, M; Chinchilla, M; Guerrero, O

    1996-08-01

    Extracts from thirteen species of plants were evaluated by "in vivo" antimalarial test against plasmodium berghei effects. Significant activities were observed in the ethyl acetate and aqueous extracts, elaborated of Cedrela tonduzii leaves, Trichilia havanensis and Trichilia americana barks, Neurolaena lobata and Gliricidia sepium leaves and Duranta repens fruits. Compounds identified include flavanoids, coumarins, mellilotic acid and iridoids which some kind of biodynamic activity has previously been reported. The flavone quercetin 1 purified from C. tonduzii gave strong antimalarial activity, however, its respective glucosides (quercetin 3-glucoside 2 y robinine 7) showed little significant activity.

  20. Different inhibition mechanisms of gentisic acid and cyaniding-3-O-glucoside on polyphenoloxidase.

    PubMed

    Zhou, Lei; Xiong, Zhiqiang; Liu, Wei; Zou, Liqiang

    2017-11-01

    Gentisic acid and cyanidin-3-O-glucoside are important bioactive polyphenols which are widely distributed in many fruits and cereals. In this work, kinetic study, spectral analysis and computational simulation were used to compare the inhibitory effects and inhibition mechanisms of gentisic acid and cyanidin-3-O-glucoside on mushroom polyphenoloxidase (PPO). The inhibitory effect of cyanidin-3-O-glucoside on PPO was much stronger than that of gentisic acid. Gentisic acid inhibited PPO in a reversible mixed-type manner while cyanidin-3-O-glucoside was an irreversible inhibitor. Gentisic acid and cyanidin-3-O-glucoside made the thermal inactivation of PPO easier, and induced apparent conformational changes of PPO. Compared with gentisic acid, cyanidin-3-O-glucoside had stronger effects on the thermal inactivation and conformation of PPO. Molecular docking results revealed gentisic acid bound to the active site of PPO by hydrogen bonding, π-π stacking and van der Waals forces. However, cyanidin-3-O-glucoside might irreversibly interact with the Met or Cys in PPO by covalent bonds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Profiling of components and validated determination of iridoids in Gardenia Jasminoides Ellis fruit by a high-performance-thin-layer- chromatography/mass spectrometry approach.

    PubMed

    Coran, Silvia A; Mulas, Stefano; Vasconi, Alessio

    2014-01-17

    A novel method was set up with the aim to obtain a simultaneous cross comparative evaluation of different Gardenia Jasminoides Ellis fruits by the HPTLC fingerprint approach. The main components among the iridoid, hydroxycinnamic derivative and crocin classes were identified by TLC-MS ancillary techniques. The iridoids geniposide, gardenoside and genepin-1-β-d-gentiobioside were also quantitated by densitometric scanning at 240nm. LiChrospher HPTLC Silica gel 60 RP-18 W F254, 20cm×10cm plates with acetonitrile: formic acid 0.1% (40:60 v/v) as the mobile phase was used. The method was validated giving rise to a dependable and high throughput procedure well suited to routine applications. Iridoids were quantified in the range of 240-1140ng with RSD of repeatability and intermediate precision between 0.9-2.5% and accuracy with bias 1.6-2.6%. The method was tested on six commercial Gardenia Jasminoides fruit samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Quantification of nitropropanoyl glucosides in karaka nuts before and after treatment.

    PubMed

    MacAskill, J J; Manley-Harris, M; Field, Richard J

    2015-05-15

    A high performance liquid chromatography (HPLC) method was developed to assay nitropropanoyl glucosides in the nuts of karaka (Corynocarpus laevigatus) a traditional food of New Zealand Māori. Levels of glucosides, measured as 3-nitropropanoic acid, ranged from 50.25 to 138.62 g kg(-1) (5.0-13.9% w/w) and were highest in nuts from unripe drupes; these levels are higher than any previously reported. Other parts of the drupe also contained nitropropanoyl glucosides but at lower levels than the nut. Treatment procedures to remove the glucosides from the nuts varied in their efficacy with soxhlet extraction removing 98.7% and prolonged boiling and cold water extraction both removing 96%. These findings confirm the traditional methods for preparation of these nuts for consumption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors.

    PubMed

    Zhang, Yang; Liu, Zhao-Peng

    2016-01-01

    Sodium-glucose cotransporter 2 (SGLT2) is almost exclusively expressed in the proximal renal tubules. It is responsible for about 90% of the glucose reabsorption from tubular fluid. Selective inhibition of SGLT2 is expected to favor in the normalization of plasma glucose levels in T2DM patients through the prevention of renal glucose reabsorption and the promotion of glucose excretion from urine. Selective SGLT2 inhibitors have the merits to minimize the gastrointestinal side effects associated with SGLT1 inhibition, and selective SGLT2 inhibition may have a low risk of hypoglycemia. Since the C-aryl glucosides are metabolically more stable than the O-glucosides, numerous efforts have been made in the development of potent and selective C-aryl glucoside SGLT2 inhibitors, and a number of them are now used as anti-diabetes drugs in clinic or at various stages of clinical developments. Based on their structural features, in this review, these SGLT2 inhibitors are classified as three types: the phenyl/arylmethylphenyl C-glucosides, with an emphasis on the modifications on the proximal and/or the distal phenyl ring, and the spacer; the heteroarylmethylphenyl Cglucosides, with a replacement of the distal phenyl ring by a heterocycle like pyridazine, pyrimidine, thiophene and benzothiophene, thiazole, 1,3,4-thiadiazole, and triazolopyridinone; and the glucose-modified Caryl glucosides, including the glucose C-1 derived O-spiroketals, C-4 gem-difluoro analogues, C-5 and C-6 modified derivatives, dioxa-bicyclo[3.2.1]octane bridged ketals, the thioglucosides, and carbasugars. The structure-activity relationships (SARs) of each type along with their inhibitory potency against human SGLT2 and selectivity over human SGLT1 are discussed.

  4. New anti-trypanosomal active tetracyclic iridoid isolated from Morinda lucida Benth.

    PubMed

    Suzuki, Mitsuko; Tung, Nguyen Huu; Kwofie, Kofi D; Adegle, Richard; Amoa-Bosompem, Michael; Sakyiamah, Maxwell; Ayertey, Frederick; Owusu, Kofi Baffour-Awuah; Tuffour, Isaac; Atchoglo, Philip; Frempong, Kwadwo Kyereme; Anyan, William K; Uto, Takuhiro; Morinaga, Osamu; Yamashita, Taizo; Aboagye, Frederic; Appiah, Alfred Ampomah; Appiah-Opong, Regina; Nyarko, Alexander K; Yamaoka, Shoji; Yamaguchi, Yasuchika; Edoh, Dominic; Koram, Kwadwo; Ohta, Nobuo; Boakye, Daniel A; Ayi, Irene; Shoyama, Yukihiro

    2015-08-01

    Human African trypanosomiasis (HAT), commonly known as sleeping sickness has remained a serious health problem in many African countries with thousands of new infected cases annually. Chemotherapy, which is the main form of control against HAT has been characterized lately by the viewpoints of toxicity and drug resistance issues. Recently, there have been a lot of emphases on the use of medicinal plants world-wide. Morinda lucida Benth. is one of the most popular medicinal plants widely distributed in Africa and several groups have reported on its anti-protozoa activities. In this study, we have isolated one novel tetracyclic iridoid, named as molucidin, from the CHCl3 fraction of the M. lucida leaves by bioassay-guided fractionation and purification. Molucidin was structurally elucidated by (1)H and (13)C NMR including HMQC, HMBC, H-H COSY and NOESY resulting in tetracyclic iridoid skeleton, and its absolute configuration was determined. We have further demonstrated that molucidin presented a strong anti-trypanosomal activity, indicating an IC50 value of 1.27 μM. The cytotoxicity study using human normal and cancer cell lines indicated that molucidin exhibited selectivity index (SI) against two normal fibroblasts greater than 4.73. Furthermore, structure-activity relationship (SAR) study was undertaken with molucidin and oregonin, which is identical to anti-trypanosomal active components of Alnus japonica. Overlapping analysis of the lowest energy conformation of molucidin with oregonin suggested a certain similarities of aromatic rings of both oregonin and molucidin. These results contribute to the future drug design studies for HAT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. New iridoids from Verbascum nobile and their effect on lectin-induced T cell activation and proliferation.

    PubMed

    Dimitrova, Petya; Alipieva, Kalina; Grozdanova, Tsvetinka; Simova, Svetlana; Bankova, Vassya; Georgiev, Milen I; Popova, Milena P

    2018-01-01

    The Verbascum species are widely used traditional herb remedies against respiratory, inflammatory conditions and disorders. In the present study methanol extract of the aerial parts of the endemic Verbascum nobile Velen, was investigated and two novel iridoid glycosides 1 and 2, together with nine known constituents: iridoids, phenylethanoids, and saponins characteristic of Verbascum genus were identified. Further, the biological activity of the extract and selected isolated compounds on concanavalin (Con A)-induced T cell proliferation and activation of human Jurkat T cell line and splenic murine CD3 T cells was evaluated. T cell growth was studied by colorimetric-based WST proliferation assay while DNA content, cell cycling, dynamic of cell proliferation, expression of activation markers, intracellular expression of cytokine IFN-γ, and phosphorylation of ERK were analyzed by flow cytometry. Caspase-mediated apoptosis resulting in a poly (ADP-ribose) polymerase (PARP) cleavage was assessed by colorimetric in-cell kit. It was found that the extract, and all tested compounds (1, 2, 3 and 9) inhibited lectin-induced cell growth of Jurkat T cell line. The novel compounds decreased the frequencies of cells in S phase without causing a significant cell cycle arrest at G1 phase, caspases-mediated apoptosis and/or a profound change in the dynamic of splenic murine CD3 + T cell proliferation. Both compounds showed stronger inhibitory effect on Con A-induced ERK phosphorylation than the known bioactive compounds 3 and 9, and suppressed the expression of early activation marker CD69, the intracellular level of IFN-γ, and the generation of CD3 + IFN-γ + effectors. Our data suggest that the novel iridoid glycosides might have a potential to modulate T cell-related pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus

    PubMed Central

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O’Connor, Sarah E.; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-01-01

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  7. Antitrypanosomal Activities and Mechanisms of Action of Novel Tetracyclic Iridoids from Morinda lucida Benth.

    PubMed Central

    Kwofie, Kofi D.; Tung, Nguyen Huu; Amoa-Bosompem, Michael; Adegle, Richard; Sakyiamah, Maxwell M.; Ayertey, Frederick; Owusu, Kofi Baffour-Awuah; Tuffour, Isaac; Atchoglo, Philip; Frempong, Kwadwo K.; Anyan, William K.; Uto, Takuhiro; Morinaga, Osamu; Yamashita, Taizo; Aboagye, Frederic; Appiah, Alfred A.; Appiah-Opong, Regina; Nyarko, Alexander K.; Yamaguchi, Yasuchika; Edoh, Dominic; Koram, Kwadwo A.; Yamaoka, Shoji; Boakye, Daniel A.; Ohta, Nobuo; Shoyama, Yukihiro; Ayi, Irene

    2016-01-01

    Trypanosoma brucei parasites are kinetoplastid protozoa that devastate the health and economic well-being of millions of people in Africa through the disease human African trypanosomiasis (HAT). New chemotherapy has been eagerly awaited due to severe side effects and the drug resistance issues plaguing current drugs. Recently, there has been an emphasis on the use of medicinal plants worldwide. Morinda lucida Benth. is a popular medicinal plant widely distributed in Africa, and several research groups have reported on the antiprotozoal activities of this plant. In this study, we identified three novel tetracyclic iridoids, molucidin, ML-2-3, and ML-F52, from the CHCl3 fraction of M. lucida leaves, which possess activity against the GUTat 3.1 strain of T. brucei brucei. The 50% inhibitory concentrations (IC50) of molucidin, ML-2-3, and ML-F52 were 1.27 μM, 3.75 μM, and 0.43 μM, respectively. ML-2-3 and ML-F52 suppressed the expression of paraflagellum rod protein subunit 2, PFR-2, and caused cell cycle alteration, which preceded apoptosis induction in the bloodstream form of Trypanosoma parasites. Novel tetracyclic iridoids may be promising lead compounds for the development of new chemotherapies for African trypanosomal infections in humans and animals. PMID:26953191

  8. DNA damage protection against free radicals of two antioxidant neolignan glucosides from sugarcane molasses.

    PubMed

    Asikin, Yonathan; Takahashi, Makoto; Mizu, Masami; Takara, Kensaku; Oku, Hirosuke; Wada, Koji

    2016-03-15

    Sugarcane molasses is a potential by-product of the sugarcane manufacturing industry that is rich in antioxidant materials. The present study aimed to obtain antioxidative compounds from sugarcane molasses and to evaluate their ability to protect DNA from oxidative damage. Two neolignan glucosides were isolated from sugarcane molasses using bioassay and UV spectra monitoring-guided fractionation. The compounds were elucidated as (7R,8S)-dehydrodiconiferyl alcohol-4-O-β-d-glucoside (1) and (7S,8R)-simulanol-9'-O-β-d-glucoside (2). Neolignan glucoside 2 protected against DNA damage caused by free radicals more effectively than did neolignan glucoside 1 (13.62 and 9.08 µmol L(-1) for peroxyl and hydroxyl radicals, respectively, compared to 48.07 and 14.42 µmol L(-1) ). Additionally, neolignan glucoside 2 exhibited superior DNA protection against free radicals compared with various known antioxidative compounds, including p-coumaric acid, ferulic acid, vanillic acid and epigallocatechin gallate. The isolated neolignan glucosides from sugarcane molasses are able to protect DNA from oxidative damage caused by free radicals. This is the first identification of these two compounds in sugarcane molasses. The sugarcane molasses can therefore be used as potential nutraceutical preventative agents, and the findings may foster the utilization of this by-product as a bioresource-based product. © 2015 Society of Chemical Industry. Copyright © 2015 Society of Chemical Industry.

  9. Expression of cholesteryl glucoside by heat shock in human fibroblasts

    PubMed Central

    Kunimoto, Shohko; Kobayashi, Tetsuyuki; Kobayashi, Susumu; Murakami-Murofushi, Kimiko

    2000-01-01

    ABSTRACT We investigated the heat-induced alteration of glycolipids in human cultured cells, TIG-3 fibroblasts, to show the expression of steryl glucoside by heat shock. A glycolipid band was detected on a thin-layer chromatography plate in lipid extracts from TIG-3 cells exposed to high temperature (42°C) for 15 and 30 minutes, while it was hardly detectable without heat shock. Both cholesterol and glucose were almost exclusively detected by gas liquid chromatography as degradation products of the lipid. The structure of the lipid molecule was elucidated by electrospray mass spectrometry to be a cholesteryl glucoside. This is the first report to show the occurrence of a steryl glucoside in mammalian cells, and this substance is considered to have a significant role in heat shock responses in mammalian cells. PMID:10701833

  10. Cassava Plants with a Depleted Cyanogenic Glucoside Content in Leaves and Tubers. Distribution of Cyanogenic Glucosides, Their Site of Synthesis and Transport, and Blockage of the Biosynthesis by RNA Interference Technology1

    PubMed Central

    Jørgensen, Kirsten; Bak, Søren; Busk, Peter Kamp; Sørensen, Charlotte; Olsen, Carl Erik; Puonti-Kaerlas, Johanna; Møller, Birger Lindberg

    2005-01-01

    Transgenic cassava (Manihot esculenta Crantz, cv MCol22) plants with a 92% reduction in cyanogenic glucoside content in tubers and acyanogenic (<1% of wild type) leaves were obtained by RNA interference to block expression of CYP79D1 and CYP79D2, the two paralogous genes encoding the first committed enzymes in linamarin and lotaustralin synthesis. About 180 independent lines with acyanogenic (<1% of wild type) leaves were obtained. Only a few of these were depleted with respect to cyanogenic glucoside content in tubers. In agreement with this observation, girdling experiments demonstrated that cyanogenic glucosides are synthesized in the shoot apex and transported to the root, resulting in a negative concentration gradient basipetal in the plant with the concentration of cyanogenic glucosides being highest in the shoot apex and the petiole of the first unfolded leaf. Supply of nitrogen increased the cyanogenic glucoside concentration in the shoot apex. In situ polymerase chain reaction studies demonstrated that CYP79D1 and CYP79D2 were preferentially expressed in leaf mesophyll cells positioned adjacent to the epidermis. In young petioles, preferential expression was observed in the epidermis, in the two first cortex cell layers, and in the endodermis together with pericycle cells and specific parenchymatic cells around the laticifers. These data demonstrate that it is possible to drastically reduce the linamarin and lotaustralin content in cassava tubers by blockage of cyanogenic glucoside synthesis in leaves and petioles. The reduced flux to the roots of reduced nitrogen in the form of cyanogenic glucosides did not prevent tuber formation. PMID:16126856

  11. Coumaroyl Iridoids and a Depside from Cranberry (Vaccinium macrocarpon)

    PubMed Central

    Turner, Allison; Chen, Shao-Nong; Nikolic, Dejan; van Breemen, Richard; Farnsworth, Norman R.; Pauli, Guido F.

    2006-01-01

    Cranberry (Vaccinium macrocarpon Ait., Ericaceae) juice has been used for urinary tract infections for approximately 50 years. Recent research suggests that this botanical blocks adherence of pathogenic E. coli to urinary tract cells, thus preventing infection. While current evidence indicates that proanthocyanidins are responsible for this activity, these compounds may not reach the urinary tract, thus further investigation is warranted. Fractionation of cranberry juice concentrate was guided by a recently published antiadherence assay, and the resulting fractions were phytochemically characterized. Two new coumaroyl iridoid glycosides, 10-p-trans- (1) and 10-p-cis-coumaroyl-1S-dihydromonotropein (2), and a depside, 2-O-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxyphenylmethylacetate (3) were isolated, and although these compounds did not have antiadherent activity in isolation, they might constitute a new group of marker compounds for this active fraction of cranberry. PMID:17269823

  12. Coumaroyl iridoids and a depside from cranberry (Vaccinium macrocarpon).

    PubMed

    Turner, Allison; Chen, Shao-Nong; Nikolic, Dejan; van Breemen, Richard; Farnsworth, Norman R; Pauli, Guido F

    2007-02-01

    Cranberry (Vaccinium macrocarpon) juice has been used for urinary tract infections for approximately 50 years. Recent research suggests that this botanical blocks adherence of pathogenic E. coli to urinary tract cells, thus preventing infection. While current evidence indicates that proanthocyanidins are responsible for this activity, these compounds may not reach the urinary tract; thus further investigation is warranted. Fractionation of cranberry juice concentrate was guided by a recently published antiadherence assay, and the resulting fractions were phytochemically characterized. Two new coumaroyl iridoid glycosides, 10-p-trans- (1) and 10-p-cis-coumaroyl-1S-dihydromonotropein (2), and a depside, 2-O-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxyphenylmethylacetate (3), were isolated, and although these compounds did not have antiadherent activity in isolation, they might constitute a new group of marker compounds for this active fraction of cranberry.

  13. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides.

    PubMed

    Wang, Huimin; Yang, Yan; Lin, Lin; Zhou, Wenlong; Liu, Minzhi; Cheng, Kedi; Wang, Wei

    2016-08-04

    Glycosylation of flavonoids is a promising approach to improve the pharmacokinetic properties and biological activities of flavonoids. Recently, many efforts such as enzymatic biocatalysis and the engineered Escherichia coli biotransformation have increased the production of flavonoid glucosides. However, the low yield of flavonoid glucosides can not meet the increasing demand for human medical and dietary needs. Saccharomyces cerevisiae is a generally regarded as safe (GRAS) organism that has several attractive characteristics as a metabolic engineering platform for the production of flavonoid glucosides. However, endogenous glucosidases of S. cerevisiae as a whole-cell biocatalyst reversibly hydrolyse the glucosidic bond and hinder the biosynthesis of the desired products. In this study, a model flavonoid, scutellarein, was used to exploit how to enhance the production of flavonoid glucosides in the engineered S. cerevisiae. To produce flavonoid glucosides, three flavonoid glucosyltransferases (SbGTs) from Scutellaria baicalensis Georgi were successfully expressed in E. coli, and their biochemical characterizations were identified. In addition, to synthesize the flavonoid glucosides in whole-cell S. cerevisiae, SbGT34 was selected for constructing the engineering yeast. Three glucosidase genes (EXG1, SPR1, YIR007W) were knocked out using homologous integration, and the EXG1 gene was determined to be the decisive gene of S. cerevisiae in the process of hydrolysing flavonoid glucosides. To further enhance the potential glycosylation activity of S. cerevisiae, two genes encoding phosphoglucomutase and UTP-glucose-1-phosphate uridylyltransferase involved in the synthetic system of uridine diphosphate glucose were over-expressed in S. cerevisiae. Consequently, approximately 4.8 g (1.2 g/L) of scutellarein 7-O-glucoside (S7G) was produced in 4 L of medium after 54 h of incubation in a 10-L fermenter while being supplied with ~3.5 g of scutellarein. The engineered

  14. Gynecological efficacy and chemical investigation of Vitex agnus-castus L. fruits growing in Egypt.

    PubMed

    Ibrahim, N A; Shalaby, A S; Farag, R S; Elbaroty, G S; Nofal, S M; Hassan, E M

    2008-04-15

    Flavonoid glycosides, orientin and apigenin 3, 8-di-C-glycosides in addition to, iridoid compound, aucubin were isolated from the ethanolic extract of Vitex agnus-castus fruits. Their structures were identified on the basis of the spectroscopic data. The estrogenic activity of the ethanolic extract in two dose levels 0.6 and 1.2 g kg(-1) per body weight (b.w.) was studied by the vaginal smear, and uterine weight methods for normal and ovariectomized female rats. The extract induced significant increase in the uterine weight of ovariectomized rats at two dose levels comparable to that of control group. The percentages of the total average number of scores were increased significantly too. Significant increases in plasma progesterone and total estrogens levels were shown at the two dose levels when compared to that of control group. On the other side, the extract induced significant reduction in luteinizing and plasma prolactin hormones.

  15. Light and Nutrient Dependent Responses in Secondary Metabolites of Plantago lanceolata Offspring Are Due to Phenotypic Plasticity in Experimental Grasslands

    PubMed Central

    Miehe-Steier, Annegret; Roscher, Christiane; Reichelt, Michael; Gershenzon, Jonathan; Unsicker, Sybille B.

    2015-01-01

    A few studies in the past have shown that plant diversity in terms of species richness and functional composition can modify plant defense chemistry. However, it is not yet clear to what extent genetic differentiation of plant chemotypes or phenotypic plasticity in response to diversity-induced variation in growth conditions or a combination of both is responsible for this pattern. We collected seed families of ribwort plantain (Plantago lanceolata) from six-year old experimental grasslands of varying plant diversity (Jena Experiment). The offspring of these seed families was grown under standardized conditions with two levels of light and nutrients. The iridoid glycosides, catalpol and aucubin, and verbascoside, a caffeoyl phenylethanoid glycoside, were measured in roots and shoots. Although offspring of different seed families differed in the tissue concentrations of defensive metabolites, plant diversity in the mothers' environment did not explain the variation in the measured defensive metabolites of P. lanceolata offspring. However secondary metabolite levels in roots and shoots were strongly affected by light and nutrient availability. Highest concentrations of iridoid glycosides and verbascoside were found under high light conditions, and nutrient availability had positive effects on iridoid glycoside concentrations in plants grown under high light conditions. However, verbascoside concentrations decreased under high levels of nutrients irrespective of light. The data from our greenhouse study show that phenotypic plasticity in response to environmental variation rather than genetic differentiation in response to plant community diversity is responsible for variation in secondary metabolite concentrations of P. lanceolata in the six-year old communities of the grassland biodiversity experiment. Due to its large phenotypic plasticity P. lanceolata has the potential for a fast and efficient adjustment to varying environmental conditions in plant communities of

  16. Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives

    PubMed Central

    Pandey, Ramesh Prasad; Parajuli, Prakash; Shin, Ju Yong; Lee, Jisun; Lee, Seul; Hong, Young-Soo; Park, Yong Il; Kim, Joong Su

    2014-01-01

    A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4′-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4′-O-β-d-galactoside, resveratrol 4′-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides. PMID:25239890

  17. Effect of Morinda citrifolia fruit extract and its iridoid glycosides on blood fluidity.

    PubMed

    Murata, Kazuya; Abe, Yumi; Futamura-Masuda, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Deng, Shixin; Matsuda, Hideaki

    2014-07-01

    The aim of this study was to investigate the effect of Morinda citrifolia fruit on blood fluidity. M. citrifolia fruit extract (MCF-ext) was investigated for its influence on blood aggregation and fibrinolysis. MCF-ext inhibited polybrene-induced erythrocyte aggregation and thrombin activity. The fibrinolytic activity of MCF-ext, in the euglobulin lysis time test and fibrin plate assay, is reported here for the first time. One of the active compounds was an iridoid glycoside, asperulosidic acid. The results indicated that MCF-ext is a potentially useful health food which is capable of improving blood flow and preventing lifestyle-related diseases.

  18. Oligomeric secoiridoid glucosides from Jasminum abyssinicum.

    PubMed

    Gallo, Francesca Romana; Palazzino, Giovanna; Federici, Elena; Iurilli, Raffaella; Monache, Franco Delle; Chifundera, Kusamba; Galeffi, Corrado

    2006-03-01

    From the root bark of Jasminum abyssinicum (Oleaceae) collected in Congo was isolated tree oligomeric secoiridoid glucosides named craigosides A-C. The three compounds are esters of a cyclopentanoid monoterpene with an iridane skeleton, esterified with three, two and two, respectively, units of oleoside 11-methyl ester. The structures were elucidated by spectroscopic methods and chemical correlations.

  19. A monoterpene glucoside and three megastigmane glycosides from Juniperus communis var. depressa.

    PubMed

    Nakanishi, Tsutomu; Iida, Naoki; Inatomi, Yuka; Murata, Hiroko; Inada, Akira; Murata, Jin; Lang, Frank A; Iinuma, Munekazu; Tanaka, Toshiyuki; Sakagami, Yoshikazu

    2005-07-01

    A new monoterpene glucoside (1) and three new natural megastigmane glycosides (2-4) were isolated along with a known megastigmane glucoside (5) from twigs with leaves of Juniperus communis var. depressa (Cupressaceae) collected in Oregon, U.S.A., and their structures were determined on the basis of spectral and chemical evidence. In addition, the antibacterial activities of the isolated components against Helicobacter pylori were also investigated.

  20. Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077

    PubMed Central

    Michlmayr, Herbert; Varga, Elisabeth; Lupi, Francesca; Malachová, Alexandra; Hametner, Christian; Berthiller, Franz; Adam, Gerhard

    2017-01-01

    Zearalenone (ZEN) is an estrogenic mycotoxin occurring in Fusarium-infected cereals. Glucosylation is an important plant defense mechanism and generally reduces the acute toxicity of mycotoxins to humans and animals. Toxicological information about ZEN-glucosides is limited due to the unavailability of larger amounts required for animal studies. HvUGT14077, a recently-validated ZEN-conjugating barley UDP-glucosyltransferase was expressed in Escherichia coli, affinity purified, and characterized. HvUGT14077 possesses high affinity (Km = 3 µM) and catalytic efficiency (kcat/Km = 190 s−1·mM−1) with ZEN. It also efficiently glucosylates the phase-I ZEN-metabolites α-zearalenol and β-zearalenol, with kcat/Km of 40 and 74 s−1·mM−1, respectively. HvUGT14077 catalyzes O-glucosylation at C-14 and C-16 with preference of 14-glucoside synthesis. Furthermore, relatively slow consecutive formation of 14,16-di-glucosides was observed; their structures were tentatively identified by mass spectrometry and for ZEN-14,16-di-glucoside confirmed by nuclear magnetic resonance spectroscopy. Recombinant HvUGT14077 allowed efficient preparative synthesis of ZEN-glucosides, yielding about 90% ZEN-14-glucoside and 10% ZEN-16-glucoside. The yield of ZEN-16-glucoside could be increased to 85% by co-incubation with a β-glucosidase highly selective for ZEN-14-glucoside. Depletion of the co-substrate UDP-glucose was counteracted by a sucrose synthase based regeneration system. This strategy could also be of interest to increase the yield of minor glucosides synthesized by other glucosyltransferases. PMID:28208765

  1. Iridoids from Carbohydrates via Pauson-Khand Reaction: Synthesis of Advanced Highly Oxygenated Cyclopentane-Annulated Pyranosides from D-Glucal Derivatives.

    PubMed

    Marco-Contelles, José; Ruiz-Caro, Juliana

    1999-10-29

    The Pauson-Khand reaction on suitable 4-oxa-hept-1-en-6-ynes (1, 17) obtained from 3,4,6-tri-O-acetyl-D-glucal gives the cyclopentane-annulated pyranosides (2, 18) that can be efficiently and stereoselectivelly transformed into chiral, advanced, highly oxygenated intermediates (10, 16, 24) for the synthesis of iridoid aglycones.

  2. Simultaneous determination of citrus limonoid aglycones and glucosides by high performance liquid chromatography.

    PubMed

    Vikram, Amit; Jayaprakasha, G K; Patil, Bhimanagouda S

    2007-05-08

    High performance liquid chromatography (HPLC) method has been developed for simultaneous quantification of limonoid aglycones and glucosides on a reversed phase C18 column using a binary solvent system, coupled with diode array detector. Seven limonoids such as limonin, nomilin, isolimonic acid, ichangin, isoobacunoic acid, limonin 17-beta-D glucopyranoside and deacetyl nomilinic acid 17-beta-D glucopyranoside were separated and detected at 210 nm. Furthermore, limonoids were separated, identified and quantified in four varieties of citrus fruits and seeds using developed method. Limonin and limonin glucoside were found to be the predominant limonoid aglycone and glucoside, respectively, in all tested samples. The sensitivity of the method was found to be 0.25-0.50 microg for tested limonoids.

  3. Stability of DON and DON-3-glucoside during baking as affected by the presence of food additives.

    PubMed

    Vidal, Arnau; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2018-03-01

    The mycotoxin deoxynivalenol (DON) is one of the most common mycotoxins of cereals worldwide, and its occurrence has been widely reported in raw wheat. The free mycotoxin form is not the only route of exposure; modified forms can also be present in cereal products. Deoxynivalenol-3-glucoside (DON-3-glucoside) is a common DON plant conjugate. The mycotoxin concentration could be affected by food processing; here, we studied the stability of DON and DON-3-glucoside during baking of small doughs made from white wheat flour and other ingredients. A range of common food additives and ingredients were added to assess possible interference: ascorbic acid (E300), citric acid (E330), sorbic acid (E200), calcium propionate (E282), lecithin (E322), diacetyltartaric acid esters of fatty acid mono- and diglycerides (E472a), calcium phosphate (E341), disodium diphosphate (E450i), xanthan gum (E415), polydextrose (E1200), sorbitol (E420i), sodium bicarbonate (E500i), wheat gluten and malt flour. The DON content was reduced by 40%, and the DON-3-glucoside concentration increased by >100%, after baking for 20 min at 180°C. This confirmed that DON and DON-3-glucoside concentrations can vary during heating, and DON-3-glucoside could even increase after baking. However, DON and DON-3-glucoside are not affected significantly by the presence of the food additives tested.

  4. Dianthosaponins A-F, triterpene saponins, flavonoid glycoside, aromatic amide glucoside and γ-pyrone glucoside from Dianthus japonicus.

    PubMed

    Nakano, Takahiro; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki

    2011-01-01

    From aerial parts of Dianthus japonicus, six new and seven known oleanane-type triterpene saponins were isolated. The structures of the new saponins, named dianthosaponins A-F, were elucidated by means of high resolution mass spectrometry, and extensive inspection of one- and two-dimensional NMR spectroscopic data. A new C-glycosyl flavone, a glycosidic derivative of anthranilic acid amide and a maltol glucoside were also isolated.

  5. Genetic Screening Identifies Cyanogenesis-Deficient Mutants of Lotus japonicus and Reveals Enzymatic Specificity in Hydroxynitrile Glucoside Metabolism[W][OA

    PubMed Central

    Takos, Adam; Lai, Daniela; Mikkelsen, Lisbeth; Abou Hachem, Maher; Shelton, Dale; Motawia, Mohammed Saddik; Olsen, Carl Erik; Wang, Trevor L.; Martin, Cathie; Rook, Fred

    2010-01-01

    Cyanogenesis, the release of hydrogen cyanide from damaged plant tissues, involves the enzymatic degradation of amino acid–derived cyanogenic glucosides (α-hydroxynitrile glucosides) by specific β-glucosidases. Release of cyanide functions as a defense mechanism against generalist herbivores. We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled. Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the β-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related β-glucosidase, BGD4, were identified. This indicated that BGD4 plays no role in cyanogenesis in L. japonicus in vivo. Biochemical analysis confirmed that BGD4 cannot hydrolyze linamarin or lotaustralin and in L. japonicus is specific for breakdown of related hydroxynitrile glucosides, such as rhodiocyanoside A. By contrast, BGD2 can hydrolyze both cyanogenic glucosides and rhodiocyanosides. Our genetic analysis demonstrated specificity in the catabolic pathways for hydroxynitrile glucosides and implied specificity in their biosynthetic pathways as well. In addition, it has provided important tools for elucidating and potentially modifying cyanogenesis pathways in plants. PMID:20453117

  6. Regioselective formation of quercetin 5-O-glucoside from orally administered quercetin in the silkworm, Bombyx mori.

    PubMed

    Hirayama, Chikara; Ono, Hiroshi; Tamura, Yasumori; Konno, Kotaro; Nakamura, Masatoshi

    2008-03-01

    The cocoons of some races of the silkworm, Bombyx mori, have been shown to contain 5-O-glucosylated flavonoids, which do not occur naturally in the leaves of their host plant, mulberry (Morus alba). Thus, dietary flavonoids could be biotransformed in this insect. In this study, we found that after feeding silkworms a diet rich in the flavonol quercetin, quercetin 5-O-glucoside was the predominant metabolite in the midgut tissue, while quercetin 5,4'-di-O-glucoside was the major constituent in the hemolymph and silk glands. UDP-glucosyltransferase (UGT) in the midgut could transfer glucose to each of the hydroxyl groups of quercetin, with a preference for formation of 5-O-glucoside, while quercetin 5,4'-di-O-glucoside was predominantly produced if the enzyme extracts of either the fat body or silk glands were incubated with quercetin 5-O-glucoside and UDP-glucose. These results suggest that dietary quercetin was glucosylated at the 5-O position in the midgut as the first-pass metabolite of quercetin after oral absorption, then glucosylated at the 4'-O position in the fat body or silk glands. The 5-O-glucosylated flavonoids retained biological activity in the insect, since the total free radical scavenging capacity of several tissues increased after oral administration of quercetin.

  7. Teucrium polium phenylethanol and iridoid glycoside characterization and flavonoid inhibition of biofilm-forming Staphylococcus aureus.

    PubMed

    Elmasri, Wael A; Yang, Tianjiao; Tran, Phat; Hegazy, Mohamed-Elamir F; Hamood, Abdul N; Mechref, Yehia; Paré, Paul W

    2015-01-23

    The chemical composition and biofilm regulation of 15 metabolites from Teucrium polium are reported. Compounds were isolated from a CH2Cl2-MeOH extract of the aerial parts of the plant and included iridoid and phenylethanol glycosides and a monoterpenoid, together with nine known compounds. The structures were elucidated based on standard spectroscopic (UV, (1)H and (13)C NMR), 2D NMR ((1)H-(1)H COSY, HMQC, HMBC, and NOESY), and/or LC-ESIMS/MS data analyses. Inhibition of the biofilm-forming strain Staphylococcus aureus was observed with exposure to compounds 7 and 8.

  8. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore.

    PubMed

    Zagrobelny, Mika; Olsen, Carl Erik; Pentzold, Stefan; Fürstenberg-Hägg, Joel; Jørgensen, Kirsten; Bak, Søren; Møller, Birger Lindberg; Motawia, Mohammed Saddik

    2014-01-01

    Considering the staggering diversity of bioactive natural products present in plants, insects are only able to sequester a small number of phytochemicals from their food plants. The mechanisms of how only some phytochemicals are sequestered and how the sequestration process takes place remains largely unknown. In this study the model system of Zygaena filipendulae (Lepidoptera) and their food plant Lotus corniculatus is used to advance the knowledge of insect sequestration. Z. filipendulae larvae are dependent on sequestration of the cyanogenic glucosides linamarin and lotaustralin from their food plant, and have a much lower fitness if reared on plants without these compounds. This study investigates the fate of the cyanogenic glucosides during ingestion, sequestration in the larvae, and in the course of insect ontogeny. To this purpose, double-labeled linamarin and lotaustralin were chemically synthesized carrying two stable isotopes, a (2)H labeled aglucone and a (13)C labeled glucose moiety. In addition, a small amount of (14)C was incorporated into the glucose residue. The isotope-labeled compounds were applied onto cyanogenic L. corniculatus leaves that were subsequently presented to the Z. filipendulae larvae. Following ingestion by the larvae, the destiny of the isotope labeled cyanogenic glucosides was monitored in different tissues of larvae and adults at selected time points, using radio-TLC and LC-MS analyses. It was shown that sequestered compounds are taken up intact, contrary to earlier hypotheses where it was suggested that the compounds would have to be hydrolyzed before transport across the gut. The uptake from the larval gut was highly stereo selective as the β-glucosides were retained while the α-glucosides were excreted and recovered in the frass. Sequestered compounds were rapidly distributed into all analyzed tissues of the larval body, partly retained throughout metamorphosis and transferred into the adult insect where they were

  9. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.)

    PubMed Central

    Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won

    2014-01-01

    Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4′-diglucoside and quercetin-4′-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products. PMID:26150744

  10. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.).

    PubMed

    Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won

    2015-07-01

    Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4'-diglucoside and quercetin-4'-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products.

  11. The unusual canangafruticosides A-E: five monoterpene glucosides, two monoterpenes and a monoterpene glucoside diester of the aryldihydronaphthalene lignan dicarboxylic acid from leaves of Cananga odorata var. fruticosa.

    PubMed

    Nagashima, Jiro; Matsunami, Katsuyoshi; Otsuka, Hideaki; Lhieochaiphant, Duangporn; Lhieochaiphant, Sorasak

    2010-09-01

    From the leaves of Cananga odorata var. fruticosa, five unusual monoterpene glucosides, named canangafruticosides A-E (1-5), along with two unusual non-glucosidic monoterpenes (6, 7) were isolated. An aryldihydronaphthalene-type lignan dicarboxylate (8) was also isolated, with two moles of canangafruticoside A (1) on its ester moiety. This lignan also showed strong blue fluorescence emission under basic conditions. The structures of these compounds were elucidated by means of spectroscopic methods, with their absolute configurations determined by application of the modified Mosher's method to a compound chemically derived from canangafruticoside E. (c) 2010 Elsevier Ltd. All rights reserved.

  12. A new 5-alkylresorcinol glucoside derivative from Cybianthus magnus.

    PubMed

    Cabanillas, B; Vásquez-Ocmín, P; Zebiri, I; Rengifo, E; Sauvain, M; Le, H L; Vaisberg, A; Voutquenne-Nazabadioko, L; Haddad, M

    2016-01-01

    One new 5-alkylresorcinol glucoside (1) was isolated from leaves of Cybianthus magnus, along with 12 known compounds (2-13), isolated from four plants belonging to Myrsinaceae family. Their structures were determined on the basis of spectroscopic analysis and by comparison of their spectral data with those reported in the literature. Among the tested molecules, only compound 2 displayed a strong cytotoxic activity with IC50 values ranging between 22 and 100 μM for all cell lines tested. One new 5-alkylresorcinol glucoside (1) was isolated from leaves of Cybianthus magnus, along with 12 known compounds, isolated from four plants belonging to Myrsinaceae family (2, 3 isolated from C. magnus; 4-7, 10 and 11 isolated from Myrsine latifolia; 4, 8 and 9 isolated from Myrsine sessiflora; 6, 7, 10, 12 and 13 isolated from Myrsine congesta). Their structures were determined on the basis of spectroscopic analysis and by comparison of their spectral data with those reported in the literature. So far, only nine 5-alkylresorcinol glucosides were isolated from leaves of Grevillea robusta. Since resorcinols are known to exhibit strong cytotoxic activity, compounds 1 and 2 were tested against cell lines 3T3, H460, DU145 and MCF-7 for cytotoxicity in vitro and compounds 3-13 were tested for their antileishmanial activity. Compound 2 displayed a strong cytotoxic activity with IC50 values ranging between 22 and 100 μM for all tested cell lines. Compounds 3-13 were not active against Leishmania amazonensis amastigotes.

  13. Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway.

    PubMed

    Höfer, René; Dong, Lemeng; André, François; Ginglinger, Jean-François; Lugan, Raphael; Gavira, Carole; Grec, Sebastien; Lang, Gerhard; Memelink, Johan; Van der Krol, Sander; Bouwmeester, Harro; Werck-Reichhart, Danièle

    2013-11-01

    The geraniol-derived (seco)iridoid skeleton is a precursor for a large group of bioactive compounds with diverse therapeutic applications, including the widely used anticancer molecule vinblastine. Despite of this economic prospect, the pathway leading to iridoid biosynthesis from geraniol is still unclear. The first geraniol hydroxylation step has been reported to be catalyzed by cytochrome P450 enzymes such as CYP76B6 from Catharanthus roseus and CYP76C1 from Arabidopsis thaliana. In the present study, an extended functional analysis of CYP76 family members was carried-out to identify the most effective enzyme to be used for pathway reconstruction. This disproved CYP76C1 activity and led to the characterization of CYP76C4 from A. thaliana as a geraniol 9- or 8-hydroxylase. CYP76B6 emerged as a highly specialized multifunctional enzyme catalyzing two sequential oxidation steps leading to the formation of 8-oxogeraniol from geraniol. This dual function was confirmed in planta using a leaf-disc assay. The first step, geraniol hydroxylation, was very efficient and fast enough to outcompete geraniol conjugation in plant tissues. When the enzyme was expressed in leaf tissues, 8-oxogeraniol was converted into further oxidized and/or reduced compounds in the absence of the next enzyme of the iridoid pathway. Copyright © 2013 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Chemical behavior of methylpyranomalvidin-3-O-glucoside in aqueous solution studied by NMR and UV-visible spectroscopy.

    PubMed

    Oliveira, Joana; Petrov, Vesselin; Parola, A Jorge; Pina, Fernando; Azevedo, Joana; Teixeira, Natércia; Brás, Natércia F; Fernandes, Pedro A; Mateus, Nuno; Ramos, Maria João; de Freitas, Victor

    2011-02-17

    In the present work, the proton-transfer reactions of the methylpyranomalvidin-3-O-glucoside pigment in water with different pH values was studied by NMR and UV-visible spectroscopies. The results showed four equilibrium forms: the methylpyranomalvidin-3-O-glucoside cation, the neutral quinoidal base, the respective anionic quinoidal base, and a dianionic base unprotonated at the methyl group. According to the NMR data, it seems that for methylpyranomalvidin-3-O-glucoside besides the acid-base equilibrium between the pyranoflavylium cation and the neutral quinoidal base, a new species is formed at pD 4.88-6.10. This is corroborated by the appearance of a new set of signals in the NMR spectrum that may be assigned to the formation of hemiketal/cis-chalcone species to a small extent. The two ionization constants (pK(a1) and pK(a2)) obtained by both methods (NMR and UV-visible) for methylpyranomalvidin-3-O-glucoside are in agreement (pK(a1) = 5.17 ± 0.03; pK(a2) = 8.85 ± 0.08; and pK(a1) = 4.57 ± 0.07; pK(a2) = 8.23 ± 0.04 obtained by NMR and UV-visible spectroscopies, respectively). Moreover, the fully dianionic unprotonated form (at the methyl group) of the methylpyranomalvidin-3-O-glucoside is converted slowly into a new structure that displays a yellow color at basic pH. On the basis of the results obtained through LC-MS and NMR, the proposed structure was found to correspond to the flavonol syringetin-3-glucoside.

  15. Measurement and Control Strategies for Sterol Glucosides to Improve Biodiesel Quality: Isolation and Characterization of Acylated Steryl Glucosides in Oilseed Crops of the Pacific Northwest

    DOT National Transportation Integrated Search

    2010-01-01

    Acylated steryl glucosides (ASG), a form of phytosterols, have been identified in a variety of agricultural products, including the oilseeds of soybean and rapeseed. Currently, there are limited data available on the quality and quantity of phytoster...

  16. A novel type of highly effective nonionic gemini alkyl O-glucoside surfactants: a versatile strategy of design.

    PubMed

    Liu, Songbai; Sang, Ruocheng; Hong, Shan; Cai, Yujing; Wang, Hua

    2013-07-09

    A novel type of highly effective gemini alkyl glucosides has been rationally designed and synthesized. The gemini surfactants have been readily prepared by glycosylation of the gemini alkyl chains that are synthesized with regioselective ring-opening of ethylene glycol epoxides by the alkyl alcohols. The new gemini alkyl glucosides exhibit significantly better surface activity than the known results. Then rheological, DLS, and TEM studies have revealed the intriguing self-assembly behavior of the novel gemini surfactants. This study has proved the effectiveness of the design of gemini alkyl glucosides which is modular, extendable, and synthetically simple. The new gemini surfactants have great potential as nano carriers in drug and gene delivery.

  17. Microtropiosides A-F: ent-Labdane diterpenoid glucosides from the leaves of Microtropis japonica (Celastraceae).

    PubMed

    Koyama, Yuka; Matsunami, Katsuyoshi; Otsuka, Hideaki; Shinzato, Takakazu; Takeda, Yoshio

    2010-04-01

    From a 1-BuOH-soluble fraction of a MeOH extract of the leaves of Microtropis japonica, collected in the Okinawa islands, six ent-labdane glucosides, named microtropiosides A-F, were isolated together with one known acyclic sesquiterpene glucoside. Their structures were elucidated by a combination of spectroscopic analyses, and their absolute configurations determined by application of the beta-D-glucopyranosylation-induced shift-trend rule in (13)C NMR spectroscopy and the modified Mosher's method. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Xanthurenic acid 8-O-beta-D-glucoside, a novel tryptophan metabolite in eye-color mutants of Drosophila melanogaster.

    PubMed

    Ferré, J; Real, M D; Ménsua, J L; Jacobson, K B

    1985-06-25

    An unknown fluorescent metabolite has been isolated from heads of eye-color mutants of Drosophila melanogaster. Only a few mutations cause it to accumulate, viz. cardinal (cd), dark red brown (drb), Henna-recessive (Hnr), purple (pr), Punch2 (Pu2), Punch-Grape (PuGr), and scarlet (st). After purification by ion-exchange chromatography, the spectroscopic, chemical, and enzymatic analyses revealed that it is a novel quinoline derivative: xanthurenic acid 8-O-beta-D-glucoside. Feeding experiments suggest that this glucoside is synthesized from 3-hydroxykynurenine and that free xanthurenic acid is not a precursor. The results from the analysis for its occurrence in double mutants, together with the fact that xanthurenic acid 8-glucoside share the same precursor as xanthurenic acid and xanthommatin, suggest that xanthurenic acid 8-glucoside formation is closely related to the regulation of the last step in the biosynthesis of xanthommatin.

  19. Ascorbic acid glucoside reduces neurotoxicity and glutathione depletion in mouse brain induced by nitrotriazole radiosensitazer.

    PubMed

    Cherdyntseva, Nadezda V; Ivanova, Anna A; Ivanov, Vladimir V; Cherdyntsev, Evgeny; Nair, Cherupally Krishnan Krishnan; Kagiya, Tsutomu V

    2013-01-01

    To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G) to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g) were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Administration of high (non-therapeutic) doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.

  20. Indole alkaloids and other constituents of Rauwolfia serpentina.

    PubMed

    Itoh, Atsuko; Kumashiro, Tomoko; Yamaguchi, Machiko; Nagakura, Naotaka; Mizushina, Yoshiyuki; Nishi, Toyoyuki; Tanahashi, Takao

    2005-06-01

    From the dried roots of Rauwolfia serpentina were isolated five new indole alkaloids, N(b)-methylajmaline (1), N(b)-methylisoajmaline (2), 3-hydroxysarpagine (3), yohimbinic acid (4), isorauhimbinic acid (5), a new iridoid glucoside, 7-epiloganin (6), and a new sucrose derivative, 6'-O-(3,4,5-trimethoxybenzoyl)glomeratose A (7), together with 20 known compounds. The structures of the new compounds were determined by spectroscopic and chemical means. The inhibitory activities of the selected alkaloids on topoisomerase I and II and their cytotoxicity against the human promyelocytic leukemia (HL-60) cell lines were assessed.

  1. Comparison of Stevia plants grown from seeds, cuttings and stem-tip cultures for growth and sweet diterpene glucosides.

    PubMed

    Tamura, Y; Nakamura, S; Fukui, H; Tabata, M

    1984-10-01

    The growth and sweet diterpene glucosides of Stevia plants propagated by stem-tip cultures were compared with those of the control plants propagated by seeds. There was no significant difference between the two groups both in growth and in chemical composition. As for the contents of sweet diterpene glucosides, however, the clonal plants showed significantly smaller variations than the sexually propagated plants; they were almost as homogeneous as the plants propagated by cuttings. These results suggest that the clonal propagation by stem-tip culture is an effective method of obtaining a population of uniform plants for the production of sweet diterpene glucosides.

  2. [UPLC-MS/MS determination of content of three iridoids of xingnaojing oral preparation in rat brains and study on their brain pharmacokinetics].

    PubMed

    Xu, Pan; Du, Shou-Ying; Lu, Yang; Bai, Jie; Liu, Hui-Min; Du, Qiu; Chen, Zhen-Zhen; Wang, Zhen

    2014-06-01

    To establish a UPLC-MS/MS method for the simultaneous determination of geniposide, genipin 1-O-beta-D-gentiobioside and geniposidic acid in rat brains and study the brain pharmacokinetics of the three iridoid glycosides in stroke rat after the oral administration of Xingnaojing. In this experiment, brain samples were precipitated with protein for twice. Acquity BEH C18 column was adopted, with acetonitrile-0.1% formic acid-water as the mobile phase for gradient elution. ESI source was adopted for mass spectra; multiple reaction monitoring (MRM) was conducted to detect negative ions. The time for sample analysis was 3.5 min. the results showed good linear relations among the three iridoid glycosides, with the extraction recovery between 99.6% and 114.3%, good intra- and inter-day precisions and accuracies and stability in line with the requirements. The t1/2 and MRT in the three components were similar in brains of stroke rats. Geniposide and genipin 1-O-beta-D-gentiobioside showed double peaks; where as geniposidic acid showed a single peak. In conclusion, the method is so specific, sensitive, accurate and reliable that it can be used to study the brain pharmacokinetics of Xingnaojing oral preparation.

  3. A New Iridoid Dimer and Other Constituents from the Traditional Kurdish Plant Pterocephalus nestorianus Nábělek.

    PubMed

    Abdullah, Fuad O; Hussain, Faiq H S; Clericuzio, Marco; Porta, Alessio; Vidari, Giovanni

    2017-03-01

    Accompanied by other rare compounds, a new iridoid dimer, named kurdnestorianoside (1), showing an unprecedented secologanol configuration, has been isolated for the first time from the Kurdish medicinal plant Pterocephalus nestorianus, which is used in Kurdistan for treating oral diseases and inflammation. The structure of 1 was established from 1D- and 2D-NMR spectroscopic data. Kaempferol 3-O-[3,6-di-O-(E)-p-coumaroyl]-β-d-glucopyranoside (7) showed a remarkable antiproliferative activity against several human tumor cell lines. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  4. Synthesis of 1,2-cis-2-C-branched aryl-C-glucosides via desulfurization of carbohydrate based hemithioacetals

    PubMed Central

    Mebrahtu, Fanuel M; Manana, Mandlenkosi M; Madumo, Kagiso; Sokamisa, Mokela S

    2015-01-01

    Summary 1-C and 2-C-branched carbohydrates are present as substructures in a number of biologically important compounds. Although the synthesis of such carbohydrate derivatives is extensively studied, the synthesis of 1,2-cis-2-C-branched C-, S-, and N-glycosides is less explored. In this article a synthetic strategy for the synthesis of 1,2-cis-2-C-branched-aryl-C-glucosides is reported via a hydrogenolytic desulfurization of suitably orientated carbohydrate based hemithioacetals. 1,2-cis-2-Hydroxymethyl and 2-carbaldehyde of aryl-C-glucosides have been synthesized using the current strategy in very good yields. The 2-carbaldehyde-aryl-C-glucosides have been identified as suitable substrates for the stereospecific preparation of 2,3-unsaturated-aryl-C-glycosides (Ferrier products). PMID:26124859

  5. β-Glucoside Activators of Mung Bean UDP-Glucose: β-Glucan Synthase 1

    PubMed Central

    Callaghan, Theresa; Ross, Peter; Weinberger-Ohana, Patricia; Benziman, Moshe

    1988-01-01

    n-Alkyl (C6-C12) β-d-monoglucopyranosides have been found to be highly potent activators of mung bean β-glucan synthase in vitro, increasing the Vmax of the enzyme as much as 60-fold and with Ka values as low as 10 micromolar. Activation is highly specific for the β-linked terminal glucose residue; other alkyl glycosides such as, octyl-α-glucoside, dodecyl β-maltoside, 6-lauryl sucrose, 6-lauryl glucose, which lack this structure, are ineffective as activators. Based on the similarities in their structure and effects on β-glucan synthesis under a variety of conditions, it is proposed that the alkyl β-glucosides are structural analogs of the native glucolipid activator of β-glucan synthase isolated from mung bean extracts. PMID:16666039

  6. [Effects of cornel iridoid glycoside on activity of cholinesterases in vitro].

    PubMed

    Chu, Si-Juan; Zhang, Lan; Liu, Gang; Zhou, Wen-Xia; Li, Lin

    2013-05-01

    The purpose of the present study was to investigate the effects of cornel iridoid glycoside (CIG) on the activity of cholinesterases in vitro, and to investigate the mechanism of CIG's treating Alzheimer's disease (AD). The sources of cholinesterases were prepared from human blood cells, rat brain homogenate and human blood plasma, respectively. The biochemical methods were used to detect the activity of acetylcholine esterase (AChE) and butyryl cholinesterase (BuChE) to investigate the influence of CIG on cholinesterases. The results showed that CIG inhibited the activity of AChE of human blood cells and rat brain homogenate, with the 50% inhibition rate (IC50) of 1.6 g . L-1 and 3.3 g . L-1, respectively; and the inhibition of AChE of CIG is reversible. CIG also inhibited the activity of BuChE of human blood plasma, with the IC50 of 2.9 g . L-1. In conclusion, CIG can inhibit the activity of AChE and BuChE in vitro, which may be one of the mechanisms of CIG to treat AD.

  7. A Comparative Analysis of the Photo-Protective Effects of Soy Isoflavones in Their Aglycone and Glucoside Forms

    PubMed Central

    Iovine, Barbara; Iannella, Maria Luigia; Gasparri, Franco; Giannini, Valentina; Monfrecola, Giuseppe; Bevilacqua, Maria Assunta

    2012-01-01

    Isoflavones exist in nature predominantly as glucosides such as daidzin or genistin and are rarely found in their corresponding aglycone forms daidzein and genistein. The metabolism and absorption of isoflavones ingested with food is well documented, but little is known about their use as topical photo-protective agents. The aim of this study was to investigate in a comparative analysis the photo-protective effects of isoflavones in both their aglycone and glucoside forms. In human skin fibroblasts irradiated with 60 mJ/cm2 ultraviolet B (UVB), we measured the expression levels of COX-2 and Gadd45, which are involved in inflammation and DNA repair, respectively. We also determined the cellular response to UVB-induced DNA damage using the comet assay. Our findings suggest that both the isoflavone glucosides at a specific concentration and combination with an aglycone mixture exerted an anti-inflammatory and photo-protective effect that prevented 41% and 71% of UVB-induced DNA damage, respectively. The advantages of using either isoflavone glucosides or an aglycone mixture in applications in the field of dermatology will depend on their properties and their different potential uses. PMID:23211668

  8. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside Attenuates Ischemia/Reperfusion-Induced Brain Injury in Rats by Promoting Angiogenesis.

    PubMed

    Mu, Ying; Xu, Zhaohui; Zhou, Xuanxuan; Zhang, Huinan; Yang, Qian; Zhang, Yunlong; Xie, Yanhua; Kang, Juan; Li, Feng; Wang, Siwang

    2017-05-01

    Cerebral ischemia can cause brain infarcts, which are difficult to recover due to poor angiogenesis. 2,3,5,4'-Tetrahydroxystilbene-2-O- β -D-glucoside is a natural polyphenol, has antioxidant and anti-inflammatory activity, and can protect from ischemic neuronal injury. However, little is known about the effect of 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside on brain microcirculation after stroke. This study aimed at investigating the influence of 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside on brain lesions and angiogenesis after stroke. Sprague-Dawley rats were subjected to right middle cerebral artery occlusion and treated with vehicle, nimodipine, or different doses of 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside daily beginning at 6 h post-middle cerebral artery occlusion for 14 days. The volume of cerebral infarcts, degree of neurological dysfunction, and level of microvessel density were determined longitudinally. The levels of vascular endothelial growth factor, angiopoietin 1, and angiopoietin receptor-2 expression in the brain lesions were characterized by immunohistochemistry and Western blot assays at 14 days post-middle cerebral artery occlusion. We found that 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside significantly promoted postoperative recovery in rats by minimizing the volume of cerebral infarcts and improving neurological dysfunction in a dose- and time-dependent manner. Additionally, 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside significantly increased the microvessel density in the brain and upregulated CD31 expression in ischemic penumbra, relative to that in the control. Finally, treatment with 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside significantly upregulated the relative levels of vascular endothelial growth factor, angiopoietin 1, and angiopoietin receptor-2 expression in the brain lesions of rats. Therefore, these data indicated that 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside treatment

  9. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria × ananassa).

    PubMed

    Song, Chuankui; Zhao, Shuai; Hong, Xiaotong; Liu, Jingyi; Schulenburg, Katja; Schwab, Wilfried

    2016-03-01

    Physiologically active acylphloroglucinol (APG) glucosides were recently found in strawberry (Fragaria sp.) fruit. Although the formation of the APG aglycones has been clarified, little is known about APG glycosylation in plants. In this study we functionally characterized ripening-related glucosyltransferase genes in Fragaria by comprehensive biochemical analyses of the encoded proteins and by a RNA interference (RNAi) approach in vivo. The allelic proteins UGT71K3a/b catalyzed the glucosylation of diverse hydroxycoumarins, naphthols and flavonoids as well as phloroglucinols, enzymatically synthesized APG aglycones and pelargonidin. Total enzymatic synthesis of APG glucosides was achieved by co-incubation of recombinant dual functional chalcone/valerophenone synthase and UGT71K3 proteins with essential coenzyme A esters and UDP-glucose. An APG glucoside was identified in strawberry fruit which has not yet been reported in other plants. Suppression of UGT71K3 activity in transient RNAi-silenced fruits led to a loss of pigmentation and a substantial decrease of the levels of various APG glucosides and an anthocyanin. Metabolite analyses of transgenic fruits confirmed UGT71K3 as a UDP-glucose:APG glucosyltransferase in planta. These results provide the foundation for the breeding of fruits with improved health benefits and for the biotechnological production of bioactive natural products. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. Sambulin A and B, non-glycosidic iridoids from Sambucus ebulus, exert significant in vitro anti-inflammatory activity in LPS-induced RAW 264.7 macrophages via inhibition of MAPKs's phosphorylation.

    PubMed

    Balkan, İrem Atay; İlter Akülke, Ayca Zeynep; Bağatur, Yeşim; Telci, Dilek; Gören, Ahmet Ceyhan; Kırmızıbekmez, Hasan; Yesilada, Erdem

    2017-07-12

    The leaves of Sambucus ebulus L. (Adoxaceae) are widely used in Turkish folk medicine particularly against inflammatory disorders. The fresh leaves after wilted over fire or the poultices prepared are directly applied externally to heal burns, edema, eczema, urticarial and abscess. Two iridoids were recently isolated (sambulin A, sambulin B) from the leaves of S. ebulus. This study aims to investigate the in vitro anti-inflammatory activities of these iridoids on LPS-induced RAW 264.7 macrophages. Raw 264.7 macrophages were treated with 12.5, 25 and 50µg/ml Sambulin A and 6.25, 12.5 and 25µg/ml Sambulin B and induced with 1µg/ml lipopolysaccaharides (LPS). Effect of the compounds on nitric oxide (NO) production and cytokines (TNFα, IL-6) were determined by Griess and ELISA assays respectively. iNOS and the phosphorylation levels of MAPKs (ERK, JNK) were examined by Western Blot. Sambulin A and sambulin B inhibited 52.82% and 72.88% of NO production at 50 and 25µg/ml concentrations respectively. The levels of iNOS were significantly decreased by both molecules, sambulin B at 25µg/ml almost completely decreased iNOS levels (97.53%). Both molecules significantly inhibited TNFα productions. However, only sambulin B inhibited IL-6 production. Consequently, it was shown that sambulin B exerted its effect through the inhibition of ERK and JNK phosphorylations. The prominent bioactivities exerted by two iridoids will contribute to explanation of the usage of S. ebulus in traditional medicine against rheumatoid diseases. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. [Pharmacokinetics of loganin, ferulic acid and stilbene glucoside in Bushen Tongluo formula in vivo].

    PubMed

    Liu, Xiang-dan; Huang, Pan; Lu, Yue-hua; Ma, Ming; Zhou, Ri-bao; Yuan, Lin-xiang; Peng, Xin-jun

    2015-06-01

    To study the pharmacokinetics characteristic of loganin, ferulic acid and stilbene glucoside in rat plasma after oral administration of Bushen Tongluo formula. The plasma samples were treated by using liquid-liquid extraction technique, the concentrations were determined by HPLC-UV. Johnson spherigel C18 column (4.6 mm x 250 mm, 5 μm) was adopted and eluted with the of mobile phase of methanol-water containing 0.01% glacial acetic acid in a gradient mode, with the flow rate at 1.0 mL x min(-1), column temperature at 30 degrees C and injection volume of 10 μL. According to the findings, loganin was determined at 235 nm, ferulic acid and stilbene glucoside were determined at 320 nm, with the sample size of 10 μL. The pharmacokinetic parameters of loganin, ferulic acid and stilbene glucoside were calculated by DAS 2. 0 software as follows: C(max) was (0.369 ± 0.042), (0.387 ± 0.071), (0.233 ± 0.044) mg x L(-1); t(max) was (0.226 ± 0.022), (0.282 ± 0.031), (0.233 ± 0.044) h; t(½β) was (6.89 ± 0.20), (10.73 ± 0.11), (6.93 ± 0.09) h; AUC(0-∞) was (1.91 ± 0.36), (3.22 ± 0.52), (1.52 ± 0.33) mg x h x L(-1); AUCO(0-t) was (1.62 ± 0.33), (2.58 ± 0.43), (1.30 ± 0.30) mg x h x L(-1); CL was (20.2 ± 4.0), (1.39 ± 0.23), (31.7 ± 6.9) L x h(-1) x kg(-1), respectively. The results showed that after the oral administration with Bushen Tongluo formula, loganin, ferulic acid and stilbene glucoside showed concentration-time curves in conformity with the two compartment model, with a rapid absorption, loganin and stilbene glucoside was excreted at a moderate speed, and ferulic acid was excreted slowly (but with the highest bioavailability). Bushen Tongluo formula can main maintain plasma concentration with three administrations everyday and so is suitable to be made into common oral preparation.

  12. Boronate affinity-based surface molecularly imprinted polymers using glucose as fragment template for excellent recognition of glucosides.

    PubMed

    Peng, Mijun; Xiang, Haiyan; Hu, Xin; Shi, Shuyun; Chen, Xiaoqing

    2016-11-25

    Rapid and efficient extraction of bioactive glycosides from complex natural origins poses a difficult challenge, and then is often inherent bottleneck for their highly utilization. Herein, we propose a strategy to fabricate boronate affinity based surface molecularly imprinted polymers (MIPs) for excellent recognition of glucosides. d-glucose was used as fragment template. Boronic acid, dynamic covalent binding with d-glucose under different pH conditions, was selected as functional monomer to improve specificity. Fe 3 O 4 solid core for surface imprinting using tetraethyl orthosilicate (TEOS) as crosslinker could control imprinted shell thickness for favorable adsorption capacity and satisfactory mass transfer rate, improve hydrophilicity, separate easily by a magnet. Model adsorption studies showed that the resulting MIPs show specific recognition of glucosides. The equilibrium data fitted well to Langmuir equation and the adsorption process could be described by pseudo-second order model. Furthermore, the MIPs were successfully applied for selective extraction of three flavonoid glucosides (daidzin, glycitin, and genistin) from soybean. Results indicated that selective extraction of glucosides from complex aqueous media based on the prepared MIPs is simple, rapid, efficient and specific. Moreover, this method opens up a universal route for imprinting saccharide with cis-diol group for glycosides recognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Physocalycoside, a new phenylethanoid glycoside from Phlomis physocalyx Hub.-Mor.

    PubMed

    Ersöz, Tayfun; Alipieva, Kalina Iv; Yalçin, Funda Nuray; Akbay, Pinar; Handjieva, Nedjalka; Dönmez, Ali A; Popov, Simeon; Caliş, Ihsan

    2003-01-01

    A new phenylethanoid tetraglycoside, physocalycoside (2), was isolated from the aerial parts of Phlomis physocalyx. Its structure was identified as 3-hydroxy-4-methoxy-beta-phenylethoxy-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)]-4-O-feruloyl-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside, on the basis of spectroscopic evidence. In addition, one known iridoid glucoside, lamiide (1) and five known phenylethanoid glycosides, wiedemannioside C (3), verbascoside (= acteoside) (4), leucosceptoside A (5), martynoside (6), and forsythoside B (7) were also characterized. Compounds 2-7 demonstrated radical scavenging properties towards the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical.

  14. Isolation of gibberellin A8-glucoside from shoot apices of Althaea rosea.

    PubMed

    Harada, H; Yokota, T

    1970-03-01

    Gibberellin A8-glucoside has been isolated from shoot apices of Althaea rosea. It showed a weak growth-promoting activity on rice seedlings and oat mesocotyl sections but did not induce germination of lettuce seeds in darkness.

  15. Iridoid-loganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): Common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation.

    PubMed

    Sozański, Tomasz; Kucharska, Alicja Z; Rapak, Andrzej; Szumny, Dorota; Trocha, Małgorzata; Merwid-Ląd, Anna; Dzimira, Stanisław; Piasecki, Tomasz; Piórecki, Narcyz; Magdalan, Jan; Szeląg, Adam

    2016-11-01

    Cardiovascular benefits of fruits are attributed mainly to their (poly)phenolic constituents, especially anthocyanins. The main aim of our study is to compare effects of iridoids and anthocyanins from one fruit on diet-induced atherosclerosis. The cornelian cherry is a native or cultivated plant that grows in many European countries, used in cuisine and folk medicine. In our previous study, we showed its constituents and proved that oral administration of lyophilized fruits to hypercholesterolemic rabbits had preventive effects on atherosclerosis through the activation of PPARα expression. In this study, we have compared the effects of the main constituents of the cornelian cherry:iridoid loganic acid and anthocyanins. Our experiment followed the model used in our previous study, in which rabbits were fed 1% cholesterol. We showed that both loganic acid (20 mg/kg b.w.) and a mixture of anthocyanins (10 mg/kg b.w.) administered orally for 60 days had a positive impact on dyslipidemia caused by cholesterol-rich diet, although the effects of anthocyanins were more pronounced. Anthocyanins decreased total and LDL-cholesterol and triglycerides and increased HDL-cholesterol. Loganic acid showed similar effects, but only the triglycerides and HDL-cholesterol changes achieved statistical significance. Anthocyanins, and to a lesser extent loganic acid, significantly decreased intima thickness and intima/media ratio in the thoracic aorta. Both substances decrease ox-LDL in the plasma. Anthocyanins significantly increased expression of PPARγ and α in the liver. Loganic acid also increased their expression, but to a lesser extent. Conversely, loganic acid showed pronounced anti-inflammatory effects, decreasing TNF-α and IL-6 activity. Our results imply that both substances have a positive effect on factors contributing to the development of diet-induced atherosclerosis. Our results also indicate the potential health benefits of fruits containing anthocyanins and iridoids

  16. Synthesis of novel anticancer iridoid derivatives and their cell cycle arrest and caspase dependent apoptosis.

    PubMed

    Pandeti, Sukanya; Sharma, Komal; Bathula, Surendar Reddy; Tadigoppula, Narender

    2014-02-15

    Nyctanthes arbortristis Linn (Oleaceae) is widely distributed in sub-Himalayan regions and southwards to Godavari, India commonly known as Harsingar and Night Jasmine. In continuation of our drug discovery programme on Indian medicinal plants, we isolated arbortristoside-A (1) and 7-O-trans-cinnamoyl 6β-hydroxyloganin (2) from the seeds of N. Arbortristis, which exhibited moderate in vitro anticancer activity. Chemical transformation of 2 led to significant improvement in the activity in derivative 8 and 15 against HepG2 (human hepatocellular carcinoma), MCF-7 (breast adenocarcinoma) cell lines. The compounds 8 and 15 were also capable of cell cycle arrest and caspase dependent apoptosis in HepG2 cell lines. These iridoid derivatives hold promise for developing safer alternatives to the marketed drugs. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Natural Occurrence of Nivalenol, Deoxynivalenol, and Deoxynivalenol-3-Glucoside in Polish Winter Wheat

    PubMed Central

    Bryła, Marcin; Ksieniewicz-Woźniak, Edyta; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata

    2018-01-01

    The presence of mycotoxins in cereal grain is a very important food safety factor. The occurrence of “masked” mycotoxins has been intensively investigated in recent years. In this study, the occurrence of nivalenol, deoxynivalenol-3-glucoside, and deoxynivalenol in 92 samples of winter wheat from Polish cultivars was determined. The frequency of the occurrence of deoxynivalenol and nivalenol in the samples was 83% and 70%, respectively. The average content of the analytes was: for deoxynivalenol 140.2 µg/kg (10.5–1265.4 µg/kg), for nivalenol 35.0 µg/kg (5.1–372.5 µg/kg). Deoxynivalenol-3-glucoside, the formation of which is connected with the biotransformation pathway in plants, was present in 27% of tested wheat samples; its average content was 41.9 µg/kg (15.8–137.5 µg/kg). The relative content of deoxynivalenol-3-glucoside (DON-3G) compared to deoxynivalenol (DON) in positive samples was 4–37%. Despite the high frequency of occurrence of these mycotoxins, the quality of wheat from the 2016 season was good. The maximum content of DON, as defined in EU regulations (1250 µg/kg), was exceeded in only one sample. Nevertheless, the presence of a glycosidic derivative of deoxynivalenol can increase the risk to food safety, as it can be hydrolyzed by intestinal microflora. PMID:29438296

  18. Determination of metabolites of diosmetin-7-O-glucoside by a newly isolated Escherichia coli from human gut using UPLC-Q-TOF/MS.

    PubMed

    Zhao, Min; Du, Leyue; Tao, Jinhua; Qian, Dawei; Shang, Er-xin; Jiang, Shu; Guo, Jianming; Liu, Pei; Su, Shu-lan; Duan, Jin-ao

    2014-11-26

    Different human intestinal bacteria were isolated and screened for their ability to transform diosmetin-7-O-glucoside. A Gram-negative anaerobic bacterium, strain 4, capable of metabolizing diosmetin-7-O-glucoside was newly isolated. Its 16S rRNA gene sequence displayed 99% similarity with that of Escherichia. Then strain 4 was identified as a species of the genus Escherichia and was named Escherichia sp. 4. Additionally, an ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technique combined with Metabolynx software method was established to screen the metabolites of diosmetin-7-O-glucoside. Comparing the retention time and MS/MS spectrum, three metabolites were detected and tentatively identified. These metabolites were acquired by four proposed metabolic pathways including dehydroxylation, deglycosylation, methylation, and acetylation. Diosmetin-7-O-glucoside was mainly bioconverted to considerable amounts of diosmetin and minor amounts of acacetin by the majority of the isolated intestinal bacteria such as Escherichia sp. 4. Subsequently, several strains could degrade acacetin to produce methylated and acetylated acacetin. The metabolites and metabolic pathways of diosmetin-7-O-glucoside by human intestinal bacterium Escherichia sp. 4 were first investigated.

  19. The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter

    PubMed Central

    Darbani, Behrooz; Motawia, Mohammed Saddik; Olsen, Carl Erik; Nour-Eldin, Hussam H.; Møller, Birger Lindberg; Rook, Fred

    2016-01-01

    Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor additionally contains a gene, SbMATE2, encoding a transporter of the multidrug and toxic compound extrusion (MATE) family, which is co-expressed with the biosynthetic genes. The predicted localisation of SbMATE2 to the vacuolar membrane was demonstrated experimentally by transient expression of a SbMATE2-YFP fusion protein and confocal microscopy. Transport studies in Xenopus laevis oocytes demonstrate that SbMATE2 is able to transport dhurrin. In addition, SbMATE2 was able to transport non-endogenous cyanogenic glucosides, but not the anthocyanin cyanidin 3-O-glucoside or the glucosinolate indol-3-yl-methyl glucosinolate. The genomic co-localisation of a transporter gene with the biosynthetic genes producing the transported compound is discussed in relation to the role self-toxicity of chemical defence compounds may play in the formation of gene clusters. PMID:27841372

  20. Isolation and purification of six iridoid glycosides from gardenia jasminoides fruit by medium-pressure liquid chromatography combined with macroporous resin chromatography.

    PubMed

    Wang, Yun; Liu, Hui; Shen, Lifeng; Yao, Lan; Ma, Yinlian; Yu, Dingrong; Chen, Jianhong; Li, Puling; Chen, Ying; Zhang, Cun

    2015-12-01

    Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium-pressure liquid chromatography combined with macroporous resin and reversed-phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high-performance liquid chromatography. After fractionation using HPD-100 column chromatography, a 30% ethanol fraction was selected based on high-performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds-deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin-1-O-β-d-gentiobioside, and geniposide-were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high-performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large-scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Neuroprotective activity of galloylated cyanogenic glucosides and hydrolysable tannins isolated from leaves of Phyllagathis rotundifolia.

    PubMed

    Tan, Hooi Poay; Wong, Daniel Zin Hua; Ling, Sui Kiong; Chuah, Cheng Hock; Kadir, Habsah Abdul

    2012-01-01

    The galloylated cyanogenic glucosides based on prunasin (1-7), gallotannins (8-14), ellagitannins (15-17), ellagic acid derivatives (18, 19) and gallic acid (20) isolated from the leaves of Phyllagathis rotundifolia (Melastomataceae) were investigated for their neuroprotective activity against hydrogen peroxide (H(2)O(2))-induced oxidative damage in NG108-15 hybridoma cell line. Among these compounds, the gallotannins and ellagitannins exhibited remarkable neuroprotective activities against oxidative damage in vitro as compared to galloylated cyanogenic glucosides and ellagic acid derivatives in a dose-dependent manner. They could be explored further as potential natural neuroprotectors in various remedies of neurodegenerative diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Metabolism of monoterpenes: early steps in the metabolism of d-neomenthyl-. beta. -D-glucoside in peppermint (Mentha piperita) rhizomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croteau, R.; Sood, V.K.; Renstroem, B.

    1984-11-01

    Previous studies have shown that the monoterpene ketone l-(G-/sup 3/H) menthone is reduced to the epimeric alcohols l-menthol and d-neomenthol in leaves of flowering peppermint (Mentha piperita L.), and that a portion of the menthol is converted to methyl acetate while the bulk of the neomenthol is transformed to neomenthyl-..beta..-D-glucoside which is then transported to the rhizome. Analysis of the disposition of l-(G)/sup 3/H)menthone applied to midstem leaves of intact flowering plants allowed the kinetics of synthesis and transport of the monoterpenyl glucoside to be determined, and gave strong indication that the glucoside was subsequently metabolized in the rhizome. Studiesmore » with d-(G-/sup 3/H)neomenthyl-..beta..-D-glucoside as substrate, using excised rhizomes or rhizome segments, confirmed the hydrolysis of the glucoside as an early step in metabolism at this site, and revealed that the terpenoid moiety was further converted to a series of ether-soluble, methanol-soluble, and water-soluble products. The conversion of menthone to the lactone, and of the lactone to more polar products, were confirmed in vivo using l-(G-/sup 3/H)menthone and l-(G-/sup 3/H)-3,4-menthone lactone as substrates. Additional oxidation products were formed in vivo via the desaturation of labeled neomenthol and/or menthone, but none of these transformations appeared to lead to ring opening of the p-menthane skeleton. Each step in the main reaction sequence, from hydrolysis of neomenthyl glucoside to lactonization of menthone, was demonstrated in cell-free extracts from the rhizomes of flowering mint plants. The lactomization step is of particular significance in providing a means of cleaving the p-methane ring to afford an acyclic carbon skeleton that can be further degraded by modifications of the well-known ..beta..-oxidation sequence. 41 references, 3 figures, 1 table.« less

  3. Comparison of Multiple Bioactive Constituents in Different Parts of Eucommia ulmoides Based on UFLC-QTRAP-MS/MS Combined with PCA.

    PubMed

    Yan, Ying; Zhao, Hui; Chen, Cuihua; Zou, Lisi; Liu, Xunhong; Chai, Chuan; Wang, Chengcheng; Shi, Jingjing; Chen, Shuyu

    2018-03-13

    Eucommia ulmoides Oilv. (EU), also called Du-zhong, is a classical traditional Chinese medicine. Its bark, leaf, and male flower are all used for medicinal purposes, called Eucommiae Cortex (EC), Eucommiae Folium (EF), and Eucommiae Flos Male (EFM). In order to study the difference in synthesis and the accumulation of metabolites in different parts of EU, a reliable method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) was developed for the simultaneous determination of a total of 21 constituents, including two lignans, 6 iridoids, 6 penylpropanoids, 6 flavonoids, and one phenol in the samples (EC, EF, and EFM). Furthermore, principal component analysis (PCA) was performed to evaluate and classify the samples according to the contents of these 21 constituents. All of the results demonstrated that the chemical compositions in EC, EF, and EFM were significantly different and the differential constituents (i.e., aucubin, geniposidic acid, chlorogenic acid, pinoresinol-di- O -β-d-glucopyranoside, geniposide, cryptochlorogenic acid, rutin, and quercetin) were remarkably associated with sample classifications. The research will provide the basic information for revealing the laws of metabolite accumulation in EC, EF, and EFM from the same origin.

  4. Measurement and Control Strategies for Sterol Glucosides to Improve Biodiesel Quality - Year 2

    DOT National Transportation Integrated Search

    2011-02-01

    This project had the objective of measuring trace compounds in biodiesel called sterol glucosides (SG) so strategies to reduce their concentration could be investigated. A MALDI-TOF-MS (matrix assisted laser desorption ionization time of flight mass ...

  5. Hepatoprotective activity of twelve novel 7'-hydroxy lignan glucosides from Arctii Fructus.

    PubMed

    Yang, Ya-Nan; Huang, Xiao-Ying; Feng, Zi-Ming; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2014-09-17

    Twelve novel 7'-hydroxy lignan glucosides (1-12), including two benzofuran-type neolignans, two 8-O-4' neolignans, two dibenzylbutyrolactone lignans, and six tetrahydrofuranoid lignans, together with six known lignan glucosides (13-18), were isolated from the fruit of Arctium lappa L. (Asteraceae), commonly known as Arctii Fructus. Their structures were elucidated using spectroscopy (1D and 2D NMR, MS, IR, ORD, and UV) and on the basis of chemical evidence. The absolute configurations of compounds 1-12 were confirmed using rotating frame nuclear overhauser effect spectroscopy (ROESY), the circular dichroic (CD) exciton chirality method, and Rh2(OCOCF3)4-induced CD spectrum analysis. All of the isolated compounds were tested for hepatoprotective effects against D-galactosamine-induced cytotoxicity in HL-7702 hepatic cells. Compounds 1, 2, 7-12, and 17 showed significantly stronger hepatoprotective activity than the positive control bicyclol at a concentration of 1 × 10(-5) M.

  6. Acylated iridoids from the roots of Valeriana officinalis var. latifolia.

    PubMed

    Han, Zhu-zhen; Yan, Zhao-hui; Liu, Qing-xin; Hu, Xian-qing; Ye, Ji; Li, Hui-liang; Zhang, Wei-dong

    2012-10-01

    Phytochemical investigation of the roots of Valeriana officinalis var. latifolia resulted in the isolation and characterization of six new acylated iridoids, (5S,7S,8S,9S)-7-hydroxy-8-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (1), (5S,7S,8S,9S)-7-hydroxy-10-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (2), (5S,8S,9S)-10-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (3), (5S,6S,8S,9R)-6-isovaleroyloxy-Δ⁴,¹¹-1,3-diol (4), (5S,6S,8S,9R)-1,3-isovaleroxy-Δ4,11-1,3-diol (5), and (5S,6S,8S,9R)-3-isovaleroxy-6-isovaleroyloxy-Δ⁴,¹¹-1,3-diol (6). Their structures were determined mainly by 1D and 2D NMR spectroscopic techniques. We also report herein for the first time the single crystal X-ray structure of compound 1. In addition, the cytotoxic activities of compounds 1-6 were evaluated against A549 (human lung adenocarcinoma), HCT116 (human colon carcinoma), SK-BR-3 (human breast carcinoma), and HepG2 (human hepatoma) cell lines. Compound 6 showed weak cell growth inhibition of A549, HCT116, SK-BR-3, and HepG2 cells. Georg Thieme Verlag KG Stuttgart · New York.

  7. Host Shifts from Lamiales to Brassicaceae in the Sawfly Genus Athalia

    PubMed Central

    Opitz, Sebastian E. W.; Boevé, Jean-Luc; Nagy, Zoltán Tamás; Sonet, Gontran; Koch, Frank; Müller, Caroline

    2012-01-01

    Plant chemistry can be a key driver of host shifts in herbivores. Several species in the sawfly genus Athalia are important economic pests on Brassicaceae, whereas other Athalia species are specialized on Lamiales. These host plants have glucosides in common, which are sequestered by larvae. To disentangle the possible direction of host shifts in this genus, we examined the sequestration specificity and feeding deterrence of iridoid glucosides (IGs) and glucosinolates (GSs) in larvae of five species which either naturally sequester IGs from their hosts within the Plantaginaceae (Lamiales) or GSs from Brassicaceae, respectively. Furthermore, adults were tested for feeding stimulation by a neo-clerodane diterpenoid which occurs in Lamiales. Larvae of the Plantaginaceae-feeders did not sequester artificially administered p-hydroxybenzylGS and were more deterred by GSs than Brassicaceae-feeders were by IGs. In contrast, larvae of Brassicaceae-feeders were able to sequester artificially administered catalpol (IG), which points to an ancestral association with Lamiales. In line with this finding, adults of all tested species were stimulated by the neo-clerodane diterpenoid. Finally, in a phylogenetic tree inferred from genetic marker sequences of 21 Athalia species, the sister species of all remaining 20 Athalia species also turned out to be a Lamiales-feeder. Fundamental physiological pre-adaptations, such as the establishment of a glucoside transporter, and mechanisms to circumvent activation of glucosides by glucosidases are therefore necessary prerequisites for successful host shifts between Lamiales and Brassicaceae. PMID:22485146

  8. Separation of vitexin-4″-O-glucoside and vitexin-2″-O-rhamnoside from hawthorn leaves extracts using macroporous resins.

    PubMed

    Li, Hongjuan; Liu, Ying; Jin, Haizhu; Liu, Sujing; Fang, Shengtao; Wang, Chunhua; Xia, Chuanhai

    2015-12-15

    Vitexin-4″-O-glucoside and vitexin-2″-O-rhamnoside are the major flavonoids of hawthorn leaves. In this work, the adsorption and desorption characteristics of vitexin-4″-O-glucoside and vitexin-2″-O-rhamnoside on seven macroporous resins were evaluated. Among the tested resins, the HPD-400 resin showed the best adsorption and desorption capacities. Adsorption isotherms were constructed for the HPD-400 resin and well fitted to Langmuir and Freundlich models. Dynamic adsorption and desorption tests were performed on column packed with the HPD-400 resin to optimize the chromatographic parameters. After one run treatment with the HPD-400 resin, the contents of vitexin-4″-O-glucoside and vitexin-2″-O-rhamnoside in the product were increased 8.44-fold and 8.43-fold from 0.720% and 2.63% to 6.08% and 22.2% with recovery yields of 79.1% and 81.2%, respectively. These results show that the developed method is a promising basis for the large-scale purification of vitexin-4″-O-glucoside and vitexin-2″-O-rhamnoside from hawthorn leaves and other plant materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Quantitative Analysis of Phenylpropanoid Glycerol Glucosides in Different Organs of Easter Lily (Lilium longiflorum Thunb.).

    PubMed

    Munafo, John P; Gianfagna, Thomas J

    2015-05-20

    The Easter lily (Lilium longiflorum Thunb.) is esteemed worldwide as an attractive ornamental plant, and the flower buds and bulbs are used for both culinary and medicinal purposes in many parts of the world. L. longiflorum contains significant amounts of phenylpropanoid glycerol glucosides, a group of compounds that may contribute to plant pathogen defense, ultraviolet/high-intensity visible light (UV/high light) protection, and the purported medicinal uses of lilies. To define the natural distribution of these compounds within the plant, a liquid chromatography-mass spectrometry (LC-MS) method performed in selected ion monitoring (SIM) mode was employed for the quantitative analysis of five phenylpropanoid glycerol glucosides, namely, (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosylglycerol, 1; (2R)-1-O-β-D-glucopyranosyl-2-O-p-coumaroylglycerol, 2; (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosylglycerol, 3; (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 4; and (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 5, in the different organs of L. longiflorum. The p-coumaroyl-based 3 and its acetylated derivative 5 were determined to be the most abundant of the phenylpropanoid glycerol glucosides found in Easter lily bulbs, at 776.3 ± 8.4 and 650.7 ± 32.6 μg/g dry weight, respectively. The acetylated p-coumaroyl- and caffeoyl-based derivatives, 5 and 4, accumulated to the highest concentration in the closed flower buds, at 4925.2 ± 512.8 and 3216.8 ± 406.4 μg/g dry weight, respectively. Compound 4, followed by 5 and 1, proved to be the most abundant in the mature flowers, occurring at 6006.2 ± 625.8, 2160.3 ± 556.5, and 1535.8 ± 174.1 μg/g dry weight, respectively. Total concentrations of the phenylpropanoid glycerol glucosides were 10-100-fold higher in the above-ground plant organs as compared to the bulbs and fleshy roots. Two of the five compounds, 1 and 2, were identified in L. longiflorum for the first time. The quantitative

  10. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    PubMed Central

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-01-01

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives. PMID:26274975

  11. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.

    PubMed

    O'Connor, Sarah E

    2012-01-01

    The manipulation of pathways to make unnatural variants of natural compounds, a process often termed combinatorial biosynthesis, has been robustly successful in prokaryotic systems. The development of approaches to generate new-to-nature compounds from plant-based pathways is, in comparison, much less advanced. Success will depend on the specific chemistry of the pathway, as well as on the suitability of the plant system for transformation and genetic manipulation. As plant pathways are elucidated, and can be heterologously expressed in hosts that are more amenable to genetic manipulation, biosynthetic production of new-to-nature compounds from plant pathways will become more widespread. In this chapter, some of the key strategies that have been developed for metabolic engineering of plant pathways, namely directed biosynthesis, mutasynthesis, and pathway incorporation of engineered enzymes are highlighted. The iridoid-derived monoterpene indole alkaloids from C. roseus, which are the focus of this chapter, provide an excellent system for developing these strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Specific Glucoside Transporters Influence Septal Structure and Function in the Filamentous, Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Nieves-Morión, Mercedes; Lechno-Yossef, Sigal; López-Igual, Rocío; Frías, José E; Mariscal, Vicente; Nürnberg, Dennis J; Mullineaux, Conrad W; Wolk, C Peter; Flores, Enrique

    2017-04-01

    When deprived of combined nitrogen, some filamentous cyanobacteria contain two cell types: vegetative cells that fix CO 2 through oxygenic photosynthesis and heterocysts that are specialized in N 2 fixation. In the diazotrophic filament, the vegetative cells provide the heterocysts with reduced carbon (mainly in the form of sucrose) and heterocysts provide the vegetative cells with combined nitrogen. Septal junctions traverse peptidoglycan through structures known as nanopores and appear to mediate intercellular molecular transfer that can be traced with fluorescent markers, including the sucrose analog esculin (a coumarin glucoside) that is incorporated into the cells. Uptake of esculin by the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was inhibited by the α-glucosides sucrose and maltose. Analysis of Anabaena mutants identified components of three glucoside transporters that move esculin into the cells: GlsC (Alr4781) and GlsP (All0261) are an ATP-binding subunit and a permease subunit of two different ABC transporters, respectively, and HepP (All1711) is a major facilitator superfamily (MFS) protein that was shown previously to be involved in formation of the heterocyst envelope. Transfer of fluorescent markers (especially calcein) between vegetative cells of Anabaena was impaired by mutation of glucoside transporter genes. GlsP and HepP interact in bacterial two-hybrid assays with the septal junction-related protein SepJ, and GlsC was found to be necessary for the formation of a normal number of septal peptidoglycan nanopores and for normal subcellular localization of SepJ. Therefore, beyond their possible role in nutrient uptake in Anabaena , glucoside transporters influence the structure and function of septal junctions. IMPORTANCE Heterocyst-forming cyanobacteria have the ability to perform oxygenic photosynthesis and to assimilate atmospheric CO 2 and N 2 These organisms grow as filaments that fix these gases specifically in

  13. Specific Glucoside Transporters Influence Septal Structure and Function in the Filamentous, Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Nieves-Morión, Mercedes; Lechno-Yossef, Sigal; López-Igual, Rocío; Frías, José E.; Mariscal, Vicente; Nürnberg, Dennis J.; Mullineaux, Conrad W.; Wolk, C. Peter

    2017-01-01

    ABSTRACT When deprived of combined nitrogen, some filamentous cyanobacteria contain two cell types: vegetative cells that fix CO2 through oxygenic photosynthesis and heterocysts that are specialized in N2 fixation. In the diazotrophic filament, the vegetative cells provide the heterocysts with reduced carbon (mainly in the form of sucrose) and heterocysts provide the vegetative cells with combined nitrogen. Septal junctions traverse peptidoglycan through structures known as nanopores and appear to mediate intercellular molecular transfer that can be traced with fluorescent markers, including the sucrose analog esculin (a coumarin glucoside) that is incorporated into the cells. Uptake of esculin by the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was inhibited by the α-glucosides sucrose and maltose. Analysis of Anabaena mutants identified components of three glucoside transporters that move esculin into the cells: GlsC (Alr4781) and GlsP (All0261) are an ATP-binding subunit and a permease subunit of two different ABC transporters, respectively, and HepP (All1711) is a major facilitator superfamily (MFS) protein that was shown previously to be involved in formation of the heterocyst envelope. Transfer of fluorescent markers (especially calcein) between vegetative cells of Anabaena was impaired by mutation of glucoside transporter genes. GlsP and HepP interact in bacterial two-hybrid assays with the septal junction-related protein SepJ, and GlsC was found to be necessary for the formation of a normal number of septal peptidoglycan nanopores and for normal subcellular localization of SepJ. Therefore, beyond their possible role in nutrient uptake in Anabaena, glucoside transporters influence the structure and function of septal junctions. IMPORTANCE Heterocyst-forming cyanobacteria have the ability to perform oxygenic photosynthesis and to assimilate atmospheric CO2 and N2. These organisms grow as filaments that fix these gases specifically in

  14. Luteolin-7-O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro

    PubMed Central

    Cui, Xiao-Xian; Yang, Xiao; Wang, Hui-Jing; Rong, Xing-Yu; Jing, Sha; Xie, You-Hua; Huang, Dan-Feng; Zhao, Chao

    2017-01-01

    Hepatitis B virus (HBV) infection is endemic in Asia and chronic hepatitis B (CHB) is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg) loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b) or lamivudine (3TC), the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS) accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy. PMID:29270164

  15. A new flavone xyloside and two new flavan-3-ol glucosides from Juniperus communis var. depressa.

    PubMed

    Iida, Naoki; Inatomi, Yuka; Murata, Hiroko; Inada, Akira; Murata, Jin; Lang, Frank A; Matsuura, Nobuyasu; Nakanishi, Tsutomu

    2007-01-01

    A new flavone xyloside, 1, and two new flavan-3-ol glucosides, 3 and 4, were isolated together with three known flavones, 2, 11, and 12, five known flavans, 5-9, and a known dihydrochalcone, 10, from the stems and leaves of Juniperus communis var. depressa (Cupressaceae) collected in Oregon, U.S.A., and their structures were determined on the basis of spectral evidence. A novel flavone nucleus such as that in 1 is seldom found in nature today, and new methylcatechin glucosides 3 and 4 are also rare in nature. In addition, we investigated the inhibitory activity of individual components, i.e., 8-11, and others, that were abundantly isolated from the same plant material for the Maillard reaction.

  16. Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry.

    PubMed

    Qi, Lian-Wen; Chen, Chun-Yun; Li, Ping

    2009-10-01

    A fast liquid chromatography method with diode-array detection (DAD) and time-of-flight mass spectrometry (TOF-MS) has been developed for analysis of constituents in Flos Lonicerae Japonicae (FLJ), a traditional Chinese medicine derived from the flower bud of Lonicera japonica. The chromatographic analytical time decreased to 25 min without sacrificing resolution using a column packed with 1.8-microm porous particles (4.6 x 50 mm), three times faster than the performance of conventional 5.0-microm columns (4.6 x 150 mm). Four major groups of compounds previously isolated from FLJ were structurally characterized by DAD-TOF-MS: iridoid glycosides showed maximum UV absorption at 240 nm; phenolic acids at 217, 242, and 326 nm; flavonoids at 255 and 355 nm; while saponins had no absorption. In electrospray ionization (ESI)-TOF-MS experiments, elimination of a glucose unit (162 Da), and successive losses of H(2)O, CH(3)OH and CO, were generally observed in iridoid glycosides; saponins were characterized by a series of identical aglycone ions; phenolic acids typically generated a base peak at [M-H-caffeoyl](-) by loss of a caffeic acid unit (162 Da) and several marked quinic acid moiety ions; cleavage of the glycosidic bond (loss of 162 or 308 Da), subsequent losses of H(2)O, CO, RDA and C-ring fragmentation were the most possible fragmentation pathways for flavonoids. By accurate mass measurements within 4 ppm error for each molecular ion and subsequent fragment ions, as well as the 'full mass spectral' information of TOF-MS, a total of 41 compounds including 13 iridoid glycosides, 11 phenolic acids, 7 saponins, and 10 flavonoids were identified in a methanolic extract of FLJ. Copyright (c) 2009 John Wiley & Sons, Ltd.

  17. Comparative Effect of Quercetin and Quercetin-3-O-β-d-Glucoside on Fibrin Polymers, Blood Clots, and in Rodent Models.

    PubMed

    Choi, Jun-Hui; Kim, Kyung-Je; Kim, Seung

    2016-11-01

    The present study evaluates the in vitro, in vivo, and ex vivo antithrombotic and anticoagulant effect of two flavonoids: quercetin and quercetin-3-O-β-d-glucoside (isoquercetin). The present results have shown that quercetin and isoquercetin inhibit the enzymatic activity of thrombin and FXa and suppress fibrin clot formation and blood clotting. The prolongation effect of quercetin and isoquercetin against epinephrine and collagen-induced platelet activation may have been caused by intervention in intracellular signaling pathways including coagulation cascade and aggregation response on platelets and blood. The in vivo and ex vivo anticoagulant efficacy of quercetin and isoquercetin was evaluated in thrombin-induced acute thromboembolism model and in ICR mice. Our findings showed that in vitro and in vivo inhibitory effects of quercetin were slightly higher than that of quercetin glucoside, whereas in vitro and ex vivo anticoagulant effects of quercetin were weaker than that of quercetin glucoside because of their structural characteristics. © 2016 Wiley Periodicals, Inc.

  18. Occurrence of sarmentosin and other hydroxynitrile glucosides in Parnassius (papilionidae) butterflies and their food plants.

    PubMed

    Bjarnholt, Nanna; Nakonieczny, Mirosław; Kędziorski, Andrzej; Debinski, Diane M; Matter, Stephen F; Olsen, Carl Erik; Zagrobelny, Mika

    2012-05-01

    Sequestration of plant secondary metabolites is a widespread phenomenon among aposematic insects. Sarmentosin is an unsaturated γ-hydroxynitrile glucoside known from plants and some Lepidoptera. It is structurally and biosynthetically closely related to cyanogenic glucosides, which are commonly sequestered from food plants and/or de novo synthesized by lepidopteran species. Sarmentosin was found previously in Parnassius (Papilionidae) butterflies, but it was not known how the occurrence was related to food plants or whether Parnassius species could biosynthesize the compound. Here, we report on the occurrence of sarmentosin and related compounds in four different Parnassius species belonging to two different clades, as well as their known and suspected food plants. There were dramatic differences between the two clades, with P. apollo and P. smintheus from the Apollo group containing high amounts of sarmentosin, and P. clodius and P. mnemosyne from the Mnemosyne group containing low or no detectable amounts. This was reflected in the larval food plants; P. apollo and P. smintheus larvae feed on Sedum species (Crassulaceae), which all contained considerable amounts of sarmentosin, while the known food plants of the two other species, Dicentra and Corydalis (Fumariaceae), had no detectable levels of sarmentosin. All insects and plants containing sarmentosin also contained other biosynthetically related hydroxynitrile glucosides in patterns previously reported for plants, but not for insects. Not all findings could be explained by sequestration alone and we therefore hypothesize that Parnassius species are able to de novo synthesize sarmentosin.

  19. Comprehensive two-dimensional liquid chromatography tandem diode array detector (DAD) and accurate mass QTOF-MS for the analysis of flavonoids and iridoid glycosides in Hedyotis diffusa.

    PubMed

    Li, Duxin; Schmitz, Oliver J

    2015-01-01

    The analysis of chemical constituents in Chinese herbal medicines (CHMs) is a challenge because of numerous compounds with various polarities and functional groups. Liquid chromatography coupled with quadrupole time-of-flight (QTOF) mass spectrometry (LC/MS) is of particular interest in the analysis of herbal components. One of the main attributes of QTOF that makes it an attractive analytical technique is its accurate mass measurement for both precursor and product ions. For the separation of CHMs, comprehensive two-dimensional chromatography (LCxLC) provides much higher resolving power than traditional one-dimensional separation. Therefore, a LCxLC-QTOF-MS system was developed and applied to the analysis of flavonoids and iridoid glycosides in aqueous extracts of Hedyotis diffusa (Rubiaceae). Shift gradient was applied in the two-dimensional separation in the LCxLC system to increase the orthogonality and effective peak distribution area of the analysis. Tentative identification of compounds was done by accurate mass interpretation and validation by UV spectrum. A clear classification of flavonol glycosides (FGs), acylated FGs, and iridoid glycosides (IGs) was shown in different regions of the LCxLC contour plot. In total, five FGs, four acylated FGs, and three IGs were tentatively identified. In addition, several novel flavonoids were found, which demonstrates that LCxLC-QTOF-MS detection also has great potential in herbal medicine analysis.

  20. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides.

    PubMed

    Zagrobelny, Mika; Scheibye-Alsing, Karsten; Jensen, Niels Bjerg; Møller, Birger Lindberg; Gorodkin, Jan; Bak, Søren

    2009-12-02

    An essential driving component in the co-evolution of plants and insects is the ability to produce and handle bioactive compounds. Plants produce bioactive natural products for defense, but some insects detoxify and/or sequester the compounds, opening up for new niches with fewer competitors. To study the molecular mechanism behind the co-adaption in plant-insect interactions, we have investigated the interactions between Lotus corniculatus and Zygaena filipendulae. They both contain cyanogenic glucosides which liberate toxic hydrogen cyanide upon breakdown. Moths belonging to the Zygaena family are the only insects known, able to carry out both de novo biosynthesis and sequestration of the same cyanogenic glucosides as those from their feed plants. The biosynthetic pathway for cyanogenic glucoside biosynthesis in Z. filipendulae proceeds using the same intermediates as in the well known pathway from plants, but none of the enzymes responsible have been identified. A genomics strategy founded on 454 pyrosequencing of the Z. filipendulae transcriptome was undertaken to identify some of these enzymes in Z. filipendulae. Comparisons of the Z. filipendulae transcriptome with the sequenced genomes of Bombyx mori, Drosophila melanogaster, Tribolium castaneum, Apis mellifera and Anopheles gambiae indicate a high coverage of the Z. filipendulae transcriptome. 11% of the Z. filipendulae transcriptome sequences were assigned to Gene Ontology categories. Candidate genes for enzymes functioning in the biosynthesis of cyanogenic glucosides (cytochrome P450 and family 1 glycosyltransferases) were identified based on sequence length, number of copies and presence/absence of close homologs in D. melanogaster, B. mori and the cyanogenic butterfly Heliconius. Examination of biased codon usage, GC content and selection on gene candidates support the notion of cyanogenesis as an "old" trait within Ditrysia, as well as its origins being convergent between plants and insects

  1. New Bisabolane-Type Sesquiterpenes from the Aerial Parts of Lippia dulcis.

    PubMed

    Ono, Masateru; Morinaga, Hiroaki; Masuoka, Chikako; Ikeda, Tsuyoshi; Okawa, Masafumi; Kinjo, Junei; Nohara, Toshihiro

    2005-09-01

    Two new bisabolane-type sesquiterpenes, lippidulcine A (3) and epilippidulcine A (4), have been isolated from the aerial parts of Lippia dulcis TREV. along with five known flavonoids, cirsimaritin (5), salvigenin (6), eupatorin (7), 5-hydroxy-6,7,3',4'-tetramethoxyflavone (8) and 5,3'-dihydroxy-6,7,4',5'-tetramethoxyflavone (9), three known phenylethanoid glycosides, decaffeoylverbascoside (10), acteoside (11) and isoacteoside (12), and two known iridoid glucosides, 8-epiloganin (13) and lamiide (14). Their chemical structures have been determined on the basis of spectroscopic data. Among them, 5, 7, and 9 exhibited almost the same activity as that of alpha-tocopherol, and 10-12 were identified as stronger antioxidants than alpha-tocopherol using the ferric thiocyanate method.

  2. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits*

    PubMed Central

    Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E.; Osbourn, Anne

    2016-01-01

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species. PMID:26709230

  3. Isolation of various forms of sterol beta-D-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex.

    PubMed

    Khabazian, I; Bains, J S; Williams, D E; Cheung, J; Wilson, J M B; Pasqualotto, B A; Pelech, S L; Andersen, R J; Wang, Y-T; Liu, L; Nagai, A; Kim, S U; Craig, U-K; Shaw, C A

    2002-08-01

    The factors responsible for ALS-parkinsonism dementia complex (ALS-PDC), the unique neurological disorder of Guam, remain unresolved, but identification of causal factors could lead to clues for related neurodegenerative disorders elsewhere. Earlier studies focused on the consumption and toxicity of the seed of Cycas circinalis, a traditional staple of the indigenous diet, but found no convincing evidence for toxin-linked neurodegeneration. We have reassessed the issue in a series of in vitro bioassays designed to isolate non-water soluble compounds from washed cycad flour and have identified three sterol beta-d-glucosides as potential neurotoxins. These compounds give depolarizing field potentials in cortical slices, induce alterations in the activity of specific protein kinases, and cause release of glutamate. They are also highly toxic, leading to release of lactate dehydrogenase (LDH). Theaglycone form, however, is non-toxic. NMDA receptor antagonists block the actions of the sterol glucosides, but do not compete for binding to the NMDA receptor. The most probable mechanism leading to cell death may involve glutamate neuro/excitotoxicity. Mice fed cycad seed flour containing the isolated sterol glucosides show behavioral and neuropathological outcomes, including increased TdT-mediated biotin-dUTP nick-end labelling (TUNEL) positivity in various CNS regions. Astrocytes in culture showed increased caspase-3 labeling after exposure to sterol glucosides. The present results support the hypothesis that cycad consumption may be an important factor in the etiology of ALS-PDC and further suggest that some sterol glucosides may be involved in other neurodegenerative disorders.

  4. Identification, amounts, and kinetics of extraction of C-glucosidic ellagitannins during wine aging in oak barrels or in stainless steel tanks with oak chips.

    PubMed

    Jourdes, Michaël; Michel, Julien; Saucier, Cédric; Quideau, Stéphane; Teissedre, Pierre-Louis

    2011-09-01

    The C-glucosidic ellagitannins are found in wine as a result of its aging in oak barrels or in stainless steel tanks with oak chips. Once dissolved in this slightly acidic solution, the C-glucosidic ellagitannins vescalagin can react with nucleophilic entities present in red wine, such as ethanol, catechin, and epicatechin, to generate condensed hybrid products such as the β-1-O-ethylvescalagin and the flavano-ellagitannins (acutissimin A/B and epiacutissimin A/B), respectively. During this study, we first monitored the extraction kinetic and the evolution of the eight major oak-derived C-glucosidic ellagitannins in red wines aged in oak barrels or in stainless steel tank with oak chips. Their extraction rates appeared to be faster during red wine aging in stainless steel tanks with oak chips. However, their overall concentrations in wines were found higher in the wine aged in barrels. The formation rates of the vescalagin-coupled derivatives were also estimated for the first time under both red wine aging conditions (i.e., oak barrels or stainless steel tanks with oak chips). As observed for the oak-native C-glucosidic ellagitannins, the concentrations of these vescalagin derivatives were higher in the red wine aged in oak barrels than in stainless steel tanks with oak chips. Despite these differences, their relative composition was similar under both red wine aging conditions. Finally, the impact of the oak chips size and toasting level on the C-glucosidic ellagitannins concentration in wine was also investigated.

  5. Complete LC/MS analysis of a Tinnevelli senna pod extract and subsequent isolation and identification of two new benzophenone glucosides.

    PubMed

    Terreaux, Christian; Wang, Qi; Ioset, Jean-Robert; Ndjoko, Karine; Grimminger, Wolf; Hostettmann, Kurt

    2002-04-01

    The hydroalcoholic extract of Tinnevelli senna is widely used as a laxative phytomedicine. In order to improve the knowledge of the chemical composition of this extract, LC/MS and LC/MS(n) studies were performed, allowing the on-line identification of most of the known constituents, i. e., flavonoids, anthraquinones and the typical dianthronic sennosides. However, the identity of four compounds could not be ascertained on-line under the given LC/MS conditions. These substances were isolated and their structures elucidated as kaempferol, the naphthalene derivative tinnevellin 8-glucoside and two new carboxylated benzophenone glucosides.

  6. First results of GEN-AU: Cloning of Deoxynivalenol- and Zearalenone-inactivating UDP-glucosyltransferase genes fromArabidopsis thaliana and expression in yeast for production of mycotoxin-glucosides.

    PubMed

    Poppenberger, B; Berthiller, F; Lucyshyn, D; Schuhmacher, R; Krska, R; Adam, G

    2005-06-01

    First results of the GEN-AU pilot project "Fusarium virulence and plant resistance mechanisms" are reported. Employing genetically engineered yeast strains we have been able to clone genes from the model plantArabidopsis thaliana encoding UDP-glucosyltransferases which can inactivate deoxynivalenol (DON) and zearalenone (ZON). The structure of the metabolites produced by the transformed yeast strains were determined by LC-MS/MS as DON-3O-glucoside and ZON-4O-glucoside, respectively. ZON and derivatives added to glucosyltransferase expressing yeast cultures are converted into the corresponding glucosides in very high yield, opening an efficient way to produce reference materials for these masked mycotoxins.

  7. A systematic review of the wound-healing effects of monoterpenes and iridoid derivatives.

    PubMed

    Barreto, Rosana S S; Albuquerque-Júnior, Ricardo L C; Araújo, Adriano A S; Almeida, Jackson R G S; Santos, Márcio R V; Barreto, André S; DeSantana, Josimari M; Siqueira-Lima, Pollyana S; Quintans, Jullyana S S; Quintans-Júnior, Lucindo J

    2014-01-13

    The search for more effective and lower cost therapeutic approaches for wound healing remains a challenge for modern medicine. In the search for new therapeutic options, plants and their metabolites are a great source of novel biomolecules. Among their constituents, the monoterpenes represent 90% of essential oils, and have a variety of structures with several activities such as antimicrobial, anti-inflammatory, antioxidant and wound healing. Based on that, and also due to the lack of reviews concerning the wound-healing activity of monoterpenes, we performed this systematic review-which provides an overview of their characteristics and mechanisms of action. In this search, the terms "terpenes", "monoterpenes", "wound healing" and "wound closure techniques" were used to retrieve articles published in LILACS, PUBMED and EMBASE until May 2013. Seven papers were found concerning the potential wound healing effect of five compouds (three monoterpenes and two iridoid derivatives) in preclinical studies. Among the products used for wound care, the films were the most studied pharmaceutical form. Monoterpenes are a class of compounds of great diversity of biological activities and therapeutic potential. The data reviewed here suggest that monoterpenes, although poorly studied in this context, are promising compounds for the treatment of chronic wound conditions.

  8. Glucosylation of Steviol and Steviol-Glucosides in Extracts from Stevia rebaudiana Bertoni

    PubMed Central

    Shibata, Hitoshi; Sonoke, Satoru; Ochiai, Hideo; Nishihashi, Hideji; Yamada, Masaharu

    1991-01-01

    To evaluate and characterize stevioside biosynthetic pathway in Stevia rebaudiana Bertoni cv Houten, two enzyme fractions that catalyze glucosylation of steviol (ent-13-hydroxy kaur-16-en-19-oic acid) and steviol-glucosides (steviol-13-O-glucopyranoside, steviolbioside and stevioside), utilizing UDP-glucose as the glucose donor, were prepared from the soluble extracts of S. rebaudiana leaves. Enzyme fraction I, passed through DEAE-Toyopearl equilibrated with 50 millimolar K-phosphate pH 7.5, catalyzed the glucosylation to steviol and 19-O-methylsteviol, but not to iso-steviol and 13-O-methylsteviol, indicating that 13-hydroxyl group of the steviol skeleton is glucosylated first from UDP-glucose to produce steviol-13-O-glucopyranoside. Enzyme fraction II, eluted from the DEAE-Toyopearl column with 0.15 molar KCI, catalyzed the glucose transfer from UDP-glucose to steviol-13-O-glucopyranoside, steviolbioside and stevioside, but not to rubusoside (13, 19-di-O-glucopyranoside) and rebaudioside A. The reaction products glucosylated from steviol-13-O-glucopyranoside, steviolbioside and stevioside were identified to be steviolbioside, stevioside and rebaudioside A, respectively. These results indicate that in the steviol-glucoside biosynthetic pathway, steviol-13-O-glucopyranoside produced from the steviol glucosylation is successively glucosylated to steviolbioside, then to stevioside producing rebaudioside A. PMID:16667943

  9. β-d-Glucosidase as "key enzyme" for sorghum cyanogenic glucoside (dhurrin) removal and beer bioflavouring.

    PubMed

    Tokpohozin, Sedjro Emile; Fischer, Susann; Sacher, Bertram; Becker, Thomas

    2016-11-01

    Sorghum malt used during African beer processing contains a high level of cyanogenic glucoside (dhurrin), up to 1375 ppm. In traditional sorghum malting and mashing, dhurrin is not sufficiently hydrolyzed due to uncontrolled germination and a high gelatinization temperature. The cyanide content of traditional African beers (11 ppm) is higher than the minimum dose (1 ppm) required to form carcinogenic ethyl carbamate during alcoholic fermentation. In the detoxification process, aryl-β-d-glucosidase (dhurrinase) is the "key component". For significant dhurrin hydrolysis during mashing, optimizing dhurrinase synthesis during malting is a good solution to reduce dhurrin completely to below the harmful dose in the sorghum wort. Lactic acid bacteria which exhibit aryl-β-d-glucosidase prior to alcoholic fermentation may help to reduce ethyl carbamate content in alcoholic beverages. Moreover, some specific β-d-glucosidases have a dual property, being able to cleave and synthesize glucosides bonds and thereby generating good precursors for beer bioflavouring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Extraction parameters and capillary electrophoresis analysis of limonin glucoside and phlorin in citrus byproducts.

    PubMed

    Braddock, R J; Bryan, C R

    2001-12-01

    Limonin glucoside (LG) and phlorin were extracted from citrus fruit tissues and assayed by capillary electrophoresis (CE). LG was determined in dried [1.20 +/- 0.10 mg of dry weight (dw)] and wet peel residues (1.16 +/- 0.04 mg of dw), orange juice finisher pulp (0.58 +/- 0.03 mg of dw), dried grapefruit seeds (2.70 +/- 0.15 mg of dw), and 50 degrees Brix molasses (2225 +/- 68 mg/L). Phlorin was purified from orange peel residue and grapefruit albedo, and concentrations were determined in some citrus products. Phlorin and LG were extracted from residues with water/pectinase or with water solutions of methanol and ethanol. Efficient LG extraction from grapefruit seeds (2.40 +/- 0.15 mg/g) was achieved with 50-65% methanol, solvent polarity P' approximately equal to 7-8. Extracts were purified and concentrated by adsorptive resins and HPLC to obtain 95% pure compounds of LG and phlorin. CE analysis did not require extract purification beyond filtration. LG and phlorin migrated as anions in electropherograms containing peaks representing other citrus flavonoids and limonoid glucosides.

  11. A green ionic liquid-based vortex-forced MSPD method for the simultaneous determination of 5-HMF and iridoid glycosides from Fructus Corni by ultra-high performance liquid chromatography.

    PubMed

    Du, Kunze; Li, Jin; Bai, Yun; An, Mingrui; Gao, Xiu-Mei; Chang, Yan-Xu

    2018-04-01

    A simple and green ionic liquid-based vortex-forced matrix solid phase dispersion (IL-VFMSPD) method was presented to simultaneously extract 5-hydroxymethyl furfurol (5-HMF) and iridoid glycosides in Fructus Corni by ultra-high performance liquid chromatography. Ionic liquid was used as a green elution reagent in vortex-forced MSPD process. A few parameters such as the type of ionic liquid, the type of sorbent, ratio of sample to sorbent, the concentration and volume of ionic liquid, grinding time and vortex time, were investigated in detail and an orthogonal design experiment was introduced to confirm the best conditions in this procedure. With the final optimized method, the recoveries of the target compounds in Fructus Corni were in the range of 95.2-103% (RSD<5.0%) and the method displayed a good linearity within the range of 0.8-200 μg mL -1 for morroniside, sweroside, loganin, cornuside and 1.2-300 μg mL -1 for 5-HMF. The limits of detection ranged from 0.02 to 0.08 μg mL -1 for all compounds. The results showed that the newly established method was efficiently applied to extract and determine iridoid glycosides and 5-HMF for quality control of Fructus Corni. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Two new monoterpene glucosides from Xanthium strumarium subsp. sibiricum with their anti-inflammatory activity.

    PubMed

    Jiang, Hai; Xing, Xudong; Yan, Meiling; Guo, Xinyue; Yang, Lin; Yang, Liu

    2018-06-01

    Two new monoterpene glucosides: xanmonoter A (1) and xanmonoter B (2) were isolated from Xanthium strumarium. Their structures were elucidated on the basis of 1D and 2D NMR, MS and CD analysis. Compounds 1 and 2 were tested for their anti-inflammatory activity with IC 50 values of 17.4, 22.1 μM, respectively.

  13. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits.

    PubMed

    Alagna, Fiammetta; Geu-Flores, Fernando; Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E; Osbourn, Anne

    2016-03-11

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Isolation of antioxidative phenolic glucosides from lemon juice and their suppressive effect on the expression of blood adhesion molecules.

    PubMed

    Miyake, Yoshiaki; Mochizuki, Mika; Okada, Miki; Hiramitsu, Masanori; Morimitsu, Yasujiro; Osawa, Toshihiko

    2007-08-01

    Phenolic glucosides having radical scavenging activity were examined from the fraction eluted with 20% methanol on Amberlite XAD-2 resin applied to lemon (Citrus limon) juice by using reversed phase chromatography. Four phenolic glucosides were identified as 1-feruloyl-beta-D-glucopyranoside, 1-sinapoyl-beta-D-glucopyranoside, 6,8-di-C-glucosylapigenin and 6,8-di-C-glucosyldiosmetin by (1)H-NMR, (13)C-NMR, and MS analyses. They exhibited radical scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide, although the activity was low in comparison with eriocitrin, a potent antioxidant in lemon fruit, and the eriodictyol of its aglycone. The phenolic compounds in lemon juice were examined for their suppressive effect on the expression of blood adhesion molecules by measuring the expression of intercellular adhesion molecule-1 (ICAM-1) in human umbilical vein endothelial cells (HUVECs) induced by necrosis factor-alpha (TNF-alpha). 6,8-Di-C-glucosylapigenin, apigenin, and diosmentin of the flavones were found to significantly suppress the expression of ICAM-1 at 10 muM (P<0.05). The phenolic glucosides isolated in this study were contained in comparative abundance in daidai (Citrus aurantium) and niihime (Citrus unshiu x Citrus tachibana) among the sour citrus juices.

  15. A new flavonol glucoside from the aerial parts of Sida glutinosa.

    PubMed

    Das, Niranjan; Achari, Basudev; Harigaya, Yoshihiro; Dinda, Biswanath

    2011-10-01

    Phytochemical investigation on the dried aerial parts of Sida glutinosa has led to the isolation of a new flavonol glucoside, glutinoside (1), along with seven known compounds, 24(28)-dehydromakisterone A (2), 1,2,3,9-tetrahydropyrrolo[2,1-b]-quinazolin-3-amine (3), docosanoic acid, 1-triacontanol, campesterol, stigmasterol, and β-sitosterol. The structures of these compounds were elucidated by means of extensive spectroscopic techniques as well as GC/MS analysis (for sterols) and comparison with the literature data. All these seven known compounds are reported from this plant for the first time.

  16. Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in hard red spring wheat inoculated with Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    Deoxynivalenol (DON) is a mycotoxin which isproduced by plant pathogens such as Fusarium species. The formation of the "masked" mycotoxin deoxinyvalenol-3-glucoside (D3G) results from a defense mechanism the plant uses for detoxification. These two mycotoxins are important from the food safety poi...

  17. Cyanidin and cyanidin 3-O-beta-D -glucoside as DNA cleavage protectors and antioxidants.

    PubMed

    Acquaviva, R; Russo, A; Galvano, F; Galvano, G; Barcellona, M L; Li Volti, G; Vanella, A

    2003-08-01

    Anthocyanins, colored flavonoids, are water-soluble pigments present in the plant kingdom; in fact they are secondary plant metabolites responsible for the blue, purple, and red color of many plant tissues. Present in beans, fruits, vegetables and red wines, considerable amounts of anthocyanins are ingested as constituents of the human diet (180-215 mg daily). There is now increasing interest in the in vivo protective function of natural antioxidants contained in dietary plants against oxidative damage caused by free radical species. Recently, the antioxidant activity of phenolic phytochemicals, has been investigated. Since the antioxidant mechanism of anthocyanin pigments is still controversial, in the present study we evaluated the effects of cyanidin and cyanidin 3-O-beta-D-glucoside on DNA cleavage, on their free radical scavenging capacity and on xanthine oxidase activity. Cyanidin and cyanidin 3-O-beta-D-glucoside showed a protective effect on DNA cleavage, a dose-dependent free radical scavenging activity and significant inhibition of XO activity. These effects suggest that anthocyanins exhibit interesting antioxidant properties, and could therefore represent a promising class of compounds useful in the treatment of pathologies where free radical production plays a key role.

  18. Preparation and swelling inhibition of cation glucoside to montmorillonite

    NASA Astrophysics Data System (ADS)

    Song, Shaofu; Liu, Jurong; Guo, Gang; Huang, Lei; Qu, Chentun; Li, Bianqin; Chen, Gang

    2017-06-01

    In this work, a cation glucoside (CG) was synthesized with glucose and glycidyl trimethyl ammonium chloride (GTA) and used as montmorillonite (MMT) swelling inhibiter. The inhibition of CG was investigated by MMT linear expansion test and mud ball immersing test. The results showed that the CG has a good inhibition to the hydration swelling and dispersion of MMT. Under the same condition, the linear expansion rate of MMT in CG solution is much lower that of methylglucoside and the hydration expansion degree of the mud ball in the CG solution was significantly inhibited. The characterizations of physic-chemical properties of particle, analysized by thermogravimetric analysis and scanning electron microscopy, revealed that CG play great role to prevent water from absorb and keep MMT in large particle size.

  19. Synthesis and biological evaluation of novel dioxa-bicycle C-aryl glucosides as SGLT2 inhibitors.

    PubMed

    Yan, Qi; Ding, Ning; Li, Yingxia

    2016-02-08

    A series of novel C-aryl glucosides containing dioxa-bicycle were synthesized and evaluated for inhibition activity against hSGLT2. Among the compounds tested, compound 6a showed moderate SGLT2 inhibition activities at 700 nM. The results could benefit the discovery of new SGLT2 inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of iridoid-anthocyanin extract of Cornus mas L. on hematological parameters, population and proliferation of lymphocytes during experimental infection of mice with Trichinella spiralis.

    PubMed

    Piekarska, Jolanta; Szczypka, Marianna; Kucharska, Alicja Z; Gorczykowski, Michał

    2018-05-01

    The influence of iridoid-anthocyanin aqueous extract of cornelian cherry fruits (CM) on hematological parameters, lymphocyte subsets and proliferation during Trichinella spiralis infection in mice was investigated. CM (100 mg/kg) was administered orally to T. spiralis-infected mice six times within a period encompassing three days prior to the infection and three days after the infection (dai). CM increased the percentage of CD3 + , CD4 + cells and CD4 + /CD8 + ratio and decreased total count of CD8 + and CD19 + splenocytes (5 th dai). An increase in total count of CD4 + , CD3 + , CD19 + splenocytes was observed (21 st dai). CM elevated the percentage of CD4 + cells (7 th dai) and CD4 + /CD8 + ratio (21 st dai) in MLN. CM increased (14 th dai) and then reduced (21 st dai) the percentage of CD8 + MLN lymphocytes and decreased total count of MLN CD8 + cells (21 st dai) and B cells (14 th dai). An activation of lymphocyte proliferation in spleen and simultaneous decrease in MLN on 5 th dai was observed. An increase in red blood cells parameters (5 th dai) and in leukocyte count (7 th dai) was found. A rise in platelet count was noticed both on 5 th and 7 th dai. Moreover, the number of adult T. spiralis on 5 th dai in mice receiving CM extract was lower than in the control mice. These results suggested that iridoid-anthocyanin aqueous extract of CM stimulated murine immune response during T. spiralis infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Microtropins Q-W, ent-Labdane Glucosides: Microtropiosides G-I, Ursane-Type Triterpene Diglucoside and Flavonol Glycoside from the Leaves of Microtropis japonica.

    PubMed

    Terazawa, Saori; Uemura, Yuka; Koyama, Yuka; Kawakami, Susumu; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki; Shinzato, Takakazu; Kawahata, Masatoshi; Yamaguchi, Kentaro

    2017-01-01

    Microtropins Q-W, (2S,3R)-2-ethyl-2,3-dihydroxybutyrate of various glucosides and glucose, as well as three ent-labdane diterpenoid glucosides, named microtropiosides G, H and I, an ursane-type triterpene diglucoside and a flavonoid glycoside were isolated from the MeOH extract of the leaves of Microtropis japonica. The structure of microtropioside A, also isolated from the branches of M. japonica, was elucidated spectroscopically in a previous experiment and was found to possess a rare seven-membered oxyrane ring. Its structure was confirmed by X-ray crystallographic analysis of its pentaacetate.

  2. The Effects of Plantago major on the Activation of the Neutrophil Respiratory Burst

    PubMed Central

    Reina, Elaine; Al-Shibani, Nouf; Allam, Eman; Gregson, Karen S.; Kowolik, Michael; Windsor, L. Jack

    2013-01-01

    Plantago major is a common plant that grows worldwide in temperate zones and is found in fields, lawns, and on the roadsides. Its leaves and seeds have been used in almost all parts of the world for centuries as a wound healer, analgesic, antioxidant, and antibiotic, as well as an immune system modulator, antiviral, antifungal, and anti-inflammatory agent. Baicalein and aucubin are the two most biologically active components of P. major, and both have been shown to have antioxidant, anti-inflammatory, and anticancer properties. Neutrophils have a pivotal role in wound healing and inflammation. Their principal mechanism of host defense is the killing of pathogens via the production of reactive oxygen species (ROS). The aim of the present study was to determine the in vitro effects of P. major extract, baicalein, and aucubin on human neutrophil respiratory burst activity. The cytotoxicity of the agents was assessed by lactate dehydrogenase (LDH) assays. A standard luminol-dependent chemiluminescence (CL) assay was utilized to monitor the respiratory burst of the neutrophils after exposure to P. major extract and its two active ingredients, baicalein and aucubin. Three replicates per group were included in each of the three runs of the experiments and analysis of variance (ANOVA) was used for statistical analysis. P. major and baicalein were not toxic to the cells at any of the concentrations examined. Aucubin was toxic to the cells only at the highest concentration tested (P = 0.0081). However, genistein was toxic to the cells at all of the concentrations examined except for the lowest concentration of 16.9 μg/ml (P = 0.985). P. major (−0.10 ± 0.11), aucubin (0.06 ± 0.16), baicalein (−0.10 ± 0.11), and genistein (−0.18 ± 0.07) all significantly (P < 0.0001) inhibited ROS production from the neutrophils. P. major extract inhibited neutrophil ROS production, as did aucubin and baicalein. Therefore, these components should be investigated further with

  3. The Effects of Plantago major on the Activation of the Neutrophil Respiratory Burst.

    PubMed

    Reina, Elaine; Al-Shibani, Nouf; Allam, Eman; Gregson, Karen S; Kowolik, Michael; Windsor, L Jack

    2013-10-01

    Plantago major is a common plant that grows worldwide in temperate zones and is found in fields, lawns, and on the roadsides. Its leaves and seeds have been used in almost all parts of the world for centuries as a wound healer, analgesic, antioxidant, and antibiotic, as well as an immune system modulator, antiviral, antifungal, and anti-inflammatory agent. Baicalein and aucubin are the two most biologically active components of P. major, and both have been shown to have antioxidant, anti-inflammatory, and anticancer properties. Neutrophils have a pivotal role in wound healing and inflammation. Their principal mechanism of host defense is the killing of pathogens via the production of reactive oxygen species (ROS). The aim of the present study was to determine the in vitro effects of P. major extract, baicalein, and aucubin on human neutrophil respiratory burst activity. The cytotoxicity of the agents was assessed by lactate dehydrogenase (LDH) assays. A standard luminol-dependent chemiluminescence (CL) assay was utilized to monitor the respiratory burst of the neutrophils after exposure to P. major extract and its two active ingredients, baicalein and aucubin. Three replicates per group were included in each of the three runs of the experiments and analysis of variance (ANOVA) was used for statistical analysis. P. major and baicalein were not toxic to the cells at any of the concentrations examined. Aucubin was toxic to the cells only at the highest concentration tested (P = 0.0081). However, genistein was toxic to the cells at all of the concentrations examined except for the lowest concentration of 16.9 μg/ml (P = 0.985). P. major (-0.10 ± 0.11), aucubin (0.06 ± 0.16), baicalein (-0.10 ± 0.11), and genistein (-0.18 ± 0.07) all significantly (P < 0.0001) inhibited ROS production from the neutrophils. P. major extract inhibited neutrophil ROS production, as did aucubin and baicalein. Therefore, these components should be investigated further with relation to

  4. Two novel aromatic glucosides, marylaurencinosides D and E, from the fresh flowers of Cymbidium Great Flower 'Marylaurencin'.

    PubMed

    Yoshikawa, Kazuko; Okahuji, Mariko; Iseki, Kanako; Ito, Takuya; Asakawa, Yoshinori; Kawano, Sachiko; Hashimoto, Toshihiro

    2014-04-01

    Two novel aromatic glucosides, named marylaurencinosides D (1) and E (2), were isolated from the fresh flowers of Cymbidium Great Flower 'Marylaurencin'. In addition, eight known aromatic compounds (3-10) were isolated. These structures were determined on the basis of NMR experiments as well as chemical evidence.

  5. Compounds from the Fruits of the Popular European Medicinal Plant Vitex agnus-castus in Chemoprevention via NADP(H):Quinone Oxidoreductase Type 1 Induction.

    PubMed

    Li, Shenghong; Qiu, Shengxiang; Yao, Ping; Sun, Handong; Fong, Harry H S; Zhang, Hongjie

    2013-01-01

    As part of our continuing efforts in the search for potential biologically active compounds from medicinal plants, we have isolated 18 compounds including two novel nitrogen containing diterpenes from extracts of the fruits of Vitex agnus-castus. These isolates, along with our previously obtained novel compound vitexlactam A (1), were evaluated for potential biological effects, including cancer chemoprevention. Chemically, the nitrogenous isolates were found to be two labdane diterpene alkaloids, each containing an α , β -unsaturated γ -lactam moiety. Structurally, they were elucidated to be 9 α -hydroxy-13(14)-labden-16,15-amide (2) and 6 β -acetoxy-9 α -hydroxy-13(14)-labden-15,16-amide (3), which were named vitexlactams B and C, respectively. The 15 known isolates were identified as vitexilactone (4), rotundifuran (5), 8-epi-manoyl oxide (6), vitetrifolin D (7), spathulenol (8), cis-dihydro-dehydro-diconiferylalcohol-9-O- β -D-glucoside (9), luteolin-7-O-glucoside (10), 5-hydroxy-3,6,7,4'-tetramethoxyflavone (11), casticin (12), artemetin (13), aucubin (14), agnuside (15), β -sitosterol (16), p-hydroxybenzoic acid (17), and p-hydroxybenzoic acid glucose ester (18). All compound structures were determined/identified on the basis of 1D and/or 2D NMR and mass spectrometry techniques. Compounds 6, 8, 9, and 18 were reported from a Vitex spieces for the first time. The cancer chemopreventive potentials of these isolates were evaluated for NADP(H):quinone oxidoreductase type 1 (QR1) induction activity. Compound 7 demonstrated promising QR1 induction effect, while the new compound vitexlactam (3) was only slightly active.

  6. Compounds from the Fruits of the Popular European Medicinal Plant Vitex agnus-castus in Chemoprevention via NADP(H):Quinone Oxidoreductase Type 1 Induction

    PubMed Central

    Li, Shenghong; Qiu, Shengxiang; Yao, Ping; Sun, Handong; Fong, Harry H. S.; Zhang, Hongjie

    2013-01-01

    As part of our continuing efforts in the search for potential biologically active compounds from medicinal plants, we have isolated 18 compounds including two novel nitrogen containing diterpenes from extracts of the fruits of Vitex agnus-castus. These isolates, along with our previously obtained novel compound vitexlactam A (1), were evaluated for potential biological effects, including cancer chemoprevention. Chemically, the nitrogenous isolates were found to be two labdane diterpene alkaloids, each containing an α, β-unsaturated γ-lactam moiety. Structurally, they were elucidated to be 9α-hydroxy-13(14)-labden-16,15-amide (2) and 6β-acetoxy-9α-hydroxy-13(14)-labden-15,16-amide (3), which were named vitexlactams B and C, respectively. The 15 known isolates were identified as vitexilactone (4), rotundifuran (5), 8-epi-manoyl oxide (6), vitetrifolin D (7), spathulenol (8), cis-dihydro-dehydro-diconiferylalcohol-9-O-β-D-glucoside (9), luteolin-7-O-glucoside (10), 5-hydroxy-3,6,7,4′-tetramethoxyflavone (11), casticin (12), artemetin (13), aucubin (14), agnuside (15), β-sitosterol (16), p-hydroxybenzoic acid (17), and p-hydroxybenzoic acid glucose ester (18). All compound structures were determined/identified on the basis of 1D and/or 2D NMR and mass spectrometry techniques. Compounds 6, 8, 9, and 18 were reported from a Vitex spieces for the first time. The cancer chemopreventive potentials of these isolates were evaluated for NADP(H):quinone oxidoreductase type 1 (QR1) induction activity. Compound 7 demonstrated promising QR1 induction effect, while the new compound vitexlactam (3) was only slightly active. PMID:23662135

  7. [Effects of total glucosides of paeony on enhancing insulin sensitivity and antagonizing nonalcoholic fatty liver in rats].

    PubMed

    Zheng, Lin-Ying; Pan, Jing-Qiang; Lv, Jun-Hua

    2008-10-01

    To study the pathological changes of blood glucose, serum lipid, insulin resistance, liver function, liver cell denaturalization of total glucosides of paeony on nonalcoholic fatty liver rats caused by insulin resistance and discuss the acting mechanism. Adult SD rats were maintained on high-fat-sugar-salt diet for 56 days. In the 57th day, their fasting blood glucose (FBG) and 2-hours blood glucose after oral glucose tolerance test (OGTT-2 hBG) were mensurated, according to which and the weight the rats were divided randomly into nonalcoholic fatty liver model group, metformin group (0.2 g x kg(-1)) and total glucosides of paeony group (high dosage 0.15 g x kg(-1), low dosage 0.05 g x kg(-1)). All the rats were still administered the same diet and given different drugs by intragastric administration for 28 days. In the 29th day, all of them were killed and the blood was sampled to measure the levels of blood glucose [FBG, OGTT-2 hBG, fasting insulin (Fins)] and serum lipid [free fatty acids (FFA), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C)], then the HOMA insulin resistance index (HOMA-IRI, fasting glucosexinsulin) and insulin sensitivity index (ISI) were counted. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholinesterase (ChE), superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) were measured also. Livers were weighed and collected to be observed the pathological changes. Compared with normal group, in nonalcoholic fatty liver model group the levels of Fins and IRI were increased obviously (P < 0.01), ISI were decreased (P < 0.01), FFA, TG, TC, LDL-C were increased (P < 0.01), HDL-C were decreased (P < 0.05); the content of MDA were increased (P < 0.05), the activities of SOD were decreased (P < 0.01); AST, ALT and ChE were increased (P < 0.05, or P < 0.01), the pathological changes of liver fat were severe (P < 0

  8. Biosynthesis of Mustard Oil Glucosides: Sodium Phenylacetothiohydroximate and Desulfobenzylglucosinolate, Precursors of Benzylglucosinolate in Tropaeolum majus1

    PubMed Central

    Underhill, L. E. W.; Wetter, L. R.

    1969-01-01

    The biosynthesis of the mustard oil glucoside, benzylglucosinolate, was studied in Tropaeolum majus L. A number of labeled compounds were administered to plant shoots and the incorporation of tracer into benzylglucosinolate, isolated as the crystalline tetramethyl-ammonium salt, was measured. In order of decreasing efficiency of conversion into benzyl-glucosinolate the compounds fed were S-(β-d-glucopyranosyl)phenylacetothiohydroximic acid (desulfobenzylglucosinolate), sodium phenylacetothiohydroximate, dl-phenylalanine, d-glucose, and sodium-d-1-glucopyranosyl mercaptide (1-thioglucose). The results are consistent with the hypothesis that the thioglucosyl group of benzylglucosinolate is derived by glucosylation of phenylacetothiohydroximate and not from 1-thioglucose. The results also suggest that benzylglucosinolate is formed by sulfation of desulfobenzylglucosinolate as the final step in its biosynthesis. A method for the isolation of a number of glucosinolates (mustard oil glucosides) is described which utilizes anion exchange chromatography on diethylaminoethyl (DEAE) cellulose. Potassium allylglucosinolate, tetramethylammonium benzylglucosinolate, potassium 2-hydroxy-2-phenylethylglucosinolate and potassium 2-phenylethylglucosinolate were obtained on recrystallization of the glucosinolate fraction eluted from the column. PMID:16657104

  9. Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via Nrf2 and PPAR-γ: Comparison with 5-aminosalicylic acid.

    PubMed

    Serra, Diana; Almeida, Leonor M; Dinis, Teresa C P

    2016-12-25

    This study investigated the involvement of nuclear factor erythroid 2 (Nrf2) and peroxisome proliferator-activated receptor-gamma (PPAR-γ) pathways in the protection afforded by two polyphenols abundant in diet, cyanidin-3-glucoside and resveratrol, against cytokine-induced inflammation and oxidative insult in HT-29 intestinal cells, in comparison with the drug 5-aminosalicylic acid (5-ASA). Our data show for the first time that in cytokine-challenged cells, cyanidin-3-glucoside and resveratrol induced Nrf2 activation, increased hemoxygenase-1 and glutamate cysteine ligase mRNA expression, enhanced reduced glutathione to oxidized glutathione ratio and inhibited reactive species production, at much lower concentrations than 5-ASA. Unlike cyanidin-3-glucoside, resveratrol and 5-ASA also increased nuclear levels of PPAR-γ in cytokine-stimulated cells. In conclusion, both polyphenols might be interesting as nutraceuticals, giving complementary benefits to conventional drugs against intestinal inflammation, typically present in patients with inflammatory bowel disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering

    PubMed Central

    Del Cueto, Jorge; Ionescu, Irina A.; Pičmanová, Martina; Gericke, Oliver; Motawia, Mohammed S.; Olsen, Carl E.; Campoy, José A.; Dicenta, Federico; Møller, Birger L.; Sánchez-Pérez, Raquel

    2017-01-01

    Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy release of these two Prunus species. The content of prunasin and of endogenous prunasin turnover products in the course of flower development was examined in five almond cultivars – differing from very early to extra-late in flowering time – and in one sweet early cherry cultivar. In all cultivars, prunasin began to accumulate in the flower buds shortly after dormancy release and the levels dropped again just before flowering time. In almond and sweet cherry, the turnover of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile pentoside and β-D-glucose-1-benzoate were abundant in almond and cherry flower buds at certain developmental stages. These findings indicate a role for the turnover of cyanogenic glucosides in controlling flower development in Prunus species. PMID:28579996

  11. Chronic Exposure to Dietary Sterol Glucosides is Neurotoxic to Motor Neurons and Induces an ALS-PDC Phenotype

    PubMed Central

    Tabata, R. C.; Wilson, J. M. B.; Ly, P.; Zwiegers, P.; Kwok, D.; Van Kampen, J. M.; Cashman, N.; Shaw, C. A.

    2008-01-01

    Epidemiological studies of the Guamanian variants of amyotrophic lateral sclerosis (ALS) and parkinsonism, amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC), have shown a positive correlation between consumption of washed cycad seed flour and disease occurrence. Previous in vivo studies by our group have shown that the same seed flour induces ALS and PDC phenotypes in out bred adult male mice. In vitro studies using isolated cycad compounds have also demonstrated that several of these are neurotoxic, specifically, a number of water insoluble phytosterol glucosides of which β-sitosterol β-d-glucoside (BSSG) forms the largest fraction. BSSG is neurotoxic to motor neurons and other neuronal populations in culture. The present study shows that an in vitro hybrid motor neuron (NSC-34) culture treated with BSSG undergoes a dose-dependent cell loss. Surviving cells show increased expression of HSP70, decreased cytosolic heavy neurofilament expression, and have various morphological abnormalities. CD-1 mice fed mouse chow pellets containing BSSG for 15 weeks showed motor deficits and motor neuron loss in the lumbar and thoracic spinal cord, along with decreased glutamate transporter labelling, and increased glial fibrillary acid protein reactivity. Other pathological outcomes included increased caspase-3 labelling in the striatum and decreased tyrosine-hydroxylase labelling in the striatum and substantia nigra. C57BL/6 mice fed BSSG-treated pellets for 10 weeks exhibited progressive loss of motor neurons in the lumbar spinal cord that continued to worsen even after the BSSG exposure ended. These results provide further support implicating sterol glucosides as one potential causal factor in the motor neuron pathology previously associated with cycad consumption and ALS-PDC. PMID:18196479

  12. Effect of Multiple Dietary Supplement Containing Lutein, 
Astaxanthin, Cyanidin-3-Glucoside, and DHA on Accommodative Ability

    PubMed Central

    Kono, Keiko; Shimizu, Yoshiki; Takahashi, Satomi; Matsuoka, Sayuri; Yui, Kei

    2014-01-01

    Objective The study aimed to verify that ingestion of multiple dietary supplement containing lutein, astaxanthin, cyanidin-3-glucoside and docosahexaenoic acid (DHA) would improve accommodative ability of aged and older subjects who were aware of eye strain on a daily basis. Methods A randomized double-blind placebo-controlled parallel group comparison study was conducted for 48 participants aged 45 to 64 years who complained of eye strain. The subjects took multiple dietary supplement containing 10 mg of lutein, 20 mg of bilberry extract and 26.5 mg of black soybean hull extract (a total of 2.3 mg of cyanidin-3-glucoside in both extracts), 4 mg of astaxanthin, and 50 mg of DHA (test supplement) or placebo for four consecutive weeks. Near-point accommodation (NPA) and subjective symptoms were evaluated both before and after four weeks’ intake. Results The variation of the NPA of both eyes from baseline to 4 weeks’ post-intake in the test supplement group was significantly higher than in the placebo group (1.321±0.394 diopter (D) in the test supplement group and 0.108±0.336 D in the placebo group, p=0.023). The multiple dietary supplement group showed improvement in the NPA. Regarding subjective symptoms, significant improvement of “stiff shoulders or neck” and “blurred vision” was also found in the test supplement group compared to the placebo group (p<0.05). There were no safety concerns in this study. Conclusion This study shows that multiple dietary supplement containing lutein, astaxanthin, cyanidin-3-glucoside, and DHA has effect to improve accommodative ability and subjective symptoms related to eye fatigue.

  13. Metabolism and pharmacokinetics of genipin and geniposide in rats.

    PubMed

    Hou, Y C; Tsai, S Y; Lai, P Y; Chen, Y S; Chao, P D L

    2008-08-01

    Geniposide, an iridoid glucoside, is a major constituent in the fruits of Gardenia jasminoides (Gardenia fruits), a popular Chinese herb. Genipin, the aglycone of geniposide, is used to prepare blue colorants in food industry and also a crosslinking reagent for biological tissue fixation. In this study, we investigated the metabolism and pharmacokinetics of genipin and geniposide in rats. Blood samples were withdrawn via cardiopuncture and the plasma samples were assayed by HPLC method before and after hydrolysis with sulfatase and beta-glucuronidase. The results indicated that after oral administration of genipin or Gardenia fruit decoction, genipin sulfate was a major metabolite in the bloodstream, whereas the parent forms of genipin and geniposide were not detected. Importantly, oral administration of 200mg/kg of genipin resulted in a mortality of 78% (7/9) in rats.

  14. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in hard red spring wheat grown in the USA

    USDA-ARS?s Scientific Manuscript database

    Deoxynivalenol (DON) is a mycotoxin found in wheat that is infected with Fusarium fungus. DON may also be converted to a type of "masked mycotoxin," named deoxynivalenol-3-glucoside (D3G), as a result of detoxification process of the plant. Both DON and D3G are known to be toxic. Due to the lack o...

  15. Caffeoyl glucosides from Nandina domestica inhibit LPS-induced endothelial inflammatory responses.

    PubMed

    Kulkarni, Roshan R; Lee, Wonhwa; Jang, Tae Su; Lee, JungIn; Kwak, Soyoung; Park, Mi Seon; Lee, Hyun-Shik; Bae, Jong-Sup; Na, MinKyun

    2015-11-15

    Endothelial dysfunction is a key pathological feature of many inflammatory diseases, including sepsis. In the present study, a new caffeoyl glucoside (1) and two known caffeoylated compounds (2 and 3) were isolated from the fruits of Nandina domestica Thunb. (Berberidaceae). The compounds were investigated for their effects against lipopolysaccharide (LPS)-mediated endothelial inflammatory responses. At 20 μM, 1 and 2 inhibited LPS-induced hyperpermeability, adhesion, and migration of leukocytes across a human endothelial cell monolayer in a dose-dependent manner suggesting that 1 and 2 may serve as potential scaffolds for the development of therapeutic agents to treat vascular inflammatory disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Antioxidant neolignan and phenolic glucosides from the fruit of Euterpe oleracea.

    PubMed

    Hu, Jian; Zhao, Jianping; Khan, Shabana I; Liu, Qiang; Liu, Yang; Ali, Zulfiqar; Li, Xing-Cong; Zhang, Shui-han; Cai, Xiong; Huang, Hui-yong; Wang, Wei; Khan, Ikhlas A

    2014-12-01

    Three new glucosides, namely, (-)-7R8S-7',8'-dihydroxy-dihydrodehydroconiferyl alcohol-9-O-β-D-glucopyranoside (1), (+)-7S8R-7',8'-dihydroxy-dihydrodehydroconiferyl alcohol-9-O-β-D-glucopyranoside (2) and 4-hydroxy-2-methoxyphenyl 1-O-[6-(hydrogen 3-hydroxy-3-methylpentanedioate)]-β-D-glucopyranoside (3), along with 6 known compounds were isolated from the fruit of Euterpe oleracea Mart. Their structures were elucidated based on spectroscopic analyses including NMR, HR-ESI-MS and CD. All the isolated compounds demonstrated significant antioxidant activity and 2 displayed moderate cytotoxicity against HL-60 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A Versatile Family 3 Glycoside Hydrolase from Bifidobacterium adolescentis Hydrolyzes β-Glucosides of the Fusarium Mycotoxins Deoxynivalenol, Nivalenol, and HT-2 Toxin in Cereal Matrices

    PubMed Central

    Varga, Elisabeth; Malachova, Alexandra; Nguyen, Nhung Thi; Lorenz, Cindy; Haltrich, Dietmar; Berthiller, Franz; Adam, Gerhard

    2015-01-01

    Glycosylation plays a central role in plant defense against xenobiotics, including mycotoxins. Glucoconjugates of Fusarium toxins, such as deoxynivalenol-3-O-β-d-glucoside (DON-3G), often cooccur with their parental toxins in cereal-based food and feed. To date, only limited information exists on the occurrence of glucosylated mycotoxins and their toxicological relevance. Due to a lack of analytical standards and the requirement of high-end analytical instrumentation for their direct determination, hydrolytic cleavage of β-glucosides followed by analysis of the released parental toxins has been proposed as an indirect determination approach. This study compares the abilities of several fungal and recombinant bacterial β-glucosidases to hydrolyze the model analyte DON-3G. Furthermore, substrate specificities of two fungal and two bacterial (Lactobacillus brevis and Bifidobacterium adolescentis) glycoside hydrolase family 3 β-glucosidases were evaluated on a broader range of substrates. The purified recombinant enzyme from B. adolescentis (BaBgl) displayed high flexibility in substrate specificity and exerted the highest hydrolytic activity toward 3-O-β-d-glucosides of the trichothecenes deoxynivalenol (DON), nivalenol, and HT-2 toxin. A Km of 5.4 mM and a Vmax of 16 μmol min−1 mg−1 were determined with DON-3G. Due to low product inhibition (DON and glucose) and sufficient activity in several extracts of cereal matrices, this enzyme has the potential to be used for indirect analyses of trichothecene-β-glucosides in cereal samples. PMID:25979885

  18. Isolation, structural elucidation, MS profiling, and evaluation of triglyceride accumulation inhibitory effects of benzophenone C-glucosides from leaves of Mangifera indica L.

    PubMed

    Zhang, Yi; Han, Lifeng; Ge, Dandan; Liu, Xuefeng; Liu, Erwei; Wu, Chunhua; Gao, Xiumei; Wang, Tao

    2013-02-27

    Seventy percent ethanol-water extract from the leaves of Mangifera indica L. (Anacardiaceae) was found to show an inhibitory effect on triglyceride (TG) accumulation in 3T3-L1 cells. From the active fraction, six new benzophenone C-glucosides, foliamangiferosides A(3) (1), A(4) (2), C(4) (3), C(5) (4), C(6) (5), and C(7) (6) together with 11 known benzophenone C-glucosides (7-17) were obtained. In this paper, isolation, structure elucidation (1-6), and MS fragment cleavage pathways of all 17 isolates were studied. 1-6 showed inhibitory effects on TG and free fatty acid accumulation in 3T3-L1 cells at 10 μM.

  19. Development and validation of an LC-MS/MS analysis for simultaneous determination of delphinidin-3-glucoside, cyanidin-3-glucoside and cyanidin-3-(6-malonylglucoside) in human plasma and urine after blood orange juice administration.

    PubMed

    Giordano, Lucia; Coletta, Walter; Rapisarda, Paolo; Donati, Maria Benedetta; Rotilio, Domenico

    2007-12-01

    Blood orange juice has a high content in anthocyanins, especially represented by delphinidin-3-glucoside (D3G), cyanidin-3-glucoside (C3G) and cyanidin-3-(6-malonylglucoside) (CMG). An LC-MS/MS method for the simultaneous determination of D3G and C3G in human plasma and urine was developed and validated. After sample preparation by SPE, chromatographic separation was performed with an RP-C(18) column, using a water/methanol linear gradient. The quantitation of target compounds was determined by multiple reaction monitoring (MRM) mode, using ESI. The method showed good selectivity, sensitivity (LOD = 0.05 and 0.10 ng/mL for C3G in plasma and urine, respectively; LOD = 0.10 ng/mL for D3G in plasma and urine), linearity (0.20-200 ng/mL; r >or= 0.998), intra- and interday precision and accuracy (

  20. Linkage mapping, molecular cloning and functional analysis of soybean gene Fg3 encoding flavonol 3-O-glucoside/galactoside (1 → 2) glucosyltransferase.

    PubMed

    Di, Shaokang; Yan, Fan; Rodas, Felipe Rojas; Rodriguez, Tito O; Murai, Yoshinori; Iwashina, Tsukasa; Sugawara, Satoko; Mori, Tetsuya; Nakabayashi, Ryo; Yonekura-Sakakibara, Keiko; Saito, Kazuki; Takahashi, Ryoji

    2015-05-23

    Flavonol glycosides (FGs) are major components of soybean leaves and there are substantial differences in FG composition among genotypes. The first objective of this study was to identify genes responsible for FG biosynthesis and to locate them in the soybean genome. The second objective was to clone the candidate genes and to verify their function. Recombinant inbred lines (RILs) were developed from a cross between cultivars Nezumisaya and Harosoy. HPLC comparison with authentic samples suggested that FGs having glucose at the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol were present in Nezumisaya, whereas FGs of Harosoy were devoid of 2″-glucose. Conversely, FGs having glucose at the 6″-position of glucose or galactose that is bound to the 3-position of kaempferol were present in Harosoy, whereas these FGs were absent in Nezumisaya. Genetic analysis suggested that two genes control the pattern of attachment of these sugar moieties in FGs. One of the genes may be responsible for attachment of glucose to the 2″-position, probably encoding for a flavonol 3-O-glucoside/galactoside (1 → 2) glucosyltransferase. Nezumisaya may have a dominant whereas Harosoy may have a recessive allele of the gene. Based on SSR analysis, linkage mapping and genome database survey, we cloned a candidate gene designated as GmF3G2″Gt in the molecular linkage group C2 (chromosome 6). The open reading frame of GmF3G2″Gt is 1380 bp long encoding 459 amino acids with four amino acid substitutions among the cultivars. The GmF3G2″Gt recombinant protein converted kaempferol 3-O-glucoside to kaempferol 3-O-sophoroside. GmF3G2″Gt of Nezumisaya showed a broad activity for kaempferol/quercetin 3-O-glucoside/galactoside derivatives but it did not glucosylate kaempferol 3-O-rhamnosyl-(1 → 4)-[rhamnosyl-(1 → 6)-glucoside] and 3-O-rhamnosyl-(1 → 4)-[glucosyl-(1 → 6)-glucoside]. GmF3G2″Gt encodes a flavonol 3-O-glucoside

  1. Protective Effects of Cornel Iridoid Glycoside in Rats After Traumatic Brain Injury.

    PubMed

    Ma, Denglei; Wang, Na; Fan, Xiaotong; Zhang, Lan; Luo, Yi; Huang, Rui; Zhang, Li; Li, Yali; Zhao, Guoguang; Li, Lin

    2018-04-01

    Cornel iridoid glycoside (CIG) is the active ingredient extracted from Cornus officinalis. Our previous studies showed that CIG had protective effects on several brain injury models. In the present study, we aimed to examine the effects and elucidate the mechanisms of CIG against traumatic brain injury (TBI). TBI was induced in the right cerebral cortex of male adult rats. The neurological and cognitive functions were evaluated by modified neurological severity score (mNSS) and object recognition test (ORT), respectively. The level of serum S100β was measured by an ELISA method. Nissl staining was used to estimate the neuron survival in the brain. The expression of proteins was determined by western blot and/or immunohistochemical staining. We found that intragastric administration of CIG in TBI rats ameliorated the neurological defects and cognitive impairment, and alleviated the neuronal loss in the injured brain. In the acute stage of TBI (24-72 h), CIG decreased the level of S100β in the serum and brain, increased the ratio of Bcl-2/Bax and decreased the expression of caspase-3 in the injured cortex. Moreover, the treatment with CIG for 30 days increased the levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), enhanced the expression of synapsin I, synaptophysin and postsynaptic density protein 95 (PSD-95), and inhibited the apoptosis-regulating factors in the chronic stage of TBI. The present study demonstrated that CIG had neuroprotective effects against TBI through inhibiting apoptosis in the acute stage and promoting neurorestoration in the chronic stage. The results suggest that CIG may be beneficial to TBI therapy.

  2. Adaption of Ehrlich’s Reagent to a HPLC post-column reaction system for the quantification of limonoid glucosides (abstract)

    USDA-ARS?s Scientific Manuscript database

    Citrus limonoid glucosides are found in large quantities in citrus fruits and seeds. Characterization and quantification of these compounds is important because they contribute to citrus quality and are reported to be biologically active. Unlike other bioactive compounds (e.g., flavonoids) present...

  3. Determination of citrus limonoid glucosides by high performance liquid chromatography coupled to post-column reaction with Ehrlich’s Reagent

    USDA-ARS?s Scientific Manuscript database

    A method for the identification and quantification of citrus limonoid glucosides in juices based upon high performance liquid chromatography (HPLC) separation coupled to post-column reaction with Ehrlichs’s reagent has been developed. This method utilizes a phenyl stationary phase and an isocratic ...

  4. Thalassiolin D: a new flavone O-glucoside Sulphate from the seagrass Thalassia hemprichii.

    PubMed

    Hawas, Usama W; Abou El-Kassem, Lamia T

    2017-10-01

    Thalassiolin D, a new flavone O-glucoside sulphate along with three flavonoids, two steroids, p-hydroxybenzoic acid, 4,4'-dihydroxybenzophenone and nitrogen compound, octopamine were isolated from the seagrass Thalassia hemprichii, collected from the Saudi Red Sea coast. By extensive spectroscopic analysis including 1D and 2D NMR and MS data, the structure of the new compound was elucidated as diosmetin 7-O-β-glucosyl-2″-sulphate. The new compound displayed moderately in vitro antiviral HCV protease activity with IC 50 value 16 μM.

  5. The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae.

    PubMed

    Smit, A; Moses, S G; Pretorius, I S; Cordero Otero, R R

    2008-04-01

    The main objective of this study was to identify amino acid residues in the AGT1-encoded alpha-glucoside transporter (Agt1p) that are critical for efficient transport of maltotriose in the yeast Saccharomyces cerevisiae. The sequences of two AGT1-encoded alpha-glucoside transporters with different efficiencies of maltotriose transport in two Saccharomyces strains (WH310 and WH314) were compared. The sequence variations and discrepancies between these two proteins (Agt1p(WH310) and Agt1p(WH314)) were investigated for potential effects on the functionality and maltotriose transport efficiency of these two AGT1-encoded alpha-glucoside transporters. A 23-amino-acid C-terminal truncation proved not to be critical for maltotriose affinity. The identification of three amino acid differences, which potentially could have been instrumental in the transportation of maltotriose, were further investigated. Single mutations were created to restore the point mutations I505T, V549A and T557S one by one. The single site mutant V549A showed a decrease in maltotriose transport ability, and the I505T and T557S mutants showed complete reduction in maltotriose transport. The amino acids Thr(505) and Ser(557), which are respectively located in the transmembrane (TM) segment TM(11) and on the intracellular segment after TM(12) of the AGT1-encoded alpha-glucoside transporters, are critical for efficient transport of maltotriose in S. cerevisiae. Improved fermentation of starch and its dextrin products, such as maltotriose and maltose, would benefit the brewing and whisky industries. This study could facilitate the development of engineered maltotriose transporters adapted to starch-efficient fermentation systems, and offers prospects for the development of yeast strains with improved maltose and maltotriose uptake capabilities that, in turn, could increase the overall fermentation efficiencies in the beer and whisky industries.

  6. The hepta-beta-glucoside elicitor-binding proteins from legumes represent a putative receptor family.

    PubMed

    Mithöfer, A; Fliegmann, J; Neuhaus-Url, G; Schwarz, H; Ebel, J

    2000-08-01

    The ability of legumes to recognize and respond to beta-glucan elicitors by synthesizing phytoalexins is consistent with the existence of a membrane-bound beta-glucan-binding site. Related proteins of approximately 75 kDa and the corresponding mRNAs were detected in various species of legumes which respond to beta-glucans. The cDNAs for the beta-glucan-binding proteins of bean and soybean were cloned. The deduced 75-kDa proteins are predominantly hydrophilic and constitute a unique class of glucan-binding proteins with no currently recognizable functional domains. Heterologous expression of the soybean beta-glucan-binding protein in tomato cells resulted in the generation of a high-affinity binding site for the elicitor-active hepta-beta-glucoside conjugate (Kd = 4.5 nM). Ligand competition experiments with the recombinant binding sites demonstrated similar ligand specificities when compared with soybean. In both soybean and transgenic tomato, membrane-bound, active forms of the glucan-binding proteins coexist with immunologically detectable, soluble but inactive forms of the proteins. Reconstitution of a soluble protein fraction into lipid vesicles regained beta-glucoside-binding activity but with lower affinity (Kd = 130 nM). We conclude that the beta-glucan elicitor receptors of legumes are composed of the 75 kDa glucan-binding proteins as the critical components for ligand-recognition, and of an as yet unknown membrane anchor constituting the plasma membrane-associated receptor complex.

  7. Four new neolignan glucosides from the fruits of Arctium lappa.

    PubMed

    Huang, Xiao-Ying; Feng, Zi-Ming; Yang, Ya-Nan; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2015-05-01

    Four new neolignan glucosides named (7S, 8R)-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan-9'-O-β-d-apiofuranosyl-(1 → 6)-O-β-d-glucopyranoside (1), (8R)-4,9,9'-trihydroxy-3,3'-dimethoxy-7-oxo-8-O-4'-neolignan-4-O-β-d-glucopyranoside (2), (7R, 8S)-dihydrodehydrodiconiferyl alcohol-7'-oxo-4-O-β-d-glucopyranoside (3), and (7'S, 8'R, 8S)-4,4',9'-trihydroxy-3,3'-dimethoxy-7',9-epoxylignan-7-oxo-4-O-β-d-glucopyranoside (4) were isolated from the fruits of Arctium lappa L. Their structures and absolute configurations were elucidated on the basis of comprehensive spectroscopic analyses (UV, IR, HR-ESI-MS, 1D and 2D NMR, CD), as well as by comparison with known analogues in the literature.

  8. Simultaneous determination of anthraquinones, their 8-beta-D-glucosides, and sennosides of Rhei Rhizoma by capillary electrophoresis.

    PubMed

    Koyama, Junko; Morita, Izumi; Fujiyoshi, Hirotaka; Kobayashi, Norihiro

    2005-05-01

    The simultaneous separation and determination of major anthraquinones (emodin, chrysophanol, rhein and their glucosides, aloe-emodin, sennoside A, and sennoside B) of Rhei Rhizoma were achieved by cyclodextrin modified capillary zone electrophoresis. The running electrolyte used in this method was 0.005 M alpha-cyclodextrin in 0.03 M borate buffer (pH 10.0) containing 20% acetonitrile, with an applied voltage of 20 kV.

  9. Cloning and characterization of soybean gene Fg1 encoding flavonol 3-O-glucoside/galactoside (1→6) glucosyltransferase.

    PubMed

    Rojas Rodas, Felipe; Di, Shaokang; Murai, Yoshinori; Iwashina, Tsukasa; Sugawara, Satoko; Mori, Tetsuya; Nakabayashi, Ryo; Yonekura-Sakakibara, Keiko; Saito, Kazuki; Takahashi, Ryoji

    2016-11-01

    Flavonoids are important secondary metabolites in plants. Sugar-sugar glycosyltransferases are involved in the final step of flavonoid biosynthesis and contribute to the structural diversity of flavonoids. This manuscript describes the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. The results provide a glimpse on the possible evolution of sugar-sugar glycosyltransferase genes and identify putative amino acids responsible for the recognition of the hydroxyl group of the sugar moiety and specification of sugar. A scheme for the genetic control of flavonol glycoside biosynthesis is proposed. Flavonol glycosides (FGs) are predominant in soybean leaves and they show substantial differences among genotypes. In previous studies, we identified two flavonoid glycoside glycosyltransferase genes that segregated in recombinant inbred lines developed from a cross between cultivars Nezumisaya and Harosoy; one was responsible for the attachment of glucose to the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol and the other was involved in the attachment of glucose to the 6″-position. This study was conducted to clone and characterize the 6″-glucosyltransferase gene. Linkage mapping indicated that the gene was located in the molecular linkage group I (chromosome 20). Based on the genome sequence, we cloned a candidate cDNA, GmF3G6"Gt from Harosoy but the corresponding cDNA could not be amplified by PCR from Nezumisaya. The coding region of GmF3G6″Gt in Harosoy is 1386 bp long encoding 462 amino acids. This gene was not expressed in leaves of Nezumisaya. The GmF3G6″Gt recombinant protein converted UDP-glucose and kaempferol 3-O-glucoside or kaempferol 3-O-galactoside to kaempferol 3-O-glucosyl-(1→6)-glucoside or kaempferol 3-O-glucosyl-(1→6)-galactoside, respectively. These results indicate that GmF3G6″Gt encodes a flavonol 3-O-glucoside

  10. C-Aryl glucoside SGLT2 inhibitors containing a biphenyl motif as potential anti-diabetic agents.

    PubMed

    Ding, Yuyang; Mao, Liufeng; Xu, Dengfeng; Xie, Hui; Yang, Ling; Xu, Hongjiang; Geng, Wenjun; Gao, Yong; Xia, Chunguang; Zhang, Xiquan; Meng, Qingyi; Wu, Donghai; Zhao, Junling; Hu, Wenhui

    2015-07-15

    A series of highly active C-aryl glucoside SGLT2 inhibitors containing a biphenyl motif were designed and synthesized for biological evaluation. Among the compounds tested, compound 16l demonstrated high inhibitory activity against SGLT2 (IC50=1.9 nM) with an excellent pharmacokinetic profile. Further study indicated that the in vivo efficacy of compound 16l was comparable to that of dapagliflozin, suggesting that further development would be worthwhile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A new diterpenoid glucoside and two new diterpenoids from the fruit of Vitex agnus-castus.

    PubMed

    Ono, Masateru; Eguchi, Keisuke; Konoshita, Masatarou; Furusawa, Chisato; Sakamoto, Junich; Yasuda, Shin; Ikeda, Tsuyoshi; Okawa, Masafumi; Kinjo, Junei; Yoshimitsu, Hitoshi; Nohara, Toshihiro

    2011-01-01

    A new labdane-type diterpenoid glucoside and two new labdane-type diterpenoids were isolated from the fruit (chasteberry) of Vitex agnus-castus L. (Verbenaceae) along with 14 known compounds comprising seven labdane-type diterpenoids, one halimane-type diterpenoid, two oleanane-type triterpenoids, two ursane-type triterpenoids, one aromadendrane-type sesquiterpenoid, and one flavonoid. Their structures were characterized on the basis of spectroscopic data as well as chemical evidence. Furthermore, the antioxidative activities of the flavonoid were evaluated using five different analyses.

  12. Assessment of extraction parameters on antioxidant capacity, polyphenol content, epigallocatechin gallate (EGCG), epicatechin gallate (ECG) and iriflophenone 3-C-β-glucoside of agarwood (Aquilaria crassna) young leaves.

    PubMed

    Tay, Pei Yin; Tan, Chin Ping; Abas, Faridah; Yim, Hip Seng; Ho, Chun Wai

    2014-08-14

    The effects of ethanol concentration (0%-100%, v/v), solid-to-solvent ratio (1:10-1:60, w/v) and extraction time (30-180 min) on the extraction of polyphenols from agarwood (Aquilaria crassna) were examined. Total phenolic content (TPC), total flavonoid content (TFC) and total flavanol (TF) assays and HPLC-DAD were used for the determination and quantification of polyphenols, flavanol gallates (epigallocatechin gallate--EGCG and epicatechin gallate--ECG) and a benzophenone (iriflophenone 3-C-β-glucoside) from the crude polyphenol extract (CPE) of A. crassna. 2,2'-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was used to evaluate the antioxidant capacity of the CPE. Experimental results concluded that ethanol concentration and solid-to-solvent ratio had significant effects (p<0.05) on the yields of polyphenol and antioxidant capacity. Extraction time had an insignificant influence on the recovery of EGCG, ECG and iriflophenone 3-C-β-glucoside, as well as radical scavenging capacity from the CPE. The extraction parameters that exhibited maximum yields were 40% (v/v) ethanol, 1:60 (w/v) for 30 min where the TPC, TFC, TF, DPPH, EGCG, ECG and iriflophenone 3-C-β-glucoside levels achieved were 183.5 mg GAE/g DW, 249.0 mg QE/g DW, 4.9 mg CE/g DW, 93.7%, 29.1 mg EGCG/g DW, 44.3 mg ECG/g DW and 39.9 mg iriflophenone 3-C-β-glucoside/g DW respectively. The IC50 of the CPE was 24.6 mg/L.

  13. Diet quality can play a critical role in defense efficacy against parasitoids and pathogens in the Glanville fritillary (Melitaea cinxia).

    PubMed

    Laurentz, Minna; Reudler, Joanneke H; Mappes, Johanna; Friman, Ville; Ikonen, Suvi; Lindstedt, Carita

    2012-01-01

    Numerous herbivorous insect species sequester noxious chemicals from host plants that effectively defend against predators, and against parasitoids and pathogens. Sequestration of these chemicals may be expensive and involve a trade off with other fitness traits. Here, we tested this hypothesis. We reared Glanville fritillary butterfly (Melitaea cinxia L.) larvae on plant diets containing low- and high-levels of iridoid glycosides (IGs) (mainly aucubin and catalpol) and tested: 1) whether IGs affect the herbivore's defense against parasitoids (measured as encapsulation rate) and bacterial pathogens (measured as herbivore survival); 2) whether parasitoid and bacterial defenses interact; and 3) whether sequestration of the plant's defense chemicals incurs any life history costs. Encapsulation rates were stronger when there were higher percentages of catalpol in the diet. Implanted individuals had greater amounts of IGs in their bodies as adults. This suggests that parasitized individuals may sequester more IGs, increase their feeding rate after parasitism, or that there is a trade off between detoxification efficiency and encapsulation rate. Larval survival after bacterial infection was influenced by diet, but probably not by diet IG content, as changes in survival did not correlate linearly with the levels of IGs in the diet. However, M. cinxia larvae with good encapsulation abilities were better defended against bacteria. We did not find any life history costs of diet IG concentration for larvae. These results suggest that the sequestering of plant defense chemicals can help herbivorous insects to defend against parasitoids.

  14. Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC-MS.

    PubMed

    Aberham, Anita; Schwaiger, Stefan; Stuppner, Hermann; Ganzera, Markus

    2007-11-05

    The here described HPLC-method enables the determination of all major, currently known bioactive compounds in gentian roots. A separation of iridoids (loganic acid), secoiridoids (swertiamarin, gentiopicroside, amarogentin, sweroside), xanthones (gentisin, isogentisin) and two xanthone glycosides (gentiosides) was possible on RP-18 column material, using 0.025% aqueous TFA, acetonitrile and n-propanol as mobile phase. The method is sensitive (LOD

  15. The flavonol quercetin-3-glucoside inhibits cyanidin-3-glucoside absorption in vitro.

    PubMed

    Walton, Michaela C; McGhie, Tony K; Reynolds, Gordon W; Hendriks, Wouter H

    2006-06-28

    At present, little is known about the mechanisms responsible for intestinal absorption of anthocyanins (ACNs). For example, it has not yet been established if ACNs are absorbed through an active transport mechanism, such as the sodium-dependent glucose transporter (SGLT1), or by passive diffusion. Previously, we found that the absorption of ACNs differs between regions of the digestive tract and is maximal in the jejunum, suggesting that an active transport mechanism is involved. In the present study, we examined the effect of d-glucose (main substrate of SGLT1), phloridzin (inhibitor of SGLT1), and quercetin-3-glucose (Q3G, a flavonol) on the absorption of cyanidin-3-glucoside (C3G; approximately 5 micromol/L) by mouse jejunum mounted in Ussing chambers. We found that the presence of either D-glucose (10, 20, and 40 mmol/L) or phloridzin (50, 100, and 200 micromol/L) resulted in a small but insignificant inhibition of C3G disappearance from the mucosal solution (decrease of disappearance with glucose, 33%; with phloridzin, 18%; NS). However, when the flavonol Q3G (50 micromol/L) was added to the mucosal solution together with the C3G, the disappearance of C3G was significantly decreased (74%; p < 0.001), and Q3G disappeared instead. In addition, we found phloretin and quercetin, the aglycones of phloridzin and Q3G, respectively, present in the mucosal solution and tissue extracts, indicating hydrolysis of these compounds by the enterocytes of the jejunum. In contrast, the aglycone cyanidin was not detected at all. Our results show that in the mouse small intestine, ACN absorption is not solely dependent on the activity of the SGLT1 transporter, as d-glucose and phloridzin had only a slight effect on uptake. Q3G, however, clearly inhibited C3G disappearance. These results suggest that there might be a competitive inhibition between C3G and Q3G absorption. It is possible that an absorption mechanism other than the SGLT1 is involved, which has a structural preference

  16. Molecular cloning and characterization of genistein 4'-O-glucoside specific glycosyltransferase from Bacopa monniera.

    PubMed

    Ruby; Santosh Kumar, R J; Vishwakarma, Rishi K; Singh, Somesh; Khan, Bashir M

    2014-07-01

    Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.

  17. A pre-clinical pharmacokinetic study in rats of three naturally occurring iridoid glycosides, Picroside-I, II and III, using a validated simultaneous HPLC-MS/MS assay.

    PubMed

    Zhu, Jianwei; Xue, Bingyang; Ma, Bo; Zhang, Qi; Liu, Ming; Liu, Lei; Yao, Di; Qi, Huanhuan; Wang, Yonglu; Ying, Hanjie; Wu, Zimei

    2015-07-01

    A selective and sensitive high-performance liquid chromatography-electro-spray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was developed for the simultaneous quantitative determination of Picroside-I, II, and III in rat plasma and tissue homogenate to aid the pre-clinical studies. The chromatographic separation was performed on a Hypersil GOLD AQ C18 column using a gradient elution program with a mobile phase consisting of 2mM ammonium acetate and acetonitrile. The detection was achieved using a triple quadrupole tandem MS in negative ionization multiple reaction monitoring (MRM) mode. One-step protein precipitation was selected for plasma and tissue sample preparation while liquid-liquid extraction failed to achieve satisfactory recoveries. The calibration curves of all three analytes in either plasma or tissue homogenate showed good linearity over the concentration range of 0.5-500ng/mL with a limit of quantitation at 0.5ng/mL. Both the intra- and inter-day accuracy and precision were within ±10%. The extraction recoveries were >70%, and the relative matrix effect ranged from 80.4% to 107.4% in all the biological samples. All the analytes were stable in matrices for at least 24h at room temperature, or 21 days in frozen. Three freeze/thaw cycles did not cause degradation. The method was successfully applied for quantification of the three iridoid glycosides in the collected plasma and various tissues following intravenous administration in rats. Picroside-I, II, and III were all eliminated rapidly with large volume of distribution. Among the three glycosides, Picroside-II showed the highest liver uptake, and only Picroside-I and II were found to get across the blood brain barrier (BBB). These results were consistent with their hepatoprotective or neuroprotective effects reported clinically. With the aid of the efficient and reliable simultaneous LC-ESI-MS/MS assay this pharmacokinetic study provided insights into their therapeutic targets of these

  18. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora

    NASA Astrophysics Data System (ADS)

    Li, Bin; Bhandari, Dhaka Ram; Römpp, Andreas; Spengler, Bernhard

    2016-10-01

    High-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) at 10 μm pixel size was performed to unravel the spatio-chemical distribution of major secondary metabolites in the root of Paeonia lactiflora. The spatial distributions of two major classes of bioactive components, gallotannins and monoterpene glucosides, were investigated and visualized at the cellular level in tissue sections of P. lactiflora roots. Accordingly, other primary and secondary metabolites were imaged, including amino acids, carbohydrates, lipids and monoterpenes, indicating the capability of untargeted localization of metabolites by using high-resolution MSI platform. The employed AP-SMALDI MSI system provides significant technological advancement in the visualization of individual molecular species at the cellular level. In contrast to previous histochemical studies of tannins using unspecific staining reagents, individual gallotannin species were accurately localized and unequivocally discriminated from other phenolic components in the root tissues. High-quality ion images were obtained, providing significant clues for understanding the biosynthetic pathway of gallotannins and monoterpene glucosides and possibly helping to decipher the role of tannins in xylem cells differentiation and in the defence mechanisms of plants, as well as to investigate the interrelationship between tannins and lignins.

  19. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora.

    PubMed

    Li, Bin; Bhandari, Dhaka Ram; Römpp, Andreas; Spengler, Bernhard

    2016-10-31

    High-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) at 10 μm pixel size was performed to unravel the spatio-chemical distribution of major secondary metabolites in the root of Paeonia lactiflora. The spatial distributions of two major classes of bioactive components, gallotannins and monoterpene glucosides, were investigated and visualized at the cellular level in tissue sections of P. lactiflora roots. Accordingly, other primary and secondary metabolites were imaged, including amino acids, carbohydrates, lipids and monoterpenes, indicating the capability of untargeted localization of metabolites by using high-resolution MSI platform. The employed AP-SMALDI MSI system provides significant technological advancement in the visualization of individual molecular species at the cellular level. In contrast to previous histochemical studies of tannins using unspecific staining reagents, individual gallotannin species were accurately localized and unequivocally discriminated from other phenolic components in the root tissues. High-quality ion images were obtained, providing significant clues for understanding the biosynthetic pathway of gallotannins and monoterpene glucosides and possibly helping to decipher the role of tannins in xylem cells differentiation and in the defence mechanisms of plants, as well as to investigate the interrelationship between tannins and lignins.

  20. UHPLC-ESI-MS/MS determination and pharmacokinetics of pinoresinol glucoside and chlorogenic acid in rat plasma after oral administration of Eucommia ulmoides Oliv extract.

    PubMed

    Gong, Xiaojian; Luan, Qingxiang; Zhou, Xin; Zhao, Yang; Zhao, Chao

    2017-11-01

    This study aimed to develop a specific UHPLC-ESI-MS/MS method for simultaneous determination and pharmacokinetics of pinoresinol glucoside and chlorogenic acid in rat plasma after oral administration of Eucommia ulmoides. The chromatographic separation was achieved on a Hypersil GOLD column with gradient elution by using a mixture of 0.1% formic acid aqueous solution and acetonitrile as the mobile phase at a flow rate of 200 μL/min. A tandem mass spectrometric detection was conducted using multiple-reaction monitoring via an electrospray ionization source in negative ionization mode. Samples were pre-treated by a single-step protein precipitation with acetonitrile, and bergenin was used as internal standard. After oral administration of 3 mL/kg E. ulmoides extract in rats, the maximum plasma concentrations of pinoresinol glucoside and chlorogenic acid were 57.44 and 61.04 ng/mL, respectively. The times to reach the maximum plasma concentration were 40.00 and 23.33 min for pinoresinol glucoside and chlorogenic acid, respectively. The intra- and inter-day precision (RSD) values for the two analytes were <2.46 and 5.15%, respectively, and the accuracy (RE) values ranged from -12.76 to 0.00. This is the first study on pharmacokinetics of bioactive compounds in rat plasma after oral administration of E. ulmoides extract. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Acute effects of quercetin-3-O-glucoside on endothelial function and blood pressure: a randomized dose-response study.

    PubMed

    Bondonno, Nicola P; Bondonno, Catherine P; Rich, Lisa; Mas, Emilie; Shinde, Sujata; Ward, Natalie C; Hodgson, Jonathan M; Croft, Kevin D

    2016-07-01

    Epidemiologic studies have suggested that a flavonoid-rich diet can reduce the risk of developing cardiovascular disease. Certain flavonoids, in particular quercetin, have been shown to ameliorate endothelial dysfunction and reduce blood pressure (BP), possibly by increasing the bioavailability of the potent vasodilator nitric oxide (NO). Several studies have indicated that improvements in measures of cardiovascular health do not occur linearly, but rather, plateau or decrease with an increasing dose of flavonoids. We determined whether the acute administration of increasing doses of a common quercetin glycoside (quercetin-3-O-glucoside) improves endothelial function and reduces BP in a dose-dependent manner. We also explored whether any effects were correlated with changes in plasma NO production. A randomized, controlled, crossover study was performed in 15 healthy volunteers who each completed 5 visits with a minimum washout period of 1 wk between testing days. Participants received each of the following 5 interventions in a random order: 1) 0, 2) 50, 3) 100, 4) 200, or 5) 400 mg quercetin-3-O-glucoside. Endothelial function and BP were assessed before and 60 min after intervention. A blood sample was taken before and 90 min after intervention for the analysis of plasma nitrate and nitrite as markers of NO production as well as of plasma quercetin metabolites. Although we observed a significant correlation between the dose of quercetin-3-O-glucoside and plasma concentrations of total quercetin (R(2) = 0.52, P < 0.001) and isorhamnetin (R(2) = 0.12, P = 0.005), we showed no improvements in endothelial function or BP and no changes in NO production after any dose. From these results, we conclude that there are no acute changes in BP or the NO-mediated endothelium-dependent relaxation of the brachial artery with doses of quercetin ranging from 50 to 400 mg in healthy men and women. This trial was registered at www.anzctr.org.au as ACTRN12615001338550. © 2016

  2. Thermodynamics and kinetics of cyanidin 3-glucoside and caffeine copigments.

    PubMed

    Limón, Piedad M; Gavara, Raquel; Pina, Fernando

    2013-06-05

    The multiequilibrium system of reactions of cyanidin 3-glucoside at acidic and mildly acidic pH values was studied in the presence of caffeine as a copigment. The thermodynamic and kinetic constants were determined using the so-called direct and reverse pH jump experiments that were followed by conventional UV-vis spectroscopy or stopped flow coupled to a UV-vis detector, depending on the rate of the monitored process. Compared with that of free anthocyanin, the copigmentation with caffeine extends the domain of the flavylium cation up to less acidic pH values, while in a moderately acidic medium, the quinoidal base becomes more stabilized. As a consequence, the hydration to give the colorless hemiketal is difficult over the entire range of pH values. At pH 1, two adducts were found for the flavylium cation-caffeine interaction, with stoichiometries of 1:1 and 1:2 and association constants of 161 M⁻¹ (K₁) and 21 M⁻¹ (K₂), respectively.

  3. Apoptogenic effects of β-sitosterol glucoside from Castanopsis indica leaves.

    PubMed

    Dolai, Narayan; Kumar, Ashish; Islam, Aminul; Haldar, Pallab K

    2016-01-01

    β-Sitosterol glucoside (BSSG) is a natural biologically active substance isolated from the Castanopsis indica leaves. This study explored the apoptogenic mechanistic studies of BSSG against Ehrlich's ascites carcinoma (EAC) treated mice through morphological study, comet assay, flow cytometry (FACS) and Western blotting assay method. AO/EB staining and FACS analysis showed that BSSG possessed apoptosis induction activities on EAC cells. Dose dependent induction of DNA damage was observed after BSSG treatment. Increase the expression of apoptotic protein p53 and p21 in EAC, multiple downstream factors contributing to apoptosis pathway. The increase of caspase-9 and caspase-3 activities revealed that caspase was a key mediator of the apoptotic pathway induced by BSSG, and up-regulation of Bax and down-regulation of anti-apoptotic protein Bcl-2 resulted in the decrease of Bcl-2/Bax ratio. Owing to the combination of significant antitumour activity by inducing apoptosis, BSSG holds the promise of being an interesting chemo-preventive agent active in cancer therapy.

  4. Simultaneous determination of cucurbitacin B, E, I and E-glucoside in plant material and body fluids by HPLC-MS.

    PubMed

    Bajcsik, Nicole; Pfab, Rudolf; Pietsch, Jörg

    2017-05-01

    A selective and sensitive analytical method for the simultaneous determination of cucurbitacin B, E, I and E-glucoside in plant material and body fluids by HPLC-MS was developed. After liquid-liquid extraction with dichlormethane, separation was achieved on a Phenomenex Luna Pentafluorophenyl Column (150mm×2mm, 5μm) using acetonitrile-water (90:10, v/v) as mobile phase system. Detection was performed using a 3200 Q Trap mass spectrometer (AB Sciex). For analysis Q1 Scans with negative ionisation were chosen. The method was validated for serum as the matrix of choice. Limits of detection are in the picogram range, limits of quantification are between 0.05 and 0.42ng/mL, recoveries are above 50%. The assay was linear in the calibration range from 1.0 to 50ng/mL for cucurbitacin E and from 0.10 to 50ng/mL for the cucurbitacins B, I and E-glucoside. The applicability of the method was demonstrated by the determination of cucurbitacins in zucchini plant material and body fluids from intoxication cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cyanidin-3-O-beta-glucoside inhibits LPS-induced expression of inflammatory mediators through decreasing IkBa Phosphorylation in THP-1 Cells

    USDA-ARS?s Scientific Manuscript database

    Objective and design: As a common phytochemical, cyanidin 3-O-beta-glucoside (C3G) has a role in inhibiting inflammatory mediators; however, its mechanism of action remains unclear. The purpose of this study was to explore the effect of C3G on lipopolysaccharide (LPS)-stimulated TNFa and IL-6 expres...

  6. Synthesis and biological evaluation of novel tetrahydroisoquinoline-C-aryl glucosides as SGLT2 inhibitors for the treatment of type 2 diabetes.

    PubMed

    Pan, Xuan; Huan, Yi; Shen, Zhufang; Liu, Zhanzhu

    2016-05-23

    A series of novel tetrahydroisoquinoline-C-aryl glucosides has been synthesized and evaluated for the inhibition of human SGLT2. Compared with dapagliflozin, compound 13h exhibited equivalent in vitro inhibitory activity against SGLT2, which might become a promising candidate for the treatment of type 2 diabetes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Identification of rice Os4BGlu13 as a β-glucosidase which hydrolyzes gibberellin A4 1-O-β-d-glucosyl ester, in addition to tuberonic acid glucoside and salicylic acid derivative glucosides.

    PubMed

    Hua, Yanling; Ekkhara, Watsamon; Sansenya, Sompong; Srisomsap, Chantragan; Roytrakul, Sittiruk; Saburi, Wataru; Takeda, Ryosuke; Matsuura, Hideyuki; Mori, Haruhide; Ketudat Cairns, James R

    2015-10-01

    Gibberellin 1-O-β-d-glucose ester hydrolysis activity has been detected in rice seedling extracts, but no enzyme responsible for this activity has ever been purified and identified. Therefore, gibberellin A4 glucosyl ester (GA4-GE) β-d-glucosidase activity was purified from ten-day rice seedling stems and leaves. The family 1 glycoside hydrolase Os4BGlu13 was identified in the final purification fraction. The Os4BGlu13 cDNA was amplified from rice seedlings and expressed as an N-terminal thioredoxin-tagged fusion protein in Escherichia coli. The purified recombinant Os4BGlu13 protein (rOs4BGlu13) had an optimum pH of 4.5, for hydrolysis of p-nitrophenyl β-d-glucopyranoside (pNPGlc), which was the best substrate identified, with a kcat/Km of 637 mM(-1) s(-1). rOs4BGlu13 hydrolyzed helicin best among natural glycosides tested (kcat/Km of 74.4 mM(-1) s(-1)). Os4BGlu13 was previously designated tuberonic acid glucoside (TAG) β-glucosidase (TAGG), and here the kcat/Km of rOsBGlu13 for TAG was 6.68 mM(-1) s(-1), while that for GA4-GE was 3.63 mM(-1) s(-1) and for salicylic acid glucoside (SAG) is 0.88 mM(-1) s(-1). rOs4BGlu13 also hydrolyzed oligosaccharides, with preference for short β-(1 → 3)-linked over β-(1 → 4)-linked glucooligosaccharides. The enzymatic data suggests that Os4BGlu13 may contribute to TAG, SAG, oligosaccharide and GA4-GE hydrolysis in the rice plant, although helicin or a similar compound may be its primary target. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effect of heat/pressure on cyanidin-3-glucoside ethanol model solutions

    NASA Astrophysics Data System (ADS)

    Corrales, M.; Lindauer, R.; Butz, P.; Tauscher, B.

    2008-07-01

    The stability of cyanidin-3-glucoside (Cy3gl) in 50% ethanol model solutions under heat/pressure treatments was investigated. Cy3gl was rapidly degraded when solutions were subjected to a heat/pressure treatment. The higher the pressure and the temperature used, the higher the degradation. Moreover, the degradation was increased according to increasing holding times. Parallel to the degradation of Cy3gl several hydrolytic products were formed and identified by LC-DAD/ESI-MS. The degradation of Cy3gl was well fitted to a first order reaction (R=0.99). This study pointed out the rate of susceptibility of Cy3gl in model solutions to degrade when exposed to a heat/pressure treatment and the trigger effect of high hydrostatic pressure to hydrolyse Cy3gl. By contrast, the degradation of anthocyanins in a food matrix (red grape extract solutions) was negligible after a heat/pressure process at 600MPa, 70°C during 1h (P >0.05).

  9. [Sugar Chain Construction of Functional Natural Products Using Plant Glucosyltransferases].

    PubMed

    Mizukami, Hajime

    2015-01-01

    Plant secondary product glycosyltransferases belong to family 1 of the glycosyltransferase superfamily and mediate the transfer of a glycosyl residue from activated nucleotide sugars to lipophilic small molecules, thus affecting the solubility, stability and pharmacological activities of the sugar-accepting compounds. The biotechnological application of plant glycosyltransferases in glycoside synthesis has attracted attention because enzymatic glycosylation offers several advantages over chemical methods, including (1) avoiding the use of harsh conditions and toxic catalysts, (2) providing strict control of regio-and stereo-selectivity and (3) high efficiency. This review describes the in vivo and in vitro glycosylation of natural organic compounds using glycosyltransferases, focusing on our investigation of enzymatic synthesis of curcumin glycosides. Our current efforts toward functional characterization of some glycosyltransferases involved in the biosynthesis of iridoids and crocin, as well as in the sugar chain elongation of quercetin glucosides, are described. Finally, I describe the relationship of the structure of sugar chains and the intestinal absorption which was investigated using chemoenzymatically synthesized quercetin glycosides.

  10. Biosynthesis of geraniol and nerol and their β-d-glucosides in Perlargonium graveolens and Rosa dilecta

    PubMed Central

    Banthorpe, Derek V.; Le Patourel, Geoffrey N. J.; Francis, Martin J. O.

    1972-01-01

    1. 3R-[2-14C]Mevalonate was incorporated into geranyl and neryl β-d-glucosides in petals of Rosa dilecta in up to 10.6% yield, and the terpenoid part was specifically and equivalently labelled in the moieties derived from isopentenyl pyrophosphate and 3,3-dimethylallyl pyrophosphate. A similar labelling pattern, with incorporations of 0.06–0.1% was found for geraniol or nerol formed in leaves of Pelargonium graveolens The former results provide the best available evidence for the mevalonoid route to regular monoterpenes in higher plants. 2. Incorporation studies with 3RS-[2-14C,(4R)-4-3H1]-mevalonate and its (4S)-isomer showed that the pro-4R hydrogen atom of the precursor was retained and the pro-4S hydrogen atom was eliminated in both alcohols and both glucosides. These results suggest that the correlation of retention of the pro-4S hydrogen atom of mevalonate with formation of a cis-substituted double bond, such as has been found in certain higher terpenoids, does not apply to the biosynthesis of monoterpenes. It is proposed that either nerol is derived from isomerization of geraniol or the two alcohols are directly formed by different prenyltransferases. Possible mechanisms for these processes are discussed. 3. The experiments with [14C,3H]mevalonate also show that in these higher plants, as has been previously found in animal tissue and yeast, the pro-4S hydrogen atom of mevalonate was lost in the conversion of isopentenyl pyrophosphate into 3,3-dimethylallyl pyrophosphate. PMID:4348258

  11. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.

    PubMed

    Balyejusa Kizito, Elizabeth; Rönnberg-Wästljung, Ann-Christin; Egwang, Thomas; Gullberg, Urban; Fregene, Martin; Westerbergh, Anna

    2007-09-01

    Cassava (Manihot esculenta Crantz) is a starchy root crop grown in the tropics mainly by small-scale farmers even though agro-industrial processing is rapidly increasing. For this processing market improved varieties with high dry matter root content (DMC) is required. Potentially toxic cyanogenic glucosides are synthesized in the leaves and translocated to the roots. Selection for varieties with low cyanogenic glucoside potential (CNP) and high DMC is among the principal objectives in cassava breeding programs. However, these traits are highly influenced by the environmental conditions and the genetic control of these traits is not well understood. An S(1) population derived from a cross between two bred cassava varieties (MCOL 1684 and Rayong 1) that differ in CNP and DMC was used to study the heritability and genetic basis of these traits. A broad-sense heritability of 0.43 and 0.42 was found for CNP and DMC, respectively. The moderate heritabilities for DMC and CNP indicate that the phenotypic variation of these traits is explained by a genetic component. We found two quantitative trait loci (QTL) on two different linkage groups controlling CNP and six QTL on four different linkage groups controlling DMC. One QTL for CNP and one QTL for DMC mapped near each other, suggesting pleiotrophy and/or linkage of QTL. The two QTL for CNP showed additive effects while the six QTL for DMC showed additive effect, dominance or overdominance. This study is a first step towards developing molecular marker tools for efficient breeding of CNP and DMC in cassava.

  12. Isoflavone Malonyltransferases GmIMaT1 and GmIMaT3 Differently Modify Isoflavone Glucosides in Soybean (Glycine max) under Various Stresses

    PubMed Central

    Ahmad, Muhammad Z.; Li, Penghui; Wang, Junjie; Rehman, Naveed Ur; Zhao, Jian

    2017-01-01

    Malonylated isoflavones are the major forms of isoflavonoids in soybean plants, the genes responsible for their biosyntheses are not well understood, nor their physiological functions. Here we report a new benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase (BAHD) family isoflavone glucoside malonyltransferase GmIMaT1, and GmIMaT3, which is allelic to the previously characterized GmMT7 and GmIF7MaT. Biochemical studies showed that recombinant GmIMaT1 and GmIMaT3 enzymes used malonyl-CoA and several isoflavone 7-O-glucosides as substrates. The Km values of GmIMaT1 for glycitin, genistin, and daidzin were 13.11, 23.04, and 36.28 μM, respectively, while these of GmIMaT3 were 12.94, 26.67, and 30.12 μM, respectively. Transgenic hairy roots overexpressing both GmIMaTs had increased levels of malonyldaidzin and malonylgenistin, and contents of daidzin and glycitin increased only in GmIMaT1-overexpression lines. The increased daidzein and genistein contents were detected only in GmIMaT3-overexpression lines. Knockdown of GmIMaT1 and GmIMaT3 reduced malonyldaidzin and malonylgenistin contents, and affected other isoflavonoids differently. GmIMaT1 is primarily localized to the endoplasmic reticulum while GmIMaT3 is primarily in the cytosol. By examining their transcript changes corresponding to the altered isoflavone metabolic profiles under various environmental and hormonal stresses, we probed the possible functions of GmIMaTs. Two GmIMaTs displayed distinct tissue expression patterns and respond differently to various factors in modifying isoflavone 7-O-glucosides under various stresses. PMID:28559900

  13. Efficient synthesis and antimicrobial activity of some novel S-β-d-glucosides of 5-aryl-1,2,4-triazole-3-thiones derivatives.

    PubMed

    Ji, Dan; Lu, JunRui; Lu, BoWei; Xin, ChunWei; Mu, JiangBei; Li, JianFa; Peng, ChunYong; Bao, XiuRong

    2013-04-01

    A series of 3-S-β-d-glucosides-4-arylideneamino-5-aryl-1,2,4-triazoles were rationally designed and synthesized according to the principle of superposition of bioactive substructures by the combination of 1,2,4-triazole, Schiff base and glucosides. The structures of the target compounds have been characterized by (1)H NMR, (13)C NMR, IR, MS and HRMS. All the newly synthesized compounds have been evaluated for their antimicrobial activities in vitro against Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 8099) as well as Monilia albican (ATCC 10231). The bioactive assay showed that most of the tested compounds displayed variable inhibitory effects on the growth of the Gram-positive bacterial strain (Staphylococcus aureus), Gram-negative bacterial strains (Escherichia coli) and fungal strains (Monilia albican). All the target compounds exhibited better antifungal activity than antibacterial activity. Especially, compounds 6b, 6c, 6f, 6j, 6k and 6l showed excellent activity against fungus Monilia albican with MIC values of 16 μg/mL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. An effective method for preparation of high-purity pelargonidin-3-O-glucoside from strawberry and its protective effect on cellular oxidative stress.

    PubMed

    Xu, Yang; Hu, Dongwen; Li, Yuting; Sun, Chongde; Chen, Wei

    2018-01-01

    Accumulating evidence indicates that consumption of berries may exert beneficial effects against oxidative stress mediated diseases. Pelargonidin-3-O-glucoside (Pg3G), a bioactive ingredient in strawberry, has been reported to possess a potent antioxidant capacity. This study was therefore designed to develop an effective method to prepare pure Pg3G from strawberry and investigate its protective effect against H 2 O 2 -induced oxidative stress. According to our results, Pg3G occupied 85.55% of total anthocyanin content in strawberry. 240mg of Pg3G with the purity of 97.26% was finally isolated from 320g of strawberry lyophilized powder (SLP) by combination of AB-8 macroporous resin and high-speed counter-current chromatography (HSCCC) technologies. Further study unveiled that Pg3G significantly inhibited H 2 O 2 -induced ROS generation, GSH depletion and mitochondrial dysfunction, thereby ameliorating H 2 O 2 -induced oxidative stress. Overall, this study suggests that pelargonidin-3-O-glucoside can be used as a natural bioactive agent to prevent cellular oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. An imaging surface plasmon resonance biosensor assay for the detection of T-2 toxin and masked T-2 toxin-3-glucoside in wheat

    USDA-ARS?s Scientific Manuscript database

    A sensitive, rapid, and reproducible imaging surface plasmon resonance (iSPR) biosensor assay was developed to detect T-2 toxin and T-2 toxin-3-glucoside (T2-G) in wheat. In this competitive assay, an amplification strategy was used after conjugating a secondary antibody (Ab2) with gold nanoparticle...

  16. Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-d-glucoside

    PubMed Central

    Michlmayr, Herbert; Malachová, Alexandra; Varga, Elisabeth; Kleinová, Jana; Lemmens, Marc; Newmister, Sean; Rayment, Ivan; Berthiller, Franz; Adam, Gerhard

    2015-01-01

    Glycosylation is an important plant defense mechanism and conjugates of Fusarium mycotoxins often co-occur with their parent compounds in cereal-based food and feed. In case of deoxynivalenol (DON), deoxynivalenol-3-O-β-d-glucoside (D3G) is the most important masked mycotoxin. The toxicological significance of D3G is not yet fully understood so that it is crucial to obtain this compound in pure and sufficient quantities for toxicological risk assessment and for use as an analytical standard. The aim of this study was the biochemical characterization of a DON-inactivating UDP-glucosyltransferase from rice (OsUGT79) and to investigate its suitability for preparative D3G synthesis. Apparent Michaelis constants (Km) of recombinant OsUGT79 were 0.23 mM DON and 2.2 mM UDP-glucose. Substrate inhibition occurred at DON concentrations above 2 mM (Ki = 24 mM DON), and UDP strongly inhibited the enzyme. Cu2+ and Zn2+ (1 mM) inhibited the enzyme completely. Sucrose synthase AtSUS1 was employed to regenerate UDP-glucose during the glucosylation reaction. With this approach, optimal conversion rates can be obtained at limited concentrations of the costly co-factor UDP-glucose. D3G can now be synthesized in sufficient quantity and purity. Similar strategies may be of interest to produce β-glucosides of other toxins. PMID:26197338

  17. Gastroprotective effect of cyanidin 3-glucoside on ethanol-induced gastric lesions in rats.

    PubMed

    Li, Chun-Ying; Xu, Hong-De; Zhao, Bing-Tian; Chang, Hyo-Ihl; Rhee, Hae-Ik

    2008-12-01

    This study investigated the in vivo protective effect of cyanidin 3-glucoside (C3G) against ethanol-induced gastric lesions in rats. The experimental rats were treated with 80% ethanol after pretreatment with various doses of C3G (4 and 8 mg/kg of body weight), and the control rats received only 80% ethanol. Oral pretreatment with C3G significantly inhibited the formation of ethanol-induced gastric lesions and the elevation of the lipid peroxide level. In addition, pretreatment with C3G significantly increased the level of glutathione and the activities of radical scavenging enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in gastric tissues. These results suggest that the gastroprotective effect of C3G removes the ethanol-induced lipid peroxides and free radicals and that it may offer a potential remedy for the treatment of gastric lesions.

  18. Molecular cloning and biochemical characterization of a recombinant sterol 3-O-glucosyltransferase from Gymnema sylvestre R.Br. catalyzing biosynthesis of steryl glucosides.

    PubMed

    Tiwari, Pragya; Sangwan, Rajender Singh; Asha; Mishra, B N; Sabir, Farzana; Sangwan, Neelam S

    2014-01-01

    Gymnema sylvestre R.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572 bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed in Escherichia coli and biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene from G. sylvestre R.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants.

  19. Molecular Cloning and Biochemical Characterization of a Recombinant Sterol 3-O-Glucosyltransferase from Gymnema sylvestre R.Br. Catalyzing Biosynthesis of Steryl Glucosides

    PubMed Central

    Sangwan, Rajender Singh; Asha; Mishra, B. N.; Sangwan, Neelam S.

    2014-01-01

    Gymnema sylvestre R.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572 bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed in Escherichia coli and biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene from G. sylvestre R.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants. PMID:25250339

  20. Analysis of iridoids, secoiridoids and xanthones in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea using LC-MS and RP-HPLC.

    PubMed

    Aberham, Anita; Pieri, Valerio; Croom, Edward M; Ellmerer, Ernst; Stuppner, Hermann

    2011-02-20

    This study presents a new and validated HPLC method for the simultaneous determination of bioactive compounds in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea. The iridoid loganic acid, four secoiridoids and 29 xanthones were separated on a RP-18 column, using aqueous o-phosphoric acid (0.085%, v/v) and acetonitrile as mobile phase. Phytochemical investigation of C. erythraea herb and F. caroliniensis roots resulted into isolation of 25 xanthones and three secoiridoids the structure of which was elucidated by spectroscopic means (NMR, MS and UV). 1,3,8-Trihydroxy-5,6-dimethoxyxanthone, isolated from C. erythraea, turned out to be a novel xanthone. The stability of the analytes was tested by subjecting samples to light, moisture and different temperatures. After six months of storage, decomposition of gentiopicroside and sweroside was observed. The swertiamarin content was nearly unchanged when stored at room temperature or in the refrigerator, but high temperature conditions reduced the content to 85%. In contrast, xanthones were stable under long-term, refrigerated and accelerated conditions. The established chromatographic method has been successfully applied for the quantification of the bioactive compounds in the three plants. The presence and distribution of polyoxygenated xanthones within the three members of the Gentianaceae family and their significance as analytical markers are discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. [Effect of algorithms for calibration set selection on quantitatively determining asiaticoside content in Centella total glucosides by near infrared spectroscopy].

    PubMed

    Zhan, Xue-yan; Zhao, Na; Lin, Zhao-zhou; Wu, Zhi-sheng; Yuan, Rui-juan; Qiao, Yan-jiang

    2014-12-01

    The appropriate algorithm for calibration set selection was one of the key technologies for a good NIR quantitative model. There are different algorithms for calibration set selection, such as Random Sampling (RS) algorithm, Conventional Selection (CS) algorithm, Kennard-Stone(KS) algorithm and Sample set Portioning based on joint x-y distance (SPXY) algorithm, et al. However, there lack systematic comparisons between two algorithms of the above algorithms. The NIR quantitative models to determine the asiaticoside content in Centella total glucosides were established in the present paper, of which 7 indexes were classified and selected, and the effects of CS algorithm, KS algorithm and SPXY algorithm for calibration set selection on the accuracy and robustness of NIR quantitative models were investigated. The accuracy indexes of NIR quantitative models with calibration set selected by SPXY algorithm were significantly different from that with calibration set selected by CS algorithm or KS algorithm, while the robustness indexes, such as RMSECV and |RMSEP-RMSEC|, were not significantly different. Therefore, SPXY algorithm for calibration set selection could improve the predicative accuracy of NIR quantitative models to determine asiaticoside content in Centella total glucosides, and have no significant effect on the robustness of the models, which provides a reference to determine the appropriate algorithm for calibration set selection when NIR quantitative models are established for the solid system of traditional Chinese medcine.

  2. [Cyanidin-3-glucoside attenuates body weight gain, serum lipid concentrations and insulin resistance in high-fat diet-induced obese rats].

    PubMed

    Yu, Ren-Qiang; Wu, Xiao-You; Zhou, Xiang; Zhu, Jing; Ma, Lu-Yi

    2014-05-01

    Cyanidin-3-glucoside (C3G) is the main active ingredient of anthocyanidin. This study aimed to evaluate the effects of C3G on body weight gain, visceral adiposity, lipid profiles and insulin resistance in high-fat diet-induced obese rats. Thirty male Sprague-Dawley rats were randomly divided into a control group (n=8) and a high fat diet group (n=22), and were fed with standard diet or high fat diet. Five weeks later, 17 high-fat diet-induced obese rats were randomly given C3G [100 mg/(kg·d)] or normal saline via intragastric administration for 5 weeks. Five weeks later, body weight, visceral adiposity and food intake were measured. Blood samples were collected for detecting fasting glucose, serum insulin, lipid profiles and adiponectin. Insulin resistance index, atherosclerosis index and average feed efficiency ratio were calculated. C3G supplementation markedly decreased body weight, visceral adiposity, average feed efficiency ratio, triglyceride, total cholesterol, low density lipoprotein cholesterol, fasting glucose, serum insulin, insulin resistance index and atherosclerosis index in high-fat diet-induced obese rats. C3G supplementation normalized serum adiponectin and high density lipoprotein cholesterol levels in high-fat diet-induced obese rats. Cyanidin-3-glucoside can reduce body weight gain, and attenuate obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats via up-regulating serum adiponectin level.

  3. Determination of free and glucosidically-bound volatiles in plants. Two case studies: L-menthol in peppermint (Mentha x piperita L.) and eugenol in clove (Syzygium aromaticum (L.) Merr. & L.M.Perry).

    PubMed

    Sgorbini, Barbara; Cagliero, Cecilia; Pagani, Alberto; Sganzerla, Marla; Boggia, Lorenzo; Bicchi, Carlo; Rubiolo, Patrizia

    2015-09-01

    This study arises from both the today's trend towards exploiting plant resources exhaustively, and the wide quantitative discrepancy between the amounts of commercially-valuable markers in aromatic plants and those recovered from the related essential oil. The study addresses the determination of both the qualitative composition and the exhaustive distribution of free and glucosidically-bound L-menthol in peppermint aerial parts (Mentha x piperita L., Lamiaceae) and of eugenol in dried cloves (Syzygium aromaticum (L.) Merr. & L.M.Perry, Myrtaceae), two plants known to provide widely ranging essential oil yields. The two markers were investigated in essential oils and residual hydrodistillation waters, before and after enzymatic hydrolysis. Their amounts were related to those in the headspace taken as reference. The results showed that the difference between marker compound in headspace and in essential oil amounted to 22.8% for L-menthol in peppermint, and 16.5% for eugenol in cloves. The aglycones solubilised in the residual hydrodistillation waters were 7.2% of the headspace reference amount for L-menthol, and 13.3% for eugenol, respectively representing 9.3% and 15.9% of their amounts in the essential oil. The amount of L-menthol from its glucoside in residual hydrodistillation waters was 20.6% of that in the related essential oil, while eugenol from its glucoside accounted for 7.7% of the amount in clove essential oil. The yield of L-menthol, after submitting the plant material to enzymatic hydrolysis before hydrodistillation, increased by 23.1%, and for eugenol the increase was 8.1%, compared to the amount in the respective conventional essential oils. This study also aimed to evaluate the reliability of recently-introduced techniques that are little applied, if at all, in this field. The simultaneous use of high-concentration-capacity sample preparation techniques (SBSE, and HS-SPME and in-solution SPME) to run quali-quantitative analysis without sample

  4. Isolation of cyanidin 3-glucoside from blue honeysuckle fruits by high-speed counter-current chromatography.

    PubMed

    Chen, Liang; Xin, Xiulan; Lan, Rong; Yuan, Qipeng; Wang, Xiaojie; Li, Ye

    2014-01-01

    Blue honeysuckle fruits are rich in anthocyanins with many beneficial effects such as reduction of the risk of cardiovascular diseases, diabetes and cancers. High-speed counter-current chromatography (HSCCC) was used for the separation of anthocyanin on a preparative scale from blue honeysuckle fruit crude extract with a biphasic solvent system composed of tert-butyl methyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (2:2:1:5:0.01, v/v) for the first time in this paper. Each injection of 100 mg crude extract yielded 22.8 mg of cyanidin 3-glucoside (C3G) at 98.1% purity. The compound was identified by means of electro-spray ionisation mass (ESI/MS) and (1)H and (13)C nuclear magnetic resonance (NMR) spectra. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Development of an LC-MS/MS Determination Method for T-2 Toxin and Its Glucoside and Acetyl Derivatives for Estimating the Contamination of Total T-2 Toxins in Staple Flours.

    PubMed

    Nakagawa, Hiroyuki; Matsuo, Yosuke; McCormick, Susan; Lim, Chee Wei

    2018-05-01

    A determination method previously validated for trichothecenes and zearalenone by means of liquid chromatography-tandem mass spectrometry (LC-MS/MS) was adapted for the quantification of T-2 toxin (T-2) as well as its glucoside and acetyl derivatives, T-2-3-glucoside (T-2-3G) and 3-acetyl-T-2 (3A-T-2). HT-2 toxin (HT-2) and its acetyl derivative 3-acetyl-HT-2 (3A-HT-2) were also included as the target chemicals. Staple flours (56 samples collected from the Singapore market) were examined for contamination from T-2 and/or HT-2 and their derivatives. Among them, 16 flours were found to be contaminated with T-2 and/or HT-2, whereas none was contaminated with T-2-3G and 3A-HT-2, except for trace 3A-T-2 detected in 2 rye samples. Rye flour samples were frequently contaminated with both T-2 and HT-2. Some of the reference materials (RMs) were further analyzed, and T-2-3G and 3A-T-2 were quantitatively detected in corn and wheat RMs. The ratio of T-2-3G to T-2 in the RMs seemed to be much lower than the ratio of deoxynivalenol-3-glucoside to deoxynivalenol usually reported in former studies. To the best of our knowledge, the natural contamination of 3A-T-2 in staple flour is reported here for the first time.

  6. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    PubMed

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.

  7. Computational and in vitro insights on snake venom phospholipase A2 inhibitor of phytocompound ikshusterol3-O-glucoside of Clematis gouriana Roxb. ex DC.

    PubMed

    Muthusamy, Karthikeyan; Chinnasamy, Sathishkumar; Nagarajan, Subbiah; Sivaraman, Thirunavukkarasu

    2017-12-14

    Ikshusterol3-O-glucoside was isolated from Clematis gouriana Roxb. ex DC. root. A structure of the isolated compound was determined on the basis of various spectroscopic interpretations (UV, NMR, FTIR, and GC-MS-EI). This structure was submitted in the PubChem compound database (SID 249494133). SID 249494133 was carried out by density functional theory calculation to observe the chemical stability and electrostatic potential of this compound. The absorption, distribution, metabolism, and excretion property of this compound was predicted to evaluate the drug likeness and toxicity. In addition, molecular docking, quantum polarized ligand docking, prime MMGBSA calculation, and induced fit docking were performed to predict the binding status of SID 249494133 with the active site of phospholipase A 2 (PLA 2 ) (PDB ID: 1A3D). The stability of the compound in the active site of PLA 2 was carried out using molecular dynamics simulation. Further, the anti-venom activity of the compound was assessed using the PLA 2 assay against Naja naja (Indian cobra) crude venom. The results strongly show that Ikshusterol3-O-glucoside has a potent snake-venom neutralizing capacity and it might be a potential molecule for the therapeutic treatment for snakebites.

  8. Selective MAO-B inhibitors: a lesson from natural products.

    PubMed

    Carradori, Simone; D'Ascenzio, Melissa; Chimenti, Paola; Secci, Daniela; Bolasco, Adriana

    2014-02-01

    Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer's and Parkinson's. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.

  9. Dianthosaponins G-I, triterpene saponins, an anthranilic acid amide glucoside and a flavonoid glycoside from the aerial parts of Dianthus japonicus and their cytotoxicity.

    PubMed

    Kanehira, Yuka; Kawakami, Susumu; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki

    2016-10-01

    Extensive isolation work on the 1-BuOH-soluble fraction of a MeOH extract of the aerial parts of Dianthus japonicus afforded three further triterpene glycosyl estsers, termed dianthosaponins G-I, an anthranilic acid amide glucoside and a C-glycosyl flavonoid along with one known triterpene saponin. Their structures were elucidated from spectroscopic evidence. The cytotoxicity of the isolated compounds toward A549 cells was evaluated.

  10. Caterpillar chemical defense and parasitoid success: Cotesia congregata parasitism of Ceratomia catalpae.

    PubMed

    Lampert, Evan C; Dyer, Lee A; Bowers, M Deane

    2010-09-01

    Sequestration of plant compounds by herbivorous insects as a defense against predators is well documented; however, few studies have examined the effectiveness of sequestration as a defense against parasitoids. One assumption of the "nasty host" hypothesis is that sequestration of plant defense compounds is deleterious to parasitoid development. We tested this hypothesis with larvae of the sequestering sphingid Ceratomia catalpae, which is heavily parasitized by the endoparasitoid Cotesia congregata, despite sequestering high concentrations of the iridoid glycoside catalpol from their catalpa host plants. We collected C. catalpae and catalpa leaves from six populations in the Eastern US, and allowed any C. congregata to emerge in the lab. Leaf iridoid glycosides and caterpillar iridoid glycosides were quantified, and we examined associations between sequestered caterpillar iridoid glycosides and C. congregata performance. Caterpillar iridoid glycosides were not associated with C. congregata field parasitism or number of offspring produced. Although wasp survival was over 90% in all populations, there was a slight negative relationship between caterpillar iridoid glycosides and wasp survival. Iridoid glycosides were present in caterpillars at levels that are deterrent to a variety of vertebrate and invertebrate predators. Thus, our results support the alternative hypothesis that unpalatable, chemically defended hosts are "safe havens" for endoparasitoids. Future trials examining the importance of catalpol sequestration to potential natural enemies of C. congregata and C. catalpae are necessary to strengthen this conclusion.

  11. Simultaneous determination of vitexin-2"-O-glucoside, vitexin-2"-O-rhamnoside, rutin, and hyperoside in the extract of hawthorn (Crataegus pinnatifida Bge.) leaves by RP-HPLC with ultraviolet photodiode array detection.

    PubMed

    Cheng, Shan; Qiu, Feng; Huang, Jia; He, Junqi

    2007-03-01

    RP-HPLC with UV photodiode array detection (UV-DAD) was developed and validated for the simultaneous determination of vitexin-2"-O-glucoside, vitexin-2"-O-rhamnoside, rutin, and hyperoside in the extract of hawthorn (Crataegus pinnatifida Bge.) leaves. The analytes of interest were separated on a Diamonsil C18 column (250 x 4.6 mm id, 5 microm) with the mobile phase consisting of THF/ACN/methanol/ 0.05% phosphoric acid solution (pH 5.0) (18:1:1:80 v/vl/v). The flow rate was set at 1.0 mL/min and the eluent was detected at 340 nm for the four flavonoids. The method was linear over the studied range of 1.00-100 microg/mL for the four analytes of interest with the correlation coefficient for each analyte greater than 0.999. The LOD and LOQwere 0.03 and 0.10 microg/mL, 0.03 and 0.10 microg/mL, 0.05 and 0.15 pg/mL, 0.10 and 0.30 microg/mL for vitexin-2"-O-glucoside, vitexin-2"-0-rhamnoside, rutin, and hyperoside, respectively. The optimized method was successfully applied to the analysis of four important flavonoids in the extract of hawthorn leaves. The total amounts of the four flavonoids were 22.2, 62.3, 4.27, and 8.24 mg/g dry weight for vitexin-2"-O-glucoside, vitexin-2"-O-rhamnoside, rutin, and hyperoside in the extract of hawthorn leaves, respectively.

  12. Search for constituents with neurotrophic factor-potentiating activity from the medicinal plants of paraguay and Thailand.

    PubMed

    Li, Yushan; Ohizumi, Yasushi

    2004-07-01

    20 medicinal plants of Paraguay and 3 medicinal plants of Thailand were examined on nerve growth factor (NGF)-potentiating activities in PC12D cells. The trail results demonstrated that the methanol extracts of four plants, Verbena littoralis, Scoparia dulcis, Artemisia absinthium and Garcinia xanthochymus, markedly enhanced the neurite outgrowth induced by NGF from PC12D cells. Furthermore, utilizing the bioactivity-guided separation we successfully isolated 32, 4 and 5 constituents from V. littoralis, S. dulcis and G. xanthochymus, respectively, including nine iridoid and iridoid glucosides (1-9), two dihydrochalcone dimers (10 and 11), two flavonoids and three flavonoid glycosides (12-16), two sterols (17 and 18), ten triterpenoids (19-28), five xanthones (29-33), one naphthoquinone (34), one benzenepropanamide (35), four phenylethanoid glycosides (36-39) and two other compounds (40 and 41). Among which, 15 compounds (1-4, 10-11, 14-18, 29-31 and 34) were new natural products. The results of pharmacological trails verified that littoralisone (1), gelsemiol (5), 7a-hydroxysemperoside aglucone (6), verbenachalcone (10), littorachalcone (11), stigmast-5-ene 3beta,7alpha,22alpha-triol (18), ursolic acid (19), 3beta-hydroxyurs-11-en-28,13beta-olide (24), oleanolic acid (25), 2alpha,3beta-dihydroxyolean-12-en-28-oic acid (26), 1,4,5,6-tetrahydroxy-7,8-di(3-methylbut-2-enyl)xanthone (29), 1,2,6-trihydroxy-5-methoxy-7-(3-methylbut-2-enyl)xanthone (30), 1,3,5,6-tetrahydroxy-4,7,8-tri(3-methyl-2-butenyl)xanthone (31), 12b-hydroxy-des-D-garcigerrin A (32), garciniaxanthone E (33) and (4R)-4,9-dihydroxy-8-methoxy-alpha-lapachone (34) elicited marked enhancement of NGF-mediated neurite outgrowth in PC12D cells. These substances may contribute to the basic study and the medicinal development for the neurodegenerative disorder.

  13. Hemisynthesis and structural and chromatic characterization of delphinidin 3-O-glucoside-vescalagin hybrid pigments.

    PubMed

    García-Estévez, Ignacio; Jacquet, Rémi; Alcalde-Eon, Cristina; Rivas-Gonzalo, Julián C; Escribano-Bailón, M Teresa; Quideau, Stéphane

    2013-11-27

    During red wine maturation in the presence of oak wood, reactions involving anthocyanins and ellagitannins might affect wine organoleptic properties such as color and astringency. In this work, the condensation reaction between myrtillin (delphinidin 3-O-glucoside) and vescalagin has been performed to determine the behavior of this anthocyanin in this kind of reaction and to assess the possible impact of such a reaction in wine color modulation. Two different hybrid pigments have been hemisynthetized and characterized by HPLC-DAD-MS and NMR spectroscopy. These pigments have been identified as 1-deoxyvescalagin-(1β→8)-myrtillin (major) and 1-deoxyvescalagin-(1β→6)-myrtillin (minor). The minor pigment could be formed both by the condensation reaction and by a regioisomerization process from the major pigment. Moreover, the chromatic properties of these pigments have been studied and compared to those of myrtillin. The hybrid pigments showed an important bathochromic shift (ca. 20 nm) in the maximum absorbance wavelength and lower molar absorption coefficients.

  14. Enzymatic synthesis of chlorogenic acid glucoside using dextransucrase and its physical and functional properties.

    PubMed

    Nam, Seung-Hee; Ko, Jin-A; Jun, Woojin; Wee, Young-Jung; Walsh, Marie K; Yang, Kwang-Yeol; Choi, Jin-Ho; Eun, Jon-Bang; Choi, Jeong; Kim, Young-Min; Han, Songhee; Nguyen, Thi Thanh Hanh; Kim, Doman

    2017-12-01

    Chlorogenic acid, a major polyphenol in edible plants, possesses strong antioxidant activity, anti-lipid peroxidation and anticancer effects. It used for industrial applications; however, this is limited by its instability to heat or light. In this study, we for the first time synthesized chlorogenic acid glucoside (CHG) via transglycosylation using dextransucrase from Leuconostoc mesenteroides and sucrose. CHG was purified and its structure determined by nuclear magnetic resonance and matrix-associated laser desorption ionization-time-of-flight mass spectroscopy. The production yield of CHG was 44.0% or 141mM, as determined by response surface methodology. CHG possessed a 65% increased water solubility and 2-fold browning resistance while it displayed stronger inhibition of lipid peroxidation and of colon cancer cell growth by MTT assay, compared to chlorogenic acid. Therefore, this study may expand the industrial applications of chlorogenic acid as water-soluble or browning resistant compound (CHG) through enzymatic glycosylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence.

    PubMed

    Pentzold, Stefan; Zagrobelny, Mika; Roelsgaard, Pernille Sølvhøj; Møller, Birger Lindberg; Bak, Søren

    2014-01-01

    Cyanogenic glucosides (CNglcs) are widespread plant defence compounds that release toxic hydrogen cyanide by plant β-glucosidase activity after tissue damage. Specialised insect herbivores have evolved counter strategies and some sequester CNglcs, but the underlying mechanisms to keep CNglcs intact during feeding and digestion are unknown. We show that CNglc-sequestering Zygaena filipendulae larvae combine behavioural, morphological, physiological and biochemical strategies at different time points during feeding and digestion to avoid toxic hydrolysis of the CNglcs present in their Lotus food plant, i.e. cyanogenesis. We found that a high feeding rate limits the time for plant β-glucosidases to hydrolyse CNglcs. Larvae performed leaf-snipping, a minimal disruptive feeding mode that prevents mixing of plant β-glucosidases and CNglcs. Saliva extracts did not inhibit plant cyanogenesis. However, a highly alkaline midgut lumen inhibited the activity of ingested plant β-glucosidases significantly. Moreover, insect β-glucosidases from the saliva and gut tissue did not hydrolyse the CNglcs present in Lotus. The strategies disclosed may also be used by other insect species to overcome CNglc-based plant defence and to sequester these compounds intact.

  16. Entropy-driven complex formation of malvidin-3- O-glucoside with common polyphenols in ethanol-water binary solutions

    NASA Astrophysics Data System (ADS)

    Kunsági-Máté, Sándor; Ortmann, Erika; Kollár, László; Nikfardjam, Martin Pour

    2008-09-01

    The complex formation of malvidin-3- O-glucoside with several polyphenols, the so-called "copigmentation" phenomenon, was studied in aqueous solutions. To simulate the copigmentation process during fermentation, the stability of the formed complexes was examined in dependence of the ethanol content of the aqueous solution. Results indicate that stronger and larger complexes are formed, when the ethanol content exceeds a critical margin of 8 vol.% However, the size of complexes of malvidin/procyanidin and malvidin/epicatechin is drastically reduced above this critical concentration. Fluorescence lifetime and solvent relaxation measurements give insight into the particular processes at molecular level and will help us comprehend the first important steps during winemaking in order to recommend an optimized winemaking technology to ensure extraordinary colour stability in red wines.

  17. Simultaneous Analysis of Iridoid Glycosides and Anthraquinones in Morinda officinalis Using UPLC-QqQ-MS/MS and UPLC-Q/TOF-MSE.

    PubMed

    Zhao, Xiangsheng; Wei, Jianhe; Yang, Meihua

    2018-05-03

    Morinda officinalis is an important herbal medicine and functional food, and its main constituents include anthraquinone and iridoid glycosides. Quantification of the main compounds is a necessary step to understand the quality and therapeutic properties of M. officinalis , but this has not yet been performed based on liquid chromatography/tandem mass spectrometry (LC-MS/MS). Analytes were extracted from M. officinalis by reflux method. Ultrahigh-performance liquid chromatography coupled with a triple quadrupole mass spectrometry (UPLC-QqQ-MS) using multiple reaction monitoring (MRM) mode was applied for quantification. Fragmentation pathways of deacetyl asperulosidic acid and rubiadin were investigated based on UPLC with quadrupole time-of-flight tandem mass spectrometry (Q/TOF-MS) in the MS E centroid mode. The method showed a good linearity over a wide concentration range (R² ≥ 0.9930). The limits of quantification of six compounds ranged from 2.6 to 27.57 ng/mL. The intra- and inter-day precisions of the investigated components exhibited an RSD within 4.5% with mean recovery rates of 95.32⁻99.86%. Contents of selected compounds in M. officinalis varied significantly depending on region. The fragmentation pathway of deacetyl asperulosidic and rubiadin was proposed. A selective and sensitive method was developed for determining six target compounds in M. officinalis by UPLC-MS/MS. Furthermore, the proposed method will be helpful for quality control and identification main compounds of M. officinalis .

  18. Cyanidin-3-glucoside ameliorates ethanol neurotoxicity in the developing brain.

    PubMed

    Ke, Zunji; Liu, Ying; Wang, Xin; Fan, Zhiqin; Chen, Gang; Xu, Mei; Bower, Kimberley A; Frank, Jacqueline A; Ou, Xiaoming; Shi, Xianglin; Luo, Jia

    2011-10-01

    Ethanol exposure induces neurodegeneration in the developing central nervous system (CNS). Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during pregnancy and are the most common nonhereditary cause of mental retardation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Multiple mechanisms have been proposed for ethanol-induced neurodegeneration, and oxidative stress is one of the most important mechanisms. Recent evidence indicates that glycogen synthase kinase 3β (GSK3β) is a potential mediator of ethanol-mediated neuronal death. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. Our previous study suggested that C3G inhibited GSK3β activity in neurons. Using a third trimester equivalent mouse model of ethanol exposure, we tested the hypothesis that C3G can ameliorate ethanol-induced neuronal death in the developing brain. Intraperitoneal injection of C3G reduced ethanol-meditated caspase-3 activation, neurodegeneration, and microglial activation in the cerebral cortex of 7-day-old mice. C3G blocked ethanol-mediated GSK3β activation by inducing phosphorylation at serine 9 while reducing the phosphorylation at tyrosine 216. C3G also inhibited ethanol-stimulated expression of malondialdehyde (MDA) and p47phox, indicating that C3G alleviated ethanol-induced oxidative stress. These results provide important insight into the therapeutic potential of C3G. Copyright © 2011 Wiley-Liss, Inc.

  19. Cyanidin-3-Glucoside Ameliorates Ethanol Neurotoxicity in the Developing Brain

    PubMed Central

    Ke, Zunji; Liu, Ying; Wang, Xin; Fan, Zhiqin; Chen, Gang; Xu, Mei; Bower, Kimberley A.; Frank, Jacqueline A.; Ou, Xiaoming; Shi, Xianglin; Luo, Jia

    2011-01-01

    Ethanol exposure induces neurodegeneration in the developing central nervous system (CNS). Fetal Alcohol Spectrum Disorders (FASD) are caused by ethanol exposure during pregnancy and are the most common nonhereditary cause of mental retardation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Multiple mechanisms have been proposed for ethanol-induced neurodegeneration, and oxidative stress is one of the most important mechanisms. Recent evidence indicates that glycogen synthase kinase 3β (GSK3β) is a potential mediator of ethanol-mediated neuronal death (Luo, 2009). Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. Our previous study suggested that C3G inhibited GSK3β activity in neurons (Chen et al., 2009). Using a third trimester equivalent mouse model of ethanol exposure, we tested the hypothesis that C3G can ameliorate ethanol-induced neuronal death in the developing brain. Intraperitoneal injection of C3G reduced ethanol-meditated caspase-3 activation, neurodegeneration and microglial activation in the cerebral cortex of seven-day-old mice. C3G blocked ethanol-mediated GSK3β activation by inducing the phosphorylation at serine 9 while reducing the phosphorylation at tyrosine 216. C3G also inhibited ethanol-stimulated expression of malondialdehyde (MDA) and p47phox, indicating that C3G alleviated ethanol-induced oxidative stress. These results provide important insight into the therapeutic potential of C3G. PMID:21671257

  20. UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-d-glucosides

    PubMed Central

    Malachová, Alexandra; Piątkowska, Marta; Hametner, Christian; Šofrová, Jana; Jaunecker, Günther; Häubl, Georg; Lemmens, Marc

    2018-01-01

    Trichothecene toxins are confirmed or suspected virulence factors of various plant-pathogenic Fusarium species. Plants can detoxify these to a variable extent by glucosylation, a reaction catalyzed by UDP-glucosyltransferases (UGTs). Due to the unavailability of analytical standards for many trichothecene-glucoconjugates, information on such compounds is limited. Here, the previously identified deoxynivalenol-conjugating UGTs HvUGT13248 (barley), OsUGT79 (rice) and Bradi5g03300 (Brachypodium), were expressed in E. coli, affinity purified, and characterized towards their abilities to glucosylate the most relevant type A and B trichothecenes. HvUGT13248, which prefers nivalenol over deoxynivalenol, is also able to conjugate C-4 acetylated trichothecenes (e.g., T-2 toxin) to some degree while OsUGT79 and Bradi5g03300 are completely inactive with C-4 acetylated derivatives. The type A trichothecenes HT-2 toxin and T-2 triol are the kinetically preferred substrates in the case of HvUGT13248 and Bradi5g03300. We glucosylated several trichothecenes with OsUGT79 (HT-2 toxin, T-2 triol) and HvUGT13248 (T-2 toxin, neosolaniol, 4,15-diacetoxyscirpenol, fusarenon X) in the preparative scale. NMR analysis of the purified glucosides showed that exclusively β-d-glucosides were formed regio-selectively at position C-3-OH of the trichothecenes. These synthesized standards can be used to investigate the occurrence and toxicological properties of these modified mycotoxins. PMID:29509722

  1. UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-d-glucosides.

    PubMed

    Michlmayr, Herbert; Varga, Elisabeth; Malachová, Alexandra; Fruhmann, Philipp; Piątkowska, Marta; Hametner, Christian; Šofrová, Jana; Jaunecker, Günther; Häubl, Georg; Lemmens, Marc; Berthiller, Franz; Adam, Gerhard

    2018-03-06

    Trichothecene toxins are confirmed or suspected virulence factors of various plant-pathogenic Fusarium species. Plants can detoxify these to a variable extent by glucosylation, a reaction catalyzed by UDP-glucosyltransferases (UGTs). Due to the unavailability of analytical standards for many trichothecene-glucoconjugates, information on such compounds is limited. Here, the previously identified deoxynivalenol-conjugating UGTs HvUGT13248 (barley), OsUGT79 (rice) and Bradi5g03300 ( Brachypodium ), were expressed in E. coli , affinity purified, and characterized towards their abilities to glucosylate the most relevant type A and B trichothecenes. HvUGT13248, which prefers nivalenol over deoxynivalenol, is also able to conjugate C-4 acetylated trichothecenes (e.g., T-2 toxin) to some degree while OsUGT79 and Bradi5g03300 are completely inactive with C-4 acetylated derivatives. The type A trichothecenes HT-2 toxin and T-2 triol are the kinetically preferred substrates in the case of HvUGT13248 and Bradi5g03300. We glucosylated several trichothecenes with OsUGT79 (HT-2 toxin, T-2 triol) and HvUGT13248 (T-2 toxin, neosolaniol, 4,15-diacetoxyscirpenol, fusarenon X) in the preparative scale. NMR analysis of the purified glucosides showed that exclusively β-D-glucosides were formed regio-selectively at position C-3-OH of the trichothecenes. These synthesized standards can be used to investigate the occurrence and toxicological properties of these modified mycotoxins.

  2. Vascular mechanisms of cyanidin-3-glucoside response in streptozotocin-diabetic rats.

    PubMed

    Nasri, Sima; Roghani, Mehrdad; Baluchnejadmojarad, Tourandokht; Rabani, Tahereh; Balvardi, Mahboubeh

    2011-09-01

    Considering the high incidence of cardiovascular disorders in diabetes mellitus and some evidence on the antioxidant and antidiabetic potential of cyanidin-3-glucoside (C3G), this study was conducted to evaluate the possible beneficial effect of C3G administration on vascular reactivity of isolated thoracic aorta in diabetic rats and some of its underlying mechanisms. Male diabetic rats received C3G (10mg/kg; i.p.) on alternate days for 8 weeks one week after streptozotocin (STZ) diabetes induction. It was found out that treatment of diabetic rats with C3G exerted a hypoglycaemic effect and attenuated the increased malondialdehyde (MDA) content and reduced the activity of superoxide dismutase (SOD) in aortic tissue. Maximum contractile response of endothelium-intact aortic rings to phenylephrine (PE) was significantly lower in C3G-treated diabetic rats relative to untreated diabetics and endothelium removal abolished this difference. Meanwhile, endothelium-dependent relaxation to acetylcholine (ACh) was significantly higher in C3G-treated diabetic rats as compared to diabetic group. Chronic treatment with C3G may prevent some diabetes-related changes in vascular reactivity observed in diabetic rats directly and/or indirectly due to its hypoglycaemic effect and attenuation of lipid peroxidation and through endothelial-derived factors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Enhancement of neurite outgrowth in PC12 cells stimulated with cyclic AMP and NGF by 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), novel lipophilic ascorbate derivatives.

    PubMed

    Zhou, Xiaohua; Tai, Akihiro; Yamamoto, Itaru

    2003-03-01

    It has been shown that ascorbate (AsA) and its stable derivative, ascorbic acid 2-O-alpha-glucoside (AA-2G), do not elicit neurite outgrowth in PC12 cells. However, these ascorbates are synergistically enhanced by both dibutyryl cyclic AMP (Bt(2)cAMP)- and nerve growth factor (NGF)-induced neurite outgrowth in this model. In the present study, the effects of a series of novel lipophilic ascorbate derivatives, 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), on neurite outgrowth induced by Bt(2)cAMP and NGF were examined in PC12 cells. We found that all the tested acylated ascorbate derivatives enhanced neurite formation induced by both agents in a dose-dependent manner. Of the 6-Acyl-AA-2G derivatives, 6-octanoyl ascorbic acid 2-O-alpha-glucoside (6-Octa-AA-2G) enhanced the Bt(2)cAMP-induced phosphorylated MAPK p44 and p42 expression. A alpha-glucosidase inhibitor, castanospermine, completely abrogated the promotion of neurite outgrowth and MAPK expression by 6-Octa-AA-2G. Addition of 6-Octa-AA-2G (0.5 mM) to PC12 cells caused a rapid and significant increase in intracellular AsA content, which reached a maximum and was maintained from 12 to 24 h after the culture. These findings suggest that 6-Acyl-AA-2G is rapidly hydrolyzed to AsA within the cell and enhances neurite differentiation through the interaction with the inducer-activated MAPK pathway.

  4. Citrus limonin and its glucoside inhibit colon adenocarcinoma cell proliferation through apoptosis.

    PubMed

    Chidambara Murthy, Kotamballi N; Jayaprakasha, G K; Kumar, Vinod; Rathore, Keerti S; Patil, Bhimanagouda S

    2011-03-23

    The current study was an attempt to elucidate the mechanism of human colon cancer cell proliferation inhibition by limonin and limonin glucoside (LG) isolated from seeds of Citrus reticulata. The structures of purified compounds were confirmed by NMR and quantified using HPLC. These compounds of more than 95% purity were subjected to proliferation inhibition assay using human colon adenocarcinoma (SW480) cells. The IC50 value of 54.74 and 37.39 μM was observed for limonin and LG, respectively at 72 h. Following confirmation of proliferation inhibition, pattern of DNA fragmentation and activation of caspase-3 of the cells treated with limonoids suggest involvement of apoptosis. Furthermore, reduction in the transcription ratio of bcl2/bax and induction of cytochrome c release from mitochondria to cytosol with treatment of limonoids confirm the activation of intrinsic apoptosis pathway. The activity of Bax and Bcl2 was confirmed through analysis of mitochondrial membrane potential and intracellular calcium in the cells treated with limonin and LG; the net content of caspase-8 was not affected by limonoids. Results of the current study provide compelling evidence on the induction of mitochondria mediated intrinsic apoptosis by both limonin and LG in cultured SW480 cells for the first time.

  5. Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound.

    PubMed

    Ojwang, Leonnard O; Yang, Liyi; Dykes, Linda; Awika, Joseph

    2013-08-15

    Proanthocyanidin (PA) profile and content can have important nutritional and health implications on plant foods. Six diverse cowpea phenotypes (black, red, green, white, light-brown and golden-brown) were investigated for PA composition using normal-phase HPLC and reversed-phase UPLC-TQD-MS. Catechin and (epi)afzelechin were the major flavan-3-ol units. Unusual composition was observed in all cowpea phenotypes with significant degrees of glycosylation in the monomers and dimers. The PA content of cowpea (dry basis) ranged between 2.2 and 6.3 mg/g. Monomeric flavan-3-ols were the largest group of PA (36-69%) in cowpea, with catechin-7-O-glucoside accounting for most (about 88%) of the monomers. The oligomers with degree of polymerization (DP) 2-4 ranged from 0.41 to 1.3 mg/g (15-20%), whereas DP>10 polymers accounted for only 13.5% of PA. Future studies that highlight the impact of the unusual cowpea PA profile on nutritional and bioactive properties of this important legume are warranted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Prophylactic Efficacy of Quercetin 3-β-O-d-Glucoside against Ebola Virus Infection

    PubMed Central

    Kroeker, Andrea; He, Shihua; Kozak, Robert; Audet, Jonathan; Mbikay, Majambu

    2016-01-01

    Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola. However, these prophylactics and therapeutics have been designed and tested only against the same species of Ebola virus as the one causing the current outbreak. Future outbreaks involving other species would require reformulation and possibly redevelopment. Therefore, a broad-spectrum alternative is highly desirable. We have found that a flavonoid derivative called quercetin 3-β-O-d-glucoside (Q3G) has the ability to protect mice from Ebola even when given as little as 30 min prior to infection. Furthermore, we have demonstrated that this compound targets the early steps of viral entry. Most promisingly, antiviral activity against two distinct species of Ebola virus was seen. This study serves as a proof of principle that Q3G has potential as a prophylactic against Ebola virus infection. PMID:27297486

  7. C-glucosidic ellagitannins from Lythri herba (European Pharmacopoeia): chromatographic profile and structure determination.

    PubMed

    Piwowarski, Jakub P; Kiss, Anna K

    2013-01-01

    Lythri herba, a pharmacopoeial plant material (European Pharmacopoea), is obtained from flowering parts of purple loosestrife (Lythrum salicaria L.). Although extracts from this plant material have been proven to possess some interesting biological activities and its pharmacopoeial standardisation is based on total tannin content determination, the phytochemical characterisation of this main group of compounds has not yet been fully conducted. To isolate ellagitannins from Lythri herba, determine their structures and develop chromatographic methods for their qualitative analysis. Five C-glucosidic ellagitannins - monomeric- vescalagin and castalagin together with new dimeric structures - salicarinins A-C, composed of vescalagin and stachyurin, vescalagin and casuarinin, castalagin and casuarinin units connected via formation of valoneoyl group, were isolated using column chromatography and preparative HPLC. Structures were determined according to (1) H and (13) C-NMR (one- and two-dimensional), electrospray ionisation-time of flight (ESI-TOF), electrospray ionisation-ion trap (ESI-MS(n) ) and circular dichroism (CD) spectra, together with acidic hydrolysis products analysis. HPTLC on RP-18 modified plates and HPLC-DAD-MS(n) on RP-18 column methods were developed for separation of the five main ellagitannins. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Anxiolytic effects of orcinol glucoside and orcinol monohydrate in mice.

    PubMed

    Wang, Xiaohong; Li, Guiyun; Li, Peng; Huang, Linyuan; Huang, Jianmei; Zhai, Haifeng

    2015-06-01

    Anxiety is a common psychological disorder, often occurring in combination with depression, but therapeutic drugs with high efficacy and safety are lacking. Orcinol glucoside (OG) was recently found to have an antidepressive action. To study the therapeutic potential of OG and orcinol monohydrate (OM) as anxiolytic agents. Anxiolytic effects in mice were measured using the elevated plus-maze, hole-board, and open-field tests. Eight groups of mice were included in each test. Thirty minutes before each test, mice in each group received one oral administration of OG (5, 10, or 20 mg/kg), OM (2.5, 5, or 10 mg/kg), the positive control diazepam (1 or 5 mg/kg), or control vehicle. Each mouse underwent only one test. Uptake of orcinol (5 mg/kg) in the brain was qualitatively detected using the HPLC-MS method. OG (5, 10, and 20 mg/kg) and OM (2.5 and 5 mg/kg) increased the time spent in open arms and the number of entries into open arms in the elevated plus-maze test. OG (5 and 10 mg/kg) and OM (2.5 and 5 mg/kg) increased the number of head-dips in the hole-board test. At all tested doses, OG and OM did not significantly affect the locomotion of mice in the open-field test. Orcinol could be detected in the mouse brain homogenates 30 min after oral OM administration, having confirmed that OM is centrally active. The results demonstrated that OG and OM are anxiolytic agents without sedative effects, indicating their therapeutic potential for anxiety.

  9. Multiple α-Glucoside Transporter Genes in Brewer’s Yeast

    PubMed Central

    Jespersen, Lene; Cesar, Lene B.; Meaden, Philip G.; Jakobsen, Mogens

    1999-01-01

    Maltose and maltotriose are the two most abundant fermentable sugars in brewer’s wort, and the rate of uptake of these sugars by brewer’s yeast can have a major impact on fermentation performance. In spite of this, no information is currently available on the genetics of maltose and maltotriose uptake in brewing strains of yeast. In this work, we studied 30 brewing strains of yeast (5 ale strains and 25 lager strains) with the aim of examining the alleles of maltose and maltotriose transporter genes contained by them. To do this, we hybridized gene probes to chromosome blots. Studies performed with laboratory strains have shown that maltose utilization is conferred by any one of five unlinked but highly homologous MAL loci (MAL1 to MAL4 and MAL6). Gene 1 at each locus encodes a maltose transporter. All of the strains of brewer’s yeast examined except two were found to contain MAL11 and MAL31 sequences, and only one of these strains lacked MAL41. MAL21 was not present in the five ale strains and 12 of the lager strains. MAL61 was not found in any of the yeast strains. In three of the lager strains, there was evidence that MAL transporter gene sequences occurred on chromosomes other than those known to carry MAL loci. Sequences corresponding to the AGT1 gene, which encodes a transporter of several α-glucosides, including maltose and maltotriose, were detected in all but one of the yeast strains. Homologues of AGT1 were identified in three of the lager strains, and two of these homologues were mapped, one to chromosome II and the other to chromosome XI. AGT1 appears to be a member of a family of closely related genes, which may have arisen in brewer’s yeast in response to selective pressure. PMID:9925567

  10. [Fast identification of constituents of Lagotis brevituba by using UPLC-Q-TOF-MS/MS method].

    PubMed

    Xie, Jing; Zhang, Li; Zeng, Jin-Xiang; Li, Min; Wang, Juan; Xie, Xiong-Xiong; Zhong, Guo-Yue; Luo, Guang-Ming; Yuan, Jin-Bin; Liang, Jian

    2017-06-01

    The chemical constituents of Lagotis brevituba were rapidly determined and analyzed by using ultra performance liquid chromatography tandem quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) method, providing material basis for the clinical application of L. brevituba. The separation was performed on UPLC YMC-Triart C₁₈ (2.1 mm×100 mm, 1.9 μm) column, with acetonitrile-water containing 0.2% formic acid as mobile phase for gradient elution. The flow rate was 0.4 mL•min-1 gradient elution and column temperature was 40 ℃, the injection volume was 2 μL. ESI ion source was used to ensure the data collected in a negative ion mode. The chemical components of L. brevituba were identified through retention time, exact relative molecular mass, cleavage fragments of MS/MS and reported data. The results showed that a total of 22 compounds were identified, including 11 flavones, 6 phenylethanoid glycosides, 1 iridoid glucosides, and 4 organic acid. The UPLC-Q-TOF-MS/MS method could fast identify the chemical components of L. brevituba, providing valuable information about L. brevituba for its clinical application. Copyright© by the Chinese Pharmaceutical Association.

  11. Binding characteristics and protective capacity of cyanidin-3-glucoside and its aglycon to calf thymus DNA.

    PubMed

    Zhang, Chao; Guo, Xiaofei; Cai, Wenqian; Ma, Yue; Zhao, Xiaoyan

    2015-04-01

    The binding characteristics and protective capacity of cyanidin (Cy) and cyanidin-3-glucoside (C3G) to calf thymus DNA were explored for the first time. The Cy and C3G gave a bathochromic shift to the ultraviolet-visible spectra of the DNA, indicating the formation of the DNA-Cy and DNA-C3G complexes. The complexes were formed by an intercalative binding mode based on the results of the fluorescence spectra and competitive binding analysis. Meanwhile, the Cy and C3G protected the DNA from the damage induced by the hydroxyl radical. The binding capacity and protective capacity of the C3G were stronger than that of the Cy. Furthermore, the formation of the DNA-anthocyanin complexes was spontaneous when the hydrogen bond and hydrophobic force played a key role. Hence, the Cy and C3G could protect the DNA automatically from the damage induced by the hydroxyl radical. © 2015 Institute of Food Technologists®

  12. pH-dependent interaction of rhodopsin with cyanidin-3-glucoside. 2. Functional aspects.

    PubMed

    Tirupula, Kalyan C; Balem, Fernanda; Yanamala, Naveena; Klein-Seetharaman, Judith

    2009-01-01

    Anthocyanins are a class of phytochemicals that confer color to flowers, fruits, vegetables and leaves. They are part of our regular diet and serve as dietary supplements because of numerous health benefits, including improved vision. Recent studies have shown that the anthocyanin cyanidin-3-O-glucoside (C3G) increased regeneration of the dim-light photoreceptor rhodopsin (Matsumoto et al. [2003] J. Agric. Food Chem., 51, 3560-3563). In an accompanying study (Yanamala et al. [2009] Photochem. Photobiol.), we show that C3G directly binds to rhodopsin in a pH-dependent manner. In this study, we investigated the functional consequences of C3G binding to rhodopsin. As observed previously in rod outer segments, regeneration of purified rhodopsin in detergent micelles is also accelerated in the presence of C3G. Thermal denaturation and stability studies using circular dichroism, fluorescence and UV/visible absorbance spectroscopy show that C3G exerts a destabilizing effect on rhodopsin structure while it only modestly alters G-protein activation and the rates at which the light-activated Metarhodopsin II state decays to opsin and free retinal. These results indicate that the mechanism of C3G-enhanced regeneration may be based on changes in opsin structure promoting access to the retinal binding pocket.

  13. Prophylactic Efficacy of Quercetin 3-β-O-d-Glucoside against Ebola Virus Infection.

    PubMed

    Qiu, Xiangguo; Kroeker, Andrea; He, Shihua; Kozak, Robert; Audet, Jonathan; Mbikay, Majambu; Chrétien, Michel

    2016-09-01

    Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola. However, these prophylactics and therapeutics have been designed and tested only against the same species of Ebola virus as the one causing the current outbreak. Future outbreaks involving other species would require reformulation and possibly redevelopment. Therefore, a broad-spectrum alternative is highly desirable. We have found that a flavonoid derivative called quercetin 3-β-O-d-glucoside (Q3G) has the ability to protect mice from Ebola even when given as little as 30 min prior to infection. Furthermore, we have demonstrated that this compound targets the early steps of viral entry. Most promisingly, antiviral activity against two distinct species of Ebola virus was seen. This study serves as a proof of principle that Q3G has potential as a prophylactic against Ebola virus infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Hypolipidaemic effects of cyanidin 3-glucoside rich extract from black rice through regulating hepatic lipogenic enzyme activities.

    PubMed

    Um, Min Young; Ahn, Jiyun; Ha, Tae Youl

    2013-09-01

    Black rice is rich in anthocyanins, especially cyanidin-3-glucoside (C3G). This study examined the effects of a C3G-rich extract from black rice on hyperlipidaemia induced by a high fat/cholesterol diet (HFCD) in rats. Male Sprague-Dawley rats were fed either HFCD or HFCD containing 150 mg kg⁻¹ body weight C3G (HFCD+C3G) for 4 weeks. We found that C3G significantly decreased serum levels of total cholesterol, free cholesterol, triglycerides, and free fatty acids in rats fed a HFCD. Similarly, hepatic cholesterol and triglyceride levels and the activities of hepatic lipogenic enzymes (malic enzyme and glucose-6-phosphate dehydrogenase) were significantly reduced by C3G supplementation. These results suggest that C3G can ameliorate HFCD-induced hyperlipidaemia in part by modulating the activities of hepatic lipogenic enzymes. © 2013 Society of Chemical Industry.

  15. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts.

    PubMed

    Daenen, L; Saison, D; Sterckx, F; Delvaux, F R; Verachtert, H; Derdelinckx, G

    2008-02-01

    The aim of this study was to select and examine Saccharomyces and Brettanomyces brewing yeasts for hydrolase activity towards glycosidically bound volatile compounds. A screening for glucoside hydrolase activity of 58 brewing yeasts belonging to the genera Saccharomyces and Brettanomyces was performed. The studied Saccharomyces brewing yeasts did not show 1,4-beta-glucosidase activity, but a strain dependent beta-glucanase activity was observed. Some Brettanomyces species did show 1,4-beta-glucosidase activity. The highest constitutive activity was found in Brettanomyces custersii. For the most interesting strains the substrate specificity was studied and their activity was evaluated in fermentation experiments with added hop glycosides. Fermentations with Br. custersii led to the highest release of aglycones. Pronounced exo-beta-glucanase activity in Saccharomyces brewing yeasts leads to a higher release of certain aglycones. Certain Brettanomyces brewing yeasts, however, are more interesting for hydrolysis of glycosidically bound volatiles of hops. The release of flavour active compounds from hop glycosides opens perspectives for the bioflavouring and product diversification of beverages like beer. The release can be enhanced by using Saccharomyces strains with high exo-beta-glucanase activity. Higher activities can be found in Brettanomyces species with beta-glucosidase activity.

  16. Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice.

    PubMed

    Aseervatham, G Smilin Bell; Suryakala, U; Doulethunisha; Sundaram, S; Bose, P Chandra; Sivasudha, T

    2016-08-01

    The present study was aimed to evaluate the effect of apigenin 8-C-glucoside (Vitexin) and chlorogenic acid on epileptic mice induced by pilocarpine and explored its possible mechanisms. Intraperitonial administration of pilocarpine (85mg/kg) induced seizure in mice was assessed by behavior observations, which is significantly (p>0.05) reduced by apigenin 8-C-glucoside (AP8CG) (10mg/kg) and chlorogenic acid (CA) (5mg/kg), similar to diazepam. Seizure was accompanied by an imbalance in the levels of Gamma-aminobutyric acid (GABA) and glutamate in the pilocarpine administered group. Moreover, convulsion along with reduced acetylcholinesterase, increased monoamine oxidase and oxidative stress was observed in epileptic mice brain. AP8CG and CA significantly restored back to normal levels even at lower doses. Further, increased lipid peroxidation and nitrite content was also significantly attenuated by AP8CG and CA. However, CA was found to be more effective when compared to AP8CG. In addition, the mRNA expression of N-methyl-d-aspartate receptor (NMDAR), mGluR1 and mGlu5 was significantly (P≤0.05) inhibited by AP8CG and CA in a lower dose. The mRNA expression of GRIK1 did not differ significantly in any of the group and showed a similar pattern of expression. Our result shows that AP8CG and CA selectively inhibit NMDAR, mGluR1 and mGlu5 expression. Modification in the provoked NMDAR calcium response coupled with neuronal death. Hence, these findings underline that the polyphenolics, AP8CG and CA have exerted antiepileptic and neuroprotective activity by suppressing glutamate receptors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Reactivity of Cork Extracts with (+)-Catechin and Malvidin-3-O-glucoside in Wine Model Solutions: Identification of a New Family of Ellagitannin-Derived Compounds (Corklins).

    PubMed

    Azevedo, Joana; Fernandes, Ana; Oliveira, Joana; Brás, Natércia F; Reis, Sofia; Lopes, Paulo; Roseira, Isabel; Cabral, Miguel; Mateus, Nuno; de Freitas, Victor

    2017-10-04

    The aim of this study was to evaluate the reactivity of phenolic compounds extracted from cork stoppers to wine model solutions with two major wine components, namely, (+)-catechin and malvidin-3-O-glucoside. Besides the formation of some compounds already described in the literature, these reactions also yielded a new family of ellagitannin-derived compounds, named herein as corklins. This new family of compounds that were found to result from the interaction between ellagitannins in alcoholic solutions and (+)-catechin were structurally characterized by mass spectroscopy, nuclear magnetic resonance, and computational methods.

  18. Deciphering the route to cyclic monoterpenes in Chrysomelina leaf beetles: source of new biocatalysts for industrial application?

    PubMed

    Burse, Antje; Boland, Wilhelm

    2017-09-26

    The drastic growth of the population on our planet requires the efficient and sustainable use of our natural resources. Enzymes are indispensable tools for a wide range of industries producing food, pharmaceuticals, pesticides, or biofuels. Because insects constitute one of the most species-rich classes of organisms colonizing almost every ecological niche on earth, they have developed extraordinary metabolic abilities to survive in various and sometimes extreme habitats. Despite this metabolic diversity, insect enzymes have only recently generated interest in industrial applications because only a few metabolic pathways have been sufficiently characterized. Here, we address the biosynthetic route to iridoids (cyclic monoterpenes), a group of secondary metabolites used by some members of the leaf beetle subtribe Chrysomelina as defensive compounds against their enemies. The ability to produce iridoids de novo has also convergently evolved in plants. From plant sources, numerous pharmacologically relevant structures have already been described. In addition, in plants, iridoids serve as building blocks for monoterpenoid indole alkaloids with broad therapeutic applications. As the commercial synthesis of iridoid-based drugs often relies on a semisynthetic approach involving biocatalysts, the discovery of enzymes from the insect iridoid route can account for a valuable resource and economic alternative to the previously used enzymes from the metabolism of plants. Hence, this review illustrates the recent discoveries made on the steps of the iridoid pathway in Chrysomelina leaf beetles. The findings are also placed in the context of the studied counterparts in plants and are further discussed regarding their use in technological approaches.

  19. Simultaneous determination of calycosin-7-O-β-D-glucoside, ononin, calycosin, formononetin, astragaloside IV, and astragaloside II in rat plasma after oral administration of Radix Astragali extraction for their pharmacokinetic studies by ultra-pressure liquid chromatography with tandem mass spectrometry.

    PubMed

    Liu, Xiao-hua; Zhao, Jian-bang; Guo, Long; Yang, Ying-lai; Hu, Fang; Zhu, Rui-juan; Feng, Shi-lan

    2014-09-01

    A sensitive and reliable ultra-pressure liquid chromatography with tandem mass spectrometry (UPLC-MS) was developed and validated for simultaneous quantification of six main bioactive components, i.e., calycosin-7-O-β-D-glucoside, ononin, calycosin, formononetin, astragaloside IV, and astragaloside II in rat plasma after oral administration of the 95 % ethanol extraction from Radix Astragali. Plasma samples were extracted with Waters Oasis(TM) HLB 1 cc (30 mg) Extraction Cartridges (SPE) separated on an UPLC™ BEH C18 column and detected by MS with electro spray ionization interface in positive selective ion monitoring mode. Calibration curves offered linear ranges of two orders of magnitude with r (2) > 0.99. The method had the lower limit quantification of 1.30, 0.73, 1.17, 2.33, 0.63, and 0.83 ng/mL for ononin, calycosin, calycosin-7-O-β-D-glucoside, formononetin, astragaloside IV, and astragaloside II, respectively, with precision less than 10 %. The RSD of intra- and inter-day variations ranged from 1.66 to 6.46 and 3.39 to 6.58 %. This developed method was applied subsequently to pharmacokinetic studies of the six compounds in rats successfully. The proposed method was for the first time to compare the pharmacokinetic difference between calycosin-7-O-β-D-glucoside and calycosin in rat plasma, so as between ononin and formononetin, and studied to the astragaloside II pharmacokinetics in rat plasma.

  20. Comparison of Sugars, Iridoid Glycosides and Amino Acids in Nectar and Phloem Sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus

    PubMed Central

    Lohaus, Gertrud; Schwerdtfeger, Michael

    2014-01-01

    Background Floral nectar contains sugars and amino acids to attract pollinators. In addition, nectar also contains different secondary compounds, but little is understood about their origin or function. Does nectar composition reflect phloem composition, or is nectar synthesized and/or modified in nectaries? Studies where both, the nectar as well as the phloem sap taken from the same plant species were analyzed in parallel are rare. Therefore, phloem sap and nectar from different plant species (Maurandya barclayana, Lophospermum erubescens, and Brassica napus) were compared. Methodology and Principal Findings Nectar was collected with microcapillary tubes and phloem sap with the laser-aphid-stylet technique. The nectar of all three plant species contained high amounts of sugars with different percentages of glucose, fructose, and sucrose, whereas phloem sap sugars consisted almost exclusively of sucrose. One possible reason for this could be the activity of invertases in the nectaries. The total concentration of amino acids was much lower in nectars than in phloem sap, indicating selective retention of nitrogenous solutes during nectar formation. Nectar amino acid concentrations were negatively correlated with the nectar volumes per flower of the different plant species. Both members of the tribe Antirrhineae (Plantaginaceae) M. barclayana and L. erubescens synthesized the iridoid glycoside antirrhinoside. High amounts of antirrhinoside were found in the phloem sap and lower amounts in the nectar of both plant species. Conclusions/Significance The parallel analyses of nectar and phloem sap have shown that all metabolites which were found in nectar were also detectable in phloem sap with the exception of hexoses. Otherwise, the composition of both aqueous solutions was not the same. The concentration of several metabolites was lower in nectar than in phloem sap indicating selective retention of some metabolites. Furthermore, the existence of antirrhinoside in nectar

  1. Comparison of sugars, iridoid glycosides and amino acids in nectar and phloem sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus.

    PubMed

    Lohaus, Gertrud; Schwerdtfeger, Michael

    2014-01-01

    Floral nectar contains sugars and amino acids to attract pollinators. In addition, nectar also contains different secondary compounds, but little is understood about their origin or function. Does nectar composition reflect phloem composition, or is nectar synthesized and/or modified in nectaries? Studies where both, the nectar as well as the phloem sap taken from the same plant species were analyzed in parallel are rare. Therefore, phloem sap and nectar from different plant species (Maurandya barclayana, Lophospermum erubescens, and Brassica napus) were compared. Nectar was collected with microcapillary tubes and phloem sap with the laser-aphid-stylet technique. The nectar of all three plant species contained high amounts of sugars with different percentages of glucose, fructose, and sucrose, whereas phloem sap sugars consisted almost exclusively of sucrose. One possible reason for this could be the activity of invertases in the nectaries. The total concentration of amino acids was much lower in nectars than in phloem sap, indicating selective retention of nitrogenous solutes during nectar formation. Nectar amino acid concentrations were negatively correlated with the nectar volumes per flower of the different plant species. Both members of the tribe Antirrhineae (Plantaginaceae) M. barclayana and L. erubescens synthesized the iridoid glycoside antirrhinoside. High amounts of antirrhinoside were found in the phloem sap and lower amounts in the nectar of both plant species. The parallel analyses of nectar and phloem sap have shown that all metabolites which were found in nectar were also detectable in phloem sap with the exception of hexoses. Otherwise, the composition of both aqueous solutions was not the same. The concentration of several metabolites was lower in nectar than in phloem sap indicating selective retention of some metabolites. Furthermore, the existence of antirrhinoside in nectar could be based on passive secretion from the phloem.

  2. Leaf chemistry and foliage avoidance by the thrips Frankliniella occidentalis and Heliothrips haemorrhoidalis in glasshouse collections.

    PubMed

    Brown, Alison S Scott; Veitch, Nigel C; Simmonds, Monique S J

    2011-03-01

    Observational studies on foliage avoidance by the polyphagous thrips species Frankliniella occidentalis (Pergande) and Heliothrips haemorrhoidalis (Bouché) (Thysanoptera: Thripidae) identified six non-host species (Allagopappus dichotomus (Asteraceae), Gardenia posoquerioides (Rubiaceae), Plectranthus aff. barbatus, Plectranthus strigosus, Plectranthus zuluensis (Lamiaceae), and Sclerochiton harveyanus (Acanthaceae) among plants growing within a major glasshouse botanical collection. The effects of sequentially obtained acetone and aqueous methanol leaf extracts on mortality in first instar Frankliniella occidentalis were assessed. The acetone leaf extract of Sclerochiton harveyanus, which had the highest activity against the thrips, yielded four new iridoids, sclerochitonosides A-C, and sclerochitonoside B 4'-methyl ether. Mortality of F. occidentalis was increased on exposure to all four iridoids, and the most active iridoid was sclerochitonoside A (8-epiloganic acid 4'-hydroxyphenylethyl ester). Choice experiments demonstrated that this compound did not significantly deter H. haemorrhoidalis from treated leaf surfaces. The significance of iridoids in the defense mechanism of plants against thrips is discussed.

  3. Cyanidin-3-glucoside isolated from mulberry fruits protects pancreatic β-cells against glucotoxicity-induced apoptosis.

    PubMed

    Lee, Jong Seok; Kim, Young Rae; Park, Jun Myoung; Kim, Young Eon; Baek, Nam In; Hong, Eock Kee

    2015-04-01

    The present study investigated the cytoprotective effects of cyanidin‑3‑glucoside (C3G), isolated from mulberry fruits, on the glucotoxicity‑induced apoptosis of pancreatic β‑cells to evaluate the antidiabetic effects of this compound. MIN6N pancreatic β‑cells were used to investigate the cytoprotective effects of C3G. In addition, the effects of C3G on the glucotoxicity‑induced apoptosis of pancreatic β‑cells was evaluated using MTT assay, immunofluorescent staining, flow cytometric and western blot analyses. The pancreatic β‑cells cultured under high glucose conditions exhibited distinct apoptotic features. C3G decreased the generation of intracellular reactive oxygen species, DNA fragmentation and the rate of apoptosis. C3G also prevented pancreatic β‑cell apoptosis induced by high glucose conditions by interfering with the intrinsic apoptotic pathways. In addition, C3G treatment resulted in increased insulin secretion compared with treatment with high glucose only. In conclusion, the results of the present study suggested that C3G obtained from mulberry fruits may be a potential phytotherapeutic agent for the prevention of diabetes.

  4. Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin.

    PubMed

    Schrader, A; Siefken, W; Kueper, T; Breitenbach, U; Gatermann, C; Sperling, G; Biernoth, T; Scherner, C; Stäb, F; Wenck, H; Wittern, K-P; Blatt, T

    2012-01-01

    Aquaporins (AQPs) present in the epidermis are essential hydration-regulating elements controlling cellular water and glycerol transport. In this study, the potential of glyceryl glucoside [GG; alpha-D-glucopyranosyl-alpha-(1->2)-glycerol], an enhanced glycerol derivative, to increase the expression of AQP3 in vitro and ex vivo was evaluated. In vitro studies with real-time RT-PCR and FACS measurements were performed to test the induction by GG (3% w/v) of AQP3 mRNA and protein in cultured human keratinocytes. GG-containing formulations were applied topically to volunteer subjects and suction blister biopsies were analyzed to assess whether GG (5%) could penetrate the epidermis of intact skin, and subsequently upregulate AQP3 mRNA expression and improve barrier function. AQP3 mRNA and protein levels were significantly increased in cultured human keratinocytes. In the studies on volunteer subjects, GG significantly increased AQP3 mRNA levels in the skin and reduced transepidermal water loss compared with vehicle-controlled areas. GG promotes AQP3 mRNA and protein upregulation and improves skin barrier function, and may thus offer an effective treatment option for dehydrated skin. Copyright © 2012 S. Karger AG, Basel.

  5. Synthesis of deuterium-labelled substrates for the study of oleuropein biosynthesis in Olea europaea callus cultures.

    PubMed

    Serrilli, Anna Maria; Maggi, Agnese; Casagrande, Valentina; Bianco, Armandodoriano

    2016-01-01

    We propose the cell culture approach to investigate oleuropein (1) biogenesis in Olea europaea L. We suggest employing olive callus cultures to identify the iridoidic precursor of oleuropein. In fact, we confirmed that callus cells from olive shoot explants are able to produce key secoiridoid as 1. To enable this approach, we synthesised and characterised deuterium-labelled iridoidic precursors belonging both to the loganin and the 8-epiloganin series. These iridoids are [7,8-(2)H2]-7-deoxy-8-epi-loganin (2(D)), [8,10-(2)H2]-8-epi-loganin (4(D)) and [7,8-(2)H2]-7-deoxy-loganin (3(D)).

  6. Flavonol Glucoside and Antioxidant Enzyme Biosynthesis Affected by Mycorrhizal Fungi in Various Cultivars of Onion (Allium cepa L.).

    PubMed

    Mollavali, Mohanna; Bolandnazar, Saheb Ali; Schwarz, Dietmar; Rohn, Sascha; Riehle, Peer; Zaare Nahandi, Fariborz

    2016-01-13

    The objective of this study was to investigate the impact of mycorrhizal symbiosis on qualitative characteristics of onion (Allium cepa L.). For this reason, five onion cultivars with different scale color and three different strains of arbuscular mycorrhizal fungi (Diversispora versiformis, Rhizophagus intraradices, Funneliformis mosseae) were used. Red cultivars, mainly 'Red Azar-shahr', showed the highest content in vitamin C, flavonols, and antioxidant enzymes. Mycorrhizal inoculation increased total phenolic, pyruvic acid, and vitamin C of onion plants. Considerable increase was observed in quercetin-4'-O-monoglucoside and isorhamnetin-4'-O-monoglucoside content in plants inoculated with Diversispora versiformis, but quercetin-3,4'-O-diglucoside was not significantly influenced. Analyses for phenylalanine ammonia-lyase (PAL) and antioxiodant enzyme activities such as polyphenol oxidase (PPO), catalase (CAT), and peroxidase (POD) revealed that all except PPO were enhanced by mycorrhizal inoculation. Overall, these findings suggested that mycorrhizal inoculation influenced biosynthesis of flavonol glucosides and antioxidant enzymes by increasing nutrient uptake or by induction of the plant defense system.

  7. Trihydroxybenzoic acid glucoside as a global skin color modulator and photo-protectant

    PubMed Central

    Chajra, Hanane; Redziniak, Gérard; Auriol, Daniel; Schweikert, Kuno; Lefevre, Fabrice

    2015-01-01

    Background 3,4,5-Trihydroxybenzoic acid glucoside (THBG), a molecule produced by an original biocatalysis-based technology, was assessed in this study with respect to its skin photoprotective capacity and its skin color control property on Asian-type skin at a clinical level and on skin explant culture models. Methods The double-blinded clinical study was done in comparison to a vehicle by the determination of objective color parameters thanks to recognized quantitative and qualitative analysis tools, including Chroma-Meter, VISIA-CR™, and SIAscope™. Determination of L* (brightness), a* and b* (green–red and blue–yellow chromaticity coordinates), individual typology angle, and C* (chroma) and h* (hue angle) parameters using a Chroma-Meter demonstrated that THBG is able to modify skin color while quantification of ultraviolet (UV) spots by VISIA-CR™ confirmed its photoprotective effect. The mechanism of action of THBG molecule was determined using explant skin culture model coupled to histological analysis (epidermis melanin content staining). Results We have demonstrated that THBG was able to modulate significantly several critical parameters involved in skin color control such as L* (brightness), a* (redness), individual typology angle (pigmentation), and hue angle (yellowness in this study), whereas no modification occurs on b* and C* parameters. We have demonstrated using histological staining that THBG decrease epidermis melanin content under unirradiated and irradiated condition. We also confirmed that THBG molecule is not a sunscreen agent. Conclusion This study demonstrated that THBG controls skin tone via the inhibition of melanin synthesis as well as the modulation of skin brightness, yellowness, and redness. PMID:26648748

  8. Discovery of the glycogen phosphorylase-modulating activity of a resveratrol glucoside by using a virtual screening protocol optimized for solvation effects.

    PubMed

    Mavrokefalos, Nikolaos; Myrianthopoulos, Vassilios; Chajistamatiou, Aikaterini S; Chrysina, Evangelia D; Mikros, Emmanuel

    2015-04-01

    The identification of natural products that can modulate blood glucose levels is of great interest as it can possibly facilitate the utilization of mild interventions such as herbal medicine or functional foods in the treatment of chronic diseases like diabetes. One of the established drug targets for antihyperglycemic therapy is glycogen phosphorylase. To evaluate the glycogen phosphorylase inhibitory properties of an in-house compound collection consisting to a large extent of natural products, a stepwise virtual and experimental screening protocol was devised and implemented. The fact that the active site of glycogen phosphorylase is highly hydrated emphasized that a methodological aspect needed to be efficiently addressed prior to an in silico evaluation of the compound collection. The effect of water molecules on docking calculations was regarded as a key parameter in terms of virtual screening protocol optimization. Statistical analysis of 125 structures of glycogen phosphorylase and solvent mapping focusing on the active site hydration motif in combination with a retrospective screening revealed the importance of a set of 29 crystallographic water molecules for achieving high enrichment as to the discrimination between active compounds and inactive decoys. The scaling of Van der Waals radii of system atoms had an additional effect on screening performance. Having optimized the in silico protocol, a prospective evaluation of the in-house compound collection derived a set of 18 top-ranked natural products that were subsequently evaluated in vitro for their activity as glycogen phosphorylase inhibitors. Two phenolic glucosides with glycogen phosphorylase-modulating activity were identified, whereas the most potent compound affording mid-micromolar inhibition was a glucosidic derivative of resveratrol, a stilbene well-known for its wide range of biological activities. Results show the possible phytotherapeutic and nutraceutical potential of products common in

  9. Spectrophotometric study of the copigmentation of malvidin 3-O-glucoside with p-coumaric, vanillic and syringic acids.

    PubMed

    Malaj, Naim; De Simone, Bruna Clara; Quartarolo, Angelo Domenico; Russo, Nino

    2013-12-15

    Anthocyanins are a natural source of pigments in plants and their processed food products have become attractive and excellent candidates to replace the synthetic colourants due to their characteristic intense colours and associated health benefits. The intermolecular copigmentation between anthocyanins and other colourless compounds has been reported to be an important way to enhance and stabilise the colour intensity of aqueous solutions. In the present work we report the equilibrium constant, stoichiometric ratio and the thermodynamic parameters (ΔG°, ΔH° and ΔS°) related to the intermolecular copigmentation reactions of the anthocyanin malvidin 3-O-glucoside with one hydroxycinnamic acid (p-coumaric acid) and two O-methylated hydroxybenzoic acids (vanillic and syringic acid). Different factors which affect their interactions such as copigment concentration, pH and temperature of the medium are examined at two pH levels (pH=2.50 and 3.65) corresponding to those of the major food mediums where these reactions take place (fruit juices, wine, jams etc.). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effects of baking on cyanidin-3-glucoside content and antioxidant properties of black and yellow soybean crackers.

    PubMed

    Slavin, Margaret; Lu, Yingjian; Kaplan, Nicholas; Yu, Liangli Lucy

    2013-11-15

    Black soybean is a potential functional food ingredient with high anthocyanin content, but the ability to maintain anthocyanin content under dry heat processing has not been reported. This study investigated the effects of soybean seed coat colour and baking time-temperature combinations on the extractable antioxidant properties of a soy cracker food model. Crackers prepared with black soybeans had significantly higher TPC, total isoflavones, and peroxyl, hydroxyl, and ABTS(+) radical scavenging abilities than their yellow counterparts, at all time-temperature combinations. Cyanidin-3-glucoside (C3G) was detected only in black soybean crackers, and all baking treatments significantly decreased C3G. The greatest losses occurred at the low temperature×long time and high temperature×short time, the smallest loss with moderate temperature×short/medium time. The high temperature treatment altered phenolic acid and isoflavone profiles; however, total isoflavones were unaffected. Overall results suggest that moderate baking temperature at minimal time may best preserve anthocyanin and other phenolics in baked black soybean crackers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature.

    PubMed

    Sun, Jianxia; Mei, Zhouxiong; Tang, Yajuan; Ding, Lijun; Jiang, Guichuan; Zhang, Chi; Sun, Aidong; Bai, Weibin

    2016-08-24

    As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200-500 W) and treatment time (0-60 min). The degradation trend was consistent with first-order reaction kinetics (R² > 0.9100). Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R² = 0.8790), which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s) containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.

  12. pH-dependent interaction of rhodopsin with cyanidin-3-glucoside. 1. Structural aspects.

    PubMed

    Yanamala, Naveena; Tirupula, Kalyan C; Balem, Fernanda; Klein-Seetharaman, Judith

    2009-01-01

    Anthocyanins are a class of natural compounds common in flowers and vegetables. Because of the increasing preference of consumers for food containing natural colorants and the demonstrated beneficial effects of anthocyanins on human health, it is important to decipher the molecular mechanisms of their action. Previous studies indicated that the anthocyanin cyanidin-3-glucoside (C3G) modulates the function of the photoreceptor rhodopsin. In this paper, we show using selective excitation (1)H NMR spectroscopy that C3G binds to rhodopsin. Ligand resonances broaden upon rhodopsin addition and rhodopsin resonances exhibit chemical shift changes as well as broadening effects in specific resonances, in an activation state-dependent manner. Furthermore, dark-adapted and light-activated states of rhodopsin show preferences for different C3G species. Molecular docking studies of the flavylium cation, quinoidal base, carbinol pseudobase and chalcone forms of C3G to models of the dark, light-activated and opsin structures of rhodopsin also support this conclusion. The results provide new insights into anthocyanin-protein interactions and may have relevance for the enhancement of night vision by this class of compounds. This work is also the first report of the study of ligand binding to a full-length membrane receptor in detergent micelles by (1)H NMR spectroscopy. Such studies were previously hampered by the presence of detergent micelle resonances, a problem overcome by the selective excitation approach.

  13. Hydrolysis of Oleuropein by Lactobacillus plantarum Strains Associated with Olive Fermentation

    PubMed Central

    Ciafardini, G.; Marsilio, V.; Lanza, B.; Pozzi, N.

    1994-01-01

    Oleuropein (Chemical Abstracts Service registry number 32619-42-4), a bitter-tasting secoiridoid glucoside commonly found in leaves of the olive tree as well as in olives (Olea europaea L.), was found to be hydrolyzed by the β-glucosidase (EC 3.2.1.2.1) produced by oleuropeinolytic Lactobacillus plantarum-type strains. Three strains, designated B17, B20, and B21, were isolated from the brine of naturally ripe olives not treated with alkali. These strains were rod-shaped forms, grown at a pH 3.5 limit, and tolerated 1% oleuropein and 8% NaCl in the growth medium. The β-glucosidase produced hydrolyzed 5-bromo-4-chloro-3-indolyl-β-d-glucopy-ranoside as well as oleuropein. The presence of 2% glucose in the medium inhibited activity by 40 to 50%, depending on the bacterial strain. Chromatographic analysis of the trimethylsilyl derivatives of the products obtained after 7 days of incubation at 30°C of strain B21 showed all the hydrolysis products of oleuropein, i.e., aglycone, iridoid monoterpen, and 3,4-dihydroxyphenylethanol (hydroxytyrosol). Oleuropein and its aglycone after 21 days of incubation decreased to trace levels with the simultaneous increase in concentration of β-3,4-dihydroxyphenylethanol. Images PMID:16349442

  14. Hydrolysis of Oleuropein by Lactobacillus plantarum Strains Associated with Olive Fermentation.

    PubMed

    Ciafardini, G; Marsilio, V; Lanza, B; Pozzi, N

    1994-11-01

    Oleuropein (Chemical Abstracts Service registry number 32619-42-4), a bitter-tasting secoiridoid glucoside commonly found in leaves of the olive tree as well as in olives (Olea europaea L.), was found to be hydrolyzed by the beta-glucosidase (EC 3.2.1.2.1) produced by oleuropeinolytic Lactobacillus plantarum-type strains. Three strains, designated B17, B20, and B21, were isolated from the brine of naturally ripe olives not treated with alkali. These strains were rod-shaped forms, grown at a pH 3.5 limit, and tolerated 1% oleuropein and 8% NaCl in the growth medium. The beta-glucosidase produced hydrolyzed 5-bromo-4-chloro-3-indolyl-beta-d-glucopy-ranoside as well as oleuropein. The presence of 2% glucose in the medium inhibited activity by 40 to 50%, depending on the bacterial strain. Chromatographic analysis of the trimethylsilyl derivatives of the products obtained after 7 days of incubation at 30 degrees C of strain B21 showed all the hydrolysis products of oleuropein, i.e., aglycone, iridoid monoterpen, and 3,4-dihydroxyphenylethanol (hydroxytyrosol). Oleuropein and its aglycone after 21 days of incubation decreased to trace levels with the simultaneous increase in concentration of beta-3,4-dihydroxyphenylethanol.

  15. The antibacterial activity of syringopicroside, its metabolites and natural analogues from Syringae Folium.

    PubMed

    Zhou, Zhengyuan; Han, Na; Liu, Zhihui; Song, Zehai; Wu, Peng; Shao, Jingxuan; Zhang, Jia Ming; Yin, Jun

    2016-04-01

    In the present study, the in vitro antibacterial activity of an effective fraction (ESF) from Syringae Folium (SF) on Methicillin-resistant Staphylococcus aureus (MRSA) was evaluated and then its in vivo activity was evaluated by using the MRSA-infected mouse peritonitis model. The ESF showed a significant in vitro and in vivo activity on decreasing the Minimum Inhibitory Concentrations (MICs) and increasing the survival rate of mouse from 42.8% to 100%. Six iridoid glucosides (IGs) of ESF were characterized by UPLC-TOF-MS method and also isolated by column chromatography. Most of them showed in vitro anti MRSA activity. Syringopicroside (Sy), the major compound of IGs, was found to increase the survival rate from 42.8% to 92.8% of the MRSA-infected mouse, which revealed Sy is also the main active components of ESF. In order to know why the effect of oral administration of SF is better than its injections in clinic and the metabolites of Sy, seven metabolites of Sy were isolated from rat urine and identified on the basis of NMR and MS spectra. Most of metabolites possessed stronger in vitro anti-MRSA activity than that of Sy, which furtherly proved the clinical result. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS.

    PubMed

    Hooi Poay, Tan; Sui Kiong, Ling; Cheng Hock, Chuah

    2011-01-01

    Phyllagathis rotundifolia (Jack) Bl. (Melastomataceae) is a creeping herb found in Peninsular Malaysia and Sumatra. Traditionally, a decoction of the leaves is used in the treatment of malaria, fever and stomach ache. To provide ESI-MS(n) data which are applicable for chemical fingerprinting of P. rotundifolia to obviate laborious isolation and purification steps. The mass spectral data for the compounds isolated from the leaves of P. rotundifolia were obtained by liquid chromatography-electrospray ionisation tandem mass spectrometry. The MS fragmentation patterns were obtained for galloylated cyanogenic glucosides based on prunasin (prunasin 6′‐O‐gallate 1, prunasin 2′,6′‐di‐O‐gallate 2, prunasin 3′,6′‐di‐O‐gallate 3, prunasin 4′,6′‐di‐O‐gallate 4, prunasin 2′,3′,6′‐tri‐Ogallate 5, prunasin 3′,4′,6′‐tri‐O‐gallate 6 and prunasin 2′,3′,4′,6′‐tetra‐O‐gallate 7), gallotannins (6‐O‐galloyl‐D‐glucose 8, 3,6‐di‐O‐galloyl‐D‐glucose 9, 1,2,3‐tri‐O‐galloyl‐β‐D‐glucose 10, 1,4,6‐tri‐O‐galloyl‐β‐D‐glucose 11, 3,4,6‐tri‐O‐galloyl‐D‐glucose 12, 1,2,3,6‐tetra‐O‐galloyl‐β‐D‐glucose 13 and 1,2,3,4,6‐penta‐O‐galloyl‐β‐D‐glucose 14), ellagitannins [6‐O‐galloyl‐2,3‐O‐(S)‐hexahydroxy‐diphenoyl‐D‐glucose 15, praecoxin B 16 and pterocarinin C 17], ellagic acid derivatives (3′‐O‐methyl‐3,4‐methylenedioxyellagic acid 4′‐O‐β‐D‐glucopyranoside 18 and 3,3′,4‐tri‐O‐methylellagic acid 4′‐O‐β‐D‐glucopyranoside 19) and gallic acid 20 that were isolated from the leaves of P. rotundifolia. The ESI-MS(n) technique facilitates identification of galloylated cyanogenic glucosides, hydrolysable tannins and ellagic acid derivatives that were isolated from the leaves of P. rotundifolia. It yields MS(n) spectra that are useful for identification of these compounds in complex samples and permit more

  17. Metabolic study of paeoniflorin and total paeony glucosides from Paeoniae Radix Rubra in rats by high-performance liquid chromatography coupled with sequential mass spectrometry.

    PubMed

    Zhu, Lijun; Sun, Shanshan; Hu, Yanxi; Liu, Yufeng

    2018-04-01

    A clear understanding of the metabolism of Traditional Chinese Medicines is extremely important in their rational clinical application and effective material foundation research. A novel and reliable strategy was performed to find more metabolites of paeoniflorin, determine the metabolites of total paeony glucosides (TPG) by means of determining those metabolites of paeoniflorin, and compare the metabolism differences between paeoniflorin and TPG by intragastric administration. This strategy was characterized as follows. Firstly, the rats were divided into two groups (the paeoniflorin group and the TPG group) to find differences in metabolism mechanisms between paeoniflorin and TPG. Secondly, UPLC-FT-ICR MS and UPLC-Q-TOF MS 2 were applied to obtain accurate molecular weight and structural information, respectively. Thirdly, the metabolites were tentatively identified by a combination of data-processing methods including mass defect screening, characteristic neutral loss screening and product ion screening. Finally, a comparative study was employed in the metabolism of paeoniflorin and TPG. Based on the strategy, 18 metabolites of paeoniflorin (including four new compounds) and 11 metabolites of TPG (including two new compounds) were identified. In all of the identified metabolites of paeoniflorin, two metabolites in rat plasma, four metabolites in rat urine and six metabolites in rat feces were found for the first time after paeoniflorin administration. The results indicate that hydrolyzation of the ester bond and glucosidic band and conjugation with glucuronide were the major metabolic pathways of paeoniflorin. The metabolites of paeoniflorin and TPG in rat plasma, urine and feces have been detected for the first time after intragastric administration. The results may contribute to a better understanding of the metabolism mechanism and provide a scientific rationale for researching the material basis of paeoniflorin and TPG in vivo. Copyright © 2017 John Wiley

  18. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    PubMed

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition.

  19. Simultaneous determination of calycosin-7-O-β-d-glucoside, calycosin, formononetin, astragaloside IV and schisandrin in rat plasma by LC-MS/MS: application to a pharmacokinetic study after oral administration of Shenqi Wuwei chewable tablets.

    PubMed

    Sun, Xuehui; Zhang, Pingping; Wu, Xiujun; Wu, Qiong; Zhang, Mengmeng; An, Ye; Shi, Guobing

    2014-08-01

    A rapid, sensitive and reliable high-performance liquid chromatography-mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous quantification of the five main bioactive components, calycosin, calycosin-7-O-β-d-glucoside, formononetin, astragaloside IV and schisandrin in rat plasma after oral administration of Shenqi Wuwei chewable tablets. Plasma samples were extracted using solid-phase extraction separated on a CEC18 column and detected by MS with an electrospray ionization interface in multiple-reaction monitoring mode. Calibration curves offered linear ranges of two orders of magnitude with r > 0.995. The method had a lower limit of quantitation of 0.1, 0.02, 0.1, 1 and 0.1 ng/mL for calycosin, calycosin-7-O-β-d-glucoside, formononetin, astragaloside IV and schisandrin, respectively. Intra- and inter-day precisions (relative standard deviation) for all analytes ranged from 0.97 to 7.63% and from 3.45 to 10.89%, respectively. This method was successfully applied to the pharmacokinetic study of the five compounds in rats after oral administration of Shenqi Wuwei chewable tablets. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Spectrofluorimetric and molecular docking studies on the interaction of cyanidin-3-O-glucoside with whey protein, β-lactoglobulin.

    PubMed

    Cheng, Jing; Liu, Jian-Hua; Prasanna, Govindarajan; Jing, Pu

    2017-12-01

    The interaction of β-Lactoglobulin (β-Lg) with cyanidin-3-O-glucoside (C3G) was characterized using fluorescence, circular dichroism spectroscopy, and docking studies under physiological conditions. Fluorescence studies showed that β-Lg has a strong binding affinity for C3G via hydrophobic interaction with the binding constant, K a , of 3.14×10 4 M -1 at 298K. The secondary structure of β-Lg displayed an increase in the major structure of β-sheet upon binding with C3G, whereas a decrease in the minor structure of α-helix was also observed. In addition, evidenced by near UV-CD, the interaction also disrupted the environments of Trp residues. The molecular docking results illustrated that both hydrogen bonding and the hydrophobic interaction are involved as an acting force during the binding process. These results may contribute to a better understanding over the enhanced physicochemical proprieties of anthocyanins due to the complexation with milk proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity.

    PubMed

    Ding, Min; Feng, Rentian; Wang, Shiow Y; Bowman, Linda; Lu, Yongju; Qian, Yong; Castranova, Vincent; Jiang, Bing-Hua; Shi, Xianglin

    2006-06-23

    Epidemiological data suggest that consumption of fruits and vegetables has been associated with a lower incidence of cancer. Cyanidin-3-glucoside (C3G), a compound found in blackberry and other food products, was shown to possess chemopreventive and chemotherapeutic activity in the present study. In cultured JB6 cells, C3G was able to scavenge ultraviolet B-induced *OH and O2-* radicals. In vivo studies indicated that C3G treatment decreased the number of non-malignant and malignant skin tumors per mouse induced by 12-O-tetradecanolyphorbol-13-acetate (TPA) in 7,12-dimethylbenz[a]anthracene-initiated mouse skin. Pretreatment of JB6 cells with C3G inhibited UVB- and TPA-induced transactivation of NF-kappaB and AP-1 and expression of cyclooxygenase-2 and tumor necrosis factor-alpha. These inhibitory effects appear to be mediated through the inhibition of MAPK activity. C3G also blocked TPA-induced neoplastic transformation in JB6 cells. In addition, C3G inhibited proliferation of a human lung carcinoma cell line, A549. Animal studies showed that C3G reduced the size of A549 tumor xenograft growth and significantly inhibited metastasis in nude mice. Mechanistic studies indicated that C3G inhibited migration and invasion of A549 tumor cells. These finding demonstrate for the first time that a purified compound of anthocyanin inhibits tumor promoter-induced carcinogenesis and tumor metastasis in vivo.

  2. Cyanidin-3-glucoside suppresses Th2 cytokines and GATA-3 transcription factor in EL-4 T cells.

    PubMed

    Pyo, Myoung Yun; Yoon, Soo Jeong; Yu, Yeonsil; Park, Sunyoung; Jin, Mirim

    2014-01-01

    Allergic disease is dominated by Th2 immune responses. Interleukin (IL)-4 and IL-13, representative Th2 cytokines, play pivotal roles in the pathogenic activation of the Th2 immune response. In this study, we found that cyanidin-3-glucoside chloride (C3G), an anthocyanin suppressed IL-4 and IL-13 produced in activated EL-4 T cells but not Th1 cytokines including IL-2, interferon-γ, or IL-12. IL-4 and IL-13 mRNA levels and luciferase activation in cells transiently transfected with IL-4 and IL-13 promoter reporter plasmids were significantly inhibited by C3G, suggesting that suppression might be, at least in part, regulated at the transcriptional level. Data from western blot and reverse transcription-polymerase chain reaction analyses of transcription factors involved in cytokine expression suggested that expression of GATA-3, but not T-bet, was downregulated in the nucleus by C3G. Taken together, our data indicate that C3G may has potential as an anti-allergic agent suppressing Th2 activation by downregulating Th2 cytokines and the GATA3 transcription factor in allergies.

  3. Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology

    PubMed Central

    Generotti, Silvia; Cirlini, Martina; Malachova, Alexandra; Sulyok, Michael; Berthiller, Franz; Dall’Asta, Chiara; Suman, Michele

    2015-01-01

    In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range. PMID:26213969

  4. Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology.

    PubMed

    Generotti, Silvia; Cirlini, Martina; Malachova, Alexandra; Sulyok, Michael; Berthiller, Franz; Dall'Asta, Chiara; Suman, Michele

    2015-07-24

    In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range.

  5. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    PubMed Central

    Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha

    2014-01-01

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198

  6. Long chain fatty acid acylated derivatives of quercetin-3-o-glucoside as antioxidants to prevent lipid oxidation.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2014-11-06

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  7. Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides.

    PubMed

    Nguyen, Thi Thanh Hanh; Si, Jinbeom; Kang, Choongil; Chung, Byoungsang; Chung, Donghwa; Kim, Doman

    2017-01-01

    Curcuminoids from rhizomes of Curcuma longa possess various biological activities. However, low aqueous solubility and consequent poor bioavailability of curcuminoids are major limitations to their use. In this study, curcuminoids extracted from turmeric powder using stevioside (Ste), rebaudioside A (RebA), or steviol glucosides (SG) were solubilized in water. The optimum extraction condition by Ste, RebA, or SG resulted in 11.3, 9.7, or 6.7mg/ml water soluble curcuminoids. Curcuminoids solubilized in water showed 80% stability at pH from 6.0 to 10.0 after 1week of storage at 25°C. The particle sizes of curcuminoids prepared with Ste, RebA, and SG were 110.8, 95.7, and 32.7nm, respectively. The water soluble turmeric extracts prepared with Ste, RebA, and SG showed the 2,2-diphenyl-1-picrylhydrazyl radical scavenging (SC50) activities of 127.6, 105.4, and 109.8μg/ml, and the inhibition activities (IC50) against NS2B-NS3(pro) from dengue virus type IV of 14.1, 24.0 and 15.3μg/ml, respectively. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Dodecyl Amino Glucoside Enhances Transdermal and Topical Drug Delivery via Reversible Interaction with Skin Barrier Lipids.

    PubMed

    Kopečná, Monika; Macháček, Miloslav; Prchalová, Eva; Štěpánek, Petr; Drašar, Pavel; Kotora, Martin; Vávrová, Kateřina

    2017-03-01

    Skin permeation/penetration enhancers are substances that enable drug delivery through or into the skin. To search for new enhancers with high but reversible activity and acceptable toxicity, we synthesized a series of D-glucose derivatives, both hydrophilic and amphiphilic. Initial evaluation of the ability of these sugar derivatives to increase permeation and penetration of theophylline through/into human skin compared with a control (no enhancer) or sorbitan monolaurate (Span 20; positive control) revealed dodecyl 6-amino-6-deoxy-α-D-glucopyranoside 5 as a promising enhancer. Furthermore, this amino sugar 5 increased epidermal concentration of a highly hydrophilic antiviral cidofovir by a factor of 7. The effect of compound 5 on skin electrical impedance suggested its direct interaction with the skin barrier. Infrared spectroscopy of isolated stratum corneum revealed no effect of enhancer 5 on the stratum corneum proteins but an overall decrease in the lipid chain order. The enhancer showed acceptable toxicity on HaCaT keratinocyte and 3T3 fibroblast cell lines. Finally, transepidermal water loss returned to baseline values after enhancer 5 had been removed from the skin. Compound 5, a dodecyl amino glucoside, is a promising enhancer that acts through a reversible interaction with the stratum corneum lipids.

  9. Biosynthesis of the Cyanogenic Glucosides Linamarin and Lotaustralin in Cassava: Isolation, Biochemical Characterization, and Expression Pattern of CYP71E7, the Oxime-Metabolizing Cytochrome P450 Enzyme1[OA

    PubMed Central

    Jørgensen, Kirsten; Morant, Anne Vinther; Morant, Marc; Jensen, Niels Bjerg; Olsen, Carl Erik; Kannangara, Rubini; Motawia, Mohammed Saddik; Møller, Birger Lindberg; Bak, Søren

    2011-01-01

    Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-derived cyanogenic glucosides linamarin and lotaustralin with the corresponding oximes and cyanohydrins as key intermediates. CYP79 enzymes catalyzing amino acid-to-oxime conversion in cyanogenic glucoside biosynthesis are known from several plants including cassava. The enzyme system converting oxime into cyanohydrin has previously only been identified in the monocotyledonous plant great millet (Sorghum bicolor). Using this great millet CYP71E1 sequence as a query in a Basic Local Alignment Search Tool-p search, a putative functional homolog that exhibited an approximately 50% amino acid sequence identity was found in cassava. The corresponding full-length cDNA clone was obtained from a plasmid library prepared from cassava shoot tips and was assigned CYP71E7. Heterologous expression of CYP71E7 in yeast afforded microsomes converting 2-methylpropanal oxime (valine-derived oxime) and 2-methylbutanal oxime (isoleucine-derived oxime) to the corresponding cyanohydrins, which dissociate into acetone and 2-butanone, respectively, and hydrogen cyanide. The volatile ketones were detected as 2.4-dinitrophenylhydrazone derivatives by liquid chromatography-mass spectrometry. A KS of approximately 0.9 μm was determined for 2-methylbutanal oxime based on substrate-binding spectra. CYP71E7 exhibits low specificity for the side chain of the substrate and catalyzes the conversion of aliphatic and aromatic oximes with turnovers of approximately 21, 17, 8, and 1 min−1 for the oximes derived from valine, isoleucine, tyrosine, and phenylalanine, respectively. A second paralog of CYP71E7 was identified by database searches and showed approximately 90% amino acid sequence identity. In tube in situ polymerase chain reaction showed that in nearly unfolded leaves, the CYP71E7 paralogs are preferentially expressed in specific cells in the endodermis and in most cells in the first cortex cell

  10. [Study on anti-tumor effect of cyanidin-3-glucoside on ovarian cancer].

    PubMed

    Zeng, Linchai; Gao, Jie; Zhang, Rui

    2012-06-01

    To investigate the effect and the mechanism of cyanidin-3-glucoside (C3G) in the growth inhibition of ovarian cancer in vitro and in vivo. After human ovarian cancer cell line HO-8910PM was treated with C3G, cell growth was determined by the Cell Counting Kit-8 (CCK-8) assay and apoptosis was evaluated by flow cytometry analysis stained with Annexin V-FITC/PI. The protein expression in HO-8910PM cells was analyzed by Western blot assay. HO-8910PM cells were injected subcutaneously into nude mice to establish xenograft model. After 3 weeks of implantation, mice were randomized into 2 groups (n = 8): control group, feed with 0.2 mL double distilled water; C3G group, feed with C3G at a dose of 5 mg x kg(-1). All treatment lasted for two weeks, thrice per week. Eight weeks after implantation, tumor weight and inhibition rate were evaluated respectively after the mice were sacrificed. Immunohistochemistry was used to detect the positive expression of Ki-67 and Mucin-4 in the tumors. The proliferation of ovarian cancer cells was inhibited significantly by C3G with IC50 being 13.82 mg x L(-1). Apoptosis rate induced by C3G was markedly highter than that of control. The expression of Mucin4 was down-regulated in HO-8910PM cells after treatment of C3G. C3G inhibited the growth of ovarian xenograft tumors in nude mice. Furthermore, the positive expression of Ki-67 and Mucin-4 were both decreased in tumors after administration of C3G. C3G exerts anti-tumor activity in ovarian cancer both in vitro and in vivo, which may be related to down-regulation of Mucin-4 protein.

  11. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line.

    PubMed

    Hosseini, Masoumeh Mansoubi; Karimi, Aliasghar; Behroozaghdam, Mitra; Javidi, Mohammad Amin; Ghiasvand, Saeedeh; Bereimipour, Ahmad; Aryan, Hoda; Nassiri, Farbod; Jangholi, Ehsan

    2017-12-01

    Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary cerebral tumor. The median survival time is 15 months despite maximum treatment because the tumor is resistant to most therapeutic modalities. Several studies have indicated chemopreventive and chemotherapeutic activity of cyanidin-3-glucoside (C3G) as an anthocyanin component. We aimed to illustrate the cytotoxic and apoptogenic effects of C3G in the U87 cell line (human GBM cell line). Cytotoxic activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium assay after treatment with C3G at different concentrations in the U87 cell line. Cisplatin was used as a positive control for 24 and 48 hours. The percentage of apoptotic cells was determined using an Annexin V/propidium iodide assay, and the expression of bax, bcl2, and p53 genes was assessed using real-time polymerase chain reaction. Treatment of U87 cells with 40 μg/mL of C3G resulted in 32% apoptotic cells after 24 hours. To further confirm that C3G treatment induced apoptosis in U87 cells, RNA expression of bax, bcl2, and p53 genes was investigated after treatment. Real-time polymerase chain reaction indicated that the expression of bax and p53 increased, whereas the expression of bcl2 decreased. C3G had an apoptogenic effect in the GBM cell line. New information regarding the therapeutic effects of C3G in GBM could ultimately lead to the production of new drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Intraduodenal infusion of cyanidin-3-glucoside transiently promotes triglyceride excretion into bile in rats.

    PubMed

    Hashimoto, Naoto; Han, Kyu-Ho; Fukushima, Michihiro

    2017-02-01

    Flavonoids purportedly have a role in improving lipid metabolism. In our preliminary study, highly concentrated flavonoid metabolites appeared in bile juice in rats, which also contains various lipids. Biliary flavonoid metabolites generally have amphiphilic properties, may influence lipid solubility, and possibly contribute to the improvement of dyslipidemia. However, the influence of biliary flavonoid metabolites on the biliary lipid profile is not well known. Therefore, we hypothesized that the amphiphilic property of biliary flavonoid metabolites alters biliary lipid profiles. To estimate the influence of flavonoids on the biliary lipid profile, we laparotomized rats under anesthesia, intraduodenally injected them with cyanidin-3-glucoside chloride (C3G) or quercetin, and analyzed their biliary metabolite concentrations for 2 hours. Concentrations of C3G and quercetin metabolites peaked at 30 minutes after the injection; those of quercetin were 6 to 10 times higher than those of C3G throughout the sampling period up to 2 hours. Biliary triglyceride (TG) concentrations were higher in the C3G group at 30 and 45 minutes; biliary cholesterol and phospholipid concentrations were lower in the quercetin group at 30 minutes than those in the control group. Hepatic TG content after the 2-hour sampling was lower in the C3G group than in the control group. These results suggest that C3G, but not quercetin, may transiently promote TG excretion into bile, with a reduction in hepatic TG content. This C3G effect may be involved in improvement of TG metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cyanidin-3-O-β-glucoside inhibits lipopolysaccharide-induced inflammatory response in mouse mastitis model

    PubMed Central

    Fu, Yunhe; Wei, Zhengkai; Zhou, Ershun; Zhang, Naisheng; Yang, Zhengtao

    2014-01-01

    Cyanidin-3-O-β-glucoside (C3G) (CAS number 7084-24-4), a typical anthocyanin pigment that exists in the human diet, has been reported to have anti-inflammatory properties. However, the effect of C3G on lipopolysaccharide (LPS)-induced mastitis and the molecular mechanisms have not been investigated. In this study, we detected the protective effects of C3G on a LPS-induced mouse mastitis model and investigated the molecular mechanisms in LPS-stimulated mouse mammary epithelial cells (MMECs). Our results showed that C3G could attenuate mammary histopathologic changes and myeloperoxidase activity, and inhibit TNF-α, interleukin (IL)-1β, and IL-6 production caused by LPS. Meanwhile, C3G dose-dependently inhibited TNF-α and IL-6 in LPS-stimulated MMECs. C3G suppressed LPS-induced nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3) activation. Furthermore, C3G disrupted the formation of lipid rafts by depleting cholesterol. Moreover, C3G activated liver X receptor (LXR)-ABCG1-dependent cholesterol efflux. Knockdown of LXRα abrogated the anti-inflammatory effects of C3G. In conclusion, C3G has a protective effect on LPS-induced mastitis. The promising anti-inflammatory mechanisms of C3G are associated with upregulation of the LXRα-ABCG1 pathway which result in disrupting lipid rafts by depleting cholesterol, thereby suppressing toll-like receptor 4-mediated NF-κB and IRF3 signaling pathways induced by LPS. PMID:24752550

  14. CoMFA and CoMSIA studies on C-aryl glucoside SGLT2 inhibitors as potential anti-diabetic agents.

    PubMed

    Vyas, V K; Bhatt, H G; Patel, P K; Jalu, J; Chintha, C; Gupta, N; Ghate, M

    2013-01-01

    SGLT2 has become a target of therapeutic interest in diabetes research. CoMFA and CoMSIA studies were performed on C-aryl glucoside SGLT2 inhibitors (180 analogues) as potential anti-diabetic agents. Three different alignment strategies were used for the compounds. The best CoMFA and CoMSIA models were obtained by means of Distill rigid body alignment of training and test sets, and found statistically significant with cross-validated coefficients (q²) of 0.602 and 0.618, respectively, and conventional coefficients (r²) of 0.905 and 0.902, respectively. Both models were validated by a test set of 36 compounds giving satisfactory predicted correlation coefficients (r² pred) of 0.622 and 0.584 for CoMFA and CoMSIA models, respectively. A comparison was made with earlier 3D QSAR study on SGLT2 inhibitors, which shows that our 3D QSAR models are better than earlier models to predict good inhibitory activity. CoMFA and CoMSIA models generated in this work can provide useful information to design new compounds and helped in prediction of activity prior to synthesis.

  15. Cyanidin-3-glucoside increases whole body energy metabolism by upregulating brown adipose tissue mitochondrial function.

    PubMed

    You, Yilin; Yuan, Xiaoxue; Liu, Xiaomeng; Liang, Chen; Meng, Minghui; Huang, Yuanyuan; Han, Xue; Guo, Jielong; Guo, Yu; Ren, Chenglong; Zhang, Qianwen; Sun, Xiangyu; Ma, Tingting; Liu, Guojie; Jin, Wanzhu; Huang, Weidong; Zhan, Jicheng

    2017-11-01

    Obesity develops when energy intake exceeds energy expenditure. Promoting brown adipose tissue (BAT) formation and function increases energy expenditure and may protect against obesity. Cyanidin-3-glucoside (C3G) is an anthocyanin compound that occurs naturally in many fruits and vegetables. In this study, we investigated the effect and mechanism of C3G on the prevention of obesity. Db/db mice received C3G dissolved in drinking water for 16 wk; drinking water served as the vehicle treatment. The total body weight, energy intake, metabolic rate, and physical activity were measured. The lipid droplets, gene expression and protein expression were evaluated by histochemical staining, real-time PCR, and western blots. We found that C3G increased energy expenditure, limited weight gain, maintained glucose homeostasis, reversed hepatic steatosis, improved cold tolerance, and enhanced BAT activity in obese db/db mice. C3G also induces brown-like adipocytes (beige) formation in subcutaneous white adipose tissue (sWAT) of db/db mice model. We also found that C3G potently regulates the transcription of uncoupling protein 1 (UCP1) both in BAT and sWAT through increasing mitochondrial number and function. Our results suggest that C3G plays a role in regulating systemic energy balance, which may have potential therapeutic implications for the prevention and control of obesity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3-O-Glucosides[W][OA

    PubMed Central

    Francisco, Rita Maria; Regalado, Ana; Ageorges, Agnès; Burla, Bo J.; Bassin, Barbara; Eisenach, Cornelia; Zarrouk, Olfa; Vialet, Sandrine; Marlin, Thérèse; Chaves, Maria Manuela; Martinoia, Enrico; Nagy, Réka

    2013-01-01

    Accumulation of anthocyanins in the exocarp of red grapevine (Vitis vinifera) cultivars is one of several events that characterize the onset of grape berry ripening (véraison). Despite our thorough understanding of anthocyanin biosynthesis and regulation, little is known about the molecular aspects of their transport. The participation of ATP binding cassette (ABC) proteins in vacuolar anthocyanin transport has long been a matter of debate. Here, we present biochemical evidence that an ABC protein, ABCC1, localizes to the tonoplast and is involved in the transport of glucosylated anthocyanidins. ABCC1 is expressed in the exocarp throughout berry development and ripening, with a significant increase at véraison (i.e., the onset of ripening). Transport experiments using microsomes isolated from ABCC1-expressing yeast cells showed that ABCC1 transports malvidin 3-O-glucoside. The transport strictly depends on the presence of GSH, which is cotransported with the anthocyanins and is sensitive to inhibitors of ABC proteins. By exposing anthocyanin-producing grapevine root cultures to buthionine sulphoximine, which reduced GSH levels, a decrease in anthocyanin concentration is observed. In conclusion, we provide evidence that ABCC1 acts as an anthocyanin transporter that depends on GSH without the formation of an anthocyanin-GSH conjugate. PMID:23723325

  17. Independently recruited oxidases from the glucose-methanol-choline oxidoreductase family enabled chemical defences in leaf beetle larvae (subtribe Chrysomelina) to evolve

    PubMed Central

    Rahfeld, Peter; Kirsch, Roy; Kugel, Susann; Wielsch, Natalie; Stock, Magdalena; Groth, Marco; Boland, Wilhelm; Burse, Antje

    2014-01-01

    Larvae of the leaf beetle subtribe Chrysomelina sensu stricto repel their enemies by displaying glandular secretions that contain defensive compounds. These repellents can be produced either de novo (iridoids) or by using plant-derived precursors (e.g. salicylaldehyde). The autonomous production of iridoids, as in Phaedon cochleariae, is the ancestral chrysomeline chemical defence and predates the evolution of salicylaldehyde-based defence. Both biosynthesis strategies include an oxidative step of an alcohol intermediate. In salicylaldehyde-producing species, this step is catalysed by salicyl alcohol oxidases (SAOs) of the glucose-methanol-choline (GMC) oxidoreductase superfamily, but the enzyme oxidizing the iridoid precursor is unknown. Here, we show by in vitro as well as in vivo experiments that P. cochleariae also uses an oxidase from the GMC superfamily for defensive purposes. However, our phylogenetic analysis of chrysomeline GMC oxidoreductases revealed that the oxidase of the iridoid pathway originated from a GMC clade different from that of the SAOs. Thus, the evolution of a host-independent chemical defence followed by a shift to a host-dependent chemical defence in chrysomeline beetles coincided with the utilization of genes from different GMC subfamilies. These findings illustrate the importance of the GMC multi-gene family for adaptive processes in plant–insect interactions. PMID:24943369

  18. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal-based thermal food processing: a review study.

    PubMed

    Wu, Qinghua; Kuča, Kamil; Humpf, Hans-Ulrich; Klímová, Blanka; Cramer, Benedikt

    2017-02-01

    Deoxynivalenol (DON), the most commonly occurring trichothecene in nature, may affect animal and human health through causing diarrhea, vomiting, gastrointestinal inflammation, and immunomodulation. DON-3-glucoside (DON-3G) as a major plant metabolite of the mycotoxin is another "emerging" food safety issue in recent years. Humans may experience potential health risks by consuming DON-contaminated food products. Thus, it is crucial for human and animal health to study also the degradation of DON and DON-3G during thermal food processing. Baking, boiling, steaming, frying, and extrusion cooking are commonly used during thermal food processing and have promising effects on the reduction of mycotoxins in food. For DON, however, the observed effects of these methods, as reported in numerous studies, are ambiguous and do not present a clear picture with regard to reduction or transformation. This review summarized the influence of thermal processing on the stability of DON and the formation of degradation/conversion products. Besides this, also a release of DON and DON-3G from food matrix as well as the release of DON from DON-3G during processing is discussed. In addition, some conflicting findings as reported from the studies on thermal processing as well as cause-effect relationships of the different thermal procedures are explored. Finally, the potential toxic profiles of DON degradation products are discussed as well when data are available.

  19. Lymphatic metabolites of quercetin after intestinal administration of quercetin-3-glucoside and its aglycone in rats.

    PubMed

    Nakamura, Toshiyuki; Kinjo, Chinatsu; Nakamura, Yoshimasa; Kato, Yoji; Nishikawa, Miyu; Hamada, Masahiro; Nakajima, Noriyuki; Ikushiro, Shinichi; Murota, Kaeko

    2018-05-01

    Quercetin is a major flavonoid, present as its glycosidic forms in plant foods. In this study, quercetin-3-glucoside (Q3G) was administered intraduodenally to thoracic lymph-cannulated rats, and its lymphatic transport was investigated. The resulting lymphatic and plasma metabolites were identified with LC-MS/MS and compared with those after administration of quercetin aglycone. The total concentration of quercetin metabolites in the lymph was about four times lower than that in the plasma, and quercetin and its methylated form isorhamnetin were detected as their glucuronides, sulfates and diglucuronides both in the lymph and the plasma after Q3G and quercetin administrations. The lymph levels of the glucuronides after Q3G administration were lower than those after quercetin administration, whereas those in the plasma showed the opposite pattern. Both the lymph and plasma levels of the sulfates after Q3G administration were lower than those after quercetin administration. Some of the intestinal metabolites like quercetin monoglucuronides were transported directly into the lymph and the hepatic metabolites like the diglucuronides were eventually transferred from the plasma into the lymph. These results indicate that the absorbed Q3G is partly transported into the intestinal lymph as quercetin metabolites. Deglycosylation in the enterocyte is also suggested to affect the subsequent metabolic pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. [Studies on the chemical constituents of Buddleja albiflora (II)].

    PubMed

    Zhang, Hai-Ping; Tao, Liang

    2010-06-01

    To study the chemical constituents of Buddleja albiflora. The constituents were isolated by column chromatography and their structures were elucidated by spectroscopic analyses. seven compounds were isolated and identified as aucubin (1), catalpol (2), acteoside (3), martynoside (4), ursolicacid (5), daucosterol (6), beta-sitosterol-3-0-beta-D-(6'-0-palmitate) glucopyranosisde (7). All these compounds are obtained from Buddleja albiflora for the first time.

  1. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Xu; Ren, Dongmei; Wei, Xinbing

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependentmore » genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury.« less

  2. Dietary cyanidin 3-glucoside from purple corn ameliorates doxorubicin-induced cardiotoxicity in mice.

    PubMed

    Petroni, K; Trinei, M; Fornari, M; Calvenzani, V; Marinelli, A; Micheli, L A; Pilu, R; Matros, A; Mock, H-P; Tonelli, C; Giorgio, M

    2017-05-01

    Anthracyclines are effective anticancer drugs that have improved prognosis of hundred thousand cancer patients worldwide and are currently the most common chemotherapeutic agents used for the treatment of blood, breast, ovarian and lung cancers. However, their use is limited because of a cumulative dose-dependent and irreversible cardiotoxicity that can cause progressive cardiomyopathy and congestive heart failure. Aim of the present study was to determine the cardioprotective activity of a dietary source of cyanidin 3-glucoside (C3G), such as purple corn, against doxorubicin (DOX)-induced cardiotoxicity in mice. In vitro studies on murine HL-1 cardiomyocytes showed that pretreatment with both pure C3G and purple corn extract improved survival upon DOX treatment. However, C3G and purple corn extract did not affect the cytotoxic effect of DOX on human cancer cell lines. We then validated in vivo the protective role of a C3G-enriched diet against DOX-induced cardiotoxicity by comparing the effect of dietary consumption of corn isogenic lines with high levels of anthocyanins (purple corn - Red diet - RD) or without anthocyanins (yellow corn - Yellow diet - YD) incorporated in standard rodent diets. Results showed that mice fed RD survived longer than mice fed YD upon injection of a toxic amount of DOX. In addition, ultrastructural analysis of hearts from mice fed RD showed reduced histopathological alterations. Dietary intake of C3G from purple corn protects mice against DOX-induced cardiotoxicity. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  3. Micellar Surfactant Association in the Presence of a Glucoside-based Amphiphile Detected via High-Throughput Small Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanic, Vesna; Broadbent, Charlotte; DiMasi, Elaine

    2016-11-14

    The interactions of mixtures of anionic and amphoteric surfactants with sugar amphiphiles were studied via high throughput small angle x-ray scattering (SAXS). The sugar amphiphile was composed of Caprate, Caprylate, and Oleate mixed ester of methyl glucoside, MeGCCO. Optimal surfactant interactions are sought which have desirable physical properties, which must be identified in a cost effective manner that can access the large phase space of possible molecular combinations. X-ray scattering patterns obtained via high throughput SAXS can probe a combinatorial sample space and reveal the incorporation of MeGCCO into the micelles and the molecular associations between surfactant molecules. Such datamore » make it possible to efficiently assess the effects of the new amphiphiles in the formulation. A specific finding of this study is that formulations containing comparatively monodisperse and homogeneous surfactant mixtures can be reliably tuned by addition of NaCl, which swells the surfactant micelles with a monotonic dependence on salt concentration. In contrast, the presence of multiple different surfactants destroys clear correlations with NaCl concentration, even in otherwise similar series of formulations.« less

  4. Dual Role of Cyanidin-3-glucoside on the Differentiation of Bone Cells.

    PubMed

    Park, K H; Gu, D R; So, H S; Kim, K J; Lee, S H

    2015-12-01

    Cyanidin-3-glucoside (C3G) is one of the major components of anthocyanin, a water-soluble phytochemical. Recent studies demonstrated the chemopreventive and chemotherapeutic activities of C3G in various conditions, including cancer, although the precise effects of C3G on osteoclast and osteoblast differentiation remain unclear. Here, we investigated the role of C3G in the differentiation of bone-associated cells and its underlying mechanism. C3G inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated osteoclast differentiation and formation in a dose-dependent manner and downregulated the expression of osteoclast differentiation marker genes. Pretreatment with C3G considerably reduced the induction of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated kinases activation by RANKL in osteoclast precursor cells. Furthermore, C3G dramatically inhibited the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1, which are important transcription factors for osteoclast differentiation and activation. The formation of osteoclasts in coculture of bone marrow cells and calvaria-derived osteoblasts was also inhibited by C3G treatment, although the expression of macrophage colony-stimulating factor and RANKL (master factors for osteoclast differentiation and formation) and osteoprotegerin (a decoy receptor for RANKL) on osteoblasts was unaffected. The inhibitory effect of C3G on osteoclastogenesis is therefore targeted specifically to osteoclasts but not osteoblasts. Moreover, analysis of the expression levels of osteoblast differentiation marker genes and alizarin red staining showed that osteoblast differentiation and matrix formation increased after C3G treatment. Taken together, these results strongly suggest that C3G has a dual role in bone metabolism, as an effective inhibitor of osteoclast differentiation but also as an activator of osteoblast differentiation. Therefore, C3G may be used

  5. Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool.

    PubMed

    Qin, Yan; Zhai, Qianqian; Li, Yan; Cao, Meng; Xu, Yun; Zhao, Kelei; Wang, Tao

    2018-07-01

    Diabetic nephropathy (DN) is a common complication of diabetes and the major cause of chronic kidney disease. Cyanidin 3-glucoside (C3G) is the most widespread anthocyanin in nature. In the present study, we aimed to investigate the possible effects of C3G on DN in db/db mice. We found that body weights and high levels of fasting blood glucose, serum insulin, C-peptide, glycosylated hemoglobin A1c, and systolic blood pressure in diabetic mice were significantly reduced by C3G. C3G also reduced the ratio of kidney to body weight and the levels of blood urea nitrogen (BUN), serum creatinine, urinary albumin content and albumin/creatinine ratio (ACR), ameliorated the pathological changes of kidneys, reduced the surface area of Bowman's capsule, glomerular tuft, Bowman's space, and decreased renal expression of collagen IV, fibronectin, transforming growth factor β 1 (TGFβ1), matrix metalloprotein 9 (MMP9) and α-smooth muscle actin (α-SMA) in db/db mice. The Lee's index, perirenal white adipose tissue weight, and high levels of blood and renal triglyceride and cholesterol were decreased by C3G. Moreover, C3G reduced systemic levels and renal expression of tumor necrosis factor ɑ (TNFɑ), IL-1ɑ, and monocyte chemotactic protein-1 (MCP-1), indicating the inhibition of inflammation. Furthermore, C3G increased glutathione (GSH) level and decreased GSSG level in kidneys of diabetic mice. The renal mRNA expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM) was increased by C3G in diabetic mice. Buthionine sulphoximine (BSO), an inhibitor of GSH synthesis, inhibited the effects of C3G on glucose metabolic dysfunction and DN. The data demonstrates that enhancement of GSH pool is involved in the renal-protective effects of C3G. Overall, C3G could be a promising therapeutic option for attenuation of diabetes and DN. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Pharmacokinetics and metabolism of the putative cancer chemopreventive agent cyanidin-3-glucoside in mice.

    PubMed

    Marczylo, Timothy H; Cooke, Darren; Brown, Karen; Steward, William P; Gescher, Andreas J

    2009-11-01

    Cyanidin-3-glucoside (C3G), an anthocyanin component of fruits and berries, possesses cancer chemopreventive properties in mouse models of carcinogenesis. Its pharmacokinetics and metabolism in mice have hitherto not been studied. C57BL6J mice received C3G by either gavage at 500 mg/kg or tail vein injection at 1 mg/kg. Blood, urine, bile and heart, lung, kidney, liver, prostate, brain and gastrointestinal (gi) mucosal tissues were obtained up to 2 h after administration. Levels of C3G and its anthocyanin metabolites were determined by HPLC with visible detection. Metabolites were identified by LC/MS/MS. After oral administration peak concentrations of anthocyanins occurred within 30 min after administration. Levels were highest in the urine and gi mucosa. In the gi mucosa and liver the predominant flavonoid species after oral administration was C3G, whilst after iv dosing the majority of anthocyanins was C3G metabolites. After oral or iv administration, C3G half-lives in the different biofluids and tissues ranged from 0.7 to 1.8 h and 0.3 to 0.7 h, respectively. Systemic bioavailabilities for parent C3G and total anthocyanins were 1.7 and 3.3%, respectively. The major metabolites of C3G were products of methylation and glucuronidation. Cyanidin was a minor metabolite in the gut. C3G and its metabolites were recovered from murine tissues which may be targets for cancer chemopreventive intervention. Anthocyanin levels achieved in the gi mucosa, prostate and the kidneys were of an order of magnitude consistent with pharmacological activity.

  7. Tetrahydroxystilbene glucoside modulates amyloid precursor protein processing via activation of AKT-GSK3β pathway in cells and in APP/PS1 transgenic mice.

    PubMed

    Yin, Xiaomin; Chen, Chen; Xu, Ting; Li, Lin; Zhang, Lan

    2018-01-01

    Alternative splicing of amyloid precursor protein (APP) exon 7 generates the isoforms containing a Kunitz protease inhibitor (KPI) domain. APP-KPI levels in the brain are correlated with amyloid beta (Aβ) production. Here, we determined the effect of Tetrahydroxystilbene glucoside (TSG) on the AKT-GSK3β pathway. We found GSK3β increased APP-KPI inclusion level and interacted with the splicing factor ASF. TSG was intragastrically administered to 5-month-old APP/PS1 transgenic mice for 12 months. We found that the activated the AKT-GSK3β signaling pathway suppressed APP-KPI inclusion. Moreover, TSG treatment attenuated amyloid deposition in APP/PS1 mice. This study demonstrates the neuroprotective effect of TSG on APP expression, suggesting that TSG may be beneficial for AD prevention and treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2.

    PubMed

    Xu, Mei; Bower, Kimberly A; Wang, Siying; Frank, Jacqueline A; Chen, Gang; Ding, Min; Wang, Shiow; Shi, Xianglin; Ke, Zunji; Luo, Jia

    2010-10-29

    Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This study evaluated the effect of C3G on ethanol-induced breast cancer cell migration/invasion. C3G attenuated ethanol-induced migration/invasion of breast cancer cells expressing high levels of ErbB2 (BT474, MDA-MB231 and MCF7(ErbB2)) in a concentration dependent manner. C3G decreased ethanol-mediated cell adhesion to the extracellular matrix (ECM) as well as the amount of focal adhesions and the formation of lamellipodial protrusion. It inhibited ethanol-stimulated phosphorylation of ErbB2, cSrc, FAK and p130(Cas), as well as interactions among these proteins. C3G abolished ethanol-mediated p130(Cas)/JNK interaction. C3G blocks ethanol-induced activation of the ErbB2/cSrc/FAK pathway which is necessary for cell migration/invasion. C3G may be beneficial in preventing/reducing ethanol-induced breast cancer metastasis.

  9. Tetrahydroxystilbene glucoside improves TNF-α-induced endothelial dysfunction: involvement of TGFβ/Smad pathway and inhibition of vimentin expression.

    PubMed

    Yao, Wenjuan; Gu, Chengjing; Shao, Haoran; Meng, Guoliang; Wang, Huiming; Jing, Xiang; Zhang, Wei

    2015-01-01

    Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.

  10. Cyanidin-3-O-Glucoside Modulates the In Vitro Inflammatory Crosstalk between Intestinal Epithelial and Endothelial Cells.

    PubMed

    Ferrari, Daniela; Cimino, Francesco; Fratantonio, Deborah; Molonia, Maria Sofia; Bashllari, Romina; Busà, Rossana; Saija, Antonella; Speciale, Antonio

    2017-01-01

    Intestinal epithelium represents a protective physical barrier and actively contributes to the mucosal immune system. Polarized basolateral intestinal secretion of inflammatory mediators, followed by activation of NF- κ B signaling and inflammatory pathways in endothelial cells, efficiently triggers extravasation of neutrophils from the vasculature, therefore contributing to the development and maintenance of intestinal inflammation. Proper regulation of NF- κ B activation at the epithelial interface is crucial for the maintenance of physiological tissue homeostasis. Many papers reported that anthocyanins, a group of compounds belonging to flavonoids, possess anti-inflammatory effects and modulate NF- κ B activity. In this study, by using a coculture in vitro system, we aimed to evaluate the effects of TNF- α -stimulated intestinal cells on endothelial cells activation, as well as the protective effects of cyanidin-3-glucoside (C3G). In this model, TNF- α induced nuclear translocation of NF- κ B and TNF- α and IL-8 gene expression in Caco-2 cells, whereas C3G pretreatment dose-dependently reduced these effects. Furthermore, TNF- α -stimulated Caco-2 cells induced endothelial cells activation with increased E-selectin and VCAM-1 mRNA, leukocyte adhesion, and NF- κ B levels in HUVECs, which were inhibited by C3G. We demonstrated that selective inhibition of the NF- κ B pathway in epithelial cells represents the main mechanism by which C3G exerts these protective effects. Thus, anthocyanins could contribute to the management of chronic gut inflammatory diseases.

  11. Charge Transfer Dynamics of Highly Efficient Cyanidin-3-O- Glucoside Sensitizer for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Prima, E. C.; Yuliarto, B.; Suyatman; Dipojono, H. K.

    2016-08-01

    This paper reports the novel efficiency achievement of black rice-based natural dye- sensitized solar cells. The higher dye concentration, the longer dye extraction as well as dye immersion onto a TiO2 film, and the co-adsorption addition are key strategies for improved-cell performance compared to the highest previous achievement. The black rice dye containing 1.38 mM cyanidin-3-O-glucoside has been extracted without purification for 3 weeks at dark condition and room temperature. The anatase TiO2 photoanode was dipped into dye solution within 4 days. Its electrode was firmly sealed to be a cell and was filled by I-/I3- electrolyte using vacuum technique. As a result, the overall solar-to-energy conversion efficiency was 1.49% at AM 1.5 illumination (100 mW.cm-2). The voltametric analysis has reported the interfacial electronic band edges of TiO2-Dye-Electrolyte. Furthermore, electrochemical impedance spectroscopy has shown the kinetic of interfacial electron transfer dynamics among TiO2-dye-electrolyte. The cell has the transfer resistance (Rt) of 12.5 ω, the recombination resistance (Rr) of 266.8 ω, effective electron diffusion coefficients (Dn) of 1.4 × 10-3 cm2/s, Dye-TiO2 effective electron transfer (τd) of 26.6 μs, effective diffusion length (Ln)of 33.78 μm, chemical capacitance (Cμ) of 12.43 μF, and electron lifetime (τn) of 3.32 ms.

  12. The effect of tripterygium glucoside tablet on pharmacokinetics of losartan and its metabolite EXP3174 in rats.

    PubMed

    Hu, Yongsheng; Zhou, Xuexue; Shi, Hui; Shi, Wenyu; Ye, Shengjie; Zhang, Hai

    2017-10-01

    Losartan and tripterygium glucoside tablet (TGT) are often simultaneously used for reducing urine protein excretion in clinic. However, it is unknown whether there is potential herb-drug interaction between losartan and TGT. The aim of this study was to investigate their potential herb-drug interaction, and clarify the mechanism of the effect of TGT on the pharmacokinetics of losartan and its metabolite EXP3174 in rats. The plasma concentrations of losartan and EXP3174 were determined by LC-MS, and the main pharmacokinetic parameters were calculated. The C max , t 1/2 and AUC (0-t) of losartan became larger after co-administration, while the C max and AUC (0-t) of EXP3174 became smaller, suggesting that TGT could influence the pharmacokinetics of losartan and EXP3174. The effects of TGT and its main components on the metabolic rate of losartan were further investigated in rat liver microsomes. Results indicated that TGT and its two main ingredients could decrease the metabolic rate of losartan. Therefore, it was speculated that TGT might increase the plasma concentration of losartan and decrease the concentration of EXP3174 by inhibiting the metabolism of losartan. The results could provide references for clinical medication guidance of losartan and TGT to avoid the occurrence of adverse reactions. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Analysis of deoxynivalenol and deoxynivalenol-3-glucosides content in Canadian spring wheat cultivars inoculated with Fusarium graminearum.

    PubMed

    Amarasinghe, Chami C; Simsek, Senay; Brûlé-Babel, Anita; Fernando, W G Dilantha

    2016-07-01

    Contamination of wheat grains with Fusarium mycotoxins and their modified forms is an important issue in wheat industry. The objective of this study was to analyse the deoxynivalenol (DON) and deoxynivalenol-3-glucosides (D3G) content in Canadian spring wheat cultivars grown in two locations, inoculated with a mixture of 3-acetyldeoxynivalenol (3-ADON)-producing Fusarium graminearum strains and a mixture of 15-acetlyldeoxynivalenol (15-ADON)-producing F. graminearum strains. According to the analysis of variance, significant differences were observed among the cultivars for Fusarium head blight (FHB) disease index, Fusarium-damaged kernel percentage (%FDK), DON content and D3G content. When the effect of chemotype was considered, significant differences were observed for FHB disease index, FDK percentage and DON content. The D3G content and D3G/DON ratio were not significantly different between the chemotypes, except for D3G content at the Winnipeg location. The Pearson correlation coefficient between DON and D3G was 0.84 and 0.77 at Winnipeg and Carman respectively. The highest D3G/DON ratio was observed in cultivars Carberry (44%) in Carman and CDC Kernen (63.8%) in Winnipeg. The susceptible cultivars showed lower D3G/DON ratio compared with the cultivars rated as moderately resistant and intermediate. The current study indicated that Canadian spring cultivars produce D3G upon Fusarium infection.

  14. Molecular mechanism of action of Pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits.

    PubMed

    Duarte, Larissa Jeremias; Chaves, Vitor Clasen; Nascimento, Marcus Vinicius Pereira Dos Santos; Calvete, Eunice; Li, Mingchuan; Ciraolo, Elisa; Ghigo, Alessandra; Hirsch, Emilio; Simões, Claudia Maria Oliveira; Reginatto, Flávio Henrique; Dalmarco, Eduardo M

    2018-05-01

    Fragaria x ananassa Duch., popularly called strawberry, is known for its worldwide consumption and important biological activities, and these effects are related to its high concentration of anthocyanins. Pelargonidin-3-O-glucoside (P3G) is a major anthocyanin found in strawberry, and was evaluated for its anti-inflammatory action in experimental models. The effect of strawberry extract and P3G, on leukocyte migration, exudation levels and many inflammatory mediators, was therefore evaluated in an in vivo model. An in vitro study was also carried out to characterize the effect of P3G on mitogen-activated protein kinases, and on nuclear transcript factors NF-κB and AP-1. The results revealed that the strawberry and P3G have important anti-inflammatory proprieties, and the anti-inflammatory mechanism of P3G involves the arrest of IkB-α activation and reduction in JNK MAPK phosphorylation. The results reinforce that strawberry fruits are functional foods that can act as an adjuvant in the treatment of inflammatory conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bioconversion of Cyanidin-3-Rutinoside to Cyanidin-3-Glucoside in Black Raspberry by Crude α-L-Rhamnosidase from Aspergillus Species.

    PubMed

    Lim, Taehwan; Jung, Hana; Hwang, Keum Taek

    2015-11-01

    Cyanidin-3-glucoside (C3G) has been known to be more bioavailable than cyanidin-3- rutinoside (C3R), the most abundant anthocyanin in black raspberry (Rubus occidentalis). The aim of this study was to enhance the bioavailability of anthocyanins in black raspberry by cleaving L-rhamnose in C3R using crude enzyme extracts (CEEs) from Aspergillus usamii KCTC 6956, A. awamori KCTC 60380, A. niger KCCM 11724, A. oryzae KCCM 12698, and A. kawachii KCCM 32819. The enzyme activities of the CEEs were determined by a spectrophotometric method using rho-nitrophenyl-rhamnopyranoside and rho-nitrophenyl-glucopyranoside. The CEE from A. usamii had the highest α-L-rhamnosidase activity with 2.73 U/ml at 60°C, followed by those from A. awamori and A. niger. When bioconversion of C3R to C3G in black raspberry was analyzed by HPLC-DAD, the CEEs from A. usamii and A. awamori hydrolyzed 95.7% and 95.6% of C3R to C3G, respectively, after 2 h incubation. The CEEs from A. kawachii and A. oryzae did not convert C3R to C3G in black raspberry.

  16. Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals.

    PubMed

    Theilmann, Mia C; Goh, Yong Jun; Nielsen, Kristian Fog; Klaenhammer, Todd R; Barrangou, Rodolphe; Abou Hachem, Maher

    2017-11-21

    compounds, which are typically glycosylated, are altered by microbial bioconversions in the human gut. Remarkably, little is known about the bioconversion of PGs by the gut microbial community, despite the significance of this metabolic facet to human health. Our work provides the first molecular insights into the metabolic routes of diet relevant and therapeutically active PGs by Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is adept at metabolizing the glucoside moieties of select PG and externalizes their aglycones. The study highlights an important role of lactobacilli in the bioconversion of dietary PG and presents a framework from which to derive molecular insights into their metabolism by members of the human gut microbiota. Copyright © 2017 Theilmann et al.

  17. Occurrence and fate of the norsesquiterpene glucoside ptaquiloside (PTA) in soils

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; Cavoski, Ivana; Costi, Roberta; Sarais, Giorgia; Caboni, Pierluigi; Miano, Teodoro M.; Lattanzio, Vincenzo

    2014-05-01

    The bracken fern Pteridium aquilinum (L.) Kuhn, one of the most common plant species on Earth, produces a wide range of secondary metabolites including the norsesquiterpene glucoside ptaquiloside (PTA). This bracken constituent causes acute poisoning, blindness and cancer in animals, and can be transferred to man when bracken is utilized as food. Also milk from cows eating bracken is thought to be the vector for the transfer of PTA to humans, as well as PTA-contaminated drinking waters. Although some studies on the effect of growth conditions and soil properties on the production and mobility of PTA have been carried out (mainly in the North of Europe), results are sometimes conflicting and further investigations are needed. The aim of the present work is to study the occurrence and the fate of PTA in soils showing different physico-chemical features, collected in different pedoclimatic areas (from the South of Italy), but having the extensive ("wild") livestock farming as common denominator. The PTA content was determined in both soil and fern samples by GC-MS; both the extraction protocol and recovery were previously tested through incubation studies. Soils samples were also characterizes from the physical and chemical point of view (pH, EC, texture, total carbonates, cation exchange capacity, organic C, total N, available nutrients and heavy metal concentration) in order to correlate the possible influence of soil parameters on PTA production, occurrence and mobility. PTA concentration in soil samples was always

  18. Anhydrous octyl-glucoside phase transition from lamellar to isotropic induced by electric and magnetic fields.

    PubMed

    Hashim, Rauzah; Sugimura, Akihiko; Nguan, Hock-Seng; Rahman, Matiur; Zimmermann, Herbert

    2017-02-28

    A static deuterium nuclear magnetic resonance ( 2 HNMR) technique (magnetic field, B = 7.05 T) was employed to monitor the thermotropic lamellar phase of the anhydrous 1:1 mixture sample of octyl-b-D-glucoside (βOG) and that of partially deuterium labelled at the alpha position on the chain, i.e.,βOG-d 2 In the absence of an electric field, the 2 H NMR spectrum of the mixture gives a typical quadrupolar doublet representing the aligned lamellar phase. Upon heating to beyond the clearing temperature at 112 °C, this splitting converts to a single line expected for an isotropic phase. Simultaneous application of magnetic and electric fields (E = 0.4 MV/m) at 85 °C in the lamellar phase, whose direction was set to be parallel or perpendicular to the magnetic field, resulted in the change of the doublet into a single line and this recovers to the initial doublet with time for both experimental geometries. This implies E- and B-field-induced phase transitions from the lamellar to an isotropic phase and a recovery to the lamellar phase again with time. Moreover, these phase transformations are accompanied by a transient current. A similar observation was made in a computational study when an electric field was applied to a water cluster system. Increasing the field strength distorts the water cluster and weakens its hydrogen bonds leading to a structural breakdown beyond a threshold field-strength. Therefore, we suggest the observed field-induced transition is likely due to a structure change of the βOG lamellar assembly caused by the field effect and not due to Joule heating.

  19. The Neuroprotective Potential of Cyanidin-3-glucoside Fraction Extracted from Mulberry Following Oxygen-glucose Deprivation.

    PubMed

    Bhuiyan, Mohammad Iqbal Hossain; Kim, Hyun-Bok; Kim, Seong Yun; Cho, Kyung-Ok

    2011-12-01

    In this study, cyanidin-3-glucoside (C3G) fraction extracted from the mulberry fruit (Morus alba L.) was investigated for its neuroprotective effects against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Cell membrane damage and mitochondrial function were assessed by LDH release and MTT reduction assays, respectively. A time-course study of OGD-induced cell death of primary cortical neurons at 7 days in vitro (DIV) indicated that neuronal death was OGD duration-dependent. It was also demonstrated that OGD for 3.5 h resulted in approximately 50% cell death, as determined by the LDH release assay. Treatments with mulberry C3G fraction prevented membrane damage and preserved the mitochondrial function of the primary cortical neurons exposed to OGD for 3.5 h in a concentration-dependent manner. Glutamate-induced cell death was more pronounced in DIV-9 and DIV-11 cells than that in DIV-7 neurons, and an application of 50µM glutamate was shown to induce approximately 40% cell death in DIV-9 neurons. Interestingly, treatment with mulberry C3G fraction did not provide a protective effect against glutamate-induced cell death in primary cortical neurons. On the other hand, treatment with mulberry C3G fraction maintained the mitochondrial membrane potential (MMP) in primary cortical neurons exposed to OGD as assessed by the intensity of rhodamine-123 fluorescence. These results therefore suggest that the neuroprotective effects of mulberry C3G fraction are mediated by the maintenance of the MMP and mitochondrial function but not by attenuating glutamate-induced excitotoxicity in rat primary cortical neurons.

  20. Cyanidin-3-glucoside attenuates angiotensin II-induced oxidative stress and inflammation in vascular endothelial cells.

    PubMed

    Sivasinprasasn, Sivanan; Pantan, Rungusa; Thummayot, Sarinthorn; Tocharus, Jiraporn; Suksamrarn, Apichart; Tocharus, Chainarong

    2016-10-28

    Angiotensin II (Ang II) causes oxidative stress and vascular inflammation, leading to vascular endothelial cell dysfunction, and is associated with the development of inflammatory cardiovascular diseases such as atherosclerosis. Therefore, interventions of oxidative stress and inflammation may contribute to the reduction of cardiovascular diseases. Cyanidin-3-glucoside (C3G) plays a role in the prevention of oxidative damage in several diseases. Here, we investigated the effect of C3G on Ang II-induced oxidative stress and vascular inflammation in human endothelial cells (EA.hy926). C3G dose-dependently suppressed the free radicals and inhibited the nuclear factor-kappa B (NF-κB) signaling pathway by protecting the degradation of inhibitor of kappa B-alpha (IκB-α), inhibiting the expression and translocation of NF-κB into the nucleus through the down-regulation of NF-κB p65 and reducing the expression of inducible nitric oxide synthase (iNOS). Pretreatment with C3G not only prohibited the NF-κB signaling pathway but also promoted the activity of the nuclear erythroid-related factor 2 (Nrf2) signaling pathway through the upregulation of endogenous antioxidant enzymes. Particularly, we observed that C3G significantly enhanced the production of superoxide dismutase (SOD) and induced the expression of heme oxygenase (HO-1). Our findings confirm that C3G can protect against vascular endothelial cell inflammation induced by AngII. C3G may represent a promising dietary supplement for the prevention of inflammation, thereby decreasing the risk for the development of atherosclerosis. Copyright © 2016. Published by Elsevier Ireland Ltd.

  1. Cyanidin-3-Glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2

    PubMed Central

    2010-01-01

    Background Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This study evaluated the effect of C3G on ethanol-induced breast cancer cell migration/invasion. Results C3G attenuated ethanol-induced migration/invasion of breast cancer cells expressing high levels of ErbB2 (BT474, MDA-MB231 and MCF7ErbB2) in a concentration dependent manner. C3G decreased ethanol-mediated cell adhesion to the extracellular matrix (ECM) as well as the amount of focal adhesions and the formation of lamellipodial protrusion. It inhibited ethanol-stimulated phosphorylation of ErbB2, cSrc, FAK and p130Cas, as well as interactions among these proteins. C3G abolished ethanol-mediated p130Cas/JNK interaction. Conclusions C3G blocks ethanol-induced activation of the ErbB2/cSrc/FAK pathway which is necessary for cell migration/invasion. C3G may be beneficial in preventing/reducing ethanol-induced breast cancer metastasis. PMID:21034468

  2. Identification and Quantification of Oxidoselina-1,3,7(11)-Trien-8-One and Cyanidin-3-Glucoside as One of the Major Volatile and Non-Volatile Low-Molecular-Weight Constituents in Pitanga Pulp.

    PubMed

    Josino Soares, Denise; Pignitter, Marc; Ehrnhöfer-Ressler, Miriam Margit; Walker, Jessica; Montenegro Brasil, Isabella; Somoza, Veronika

    2015-01-01

    The pulp of pitanga (Eugenia uniflora L.) is used to prepare pitanga juice. However, there are no reports on the identification and quantification of the main constituents in pitanga pulp. The aim of this study was to identify and quantify the major volatile and non-volatile low-molecular-weight constituents of the pulp. Isolation of volatile compounds was performed by solvent-assisted flavor evaporation technique. Characterization of the main volatile and non-volatile constituents was performed by GC-MS, LC-MS and NMR spectroscopy. For quantitative measurements, the main volatile compound needed to be isolated from pitanga pulp to obtain a commercially not available reference standard. Cyanidin-3-glucoside was determined as one of the most abundant non-volatile pulp compound yielding 53.8% of the sum of the intensities of all ions detected by LC-MS. Quantification of cyanidin-3-glucoside in pitanga pulp resulted in a concentration of 344 ± 66.4 μg/mL corresponding to 688 ± 133 μg/g dried pulp and 530 ± 102 μg/g fruit. For the volatile fraction, oxidoselina-1,3,7(11)-trien-8-one was identified as the main volatile pulp constituent (27.7% of the sum of the intensities of all ions detected by GC-MS), reaching a concentration of 89.0 ± 16.9 μg/mL corresponding to 1.34 ± 0.25 μg/g fresh pulp and 1.03 ± 0.19 μg/g fruit. The results provide quantitative evidence for the occurrence of an anthocyanin and an oxygenated sesquiterpene as one of the major volatile and non-volatile low-molecular-weight compounds in pitanga pulp.

  3. Multiple ABC glucoside transporters mediate sugar-stimulated growth in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Nieves-Morión, Mercedes; Flores, Enrique

    2018-02-01

    Cyanobacteria are generally capable of photoautotrophic growth and are widely distributed on Earth. The model filamentous, heterocyst-forming strain Anabaena sp. PCC 7120 has long been considered as a strict photoautotroph but is now known to be able to assimilate fructose. We have previously described two components of ABC glucoside uptake transporters from Anabaena that are involved in uptake of the sucrose analog esculin: GlsC [a nucleotide-binding domain subunit (NBD)] and GlsP [a transmembrane component (TMD)]. Here, we created Anabaena mutants of genes encoding three further ABC transporter components needed for esculin uptake: GlsD (NBD), GlsQ (TMD) and GlsR (periplasmic substrate-binding protein). Phototrophic growth of Anabaena was significantly stimulated by sucrose, fructose and glucose. Whereas the glsC and glsD mutants were drastically hampered in sucrose-stimulated growth, the different gls mutants were generally impaired in sugar-dependent growth. Our results suggest the participation of Gls and other ABC transporters encoded in the Anabaena genome in sugar-stimulated growth. Additionally, Gls transporter components influence the function of septal junctions in the Anabaena filament. We suggest that mixotrophic growth is important in cyanobacterial physiology and may be relevant for the wide success of these organisms in diverse environments. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. The color expression of copigmentation between malvidin-3-O-glucoside and three phenolic aldehydes in model solutions: The effects of pH and molar ratio.

    PubMed

    Zhang, Bo; He, Fei; Zhou, Pan-Pan; Liu, Yue; Duan, Chang-Qing

    2016-05-15

    Copigmentation was investigated in model solutions between the anthocyanin malvidin-3-O-glucoside and three phenolic aldehydes (vanillic, syringic and coniferyl aldehydes) as a function of the pH and the pigment/copigment molar ratio. Tristimulus colorimetry was applied to evaluate the chromatic variations induced by copigmentation process. The results indicated that the greatest magnitude of copigmentation was obtained at pH 3.0 and molar ratio of 1:100, being significantly higher with coniferyl aldehyde, followed by syringic and vanillic aldehydes. The equilibrium constant (K) and Gibbs free energies (ΔG°) determined here show a spontaneous exothermic reaction. Theoretical calculations (ΔGbinding, ΔE) specified the relative arrangement of the pigment and copigment molecules within the complexes. In addition, an atoms in molecules (AIM) analysis was used to explore the main driving forces contributing to the formation of copigmentation complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Putative identification of components in Zengye Decoction and their effects on glucose consumption and lipogenesis in insulin-induced insulin-resistant HepG2 cells.

    PubMed

    Liu, Zhenzhen; Kuang, Wenhua; Xu, Xi; Li, Dandan; Zhu, Wufu; Lan, Zhou; Zhang, Xu

    2018-01-15

    Zengye Decoction (ZYD) is a well-known traditional medicine in China used for treating diseases associated with "Yin deficiency" such as diabetes. However, little information is available on its components, pharmacological effects and underlying mechanisms. This study was designed to identify its active components and evaluate the effects and mechanisms of ZYD on glucose consumption and lipogenesis in insulin-induced insulin-resistant (IR)-HepG2 cells. In this study, 45 compounds of ZYD were putatively identified, in which the iridoid glycosides such as catalpol, aucubin and harpagide were identified as the main components. The insulin-resistant (IR)-HepG2 cell model was established and the effect of ZYD at three doses (0.17, 0.5 and 1.5 μg/mL) on cell growth was evaluated with an IncuCyte™ live-cell imaging system. The effects of ZYD on glucose consumption and uptake were evaluated by glucose consumption and uptake assay. Meanwhile, the effect of ZYD on lipogenesis was investigated in IR-HepG2 cells by oil red O (ORO) staining. Western blot was applied to observe the changes in some of the key factors involved in glucose metabolism and lipogenesis. It was found that the ZYD at a dose of 1.5 μg/mL exhibited an inhibitory activity on IR-HepG2 cell growth. Besides, ZYD at doses of 0.5 and 1.5 μg/mL accelerated the glucose consumption, glucose uptake and reduced the lipogenesis in the IR-HepG2 cells. Western blot studies revealed that ZYD phosphorylated AMP-activated protein kinase α subunits (AMPKα), upregulated hexokinase (HK), phosphorylated acetyl-CoA carboxylase alpha (pACC1) and carnitine palmitoyltransferase 1A (CPT1A) in the IR-HepG2 cells. These results indicate ZYD promotes glucose consumption and uptake, and attenuates lipogenesis in IR-HepG2 cells, which may be involved in activating AMPK and regulating its downstream factors including HK, pACC1 and CPT1A. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Antidiabetic compounds from Sarracenia purpurea used traditionally by the Eeyou Istchee Cree First Nation.

    PubMed

    Muhammad, Asim; Guerrero-Analco, Jose A; Martineau, Louis C; Musallam, Lina; Madiraju, Padma; Nachar, Abir; Saleem, Ammar; Haddad, Pierre S; Arnason, John T

    2012-07-27

    Through ethnobotanical surveys, the CIHR Team in Aboriginal Antidiabetic Medicines identified 17 boreal forest plants stemming from the pharmacopeia of the Cree First Nations of Eeyou Istchee (James Bay region of Northern Quebec) that were used traditionally against diabetes symptoms. The leaves of Sarracenia purpurea (pitcher plant), one of the identified Cree plants, exhibited marked antidiabetic activity in vitro by stimulating glucose uptake in C2C12 mouse muscle cells and by reducing glucose production in H4IIE rat liver cells. Fractionation guided by glucose uptake in C2C12 cells resulted in the isolation of 11 compounds from this plant extract, including a new phenolic glycoside, flavonoid glycosides, and iridoids. Compounds 6 (isorhamnetin-3-O-glucoside), 8 [kaempferol-3-O-(6″-caffeoylglucoside], and 11 (quercetin-3-O-galactoside) potentiated glucose uptake in vitro, which suggests they represent active principles of S. purpurea (EC(50) values of 18.5, 13.8, and 60.5 μM, respectively). This is the first report of potentiation of glucose uptake by compounds 6 and 8, while compound 11 (isolated from Vaccinium vitis) was previously shown to enhance glucose uptake. Treatment of H4IIE liver cells with the new compound 1, 6'-O-caffeoylgoodyeroside, decreased hepatic glucose production by reducing glucose-6-phosphatase enzymatic activity (IC(50) = 13.6 μM), which would contribute to lowering glycemia and to the antidiabetic potential of S. purpurea.

  7. How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation.

    PubMed

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Fred; Bak, Søren

    2014-08-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists and specialists, and can act on different classes of defence compounds. We discuss how generalist and specialist insects appear to differ in their ability to use these different types of adaptations: in generalists, adaptations are often inducible, whereas in specialists they are often constitutive. Future studies are suggested to investigate in detail how insect adaptations act in combination to overcome plant chemical defences and to allow ecologically relevant conclusions.

  8. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice.

    PubMed

    Sasaki, Rie; Nishimura, Natsumi; Hoshino, Hiromi; Isa, Yasuka; Kadowaki, Maho; Ichi, Takahito; Tanaka, Akihito; Nishiumi, Shin; Fukuda, Itsuko; Ashida, Hitoshi; Horio, Fumihiko; Tsuda, Takanori

    2007-12-03

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine expression is one of the most important targets for the prevention of obesity and improvement of insulin sensitivity. In this study, we have demonstrated that anthocyanin (cyanidin 3-glucoside; C3G) which is a pigment widespread in the plant kingdom, ameliorates hyperglycemia and insulin sensitivity due to the reduction of retinol binding protein 4 (RBP4) expression in type 2 diabetic mice. KK-A(y) mice were fed control or control +0.2% of a C3G diet for 5 weeks. Dietary C3G significantly reduced blood glucose concentration and enhanced insulin sensitivity. The adiponectin and its receptors expression were not responsible for this amelioration. C3G significantly upregulated the glucose transporter 4 (Glut4) and downregulated RBP4 in the white adipose tissue, which is accompanied by downregulation of the inflammatory adipocytokines (monocyte chemoattractant protein-1 and tumor necrosis factor-alpha) in the white adipose tissue of the C3G group. These findings indicate that C3G has significant potency in an anti-diabetic effect through the regulation of Glut4-RBP4 system and the related inflammatory adipocytokines.

  9. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers.

    PubMed

    Nazarko, Taras Y; Polupanov, Andriy S; Manjithaya, Ravi R; Subramani, Suresh; Sibirny, Andriy A

    2007-01-01

    Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential for macropexophagy of oleate- and amine-induced peroxisomes in P. pastoris, suggesting that the function of sterol glucoside (SG) in pexophagy is both species and peroxisome inducer specific. However, the rates of degradation of oleate- and amine-induced peroxisomes in P. pastoris were reduced in the absence of SG, indicating that P. pastoris specifically uses sterol conversion by Atg26 to enhance selective degradation of peroxisomes. However, methanol-induced peroxisomes apparently have lost the redundant ability to be degraded without SG. We also show that the P. pastoris Vac8 armadillo repeat protein is not essential for macropexophagy of methanol-, oleate-, or amine-induced peroxisomes, which makes PpVac8 the first known protein required for the micropexophagy, but not for the macropexophagy, machinery. The uniqueness of Atg26 and Vac8 functions under different pexophagy conditions demonstrates that not only pexophagy inducers, such as glucose or ethanol, but also the inducers of peroxisomes, such as methanol, oleate, or primary amines, determine the requirements for subsequent pexophagy in yeast.

  10. Potential role of cyanidin 3-glucoside (C3G) in diabetic cardiomyopathy in diabetic rats: An in vivo approach.

    PubMed

    Li, Weizhen; Chen, Songwen; Zhou, Genqing; Li, Hongli; Zhong, Lan; Liu, Shaowen

    2018-03-01

    The present study aimed to evaluate the importance of cyanidin 3-glucoside (C3G) of diabetic cardiomyopathy in diabetic rats. The rats were induced with diabetic using streptozotocin and total triglyceride (TG) and total cholesterol (TC) were determined. The range of myocardial enzymes such as aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LD) were also estimated, further, the Immuno histochemical analysis and western blot investigation were determined for the actual activity of C3G. Results indicated that the marker enzymes such as CK, LD and AST were significantly ( P  < 0.05) increased in STZ administered rats (DM group), while the levels of these elevated marker enzymes of cardiac injury significantly ( P  < 0.05) declined in the DM + C3G group, as compared to the diabetic group of rats. Additionally, a decrease in the level of TNF-alpha and interleukin-6, was noticed in the C3G treated group as compared to diabetic group. Finally, blotting analysis clearly confirmed that theC3G treatment resulted to higher level response of Bcl-2 and lower level response of caspase-3 and BAX. In conclusion, C3G a natural antioxidant may prevent cardiovascular complications by ameliorating oxidative damage, inflammation, metabolic dysfunctions and apoptosis pathways in type 2 diabetes.

  11. Total Glucosides of Danggui Buxue Tang Attenuate BLM-Induced Pulmonary Fibrosis via Regulating Oxidative Stress by Inhibiting NOX4

    PubMed Central

    Zhao, Ping; Zhou, Wen-Cheng; Li, De-Lin; Mo, Xiao-Ting; Xu, Liang; Li, Liu-Cheng; Cui, Wen-Hui; Gao, Jian

    2015-01-01

    Pulmonary fibrosis (PF) is a serious chronic lung disease with unknown pathogenesis. Researches have confirmed that oxidative stress which is regulated by NADPH oxidase-4 (NOX4), a main source of reactive oxygen species (ROS), is an important molecular mechanism underlying PF. Previous studies showed that total glucosides of Danggui Buxue Tang (DBTG), an extract from a classical traditional Chinese herbal formula, Danggui Buxue Tang (DBT), attenuated bleomycin-induced PF in rats. However, the mechanisms of DBTG are still not clear. We hypothesize that DBTG attenuates PF through regulating the level of oxidative stress by inhibiting NOX4. And we found that fibrosis indexes hydroxyproline (HYP) and type I collagen (Col-I) were lower in DBTG groups compared with the model group. In addition, the expression of transforming growth factor-β1 (TGF-β1) and expression of alpha smooth muscle actin (α-SMA) were also much more decreased than the model group. For oxidative stress indicators, DBTG blunted the decrease of superoxide dismutase (SOD) activity, total antioxidant capacity (T-AOC), and the increase in malondialdehyde (MDA), 8-iso-prostaglandin in lung homogenates. Treatment with DBTG restrained the expression of NOX4 compared to the model group. Present study confirms that DBTG inhibits BLM-induced PF by modulating the level of oxidative stress via suppressing NOX4. PMID:26347805

  12. Cyanidin-3-glucoside reverses ethanol-induced inhibition of neurite outgrowth: role of glycogen synthase kinase 3 Beta.

    PubMed

    Chen, Gang; Bower, Kimberly A; Xu, Mei; Ding, Min; Shi, Xianglin; Ke, Zun-Ji; Luo, Jia

    2009-05-01

    Ethanol is a potent teratogen for the developing central nervous system (CNS), and fetal alcohol syndrome (FAS) is the most common nonhereditary cause of mental retardation. Ethanol disrupts neuronal differentiation and maturation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Using an in vitro neuronal model, mouse Neuro2a (N2a) neuroblastoma cells, we demonstrated that ethanol inhibited neurite outgrowth and the expression of neurofilament (NF) proteins. Glycogen synthase kinase 3beta (GSK3beta), a multifunctional serine/threonine kinase negatively regulated neurite outgrowth of N2a cells; inhibiting GSK3beta activity by retinoic acid (RA) and lithium induced neurite outgrowth, while over-expression of a constitutively active S9A GSK3beta mutant prevented neurite outgrowth. Ethanol inhibited neurite outgrowth by activating GSK3beta through the dephosphorylation of GSK3beta at serine 9. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family rich in many edible berries and other pigmented fruits, enhanced neurite outgrowth by promoting p-GSK3beta(Ser9). More importantly, C3G reversed ethanol-mediated activation of GSK3beta and inhibition of neurite outgrowth as well as the expression of NF proteins. C3G also blocked ethanol-induced intracellular accumulation of reactive oxygen species (ROS). However, the antioxidant effect of C3G appeared minimally involved in its protection. Our study provides a potential avenue for preventing or ameliorating ethanol-induced damage to the developing CNS.

  13. Cyanidin-3-glucoside suppresses B[a]PDE-induced cyclooxygenase-2 expression by directly inhibiting Fyn kinase activity.

    PubMed

    Lim, Tae-Gyu; Kwon, Jung Yeon; Kim, Jiyoung; Song, Nu Ry; Lee, Kyung Mi; Heo, Yong-Seok; Lee, Hyong Joo; Lee, Ki Won

    2011-07-15

    Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE) is a well-known carcinogen that is associated with skin cancer. Abnormal expression of cyclooxygenase-2 (COX-2) is an important mediator in inflammation and tumor promotion. We investigated the inhibitory effect of cyanidin-3-glucoside (C3G), an anthocyanin present in fruits, on B[a]PDE-induced COX-2 expression in mouse epidermal JB6 P+ cells. Pretreatment with C3G resulted in the reduction of B[a]PDE-induced expression of COX-2 and COX-2 promoter activity. The activation of activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) induced by B[a]PDE was also attenuated by C3G. C3G attenuated the B[a]PDE-induced phosphorylation of MEK, MKK4, Akt, and mitogen-activated protein kinases (MAPKs), but no effect on the phosphorylation of the upstream MAPK regulator Fyn. However, kinase assays demonstrated that C3G suppressed Fyn kinase activity and C3G directly binds Fyn kinase noncompetitively with ATP. By using PP2, a pharmacological inhibitor for SFKs, we showed that Fyn kinase regulates B[a]PDE-induced COX-2 expression by activating MAPKs, AP-1 and NF-κB. These results suggest that C3G suppresses B[a]PDE-induced COX-2 expression mainly by blocking the activation of the Fyn signaling pathway, which may contribute to its chemopreventive potential. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Effects of milling and baking technologies on levels of deoxynivalenol and its masked form deoxynivalenol-3-glucoside.

    PubMed

    Kostelanska, Marta; Dzuman, Zbynek; Malachova, Alexandra; Capouchova, Ivana; Prokinova, Evzenie; Skerikova, Alena; Hajslova, Jana

    2011-09-14

    The co-occurrence of the major Fusarium mycotoxin deoxynivalenol (DON) and its conjugate deoxynivalenol-3-glucoside (DON-3-Glc) has been documented in infected wheat. This study reports on the fate of this masked DON within milling and baking technologies for the first time and compares its levels with those of the free parent toxin. The fractionation of DON-3-Glc and DON in milling fractions was similar, tested white flours contained only approximately 60% of their content in unprocessed wheat grains. No substantial changes of both target analytes occurred during the dough preparation process, i.e. kneading, fermentation, and proofing. However, when bakery improvers enzymes mixtures were employed as a dough ingredient, a distinct increase up to 145% of conjugated DON-3-Glc occurred in fermented dough. Some decrease of both DON-3-Glc and DON (10 and 13%, respectively, compared to fermented dough) took place during baking. Thermal degradation products of DON, namely norDON A, B, C, D, and DON-lactone were detected in roasted wheat samples and baked bread samples by means of UPLC-Orbitrap MS. Moreover, thermal degradation products derived from DON-3-Glc were detected and tentatively identified in heat-treated contaminated wheat and bread based on accurate mass measurement performed under the ultrahigh mass resolving power. These products, originating from DON-3-Glc through de-epoxidation and other structural changes in the seskviterpene cycle, were named norDON-3-Glc A, B, C, D, and DON-3-Glc-lactone analogically to DON degradation products. Most of these compounds were located in the crust of experimental breads.

  15. Flavonoids of Helichrysum compactum and their antioxidant and antibacterial activity.

    PubMed

    Süzgeç, Sevda; Meriçli, Ali H; Houghton, Peter J; Cubukçu, Bayhan

    2005-03-01

    From the capitula of Helichrysum compactum, the flavonoids apigenin, kaempferol, luteolin, naringenin, 3,5-dihydroxy-6,7,8-trimethoxyflavone, kaempferol-3-O-glucoside, luteolin-7-O-glucoside and luteolin-4',7-di-O-glucoside and from the leafy stems apigenin, kaempferol, luteolin, quercetin, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and quercetin-3-O-glucoside were isolated. Extracts of the capitula of H. compactum show antioxidant activity by inhibition of lipid peroxidation and also show antibacterial activity.

  16. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    March, Raymond E.; Lewars, Errol G.; Stadey, Christopher J.; Miao, Xiu-Sheng; Zhao, Xiaoming; Metcalfe, Chris D.

    2006-01-01

    A comparison is presented of product ion mass spectra of protonated and deprotonated molecules of kaempferol-3-O-glucoside, quercitin-3-O-glucoside (isoquercitrin), quercitin-3-O-galactoside (hyperoin), apigenin-7-O-glucoside, luteolin-7-O-glucoside, genistein-7-O-glucoside, naringenin-7-O-glucoside (prunin), luteolin-4'-O-glucoside, luteolin-6-C-glucoside (homoorientin, known also as isoorientin), apigenin-8-C-glucoside (vitexin), and luteolin-8-C-glucoside (orientin) together with the product ion mass spectrum of deprotonated kaempferol-7-O-glucoside. All isomeric ions were distinguishable on the basis of their product ion mass spectra. For protonated 3-O-, 7-O-, and 4'-O-glycosides at a collision energy of 46-47 eV, homolytic cleavage of the O-glycosidic bond yielded aglycon Y+ ions, whereas in deprotonated 3-O-, 7-O-, and 4'-O-glycosides, heterolytic and homolytic cleavage of the O-glycosidic bond yielded radical aglycon (Y-H)- and aglycon (Y-) ions. In each case, fragmentation of either the glycan or the aglycon or both was observed. For 6-C- and 8-C-glycosides at a collision energy of 46-47 eV, fragmentation was restricted almost exclusively to the glycan. For luteolin-6-C-glucoside, the integrity of the aglycon structure is preserved at the expense of the glycan for which some 30 fragmentations were observed. Breakdown curves were determined as a function of collision energy for protonated and deprotonated luteolin-6-C-glucoside. An attempt has been made to rationalize the product ion mass spectra derived from C-O- and C-C-luteolin glucosides in terms of computed structures that indicate significant intramolecular hydrogen bonding and rotation of the B-ring to form a coplanar luteolin structure. It is proposed that protonated and deprotonated luteolin-6-C-glucoside may afford examples of cooperative interactive bonding that plays a major role in directing fragmentation.

  17. Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions

    PubMed Central

    Xiudong, Xia; Ying, Wang; Xiaoli, Liu; Ying, Li

    2016-01-01

    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal

  18. Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions.

    PubMed

    Xiudong, Xia; Ying, Wang; Xiaoli, Liu; Ying, Li; Jianzhong, Zhou

    2016-01-01

    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal

  19. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice.

    PubMed

    Sun, Chong-De; Zhang, Bo; Zhang, Jiu-Kai; Xu, Chang-Jie; Wu, Yu-Lian; Li, Xian; Chen, Kun-Song

    2012-03-01

    Chinese bayberry fruit is a rich source of anthocyanins, especially cyanidin-3-glucoside (C3G). The present study investigated the protective effects of C3G-rich bayberry fruit extract (CRBFE) against pancreatic β cells against oxidative stress-induced injury as well as its hypoglycemic effect in diabetic mice. Bayberry extract from "Biqi" was used for both in vitro and in vivo testing because of its high C3G content and high antioxidant capacity. Pretreatment of β cells with CRBFE (containing 0.5 μmol/L C3G) prevented cell death, increased cellular viability, and decreased mitochondrial reactive oxygen species production and cell necrosis induced by 800 or 1,200 μmol/L H₂O₂. CRBFE dose-dependently up-regulated pancreatic duodenal homeobox 1 gene expression, contributing to increased insulin-like growth factor II gene transcript levels and insulin protein in INS-1 cells. In addition, administration of CRBFE (150 μg of C3G/10 g of body weight twice per day) significantly reduced blood glucose in streptozotocin-induced diabetic ICR mice and increased the glucose tolerance in an oral glucose tolerance test (P<.05). Such results indicated that CRBFE might be useful in prevention and control of diabetes mellitus and diabetes-associated complications.

  20. Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis.

    PubMed

    Lee, Jong Seok; Kim, Young Rae; Song, In Gyu; Ha, Suk-Jin; Kim, Young Eon; Baek, Nam-In; Hong, Eock Kee

    2015-02-01

    The extract obtained from berries contains high amounts of anthocyanins, and this extract is used as a phytotherapeutic agent for different types of diseases. In this study, we examined the cytoprotective effects of cyanidin-3-glucoside (C3G) isolated from mulberry fruit against pancreatic β-cell apoptosis caused by hydrogen peroxide (H2O2)-induced oxidative stress. The MIN6 pancreatic β-cells were used to investigate the cytoprotective effects of C3G on the oxidative stress-induced apoptosis of cells. Cell viability was examined by MTT assay and lipid peroxidation was assayed by thiobarbituric acid (TBA) reaction. Immunofluorescence staining, flow cytometry and western blot analysis were also used to determine apoptosis and the expression of proteins associated with apoptosis. Our results revealed that H2O2 increased the rate of apoptosis by stimulating various pro-apoptotic processes, such as the generation of intracellular reactive oxygen species (ROS), lipid peroxidation, DNA fragmentation and caspase-3 activation. However, C3G reduced the H2O2-induced cell death in the MIN6N pancreatic β-cells. In addition, we confirmed that H2O2 activated mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK. C3G inhibited the phosphorylation of ERK and p38 without inducing the phosphorylation of JNK. Furthermore, C3G regulated the intrinsic apoptotic pathway-associated proteins, such as proteins belonging to the Bcl-2 family, cytochrome c and caspase-3. Taken together, our results suggest that C3G isolated from mulberry fruit has potential for use as a phytotherapeutic agent for the prevention of diabetes by preventing oxidative stress-induced β-cell apoptosis.

  1. Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats.

    PubMed

    Hanske, Laura; Engst, Wolfram; Loh, Gunnar; Sczesny, Silke; Blaut, Michael; Braune, Annett

    2013-04-28

    Cyanidin 3-glucoside (C3G) is one of the major dietary anthocyanins implicated in the prevention of chronic diseases. To evaluate the impact of human intestinal bacteria on the fate of C3G in the host, we studied the metabolism of C3G in human microbiota-associated (HMA) rats in comparison with germ-free (GF) rats. Urine and faeces of the rats were analysed for C3G and its metabolites within 48 h after the application of 92 μmol C3G/kg body weight. In addition, we tested the microbial C3G conversion in vitro by incubating C3G with human faecal slurries and selected human gut bacteria. The HMA rats excreted with faeces a three times higher percentage of unconjugated C3G products and a two times higher percentage of conjugated C3G products than the GF rats. These differences were mainly due to the increased excretion of 3,4-dihydroxybenzoic acid, 2,4,6-trihydroxybenzaldehyde and 2,4,6-trihydroxybenzoic acid. Only the urine of HMA rats contained peonidin and 3-hydroxycinnamic acid and the percentage of conjugated C3G products in the urine was decreased compared with the GF rats. Overall, the presence of intestinal microbiota resulted in a 3·7% recovery of the C3G dose in HMA rats compared with 1·7% in GF rats. Human intestinal bacteria rapidly degraded C3G in vitro. Most of the C3G products were also found in the absence of bacteria, but at considerably lower levels. The higher concentrations of phenolic acids observed in the presence of intestinal bacteria may contribute to the proposed beneficial health effects of C3G.

  2. The inhibition of macrophage foam cell formation by tetrahydroxystilbene glucoside is driven by suppressing vimentin cytoskeleton.

    PubMed

    Yao, Wenjuan; Huang, Lei; Sun, Qinju; Yang, Lifeng; Tang, Lian; Meng, Guoliang; Xu, Xiaole; Zhang, Wei

    2016-10-01

    Macrophage foam cell formation triggered by oxLDL is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) exhibits significant anti-atherosclerotic activity. Herein we used U937 cells induced by PMA and oxLDL in vitro to investigate the inhibitory effects of TSG on U937 differentiation and macrophage foam cell formation. TSG pretreatment markedly inhibited cell differentiation induced by PMA, macrophage apoptosis and foam cell formation induced by oxLDL. The inhibition of vimentin expression and cleavage was involved in these inhibitory effects of TSG. The suppression of vimentin by siRNA in U937 significantly inhibited cell differentiation, apoptosis and foam cell formation. Using inhibitors for TGFβR1 and PI3K, we found that vimentin production in U937 cells is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG pretreatment inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by PMA and oxLDL. Furthermore, TSG attenuated the induced caspase-3 activation and adhesion molecules levels by PMA and oxLDL. PMA and oxLDL increased the co-localization of vimentin with ICAM-1, which was attenuated by pretreatment with TSG. These results suggest that TSG inhibits macrophage foam cell formation through suppressing vimentin expression and cleavage, adhesion molecules expression and vimentin-ICAM-1 co-localization. The interruption of TGFβ/Smad pathway and caspase-3 activation is responsible for the downregulation of TSG on vimentin expression and degradation, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Simultaneous separation and identification of limonoids from citrus using liquid chromatography-collision-induced dissociation mass spectra.

    PubMed

    Jayaprakasha, Guddadarangavvanahally K; Dandekar, Deepak V; Tichy, Shane E; Patil, Bhimanagouda S

    2011-01-01

    Limonoids are considered as potential cancer chemopreventive agents and are widely distributed in the Citrus genus as aglycones and glucosides. In the present study, reversed-phase HPLC coupled with CID mass spectra was developed for the simultaneous separation and identification of aglycones and glucosides of limonoids from citrus. Five aglycones such as limonin, deacetyl nomilin, ichangin, isolimonoic acid and nomilin were identified by positive ion CID MS/MS, whereas five glucosides, viz. limonin glucoside, isoobacunoic acid glucoside, obacunone glucoside, deacetyl nomilinic acid glucoside and nomilinic acid glucoside were analyzed by negative ion CID mass spectra. The developed method was successfully applied to complex citrus samples for the separation and identification of aglycones and glucosides. Citrus seeds were extracted with methanol and partially purified and analyzed by LC-CID mass spectra. The separation was achieved by C-18 column; eight limonoids were identified by comparing the retention times and mass spectral fragmentation. To the best of our knowledge, this is the first report on the identification of citrus limonoids using CID technique. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Interactions of milk α- and β-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts.

    PubMed

    He, Zhiyong; Xu, Mingzhu; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-05-15

    The interactions of α- and β-casein with malvidin-3-O-glucoside (MG), the major anthocyanin in grape skin anthocyanin extracts (GSAE), were examined at pH 6.3 by fluorescence, fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy. The binding constant (KS), binding force and effects of the interactions on the caseins conformation and GSAE stability were investigated. The results showed that α- and β-casein bound with MG via hydrophilic (van der Waals forces or hydrogen bonding) and hydrophobic interactions, respectively. α-Casein had a slightly stronger binding affinity toward MG than β-casein, with respective KS values of 0.51×10(3)M(-1) and 0.46×10(3)M(-1) at 297K. The secondary structures of α- and β-casein were changed by MG binding, with a decrease in α-helix and an increase in turn for α-casein and no change in α-helix and a decrease in turn for β-casein. The casein-anthocyanin interaction appeared to have a positive effect on the thermal, oxidation and photo stability of GSAE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Loganic acid and anthocyanins from cornelian cherry (Cornus mas L.) fruits modulate diet-induced atherosclerosis and redox status in rabbits.

    PubMed

    Sozański, Tomasz; Kucharska, Alicja Z; Dzimira, Stanisław; Magdalan, Jan; Szumny, Dorota; Matuszewska, Agnieszka; Nowak, Beata; Piórecki, Narcyz; Szeląg, Adam; Trocha, Małgorzata

    2018-04-25

    Cornelian cherry (Cornus mas L.) is a plant growing in southeast Europe, in the past used in folk medicine. There are many previous publications showing the preventive effects of (poly)phenolic compounds, especially anthocyanins, on cardiovascular diseases, but there is a lack of studies comparing the effects of (poly)phenolics and other constituents of fruits. We have attempted to determine if iridoids and anthocyanins from cornelian cherry fruits may affect the formation of atherosclerotic plaques in the aorta as well as lipid peroxidation and oxidative stress in the livers of cholesterol-fed rabbits. Fractions of iridoids and anthocyanins were analyzed using the high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) methods. Loganic acid (20 mg/kg b.w.) and a mixture of anthocyanins (10 mg/kg b.w.) were administered orally for 60 days to rabbits fed with 1% cholesterol. Histopathological samples of the aortas and the livers were stained with hematoxylin and eosin. Lipid peroxidation (malondialdehyde - MDA) and redox status (glutathione - GSH, glutathione peroxidase - Gpx and superoxide dismutase - SOD) were analyzed using spectrophotometrical methods. Both loganic acid (an iridoid) and a mixture of anthocyanins diminished the formation of atherosclerotic plaques in the aorta. Both substances also diminished lipid peroxidation, measured as a decrease of MDA, and attenuated oxidative stress, measured as an increase of GSH in the livers depleted by cholesterol feeding. Unexpectedly, cholesterol feeding decreased the Gpx activity in the liver, which was reversed by both investigated substances. We have shown that both iridoids and anthocyanins help prevent fed-induced atherosclerosis, and the consumption of fruits rich in these substances may elicit beneficial effects on the cardiovascular system.

  6. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species.

    PubMed

    Yang, Ji Seon; Perveen, Shazia; Ha, Tae Joung; Kim, Seong Yun; Yoon, Shin Hee

    2015-05-05

    Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. However, effects of C3G on glutamate-induced [Zn(2+)]i increase and neuronal cell death remain unknown. We studied the effects of C3G on glutamate-induced [Zn(2+)]i increase and cell death in cultured rat hippocampal neurons from embryonic day 17 maternal Sprague-Dawley rats using digital imaging methods for Zn(2+), Ca(2+), reactive oxygen species (ROS), mitochondrial membrane potential and a MTT assay for cell survival. Treatment with glutamate (100 µM) for 7 min induces reproducible [Zn(2+)]i increase at 35 min interval in cultured rat hippocampal neurons. The intracellular Zn(2+)-chelator TPEN markedly blocked glutamate-induced [Zn(2+)]i increase, but the extracellular Zn(2+) chelator CaEDTA did not affect glutamate-induced [Zn(2+)]i increase. C3G inhibited the glutamate-induced [Zn(2+)]i response in a concentration-dependent manner (IC50 of 14.1 ± 1.1 µg/ml). C3G also significantly inhibited glutamate-induced [Ca(2+)]i increase. Two antioxidants such as Trolox and DTT significantly inhibited the glutamate-induced [Zn(2+)]i response, but they did not affect the [Ca(2+)]i responses. C3G blocked glutamate-induced formation of ROS. Trolox and DTT also inhibited the formation of ROS. C3G significantly inhibited glutamate-induced mitochondrial depolarization. However, TPEN, Trolox and DTT did not affect the mitochondrial depolarization. C3G, Trolox and DTT attenuated glutamate-induced neuronal cell death in cultured rat hippocampal neurons, respectively. Taken together, all these results suggest that cyanidin-3-glucoside inhibits glutamate-induced [Zn(2+)]i increase through a release of Zn(2+) from intracellular sources in cultured rat hippocampal neurons by inhibiting Ca(2+)-induced mitochondrial depolarization and formation of ROS, which is involved in neuroprotection against glutamate-induced cell death. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Application of on-line and off-line heart-cutting LC in determination of secondary metabolites from the flowers of Lonicera caerulea cultivar varieties.

    PubMed

    Kula, Marta; Głód, Daniel; Krauze-Baranowska, Mirosława

    2016-11-30

    Lonicera caerulea is a shrub native to the Northen Hemisphere, with its fruits having a long tradition of being used in traditional medicine. The flowers, although a potential source of diverse phenolic compounds have not been studied in terms of phenolic content. In this paper, a 2D LC heart-cutting system, operating in both on-line and off-line modes, was developed and successfully employed in identification and quantification of secondary metabolites in the flowers of L. caerulea. A total of 51 compounds have been resolved and identified as either flavonoids, phenolic acids or iridoids. Flavonoids were the dominating group of compounds, alongside substantial levels of both phenolic acids and iridoids. A comparison between three varieties of L. caerulea flowers revealed that 'Wojtek' contained markedly more flavonols and phenolic acids than the remaining two varieties, whereas iridoids were at similar levels. Heart-cutting 2D LC method used in this study offers a convenient approach and an effective tool for secondary metabolite analysis in L. caerulea flowers, and possibly other species from the genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study.

    PubMed

    Czank, Charles; Cassidy, Aedín; Zhang, Qingzhi; Morrison, Douglas J; Preston, Tom; Kroon, Paul A; Botting, Nigel P; Kay, Colin D

    2013-05-01

    Evidence suggests that the consumption of anthocyanin-rich foods beneficially affects cardiovascular health; however, the absorption, distribution, metabolism, and elimination (ADME) of anthocyanin-rich foods are relatively unknown. We investigated the ADME of a (13)C5-labeled anthocyanin in humans. Eight male participants consumed 500 mg isotopically labeled cyanidin-3-glucoside (6,8,10,3',5'-(13)C5-C3G). Biological samples were collected over 48 h, and (13)C and (13)C-labeled metabolite concentrations were measured by using isotope-ratio mass spectrometry and liquid chromatography-tandem mass spectrometry. The mean ± SE percentage of (13)C recovered in urine, breath, and feces was 43.9 ± 25.9% (range: 15.1-99.3% across participants). The relative bioavailability was 12.38 ± 1.38% (5.37 ± 0.67% excreted in urine and 6.91 ± 1.59% in breath). Maximum rates of (13)C elimination were achieved 30 min after ingestion (32.53 ± 14.24 μg(13)C/h), whereas (13)C-labeled metabolites peaked (maximum serum concentration: 5.97 ± 2.14 μmol/L) at 10.25 ± 4.14 h. The half-life for (13)C-labeled metabolites ranged between 12.44 ± 4.22 and 51.62 ± 22.55 h. (13)C elimination was greatest between 0 and 1 h for urine (90.30 ± 15.28 μg/h), at 6 h for breath (132.87 ± 32.23 μg/h), and between 6 and 24 h for feces (557.28 ± 247.88 μg/h), whereas the highest concentrations of (13)C-labeled metabolites were identified in urine (10.77 ± 4.52 μmol/L) and fecal samples (43.16 ± 18.00 μmol/L) collected between 6 and 24 h. Metabolites were identified as degradation products, phenolic, hippuric, phenylacetic, and phenylpropenoic acids. Anthocyanins are more bioavailable than previously perceived, and their metabolites are present in the circulation for ≤48 h after ingestion. This trial was registered at clinicaltrials.gov as NCT01106729.

  9. [Polyketone Reaction in Biosynthetic Pathways of 2, 3, 5, 4'-Tetrahydroxy Stilhene-2-O-β-D-glucoside in Polygonum multiflorum by Biocatalysis].

    PubMed

    Lei, Lei; Xia, Wan-xia; Shao, Li; Zhao, Shu-jin

    2015-10-01

    2, 3, 5, 4'-Tetrahydroxy stilbene-2-O-β-D-glucoside (THSG), the active ingredient of Polygonum multiflorum, its polyketone reaction in the biosynthesis pathways was studied by biocatalysis method. The substrates 4-coumaroyl-CoA and malonyl-CoA were catalyzed in vitro by the crude enzyme extracted from Polygonum multiflorum callus, then the products were verified by HPLC and LC-MS methods. And the crude enzyme was analyzed by ammonium sulfate precipitation method and SDS-PAGE. HPLC chromatogram showed the same retention time of both the product and resveratrol standards; LC-MS spectra showed that the m/z of product was 227, which was consistent with resveratrol standards under the mode of negative ion; Ammonium sulfate (AS) precipitation method showed AS of 40% - 70% had catalytic activity,and 50% - 60% was the optimum; SDS-PAGE showed protein bands were obviously different among different AS concentration between 20% - 80%, the protein band of 42 kDa was found in AS of 50% - 60%, which had the same molecular weight with stilbene synthase. The product of polyketone reaction in the biosynthesis of THSG is resveratrol rather than THSG, so it is speculated that THSG is the conversion product of resveratrol instead of the direct product of the polyketone reaction.

  10. Cyanidin-3-O-glucoside ameliorates palmitate-induced insulin resistance by modulating IRS-1 phosphorylation and release of endothelial derived vasoactive factors.

    PubMed

    Fratantonio, Deborah; Cimino, Francesco; Molonia, Maria Sofia; Ferrari, Daniela; Saija, Antonella; Virgili, Fabio; Speciale, Antonio

    2017-03-01

    Increased plasma levels of free fatty acids, including palmitic acid (PA), cause insulin resistance in endothelium characterized by a decreased synthesis of insulin-mediated vasodilator nitric oxide (NO), and by an increased production of the vasoconstrictor protein, endothelin-1. Several in vitro and in vivo studies suggest that anthocyanins, natural phenols commonly present in food and vegetables from Mediterranean Diet, exert significant cardiovascular health-promoting activities. These effects are possibly mediated by a positive regulation of the transcription factor Nrf2 and activation of cellular antioxidant and cytoprotective genes. The present study examined, at a molecular level, the effects of cyanidin-3-O-glucoside (C3G), a widely distributed anthocyanin, on PA-induced endothelial dysfunction and insulin resistance in human umbilical vein endothelial cells (HUVECs). Our results indicate that C3G pretreatment effectively reverses the effects of PA on PI3K/Akt axis, and restores eNOS expression and NO release, altered by PA. We observed that these effects were exerted by changes on the phosphorylation of IRS-1 on specific serine and tyrosine residues modulated by PA through the modulation of JNK and IKK activity. Furthermore, silencing Nrf2 transcripts demonstrated that the protective effects of C3G are directly related to the activation of Nrf2. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Involvement of the GABAergic system in the neuroprotective and sedative effects of acacetin 7-O-glucoside in rodents

    PubMed Central

    Gálvez, Javier; Estrada-Reyes, Rosa; Benítez-King, Gloria; Araujo, Gabriela; Orozco, Sandra; Fernández-Mas, Rodrigo; Almazán, Salvador; Calixto, Eduardo

    2015-01-01

    Abstract Purpose: Characterization of sedative, possible anticonvulsant, and protective effects of Acacetin-7-O-glucoside (7-ACAG). Methods: 7-ACAG was separated and its purity was analyzed. Its sedative and anti-seizure effects (1, 10, 20, and 40 mg/kg) were evaluated in male mice. Synaptic responses were acquired from area CA1 of hippocampal slices obtained from male Wistar rats. Rats were subjected to stereotaxic surgeries to allow Electroencephalographic (EEG) recordings. Functional recovery was evaluated by measuring the time rats spent in completing the motor task. Then the rats were subjected to right hemiplegia and administered 7-ACAG (40 mg/kg) 1 h or 24 h after surgery. Brains of each group of rats were prepared for histological analysis. Results: Effective sedative doses of 7-ACAG comprised those between 20 and 40 mg/kg. Latency and duration of the epileptiform crisis were delayed by this flavonoid. 7-ACAG decreased the synaptic response in vitro, similar to Gamma-aminobutyric acid (GABA) effects. The flavonoid facilitated functional recovery. This data was associated with preserved cytoarchitecture in brain cortex and hippocampus. Conclusions: 7-ACAG possesses anticonvulsive and sedative effects. Results suggest that GABAergic activity and neuroprotection are involved in the mechanism of action of 7-ACAG and support this compound’s being a potential drug for treatment of anxiety or post-operative conditions caused by neurosurgeries. PMID:26410208

  12. Cyanidin-3-Glucoside-Rich Extract from Chinese Bayberry Fruit Protects Pancreatic β Cells and Ameliorates Hyperglycemia in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Sun, Chong-De; Zhang, Bo; Zhang, Jiu-Kai; Xu, Chang-Jie; Wu, Yu-Lian; Chen, Kun-Song

    2012-01-01

    Abstract Chinese bayberry fruit is a rich source of anthocyanins, especially cyanidin-3-glucoside (C3G). The present study investigated the protective effects of C3G-rich bayberry fruit extract (CRBFE) against pancreatic β cells against oxidative stress–induced injury as well as its hypoglycemic effect in diabetic mice. Bayberry extract from “Biqi” was used for both in vitro and in vivo testing because of its high C3G content and high antioxidant capacity. Pretreatment of β cells with CRBFE (containing 0.5 μmol/L C3G) prevented cell death, increased cellular viability, and decreased mitochondrial reactive oxygen species production and cell necrosis induced by 800 or 1,200 μmol/L H2O2. CRBFE dose-dependently up-regulated pancreatic duodenal homeobox 1 gene expression, contributing to increased insulin-like growth factor II gene transcript levels and insulin protein in INS-1 cells. In addition, administration of CRBFE (150 μg of C3G/10 g of body weight twice per day) significantly reduced blood glucose in streptozotocin-induced diabetic ICR mice and increased the glucose tolerance in an oral glucose tolerance test (P<.05). Such results indicated that CRBFE might be useful in prevention and control of diabetes mellitus and diabetes-associated complications. PMID:22181073

  13. Inhibition of carrageenan-induced acute inflammation in mice by oral administration of anthocyanin mixture from wild mulberry and cyanidin-3-glucoside.

    PubMed

    Hassimotto, Neuza Mariko Aymoto; Moreira, Vanessa; do Nascimento, Neide Galvão; Souto, Pollyana Cristina Maggio de Castro; Teixeira, Catarina; Lajolo, Franco Maria

    2013-01-01

    Anthocyanins are flavonoids which demonstrated biological activities in in vivo and in vitro models. Here in the anti-inflammatory properties of an anthocyanin-enriched fraction (AF) extracted from wild mulberry and the cyanidin-3-glucoside (C3G), the most abundant anthocyanin in diet, were studied in two acute inflammation experimental models, in the peritonitis and in the paw oedema assays, both of which were induced by carrageenan (cg) in mice. In each trial, AF and C3G (4 mg/100 g/animal) were orally administered in two distinct protocols: 30 min before and 1 h after cg stimulus. The administration of both AF and C3G suppresses the paw oedema in both administration times (P < 0.05). In the peritonitis, AF and C3G reduced the polymorphonuclear leukocytes (PMN) influx in the peritoneal exudates when administered 1 h after cg injection. AF was more efficient reducing the PMN when administered 30 min before cg. Both AF and C3G were found to suppress mRNA as well as protein levels of COX-2 upregulated by cg in both protocols, but the inhibitory effect on PGE2 production in the peritoneal exudates was observed when administered 30 min before cg (P < 0.05). Our findings suggest that AF and C3G minimize acute inflammation and they present positive contributions as dietary supplements.

  14. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study.

    PubMed

    Fornasaro, Stefano; Ziberna, Lovro; Gasperotti, Mattia; Tramer, Federica; Vrhovšek, Urška; Mattivi, Fulvio; Passamonti, Sabina

    2016-03-11

    Anthocyanins exert neuroprotection in various in vitro and in vivo experimental models. However, no details regarding their brain-related pharmacokinetics are so far available to support claims about their direct neuronal bioactivity as well as to design proper formulations of anthocyanin-based products. To gather this missing piece of knowledge, we intravenously administered a bolus of 668 nmol cyanidin 3-glucoside (C3G) in anaesthetized Wistar rats and shortly after (15 s to 20 min) we collected blood, brain, liver, kidneys and urine samples. Extracts thereof were analysed for C3G and its expected metabolites using UPLC/MS-MS. The data enabled to calculate a set of pharmacokinetics parameters. The main finding was the distinctive, rapid distribution of C3G in the brain, with an apparently constant plasma/brain ratio in the physiologically relevant plasma concentration range (19-355 nM). This is the first report that accurately determines the distribution pattern of C3G in the brain, paving the way to the rational design of future tests of neuroprotection by C3G in animal models and humans.

  15. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study

    PubMed Central

    Fornasaro, Stefano; Ziberna, Lovro; Gasperotti, Mattia; Tramer, Federica; Vrhovšek, Urška; Mattivi, Fulvio; Passamonti, Sabina

    2016-01-01

    Anthocyanins exert neuroprotection in various in vitro and in vivo experimental models. However, no details regarding their brain-related pharmacokinetics are so far available to support claims about their direct neuronal bioactivity as well as to design proper formulations of anthocyanin-based products. To gather this missing piece of knowledge, we intravenously administered a bolus of 668 nmol cyanidin 3-glucoside (C3G) in anaesthetized Wistar rats and shortly after (15 s to 20 min) we collected blood, brain, liver, kidneys and urine samples. Extracts thereof were analysed for C3G and its expected metabolites using UPLC/MS-MS. The data enabled to calculate a set of pharmacokinetics parameters. The main finding was the distinctive, rapid distribution of C3G in the brain, with an apparently constant plasma/brain ratio in the physiologically relevant plasma concentration range (19–355 nM). This is the first report that accurately determines the distribution pattern of C3G in the brain, paving the way to the rational design of future tests of neuroprotection by C3G in animal models and humans. PMID:26965389

  16. Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells

    PubMed Central

    2012-01-01

    Background Hepatic metabolic derangements are key components in the development of fatty liver disease. AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and carnitine palmitoyl transferase 1 (CPT-1) pathway. In this study, cyanidin-3-O-β-glucoside (Cy-3-g), a typical anthocyanin pigment was used to examine its effects on AMPK activation and fatty acid metabolism in human HepG2 hepatocytes. Results Anthocyanin Cy-3-g increased cellular AMPK activity in a calmodulin kinase kinase dependent manner. Furthermore, Cy-3-g substantially induced AMPK downstream target ACC phosphorylation and inactivation, and then decreased malonyl CoA contents, leading to stimulation of CPT-1 expression and significant increase of fatty acid oxidation in HepG2 cells. These effects of Cy-3-g are largely abolished by pharmacological and genetic inhibition of AMPK. Conclusion This study demonstrates that Cy-3-g regulates hepatic lipid homeostasis via an AMPK-dependent signaling pathway. Targeting AMPK activation by anthocyanin may represent a promising approach for the prevention and treatment of obesity-related nonalcoholic fatty liver disease. PMID:22243683

  17. Plant Food Delphinidin-3-Glucoside Significantly Inhibits Platelet Activation and Thrombosis: Novel Protective Roles against Cardiovascular Diseases

    PubMed Central

    Yang, Yan; Shi, Zhenyin; Reheman, Adili; Jin, Joseph W.; Li, Conglei; Wang, Yiming; Andrews, Marc C.; Chen, Pingguo; Zhu, Guangheng; Ling, Wenhua; Ni, Heyu

    2012-01-01

    Delphinidin-3-glucoside (Dp-3-g) is one of the predominant bioactive compounds of anthocyanins in many plant foods. Although several anthocyanin compounds have been reported to be protective against cardiovascular diseases (CVDs), the direct effect of anthocyanins on platelets, the key players in atherothrombosis, has not been studied. The roles of Dp-3-g in platelet function are completely unknown. The present study investigated the effects of Dp-3-g on platelet activation and several thrombosis models in vitro and in vivo. We found that Dp-3-g significantly inhibited human and murine platelet aggregation in both platelet-rich plasma and purified platelets. It also markedly reduced thrombus growth in human and murine blood in perfusion chambers at both low and high shear rates. Using intravital microscopy, we observed that Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for vessel occlusion. Dp-3-g also significantly inhibited thrombus growth in a carotid artery thrombosis model. To elucidate the mechanisms, we examined platelet activation markers via flow cytometry and found that Dp-3-g significantly inhibited the expression of P-selectin, CD63, CD40L, which reflect platelet α- and δ-granule release, and cytosol protein secretion, respectively. We further demonstrated that Dp-3-g downregulated the expression of active integrin αIIbβ3 on platelets, and attenuated fibrinogen binding to platelets following agonist treatment, without interfering with the direct interaction between fibrinogen and integrin αIIbβ3. We found that Dp-3-g reduced phosphorylation of adenosine monophosphate-activated protein kinase, which may contribute to the observed inhibitory effects on platelet activation. Thus, Dp-3-g significantly inhibits platelet activation and attenuates thrombus growth at both arterial and venous shear stresses, which likely contributes to its protective roles against thrombosis and CVDs. PMID:22624015

  18. Clinical Efficacy and Safety of Total Glucosides of Paeony for Primary Sjögren's Syndrome: A Systematic Review.

    PubMed

    Jin, Liang; Li, Chengyin; Li, Yanping; Wu, Bin

    2017-01-01

    To evaluate the clinical efficacy and safety of total glucosides of paeony (TGP) for primary Sjögren's syndrome (pSS). Eight electronic databases were searched from their inception to July 2016. Clinical randomized controlled trials (RCTs) were included. The study quality was evaluated according to the standard suggested in the Cochrane Handbook. RevMan 5.1 was used for statistical analysis. Seven RCTs involving 443 patients were included. The results showed that TGP combined with an immunosuppressant (IS) showed greater efficacy for improving the saliva flow test of pSS compared to immunosuppressant alone (WMD -6.88, 95% CI -9.02 to -4.74, and P < 0.00001). And the same trend favouring TGP-IS dual combination was found in Schirmer test (WMD 1.63, 95% CI 0.26 to 3.01, and P = 0.02), ESR (WMD 7.33, 95% CI -10.08 to -4.59, and P < 0.00001), CRP (WMD -6.00, 95% CI -7.17 to -4.83, and P < 0.00001), IgM (WMD = -0.42, 95% CI -0.70 to 0.13, and P = 0.004), and IgG (WMD -3.22, 95% CI -4.32 to -2.12, and P < 0.00001) analysis. However, TGP did not affect IgA (WMD 0.53, 95% CI -1.34 to -0.29, and P = 0.20). The adverse events manifested no significant differences between the two groups. The TGP-IS combination is superior to IS alone in the treatment of pSS. However, due to the low quality of included studies, high-quality RCTs are needed to confirm the beneficial effects of TGP.

  19. In Vitro and In Silico Antidiabetic and Antimicrobial Evaluation of Constituents from Kickxia ramosissima (Nanorrhinum ramosissimum)

    PubMed Central

    Amin, Adnan; Tuenter, Emmy; Foubert, Kenn; Iqbal, Jamhsed; Cos, Paul; Maes, Louis; Exarchou, Vassiliki; Apers, Sandra; Pieters, Luc

    2017-01-01

    Background and Aims: Kickxia ramosissima (Wall.) Janch (or Nanorrhinum ramosissimum (Wall.) Betsche is a well-known medicinal plant in Pakistan that is traditionally used in diabetic and inflammatory conditions. Because little information is available on its phytochemical composition, a range of constituents were isolated and evaluated in vitro in assays related to the traditional use. Methods: Dried whole plant material was extracted and chromatographically fractionated. Isolated constituents were evaluated in silico and in vitro in assays related to the traditional use against diabetes (inhibition of α-glucosidase activity; inhibition of advanced glycation endproducts) and in inflammatory conditions (inhibition of AAPH induced linoleic acid peroxidation, inhibition of 15-LOX, antimicrobial activity). Results: Phytochemical analysis of the extracts and fractions led to isolation of 7 compounds, including the iridoids kickxiasine (being a new compound), mussaenosidic acid, mussaenoside and linarioside; the flavonoids pectolinarigenin and pectolinarin; and 4-hydroxy-benzoic acid methyl ester. The iridoids showed weak antiglycation activity. The flavonoids, however, showed interesting results as pectolinarigenin was highly active compared to pectolinarin. In the α-glucosidase inhibition assay, only weak activity was observed for the iridoids. However, the flavonoid pectolinarigenin showed good activity, followed by pectolinarin. In the 15-LOX experiment, moderate inhibition was recorded for most compounds, the iridoids mussaenosidic acid and mussaenoside being the most active. In the AAPH assay, weak or no inhibition was recorded for all compounds. The in silico assays for the α-glucosidase and 15-LOX assays confirmed the results of respective in vitro assays. Pectolinarigenin showed moderate antimicrobial activity against Staphylococcus aureus, Plasmodium falciparum K1, and Trypanosoma cruzi, but it was not cytotoxic on a human MRC-5 cell line. Conclusion: Our

  20. Application of Differential Colorimetry To Evaluate Anthocyanin-Flavonol-Flavanol Ternary Copigmentation Interactions in Model Solutions.

    PubMed

    Gordillo, Belén; Rodríguez-Pulido, Francisco J; González-Miret, M Lourdes; Quijada-Morín, Natalia; Rivas-Gonzalo, Julián C; García-Estévez, Ignacio; Heredia, Francisco J; Escribano-Bailón, M Teresa

    2015-09-09

    The combined effect of anthocyanin-flavanol-flavonol ternary interactions on the colorimetric and chemical stability of malvidin-3-glucoside has been studied. Model solutions with fixed malvidin-3-glucoside/(+)-catechin ratio (MC) and variable quercetin-3-β-d-glucoside concentration (MC+Q) and solutions with fixed malvidin-3-glucoside/quercetin-3-β-d-glucoside ratio (MQ) and variable (+)-catechin concentration (MQ+C) were tested at levels closer to those existing in wines. Color variations during storage were evaluated by differential colorimetry. Changes in the anthocyanin concentration were monitored by HPLC-DAD. CIELAB color-difference formulas were demonstrated to be of practical interest to assess the stronger and more stable interaction of quercetin-3-β-d-glucoside with MC binary mixture than (+)-catechin with MQ mixture. The results imply that MC+Q ternary solutions kept their intensity and bluish tonalities for a longer time in comparison to MQ+C solutions. The stability of malvidin-3-glucoside improves when the concentration of quercetin-3-β-d-glucoside increases in MC+Q mixtures, whereas the addition of (+)-catechin in MQ+C mixtures resulted in an opposite effect.

  1. Inhibition of Carrageenan-Induced Acute Inflammation in Mice by Oral Administration of Anthocyanin Mixture from Wild Mulberry and Cyanidin-3-Glucoside

    PubMed Central

    Hassimotto, Neuza Mariko Aymoto; Moreira, Vanessa; do Nascimento, Neide Galvão; Souto, Pollyana Cristina Maggio de Castro; Teixeira, Catarina; Lajolo, Franco Maria

    2013-01-01

    Anthocyanins are flavonoids which demonstrated biological activities in in vivo and in vitro models. Here in the anti-inflammatory properties of an anthocyanin-enriched fraction (AF) extracted from wild mulberry and the cyanidin-3-glucoside (C3G), the most abundant anthocyanin in diet, were studied in two acute inflammation experimental models, in the peritonitis and in the paw oedema assays, both of which were induced by carrageenan (cg) in mice. In each trial, AF and C3G (4 mg/100 g/animal) were orally administered in two distinct protocols: 30 min before and 1 h after cg stimulus. The administration of both AF and C3G suppresses the paw oedema in both administration times (P < 0.05). In the peritonitis, AF and C3G reduced the polymorphonuclear leukocytes (PMN) influx in the peritoneal exudates when administered 1 h after cg injection. AF was more efficient reducing the PMN when administered 30 min before cg. Both AF and C3G were found to suppress mRNA as well as protein levels of COX-2 upregulated by cg in both protocols, but the inhibitory effect on PGE2 production in the peritoneal exudates was observed when administered 30 min before cg (P < 0.05). Our findings suggest that AF and C3G minimize acute inflammation and they present positive contributions as dietary supplements. PMID:23484081

  2. Synergistic effect of atorvastatin and Cyanidin-3-glucoside on angiotensin II-induced inflammation in vascular smooth muscle cells.

    PubMed

    Pantan, Rungusa; Tocharus, Jiraporn; Suksamrarn, Apichart; Tocharus, Chainarong

    2016-03-15

    Statins have often been used in atherosclerosis treatment because of its pleiotropic effects on inflammation. However, some adverse effects of high doses of statin show reverse effects after withdrawal. Cyanidin-3-glucoside (C3G) is a powerful anti-inflammation and antioxidant that has been of interest for use in combination with low doses of statin, which may be alternative treatment for atherosclerosis. The objective is to investigate the synergistic effect of atorvastatin and C3G in angiotensin II (Ang II)-induced inflammation in vascular smooth muscle cells. Human aortic smooth muscle cells (HASMCs) were exposed to Ang II with or without atorvastatin and C3G alone, or in combination. The results revealed that the combination of atorvastatin and C3G produces synergism against inflammation and oxidative stress. The mechanism of the combination of atorvastatin and C3G suppressed the translocation of the p65 subunit of NF-κB from cytosol to nucleus, and attenuated the expression of proteins including inducible nitric oxide synthase, intracellular adhesion molecule 1(ICAM-1), and vascular cell adhesion molecule 1(VCAM-1), in addition to nitric oxide (NO) production. Moreover, C3G exerts the antioxidative properties of atorvastatin through down-regulating NOX1 and promoting the activity of the Nrf2(-)ARE signaling pathway and downstream proteins including heme oxygenase (HO-1), NAD(P)H:quinoneoxidoreductase 1 (NQO-1), and glutamate-cysteine ligase catalytic subunit (γ-GCLC), besides increasing the activity of superoxide dismutase (SOD) enzymes. Taken together, these results suggest that a combination of low dose statins and C3G might serve as a potential regulator of the atherosclerosis process which is mediated by attenuating oxidative stress, thereby inhibiting NF-κB and activating Nrf2 signaling pathways induced by Ang II. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cyanidin-3-glucoside inhibits inflammatory activities in human fibroblast-like synoviocytes and in mice with collagen-induced arthritis.

    PubMed

    Sun, Yan; Li, Lingling

    2018-05-19

    Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint tissue inflammation. Cyanidin-3-glucoside (C3G) is a major component in the flavonoid family and has shown anti-inflammatory, anti-oxidant and anti-tumor activity. In this study, we investigated the effects of C3G on lipopolysaccharides (LPS)-induced inflammation on human rheumatoid fibroblast-like synoviocytes (FLS) and on collagen-induced arthritis (CIA) mice model. We treated FLS with C3G followed by LPS induction, the expressions of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and IL-6 and the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway were analyzed. CIA was induced in mice and the arthritic mice were treated with C3G for 3 weeks. The disease severity was compared between control and C3G treated mice. The serum levels of TNF-α, IL-1β and IL-6 were analyzed by ELISA. C3G inhibited LPS-induced TNF-α, IL-1β and IL-6 expression in FLS. Moreover, C3G inhibited LPS-induced p65 production and IκBa, p38, ERK and JNK phosphorylation. Administration of C3G significantly attenuated disease in mice with CIA and decreased the serum level of TNF-α, IL-1β and IL-6. C3G inhibited LPS-induced inflammation in human FLS by inhibiting activation of NF-κB and MAPK signaling pathway. C3G exhibited therapeutic effects in mice with CIA. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market.

    PubMed

    Malachova, Alexandra; Dzuman, Zbynek; Veprikova, Zdenka; Vaclavikova, Marta; Zachariasova, Milena; Hajslova, Jana

    2011-12-28

    Fusarium toxins, Alternaria toxins, and ergot alkaloids represent common groups of mycotoxins that can be found in cereals grown under temperate climatic conditions. Because most of them are chemically and thermally stable, these toxic fungal secondary metabolites might be transferred from grains into the final products. To get information on the commensurate contamination of various cereal-based products collected from the Czech retail market in 2010, the occurrence of "traditional" mycotoxins such as groups of A and B trichothecenes and zearalenone, less routinely determined Alternaria toxins (alternariol, alternariol monomethyl ether and altenuene), ergot alkaloids (ergosine, ergocryptine, ergocristine, and ergocornine) and "emerging" mycotoxins (enniatins A, A1, B, and B1 and beauvericin) were monitored. In a total 116 samples derived from white flour and mixed flour, breakfast cereals, snacks, and flour, only trichothecenes A and B and enniatins were found. Deoxynivalenol was detected in 75% of samples with concentrations ranging from 13 to 594 μg/kg, but its masked form, deoxynivalenol-3-β-d-glucoside, has an even higher incidence of 80% of samples, and concentrations ranging between 5 and 72 μg/kg were detected. Nivalenol was found only in three samples at levels of 30 μg/kg. For enniatins, all of the samples investigated were contaminated with at least one of four target enniatins. Enniatin A was detected in 97% of samples (concentration range of 20-2532 μg/kg) followed by enniatin B with an incidence in 91% of the samples (concentration range of 13-941 μg/kg) and enniatin B1 with an incidence of 80% in the samples tested (concentration range of 8-785 μg/kg). Enniatin A1 was found only in 44% of samples at levels ranging between 8 and 851 μg/kg.

  5. Synergistic effect of apple extracts and quercetin 3-beta-d-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro.

    PubMed

    Yang, Jun; Liu, Rui Hai

    2009-09-23

    Breast cancer is the most frequently diagnosed cancer in women. An alternative strategy to reduce the risk of cancer is through dietary modification. Although phytochemicals naturally occur as complex mixtures, little information is available regarding possible additive, synergistic, or antagonistic interactions among compounds. The antiproliferative activity of apple extracts and quercetin 3-beta-d-glucoside (Q3G) was assessed by measurement of the inhibition of MCF-7 human breast cancer cell proliferation. Cell cytotoxicity was determined by the methylene blue assay. The two-way combination of apple plus Q3G was conducted. In this two-way combination, the EC(50) values of apple extracts and Q3G were 2- and 4-fold lower, respectively, than those of apple extracts and Q3G alone. The combination index (CI) values at 50 and 95% inhibition rates were 0.76 +/- 0.16 and 0.42 +/- 0.10, respectively. The dose-reduction index (DRI) values of the apple extracts and Q3G to achieve a 50% inhibition effect were reduced by 2.03 +/- 0.55 and 4.28 +/- 0.39-fold, respectively. The results suggest that the apple extracts plus Q3G combination possesses a synergistic effect in MCF-7 cell proliferation.

  6. Identification and quantification of anthocyanins in fruits from Neomitranthes obscura (DC.) N. Silveira an endemic specie from Brazil by comparison of chromatographic methodologies.

    PubMed

    Gouvêa, Ana Cristina M S; Melo, Armindo; Santiago, Manuela C P A; Peixoto, Fernanda M; Freitas, Vitor; Godoy, Ronoel L O; Ferreira, Isabel M P L V O

    2015-10-15

    Neomitranthes obscura (DC.) N. Silveira is a Brazilian fruit belonging to the Myrtaceae family that contains anthocyanins in the peel and was studied for the first time in this work. Delphinidin-3-O-galactoside, delphinidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, petunidin-3-O-glucoside, pelargonidin-3-O-glucoside, peonidin-3-O-galactoside, peonidin-3-O-glucoside, cyanidin-3-O-xyloside were separated and identified by LC/DAD/MS and by co-elution with standards. Reliable quantification of anthocyanins in the mature fruits was performed by HPLC/DAD using weighted linear regression model from 0.05 to 50mg of cyaniding-3-O-glucoside L(-1) because it gave better fit quality than least squares linear regression. Good precision and accuracy were obtained. The total anthocyanin content of mature fruits was 263.6 ± 8.2 mg of cyanidin-3-O-glucoside equivalents 100 g(-1) fresh weight, which was in the same range found in literature for anthocyanin rich fruits. Copyright © 2015. Published by Elsevier Ltd.

  7. Contribution of Monomeric Anthocyanins to the Color of Young Red Wine: Statistical and Experimental Approaches.

    PubMed

    Han, Fu Liang; Li, Zheng; Xu, Yan

    2015-12-01

    Monomeric anthocyanin contributions to young red wine color were investigated using partial least square regression (PLSR) and aqueous alcohol solutions in this study. Results showed that the correlation between the anthocyanin concentration and the solution color fitted in a quadratic regression rather than linear or cubic regression. Malvidin-3-O-glucoside was estimated to show the highest contribution to young red wine color according to its concentration in wine, whereas peonidin-3-O-glucoside in its concentration contributed the least. The PLSR suggested that delphinidin-3-O-glucoside and peonidin-3-O-glucoside under the same concentration resulted in a stronger color of young red wine compared with malvidin-3-O-glucoside. These estimates were further confirmed by their color in aqueous alcohol solutions. These results suggested that delphinidin-3-O-glucoside and peonidin-3-O-glucoside were primary anthocyanins to enhance young red wine color by increasing their concentrations. This study could provide an alternative approach to improve young red wine color by adjusting anthocyanin composition and concentration. © 2015 Institute of Food Technologists®

  8. Total glucosides of paeony (TGP) inhibits the production of inflammatory cytokines in oral lichen planus by suppressing the NF-κB signaling pathway.

    PubMed

    Wang, Yanni; Zhang, Han; Du, Guanhuan; Wang, Yufeng; Cao, Tianyi; Luo, Qingqiong; Chen, Junjun; Chen, Fuxiang; Tang, Guoyao

    2016-07-01

    Total glucosides of paeony (TGP) is a bioactive compound extracted from paeony roots and has been widely used to ameliorate inflammation in several autoimmune and inflammatory diseases. However, the anti-inflammatory effect of TGP on oral lichen planus (OLP), a chronic inflammatory oral condition characterized by T-cell infiltration and abnormal epithelial keratinization cycle remains unclear. In this study, we found that TLR4 was highly expressed and activation of the NF-κB signaling pathway was obviously observed in the OLP tissues. Moreover, there was significant higher mRNA expression of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in OLP keratinocytes than normal oral epithelial keratinocytes. With the help of the cell culture model by stimulating the keratinocyte HaCaT cells with lipopolysaccharides (LPS), we mimicked the local inflammatory environment of OLP. And we further confirmed that TGP could inhibit LPS-induced production of IL-6 and TNF-α in HaCaT cells via a dose-dependent manner. TGP treatment decreased the phosphorylation of IκBα and NF-κB p65 proteins, thus leading to less nuclear translocation of NF-κB p65 in HaCaT cells. Therefore, our data suggested that TGP may be a new potential candidate for the therapy of OLP. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways.

    PubMed

    Fratantonio, D; Speciale, A; Ferrari, D; Cristani, M; Saija, A; Cimino, F

    2015-12-15

    Free fatty acids (FFA), commonly elevated in diabetes and obesity, have been shown to impair endothelial functions and cause oxidative stress, inflammation, and insulin resistance. Anthocyanins represent one of the most important and interesting classes of flavonoids and seem to play a role in preventing cardiovascular diseases. Herein, we investigated the in vitro protective effects of cyanidin-3-O-glucoside (C3G) on cell signaling pathways in human umbilical vein endothelial cells (HUVECs) exposed to palmitic acid (PA), the most prevalent saturated FFA in circulation. Our data reported a significant augmentation of free radicals and oxidative stress in HUVECs exposed to PA for 3h, while C3G pretreatment improved intracellular redox status altered by FFA. Moreover, C3G significantly inhibited NF-κB proinflammatory pathway and adhesion molecules induced by PA, and these effects were attributed to the activation of Nrf2/EpRE pathway. In fact, C3G induced Nrf2 nuclear localization and activation of cellular antioxidant and cytoprotective genes at baseline and after PA exposure in endothelial cells. Our data confirm the hypothesis that natural Nrf2 inducers, such as C3G, might be a potential therapeutic strategy to protect vascular system against various stressors preventing several pathological conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. [Flavonols and flavones of vegetables. VII. Flavonols of leek, chive and garlic (author's transl)].

    PubMed

    Starke, H; Herrmann, K

    1976-01-01

    Green leaves of leek and chive mainly contain kaempferol glycosides, with mono- and di-glycosides dominating in leek and di- and tri-glycosides in chive. In leek glucose is dominant as sugar component compared to xylose; in chive we found glucose and galactose. Kaempferol-3-beta-D-glucoside and kaempferol-3-xylosyl-beta-D-glucoside were isolated from leek and the 3-beta-D-glucosides of kaempferol, quercetin and isorhamnetin as by-glycosides from chive. In leek traces of quercetin-3-glucoside were identified by tlc, but no spiraeoside (quercetin-4'-glucoside) could be detected in the two species. The bulbs of garlic and leek contain only few milligram of glycosides of kaempferol and quercetin per kg fresh weight.

  11. Exogenous feeding of immediate precursors reveals synergistic effect on picroside-I biosynthesis in shoot cultures of Picrorhiza kurroa Royle ex Benth

    NASA Astrophysics Data System (ADS)

    Kumar, Varun; Sharma, Neha; Sood, Hemant; Chauhan, Rajinder Singh

    2016-07-01

    In the current study, we asked how the supply of immediate biosynthetic precursors i.e. cinnamic acid (CA) and catalpol (CAT) influences the synthesis of picroside-I (P-I) in shoot cultures of P. kurroa. Our results revealed that only CA and CA+CAT stimulated P-I production with 1.6-fold and 4.2-fold, respectively at 2.5 mg/100 mL concentration treatment. Interestingly, feeding CA+CAT not only directed flux towards p-Coumaric acid (p-CA) production but also appeared to trigger the metabolic flux through both shikimate/phenylpropanoid and iridoid pathways by utilizing more of CA and CAT for P-I biosynthesis. However, a deficiency in the supply of either the iridoid or the phenylpropanoid precursor limits flux through the respective pathways as reflected by feedback inhibition effect on PAL and decreased transcripts expressions of rate limiting enzymes (DAHPS, CM, PAL, GS and G10H). It also appears that addition of CA alone directed flux towards both p-CA and P-I production. Based on precursor feeding and metabolic fluxes, a current hypothesis is that precursors from both the iridoid and shikimate/phenylpropanoid pathways are a flux limitation for P-I production in shoot cultures of P. kurroa plants. This work thus sets a stage for future endeavour to elevate production of P-I in cultured plant cells.

  12. Validation of a RP-HPLC-DAD Method for Chamomile (Matricaria recutita) Preparations and Assessment of the Marker, Apigenin-7-glucoside, Safety and Anti-Inflammatory Effect

    PubMed Central

    Miguel, Felipe Galeti; Spinola, Nathália Favaretto; Ribeiro, Diego Luis; Barcelos, Gustavo Rafael Mazzaron; Antunes, Lusânia Maria Greggi; Hori, Juliana Issa; Marquele-Oliveira, Franciane; Rocha, Bruno Alves; Berretta, Andresa Aparecida

    2015-01-01

    Chamomile is a medicinal plant, which presents several biological effects, especially the anti-inflammatory effect. One of the compounds related to this effect is apigenin, a flavonoid that is mostly found in its glycosylated form, apigenin-7-glucoside (APG), in natural sources. However, the affectivity and safety of this glycoside have not been well explored for topical application. In this context, the aim of this work was to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC-DAD) method to quantify APG in chamomile preparations. Additionally, the safety and the anti-inflammatory potential of this flavonoid were verified. The RP-HPLC-DAD method was developed and validated with linearity at 24.0–36.0 μg/mL range (r = 0.9994). Intra- and interday precision (RSD) were 0.27–2.66% and accuracy was 98.27–101.21%. The validated method was applied in the analysis of chamomile flower heads, glycolic extract, and Kamillen cream, supporting the method application in the quality control of chamomile preparations. Furthermore, the APG safety was assessed by MTT cytotoxicity assay and mutagenic protocols and the anti-inflammatory activity was confirmed by a diminished TNF-α production showed by mice macrophages treated with APG following LPS treatment. PMID:26421053

  13. Tyramine Pathways in Citrus Plant Defense: Glycoconjugates of Tyramine and Its N-Methylated Derivatives.

    PubMed

    Servillo, Luigi; Castaldo, Domenico; Giovane, Alfonso; Casale, Rosario; D'Onofrio, Nunzia; Cautela, Domenico; Balestrieri, Maria Luisa

    2017-02-01

    Glucosylated forms of tyramine and some of its N-methylated derivatives are here reported for the first time to occur in Citrus genus plants. The compounds tyramine-O-β-d-glucoside, N-methyltyramine-O-β-d-glucoside, and N,N-dimethyltyramine-O-β-d-glucoside were detected in juice and leaves of sweet orange, bitter orange, bergamot, citron, lemon, mandarin, and pomelo. The compounds were identified by mass spectrometric analysis, enzymatic synthesis, and comparison with extracts of Stapelia hirsuta L., a plant belonging to the Apocynaceae family in which N,N-dimethyltyramine-O-β-d-glucoside was identified by others. Interestingly, in Stapelia hirsuta we discovered also tyramine-O-β-d-glucoside, N-methyltyramine-O-β-d-glucoside, and the tyramine metabolite, N,N,N-trimethyltyramine-O-β-glucoside. However, the latter tyramine metabolite, never described before, was not detected in any of the Citrus plants included in this study. The presence of N-methylated tyramine derivatives and their glucosylated forms in Citrus plants, together with octopamine and synephrine, also deriving from tyramine, supports the hypothesis of specific biosynthetic pathways of adrenergic compounds aimed to defend against biotic stress.

  14. Cyanidin-3-O-beta-glucoside inhibits LPS-induced expression of inflammatory mediators through decreasing IkappaBalpha phosphorylation in THP-1 cells.

    PubMed

    Zhang, Yinghui; Lian, Fuzhi; Zhu, Yanna; Xia, Min; Wang, Qing; Ling, Wenhua; Wang, Xiang-Dong

    2010-09-01

    As a common phytochemical, cyanidin 3-O-beta-glucoside (C3G) has a role in inhibiting inflammatory mediators; however, its mechanism of action remains unclear. The purpose of this study was to explore the effect of C3G on lipopolysaccharide (LPS)-stimulated TNFalpha and IL-6 expression in the human monocyte/macrophage cell line THP-1, and to explore the mechanisms involved. Differentiated THP-1 cells were treated with different concentrations of C3G (0.005, 0.05, 0.5,10 microM) in the absence or presence of 1 ng/mL LPS. mRNA expression levels were detected by real time PCR, and secretion of TNFalpha and IL-6, phosphorylated IkappaBalpha, and nuclear factor-kappa B (NF-kappaB) P65 were monitored by ELISA or Western blotting analysis. The role of an inhibitor of IkappaBalpha phosphorylation, BAY 11-7082, in C3G inhibition of LPS-induced cytokines expression was investigated. C3G (0.05-0.5 microM) treatment significantly inhibited LPS-stimulated TNFalpha and IL-6 mRNA expression and secretion of these proteins by THP-1 cells. Phosphorylation of IkappaBalpha and NF-kappaB nuclear translocation could be blocked by 0.5 microM C3G. BAY 11-7082 treatment abolished C3G-induced reduction of TNFalpha and IL-6. Our results suggest that C3G exerts its anti-inflammatory effect through inhibiting IkappaBalpha phosphorylation, thereby suppressing NF-kappaB activity in THP-1 cells.

  15. Using reversed phase high performance liquid chromatography to study the complexation of anthocyanins with β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Lapshova, M. S.; Deineka, L. A.

    2014-06-01

    It is shown by means of reversed phase high performance liquid chromatography (RP HPLC) with mobile phases containing additions of β-cyclodextrin that 5-glucosides of cyanidin and pelargonidin form stronger inclusion complexes than 3-glucosides; this is explained by the steric interference of the glucoside radical.

  16. Modulation of nuclear factor-κB signaling and reduction of neural tube defects by quercetin-3-glucoside in embryos of diabetic mice.

    PubMed

    Tan, Chengyu; Meng, Fantong; Reece, E Albert; Zhao, Zhiyong

    2018-05-04

    Diabetes mellitus in early pregnancy increases the risk of birth defects in infants. Maternal hyperglycemia stimulates the expression of nitric oxide (NO) synthase 2 (NOS2), which can be regulated by transcription factors of the nuclear factor-κB (NF-κB) family. Increases in reactive nitrogen species (RNS) generate intracellular stress conditions, including nitrosative, oxidative, and endoplasmic reticulum (ER) stresses, and trigger programmed cell death (or apoptosis) in the neural folds, resulting in neural tube defects (NTDs) in the embryo. Inhibiting NOS2 can reduce NTDs; however, the underlying mechanisms require further delineation. Targeting NOS2 and associated nitrosative stress using naturally occurring phytochemicals is a potential approach to preventing birth defects in diabetic pregnancies. This study aims to investigate the effect of quercetin-3-glucoside (Q3G), a polyphenol flavonoid found in fruit, in reducing maternal diabetes-induced NTDs in an animal model, and to delineate the molecular mechanisms underlying Q3G action in regulating NOS2 expression. Female mice (C57BL/6) were induced to develop diabetes using streptozotocin before pregnancy. Diabetic pregnant mice were administered Q3G (100 mg/kg) daily via gavage feeding, introduction of drug to the stomach directly via a feeding needle, during neurulation from embryonic (E) day 6.5 to E9.5. After treatment, E10.5 embryos were collected and examined for the presence of NTDs and apoptosis in the neural tube. Expression of Nos2 and superoxide dismutase 1 (Sod1; an antioxidative enzyme) was quantified using Western blot assay. Nitrosative, oxidative, and endoplasmic reticulum (ER) stress conditions were assessed using specific biomarkers. Expression and posttranslational modification of factors in the NF-κB system were investigated. Treatment with Q3G (suspended in water) significantly decreased NTD rate (24.7%) and apoptosis in the embryos of diabetic mice, compared with those in the water

  17. Medicinal foodstuffs. V. Moroheiya. (1): Absolute stereostructures of corchoionosides A, B, and C, histamine release inhibitors from the leaves of Vietnamese Corchorus olitorius L. (Tiliaceae).

    PubMed

    Yoshikawa, M; Shimada, H; Saka, M; Yoshizumi, S; Yamahara, J; Matsuda, H

    1997-03-01

    Three new ionone glucosides named corchoionosides A, B, and C were isolated from the leaves of Corchorus olitorius, commonly called "moroheiya" in Japanese, together with seven known compounds, an ionone glucoside (6S,9R)-roseoside, a monoterpene glucoside betulalbuside A, two flavonol glucosides astragalin and isoquercitrin, two coumarin glucosides scopolin and cichoriine, and chlorogenic acid. The absolute stereostructures of corchoionosides A, B, and C were determined by chemical and physiochemical evidence, which included the result of application of a modified Mosher's method, the CD helicity rule, and chemical correlation with (6S,9R)-roseoside. Corchoionosides A and B and (6S,9R)-roseoside were found to inhibit the histamine release from rat peritoneal exudate cells induced by antigen-antibody reaction.

  18. Degradation kinetics of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside during hot air and vacuum drying in mulberry (Morus alba L.) fruit: A comparative study based on solid food system.

    PubMed

    Zhou, Mo; Chen, Qinqin; Bi, Jinfeng; Wang, Yixiu; Wu, Xinye

    2017-08-15

    The aim of this study is to ascertain the degradation kinetic of anthocyanin in dehydration process of solid food system. Mulberry fruit was treated by hot air and vacuum drying at 60 and 75°C. The contents of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were determined by using high performance liquid chromatography. Kinetic and thermodynamic parameters were calculated for analysing the degradation characteristics. Model fitting results showed monomeric anthocyanin degradations were followed the second-order kinetic. Vacuum drying presented high kinetic rate constants and low t 1/2 values. Thermodynamic parameters including the activation energy, enthalpy change and entropy change appeared significant differences between hot air and vacuum drying. Both heating techniques showed similar effects on polyphenol oxidase activities. These results indicate the anthocyanin degradation kinetic in solid food system is different from that in liquid and the oxygen can be regarded as a catalyst to accelerate the degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cyanidin-3-glucoside extracted from mulberry fruit can reduce N-methyl-N-nitrosourea-induced retinal degeneration in rats.

    PubMed

    Lee, Seung Hee; Jeong, Eojin; Paik, Sun-Sook; Jeon, Ji Hyun; Jung, Sung Won; Kim, Hyun-Bok; Kim, Muyan; Chun, Myung-Hoon; Kim, In-Beom

    2014-01-01

    To investigate the effect of cyanidin-3-O-glucoside (C3G) on a rat retinal degeneration (RD) model. Experimental RD was induced in rats by the intraperitoneal injection of N-methyl-N-nitrosourea (MNU) at 50 mg/kg. C3G extracted from mulberry (Morus alba L.) fruit (50 mg/kg) was orally administered, daily for 1, 2 and 4 weeks after MNU injection. The effects of C3G administration on MNU-induced RD retinas were histologically and functionally assessed by hematoxylin and eosin staining and electroretinography (ERG), respectively. The degree of retinal injury in C3G-administered RD rats was evaluated by immunohistochemistry with an antibody against glial fibrillary acidic protein (GFAP). The preferential protective effect of C3G on scotopic vision was examined by western blot analysis. Marked loss of photoreceptors in the outer nuclear layer (ONL) was observed in RD rats at 2 and 4 weeks after MNU injection, while the ONL in the MNU-induced RD rats given C3G was relatively well preserved. Immunohistochemistry with anti-GFAP showed that retinal injury was also reduced in the retinas of the rats given C3G. Functional assessment by using ERG recordings showed that scotopic ERG responses were significantly increased in RD rats given C3G for 4 weeks (p < 0.01) compared with that of untreated RD rats. In the RD rats given short-term C3G (for 1 and 2 weeks), the increase in ERG responses was not significant. In addition, western blot analysis showed that rhodopsin level in the C3G-administered RD retinas significantly increased compared to that in the non-administered RD retinas (p < 0.05), whereas red/green opsin level did not show any significant difference. Long-term administration of C3G extracted from mulberry fruit could structurally reduce photoreceptor damage and functionally improve scotopic visual functions in the RD rat model induced by MNU.

  20. Separation of three anthraquinone glycosides including two isomers by preparative high-performance liquid chromatography and high-speed countercurrent chromatography from Rheum tanguticum Maxim. ex Balf.

    PubMed

    Chen, Tao; Li, Hongmei; Zou, Denglang; Liu, Yongling; Chen, Chen; Zhou, Guoying; Li, Yulin

    2016-08-01

    Anthraquinone glycosides, such as chrysophanol 1-O-β-d-glucoside, chrysophanol 8-O-β-d-glucoside, and physion 8-O-β-d-glucoside, are the accepted important active components of Rheum tanguticum Maxim. ex Balf. due to their pharmacological properties: antifungal, antimicrobial, cytotoxic, and antioxidant activities. However, an effective method for the separation of the above-mentioned anthraquinone glycosides from this herb is not currently available. Especially, greater difficulty existed in the separation of the two isomers chrysophanol 1-O-β-d-glucoside and chrysophanol 8-O-β-d-glucoside. This study demonstrated an efficient strategy based on preparative high-performance liquid chromatography and high-speed countercurrent chromatography for the separation of the above-mentioned anthraquinone glycosides from Rheum tanguticum Maxim.ex Balf. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Identification and characterization of anthocyanins in yard-long beans (Vigna unguiculata ssp. sesquipedalis L.) by High-performance liquid chromatography with diode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-ESI/MS) analysis.

    PubMed

    Ha, Tae Joung; Lee, Myoung-Hee; Park, Chang-Hwan; Pae, Suk-Bok; Shim, Kang-Bo; Ko, Jong-Min; Shin, Sang-Ouk; Baek, In-Youl; Park, Keum-Yong

    2010-02-24

    Anthocyanins play an important role in physiological functions related to human health. The objective of this study was to investigate the profiles of anthocyanins in the immature purple pods and black seeds of yard-long beans ( Vigna unguiculata ssp. sesquipedalis L.) using high-performance liquid chromatography (HPLC) with diode array detection and electrospray ionization/mass spectrometry (DAD-ESI/MS) analysis. The individual anthocyanins were identified by comparing their mass spectrometric data and retention times. In the purple pods, five individual anthocyanins were identified: delphinidin-3-O-glucoside (2), cyanidin-3-O-sambubioside (4), cyanidin-3-O-glucoside (5), pelargonidin-3-O-glucoside (7), and peonidin-3-O-glucoside (8). From the black seed coat of the yard-long beans, seven anthocyanins were identified, including delphinidin-3-O-galactoside (1), cyanidin-3-O-galactoside (3), petunidin-3-O-glucoside (6), and malvidin-3-O-glucoside (9), together with compounds 2, 5, and 8. In this study, we report for the first time anthocyanin profiles for the pod and seed coat of yard-long beans.

  2. Thermal Degradation Kinetics Modeling of Benzophenones and Xanthones during High-Temperature Oxidation of Cyclopia genistoides (L.) Vent. Plant Material.

    PubMed

    Beelders, Theresa; de Beer, Dalene; Joubert, Elizabeth

    2015-06-10

    Degradation of the major benzophenones, iriflophenone-3-C-glucoside-4-O-glucoside and iriflophenone-3-C-glucoside, and the major xanthones, mangiferin and isomangiferin, of Cyclopia genistoides followed first-order reaction kinetics during high-temperature oxidation of the plant material at 80 and 90 °C. Iriflophenone-3-C-glucoside-4-O-glucoside was shown to be the most thermally stable compound. Isomangiferin was the second most stable compound at 80 °C, while its degradation rate constant was influenced the most by increased temperature. Mangiferin and iriflophenone-3-C-glucoside had comparable degradation rate constants at 80 °C. The thermal degradation kinetic model was subsequently evaluated by subjecting different batches of plant material to oxidative conditions (90 °C/16 h). The model accurately predicted the individual contents of three of the compounds in aqueous extracts prepared from oxidized plant material. The impact of benzophenone and xanthone degradation was reflected in the decreased total antioxidant capacity of the aqueous extracts, as determined using the oxygen radical absorbance capacity and DPPH(•) scavenging assays.

  3. Chronic cyanidin-3-glucoside administration improves short-term spatial recognition memory but not passive avoidance learning and memory in streptozotocin-diabetic rats.

    PubMed

    Nasri, Sima; Roghani, Mehrdad; Baluchnejadmojarad, Tourandokht; Balvardi, Mahboubeh; Rabani, Tahereh

    2012-08-01

    This research study was conducted to evaluate the efficacy of chronic cyanidin-3-glucoside (C3G) on alleviation of learning and memory deficits in diabetic rats as a result of the observed antidiabetic and antioxidant activity of C3G. Male Wistar rats were divided into control, diabetic, C3G-treated-control and -diabetic groups. The C3G was administered i.p. at a dose of 10 mg/kg on alternate days for eight weeks. For evaluation of learning and memory, initial latency (IL) and step-through latency (STL) were determined at the end of study using passive avoidance test. Meanwhile, spatial recognition memory was assessed as alternation in the Y-maze task. Oxidative stress markers in brain tissue were also measured. It was found that the alternation score of the diabetic rats was lower than that of control (p < 0.01) and C3G-treated diabetic rats showed a higher alternation score as compared to diabetic group (p < 0.05). Diabetic rats also developed a significant impairment in retention and recall in passive avoidance test (p < 0.01) and C3G treatment of diabetic rats did not produce any significant improvement. Meanwhile, increased level of malondialdehyde (MDA) in diabetic rats was significantly reduced following C3G treatment (p < 0.05). Taken together, chronic C3G could improve short-term spatial recognition memory disturbance in the Y-maze test but not retention and recall capability in passive avoidance test in STZ-diabetic rats. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    PubMed

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.

  5. Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS.

    PubMed

    Cantos, Emma; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2002-09-25

    Polyphenols present in red table grape varieties Red Globe, Flame Seedless, Crimson Seedless, and Napoleon, and the white varieties Superior Seedless, Dominga, and Moscatel Italica were analyzed by HPLC-DAD-MS. The anthocyanins peonidin 3-glucoside, cyanidin 3-glucoside (and their corresponding p-coumaroyl derivatives), malvidin 3-glucoside, petunidin 3-glucoside, and delphinidin 3-glucoside were found. In addition, caffeoyltartaric acid, p-coumaroyltartaric acid, and the flavonols quercetin 3-glucuronide, quercetin 3-rutinoside, quercetin 3-glucoside, kaempferol 3-galactoside, kaempferol 3-glucoside, and isorhamnetin 3-glucoside were detected. Flavan-3-ols were also detected, and were identified as gallocatechin, procyanidin B1, procyanidin B2, procyanidin B4, procyanidin C1, catechin, and epigallocatechin. These phenolics were present only in the skin, as the flesh of these grape cultivars was almost devoid of these compounds. Anthocyanins were the main phenolics in red grapes ranging from 69 (Crimson Seedless) to 151 (Flame Seedless) mg/kg fresh weight of grapes, whereas flavan-3-ols were the most abundant phenolics in the white varieties ranging from 52 (Dominga) to 81 (Moscatel Italica) mg/kg fresh weight of grapes. Total phenolics ranged from 115 (Dominga) to 361 (Flame Seedless) mg/kg fresh weight of grapes. This means that a serving of unpeeled table grapes (200 g) could provide up to 72 mg of total phenolics (Flame Seedless). These results indicate that the intake of unpeeled table grapes should be recommended in dietary habits as a potential source of antioxidant and anticarcinogenic phenolic compounds.

  6. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice.

    PubMed

    Wang, Yu; Tang, Changyun; Zhang, Hao

    2015-06-01

    Safflower (Carthamus tinctorius L.) is a traditional medicinal and edible herb with a long history of use in China. In this study, a model of hepatotoxicity induced by carbon tetrachloride (CCl 4 ) in mice was used to investigate the hepatoprotective effects of kaempferol 3-O-rutinoside (K-3-R) and kaempferol 3-O-glucoside (K-3-G), two kaempferol glycosides isolated from C. tinctorius L. K-3-R and K-3-G, at doses of 200 mg/kg and 400 mg/kg, were given orally to male mice once/d for 7 days before they received CCl 4 intraperitoneally. Our results showed that K-3-R and K-3-G treatment increased the level of total protein (TP) and prevented the CCl 4 -induced increases in serum aspartate aminotransferase (AST), serum alkaline phosphatase (ALP), and hepatic malondialdehyde (MDA) levels. Additionally, mice treated with K-3-R and K-3-G had significantly restored glutathione (GSH) levels and showed normal catalase (CAT) and superoxide dismutase (SOD) activities, compared to CCl 4 -treated mice. K-3-R and K-3-G also mitigated the CCl 4 -induced liver histological alteration, as indicated by histopathological evaluation. These findings demonstrate that K-3-R and K-3-G have protective effects against acute CCl 4 -induced oxidative liver damage. Copyright © 2014. Published by Elsevier B.V.

  7. Development and validation of an HPTLC method for apigenin 7-O-glucoside in chamomile flowers and its application for fingerprint discrimination of chamomile-like materials.

    PubMed

    Guzelmeric, Etil; Vovk, Irena; Yesilada, Erdem

    2015-03-25

    Brewed tea of chamomile flowers (Matricaria recutita L.) (Asteraceae) has been extensively consumed for centuries due to either its pleasant taste or medicinal purposes. On the other hand, the major problem is difficulty in distinguishing the genuine specimen when supplying chamomile through nature-picking. Consequently flowers of other Asteraceae members resembling to chamomile in appearance may frequently be practiced by lay people or marketed in spice shops or bazaars. Evidently detection of such adulterations plays a vital role in terms of public health to avoid risk of toxicity (i.e. pyrazolidin alkaloids) and ineffective treatments (lack or insufficient concentration of the active constituents). This work presents either development and validation of a high performance thin-layer chromatographic (HPTLC) method for apigenin 7-O-glucoside which is one of the active markers in chamomile flowers or its application for the fingerprint discrimination of chamomile-like materials i.e. Anthemis spp., Bellis spp., Chrysanthemum sp. and Tanacetum sp. gathered by local people assuming as chamomile. Separation was performed on the silica gel 60 NH2 F254s HPTLC plates using the developing solvent system of ethyl acetate-formic acid-acetic acid-water (30:1.5:1.5:3, v/v/v/v). The proposed HPTLC method may also be a leading guide for the quality assessment of chamomile tea products on the market. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Stilbene Glucoside, a Putative Sleep Promoting Constituent from Polygonum multiflorum Affects Sleep Homeostasis by Affecting the Activities of Lactate Dehydrogenase and Salivary Alpha Amylase.

    PubMed

    Wei, Qian; Ta, Guang; He, Wenjing; Wang, Wei; Wu, Qiucheng

    2017-01-01

    Chinese herbal medicine (CHM) has been used for treating insomnia for centuries. The most used CHM for insomnia was Polygonum multiflorum. However, the molecular mechanism for CHM preventing insomnia is unknown. Stilbene glucoside (THSG), an important active component of P. multiflorum, may play an important role for treating insomnia. To test the hypothesis, Kunming mice were treated with different dosages of THSG. To examine the sleep duration, a computer-controlled sleep-wake detection system was implemented. Electroencephalogram (EEG) and electromyogram (EMG) electrodes were implanted to determine sleep-wake state. RT-PCR and Western blot was used to measure the levels of lactate dehydrogenase (LDH) and saliva alpha amylase. Spearman's rank correlation coefficient was used to identify the strength of correlation between the variables. The results showed that THSG significantly prolonged the sleep time of the mice (p<0.01). THSG changed sleep profile by reducing wake and rapid eye movement (REM) period, and increasing non-REM period. RT-PCR and Western blot analysis showed that THSG could down-regulate the levels of LDH and saliva alpha amylase (p<0.05). The level of lactate and glucose was positively related with the activity of LDH and saliva alpha amylase (p<0.05), respectively. On the other hand, the activities of LDH and amylase were negatively associated with sleep duration (p<0.05). The levels of lactate and glucose affect sleep homeostasis. Thus, THSG may prevent insomnia by regulating sleep duration via LDH and salivary alpha amylase.

  9. Analysis of some cytokinins in coconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography after solid-phase extraction.

    PubMed

    Ge, Liya; Yong, Jean Wan Hong; Tan, Swee Ngin; Yang, Xin Hao; Ong, Eng Shi

    2004-09-03

    Micellar electrokinetic capillary chromatography (MECC) was developed for the separation of cytokinins including trans-zeatin, trans-zeatin-O-glucoside, dihydrozeatin, dihydrozeatin-O-glucoside, meta-topolin riboside, N6-isopentenyladenine and N6-benzylaminopurine. Under the optimum conditions, i.e. a combination of 10 mM phosphate and 10 mM borate as the running buffer containing 50 mM sodium dodecyl sulphate at pH 10.4, the separation of seven cytokinin standards was accomplished within 11 min. The C18 solid-phase extraction (SPE) method was used to pre-concentrate the putative cytokinins present in the coconut water. Following which, the eluate was further purified using mixed mode Oasis MCX SPE columns and this additional step helps to reduce matrix interference during MECC. After the two solid-phase extraction steps, the optimized MECC method was able to screen for certain cytokinins (zeatin-O-glucoside and dihydrozeatin-O-glucoside) present in coconut water. After this screening, the presence of zeatin-O-glucoside and dihydrozeatin-O-glucoside in coconut water was further confirmed by independent high-performance liquid chromatography and liquid chromatography-mass spectrometry experiments.

  10. Distribution of free and glycosylated sterols within Cycas micronesica plants

    PubMed Central

    Marler, Thomas E.; Shaw, Christopher A.

    2010-01-01

    Flour derived from Cycas micronesica seeds was once the dominant source of starch for Guam's residents. Cycad consumption has been linked to high incidence of human neurodegenerative diseases. We determined the distribution of the sterols stigmasterol and β-sitosterol and their derived glucosides stigmasterol β-d-glucoside and β-sitosterol β-d-glucoside among various plant parts because they have been identified in cycad flour and have been shown to elicit neurodegenerative outcomes. All four compounds were common in seeds, sporophylls, pollen, leaves, stems, and roots. Roots contained the greatest concentration of both free sterols, and photosynthetic leaflet tissue contained the greatest concentration of both steryl glucosides. Concentration within the three stem tissue categories was low compared to other organs. Reproductive sporophyll tissue contained free sterols similar to seeds, but greater concentration of steryl glucosides than seeds. One of the glucosides was absent from pollen. Concentration in young seeds was higher than old seeds as reported earlier, but concentration did not differ among age categories of leaf, sporophyll, or vascular tissue. The profile differences among the various tissues within these organs may help clarify the physiological role of these compounds. PMID:20157629

  11. Phenol homeostasis is ensured in vanilla fruit by storage under solid form in a new chloroplast-derived organelle, the phenyloplast

    PubMed Central

    Conéjéro, Geneviève

    2014-01-01

    A multiple cell imaging approach combining immunofluorescence by confocal microscopy, fluorescence spectral analysis by multiphotonic microscopy, and transmission electron microscopy identified the site of accumulation of 4-O-(3-methoxybenzaldehyde) β-d-glucoside, a phenol glucoside massively stockpiled by vanilla fruit. The glucoside is sufficiently abundant to be detected by spectral analysis of its autofluorescence. The convergent results obtained by these different techniques demonstrated that the phenol glucoside accumulates in the inner volume of redifferentiating chloroplasts as solid amorphous deposits, thus ensuring phenylglucoside cell homeostasis. Redifferentiation starts with the generation of loculi between thylakoid membranes which are progressively filled with the glucoside until a fully matured organelle is obtained. This peculiar mode of storage of a phenolic secondary metabolite is suspected to occur in other plants and its generalization in the Plantae could be considered. This new chloroplast-derived organelle is referred to as a ‘phenyloplast’. PMID:24683183

  12. A new formula for a mild body cleanser: sodium laureth sulphate supplemented with sodium laureth carboxylate and lauryl glucoside.

    PubMed

    Takagi, Y; Shimizu, M; Morokuma, Y; Miyaki, M; Kiba, A; Matsuo, K; Isoda, K; Mizutani, H

    2014-08-01

    Sodium laureth sulphate (SLES) is an anionic detergent, which has been used globally for personal care products because of its mildness and good foaming ability. However, SLES is somewhat invasive and stimulatory to the skin, and many consumers with sensitive skin desire milder detergents for daily use skin cleansers. We enhanced the mildness of SLES by formulating it with sodium laureth carboxylate (AEC) and lauryl glucoside (LG). In skin soak tests, 5% detergent solutions were applied to the forearms of 10 Japanese healthy volunteers for 30 min followed by washing with tap water once a day for 4 days. Twenty-four hours after the last treatment, cutaneous capacitance measurements and visual analyses were performed. In a controlled usage study, 16 Japanese healthy volunteers used the test body cleanser for 4 weeks. Assessment of efficacy and mildness was conducted prior to the start of the study and at the end of week 4 by cutaneous conductance, dermoscopic evaluation of the stratum corneum and visual assessment by a dermatologist. In soak tests, cutaneous capacitance was significantly decreased on the soap-treated region and on the SLES-treated region. No significant decrease was identified on the SLES/AEC/LG-treated region with less induction of erythema or dryness. In the controlled usage study, no significant changes in cutaneous conductance or texture or damage of corneocytes on the forearm and lower thigh were found. However, visual assessment revealed a significant decrease in scaling and erythema on the lower thigh after 4 weeks of usage with an improvement of the discomfort of the consumer. The favourability rating of this formulated detergent in several questionnaire items was very good. The newly formulated skin cleanser with the combination of anionic surfactants SLES and AEC and the non-ionic surfactant LG provides a mild surfactant with a satisfactory cleansing activity for body washing. © 2014 Society of Cosmetic Scientists and the Soci

  13. Maesopsin 4-O-beta-D-glucoside, a natural compound isolated from the leaves of Artocarpus tonkinensis, inhibits proliferation and up-regulates HMOX1, SRXN1 and BCAS3 in acute myeloid leukemia.

    PubMed

    Pozzesi, N; Pierangeli, S; Vacca, C; Falchi, L; Pettorossi, V; Martelli, M P; Thuy, T T; Ninh, P T; Liberati, A M; Riccardi, C; Sung, T V; Delfino, D V

    2011-06-01

    The leaves of Artocarpus tonkinensis are used in Vietnamese traditional medicine for treatment of arthritis, and the compound maesopsin 4-O-β-D-glucoside (TAT-2), isolated from them, inhibits the proliferation of activated T cells. Our goal was to test the anti-proliferative activity of TAT-2 on the T-cell leukemia, Jurkat, and on the acute myeloid leukemia, OCI-AML. TAT-2 inhibited the growth of OCI-AML (and additional acute myeloid leukemia cells) but not Jurkat cells. Growth inhibition was shown to be due to inhibition of proliferation rather than increase in cell death. Analysis of cytokine release showed that TAT-2 stimulated the release of TGF-β, yet TGF-β neutralization did not reverse the maesopsin-dependent effect. Gene expression profiling determined that maesopsin modulated 19 identifiable genes. Transcription factor CP2 was the gene most significantly modulated. Real-time PCR validated that up-regulation of sulphiredoxin 1 homolog (SRXN1), hemeoxygenase 1 (HMOX1), and breast carcinoma amplified sequence 3 (BCAS3) were consistently modulated.

  14. Protection of Luteolin-7-O-glucoside against apoptosis induced by hypoxia/reoxygenation through the MAPK pathways in H9c2 cells.

    PubMed

    Chen, Shenjie; Yang, Bingsheng; Xu, Yifei; Rong, Yiqing; Qiu, Yuangang

    2018-05-01

    Myocardial hypertrophy is often associated with myocardial infarction. Luteolin-7-O-glucoside (LUTG) has the prosperity of preventing cardiomyocyte injury. The current study aimed to explore the potential protective effect of LUTG and its relevant mechanisms in the heart. To establish the cardiac hypertrophy model in vitro, Angiotensin II (Ang II) was used to stimuli H9c2 cells in this study. The CCK‑8 assay showed that LUTG pretreatment improved cell viability of cardiomyocytes co‑treated with Ang II and ischemia/reperfusion. LUTG decreased the reactive oxygen species levels. Furthermore, it was demonstrated LUTG could reduce the release amount of lactate dehydrogenase and recover the catalase activity according to the flow cytometry analysis, and activity detection, respectively in Ang II‑H/R‑treated H9c2 cells. In addition, the flow cytometry analysis showed that the pretreatment of LUTG mitigated cell apoptosis induced by hypoxia/reoxygenation in the cardiac hypertrophy model. Meanwhile, reverse transcription‑quantitative polymerase chain reaction and western blot assays showed that the apoptosis‑related genes, including poly (ADP‑ribose) polymerase, Fas, Fasl and Caspase‑3 were downregulated at the transcriptional and translational levels. Notably, the protien expression of phosphorylated (p)‑extracellular signal‑regulated kinas (ERK) 1/2, p‑janus kinase and p‑P38 were reduced, while the expression of p‑ERK5 was elevated in the LUTG pretreatment groups compared with the hypoxia/reoxygenation treatment group. Based on these results, it was suggested that the anti‑apoptosis effect of LUTG may be associated with regulating the activation of mitogen‑activated protein kinases signaling pathways.

  15. Pinoresinol-4,4'-di-O-beta-D-glucoside from Valeriana officinalis root stimulates calcium mobilization and chemotactic migration of mouse embryo fibroblasts.

    PubMed

    Do, Kee Hun; Choi, Young Whan; Kim, Eun Kyoung; Yun, Sung Ji; Kim, Min Sung; Lee, Sun Young; Ha, Jung Min; Kim, Jae Ho; Kim, Chi Dae; Son, Beung Gu; Kang, Jum Soon; Khan, Ikhlas A; Bae, Sun Sik

    2009-06-01

    Lignans are major constituents of plant extracts and have important pharmacological effects on mammalian cells. Here we showed that pinoresinol-4,4'-di-O-beta-D-glucoside (PDG) from Valeriana officinalis induced calcium mobilization and cell migration through the activation of lysophosphatidic acid (LPA) receptor subtypes. Stimulation of mouse embryo fibroblast (MEF) cells with 10 microM PDG resulted in strong stimulation of MEF cell migration and the EC(50) was about 2 microM. Pretreatment with pertussis toxin (PTX), an inhibitor of G(i) protein, completely blocked PDG-induced cell migration demonstrating that PDG evokes MEF cell migration through the activation of the G(i)-coupled receptor. Furthermore, pretreatment of MEF cells with Ki16425 (10 microM), which is a selective antagonist for LPA(1) and LPA(3) receptors, completely blocked PDG-induced cell migration. Likewise, PDG strongly induced calcium mobilization, which was also blocked by Ki16425 in a dose-dependent manner. Prior occupation of the LPA receptor with LPA itself completely blocked PDG-induced calcium mobilization. Finally, PDG-induced MEF cell migration was attenuated by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor such as LY294002. Cells lacking downstream mediator of PI3K such as Akt1 and Akt2 (DKO cells) showed loss of PDG-induced migration. Re-expression of Akt1 (but not Akt2) completely restored PDG-induced DKO cell migration. Given these results, we conclude that PDG is a strong inducer of cell migration. We suggest that the pharmacological action of PDG may occur through the activation of an LPA receptor whereby activation of PI3K/Akt signaling pathway mediates PDG-induced MEF cell migration.

  16. Effects of globularifolin on cell survival, nuclear factor-κB activity, neopterin production, tryptophan breakdown and free radicals in vitro.

    PubMed

    Sipahi, Hande; Becker, Kathrin; Gostner, Johanna M; Charehsaz, Mohammad; Kirmizibekmez, Hasan; Schennach, Harald; Aydin, Ahmet; Fuchs, Dietmar

    2014-01-01

    The potential effects of globularifolin, an acylated iridoid glucoside, on cell survival, inflammation markers and free radicals scavenging were investigated. Viability assay on human myelomomonocytic cell line THP-1 and human peripheral blood mononuclear cells (PBMC) using the Cell-Titer Blue assay proved that globularifolin had no toxic effect at the tested concentrations. Conversely, it is proportional to the dose globularifolin increased growth of THP-1 cells (p <0.01). On human PBMC, globularifolin at 6.25 and 12.5 μM concentrations showed a stimulatory effect, while at 12.5-200 μM it suppressed response of PBMC to stimulation with phytohemagglutinin (PHA). Globularifolin (50-200 μM) enhanced neopterin formation dose-dependently, whereas tryptophan breakdown was not influenced. At 50-200 μM in unstimulated PBMC in THP-1 cells, globularifolin induced a significant expression of nuclear factor-κB (NF-κB) as was quantified by Quanti-Blue assay. By contrast, in lipopolysaccharide (LPS)-stimulated cells, the higher concentrations of globularifolin suppressed NF-κB expression dose-dependently and a significant decrease was observed at 200 μM concentration. A positive correlation was found between increased neopterin and NF-κB activity (p <0.01). Similarly, a positive correlation was observed between neopterin levels in mitogen-induced cells and NF-κB activity in LPS-stimulated cells after treatment with globularifolin (p=0.001). The free radical scavenging capacity of globularifolin evaluated by Oxygen Radical Absorbance Capacity (ORAC) assay showed relative ORAC values of 0.36±0.05 μmol Trolox equivalent/μmol. All together, results show that natural antioxidant globularifolin might represent a potential immunomodulatory as well as proliferative agent, which deserves further in vitro and in vivo studies. © 2013.

  17. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models.

    PubMed

    Chung, Hwa-Jin; Kyung Kim, Won; Joo Park, Hyen; Cho, Lan; Kim, Me-Riong; Kim, Min Jeong; Shin, Joon-Shik; Ho Lee, Jin; Ha, In-Hyuk; Kook Lee, Sang

    2016-02-17

    Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites.

    PubMed

    Birkett, Michael A; Hassanali, Ahmed; Hoglund, Solveig; Pettersson, Jan; Pickett, John A

    2011-01-01

    The repellent activity of the essential oil of the catmint plant, Nepeta cataria (Lamiaceae), and the main iridoid compounds (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone, was assessed against (i) major Afro-tropical pathogen vector mosquitoes, i.e. the malaria mosquito, Anopheles gambiae s.s. and the Southern house mosquito, Culex quinquefasciatus, using a World Health Organisation (WHO)-approved topical application bioassay (ii) the brown ear tick, Rhipicephalus appendiculatus, using a climbing repellency assay, and (iii) the red poultry mite, Dermanyssus gallinae, using field trapping experiments. Gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS) analysis of two N. cataria chemotypes (A and B) used in the repellency assays showed that (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone were present in different proportions, with one of the oils (from chemotype A) being dominated by the (4aS,7S,7aR) isomer (91.95% by GC), and the other oil (from chemotype B) containing the two (4aS,7S,7aR) and (4aS,7S,7aS) isomers in 16.98% and 69.83% (by GC), respectively. The sesquiterpene hydrocarbon (E)-(1R,9S)-caryophyllene was identified as the only other major component in the oils (8.05% and 13.19% by GC, respectively). Using the topical application bioassay, the oils showed high repellent activity (chemotype A RD(50)=0.081 mg cm(-2) and chemotype B RD(50)=0.091 mg cm(-2)) for An. gambiae comparable with the synthetic repellent DEET (RD(50)=0.12 mg cm(-2)), whilst for Cx. quinquefasciatus, lower repellent activity was recorded (chemotype A RD(50)=0.34 mg cm(-2) and chemotype B RD(50)=0.074 mg cm(-2)). Further repellency testing against An. gambiae using the purified (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone isomers revealed overall lower repellent activity, compared to the chemotype A and B oils. Testing of binary mixtures of the (4aS,7S,7aR) and (4aS,7S,7aS) isomers across a range of ratios, but all at the same overall dose (0.1 mg), revealed not only a

  19. Characterization and thermal properties of polygenipin-crosslinked hide powders

    USDA-ARS?s Scientific Manuscript database

    Genipin is a naturally occurring iridoid compound, it is widely used as an ideal biological protein crosslinking agent due to its low toxicity compared to glutaraldehyde and formaldehyde. Under alkaline condition, genipin could undergo ring-opening polymerization via nucleophilic attack of hydroxyl ...

  20. Esculetin and esculin (esculetin 6-O-glucoside) occur as inclusions and are differentially distributed in the vacuole of palisade cells in Fraxinus ornus leaves: a fluorescence microscopy analysis.

    PubMed

    Tattini, Massimiliano; Di Ferdinando, Martina; Brunetti, Cecilia; Goti, Andrea; Pollastri, Susanna; Bellasio, Chandra; Giordano, Cristiana; Fini, Alessio; Agati, Giovanni

    2014-11-01

    The location of individual coumarins in leaves of Fraxinus ornus acclimated at full solar irradiance was estimated using their specific UV- and fluorescence spectral features. Using a combination of UV-induced fluorescence and blue light-induced fluorescence of tissues stained with diphenylborinic acid 2-amino-ethylester, in wide field or confocal laser scanning microscopy, we were able to visualize the distribution of esculetin and esculetin 6-O-glucoside (esculin) in palisade cells. Coumarins are not uniformly distributed in the cell vacuole, but accumulate mostly in the adaxial portion of palisade cells. Our study indeed shows, for the first time, that coumarins in palisade cells accumulate as vacuolar inclusions, as previously reported in the pertinent literature only for anthocyanins. Furthermore, esculetin and esculin have a different vacuolar distribution: esculetin largely predominates in the first 15 μm from the adaxial epidermis. This leads to hypothesize for esculetin and esculin different transport mechanisms from the endoplasmic reticulum to the vacuole as well as potentially different roles in photoprotection. Our study open to new experiments aimed at exploring the mechanisms that deliver coumarins to the vacuole using different fluorescence signatures of coumarin aglycones and coumarin glycosides. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Cyanidin-3-O-Glucoside Protects against 1,3-Dichloro-2-Propanol-Induced Reduction of Progesterone by Up-regulation of Steroidogenic Enzymes and cAMP Level in Leydig Cells

    PubMed Central

    Sun, Jianxia; Xu, Wei; Zhu, Cuijuan; Hu, Yunfeng; Jiang, Xinwei; Ou, Shiyi; Su, Zhijian; Huang, Yadong; Jiao, Rui; Bai, Weibin

    2016-01-01

    1,3-Dichloro-2-propanol (1,3-DCP) is a food processing contaminant and has been shown to perturb male reproductive function. Cyanidin-3-O-glucoside (C3G), an anthocyanin antioxidant, is reported to have protective effects on many organs. However, it remains unclear whether C3G protects against chemical-induced reproductive toxicity. The present study was therefore to investigate the intervention of C3G on 1,3-DCP-induced reproductive toxicity in R2C Leydig cells. Results demonstrated that C3G inhibited the 1,3-DCP-induced cytotoxicity and cell shape damage with the effective doses being ranging from 10 to 40 μmol/L. In addition, 1,3-DCP (2 mmol/L) exposure significantly increased the ROS level and mitochondrial membrane potential damage ratio, leading to a decrease in progesterone production, while C3G intervention reduced the ROS level, and increased the progesterone production after 24 h treatment. Most importantly, C3G intervention could up-regulate the cyclic adenosine monophosphate (cAMP) level and protein expression of steroidogenic acute regulatory protein and 3β-hydroxysteroid dehydrogenase. It was concluded that C3G is effective in reducing 1,3-DCP-induced reproductive toxicity via activating steroidogenic enzymes and cAMP level. PMID:27867356

  2. Cyanidin-3-O-Glucoside Protects against 1,3-Dichloro-2-Propanol-Induced Reduction of Progesterone by Up-regulation of Steroidogenic Enzymes and cAMP Level in Leydig Cells.

    PubMed

    Sun, Jianxia; Xu, Wei; Zhu, Cuijuan; Hu, Yunfeng; Jiang, Xinwei; Ou, Shiyi; Su, Zhijian; Huang, Yadong; Jiao, Rui; Bai, Weibin

    2016-01-01

    1,3-Dichloro-2-propanol (1,3-DCP) is a food processing contaminant and has been shown to perturb male reproductive function. Cyanidin-3- O -glucoside (C3G), an anthocyanin antioxidant, is reported to have protective effects on many organs. However, it remains unclear whether C3G protects against chemical-induced reproductive toxicity. The present study was therefore to investigate the intervention of C3G on 1,3-DCP-induced reproductive toxicity in R2C Leydig cells. Results demonstrated that C3G inhibited the 1,3-DCP-induced cytotoxicity and cell shape damage with the effective doses being ranging from 10 to 40 μmol/L. In addition, 1,3-DCP (2 mmol/L) exposure significantly increased the ROS level and mitochondrial membrane potential damage ratio, leading to a decrease in progesterone production, while C3G intervention reduced the ROS level, and increased the progesterone production after 24 h treatment. Most importantly, C3G intervention could up-regulate the cyclic adenosine monophosphate (cAMP) level and protein expression of steroidogenic acute regulatory protein and 3β-hydroxysteroid dehydrogenase. It was concluded that C3G is effective in reducing 1,3-DCP-induced reproductive toxicity via activating steroidogenic enzymes and cAMP level.

  3. Phenol homeostasis is ensured in vanilla fruit by storage under solid form in a new chloroplast-derived organelle, the phenyloplast.

    PubMed

    Brillouet, Jean-Marc; Verdeil, Jean-Luc; Odoux, Eric; Lartaud, Marc; Grisoni, Michel; Conéjéro, Geneviève

    2014-06-01

    A multiple cell imaging approach combining immunofluorescence by confocal microscopy, fluorescence spectral analysis by multiphotonic microscopy, and transmission electron microscopy identified the site of accumulation of 4-O-(3-methoxybenzaldehyde) β-d-glucoside, a phenol glucoside massively stockpiled by vanilla fruit. The glucoside is sufficiently abundant to be detected by spectral analysis of its autofluorescence. The convergent results obtained by these different techniques demonstrated that the phenol glucoside accumulates in the inner volume of redifferentiating chloroplasts as solid amorphous deposits, thus ensuring phenylglucoside cell homeostasis. Redifferentiation starts with the generation of loculi between thylakoid membranes which are progressively filled with the glucoside until a fully matured organelle is obtained. This peculiar mode of storage of a phenolic secondary metabolite is suspected to occur in other plants and its generalization in the Plantae could be considered. This new chloroplast-derived organelle is referred to as a 'phenyloplast'. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. The polyphenolic profiles of common bean (Phaseolus vulgaris L.).

    PubMed

    Lin, Long-Ze; Harnly, James M; Pastor-Corrales, Marcial S; Luthria, Devanand L

    2008-03-01

    Based on the phenolic profiles obtained by high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-DAD-ESI/MS), 24 common bean samples, representing 17 varieties and 7 generic off-the-shelf items, belonging to ten US commercial market classes can be organized into six different groups. All of them contained the same hydroxycinnaminic acids, but the flavonoid components showed distinct differences. Black beans contained primarily the 3- O -glucosides of delphinidin, petunidin and malvidin, while pinto beans contained kaempferol and its 3- O -glycosides. Light red kidney bean contained traces of quercetin 3- O -glucoside and its malonates, but pink and dark red kidney beans contained the diglycosides of quercetin and kaempferol. Small red beans contained kaempferol 3- O -glucoside and pelargonidin 3- O -glucoside, while no flavonoids were detected in alubia, cranberry, great northern, and navy beans. This is the first report of the tentative identification of quercetin 3- O -pentosylhexoside and flavonoid glucoside malonates, and the first detailed detection of hydroxycinnamates, in common beans.

  5. Flavonoid profile and antioxidant activities of methanolic extract of Hyparrhenia hirta (L.) Stapf.

    PubMed

    Bouaziz-Ketata, Hanen; Zouari, Nabil; Ben Salah, Hichem; Rafrafi, Moez; Zeghal, Najiba

    2015-04-01

    In this study, we report isolation of flavonoids, viz., 3-O-methylquercetin, tangeritin, luteolin-7-O-glucoside, luteolin, apigenin-7-O-glucoside, apigenin-8-C-glucoside, luteolin-8-C-glucoside, luteolin-6-C-glucoside, diosmetin and catechin from the methanolic extract of Hyparrhenia hirta employing high performance liquid chromatography and liquid chromatography-electrospray ionization-tandem mass spectrometry. The total phenolic content of H. hirta extract was 105.58 ± 0.1 mg gallic acid equivalents/g of plant extract while the total flavonoid content was 45.20 ± 0.2 mg quercetin equivalents/g of plant extract and the total condensed tannin were 72.35 ± 0.7 mg catechin equivalents/g of plant extract by reference to standard curve. The antioxidant activity was assayed through the antioxidant capacity by phosphomolybdenum assay, the reducing power assay and the radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl method. The extract showed dose dependant activity in all the three assays.

  6. Iridoids from seeds of Gentiana lutea.

    PubMed

    Bianco, Armandodoriano; Ramunno, Alessia; Melchioni, Cristiana

    2003-08-01

    In the seeds of Gentiana lutea L. there were also detected, in addition to the known sweroside and getiopicroside, loganic acid 3 and trifloroside 4 that is present as main glycosidic component. The structures of 3 and 4 were established by spectroscopic studies.

  7. Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum.

    PubMed Central

    Kahn, R A; Bak, S; Svendsen, I; Halkier, B A; Møller, B L

    1997-01-01

    A cytochrome P450, designated P450ox, that catalyzes the conversion of (Z)-p-hydroxyphenylacetaldoxime (oxime) to p-hydroxymandelonitrile in the biosynthesis of the cyanogenic glucoside beta-D-glucopyranosyloxy-(S)-p-hydroxymandelonitrile (dhurrin), has been isolated from microsomes prepared from etiolated seedlings of sorghum (Sorghum bicolor L. Moench). P450ox was solubilized using nonionic detergents, and isolated by ion-exchange chromatography, Triton X-114 phase partitioning, and dye-column chromatography. P450ox has an apparent molecular mass of 55 kD, its N-terminal amino acid sequence is -ATTATPQLLGGSVP, and it contains the internal sequence MDRLVADLDRAAA. Reconstitution of P450ox with NADPH-P450 oxidoreductase in micelles of L-alpha-dilauroyl phosphatidylcholine identified P450ox as a multifunctional P450 catalyzing dehydration of (Z)-oxime to p-hydroxyphenylaceto-nitrile (nitrile) and C-hydroxylation of p-hydroxyphenylacetonitrile to nitrile. P450ox is extremely labile compared with the P450s previously isolated from sorghum. When P450ox is reconstituted in the presence of a soluble uridine diphosphate glucose glucosyltransferase, oxime is converted to dhurrin. In vitro reconstitution of the entire dhurrin biosynthetic pathway from tyrosine was accomplished by the insertion of CYP79 (tyrosine N-hydroxylase), P450ox, and NADPH-P450 oxidoreductase in lipid micelles in the presence of uridine diphosphate glucose glucosyltransferase. The catalysis of the conversion of Tyr into nitrile by two multifunctional P450s explains why all intermediates in this pathway except (Z)-oxime are channeled. PMID:9414567

  8. Cyanidin-3-glucoside Alleviates 4-Hydroxyhexenal-Induced NLRP3 Inflammasome Activation via JNK-c-Jun/AP-1 Pathway in Human Retinal Pigment Epithelial Cells.

    PubMed

    Jin, Xiaolu; Wang, Chengtao; Wu, Wei; Liu, Tingting; Ji, Baoping; Zhou, Feng

    2018-01-01

    Recently, the NLRP3 inflammasome activation in the eyes has been known to be associated with the pathogenesis of age-related macular degeneration. The aim of this study was to investigate the protective effects of cyanidin-3-glucoside (C3G), an important anthocyanin with great potential for preventing eye diseases, against 4-hydroxyhexenal- (HHE-) induced inflammatory damages in human retinal pigment epithelial cells, ARPE-19. We noticed that C3G pretreatment to the ARPE-19 cells rescued HHE-induced antiproliferative effects. Cell apoptosis ratio induced by HHE was also decreased by C3G, measured by flow cytometry. The activation of NLRP3 inflammasome induced by HHE was found with increases of caspase-1 activity, proinflammatory cytokine releases (IL-1 β and IL-18), and NLRP3 inflammasome-related gene expressions (NLRP3, IL-1 β , IL-18, and caspase-1). The C3G showed potent inhibitive effects on these NLRP3 inflammasome activation hallmarks induced by HHE. Moreover, we noticed that the C3G's pretreatment leads to a delayed and a decreased JNK activation in HHE-challenged ARPE-19 cells. Finally, using a luciferase reporter gene assay system, we demonstrated that HHE-induced activation protein- (AP-) 1 transcription activity was abolished by C3G pretreatment in a dose-dependent manner. Taken together, these data showed that HHE leads to inflammatory damages to ARPE-19 cells while C3G has great protective effects, highlighting future potential applications of C3G against AMD-associated inflammation.

  9. Synergistic effect of atorvastatin and cyanidin-3-glucoside against angiotensin II-mediated vascular smooth muscle cell proliferation and migration through MAPK and PI3K/Akt pathways.

    PubMed

    Pantan, Rungusa; Tocharus, Jiraporn; Phatsara, Manussabhorn; Suksamrarn, Apichart; Tocharus, Chainarong

    2016-09-13

    This study aimed to investigate the mechanism of cyanidin-3-glucoside (C3G) in synergy with atorvastatin, even when it is used in low concentrations. Human aortic smooth muscle cells (HASMCs) were used to verify the synergistic mechanism of atorvastatin and C3G against angiotensin II-induced proliferation and migration. BrdU incorporation assay was used to evaluate cell proliferation. Wound healing and Boyden chamber assays were used to investigate cell migration. The cell cycle was examined using flow cytometry. The results revealed that atorvastatin and C3G exhibit a synergistic effect in ameliorating HASMC proliferation and migration by enhancing cell cycle arrest. In addition, these effects also decreased mitogen-activated protein kinase (MAPK) activity by attenuating the expression of phospho-p38, phospho-extracellular signaling-regulated kinase 1/2, and phospho-c-Jun N-terminal kinase. Furthermore, the combination of atorvastatin and C3G modulated the PI3K/Akt pathway and upregulated p21 Cip1 , which was associated with decreases in cyclin D 1 and phospho-retinoblastoma expressions. The synergistic effect of atorvastatin and C3G induced anti-proliferation and anti-migration through MAPK and PI3K/Akt pathways mediated by AT 1 R. These results suggest that the synergistic effect of atorvastatin and C3G may be an alternative therapy for atherosclerosis patients.

  10. Anthocyanins profile of grape berries of Vitis amurensis, its hybrids and their wines.

    PubMed

    Zhao, Quan; Duan, Chang-Qing; Wang, Jun

    2010-05-21

    Anthocyanins are responsible for the color of grapes and wine, an important attribute of their quality. Many authors have used anthocyanins profile to classify the grape cultivars and wine authenticity. The anthocyanin profiles of grape berries of Vitis amurensis, its hybrids and their wines were analyzed by HPLC-ESI-MS/MS. The results identified 17 anthocyanins in these grape cultivars, including 11 anthocyanin monoglucosides (five pyranoanthocyanin monoglucosides and one acylated pyranoanthocyanin monoglucoside) and six anthocyanin diglucosides. Likewise, 15 kinds of anthocyanins were detected in wines, including six diglucosides and nine monoglucosides of anthocyanidins, in which four pyranoanthocyanin monoglucosides (Petunidin-3-O-glucoside-4-acetaldehyde, Malvidin-3-O-glucoside-4-pyruvic acid, Malvidin-3-O-glucoside-acetaldehyde and Peonidin-3-O-glucoside-4-pyruvic acid) were detected. In addition, a total of 14 kinds of anthocyanins including six diglucosides and eight monoglucosides of anthocyanidins were identified in skins, in which two pyranoanthocyanin monoglucosides (Peonidin-3-O-glucoside-4-pyruvic acid, Malvidin-3-O-glucoside-4-vinylphenol) and one acylated pyranoanthocyanin monoglucoside (Malvidin-3-O-(6-O-acetyl)-glucoside-4-vinylphenol) were detected. The anthocyanins profile of grape skin of V. amurensis and its hybrids consist of the anthocyanin monoglucosides, diglucosides and pyranoanthocyanins. The wines produced resulted in a slightly different anthocyanin distribution. Pelargonidin-3,5-diglucosides was first found in the skins and wines, however, no acetyl was detected in wines. The principal component analysis results suggest that the anthocyanin profiles were helpful to classify these cultivars of V. amurensis.

  11. Anthocyanins Profile of Grape Berries of Vitis amurensis, Its Hybrids and Their Wines

    PubMed Central

    Zhao, Quan; Duan, Chang-Qing; Wang, Jun

    2010-01-01

    Anthocyanins are responsible for the color of grapes and wine, an important attribute of their quality. Many authors have used anthocyanins profile to classify the grape cultivars and wine authenticity. The anthocyanin profiles of grape berries of Vitis amurensis, its hybrids and their wines were analyzed by HPLC-ESI-MS/MS. The results identified 17 anthocyanins in these grape cultivars, including 11 anthocyanin monoglucosides (five pyranoanthocyanin monoglucosides and one acylated pyranoanthocyanin monoglucoside) and six anthocyanin diglucosides. Likewise, 15 kinds of anthocyanins were detected in wines, including six diglucosides and nine monoglucosides of anthocyanidins, in which four pyranoanthocyanin monoglucosides (Petunidin-3-O-glucoside-4-acetaldehyde, Malvidin-3-O-glucoside-4-pyruvic acid, Malvidin-3-O-glucoside-acetaldehyde and Peonidin-3-O-glucoside-4-pyruvic acid) were detected. In addition, a total of 14 kinds of anthocyanins including six diglucosides and eight monoglucosides of anthocyanidins were identified in skins, in which two pyranoanthocyanin monoglucosides (Peonidin-3-O-glucoside-4-pyruvic acid, Malvidin-3-O-glucoside-4-vinylphenol) and one acylated pyranoanthocyanin monoglucoside (Malvidin-3-O-(6-O-acetyl)-glucoside-4-vinylphenol) were detected. The anthocyanins profile of grape skin of V. amurensis and its hybrids consist of the anthocyanin monoglucosides, diglucosides and pyranoanthocyanins. The wines produced resulted in a slightly different anthocyanin distribution. Pelargonidin-3,5-diglucosides was first found in the skins and wines, however, no acetyl was detected in wines. The principal component analysis results suggest that the anthocyanin profiles were helpful to classify these cultivars of V. amurensis. PMID:20559511

  12. Impact of Cyanidin-3-Glucoside on Glycated LDL-Induced NADPH Oxidase Activation, Mitochondrial Dysfunction and Cell Viability in Cultured Vascular Endothelial Cells

    PubMed Central

    Xie, Xueping; Zhao, Ruozhi; Shen, Garry X.

    2012-01-01

    Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC. PMID:23443099

  13. Impact of cyanidin-3-glucoside on glycated LDL-induced NADPH oxidase activation, mitochondrial dysfunction and cell viability in cultured vascular endothelial cells.

    PubMed

    Xie, Xueping; Zhao, Ruozhi; Shen, Garry X

    2012-11-27

    Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC.

  14. Cyanidin 3-O-glucoside prevents the development of maladaptive cardiac hypertrophy and diastolic heart dysfunction in 20-week-old spontaneously hypertensive rats.

    PubMed

    Aloud, Basma Milad; Raj, Pema; McCallum, Jason; Kirby, Chris; Louis, Xavier Lieben; Jahan, Fahmida; Yu, Liping; Hiebert, Brett; Duhamel, Todd A; Wigle, Jeffrey T; Blewett, Heather; Netticadan, Thomas

    2018-06-20

    The present study investigated the effects of cyanidin 3-O-glucoside (C3G) in cardiomyocytes (CM) and fibroblasts exposed to endothelin 1 (ET1), as well as in the spontaneously hypertensive rat (SHR) model, alone or in combination with hydrochlorothiazide (HCT). Adult rat CM and cardiac fibroblasts (CF) were pretreated with C3G and co-incubated with ET1 (10-7 M) for 24 hours. Five-week-old male SHR and their normotensive controls, Wistar-Kyoto rats (WKY), received one of 4 treatments via oral gavage daily for 15 weeks: (1) water (control); (2) C3G (10 mg per kg per day); (3) HCT (10 mg per kg per day); (4) C3G + HCT (10 mg per kg per day each). Blood pressure (BP) was measured at 1, 8 and 15 weeks. Echocardiography measurements were performed at 15 weeks. C3G prevented ET1-induced CM death and hypertrophy. Stimulating CF with ET1 did not induce their phenoconversion; nevertheless, C3G inhibited un-stimulated CF differentiation. HCT slowed the rise of systolic BP (SBP) in the SHR over time (week 1: SHRs control = 161 ± 6.3 mmHg, SHRs HCT = 129 ± 6.3 mmHg; week 15: SHRs control = 201 ± 7.3 mmHg, SHRs HCT = 168 ± 7.3 mmHg), but C3G had no effect on SBP (week 1: SHRs control = 161 ± 6.3 mmHg, SHRs C3G = 126 ± 6.3 mmHg; week 15: SHRs control = 201 ± 7.3 mmHg, SHRs C3G = 186 ± 7.3 mmHg). SHRs treated with C3G, HCT, and C3G + HCT had lower left ventricular mass and shorter isovolumetric relaxation time compared to control SHRs. C3G ameliorated cardiac hypertrophy and diastolic dysfunction in SHRs.

  15. Liquid chromatography-mass spectrometry identification of anthocyanins of isla oca (Oxalis tuberosa, Mol.) tubers.

    PubMed

    Alcalde-Eon, Cristina; Saavedra, Gloria; de Pascual-Teresa, Sonia; Rivas-Gonzalo, Julián C

    2004-10-29

    High-performance liquid chromatography (HPLC)-diode array detection (DAD)-mass spectrometry (MS) techniques have been successfully employed in the identification of the anthocyanins of the coloured tubers of isla oca (Oxalis tuberosa), the second most cultivated tuber in the Andean region. Tubers underwent a pre-treatment step in order to inhibit enzymatic reactions and to obtain a stable powder or "concentrate". This concentrate was dissolved, purified and then analysed. Eight different compounds were found. The major peaks were malvidin glucosides (malvidin 3-O-glucoside and 3,5-O-diglucoside). The rest of the peaks were 3,5-O-diglucosides of petunidin and peonidin, and 3-O-glucosides of delphinidin, petunidin and peonidin. Only malvidin 3-O-acetylglucoside-5-O-glucoside was found as an acylated anthocyanin.

  16. Chemical Composition of Buddleja polystachya Aerial Parts and its Bioactivity against Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    A new acylatediridoid glycoside, 6-O-a-L-(2''-acetyl-4''-O-trans-isoferuloyl) rhamnopyranosyl catalpol (9) together with 18 known compounds belonging to the iridoids, flavonoids, triterpene saponin glycosides and phenylethanoids (1-8, 10-18) were isolated from the aerial parts and the flowers of Bud...

  17. Cyanidin-3-O-glucoside inhibits NF-kB signalling in intestinal epithelial cells exposed to TNF-α and exerts protective effects via Nrf2 pathway activation.

    PubMed

    Ferrari, Daniela; Speciale, Antonio; Cristani, Mariateresa; Fratantonio, Deborah; Molonia, Maria Sofia; Ranaldi, Giulia; Saija, Antonella; Cimino, Francesco

    2016-12-15

    Chronic intestinal inflammatory disorders, such as Inflammatory Bowel Diseases (IBDs), are characterized by excessive release of proinflammatory mediators, intestinal barrier dysfunction and excessive activation of NF-kB cascade. Previous studies shown that TNF-α plays a central role in intestinal inflammation of IBDs and supported beneficial effects of flavonoids against chronic inflammatory diseases. In this study, we employed an in vitro model of acute intestinal inflammation using intestinal Caco-2 cells exposed to TNF-α. The protective effects of cyanidin-3-glucoside (C3G), an anthocyanin widely distributed in mediterranean diet, were then evaluated. Caco-2 cells exposure to TNF-α activated NF-kB proinflammatory pathway and induced IL6 and COX-2 expression. Cells pretreatment for 24h with C3G (20-40μM) prevented TNF-α-induced changes, and improved intracellular redox status. Our results demonstrated that C3G, also without any kind of stimulus, increased the translocation of the transcription factor Nrf2 into the nucleus so activating antioxidant and detoxifying genes. In conclusion, C3G exhibited protective effects through the inhibition of NF-kB signalling in Caco-2 cells and these beneficial effects appear to be due to its ability to activate cellular protective responses modulated by Nrf2. These data suggest that anthocyanins could contribute, as complementary or preventive approaches, to the management of chronic inflammatory diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. One-enzyme catalyzed simultaneous plant cell disruption and conversion of released glycoside to aglycone combined with in situ product separation as green one-pot production of genipin from gardenia fruit.

    PubMed

    Winotapun, Weerapath; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak

    2013-07-10

    A direct one-pot production of genipin, an iridoid aglycone, from crude gardenia fruit was developed. The method relied on the use of single cellulase to disrupt plant cells and to cleave off sugar molecules simultaneously, thereby enhancing the release of intracellular iridoids and converting geniposide to genipin. During the biocatalysis, eco-friendly ethyl acetate was used to extract the product, providing the partial purification and the minimization of genipin degradation. By using 10 mg/mL cellulase and 24 h-incubation at 50 °C, pH 4, combined with in situ extraction, genipin with good purity was yielded at 58.83 mg/g, which increased 12.38 and 1.72 times compared with those obtained from the procedures without either the aid of enzyme or in situ extraction, respectively. Therefore, this integrated approach is promising for the production of genipin and should be potentially applied to the preparation of other plant aglycones. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Phytochemical screening by LC-MS and LC-PDA of ethanolic extracts from the fruits of Kigelia africana (Lam.) Benth.

    PubMed

    Costa, Rosaria; Albergamo, Ambrogina; Pellizzeri, Vito; Dugo, Giacomo

    2017-06-01

    Kigelia africana is a tree native to Africa, with a local employment in numerous fields, ranging from traditional medicine to cosmetics and religious rituals. Parts of the plant generally used are stem bark, fruits, roots and leaves. The fruits, which have a singular 'sausage' shape, are widely exploited by local folk, in particular for applications/products involving genito-urinary apparatus of both human genders. The scope of this work was to make a consistent chemical investigation on this plant species, in order to clarify and increase the information at present available in literature. To this aim, ethanolic extracts of K. africana fruits were analysed by high-performance liquid chromatography with photodiode array (HPLC-PDA) and electrospray-mass spectrometry (HPLC-ESI-MS) detection, revealing the presence of polyphenols and iridoids. The two detection systems used along with standard co-injection and comparison with previous reports, led to the identification and quantification of six phenolic compounds and three iridoids.

  20. Noni juice improves serum lipid profiles and other risk markers in cigarette smokers.

    PubMed

    Wang, Mian-Ying; Peng, Lin; Weidenbacher-Hoper, Vicki; Deng, Shixin; Anderson, Gary; West, Brett J

    2012-01-01

    Cigarette smoke-induced oxidative stress leads to dyslipidemia and systemic inflammation. Morinda citrifolia (noni) fruit juice has been found previously to have a significant antioxidant activity. One hundred thirty-two adult heavy smokers completed a randomized, double blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on serum cholesterol, triglyceride, low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), high-sensitivity C-reactive protein (hs-CRP), and homocysteine. Volunteers drank noni juice or a fruit juice placebo daily for one month. Drinking 29.5 mL to 188 mL of noni juice per day significantly reduced cholesterol levels, triglycerides, and hs-CRP. Decreases in LDL and homocysteine, as well increases in HDL, were also observed among noni juice drinkers. The placebo, which was devoid of iridoid glycosides, did not significantly influence blood lipid profiles or hs-CRP. Noni juice was able to mitigate cigarette smoke-induced dyslipidemia, an activity associated with the presence of iridoids.

  1. Noni Juice Improves Serum Lipid Profiles and Other Risk Markers in Cigarette Smokers

    PubMed Central

    Wang, Mian-Ying; Peng, Lin; Weidenbacher-Hoper, Vicki; Deng, Shixin; Anderson, Gary; West, Brett J.

    2012-01-01

    Cigarette smoke-induced oxidative stress leads to dyslipidemia and systemic inflammation. Morinda citrifolia (noni) fruit juice has been found previously to have a significant antioxidant activity. One hundred thirty-two adult heavy smokers completed a randomized, double blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on serum cholesterol, triglyceride, low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), high-sensitivity C-reactive protein (hs-CRP), and homocysteine. Volunteers drank noni juice or a fruit juice placebo daily for one month. Drinking 29.5 mL to 188 mL of noni juice per day significantly reduced cholesterol levels, triglycerides, and hs-CRP. Decreases in LDL and homocysteine, as well increases in HDL, were also observed among noni juice drinkers. The placebo, which was devoid of iridoid glycosides, did not significantly influence blood lipid profiles or hs-CRP. Noni juice was able to mitigate cigarette smoke-induced dyslipidemia, an activity associated with the presence of iridoids. PMID:23097636

  2. Noni juice reduces lipid peroxidation-derived DNA adducts in heavy smokers.

    PubMed

    Wang, Mian-Ying; Peng, Lin; Jensen, Claude J; Deng, Shixin; West, Brett J

    2013-03-01

    Food plants provide important phytochemicals which help improve or maintain health through various biological activities, including antioxidant effects. Cigarette smoke-induced oxidative stress leads to the formation of lipid hydroperoxides (LOOHs) and their decomposition product malondialdehyde (MDA), both of which cause oxidative damage to DNA. Two hundred forty-five heavy cigarette smokers completed a randomized, double-blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on LOOH- and MDA-DNA adducts in peripheral blood lymphocytes (PBLs). Volunteers drank noni juice or a fruit juice placebo every day for 1 month. DNA adducts were measured by (32)P postlabeling analysis. Drinking 29.5-118 mL of noni juice significantly reduced adducts by 44.6-57.4%. The placebo, which was devoid of iridoid glycosides, did not significantly influence LOOH- and MDA-DNA adduct levels in current smokers. Noni juice was able to mitigate oxidative damage of DNA in current heavy smokers, an activity associated with the presence of iridoids.

  3. α-Glucosidase and α-Amylase Inhibitors from Arcytophyllum thymifolium.

    PubMed

    Milella, Luigi; Milazzo, Stella; De Leo, Marinella; Vera Saltos, Mariela Beatriz; Faraone, Immacolata; Tuccinardi, Tiziano; Lapillo, Margherita; De Tommasi, Nunziatina; Braca, Alessandra

    2016-08-26

    Three new coumarins (1-3), a prenylated flavanone (4), and two iridoids (5 and 6), together with 17 known secondary metabolites, were isolated from the aerial parts of Arcytophyllum thymifolium. The structures of the new compounds were elucidated on the basis of their spectroscopic data. The potential hypoglycemic properties of the new and known compounds were evaluated by measuring their α-amylase and α-glucosidase inhibitory effects. The iridoid asperulosidic acid (15) and the flavonoid rhamnetin (13) showed the highest activities versus α-amylase (IC50 = 69.4 ± 3.1 and 73.9 ± 5.9 μM, respectively). In turn, the new eriodictyol derivative 4 exhibited the most potent effect as an α-glucosidase inhibitor, with an IC50 value of 28.1 ± 2.6 μM, and was more active than acarbose, used as a positive control. Modeling studies were also performed to suggest the interaction mode of compound 4 in the α-glucosidase enzyme active site.

  4. Effects of Increased UVB radiation on plant-insect interactions: Plantago lanceolata and Junonia coenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloud, E.S.; Berenbaum, M.R.

    Seeds of P. lanceolata were collected from a local population and 4 replicates of 42 maternal families were grown for 90 days in the greenhouse with at two levels of supplemental UVB radiation (6 and 12 kJ day[sup [minus]1] BE[sub 300]). Higher UVB radiation increased leaf hair density and decreased plant size during early growth; family identity affected these also. Leaves excised from a subset of the plants were fed to ultimate instar larvae of J. coenia and assayed for iridoids. Increased UVB radiation did not alter the iridoid content of the leaves or the growth of the larvae. Inmore » a separate experiment, P. lanceolata growing under the two levels of UVB irradiation were infested with neonate larvae and larval growth was monitored. Larval growth was not markedly altered by enhanced UVB. These findings suggest that increased UVB is unlikely to alter the suitability of P. lanceolata as a host for J. coenia.« less

  5. Noni juice reduces lipid peroxidation–derived DNA adducts in heavy smokers

    PubMed Central

    Wang, Mian-Ying; Peng, Lin; Jensen, Claude J; Deng, Shixin; West, Brett J

    2013-01-01

    Food plants provide important phytochemicals which help improve or maintain health through various biological activities, including antioxidant effects. Cigarette smoke–induced oxidative stress leads to the formation of lipid hydroperoxides (LOOHs) and their decomposition product malondialdehyde (MDA), both of which cause oxidative damage to DNA. Two hundred forty-five heavy cigarette smokers completed a randomized, double-blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on LOOH- and MDA-DNA adducts in peripheral blood lymphocytes (PBLs). Volunteers drank noni juice or a fruit juice placebo every day for 1 month. DNA adducts were measured by 32P postlabeling analysis. Drinking 29.5–118 mL of noni juice significantly reduced adducts by 44.6–57.4%. The placebo, which was devoid of iridoid glycosides, did not significantly influence LOOH- and MDA-DNA adduct levels in current smokers. Noni juice was able to mitigate oxidative damage of DNA in current heavy smokers, an activity associated with the presence of iridoids. PMID:24804023

  6. The Intracellular Localization of the Vanillin Biosynthetic Machinery in Pods of Vanilla planifolia.

    PubMed

    Gallage, Nethaji J; Jørgensen, Kirsten; Janfelt, Christian; Nielsen, Agnieszka J Z; Naake, Thomas; Dunski, Eryk; Dalsten, Lene; Grisoni, Michel; Møller, Birger Lindberg

    2018-02-01

    Vanillin is the most important flavor compound in the vanilla pod. Vanilla planifolia vanillin synthase (VpVAN) catalyzes the conversion of ferulic acid and ferulic acid glucoside into vanillin and vanillin glucoside, respectively. Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of vanilla pod sections demonstrates that vanillin glucoside is preferentially localized within the mesocarp and placental laminae whereas vanillin is preferentially localized within the mesocarp. VpVAN is present as the mature form (25 kDa) but, depending on the tissue and isolation procedure, small amounts of the immature unprocessed form (40 kDa) and putative oligomers (50, 75 and 100 kDa) may be observed by immunoblotting using an antibody specific to the C-terminal sequence of VpVAN. The VpVAN protein is localized within chloroplasts and re-differentiated chloroplasts termed phenyloplasts, as monitored during the process of pod development. Isolated chloroplasts were shown to convert [14C]phenylalanine and [14C]cinnamic acid into [14C]vanillin glucoside, indicating that the entire vanillin de novo biosynthetic machinery converting phenylalanine to vanillin glucoside is present in the chloroplast.

  7. Isolation of strawberry anthocyanins using high-speed counter-current chromatography and the copigmentation with catechin or epicatechin by high pressure processing.

    PubMed

    Zou, Hui; Ma, Yan; Xu, Zhenzhen; Liao, Xiaojun; Chen, Ailiang; Yang, Shuming

    2018-05-01

    Three anthocyanins were isolated from strawberry extract by high-speed counter-current chromatography, using a biphasic mixture of tert-butyl methyl ether, n-butanol, acetonitrile, water and trifluoroacetic acid (2.5:2.0:2.5:5.0:1.0%). The anthocyanins were identified as pelargonidin-3-rutinoside, cyanidin-3-glucoside and pelargonidin-3-glucoside with purity of 95.6%, 96.2% and 99.3% respectively. Additionally, the copigmentation reaction rates between pelargonidin-3-glucoside and phenolic acids (catechin or epicatechin) at pH 1.5 and 3.6, pressure 0.1 and 500 MPa, and temperature 60 °C were calculated. The absorbance of pelargonidin-3-glucoside at pH 3.6, with high quantity of phenolic acids was significantly increased by high pressure. The complex of pelargonidin-3-glucoside/catechin has a binding energy of 78.64 kJ/mol at pH 3.6, and 39.13 kJ/mol at pH 1.5; pelargonidin-3-glucoside/epicatechin has a binding energy of 75.34 kJ/mol at pH 1.5 and 54.47 kJ/mol at pH 3.6. The hydrogen bond and van der Waals interaction were the main forces contributing to the structures of complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L.

    PubMed

    Schulz, Margot; Filary, Barbara; Kühn, Sabine; Colby, Thomas; Harzen, Anne; Schmidt, Jürgen; Sicker, Dieter; Hennig, Lothar; Hofmann, Diana; Disko, Ulrich; Anders, Nico

    2016-01-01

    The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe(2+) ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis.

  9. Sterylglucoside catabolism in Cryptococcus neoformans with endoglycoceramidase-related protein 2 (EGCrP2), the first steryl-β-glucosidase identified in fungi.

    PubMed

    Watanabe, Takashi; Ito, Tomoharu; Goda, Hatsumi M; Ishibashi, Yohei; Miyamoto, Tomofumi; Ikeda, Kazutaka; Taguchi, Ryo; Okino, Nozomu; Ito, Makoto

    2015-01-09

    Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368-381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various β-glucosides, including GlcCer, cholesteryl-β-glucoside, ergosteryl-β-glucoside, sitosteryl-β-glucoside, and para-nitrophenyl-β-glucoside, but not α-glucosides or β-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3β-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-β-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl

  10. Tetrahydroxanthones from Mongolian medicinal plant Gentianella amarella ssp. acuta.

    PubMed

    Lu, Shuangxin; Tanaka, Naonobu; Kawazoe, Kazuyoshi; Murakami, Kotaro; Damdinjav, Davaadagva; Dorjbal, Enkhjargal; Kashiwada, Yoshiki

    2016-10-01

    Two tetrahydroxanthones, 1,3,5S,8S-tetrahydroxy-5,6,7,8-tetrahydroxanthone (1) and 1,3,5R,8S-tetrahydroxy-5,6,7,8-tetrahydroxanthone (2), and six new tetrahydroxanthone glycosides, amarellins A-F (3-8), were isolated from the aerial parts of a Mongolian medicinal plant Gentianella amarella ssp. acuta (Gentianaceae). The structures of 1-8 were elucidated on the basis of spectroscopic analysis, chemical conversion, and ECD calculation. Amarellins A-C (3-5) were assigned as 8-O-β-D-glucoside, 8-O-β-D-xyloside, and 1-O-β-D-glucoside of 1, respectively, while amarellins D-F (6-8) were elucidated to be 8-O-β-D-xyloside, 1-O-β-D-glucoside, and 3-O-β-D-glucoside of 2, respectively.

  11. Characterization, anti-oxidative and anti-inflammatory effects of Costa Rican noni juice (Morinda citrifolia L.).

    PubMed

    Dussossoy, E; Brat, P; Bony, E; Boudard, F; Poucheret, P; Mertz, C; Giaimis, J; Michel, A

    2011-01-07

    Noni fruit (Morinda citrifolia L.) juice has been used for more than 2000 years in Polynesia as a traditional folk medicine. The aim of the present study was to finely characterize noni juice from Costa Rica and to evaluate its anti-oxidative and anti-inflammatory activities. A microfiltrated noni juice was prepared with Costarican nonis. HPLC-DAD and Electro Spray Ionization Mass Spectrometric detection (HPLC-ESI-MS) were used to identify phenolic compounds and iridoids. The anti-oxidative activity of noni juice was measured in vitro by both Oxygen Radical Absorbance Capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging methods. The anti-inflammatory effects of noni juice were investigated in vitro by: measuring its effect on nitric oxide and prostaglandin E2 production by activated macrophages, evaluating its inhibitory activities on cyclooxygenase (COX)-1 and -2 and in vivo on a carrageenan-induced paw oedema model in rats. Several polyphenols belonging to the coumarin, flavonoid and phenolic acid groups, and two iridoids were identified. Noni juice demonstrated a mean range free radical scavenging capacity. Furthermore, it also reduced carrageenan-induced paw oedema, directly inhibited cyclooxygenase COX-1 and COX-2 activities and inhibited the production of nitric oxide (NO) and prostaglandins E(2) (PGE(2)) in activated J774 cells, in a dose dependent manner. This study showed that noni's biological effects include: (1) anti-oxidant properties probably associated with phenolic compounds, iridoids and ascorbic acid and (2) anti-inflammatory action through NO and PGE(2) pathways that might also be strengthened by anti-oxidant effects. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. A new dermocosmetic containing retinaldehyde, delta-tocopherol glucoside and glycylglycine oleamide for managing naturally aged skin: results from in vitro to clinical studies

    PubMed Central

    Rouvrais, Céline; Bacqueville, Daniel; Bogdanowicz, Patrick; Haure, Marie-José; Duprat, Laure; Coutanceau, Christine; Castex-Rizzi, Nathalie; Duplan, Hélène; Mengeaud, Valérie; Bessou-Touya, Sandrine

    2017-01-01

    Introduction Natural aging of skin tissues, the addition of the cumulative action of the time and radiation exposure result in skin atrophy, wrinkles and degeneration of the extracellular matrix (ECM). The aim of the study was to investigate the beneficial effect of a combination containing retinaldehyde (RAL), delta-tocopherol glucoside (delta-TC) and glycylglycine ole-amide (GGO) and of a dermocosmetic containing the combination. Materials and methods The protective effect of the combination was assessed through in vitro gene expression of ultraviolet (UV)-irradiated fibroblasts. A skin aging assay using UV light on ex vivo skin samples and a clinical study conducted in 36 women aged from 35 to 55 years with a minimum of level 4 to a maximum of level 6 on the crow’s feet photoscale assessed the antiaging effect of the dermocosmetic. Results When added to UV-irradiated fibroblasts, the combination substantially improved the ECM in activating the elastin fiber production (fibrillin 2, fibulin 1 and 5 and lysyl oxidase-like 2) as well as that of proteins involved in the cellular ECM interactions (integrin b1, paxillin and actin a2). An ex vivo photodamaged human skin model showed that the dermocosmetic formulation containing the combination of the active ingredients protected the elastic network against UV-induced alterations including both elastin and fibrillin-rich fibers in the dermis. A daily application of the dermocosmetic for 2 months on naturally aged skin resulted in a statistically significant improvement (p<0.05) of visible signs of aging comprising crow’s feet, wrinkles and periocular fine lines. Finally, the formulation was well tolerated. Conclusion The dermocosmetic containing RAL, delta-TC and GGO provides a substantial benefit in the daily care of naturally aged skin in women aged 35–55 years. PMID:28203099

  13. Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L.

    PubMed Central

    Schulz, Margot; Filary, Barbara; Kühn, Sabine; Colby, Thomas; Harzen, Anne; Schmidt, Jürgen; Sicker, Dieter; Hennig, Lothar; Hofmann, Diana; Disko, Ulrich; Anders, Nico

    2016-01-01

    ABSTRACT The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe2+ ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis. PMID:26645909

  14. First evidences of interaction between pyranoanthocyanins and salivary proline-rich proteins.

    PubMed

    García-Estévez, Ignacio; Cruz, Luís; Oliveira, Joana; Mateus, Nuno; de Freitas, Victor; Soares, Susana

    2017-08-01

    The contribution of other classes of polyphenol compounds besides tannins to the overall perception of astringency is still poorly understood. So, this work aimed to study the interaction between a family of salivary proline-rich proteins (aPRPs) and representative pyranoanthocyanins in red wines [pyranomalvidin-3-glucoside (vitisin B), pyranomalvidin-3-glucoside-catechol, and pyranomalvidin-3-glucoside-epicatechin] using saturation transfer difference-NMR and MALDI-TOF. For vitisin B K D was of 1.74mM; for pyranomalvidin-3-glucoside-catechol was 1.17mM and for pyranomalvidin-3-glucoside-epicatechin it was 0.87mM. The presence of the flavanol structural unit in the pyranoanthocyanins led to an increase in their interaction with aPRPs. Further, it is also interesting that the values obtained were in the range of K D obtained previously reported for the interaction between the human saliva proline-rich peptides (IB7 14 and IB9 37 ) and procyanidins. Overall, the results obtained suggest that, along with tannins, other polyphenols present in red wine, namely pyranoanthocyanins, could actively contribute to red wine global astringency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection.

    PubMed

    Novak, Ivana; Janeiro, Patricia; Seruga, Marijan; Oliveira-Brett, Ana Maria

    2008-12-23

    Several flavonoids present in red grape skins from four varieties of Portuguese grapes were determined by reverse-phase high-performance liquid chromatography (RP-HPLC) with electrochemical detection (ECD). Extraction of flavonoids from red grape skins was performed by ultrasonication, and hydrochloric acid in methanol was used as extraction solvent. The developed RP-HPLC method used combined isocratic and gradient elution with amperometric detection with a glassy carbon-working electrode. Good peak resolution was obtained following direct injection of a sample of red grape extract in a pH 2.20 mobile phase. Eleven different flavonoids: cyanidin-3-O-glucoside (kuromanin), delphinidin-3-O-glucoside (myrtillin), petunidin-3-O-glucoside, peonidin-3-O-glucoside, malvidin-3-O-glucoside (oenin), (+)-catechin, rutin, fisetin, myricetin, morin and quercetin, can be separated in a single run by direct injection of sample solution. The limit of detection obtained for these compounds by ECD was 20-90 pg/L, 1000 times lower when compared with photodiode array (PDA) limit of detection of 12-55 ng/L. RP-HPLC-ECD was characterized by an excellent sensitivity and selectivity, and appropriate for the simultaneous determination of these electroactive phenolic compounds present in red grape skins.

  16. The Intracellular Localization of the Vanillin Biosynthetic Machinery in Pods of Vanilla planifolia

    PubMed Central

    Gallage, Nethaji J; JØrgensen, Kirsten; Janfelt, Christian; Nielsen, Agnieszka J Z; Naake, Thomas; Duński, Eryk; Dalsten, Lene; Grisoni, Michel; MØller, Birger Lindberg

    2018-01-01

    Abstract Vanillin is the most important flavor compound in the vanilla pod. Vanilla planifolia vanillin synthase (VpVAN) catalyzes the conversion of ferulic acid and ferulic acid glucoside into vanillin and vanillin glucoside, respectively. Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of vanilla pod sections demonstrates that vanillin glucoside is preferentially localized within the mesocarp and placental laminae whereas vanillin is preferentially localized within the mesocarp. VpVAN is present as the mature form (25 kDa) but, depending on the tissue and isolation procedure, small amounts of the immature unprocessed form (40 kDa) and putative oligomers (50, 75 and 100 kDa) may be observed by immunoblotting using an antibody specific to the C-terminal sequence of VpVAN. The VpVAN protein is localized within chloroplasts and re-differentiated chloroplasts termed phenyloplasts, as monitored during the process of pod development. Isolated chloroplasts were shown to convert [14C]phenylalanine and [14C]cinnamic acid into [14C]vanillin glucoside, indicating that the entire vanillin de novo biosynthetic machinery converting phenylalanine to vanillin glucoside is present in the chloroplast. PMID:29186560

  17. Transglycosylation of gallic acid by using Leuconostoc glucansucrase and its characterization as a functional cosmetic agent.

    PubMed

    Nam, Seung-Hee; Park, Jeongjin; Jun, Woojin; Kim, Doman; Ko, Jin-A; Abd El-Aty, A M; Choi, Jin Young; Kim, Do-Ik; Yang, Kwang-Yeol

    2017-12-22

    Gallic acid glycoside was enzymatically synthesized by using dextransucrase and sucrose from gallic acid. After purification by butanol partitioning and preparative HPLC, gallic acid glucoside was detected at m/z 355 (C 13 , H 16 , O 10 , Na) + by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The yield of gallic acid glucoside was found to be 35.7% (114 mM) by response surface methodology using a reaction mixture of 319 mM gallic acid, 355 mM sucrose, and 930 mU/mL dextransucrase. The gallic acid glucoside obtained showed 31% higher anti-lipid peroxidation and stronger inhibition (Ki = 1.23 mM) against tyrosinase than that shown by gallic acid (Ki = 1.98 mM). In UVB-irradiated human fibroblast cells, gallic acid glucoside lowered matrix metalloproteinase-1 levels and increased the collagen content, which was indicative of a stronger anti-aging effect than that of gallic acid or arbutin. These results indicated that gallic acid glucoside is likely a superior cosmetic ingredient with skin-whitening and anti-aging functions.

  18. Phenylalanine derived cyanogenic diglucosides from Eucalyptus camphora and their abundances in relation to ontogeny and tissue type.

    PubMed

    Neilson, Elizabeth H; Goodger, Jason Q D; Motawia, Mohammed Saddik; Bjarnholt, Nanna; Frisch, Tina; Olsen, Carl Erik; Møller, Birger Lindberg; Woodrow, Ian E

    2011-12-01

    The cyanogenic glucoside profile of Eucalyptus camphora was investigated in the course of plant ontogeny. In addition to amygdalin, three phenylalanine-derived cyanogenic diglucosides characterized by unique linkage positions between the two glucose moieties were identified in E. camphora tissues. This is the first time that multiple cyanogenic diglucosides have been shown to co-occur in any plant species. Two of these cyanogenic glucosides have not previously been reported and are named eucalyptosin B and eucalyptosin C. Quantitative and qualitative differences in total cyanogenic glucoside content were observed across different stages of whole plant and tissue ontogeny, as well as within different tissue types. Seedlings of E. camphora produce only the cyanogenic monoglucoside prunasin, and genetically based variation was observed in the age at which seedlings initiate prunasin biosynthesis. Once initiated, total cyanogenic glucoside concentration increased throughout plant ontogeny with cyanogenic diglucoside production initiated in saplings and reaching a maximum in flower buds of adult trees. The role of multiple cyanogenic glucosides in E. camphora is unknown, but may include enhanced plant defense and/or a primary role in nitrogen storage and transport. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia

    USDA-ARS?s Scientific Manuscript database

    Blueberries contain an array of phytochemicals that may decrease both inflammatory and oxidative stress. We determined if pterostilbene, resveratrol, and two anthocyanins commonly found in blueberries, delphinidin-3-O-glucoside and malvidin-3-O-glucoside, would be efficacious in protecting microglia...

  20. Cyanidin-3-glucoside suppresses TNF-α-induced cell proliferation through the repression of Nox activator 1 in mouse vascular smooth muscle cells: involvement of the STAT3 signaling.

    PubMed

    Luo, Xiaoqin; Fang, Shi; Xiao, Yunjun; Song, Fenglin; Zou, Tangbin; Wang, Min; Xia, Min; Ling, Wenhua

    2012-03-01

    Cyanidin-3-glucoside (C3G) is a member of the anthocyanin family which belongs to the flavonoid class and possesses antiatherogenic properties. Many studies have demonstrated the protective effects of C3G on vascular endothelial cells and monocytes, however, the precise effects on vascular smooth muscle cells (VSMCs) have been less thoroughly studied. Hence, we investigated the role of C3G in TNF-α-induced VSMCs proliferation and explored the possible mechanisms. TNF-α stimulated VSMCs proliferation, and pretreatment with C3G inhibited the proliferation in dose- and time-dependent manners. Then, we found that C3G attenuated TNF-α-induced ROS over generation by Dihydroethidium staining. The combination of 50 μM C3G and 100 μM apocynin significantly reduced ROS generation. Moreover, C3G pretreatment significantly suppressed the expression of Nox activator 1, a subunit of NADPH oxidase in mouse VSMCs. C3G also inhibited TNF-α-induced signal transducer and activator of transcription (STAT3) phosphorylation, and the inhibitory effect was more prominent in C3G and apocynin co-pretreated cells than that pretreated with C3G or apocynin alone. Administration of the ROS scavenger catalase (2,000 U/ml) remarkably inhibited TNF-α-induced cell proliferation and STAT3 activation. These data suggest that C3G exerts its antiproliferative effect on TNF-α-induced VSMCs proliferation through inhibiting STAT3 activation by attenuating NoxA1-derived ROS over production.

  1. Characterization and quantification of anthocyanins in selected artichoke (Cynara scolymus L.) cultivars by HPLC-DAD-ESI-MSn.

    PubMed

    Schütz, Katrin; Persike, Markus; Carle, Reinhold; Schieber, Andreas

    2006-04-01

    The anthocyanin pattern of artichoke heads (Cynara scolymus L.) has been investigated by high-performance liquid chromatography-electrospray ionization mass spectrometry. For this purpose a suitable extraction and liquid chromatographic method was developed. Besides the main anthocyanins-cyanidin 3,5-diglucoside, cyanidin 3-glucoside, cyanidin 3,5-malonyldiglucoside, cyanidin 3-(3''-malonyl)glucoside, and cyanidin 3-(6''-malonyl)glucoside-several minor compounds were identified. Among these, two peonidin derivatives and one delphinidin derivative were characterized on the basis of their fragmentation patterns. To the best of our knowledge this is the first report on anthocyanins in artichoke heads consisting of aglycones other than those of cyanidin. Quantification of individual compounds was performed by external calibration. Cyanidin 3-(6''-malonyl)glucoside was found to be the major anthocyanin in all the samples analyzed. Total anthocyanin content ranged from 8.4 to 1,705.4 mg kg(-1) dry mass.

  2. Variability in the composition of phenolic compounds in winter-dormant Salix pyrolifolia in relation to plant part and age.

    PubMed

    Lavola, Anu; Maukonen, Merja; Julkunen-Tiitto, Riitta

    2018-06-12

    The phenolic phytochemicals of winter-dormant Salix pyrolifolia were determined from the vegetative buds, and the bark and wood of different-aged twigs by HPLC-DAD and UHPLC-QTOF-MS analyses. All the plant parts were composed of salicylate glucosides and the other Salix-specific, simple phenolic glucosides as well as of phenolic acids, flavonoids and the high molecular-weight condensed tannins. The flavonoid composition was most diverse in buds and they also contained a large amount of chlorogenic acid (5-caffeoylquinic acid IUPAC), while salicylate glucosides and simple phenolic glucosides predominated in bark. The wooden interior part of the twigs contained fewer components and the lowest concentrations of compounds. Salicortin was the main compound in winter-dormant S. pyrolifolia (over 10% of bark biomass), but the concentrations of picein, salireposide, isosalipurposide, catechin and condensed tannins were also high. The flavonoid composition was highly naringenin- and quercetin-biassed. The composition of phytochemicals was organ-specific and remained relatively similar between different-aged trees. However, there were compound-specific fluctuations in the concentrations of phytochemicals with the age of the trees and within plant parts. Generally, the one-year-old plants differed from the older trees in their high concentration of condensed tannins in all the plant parts studied and in the highest concentration of isosalipurposide in bark, while the total amounts of salicylate glucosides in plant parts, and of naringenin glucosides in buds, tended to be highest in 20 year-old-trees. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Qualitative Analysis of Polyphenols in Macroporous Resin Pretreated Pomegranate Husk Extract by HPLC-QTOF-MS.

    PubMed

    Abdulla, Rahima; Mansur, Sanawar; Lai, Haizhong; Ubul, Ablikim; Sun, Guangying; Huang, Guozheng; Aisa, Haji Akber

    2017-09-01

    Pomegranate (Punica granatum L.) husk is a traditional herbal medicine abundant in phenolic compounds and plays some roles in the treatment of oxidative stress, bacterial and viral infection, diabetes mellitus, and acute and chronic inflammation. Identification and determination of polyphenols in macroporous resin pretreated pomegranate husk extract by high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS). The total polyphenols of pomegranate husk were prepared by ethanol extraction followed by pretreatment with HPD-300 macroporous resin. The polyphenolic compounds were qualitatively analysed by HPLC-QTOF-MS in negative electrospray ionisation (ESI) mode at different collision energy (CE) values. A total of 50 polyphenols were detected in the extract of pomegranate husk, including 35 hydrolysable tannins and 15 flavonoids with distinct retention time, fragmentation behaviours and characteristics, and the accurate mass-to-charge ratios at low, moderate and high CE values. Of these, we identified nine compounds for the first time in the pomegranate husk, including hexahydroxydiphenoyl-valoneoyl-glucoside (HHDP-valoneyl-glucoside), galloyl-O-punicalin, rutin, hyperoside, quercimeritrin, kaempferol-7-O-rhahmano-glucoside, luteolin-3'-O-arabinoside, luteolin-3'-O-glucoside, and luteolin-4'-O-glucoside. To validate the specificity and accuracy of mass spectrometry in the detection of polyphenols, as compared to the fragmentation pathways of granatin B in detail, including the HHDP-valoneyl- glucoside was first identified from pomegranate husk. The study provides evidence for the quality control and development of novel drugs based on polyphenols from the pomegranate husk. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Anti-inflammatory and quinone reductase inducing compounds from fermented noni exudates

    USDA-ARS?s Scientific Manuscript database

    A new fatty acid ester disaccharide, 2-O-(ß-D-glucopyranosyl)-1-O- (2E,4Z,7Z)-deca-2,4,7-trienoyl-ß-D-glucopyranose (1), a new ascorbic acid derivative, 2-caffeyl-3-ketohexulofuranosonic acid '-lactone (2), and a new iridoid glycoside, 10-dimethoxyfermiloside (5), were isolated along with thirteen k...

  5. Multiple loss-of-function 5-O-Glucosyltransferase alleles revealed in Vitis vinifera, but not in other Vitis species

    USDA-ARS?s Scientific Manuscript database

    Anthocyanins in red grapes (Vitis genus) are important components of wine and beneficial to human health. These antioxidant compounds are present in two glycosylation states: monoglucoside (3-O-glucoside) and diglucoside (3, 5-di-O-glucoside). While monoglucoside anthocyanins are present in all pigm...

  6. Flavonoid glycosides in bergamot juice (Citrus bergamia Risso).

    PubMed

    Gattuso, Giuseppe; Caristi, Corrado; Gargiulli, Claudia; Bellocco, Ersilia; Toscano, Giovanni; Leuzzi, Ugo

    2006-05-31

    A comprehensive profile of flavonoids in bergamot juice was obtained by a single DAD-ESI-LC-MS-MS course. Eight flavonoids were found for the first time, five of these are C-glucosides (lucenin-2, stellarin-2, isovitexin, scoparin, and orientin 4'-methyl ether), and three are O-glycosides (rhoifolin 4'-O-glucoside, chrysoeriol 7-O-neohesperidoside-4'-O-glucoside, and chrysoeriol 7-O-neohesperidoside). A method is proposed to differentiate chrysoeriol and diosmetin derivatives, which are often indistinguishable by LC-MS-MS. In-depth knowledge of the flavonoid content is the starting point for bergamot juice exploitation in food industry applications.

  7. Monoterpenes with antibacterial activities from a Cameroonian medicinal plant Canthium Multiflorum (Rubiaceae).

    PubMed

    Kouam, Simeon Fogue; Ngouonpe, Alain Wembe; Bullach, Anke; Lamshöft, Marc; Kuigoua, Guy Merlin; Spiteller, Michael

    2013-12-01

    Investigation of the crude extract obtained from the aerial parts of Canthium multiflorum led to the isolation of a new iridoid (1) together with twelve known compounds. The structures of these compounds were elucidated by interpretation of 1D and 2D NMR spectroscopic data, accurate mass measurements and comparison with analytical data of previously known analogues. Most of the isolated compounds have been reported for the first time from C. multiflorium. The antimicrobial activities of the isolated compounds were evaluated on five different bacterial strains using agar diffusion technique. The Gram-positive bacterium Staphylococcus aureus subsp. aureus (DSM 799), and the Gram-negative bacteria Actinobacter calco-aceticus (DSM 30006), Serratia plymuthica (DSM 4540), Pseudomonas stutzeri (DSM 4166) and Escherichia coli (DSM 1116) were employed for this purpose. The new iridoid, named 6-oxo-genipin (1), demonstrated significant inhibitory activity against all microbial strains tested, especially the pathogen Staphylococcus aureus. In addition, the compounds 3, 4 and 9 exhibited antiplasmodial activity against Plasmodium falciparum strain K1 and weak cytotoxicity against L6 cell lines. © 2013 Elsevier B.V. All rights reserved.

  8. Black Currant (Ribes nigrum L.) and Bilberry (Vaccinium myrtillus L.) Fruit Juices Inhibit Adhesion of Asaia spp.

    PubMed Central

    2016-01-01

    The aim of the study was to evaluate the activity of high-polyphenolic black currant (Ribes nigrum L.) and bilberry (Vaccinium myrtillus L.) juices against bacterial strains Asaia lannensis and Asaia bogorensis isolated as spoilage of commercial soft drinks. The composition of fruit juices was evaluated using chromatographic techniques HPLC and LC-MS. The adhesion to glass, polystyrene, and polyethylene terephthalate in two different culture media was evaluated by luminometry and the plate count method. The major anthocyanins in the V. myrtillus were petunidin-3-glucoside, malvidin-3-glucoside, cyanidin-3-glucoside, and delphinidin-3-glucoside, while in R. nigrum delphinidin-3-rutinoside and cyanidin-3-rutinoside were detected. The LC-MS analysis showed presence of anthocyanins (delphinidin, cyanidin, petunidin, and malvidin derivatives), phenolic acids (chlorogenic and neochlorogenic acids), flavonols (quercetin-3-glucoside, quercetin-3-rutinoside), and flavanols (procyanidin B2 and procyanidin type A2). Additionally, in the bilberry juice A type procyanidin trimer was detected. The adhesion of Asaia spp. cells depended on the type of medium, carbon sources, and the type of abiotic surfaces. We noted that the adhesion was significantly stronger in minimal medium containing sucrose. The addition of bilberry and black currant juices notably reduced bacterial growth as well as cell adhesion to polyethylene terephthalate surfaces. PMID:27747228

  9. Constituents and antimicrobial properties of blue honeysuckle: a novel source for phenolic antioxidants.

    PubMed

    Palíková, Irena; Heinrich, Jan; Bednár, Petr; Marhol, Petr; Kren, Vladimír; Cvak, Ladislav; Valentová, Katerina; Růzicka, Filip; Holá, Veronika; Kolár, Milan; Simánek, Vilím; Ulrichová, Jitka

    2008-12-24

    The fruit of Lonicera caerulea L. (blue honeysuckle; Caprifoliaceae) and its phenolic fraction were analyzed for nutrients and micronutrients. The phenolic fraction was prepared from berries percolated with 0.1% H3PO4 and SPE using Sepabeads SP207. The sugar and lipid content was analyzed by HPLC and GC-MS. The total content of anthocyanins was determined using the pH differential absorbance method and aliphatic acids by capillary electrophoresis. MicroLC-MS/MS was used for determination of cyanidin-3-glucoside (the predominant anthocyanin), 3,5-diglucoside, and 3-rutinoside, paeonidin-3-glucoside, 3,5-diglucoside, and 3-rutinoside, delphinidin-3-glucoside and 3-rutinoside, pelargonidin-3-glucoside, 3,5-diglucoside, and 3-rutinoside, quercetin, its 3-glucoside, and 3-rutinoside, epicatechin, protocatechuic, gentisic, ellagic, ferulic, caffeic, chlorogenic, and coumaric acids. The phenolic fraction displayed Folin-Ciocalteu reagent reducing (335 +/- 15 microg of gallic acid equivalent/mg) and DPPH and superoxide scavenging activity (IC50 12.1 +/- 0.1 and 115.5 +/- 6.4 microg/mL) and inhibited rat liver microsome peroxidation (IC50 160 +/- 20 microg/mL). The freeze-dried fruit and its phenolic fraction reduced the biofilm formation and adhesion to the artificial surface of Candida parapsilosis, Staphylococcus epidermidis, Escherichia coli, Enterococcus faecalis, and Streptococcus mutans.

  10. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1.

    PubMed

    Guo, Honghui; Xia, Min; Zou, Tangbin; Ling, Wenhua; Zhong, Ruimin; Zhang, Weiguo

    2012-04-01

    Obesity is a major risk factor for the development of type 2 diabetes, and both conditions are now recognized to possess significant inflammatory components underlying their pathophysiologies. Here, we hypothesized that cyanidin 3-glucoside (C3G), a typical anthocyanin reported to possess potent anti-inflammatory properties, would ameliorate obesity-associated inflammation and metabolic disorders, such as insulin resistance and hepatic steatosis in mouse models of diabesity. Male C57BL/6J obese mice fed a high-fat diet for 12 weeks and genetically diabetic db/db mice at an age of 6 weeks received dietary C3G supplementation (0.2%) for 5 weeks. We found that dietary C3G lowered fasting glucose levels and markedly improved the insulin sensitivity in both high-fat diet fed and db/db mice as compared with unsupplemented controls. White adipose tissue messenger RNA levels and serum concentrations of inflammatory cytokines (tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1) were reduced by C3G, as did macrophage infiltration in adipose tissue. Concomitantly, hepatic triglyceride content and steatosis were alleviated by C3G. Moreover, C3G treatment decreased c-Jun N-terminal kinase activation and promoted phosphorylation and nuclear exclusion of forkhead box O1 after refeeding. These findings clearly indicate that C3G has significant potency in antidiabetic effects by modulating the c-Jun N-terminal kinase/forkhead box O1 signaling pathway and the related inflammatory adipocytokines. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  11. Impact of Thermal Degradation of Cyanidin-3-O-Glucoside of Haskap Berry on Cytotoxicity of Hepatocellular Carcinoma HepG2 and Breast Cancer MDA-MB-231 Cells.

    PubMed

    Pace, Eric; Jiang, Yuanyuan; Clemens, Amy; Crossman, Tennille; Rupasinghe, H P Vasantha

    2018-01-27

    Cyanidin-3 -O -glucoside (C3G), the predominant anthocyanin in haskap berries ( Lonicera caerulea L.), possesses antioxidant and many other biological activities. This study investigated the impact of temperature and pH on the degradation of the C3G-rich haskap fraction. The effect of the thermal degradation products on the viability of hepatocellular carcinoma HepG2 and breast cancer MDA-MB-231 cells was also studied in vitro. Using column chromatography, the C3G-rich fraction was isolated from acetone extracts of haskap berries. The C3G stability in these fractions was studied under elevated temperatures (70 °C and 90 °C) at three different pH values (2.5, 4, and 7) by monitoring the concentration of C3G and its major degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), using liquid chromatography mass spectrometry. Significant degradation of C3G was observed at elevated temperatures and at neutral pH. Conversely, the PCA and PGA concentration increased at higher pH and temperature. Similar to C3G, neutral pH also has a prominent effect on the degradation of PGA, which is further accelerated by heating. The C3G-rich fraction exhibited dose-dependent inhibitory effects on cell metabolic activity when the HepG2 cells were exposed for 48 h. Interestingly, PGA but not PCA exhibited cytotoxic effects against both MDA-MB-231 and HepG2 cells. The results suggest that thermal food processing of haskap could influence its biological properties due to the degradation of C3G.

  12. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace.

    PubMed

    He, Bo; Zhang, Ling-Li; Yue, Xue-Yang; Liang, Jin; Jiang, Jun; Gao, Xue-Ling; Yue, Peng-Xiang

    2016-08-01

    Ultrasound-Assisted Extraction (UAE) of total anthocyanins (TA) and phenolics (TP) from Blueberry Wine Pomace (BWP) was optimized using Response Surface Methodology (RSM). A Box-Behnken design was used to predict that the optimized conditions were an extraction temperature of 61.03°C, a liquid-solid ratio of 21.70mL/g and a sonication time of 23.67min. Using the modeled optimized conditions, the predicted and experimental yields of TA and TP were within a 2% difference. The yields of TA and TP obtained through the optimized UAE method were higher than those using a Conventional Solvent Extraction (CSE) method. Seven anthocyanins, namely delphinidin-3-O-glucoside, delphindin-3-O-arabinoside, petunidin-3-O-glucoside, cyanidin-3-O-arabinoside, cyanidin-3-O-glucoside, malvidin-3-O-glucoside and malvidin-3-O-arabinoside, were found in the BWP extract from both the UAE and CSE methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The contribution of wine-derived monoterpene glycosides to retronasal odour during tasting.

    PubMed

    Parker, Mango; Black, Cory A; Barker, Alice; Pearson, Wes; Hayasaka, Yoji; Francis, I Leigh

    2017-10-01

    This study investigated the sensory significance of monoterpene glycosides during tasting, by retronasal perception of odorant aglycones released in-mouth. Monoterpene glycosides were isolated from Gewürztraminer and Riesling juices and wines, chemically characterised and studied using sensory time-intensity methodology, together with a synthesised monoterpene glucoside. When assessed in model wine at five times wine-like concentration, Gewürztraminer glycosides and geranyl glucoside gave significant fruity flavour, although at wine-like concentrations, or in the presence of wine volatiles, the effect was not significant. Gewürztraminer glycosides, geranyl glucoside and guaiacyl glucoside were investigated using a sensory panel (n=39), revealing large inter-individual variability, with 77% of panellists responding to at least one glycoside. The study showed for the first time that grape-derived glycosides can contribute perceptible fruity flavour, providing a means of enhancing flavour in wines, and confirms the results of previous studies that the effect is highly variable across individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Principal components of phenolics to characterize red Vinho Verde grapes: anthocyanins or non-coloured compounds?

    PubMed

    Dopico-García, M S; Fique, A; Guerra, L; Afonso, J M; Pereira, O; Valentão, P; Andrade, P B; Seabra, R M

    2008-06-15

    Phenolic profile of 10 different varieties of red "Vinho Verde" grapes (Azal Tinto, Borraçal, Brancelho, Doçal, Espadeiro, Padeiro de Basto, Pedral, Rabo de ovelha, Verdelho and Vinhão), from Minho (Portugal) were studied. Nine Flavonols, four phenolic acids, three flavan-3-ols, one stilben and eight anthocyanins were determined. Malvidin-3-O-glucoside was the most abundant anthocyanin while the main non-coloured compound was much more heterogeneous: catechin, epicatechin, myricetin-3-O-glucoside, quercetin-3-O-glucoside or syringetin-3-O-glucoside. Anthocyanin contents ranged from 42 to 97%. Principal component analysis (PCA) was applied to analyse the date and study the relations between the samples and their phenolic profiles. Anthocyanin profile proved to be a good marker to characterize the varieties even considering different origin and harvest. "Vinhão" grapes showed anthocyanins levels until twenty four times higher than the rest of the samples, with 97% of these compounds.

  15. Determination of 15 isoflavone isomers in soy foods and supplements by high-performance liquid chromatography.

    PubMed

    Yanaka, Kaoru; Takebayashi, Jun; Matsumoto, Teruki; Ishimi, Yoshiko

    2012-04-25

    Soy isoflavone is the generic name for the isoflavones found in soy. We determined the concentrations of 15 soy isoflavone species, including 3 succinyl glucosides, in 22 soy foods and isoflavone supplements by high-performance liquid chromatography (HPLC). The total isoflavone contents in 14 soy foods and 8 supplements ranged from 45 to 735 μg/g and from 1,304 to 90,224 μg/g, respectively. Higher amounts of succinyl glucosides were detected in natto, a typical fermented soy product in Japan; these ranged from 30 to 80 μg/g and comprised 4.1-10.9% of the total isoflavone content. In soy powder, 59 μg/g of succinyl glucosides were detected, equivalent to 4.6% of the total isoflavone content. These data suggest that the total isoflavone contents may be underestimated in the previous studies that have not included succinyl glucosides, especially for Bacillus subtilis -fermented soy food products.

  16. Differential response of terpenes and anthraquinones derivatives in Rumex dentatus and Lavandula officinalis to harsh winters across north-western Himalaya.

    PubMed

    Jan, Sumira; Kamili, Azra N; Parray, Javid A; Bedi, Yashbir S

    2016-01-01

    Herbs adapted to diverse climates exhibit distinct variability to fluctuating temperatures and demonstrate various metabolic and physiological adaptations to harsh environments. In this research, Rumex dentatus L. and Lavandula officinalis L. were collected before snowfall in September-November to evaluate variability in major phytoconstituents to diverse seasonal regime. LC-MS was used for simultaneous determination of eight anthraquinone derivatives in R. dentatus, i.e. emodin, physcion, chrysophanol, physcion glucoside, endocrocin, emodin glucoside, chrysophanol glucoside and chromone derivatives and monoterpenes in L. officinalis i.e. (Z)-β-ocimene, (E)-β-ocimene, terpene alcohol, terpin-4-ol, acetate ester-linalyl acetate and bicyclic sesquiterpene (E)-caryophyllene. The correlation analysis confirmed significant variation in anthraquinone glucoside and terpene content within Rumex and Lavender, respectively, and altitude was established as the determinant factor in secondary metabolism of both herbs. The study concludes the propagation of herbs in bioclimatic belts which favour accumulation of major constituents and validate their greater pharmacological activity.

  17. Rapid Quantification of Four Anthocyanins in Red Grape Wine by Hydrophilic Interaction Liquid Chromatography/Triple Quadrupole Linear Ion Trap Mass Spectrometry.

    PubMed

    Sun, Yongming; Xia, Biqi; Chen, Xiangzhun; Duanmu, Chuansong; Li, Denghao; Han, Chao

    2015-01-01

    The identification and quantification of four anthocyanins (cyanidin-3-O-glucoside, peonidin-3-O-glucoside, delphinidin-3-O-glucoside, and malvidin-3-O-glucoside) in red grape wine were carried out by hydrophilic interaction liquid chromatography/triple quadrupole linear ion trap MS (HILIC/QTrap-MS/MS). Samples were diluted directly and separated on a Merck ZIC HILIC column with 20 mM ammonium acetate solution-acetonitrile mobile phase. Quantitative data acquisition was carried out in the multiple reaction monitoring mode. Additional identification and confirmation of target compounds were performed using the enhanced product ion mode of the linear ion trap. The LOQs were in the range 0.05-1.0 ng/mL. The average recoveries were in the range 94.6 to 104.5%. The HILIC/QTrap-MS/MS platform offers the best sensitivity and specificity for characterization and quantitative determination of the four anthocyanins in red grape wines and fulfills the quality criteria for routine laboratory application.

  18. Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-κB suppression.

    PubMed

    Wang, Yong; Huo, Yazhen; Zhao, Liang; Lu, Feng; Wang, Ou; Yang, Xue; Ji, Baoping; Zhou, Feng

    2016-07-01

    Cyanidin-3-glucoside (C3G) is a major anthocyanin in berries and a potential nutritional supplement for preventing retinal degeneration. However, the protective mechanism of C3G and its metabolites, protocatechuic acid (PCA) and ferulic acid (FA), remain unclear. The molecular mechanisms of C3G and its metabolites against retinal photooxidative damage in vivo are investigated. Pigmented rabbits were orally administered C3G, PCA, and FA (0.11 mmol/kg/day) for 3 weeks. Electroretinography, histological analysis, and TUNEL assay showed that C3G and its metabolites attenuated retinal cell apoptosis. The expression of oxidative stress markers were upregulated after light exposure but attenuated by C3G and FA, which may be attributed to the elevated secretion and expression of heme oxygenase (HO-1) and nuclear factor erythroid-2 related factor 2 (Nrf2). C3G, PCA, and FA attenuated the secretion or expression of inflammation-related genes; FA suppressed nuclear factor kappa B (NF-κB) activation. The treatments attenuated the light-induced changes on certain apoptotic proteins and angiogenesis-related cytokines. C3G and FA reduced light-induced retinal oxidative stress by activating the Nrf2/HO-1 antioxidant pathway. FA attenuated the light-induced retinal inflammation by suppressing NF-κB activation. C3G and its metabolites attenuated the photooxidation-induced apoptosis and angiogenesis in the retina. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    PubMed

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring

  20. Comparison of Anorectic and Emetic Potencies of Deoxynivalenol (Vomitoxin) to the Plant Metabolite Deoxynivalenol-3-Glucoside and Synthetic Deoxynivalenol Derivatives EN139528 and EN139544

    PubMed Central

    Wu, Wenda; Zhou, Hui-Ren; Bursian, Steven J.; Pan, Xiao; Link, Jane E.; Berthiller, Franz; Adam, Gerhard; Krantis, Anthony; Durst, Tony; Pestka, James J.

    2014-01-01

    The mycotoxin deoxynivalenol (DON) elicits robust anorectic and emetic effects in several animal species. However, less is known about the potential for naturally occurring and synthetic congeners of this trichothecene to cause analogous responses. Here we tested the hypothesis that alterations in DON structure found in the plant metabolite deoxynivalenol-3-glucoside (D3G) and two pharmacologically active synthetic DON derivatives, EN139528 and EN139544, differentially impact their potential to evoke food refusal and emesis. In a nocturnal mouse food consumption model, oral administration with DON, D3G, EN139528, or EN139544 at doses from 2.5 to 10 mg/kg BW induced anorectic responses that lasted up to 16, 6, 6, and 3 h, respectively. Anorectic potency rank orders were EN139544>DON>EN139528>D3G from 0 to 0.5 h but DON>D3G>EN139528>EN139544 from 0 to 3 h. Oral exposure to each of the four compounds at a common dose (2.5 mg/kg BW) stimulated plasma elevations of the gut satiety peptides cholecystokinin and to a lesser extent, peptide YY3–36 that corresponded to reduced food consumption. In a mink emesis model, oral administration of increasing doses of the congeners differentially induced emesis, causing marked decreases in latency to emesis with corresponding increases in both the duration and number of emetic events. The minimum emetic doses for DON, EN139528, D3G, and EN139544 were 0.05, 0.5, 2, and 5 mg/kg BW, respectively. Taken together, the results suggest that although all three DON congeners elicited anorectic responses that mimicked DON over a narrow dose range, they were markedly less potent than the parent mycotoxin at inducing emesis. PMID:25173790

  1. Demonstration of monolignol β-glucosidase activity of rice Os4BGlu14, Os4BGlu16 and Os4BGlu18 in Arabidopsis thaliana bglu45 mutant.

    PubMed

    Baiya, Supaporn; Mahong, Bancha; Lee, Sang-Kyu; Jeon, Jong-Seong; Ketudat Cairns, James R

    2018-06-01

    The glycoside hydrolase family 1 members Os4BGlu14, Os4BGlu16, and Os4BGlu18 were proposed to be rice monolignol β-glucosidases. In vitro studies demonstrated that the Os4BGlu16 and Os4BGlu18 hydrolyze the monolignol glucosides coniferin and syringin with high efficiency compared to other substrates. The replacement of the conserved catalytic acid/base glutamate residue by a nonionizable glutamine residue in Os4BGlu14 suggested that it may be inactive as a β-glucosidase. Here, we investigated the activities of Os4BGlu14, Os4BGlu16, and Os4BGlu18 in planta by recombinant expression of their genes in the Arabidopsis bglu45-2 (monolignol β-glucosidase) mutant and analysis of monolignol glucosides by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MSMS). The bglu45-2 line exhibits elevated monolignol glucoside levels, but lower amounts of coniferin, syringin, and p-coumaryl alcohol glucoside were seen in Arabidopsis bglu45-2 rescued lines complemented by the Os4BGlu14, Os4BGlu16, and Os4BGlu18 genes. These data suggest that the bglu45-2 mutant has a broader effect on monolignols than previously reported and that the Os4BGlu14, Os4BGlu16 and Os4BGlu18 proteins act as monolignol β-glucosidases to complement the defect. An OsBGlu16-GFP fusion protein localized to the cell wall. This apoplastic localization and the effect of these enzymes on monolignol glucoside levels suggest monolignol glucosides from the vacuole may meet the monolignol β-glucosidases, despite their different localization. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. UPLC-MS/MS determination and gender-related pharmacokinetic study of five active ingredients in rat plasma after oral administration of Eucommia cortex extract.

    PubMed

    Hu, Fangdi; An, Jing; Li, Wen; Zhang, Zijia; Chen, Wenxia; Wang, Changhong; Wang, Zhengtao

    2015-07-01

    Eucommiae cortex (EC), the bark of Eucommia ulmoides Oliv., has been traditionally used to treat many diseases in China for more than 2000 years. The pharmacological effects are primarily attributed to the presence of lignans, iridoids and phenolics, which are main active ingredients in EC. First, to investigate the active ingredients that can be absorbed into the rat plasma according to which ingredients exhibit significant correlation of drug concentration-time curve. Second, to establish an efficient ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method for simultaneous determination of ingredients absorbed in rat plasma. Finally, to investigate gender effect on the pharmacokinetics of the ingredients absorbed in male and female rats plasma after oral administration with EC extract. 18 ingredients from EC were detected by UPLC-MS/MS, 9 out of 18 ingredients were absorbed into rat plasma. And 5 ingredients exhibit significant correlation of drug concentration-time curve. They were pinoresinol di-O-β-d-glucopyranoside (PDG), geniposide (GE), geniposidic acid (GA), aucubin (AN) and chlorogenic acid (CA). The analytes were extracted from rat plasma via a simple protein precipitation procedure and osalmid was used as the internal standard. Chromatographic separation was achieved on a Waters ACQUITY HSS T3 column (2.1mm×100mm, 1.8μm) using a gradient elution program with acetonitrile and 0.1% formic acid water as the mobile phase, with a flow rate of 0.3mLmin(-1). The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reactions monitoring (MRM) mode in a positive ion mode via electrospray ionization (ESI). The transition monitored were /z 683.00[M+H](+)→235.10 for PDG, / z 389.00[M+H](+)→208.80 for GE, m/z 375.00[M+H](+)→194.79 for GA, m/z 364.00[M+NH4](+)→148.81 for AN, m/z 355.10[M+H](+)→162.84 for CA and m/z 230.03[M+H](+)→120.77 for internal standard. The developed method showed good

  3. Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance.

    PubMed

    Šmehilová, Mária; Dobrůšková, Jana; Novák, Ondřej; Takáč, Tomáš; Galuszka, Petr

    2016-01-01

    Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in

  4. Sex differences but no evidence of quantitative honesty in the warning signals of six-spot burnet moths (Zygaena filipendulae L.).

    PubMed

    Briolat, Emmanuelle Sophie; Zagrobelny, Mika; Olsen, Carl Erik; Blount, Jonathan D; Stevens, Martin

    2018-05-16

    The distinctive black and red wing pattern of six-spot burnet moths (Zygaena filipendulae, L.) is a classic example of aposematism, advertising their potent cyanide-based defences. While such warning signals provide a qualitatively honest signal of unprofitability, the evidence for quantitative honesty, whereby variation in visual traits could provide accurate estimates of individual toxicity, is more equivocal. Combining measures of cyanogenic glucoside content and wing colour from the perspective of avian predators, we investigate the relationship between coloration and defences in Z. filipendulae, to test signal honesty both within and across populations. There were no significant relationships between mean cyanogenic glucoside concentration and metrics of wing coloration across populations in males, yet in females higher cyanogenic glucoside levels were associated with smaller and lighter red forewing markings. Trends within populations were similarly inconsistent with quantitative honesty, and persistent differences between the sexes were apparent: larger females, carrying a greater total cyanogenic glucoside load, displayed larger but less conspicuous markings than smaller males, according to several colour metrics. The overall high aversiveness of cyanogenic glucosides and fluctuations in colour and toxin levels during an individual's lifetime may contribute to these results, highlighting generally important reasons why signal honesty should not always be expected in aposematic species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Quantitative studies on structure-ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR.

    PubMed

    Jing, Pu; Zhao, Shujuan; Ruan, Siyu; Sui, Zhongquan; Chen, Lihong; Jiang, Linlei; Qian, Bingjun

    2014-02-15

    The 3-dimensional quantitative structure activity relationship (3D-QSAR) models were established from 21 anthocyanins based on their oxygen radical absorbing capacity (ORAC) and were applied to predict anthocyanins in eggplant and radish for their ORAC values. The cross-validated q(2)=0.857/0.729, non-cross-validated r(2) = 0.958/0.856, standard error of estimate = 0.153/0.134, and F = 73.267/19.247 were for the best QSAR (CoMFA/CoMSIA) models, where the correlation coefficient r(2)pred = 0.998/0.997 (>0.6) indicated a high predictive ability for each. Additionally, the contour map results suggested that structural characteristics of anthocyanins favourable for the high ORAC. Four anthocyanins from eggplant and radish have been screened based on the QSAR models. Pelargonidin-3-[(6''-p-coumaroyl)-glucosyl(2 → 1)glucoside]-5-(6''-malonyl)-glucoside, delphinidin-3-rutinoside-5-glucoside, and delphinidin-3-[(4''-p-coumaroyl)-rhamnosyl(1 → 6)glucoside]-5-glucoside potential with high ORAC based the QSAR models were isolated and also confirmed for their relative high antioxidant ability, which might attribute to the bulky and/or electron-donating substituent at the 3-position in the C ring or/and hydrogen bond donor group/electron donating group on the R1 position in the B ring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Mice Fed a High-Cholesterol Diet Supplemented with Quercetin-3-Glucoside Show Attenuated Hyperlipidemia and Hyperinsulinemia Associated with Differential Regulation of PCSK9 and LDLR in their Liver and Pancreas.

    PubMed

    Mbikay, Majambu; Mayne, Janice; Sirois, Francine; Fedoryak, Olesya; Raymond, Angela; Noad, Jennifer; Chrétien, Michel

    2018-05-01

    Hepatic LDL receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) regulate the clearance of plasma LDL-cholesterol (LDL-C): LDLR promotes it, and PCSK9 opposes it. These proteins also express in pancreatic β cells. Using cultured hepatocytes, we previously showed that the plant flavonoid quercetin-3-glucoside (Q3G) inhibits PCSK9 secretion, stimulated LDLR expression, and enhanced LDL-C uptake. Here, we examine whether Q3G supplementation could reverse the hyperlipidemia and hyperinsulinemia of mice fed a high-cholesterol diet, and how it affects hepatic and pancreatic LDLR and PCSK9 expression. For 12 weeks, mice are fed a low- (0%) or high- (1%) cholesterol diet (LCD or HCD), supplemented or not with Q3G at 0.05 or 0.1% (w/w). Tissue LDLR and PCSK9 is analyzed by immunoblotting, plasma PCSK9 and insulin by ELISA, and plasma cholesterol and glucose by colorimetry. In LCD-fed mice, Q3G has no effect. In HCD-fed mice, it attenuates the increase in plasma cholesterol and insulin, accentuates the decrease in plasma PCSK9, and increases hepatic and pancreatic LDLR and PCSK9. In cultured pancreatic β cells, however, it stimulates PCSK9 secretion. In mice, dietary Q3G could counter HCD-induced hyperlipidemia and hyperinsulinemia, in part by oppositely modulating hepatic and pancreatic PCSK9 secretion. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nyctanthes arbor-tristis Linn--a critical ethnopharmacological review.

    PubMed

    Agrawal, Jyoti; Pal, Anirban

    2013-04-19

    Nyctanthes arbor-tristis (Oleaceae) is a mythological plant; has high medicinal values in Ayurveda. The popular medicinal use of this plant are anti-helminthic and anti-pyretic besides its use as a laxative, in rheumatism, skin ailments and as a sedative. Vitally, the natives plant it in their home gardens to pass on its medicinal usage to oncoming generations. The present review encompasses an ethnopharmacological evaluation focusing on information on the chemical constituents, pharmacological actions and toxicology in order to reveal the therapeutic potential and gaps requiring research involvement. The present review is based on searches in Scifinder(®), Pubmed (National Library of Medicine) and books published on the subject during the period 1933 to 2012. Nyctanthes arbor-tristis is most important in local and traditional medicines especially in India for treating intermittent fevers, arthritis and obstinate sciatica. Crude extracts and isolated compounds from the plant were shown to be pharmacologically active against inflammation, malaria, viral infection, leishmanisis and as an immunostimulant. The major class of biologically active compounds are the iridoid glucosides incl., Arbortristoside A, B and C from the seeds active as anticancer, anti-leishmania, anti-inflammatory, anti-allergic, immunomodulatory and antiviral. Other molecules; calceolarioside A, 4-hydroxyhexahydrobenzofuran-7one and β-sitosterol from leaves have been reported to be active as anti-leishmanial, anticancer and anti-inflammatory, respectively. The crude extracts have been found to be safe with an LD50 of 16gm/kg, while the LD50 of arbortristoside-A isolated from the seeds was found to be 0.5g/kg. Mostly in-vitro or in some cases in-vivo models provide some evidence especially in the treatment of inflammatory conditions like arthritis, fevers related to malaria and protozoan diseases especially leishmaniasis. The only clinical study found, is for treating malaria, but with crude

  8. Flavonoids from acai (euterpe oleracea mart.) Pulp and their antioxidant and anti-inflammatory activities

    USDA-ARS?s Scientific Manuscript database

    Five flavonoids, (2S,3S)-dihyrokaempferol 3-O-beta-D-glucoside (1) and its isomer (2R,3R)-dihydrokaempferol 3-O-'-D-glucoside (2) , isovitexin (3), velutin (4) and 5,4'-dihydroxy-7,3',5'-trimethoxyflavone (5), were isolated from acai (Euterpe oleracea Mart.) pulp. The structures of these compounds ...

  9. Impact of Thermal Degradation of Cyanidin-3-O-Glucoside of Haskap Berry on Cytotoxicity of Hepatocellular Carcinoma HepG2 and Breast Cancer MDA-MB-231 Cells

    PubMed Central

    Pace, Eric; Jiang, Yuanyuan; Clemens, Amy; Crossman, Tennille

    2018-01-01

    Cyanidin-3-O-glucoside (C3G), the predominant anthocyanin in haskap berries (Lonicera caerulea L.), possesses antioxidant and many other biological activities. This study investigated the impact of temperature and pH on the degradation of the C3G-rich haskap fraction. The effect of the thermal degradation products on the viability of hepatocellular carcinoma HepG2 and breast cancer MDA-MB-231 cells was also studied in vitro. Using column chromatography, the C3G-rich fraction was isolated from acetone extracts of haskap berries. The C3G stability in these fractions was studied under elevated temperatures (70 °C and 90 °C) at three different pH values (2.5, 4, and 7) by monitoring the concentration of C3G and its major degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), using liquid chromatography mass spectrometry. Significant degradation of C3G was observed at elevated temperatures and at neutral pH. Conversely, the PCA and PGA concentration increased at higher pH and temperature. Similar to C3G, neutral pH also has a prominent effect on the degradation of PGA, which is further accelerated by heating. The C3G-rich fraction exhibited dose-dependent inhibitory effects on cell metabolic activity when the HepG2 cells were exposed for 48 h. Interestingly, PGA but not PCA exhibited cytotoxic effects against both MDA-MB-231 and HepG2 cells. The results suggest that thermal food processing of haskap could influence its biological properties due to the degradation of C3G. PMID:29382057

  10. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS.

    PubMed

    Yang, Jing; Qian, Dawei; Jiang, Shu; Shang, Er-xin; Guo, Jianming; Duan, Jin-ao

    2012-06-01

    In this paper, rutin was metabolized by human intestinal bacteria and five isolated strains including Bacillus sp. 52, Bacteroides sp. 45, 42, 22 and Veillonella sp. 32, the metabolites were identified using ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). As a result, Bacillus sp. 52 and Bacteroides sp. 45 could metabolize rutin to quercetin 3-O-glucoside and leucocyanidin. Bacteroides sp. 42 and Veillonella sp. 32 could convert rutin to leucocyanidin. Bacteroides sp. 22 could hydrolyze rutin to quercetin-3-O-glucoside. In order to further explain the metabolism pathway of rutin, the β-D-glucosidase and α-L-rhamnosidase activities of five strains were determined. Bacteroides sp. 22 could produce α-L-rhamnosidase but did not produce β-D-glucosidase or β-D-glucosidase activity was too low to be detected. The other four strains all demonstrated α-L-rhamnosidase and β-D-glucosidase activities. Furthermore, α-L-rhamnosidase and β-D-glucosidase activities of Veillonella sp. 32 and Bacteroides sp. 42 were higher than those of Bacteroides sp. 45 and Bacillus sp. 52. Based on these results, we can propose the deglycosylated rout of rutin: rutin was metabolized to be quercetin-3-O-glucoside by α-L-rhamnosidase produced from these bacteria, thereafter, quercetin-3-O-glucoside was further metabolized by β-D-glucosidase to form leucocyanidin. Because of the higher enzyme activity in Veillonella sp. 32 and Bacteroides sp. 42, quercetin-3-O-glucoside was completely metabolized to leucocyanidin by these two bacteria. Due to the lack of β-D-glucosidase activity, Bacteroides sp. 22 could not further metabolize quercetin-3-O-glucoside to leucocyanidin. This study will be helpful for understanding the deglycosylated rout of rutin and the role of different intestinal bacteria on the metabolism of natural compounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Cyanidin-3-Glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signalling pathways in SKH-1 hairless mice skin

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2015-01-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-Glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. PMID:25062774

  12. Hydrolysis and reconjugation of gibberellin A20 glucosyl ester by seedlings of Zea mays L.

    PubMed Central

    Schneider, G; Jensen, E; Spray, C R; Phinney, B O

    1992-01-01

    The [6-2H]glucosyl ester of [17-13C,3H]gibberellin A20 (GA20) was injected into light-grown 14-day-old seedlings of normal, dwarf-1, and dwarf-5 maize (Zea mays L.). The plant material was extracted 24 h later, and the extracts were purified by solvent partitioning, column chromatography, and HPLC. 13C-labeled metabolites were identified from the purified extracts by full-scan gas chromatography/mass spectrometry and selected ion current monitoring in conjunction with Kovats retention indices. The metabolites, [13C]GA20, [13C]GA29, [13C]GA20-13-O-glucoside, and [13C]GA29-2-O-glucoside, were identified from normal, dwarf-1, and dwarf-5 seedlings. [13C]GA8 and [13C]GA8-2-O-glucoside were also identified from normal and dwarf-5 seedlings but not from dwarf-1 seedlings. The data provide definitive evidence for the endogenous hydrolysis by the seedlings of the introduced conjugate and its reconjugation to three glucosides. PMID:1518829

  13. Thermal stability and kinetics of degradation of deoxynivalenol, deoxynivalenol conjugates and ochratoxin A during baking of wheat bakery products.

    PubMed

    Vidal, Arnau; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2015-07-01

    The stability of deoxynivalenol (DON), deoxynivalenol-3-glucoside (DON-3-glucoside), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), de-epoxy-deoxynivalenol (DOM-1) and ochratoxin A (OTA) during thermal processing has been studied. Baking temperature, time and initial mycotoxin concentration in the raw materials were assayed as factors. An improved UPLC-MS/MS method to detect DON, DON-3-glucoside, 3-ADON, 15-ADON and DOM-1 in wheat baked products was developed in the present assay. The results highlighted the importance of temperature and time in mycotoxin stability in heat treatments. OTA is more stable than DON in a baking treatment. Interestingly, the DON-3-glucoside concentrations increased (>300%) under mild baking conditions. On the other hand, it was rapidly reduced under harsh conditions. The 3-ADON decreased during the heat treatment; while DOM-1 increased after the heating process. Finally, the data followed first order kinetics for analysed mycotoxins and thermal constant rates (k) were calculated. This parameter can be a useful tool for prediction of mycotoxin levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Antioxidative and Cardioprotective Properties of Anthocyanins from Defatted Dabai Extracts

    PubMed Central

    Khoo, Hock Eng; Azlan, Azrina; Nurulhuda, M. Halid; Ismail, Amin; Abas, Faridah; Hamid, Muhajir; Roowi, Suri

    2013-01-01

    This study aimed to determine anthocyanins and their antioxidative and cardioprotective properties in defatted dabai parts. Anthocyanins in crude extracts and extract fractions of defatted dabai peel and pericarp were quantified using UHPLC, while their antioxidant capacity and oxidative stress inhibition ability were evaluated by using DPPH and CUPRAC assays as well as linoleic acid oxidation system, hemoglobin oxidation, and PARP-1 inhibition ELISA. Cardioprotective effect of the defatted dabai peel extract was evaluated using hypercholesterolemic-induced New Zealand white rabbits. Six anthocyanins were detected in the defatted dabai peel, with the highest antioxidant capacities and oxidative stress inhibition effect compared to the other part. The defatted dabai peel extract has also inhibited lipid peroxidation (plasma MDA) and elevated cellular antioxidant enzymes (SOD and GPx) in the tested animal model. Major anthocyanin (cyanidin-3-glucoside) and other anthocyanins (pelargonidin-3-glucoside, malvidin-3-glucoside, cyanidin-3-galactoside, cyanidin-3-arabinoside, and peonidin-3-glucoside) detected in the defatted dabai peel are potential future nutraceuticals with promising medicinal properties. PMID:24368926

  15. Phenolic Component Profiles of Mustard Greens, Yu Choy, and 15 Other Brassica Vegetables

    PubMed Central

    Lin, Long-Ze; Harnly, James M

    2013-01-01

    A liquid chromatography–mass spectrometry (LC-MS) profiling method was used to characterize the phenolic components of 17 leafy vegetables from Brassica species other than Brassica oleracea. The vegetables studied were mustard green, baby mustard green, gai choy, baby gai choy, yu choy, yu choy tip, bok choy, bok choy tip, baby bok choy, bok choy sum, Taiwan bok choy, Shanghai bok choy, baby Shanghai bok choy, rapini broccoli, turnip green, napa, and baby napa. This work led to the tentative identification of 71 phenolic compounds consisting of kaempferol 3-O-diglucoside-7-O-glucoside derivatives, isorhamnetin 3-O-glucoside-7-O-glucoside hydroxycinnamoyl gentiobioses, hydroxycinnamoylmalic acids, and hydroxycinnamoylquinic acids. Ten of the compounds, 3-O-diacyltriglucoside-7-O-glucosides of kaempferol and quercetin, had not been previously reported. The phenolic component profiles of these vegetables were significantly different than those of the leafy vegetables from B. oleracea. This is the first comparative study of these leafy vegetables. Ten of the vegetables had never been previously studied by LC-MS. PMID:20465307

  16. Cyanidin-3-o-β-Glucoside Induces Megakaryocyte Apoptosis via PI3K/Akt- and MAPKs-Mediated Inhibition of NF-κB Signalling.

    PubMed

    Ya, Fuli; Li, Qing; Wang, Dongliang; Xie, Shuangfeng; Song, Fenglin; Gallant, Reid C; Tian, Zezhong; Wan, Jianbo; Ling, Wenhua; Yang, Yan

    2018-06-04

    Apoptotic-like phase is an essential step in thrombopoiesis from megakaryocytes. Anthocyanins are natural flavonoid pigments that possess a wide range of biological activities, including protection against cardiovascular diseases and induction of tumour cell apoptosis. We investigated the effects and underlying mechanisms of cyanidin-3-o-β-glucoside (Cy-3-g, the major bioactive compound in anthocyanins) on the apoptosis of human primary megakaryocytes and Meg-01 cell line in vitro . We found that Cy-3-g dose-dependently increased the dissipation of the mitochondrial membrane potential, caspase-9 and caspase-3 activity in megakaryocytes from patients with newly diagnosed acute myeloid leukaemia but not in those from healthy volunteers. In Meg-01 cells, Cy-3-g regulated the distribution of Bak, Bax and Bcl-xL proteins in the mitochondria and cytosol, subsequently increasing cytochrome c release and stimulating caspase-9 and caspase-3 activation and phosphatidylserine exposure. However, Cy-3-g did not exert significant effects on factor-associated suicide (Fas), Fas ligand, caspase-8 or Bid expression. Cy-3-g inhibited nuclear factor kappa B (NF-κB) p65 activation by down-regulating inhibitor of NF-κB kinase (IKK)α and IKKβ expression, followed by the inhibition of inhibitor of NF-κB (IκB)α phosphorylation and degradation and subsequent inhibition of the translocation of the p65 sub-unit into the nucleus, and finally stimulating caspase-3 activation and phosphatidylserine exposure. The inhibitory effect of Cy-3-g on NF-κB activation was mediated by the activation of extracellular signal-regulated kinases (Erk1/2) and p38 mitogen-activated protein kinase (MAPK) and the inhibition of phosphoinositide 3-kinase (PI3K)/Akt signalling. U0126 (Erk1/2 inhibitor), SB203580 (p38 MAPK inhibitor) and 740 Y-P (PI3K agonist) significantly reversed Cy-3-g-reduced phosphorylation of p65. Taken together, our data indicate that Cy-3-g induces megakaryocyte apoptosis via the

  17. Hostplant suitability and defensive chemistry of the Catalpa sphinx, Ceratomia catalpae.

    PubMed

    Bowers, M Deane

    2003-10-01

    The growth and survival of the Catalpa sphinx, Ceratomia catalpae (Sphingidae), were measured on five different species of Catalpa: C. bignonioides, C. bungeii, C. fargeseii, C. ovata, and C. speciosa. Larval growth varied significantly among these host plant species; however, survival did not differ. Quantification of the iridoid glycoside content of larvae, pupae, adults, larval frass, and leaves of the larval host plant, C. bignonioides, by gas chromatography showed that leaves contained both catalpol and catalposide; larvae, pupae, and frass contained only catalpol; and the adults contained no detectable iridoid glycosides. Amounts were highest in the larvae and declined in the pupal stage. Very small amounts of catalpol were detected in adults of the parasitoid, Cotesia congregata, and in the silken cocoons. The hemolymph in which the parasitoid larvae grew contained over 50% dry weight catalpol. Larvae of C. catalpae often regurgitate when disturbed. This may serve as a defense against predators. A comparison of the growth of larvae pinched with forceps to induce regurgitation with those that were not so treated showed that larvae that were pinched, and usually regurgitated, grew significantly more slowly than those that were not.

  18. Comprehensive quality assessment based specific chemical profiles for geographic and tissue variation in Gentiana rigescens using HPLC and FTIR method combined with principal component analysis

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhang, Ji; Zhao, Yan-Li; Huang, Heng-Yu; Wang, Yuan-Zhong

    2017-12-01

    Roots, stems, leaves and flowers of Longdan (Gentiana rigescens Franch. ex Hemsl) were collected from six geographic origins of Yunnan Province (n = 240) to implement the quality assessment based on contents of gentiopicroside, loganic acid, sweroside and swertiamarin and chemical profile using HPLC-DAD and FTIR method combined with principal component analysis (PCA). The content of gentiopicroside (major iridoid glycoside) was the highest in G. rigescens, regardless of tissue and geographic origin. The level of swertiamarin was the lowest, even unable to be detected in samples from Kunming and Qujing. Significant correlations (p < 0.05) between gentiopicroside, loganic acid, sweroside and swertiamarin were found at inter- or intra-tissues, which were highly depended on geographic origins, indicating the influence of environmental conditions on the conversion and transport of secondary metabolites in G. rigescens. Furthermore, samples were reasonably classified as three clusters along large producing areas where have similar climate conditions, characterized by carbohydrates, phenols, benzoates, terpenoids, aliphatic alcohols, aromatic hydrocarbons, and so forth. The present work provided global information on the chemical profile and contents of major iridoid glycosides in G. rigescens originated from six different origins, which is helpful for controlling quality of herbal medicines systematically.

  19. Comprehensive Quality Assessment Based Specific Chemical Profiles for Geographic and Tissue Variation in Gentiana rigescens Using HPLC and FTIR Method Combined with Principal Component Analysis

    PubMed Central

    Li, Jie; Zhang, Ji; Zhao, Yan-Li; Huang, Heng-Yu; Wang, Yuan-Zhong

    2017-01-01

    Roots, stems, leaves, and flowers of Longdan (Gentiana rigescens Franch. ex Hemsl) were collected from six geographic origins of Yunnan Province (n = 240) to implement the quality assessment based on contents of gentiopicroside, loganic acid, sweroside and swertiamarin and chemical profile using HPLC-DAD and FTIR method combined with principal component analysis (PCA). The content of gentiopicroside (major iridoid glycoside) was the highest in G. rigescens, regardless of tissue and geographic origin. The level of swertiamarin was the lowest, even unable to be detected in samples from Kunming and Qujing. Significant correlations (p < 0.05) between gentiopicroside, loganic acid, sweroside, and swertiamarin were found at inter- or intra-tissues, which were highly depended on geographic origins, indicating the influence of environmental conditions on the conversion and transport of secondary metabolites in G. rigescens. Furthermore, samples were reasonably classified as three clusters along large producing areas where have similar climate conditions, characterized by carbohydrates, phenols, benzoates, terpenoids, aliphatic alcohols, aromatic hydrocarbons, and so forth. The present work provided global information on the chemical profile and contents of major iridoid glycosides in G. rigescens originated from six different origins, which is helpful for controlling quality of herbal medicines systematically. PMID:29312929

  20. Antioxidant and metabolite profiling of North American and neotropical blueberries using LC-TOF-MS and multivariate analyses.

    PubMed

    Ma, Chunhui; Dastmalchi, Keyvan; Flores, Gema; Wu, Shi-Biao; Pedraza-Peñalosa, Paola; Long, Chunlin; Kennelly, Edward J

    2013-04-10

    There are many neotropical blueberries, and recent studies have shown that some have even stronger antioxidant activity than the well-known edible North American blueberries. Antioxidant marker compounds were predicted by applying multivariate statistics to data from LC-TOF-MS analysis and antioxidant assays of 3 North American blueberry species (Vaccinium corymbosum, Vaccinium angustifolium, and a defined mixture of Vaccinium virgatum with V. corymbosum) and 12 neotropical blueberry species (Anthopterus wardii, Cavendishia grandifolia, Cavendishia isernii, Ceratostema silvicola, Disterigma rimbachii, Macleania coccoloboides, Macleania cordifolia, Macleania rupestris, Satyria boliviana, Sphyrospermum buxifolium, Sphyrospermum cordifolium, and Sphyrospermum ellipticum). Fourteen antioxidant markers were detected, and 12 of these, including 7 anthocyanins, 3 flavonols, 1 hydroxycinnamic acid, and 1 iridoid glycoside, were identified. This application of multivariate analysis to bioactivity and mass data can be used for identification of pharmacologically active natural products and may help to determine which neotropical blueberry species will be prioritized for agricultural development. Also, the compositional differences between North American and neotropical blueberries were determined by chemometric analysis, and 44 marker compounds including 16 anthocyanins, 15 flavonoids, 7 hydroxycinnamic acid derivatives, 5 triterpene glycosides, and 1 iridoid glycoside were identified.

  1. Borreria and Spermacoce species (Rubiaceae): A review of their ethnomedicinal properties, chemical constituents, and biological activities

    PubMed Central

    Conserva, Lucia Maria; Ferreira, Jesu Costa

    2012-01-01

    Borreira and Spermacoce are genera of Rubiaceae widespread in tropical and subtropical America, Africa, Asia, and Europe. Based on its fruits morphology they are considered by many authors to be distinct genera and most others, however, prefer to combine the two taxa under the generic name Spermacoce. Whereas the discussion is still unclear, in this work they were considered as synonyms. Some species of these genera play an important role in traditional medicine in Africa, Asia, Europe, and South America. Some of these uses include the treatment of malaria, diarrheal and other digestive problems, skin diseases, fever, hemorrhage, urinary and respiratory infections, headache, inflammation of eye, and gums. To date, more than 60 compounds have been reported from Borreria and Spermacoce species including alkaloids, iridoids, flavonoids, terpenoids, and other compounds. Studies have confirmed that extracts from Borreria and Spermacoce species as well as their isolated compounds possess diverse biological activities, including anti-inflammatory, antitumor, antimicrobial, larvicidal, antioxidant, gastrointestinal, anti-ulcer, and hepatoprotective, with alkaloids and iridoids as the major active principles. This paper briefly reviews the ethnomedicinal uses, phytochemistry, and biological activities of some isolated compounds and extracts of both genera. PMID:22654404

  2. Purple corn color inhibition of prostate carcinogenesis by targeting cell growth pathways.

    PubMed

    Long, Ne; Suzuki, Shugo; Sato, Shinya; Naiki-Ito, Aya; Sakatani, Keisuke; Shirai, Tomoyuki; Takahashi, Satoru

    2013-03-01

    Purple corn color is a widely used food colorant that was reported to have attenuating effects on hypertension, diabetes, and to have anti-cancer effects on colon and breast cancer. Our study is the first on its possible chemoprevention effects against prostate cancer. For this purpose an androgen-dependent prostate cancer cell line, LNCaP, was used to examine effects in vitro. Purple corn color inhibited the proliferation of LNCaP cells by decreasing the expression of Cyclin D1 and inhibiting the G1 stage of the cell cycle. Thirty-six male transgenic rats for adenocarcinoma of prostate were fed basic diet or diet with purple corn color for 8 weeks. Purple corn color decreased the incidence of adenocarcinoma in the lateral prostate and slowed down the progression of prostate cancer. A lower Ki67 positive rate, a decrease of the expression of Cyclin D1, and downregulation of the activation of Erk1/2 and p38 MAPK were observed in the group consuming purple corn color in the diet. Since purple corn color is a mixture, determining its active component should help in the understanding and usage of purple corn color for prostate cancer chemoprevention. Therefore, the three major anthocyanins in purple corn color, cyanidin-3-glucoside, pelargonidin-3-glucoside and peonidin-3-glucoside, were tested with LNCaP cells. The results suggested that cyanidin-3-glucoside and pelargonidin-3-glucoside are the active compounds. © 2012 Japanese Cancer Association.

  3. Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis--relationship with tissue anthocyanin levels.

    PubMed

    Cooke, Darren; Schwarz, Michael; Boocock, David; Winterhalter, Peter; Steward, William P; Gescher, Andreas J; Marczylo, Timothy H

    2006-11-01

    Anthocyanins are dietary flavonoids, which can prevent carcinogen-induced colorectal cancer in rats. Here, the hypotheses were tested that Mirtoselect, an anthocyanin mixture from bilberry, or isolated cyanidin-3-glucoside (C3G), the most abundant anthocyanin in diet, interfere with intestinal adenoma formation in the Apc(Min) mouse, a genetic model of human familial adenomatous polyposis, and that consumption of C3G or Mirtoselect generates measurable levels of anthocyanins in the murine biophase. Apc(Min) mice ingested C3G or Mirtoselect at 0.03, 0.1 or 0.3% in the diet for 12 weeks, and intestinal adenomas were counted. Plasma, urine and intestinal mucosa were analyzed for presence of anthocyanins by high-pressure liquid chromatography with detection by UV spectrophotometry (520 nm) or tandem mass spectrometry (multiple reaction monitoring). Ingestion of either C3G or Mirtoselect reduced adenoma load dose-dependently. At the highest doses of C3G and Mirtoselect adenoma numbers were decreased by 45% (p < 0.001) or 30% (p < 0.05), respectively, compared to controls. Anthocyanins were found at the analytical detection limit in the plasma and at quantifiable levels in the intestinal mucosa and urine. Anthocyanin glucuronide and methyl metabolites were identified in intestine and urine. Total anthocyanin levels in mice on C3G or Mirtoselect were 43 ng and 8.1 microg/g tissue, respectively, in the intestinal mucosa, and 7.2 and 12.3 microg/ml in the urine. The efficacy of C3G and Mirtoselect in the Apc(Min) mouse renders the further development of anthocyanins as potential human colorectal cancer chemopreventive agents worthwhile.

  4. Flavonoids, Phenolic Acids and Coumarins from the Roots of Althaea officinalis.

    PubMed

    Gudej, J

    1991-06-01

    From the roots of ALTHAEA OFFICINALIS two flavonoid glycosides were separated. Phenolic acids and coumarins were investigated chromatographically. The structures of the compounds were established on the basis of acid hydrolysis and spectroscopic methods (UV, (1)H-NMR, (13)C-NMR) as hypolaetin 8-glucoside and the new flavonoid sulphate - isoscutellarein 4'-methyl ether 8-glucoside-2''-SO (3)K.

  5. Anthocyanins in the bracts of Curcuma species and relationship of the species based on anthocyanin composition.

    PubMed

    Koshioka, Masaji; Umegaki, Naoko; Boontiang, Kriangsuk; Pornchuti, Witayaporn; Thammasiri, Kanchit; Yamaguchi, Satoshi; Tatsuzawa, Fumi; Nakayama, Masayoshi; Tateishi, Akira; Kubota, Satoshi

    2015-03-01

    Five anthocyanins, delphinidin 3-O-rutinoside, cyanidin 3-O-rutinoside, petunidin 3-O-rutinoside, malvidin 3-O-glucoside and malvidin 3-O-rutinoside, were identified. Three anthocyanins, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside and pelargonidin 3-O-rutinoside, were putatively identified based on C18 HPLC retention time, absorption spectrum, including λmax, and comparisons with those of corresponding standard anthocyanins, as the compounds responsible for the pink to purple-red pigmentation of the bracts of Curcuma alismatifolia and five related species. Cluster analysis based on four major anthocyanins formed two clusters. One consisted of only one species, C. alismatifolia, and the other consisted of five. Each cluster further formed sub-clusters depending on either species or habitats.

  6. Metabolic changes in different developmental stages of Vanilla planifolia pods.

    PubMed

    Palama, Tony Lionel; Khatib, Alfi; Choi, Young Hae; Payet, Bertrand; Fock, Isabelle; Verpoorte, Robert; Kodja, Hippolyte

    2009-09-09

    The metabolomic analysis of developing Vanilla planifolia green pods (between 3 and 8 months after pollination) was carried out by nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis. Multivariate data analysis of the (1)H NMR spectra, such as principal component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA), showed a trend of separation of those samples based on the metabolites present in the methanol/water (1:1) extract. Older pods had a higher content of glucovanillin, vanillin, p-hydroxybenzaldehyde glucoside, p-hydroxybenzaldehyde, and sucrose, while younger pods had more bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-isopropyltartrate (glucoside A), bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-(2-butyl)tartrate (glucoside B), glucose, malic acid, and homocitric acid. A liquid chromatography-mass spectrometry (LC-MS) analysis targeted at phenolic compound content was also performed on the developing pods and confirmed the NMR results. Ratios of aglycones/glucosides were estimated and thus allowed for detection of more minor metabolites in the green vanilla pods. Quantification of compounds based on both LC-MS and NMR analyses showed that free vanillin can reach 24% of the total vanillin content after 8 months of development in the vanilla green pods.

  7. Flavonoid C- and O-glycosides from the Mongolian medicinal plant Dianthus versicolor Fisch.

    PubMed

    Obmann, Astrid; Werner, Ingrid; Presser, Armin; Zehl, Martin; Swoboda, Zita; Purevsuren, Sodnomtseren; Narantuya, Samdan; Kletter, Christa; Glasl, Sabine

    2011-09-27

    Eighteen flavonoids were identified from an aqueous extract of the aerial parts of Dianthus versicolor, a plant used in traditional Mongolian medicine against liver diseases. The flavonoid C- and O-glycosides isoorientin-7-O-rutinoside, isoorientin-7-O-rhamnosyl-galactoside, isovitexin-7-O-rutinoside, isovitexin-7-O-rhamnosyl-galactoside, isoscoparin-7-O-rutinoside, isoscoparin-7-O-rhamnosyl-galactoside, isoscoparin-7-O-galactoside, and isoorientin-7-O-galactoside were isolated and structurally elucidated. Their structures were established on the basis of extensive spectroscopic techniques including LC-UV-DAD, LC-MS(n), LC-HRMS, 1D and 2D NMR spectroscopy, and by GC-MS analysis after hydrolysis. Flavonoids with such a high glycosylation pattern are rare within the genus Dianthus. Furthermore, isovitexin-7-O-glucoside (saponarin), isovitexin-2″-O-rhamnoside, apigenin-6-glucoside (isovitexin), luteolin-7-O-glucoside, apigenin-7-O-glucoside, as well as the aglycons luteolin, apigenin, chrysoeriol, diosmetin, and acacetin were identified by TLC and LC-DAD-MS(n) in comparison to reference substances or literature data. The NMR data of seven structures have not been reported in the literature to date. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR).

    PubMed

    Hiemori, Miki; Koh, Eunmi; Mitchell, Alyson E

    2009-03-11

    The composition and thermal stability of anthocyanins in black rice (Oryza sativa L. japonica var. SBR) produced in California were investigated. Six anthocyanin pigments were identified and quantified by high performance liquid chromatography using photo diode-array detection (HPLC-PDA) and electrospray ionization mass spectrometry [LC-(ESI)MS/MS]. The predominant anthocyanins are cyanidin-3-glucoside (572.47 microg/g; 91.13% of total) and peonidin-3-glucoside (29.78 microg/g; 4.74% of total). Minor constituents included three cyanidin-dihexoside isomers and one cyanidin hexoside. Thermal stability of anthocyanins was assessed in rice cooked using a rice cooker, pressure cooker, or on a gas range. All cooking methods caused significant (P < 0.001) decreases in the anthocyanins identified. Pressure cooking resulted in the greatest loss of cyanidin-3-glucoside (79.8%) followed by the rice cooker (74.2%) and gas range (65.4%). Conversely, levels of protocatechuic acid increased 2.7 to 3.4 times in response to all cooking methods. These findings indicate that cooking black rice results in the thermal degradation of cyanidin-3-glucoside and concomitant production of protocatechuic acid.

  9. In vitro inhibitory effects of Moringa oleifera leaf extract and its major components on chemiluminescence and chemotactic activity of phagocytes.

    PubMed

    Vongsak, Boonyadist; Gritsanapan, Wandee; Wongkrajang, Yuvadee; Jantan, Ibrahim

    2013-11-01

    The ethanol extract of Moringa oleifera Lam. leaves and its major constituents, crypto-chlorogenic acid, quercetin 3-O-glucoside and kaempferol 3-O-glucoside, were investigated on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) using a luminol-based chemiluminescence assay. The chemotactic migration of PMNs was also investigated using the Boyden chamber technique. The ethanol extract demonstrated inhibitory activities on the oxidative burst and the chemotactic migration of PMNs. Quercetin 3-O-glucoside, crypto-chlorogenic acid, and kaempferol 3-O-glucoside, isolated from the extract, expressed relatively strong inhibitory activity on the oxidative burst of PMNs with IC50 values of 4.1, 6.7 and 7.0 microM, respectively, comparable with that of aspirin. They also demonstrated strong inhibition of chemotatic migration of PMNs with IC50 values of 9.5, 15.9 and 18.2 microM, respectively. The results suggest that M. oleifera leaves could modulate the immune response of human phagocytes, linking to its ethnopharmacological use as an anti-inflammatory agent. The immunomodulating activity of the plant was mainly due to its major components.

  10. Winery by-products: extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species.

    PubMed

    Melo, Priscilla Siqueira; Massarioli, Adna Prado; Denny, Carina; dos Santos, Luciana Ferracini; Franchin, Marcelo; Pereira, Giuliano Elias; Vieira, Thais Maria Ferreira de Souza; Rosalen, Pedro Luiz; de Alencar, Severino Matias

    2015-08-15

    Nearly 20 million tons of winery by-products, with many biological activities, are discarded each year in the world. The extraction of bioactive compounds from Chenin Blanc, Petit Verdot, and Syrah grape by-products, produced in the semi-arid region in Brazil, was optimized by a Central Composite Rotatable Design. The phenolic compounds profile, antioxidant capacity against synthetic free radicals (DPPH and ABTS), reactive oxygen species (ROS; peroxyl radical, superoxide radical, hypochlorous acid), cytotoxicity assay (MTT) and quantification of TNF-α production in RAW 264.7 cells were conducted. Gallic acid, syringic acid, procyanidins B1 and B2, catechin, epicatechin, epicatechin gallate, quercetin 3-β-d-glucoside, delfinidin 3-glucoside, peonidin 3-O-glucoside, and malvidin 3-glucoside were the main phenolic compounds identified. In general, rachis showed higher antioxidant capacity than pomace extract, especially for Chenin Blanc. All extracts showed low cytotoxicity against RAW 264.7 cells and Petit Verdot pomace suppressed TNF-α liberation in vitro. Therefore, these winery by-products can be considered good sources of bioactive compounds, with great potential for application in the food and pharmaceutical industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Identification of Characteristic Phenolic Constituents in Mousouchiku Extract Used as Food Additives.

    PubMed

    Yoshimura, Morio; Ochi, Keisuke; Sekiya, Hiroshi; Tamai, Eiji; Maki, Jun; Tada, Atsuko; Sugimoto, Naoki; Akiyama, Hiroshi; Amakura, Yoshiaki

    2017-01-01

    Mousouchiku extract is prepared from the bamboo-sheath of Phyllostachys heterocycla MITF. (Poaceae), and is registered as a food manufacturing agent in the List of Existing Food Additives in Japan. This study describes the chromatographic evaluation of characteristic components of this extract to obtain the chemical data needed for standardized specifications. We isolated 12 known compounds from this extract: 5-hydroxymethyl-2-furfural, 4-hydroxybenzoic acid, trans-p-coumaric acid, trans-ferulic acid, N,N'-diferuloylputrescine, 4'-hydroxypropiophenone, β-arbutin, tachioside, isotachioside, 3,4'-dihydroxypropiophenone 3-O-glucoside, koaburaside, and (+)-lyoniresinol 9'-O-glucoside. Moreover, a new propiophenone glycoside, propiophenone 4'-O-(6-β-D-xylosyl)-β-D-glucoside (propiophenone 4'-O-primeveroside), was isolated. The structure of each isolated compound was elucidated based on NMR and MS data or direct HPLC comparisons with authentic samples. Among the isolates, (+)-lyoniresinol 9'-O-glucoside was found to be the major ingredients of the extract as observed using HPLC analysis. However, 2,6-dimethoxy-1,4-benzoquinone, which is considered the main constituent of mousouchiku extract, was only detected as a trace constituent and not isolated in this study.

  12. Identification and quantification of anthocyanins in transgenic purple tomato.

    PubMed

    Su, Xiaoyu; Xu, Jianteng; Rhodes, Davina; Shen, Yanting; Song, Weixing; Katz, Benjamin; Tomich, John; Wang, Weiqun

    2016-07-01

    Anthocyanins are natural pigments derived from the phenylpropanoid pathway. Most tomatoes produce little anthocyanins, but the transgenic purple tomato biosynthesizes a high level of anthocyanins due to expression of two transcription factors (Del and Ros1). This study was to identify and quantify anthocyanins in this transgenic tomato line. Seven anthocyanins, including two new anthocyanins [malvidin-3-(p-coumaroyl)-rutinoside-5-glucoside and malvidin-3-(feruloyl)-rutinoside-5-glucoside], were identified by LC-MS/MS. Petunidin-3-(trans-coumaroyl)-rutinoside-5-glucoside and delphinidin-3-(trans-coumaroyl)-rutinoside-5-glucoside were the most abundant anthocyanins, making up 86% of the total anthocyanins. Compared to undetectable anthocyanins in the wild type, the contents of anthocyanins in the whole fruit, peel, and flesh of the Del/Ros1-transgenic tomato were 5.2±0.5, 5.1±0.5, and 5.8±0.3g/kg dry matter, respectively. Anthocyanins were undetectable in the seeds of both wide-type and transgenic tomato lines. Such novel and high levels of anthocyanins obtained in this transgenic tomato may provide unique functional products with potential health benefits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40.

    PubMed

    Xu, Jianteng; Su, Xiaoyu; Lim, Soyoung; Griffin, Jason; Carey, Edward; Katz, Benjamin; Tomich, John; Smith, J Scott; Wang, Weiqun

    2015-11-01

    Purple-fleshed sweet potato P40 has been shown to prevent colorectal cancer in a murine model. This study is to identify anthocyanins by using HPLC/MS-MS and assess the stability during various cooking conditions. P40 possesses a high content of anthocyanins up to 14 mg/g dry matter. Total 12 acylated anthocyanins are identified. Top three anthocyanins, e.g., cyanidin 3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside, peonidin 3-caffeoyl sophoroside-5-glucoside, and cyanidin 3-(6"-caffeoyl-6"-feruloylsophoroside)-5-glucoside, account for half of the anthocyanin contents. Over 80% of anthocyanins measured by acid hydrolysis were cyanidin derivatives, indicating P40 is unique when compared with other purple-fleshed sweet potatoes that usually contain more peonidin than cyanidin. Steaming, pressure cooking, microwaving, and frying but not baking significantly reduced 8-16% of total anthocyanin contents. Mono-acylated anthocyanins showed a higher resistance against heat than di- and non-acylated. Among of which, cyanidin 3-p-hydroxybenzoylsophoroside-5-glucoside exhibited the best thermal stability. The stable acylated and cyanidin-predominated anthocyanins in P40 may provide extra benefits for cancer prevention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Separation and purification of polyphenols from red wine extracts using high speed counter current chromatography.

    PubMed

    Li, Yuanyuan; Li, Lingxi; Cui, Yan; Zhang, Shuting; Sun, Baoshan

    2017-06-01

    Polyphenols are important compounds of red wine owing to their contribution to sensory properties and antioxidant activities. In this study, high-speed counter-current chromatography (HSCCC) coupled with semi-preparative HPLC was used for large-scale separation and purification of polyphenols from red wine extracts. With the solvent system of hexane-ethyl acetate-water (1-50-50), various oligomeric procyanidins including monomer catechin, epicatechin, dimers B1, B2; phenolic acids including coutaric acid, caftaric acid and other type of polyphenols were largely separated within 370min and most of these compounds presented high yields (0.97mg to 13.79mg) with high purity (90.34% to 98.91%) after the semi-preparative HPLC isolation. Using the solvent system of Methyl tert-Butyl Ether (MTBE) - n-butyl alcohol- acetonitrile-water (1-40-1-50, acidified with 0.01% trifluoroacetic acid (TFA)) by one-step HSCCC of 100mg of the red wine extracts, the major anthocyanins, i.e., malvidin-3-O-glucoside, delphinidin-3-O-glucoside and peonidin-3-O-glucoside, as well as two polymeric proanthocyanidin fractions were successfully separated one another within 320min. The yields of malvidin-3-O-glucoside, delphinidin-3-O-glucoside and peonidin-3-O-glucoside were 12.12mg, 1.78mg and 11.57mg with the purity of 92.74%, 91.03% and 91.21%, respectively. Thiolysis-UPLC analysis indicated that the two polymeric proanthocyanidin fractions presented high purity, with mean degree of polymerization of 7.66±0.12 and 6.20±0.09, respectively. The further experiments on the antioxidant activities by DPPH radical test, FRAP assay and ABTS method showed that all of the isolated procyandins and anthocyanins and the two polymeric proanthocyanidin fractions, with exception of phenolic acids possessed much greater antioxidant activities compared to standard Trolox andl-ascorbic acid (2-14 times). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Multi-substrate flavonol O-glucosyltransferases from strawberry (Fragaria×ananassa) achene and receptacle

    PubMed Central

    Griesser, Markus; Vitzthum, Florian; Fink, Barbara; Bellido, Mari Luz; Raasch, Constanze; Munoz-Blanco, Juan; Schwab, Wilfried

    2008-01-01

    In an effort to characterize fruit ripening-related genes functionally, two glucosyltransferases, FaGT6 and FaGT7, were cloned from a strawberry (Fragaria×ananassa) cDNA library and the full-length open reading frames were amplified by rapid amplification of cDNA ends. FaGT6 and FaGT7 were expressed heterologously as fusion proteins in Escherichia coli and target protein was purified using affinity chromatography. Both recombinant enzymes exhibited a broad substrate tolerance in vitro, accepting numerous flavonoids, hydroxycoumarins, and naphthols. FaGT6 formed 3-O-glucosides and minor amounts of 7-O-, 4′-O-, and 3′-O-monoglucosides and one diglucoside from flavonols such as quercetin. FaGT7 converted quercetin to the 3-O-glucoside and 4′-O-glucoside and minor levels of the 7- and 3′-isomers but formed no diglucoside. Gene expression studies showed that both genes are strongly expressed in achenes of small-sized green fruits, while the expression levels were generally lower in the receptacle. Significant levels of quercetin 3-O-, 7-O-, and 4′-O-glucosides, kaempferol 3-O- and 7-O-glucosides, as well as isorhamnetin 7-O-glucoside, were identified in achenes and the receptacle. In the receptacle, the expression of both genes is negatively controlled by auxin which correlates with the ripening-related gene expression in this tissue. Salicylic acid, a known signal molecule in plant defence, induces the expression of both genes. Thus, it appears that FaGT6 and FaGT7 are involved in the glucosylation of flavonols and may also participate in xenobiotic metabolism. The latter function is supported by the proven ability of strawberries to glucosylate selected unnatural substrates injected in ripe fruits. This report presents the first biochemical characterization of enzymes mainly expressed in strawberry achenes and provides the foundation of flavonoid metabolism in the seeds. PMID:18487633

  16. A new allele of flower color gene W1 encoding flavonoid 3'5'-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja.

    PubMed

    Takahashi, Ryoji; Dubouzet, Joseph G; Matsumura, Hisakazu; Yasuda, Kentaro; Iwashina, Tsukasa

    2010-07-28

    Glycine soja is a wild relative of soybean that has purple flowers. No flower color variant of Glycine soja has been found in the natural habitat. B09121, an accession with light purple flowers, was discovered in southern Japan. Genetic analysis revealed that the gene responsible for the light purple flowers was allelic to the W1 locus encoding flavonoid 3'5'-hydroxylase (F3'5'H). The new allele was designated as w1-lp. The dominance relationship of the locus was W1 >w1-lp >w1. One F2 plant and four F3 plants with purple flowers were generated in the cross between B09121 and a Clark near-isogenic line with w1 allele. Flower petals of B09121 contained lower amounts of four major anthocyanins (malvidin 3,5-di-O-glucoside, petunidin 3,5-di-O-glucoside, delphinidin 3,5-di-O-glucoside and delphinidin 3-O-glucoside) common in purple flowers and contained small amounts of the 5'-unsubstituted versions of the above anthocyanins, peonidin 3,5-di-O-glucoside, cyanidin 3,5-di-O-glucoside and cyanidin 3-O-glucoside, suggesting that F3'5'H activity was reduced and flavonoid 3'-hydroxylase activity was increased. F3'5'H cDNAs were cloned from Clark and B09121 by RT-PCR. The cDNA of B09121 had a unique base substitution resulting in the substitution of valine with methionine at amino acid position 210. The base substitution was ascertained by dCAPS analysis. The polymorphism associated with the dCAPS markers co-segregated with flower color in the F2 population. F3 progeny test, and dCAPS and indel analyses suggested that the plants with purple flowers might be due to intragenic recombination and that the 65 bp insertion responsible for gene dysfunction might have been eliminated in such plants. B09121 may be the first example of a flower color variant found in nature. The light purple flower was controlled by a new allele of the W1 locus encoding F3'5'H. The flower petals contained unique anthocyanins not found in soybean and G. soja. B09121 may be a useful tool for studies of

  17. [Studies on the chemical constituents of the stems of Piper betle].

    PubMed

    Yin, Yan; Huang, Xiang-Zhong; Wang, Jiong; Dai, Jian-Hui; Liang, Hui; Dai, Yun

    2009-06-01

    To study the chemical constituents from the stems of Piper betle. Various chromatographic techniques were used to isolate and purify the constituents. The structures of these compounds were elucidated on the basis of spectral analysis. Nine compounds were isolated from the petroleum ester and ethyl acetate soluble fractions of the 70% acetone extract and their structures were identified as 6beta-hydroxystigmast-4-en-3-one (1), beta-sitosterol (2), stigmasterol (3), oleanolic acid (4), 23-hydroxyursan-12-en-28-oic acid (5), beta-sitosterol-3-O-beta-D-glucoside-6'-O-palmitate (6), beta-daucosterol (7), (2S) -4'-hydroxy- 2,3-dihydroflavonone-7-O-beta-D-glucoside (8) and alpha-ethyl glucoside (9). Among these compounds, 1, 3 -9 are isolated from this plant for the first time.

  18. Chemical Components and Cardiovascular Activities of Valeriana spp.

    PubMed Central

    Chen, Heng-Wen; Wei, Ben-Jun; He, Xuan-Hui; Liu, Yan; Wang, Jie

    2015-01-01

    Valeriana spp. is a flowering plant that is well known for its essential oils, iridoid compounds such as monoterpenes and sesquiterpenes, flavonoids, alkaloids, amino acids, and lignanoids. Valeriana spp. exhibits a wide range of biological activities such as lowering blood pressure and heart rate, antimyocardial ischemia reperfusion injury, antiarrhythmia, and regulation of blood lipid levels. This review focuses on the chemical constituents and cardiovascular activities of Valeriana spp. PMID:26788113

  19. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin.

    PubMed

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-10-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2'-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Ultraviolet irradiation induces accumulation of isoflavonoids and transcription of genes of enzymes involved in the calycosin-7-O-β-d-glucoside pathway in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao.

    PubMed

    Xu, Rong-Yan; Nan, Peng; Yang, Yixin; Pan, Haiyun; Zhou, Tongshui; Chen, Jiakuan

    2011-07-01

    Isoflavonoids are a group of phenolic secondary metabolites found almost exclusively in leguminous plants. Formononetin, calycosin and calycosin-7-O-β-d-glucoside (CG) are isoflavonoid products in the CG pathway. Accumulation of the three isoflavonoids plus daidzein and expression of six genes of enzymes involved in the CG pathway were studied in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao with ultraviolet (UV) irradiation. Our results showed that (1) main isoflavonoids in roots, stems and leaves were CG, daidzein and calycosin, respectively; they accumulated significantly under the induction of UV irradiation during 8 days but their content declined later; (2) expression of six genes of enzymes involved in the CG pathway was inhibited slightly at early stage but the expression was increased greatly afterward; (3) chalcone synthase, chalcone reductase and chalcone isomerase were expressed to their individual maximum level within shorter hours than were cinnamate 4-hydroxylase, isoflavone synthase (IFS) and isoflavone 3'-hydroxylase and (4) more calycosin but less daidzein accumulated in leaves. IFS was highly expressed in leaves, which might lead to high accumulation of the common precursor of daidzein and 2,7-dihydroxy-4'-O-methoxy-isoflavanone, the latter of which would be converted to formononetin, calycosin and CG via a series of reactions. Little daidzein accumulated in leaves, which suggested that rather than be converted to daidzein, the 2,7,4'-trihydroxyisoflavanone was probably more easily caught by 2-hydroxyisoflavanone 4'-O-methyltransferase and hence provided more precursors for formononetin. The findings were discussed in terms of the influence of UV irradiation in the accumulation of isoflavonoids. Copyright © Physiologia Plantarum 2011.