Science.gov

Sample records for iridoid glucoside aucubin

  1. Iridoid patterns of genus Plantago L. and their systematic significance.

    PubMed

    Taskova, Rilka; Evstatieva, Ljubka; Handjieva, Nedjalka; Popov, Simeon

    2002-01-01

    The distribution of 14 iridoid glucosides in 14 Plantago L. species (44 samples corresponding to 18 taxa) was shown. P. tenuiflora and P. gentianoides were studied for iridoids for the first time. The iridoid patterns showed a good correlation with morphological and other chemical features of the representatives of genus Plantago. The studied species are grouped together according to the iridoid patterns: species containing mainly aucubin (P. major, P. cornuti, P. gentianoides); species containing aucubin and aucubin derivatives (P. subulata, P. media); species containing aucubin and catalpol (P. lanceolata, P. altissima, P. argentea, P. lagopus, P. atrata); species containing aucubin and plantarenaloside (P. afra, P. scabra).

  2. Iridoid Glucosides and Diterpenoids from Caryopteris glutinosa.

    PubMed

    Luo, Guoyong; Ye, Qi; Du, Baowen; Wang, Fei; Zhang, Guo-Lin; Luo, Yinggang

    2016-04-22

    Five new iridoid glucoside derivatives (1-5), three new diterpenoids (7, 12, and 15), and 11 known compounds were isolated from the aqueous EtOH extract of Caryopteris glutinosa. Cell-based estrogen biosynthesis assays indicated that caryopteriside C (3) and caryopterisoid B (12) promote the biosynthesis of estrogen E2, with EC50 values of 11.1 and 8.0 μM, respectively, in human ovarian granulosa-like KGN cells via upregulating the expression of aromatase.

  3. Iridoid glucosides and p-coumaroyl iridoids from Viburnum luzonicum and their cytotoxicity.

    PubMed

    Fukuyama, Yoshiyasu; Minoshima, Yuka; Kishimoto, Yoshiko; Chen, Ih-Sheng; Takahashi, Hironobu; Esumi, Tomoyuki

    2004-11-01

    Four new iridoids glucosides (1-4) and seven new iridoid aglycons (5-11) bearing (E)- or (Z)-p-coumaroyl groups were isolated from a methanol extract of the dried leaves of Viburnum luzonicum collected in Kaoshiung, Taiwan. The structures of the new compounds, named luzonoside A (1), luzonoside B (2), luzonoside C (3), luzonoside D (4), luzonoid A (5), luzonoid B (6), luzonoid C (7), luzonoid D (8), luzonoid E (9), luzonoid F (10), and luzonoid G (11), were elucidated by analysis of spectroscopic data and comparison with values for previously known analogues. Among the iridoids isolated in the present study, glucosides 1 and 2, and their aglycons 5-9, exhibited moderate inhibitory activity against HeLa S3 cancer cells, whereas 3 and 4 showed no cytotoxicity even at 100 microM.

  4. Aucubin, a naturally occurring iridoid glycoside inhibits TNF-α-induced inflammatory responses through suppression of NF-κB activation in 3T3-L1 adipocytes.

    PubMed

    Park, Kyoung Sik

    2013-06-01

    Obesity is closely associated with a state of chronic, low-grade inflammation characterized by abnormal cytokine production and activation of inflammatory signaling pathways in adipose tissue. Tumor necrosis factor (TNF)-α is chronically elevated in adipose tissues of obese rodents and humans. Increased levels of TNF-α are implicated in the induction of atherogenic adipokines, such as plasminogen activator inhibitor (PAI)-1, adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6. Aucubin, an iridoid glycoside existing in medicinal plants, has been reported to show an anti-inflammatory activity by suppression of TNF-α production in murine macrophages. The present study is aimed to investigate the effects of aucubin on TNF-α-induced atherogenic changes of the adipokines in differentiated 3T3-L1 cells. Aucubin significantly inhibited TNF-α-induced secretion and mRNA synthesis of the atherogenic adipokines including PAI-1, MCP-1, and IL-6. Further investigation of the molecular mechanism revealed that pretreatment with aucubin suppressed extracellular signal-regulated kinase (ERK) activation, inhibitory kappa Bα (IκBα) degradation, and subsequent nuclear factor kappa B (NF-κB) activation. These findings suggest that aucubin may improve obesity-induced atherosclerosis by attenuating TNF-α-induced inflammatory responses.

  5. Sequestration of glucosinolates and iridoid glucosides in sawfly species of the genus Athalia and their role in defense against ants.

    PubMed

    Opitz, Sebastian E W; Jensen, Søren R; Müller, Caroline

    2010-02-01

    In this study, the larval sequestration abilities and defense effectiveness of four sawfly species of the genus Athalia (Hymenoptera: Tenthredinidae) that feed as larvae either on members of the Brassicaceae or Plantaginaceae were investigated. Brassicaceae are characterized by glucosinolates (GLSs), whereas Plantaginaceae contain iridoid glucosides (IGs) as characteristic secondary compounds. Athalia rosae and A. liberta feed on members of the Brassicaceae. Larvae of A. rosae sequester aromatic and aliphatic GLSs of Sinapis alba in their hemolymph, as shown previously, but no indolic GLSs; A. liberta larvae with a narrower host range sequester aliphatic as well as indolic GLSs from their host plant Alliaria petiolata. Larvae of A. circularis and A. cordata are specialized on members of the Plantaginaceae. Athalia circularis utilizes mainly Veronica beccabunga as host plant, whereas A. cordata feeds additionally on Plantago lanceolata. Both sawfly species sequester the IGs aucubin and catalpol. In V. beccabunga, catalpol esters and carboxylated IGs also occur. The high catalpol concentrations in hemolymph of A. circularis can only be explained by a metabolization of catalpol esters and subsequent uptake of the resulting catalpol. The carboxylated IGs of the plant are excreted. The IG-sequestering sawfly species are able to accumulate much higher glucoside concentrations in their hemolymph than the GLS-sequestering species, and the concentration of IGs in hemolymph increases constantly during larval development. The defensive effectiveness of hemolymph that contains GLSs or IGs and of the respective glucosides was tested in feeding-bioassays against a potential predator, the ant Myrmica rubra (Hymenoptera: Formicidae). Hemolymph of IG-sequestering cryptic A. cordata larvae has a higher deterrence potential than hemolymph of the GLS-sequestering conspicuous A. rosae larvae. The results show that glucoside sequestration is widespread in the genus Athalia, but that the

  6. Analysis of iridoid glucosides from Paederia scandens using HPLC-ESI-MS/MS.

    PubMed

    Wu, Zhi-Jun; Wang, Jian-Hua; Fang, Dong-Mei; Zhang, Guo-Lin

    2013-04-01

    Iridoid glycosides are an important class of natural products and have many biological activities. Iridoid glucosides in an extract of the plant species Paederia scandens were investigated using reversed-phase high performance liquid chromatography and electrospray quadrupole time-of-flight-type tandem mass spectrometry. The elemental composition of most of the compounds was determined by accurate mass and relative isotopic abundance (RIA) measurements. In positive ion mode, the fragmentation of [M+NH4](+) precursor ions was carried out using low energy collision-induced electrospray ionization tandem spectrometry. The neutral losses of NH3, H2O, Glc, and the side chain of the iridoid moiety were the main fragmentation patterns observed. For simple iridoid glycosides, the main differences were related to the side chains. Fragmentation of the [M-H](-)precursor ions was achieved for the compounds possibly having phenolic acid group. The connection order of the iridoid, sugar, and phenolic acid moieties, and the linkage of the 6-OH group of the sugar to the phenolic acid were unambiguously confirmed using a combination of MS/MS spectra in both positive and negative ion modes, and our previous work. For some trace dimeric iridoid glucosides, the connection order between the asperuloside and paederoside moieties was determined by the characteristic product ions; this was supported by D-labeling experiments. A total of 24 iridoid glucosides, including 14 new species, were identified or tentatively characterized based on exact mass, RIA values, tandem mass spectra, and D-labeling experiments. PMID:23466447

  7. Iridoids from Euphrasia genargentea, a rare Sardinian endemism.

    PubMed

    Petitto, V; Serafini, M; Ballero, M; Foddai, S; Stanzione, A; Nicoletti, M

    2009-01-01

    The phytochemical study of Euphrasia genargentea, a rare species only present in Sardinia, led to the identification of iridoid glucosides, i.e. aucubin, catalpol, mussaenosidic acid and melampyroside, which allowed chemotaxonomic considerations on the genus. On the basis of iridoid distribution in the genus, E. genargentea does not show any particular analogy with other Italian Euphrasia spp. This study is also important considering the severe risk of extinction of E. genargentea.

  8. A New Non-glucosidic Iridoid from the Roots of Strychnos nux-blanda.

    PubMed

    Sichaem, Jirapast; Khumkratok, Suttira; Siripong, Pongpun; Tip-pyang, Santi

    2016-06-01

    Strychnuxin (1), a new non-glucosidic iridoid, together with four known compounds, IX (2), loganetin (3), loganin (4) and sweroside (5), were isolated from the roots of Strychnos nux-blanda. The structures of all isolated compounds (1-5) were elucidated through their physical properties and by the use of spectroscopic methods, as well as comparisons with the previous literature. To the best of our knowledge, this is the first isolation of compounds 1-5 from this plant. All isolated compounds were evaluated for their in vitro cytotoxicity against five human cancer cell lines.

  9. The iridoid glucoside, antirrhinoside, from Antirrhinum majus L. has differential effects on two generalist insect herbivores.

    PubMed

    Beninger, Clifford W; Cloutier, Renée R; Grodzinski, Bernard

    2008-05-01

    The iridoid glucoside, antirrhinoside, is constitutively distributed throughout Antirrhinum majus L. in a manner consistent with its possible role as an allelochemical, but there is no evidence that it has a defensive function with respect to insect herbivory. To address this question, two generalist herbivores, Lymantria dispar L. (gypsy moth) and Trichoplusia ni Hübner (cabbage looper) were chosen for feeding trials on excised whole leaves of A. majus and in artificial diet assays. In leaf excision feeding trials, fourth instar gypsy moth rejected, without sampling, the leaves of A. majus regardless of what node the leaf was excised from. In contrast, fourth instar cabbage looper readily fed on the excised leaves, and antirrhinoside was not found in their bodies or feces (frass) as determined by thin layer and high-pressure liquid chromatography. In the leaf and diet assays, a second major leaf iridoid in A. majus, antirrhide, was found in both cabbage looper and gypsy moth frass. In diet feeding assays, the growth of gypsy moth and cabbage looper were not inhibited by methanol extracts, iridoid fractions, or pure antirrhinoside at concentrations of 0.6% in diet, but cabbage looper growth was enhanced. At an antirrhinoside concentration of 3.3% in diet, gypsy moth growth was reduced, whereas cabbage looper growth again increased significantly relative to the control. It is likely that antirrhinoside functions as defense against herbivory for one generalist insect herbivore but also, at low concentrations, enhances the growth of another. PMID:18414950

  10. The iridoid glucoside, antirrhinoside, from Antirrhinum majus L. has differential effects on two generalist insect herbivores.

    PubMed

    Beninger, Clifford W; Cloutier, Renée R; Grodzinski, Bernard

    2008-05-01

    The iridoid glucoside, antirrhinoside, is constitutively distributed throughout Antirrhinum majus L. in a manner consistent with its possible role as an allelochemical, but there is no evidence that it has a defensive function with respect to insect herbivory. To address this question, two generalist herbivores, Lymantria dispar L. (gypsy moth) and Trichoplusia ni Hübner (cabbage looper) were chosen for feeding trials on excised whole leaves of A. majus and in artificial diet assays. In leaf excision feeding trials, fourth instar gypsy moth rejected, without sampling, the leaves of A. majus regardless of what node the leaf was excised from. In contrast, fourth instar cabbage looper readily fed on the excised leaves, and antirrhinoside was not found in their bodies or feces (frass) as determined by thin layer and high-pressure liquid chromatography. In the leaf and diet assays, a second major leaf iridoid in A. majus, antirrhide, was found in both cabbage looper and gypsy moth frass. In diet feeding assays, the growth of gypsy moth and cabbage looper were not inhibited by methanol extracts, iridoid fractions, or pure antirrhinoside at concentrations of 0.6% in diet, but cabbage looper growth was enhanced. At an antirrhinoside concentration of 3.3% in diet, gypsy moth growth was reduced, whereas cabbage looper growth again increased significantly relative to the control. It is likely that antirrhinoside functions as defense against herbivory for one generalist insect herbivore but also, at low concentrations, enhances the growth of another.

  11. Iridoids from Bellardia trixago (L.) All.

    PubMed

    Venditti, Alessandro; Serrilli, Anna Maria; Bianco, Armandodoriano

    2013-08-01

    The phytochemical study of the polar fraction of Bellardia trixago (L.) All. led to the isolation of eight iridoid glucosides. Five of these glucosides (aucubin (1), bartsioside (2), melampyroside (3), mussaenoside (4) and gardoside methyl ester (5)) were confirmed as they were previously isolated from this plant, and the remaining three known compounds (mussaenosidic acid (6), geniposidic acid (7) and 8-epiloganin (8)) were isolated here for the first time. Of particular interest were the presence of 7 and 8 due to two reasons: the first one because it is not accompanied with geniposide, the corresponding methyl ester, as in the case of 4 and 6, and the second one because it is the parent compound of iridoids characteristic of Orobanchaceae family. Also an alditol, D-mannitol (9), was recognised for the first time from this species.

  12. Iridoids and phenylethanoid from Pedicularis kerneri Dalla Torre growing in Dolomites, Italy.

    PubMed

    Venditti, Alessandro; Frezza, Claudio; Serafini, Mauro; Bianco, Armandodoriano

    2016-01-01

    In this study, we report the first phytochemical analysis of polar fraction of Pedicularis kerneri Dalla Torre growing in Dolomites, Italy. Several iridoid glucosides were isolated, namely aucubin (1), monomelittoside (2), plantarenaloside (3), euphroside (4), mussaenosidic acid (5) and 8-epiloganic acid (6), showing a composition in accordance with previous study on this genus. The studied samples, collected from Dolomites, presented a chemotype already recognised in species from North America, characterised by euphroside (4) and aucubin (1) as main components, but the main character was the presence of monomelittoside (2) never reported in this genus. The identification of verbascoside (7), leucosceptoside A (9) and echinacoside (10) complete the systematic framing of this species since is ascertained the co-occurrence of phenylethanoid glycosides with iridoids in Lamiales species.

  13. The corrected structure of depressoside, an antioxidative iridoid glucoside extracted from the flowers of Gentiana urnula Harry Sm.

    PubMed

    Kusakari, Ken; Fukuhara, Tadao; Motoyama, Akira; Ochiai, Nobuhiko; Watanabe, Takashi; Sugimoto, Yukihiro

    2016-01-01

    Three known iridoid glucosides (gentiournoside A, gentiournoside E and depressoside) were isolated from the flowers of Gentiana urnula Harry Sm. through activity-guided fractionations with a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. All three compounds exhibited excellent DPPH radical scavenging activities (IC50: 10-20 μmol L(-1)) comparable to that of ascorbic acid and Trolox. However, examination of the NMR data revealed that the reported chemical structure of depressoside, previously isolated from the leaves of G. depressa, needed correcting due to incorrect elucidation around C-7 of the iridane skeleton, and was corrected to 6-β-(2,3-dihydroxyphenyl)-D-glucosyl 7-O-(2,3-dihydroxybenzoyl)-loganate. Depressoside exhibited a much higher scavenging activity against superoxide radicals (IC50: 45.5 μmol L(-1)) than the other two extracted compounds (IC50: more than 900 μmol L(-1)) due to the crucial presence of a pyrogallyl unit.

  14. Iridoids from Pentas lanceolata.

    PubMed

    Schripsema, Jan; Caprini, Geisa Paulino; van der Heijden, Rob; Bino, Raoul; de Vos, Ric; Dagnino, Denise

    2007-09-01

    From the aerial parts of Pentas lanceolata, belonging to the family Rubiaceae, a series of iridoid glucosides was isolated by preparative HPLC. Seven iridoid glucosides were identified. Besides asperuloside and asperulosidic acid, characteristic iridoids for Rubiaceae, five new iridoids were isolated, namely, tudoside (1), 13R-epi-gaertneroside (2), 13R-epi-epoxygaertneroside (3), and a mixture of E-uenfoside (4) and Z-uenfoside (5). Further, it was shown that the compound reported as citrifolinin B (6) is in fact the same as tudoside and should be revised. Also, the configuration of the previously reported iridoids gaertneroside and epoxygaertneroside has been elucidated.

  15. Simultaneous Determination of Catalpol, Aucubin, and Geniposidic Acid in Different Developmental Stages of Rehmannia glutinosa Leaves by High Performance Liquid Chromatography

    PubMed Central

    Wang, Yanjie; Liao, Dengqun; Qin, Minjian

    2016-01-01

    Although R. glutinosa roots are currently the only organ source in clinics, its leaves are a potential supplement for the roots especially in extraction of some important bioactive compounds. Our early work found that the contents of catalpol and total iridoid glycosides varied among different developmental stages of R. glutinosa leaves. Aucubin and geniposidic acid, the abundant major bioactive compounds in Eucommia ulmoides and Gardenia jasminoides, respectively, were found present in R. glutinosa roots, however, and have not been analyzed in its leaves. In this paper, we aimed to determine contents of these three iridoid glycosides in different developmental stages of R. glutinosa leaves using the optimized HPLC-UV conditions. Our results showed that aucubin and GPA in R. glutinosa leaves were much lower than catalpol and showed the increasing trend with the leaf development, which was different from catalpol. This work provided the important information for future exploitation of R. glutinosa leaves as a potential supplement for its roots in extraction of some important bioactive compounds and studying the relationship of aucubin and catalpol metabolism. PMID:27429834

  16. Novel iridoids from the flowers of Campsis grandiflora.

    PubMed

    Han, Xiang Hua; Oh, Ji-Hoon; Hong, Seong Su; Lee, Chul; Park, Jae In; Lee, Myung Koo; Hwang, Bang Yeon; Lee, Moon-Soon

    2012-02-01

    A non-glycosidic iridoid, campsinol (1), and two iridoid glucosides, 7-O-(Z)-p-coumaroylcachineside V (2) and 7-O-(E)-p-coumaroylcachineside I (3), were isolated from the fresh flowers of Campsis grandiflora along with five known iridoid glycosides, ixoroside (4), campsiside (5), cachineside I (6), 5-hydroxycampenoside (7), and 5-hydroxycampsiside (8), and two known phenylpropanoid glycosides, acteoside (9) and leucosceptoside A (10). The structures of these compounds were determined based on the NMR and Mass spectroscopic data and other chemical evidences.

  17. Antiinflammatory activities of Hungarian Stachys species and their iridoids.

    PubMed

    Háznagy-Radnai, Erzsébet; Balogh, Ágnes; Czigle, Szilvia; Máthé, Imre; Hohmann, Judit; Blazsó, Gábor

    2012-04-01

    The antiinflammatory activities of aqueous extracts prepared from the aerial parts of ten Hungarian Stachys species were investigated in vivo in the carrageenan-induced paw oedema test after intraperitoneal and oral administration to rats. Some of the extracts were found to display significant antiphlogistic effects when administered intraperitoneally and orally; in particular, the extracts of S. alpina, S. germanica, S. officinalis and S. recta demonstrated high activity following intraperitoneal administration. At the same dose of 5.0 mg/kg, these extracts exhibited similar or greater potency than that of the positive control diclofenac-Na. The main iridoids present in the investigated extracts, ajugoside, aucubin, acetylharpagide, harpagide and harpagoside, were also assayed in the same test, and high dose-dependent antiphlogistic effects were recorded for aucubin and harpagoside. These results led to the conclusion that most probably iridoids are responsible for the antiinflammatory effect of Stachys species, but other active constituents or their synergism must also be implicated in the antiinflammatory effect.

  18. Two new iridoids from selected Penstemon species--antimicrobial activity.

    PubMed

    Zajdel, Sybilla M; Graikou, Konstantia; Sotiroudis, Georgios; Głowniak, Kazimierz; Chinou, Ioanna

    2013-01-01

    Eighteen secondary metabolites, belonging to three different chemical groups, were isolated from the methanolic extracts of the aerial parts of selected penstemon plants [Penstemon fruticosus (Pursh) Greene var. fruticosus, Penstemon palmeri Gray and Penstemon venustus Doug. ex Lindl.], and their structures were elucidated on the basis of spectral evidence. Six iridoid glucosides (1-6), three phenylpropanoid glucosides (13-15) and two acetophenone derivatives (16,17), obtained from P. fruticosus, five iridoids (2, 7-10), one phenylpropanoid glucoside (15) and two acetophenones (16, 18), isolated from P. palmeri while three iridoids (2, 11, 12) and three phenylpropanoids (13-15) were identified in P. venustus. Two of the iridoid glucosides (4, 5) from P. fruticosus are new natural products named accordingly as cis- and trans- forms of 10-O-p-methoxycinnamoylaucubin. All isolated compounds, as well as crude methanolic extracts, were evaluated for their antimicrobial activities against six Gram-positive and Gram-negative bacteria and three human pathogenic fungi.

  19. Cytotoxic iridoids from the roots of Patrinia scabra.

    PubMed

    Li, Ning; Di, Lei; Gao, Wen-Chao; Wang, Kai-Jin; Zu, Ling-Bo

    2012-10-26

    Six new iridoid glucosides, patriridosides D-I (1-6), and one new iridoid, scabrol A (7), along with 12 known non-glycosidic and glycosidic iridoids (8-19), have been isolated from an ethanolic extract of the roots of Patrinia scabra. The cytotoxic activity of the isolated compounds against human cervical carcinoma HeLa cells and gastric carcinoma MNK-45 cells was evaluated using the MTT assay. Compounds 1, 4-6, 8, and 18 showed cytotoxic activities against the MNK-45 cell line with respective IC₅₀ values of 15.6, 8.7, 9.4, 30.9, 23.8, and 11.2 μM, while only compound 10 showed cytotoxicity against the HeLa cell line, with an IC₅₀ value of 24.5 μM.

  20. Iridoids from Gentiana loureirii.

    PubMed

    Wu, Min; Wu, Ping; Liu, Meifang; Xie, Haihui; Jiang, Yueming; Wei, Xiaoyi

    2009-04-01

    Iridoid glycosides, 2',3',6'-tri-O-acetyl-4'-O-trans-p-(O-beta-d-glucopyranosyl)coumaroyl-7-ketologanin (1), 2'-O-caffeoylloganic acid (2), 2'-O-p-hydroxybenzoylloganic acid (3), 2'-O-trans-p-coumaroylloganic acid (4), and 2'-O-cis-p-coumaroylloganic acid (5), were isolated from whole plants of Gentiana loureirii along with six known iridoids, 7-ketologanin (6), loganin (7), loganic acid (8), sweroside, boonein, and isoboonein, and three other known compounds. Their structures were elucidated by spectroscopic means and chemical correlations. The isolated iridoids were evaluated for antibacterial and antioxidant activities, but were either inactive or very weakly active.

  1. New iridoid diesters of glucopyranose from Linaria canadensis (L.) Dum.

    PubMed

    Mizuochi, Kouichi; Tanaka, Takashi; Kouno, Isao; Fujioka, Toshihiro; Yoshimura, Yuki; Ishimaru, Kanji

    2011-01-01

    Two new iridoid diesters of glucopyranose were isolated from the aerial part of Linaria canadensis (L.) Dum. Eight known flavones, apigenin, diosmetin, genkwanin, luteolin, luteolin 7-O-glucoside, luteolin 7-O-glucuronide, genkwanin 4'-O-rutinoside, and quercetin 7-O-rutinoside were also isolated. The chemical structures of the isolated compounds were elucidated based on the analyses of the spectroscopic data. PMID:20635154

  2. Influence of iridoid glycoside containing host plants on midgut β-glucosidase activity in a polyphagous caterpillar, Spilosoma virginica Fabricius (Arctiidae).

    PubMed

    Pankoke, Helga; Bowers, M Deane; Dobler, Susanne

    2010-12-01

    Iridoid glycosides are secondary plant compounds that have deterrent, growth reducing or even toxic effects on non-adapted herbivorous insects. To investigate the effects of iridoid glycoside containing plants on the digestive metabolism of a generalist herbivore, larvae of Spilosoma virginica (Lepidoptera: Arctiidae) were reared on three plant species that differ in their secondary plant chemistry: Taraxacum officinale (no iridoid glycosides), Plantago major (low iridoid glycoside content), and P. lanceolata (high iridoid glycoside content). Midguts of fifth instar larvae were assayed for the activity and kinetic properties of β-glucosidase using different substrates. Compared to the larvae on T. officinale, the β-glucosidase activity of larvae feeding on P. lanceolata was significantly lower measured with 4-nitrophenyl-β-d-glucopyranoside. Using the iridoid glycoside aucubin as a substrate, we did not find differences in the β-glucosidase activity of the larvae reared on the three plants. Heat inactivation experiments revealed the existence of a heat-labile and a more heat-stable β-glucosidase with similar Michaelis constants for 4-nitrophenyl-β-d-glucopyranoside. We discuss possible mechanisms leading to the observed decrease of β-glucosidase activity for larvae reared on P. lanceolata and its relevance for generalist herbivores in adapting to iridoid glycoside containing plant species and their use as potential host plants. PMID:20727899

  3. Iridoids from Gardenia jasminoides.

    PubMed

    Ragasa, Consolacion Y; Pimenta, Leslie Elline N; Rideout, John A

    2007-10-01

    The dichloromethane extract of the air-dried flowers of Gardenia jasminoides Ellis. afforded a new iridoid natural product (1), and a diastereomeric mixture of two new iridoids (2a and 2b) in a 2 : 1 ratio. Their structures were elucidated by extensive 1D and 2D NMR spectroscopy. Antimicrobial tests on 1 indicated that it was moderately active against Candida albicans; slightly active against E. coli, Pseudomonas aeruginosa, Staphylococcus. aureus, and Trichophyton mentagrophytes; and inactive against Bacillus subtilis and Aspergillus niger.

  4. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major.

    PubMed

    Pankoke, Helga; Buschmann, Torsten; Müller, Caroline

    2013-10-01

    The typical defense compounds of Plantaginaceae are the iridoid glycosides, which retard growth and/or enhance mortality of non-adapted herbivores. In plants, glycosidic defense compounds and hydrolytic enzymes often form a dual defense system, in which the glycosides are activated by the enzymes to exert biological effects. Yet, little is known about the activating enzymes in iridoid glycoside-containing plants. To examine the role of plant-derived β-glucosidases in the dual defense system of two common plantain species, Plantago lanceolata and Plantago major, we determined the concentration of iridoid glycosides as well as the β-glucosidase activity in leaves of different age. To investigate the presence of other leaf metabolites potentially involved in plant defense, we used a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. According to the optimal defense hypothesis, more valuable parts such as young leaves should be better protected than less valuable parts. Therefore, we expected that both, the concentrations of defense compounds as well as the β-glucosidase activity, should be highest in younger leaves and decrease with increasing leaf age. Both species possessed β-glucosidase activity, which hydrolyzed aucubin, one of the two most abundant iridoid glycosides in both plant species, with high activity. In line with the optimal defense hypothesis, the β-glucosidase activity in both Plantago species as well as the concentration of defense-related metabolites such as iridoid glycosides correlated negatively to leaf age. When leaf extracts were incubated with bovine serum albumin and aucubin, SDS-PAGE revealed a protein-denaturing effect of the leaf extracts of both plantain species, suggesting that iridoid glycosides and plant β-glucosidase interact in a dual defense system.

  5. Systemic, genotype-specific induction of two herbivore-deterrent iridoid glycosides in Plantago lanceolata L. in response to fungal infection by Diaporthe adunca (Rob.) Niessel.

    PubMed

    Marak, Hamida B; Biere, Arjen; Van Damme, Jos M M

    2002-12-01

    Iridoid glycosides are a group of terpenoid secondary plant compounds known to deter generalist insect herbivores. In ribwort plantain (Plantago lanceolata), the iridoid glycosides aucubin and catalpol can be induced following damage by insect herbivores. In this study, we investigated whether the same compounds can be induced following infection by the fungal pathogen Diaporthe adunca, the causal agent of a stalk disease in P. lanceolata. Significant induction of aucubin and catalpol was observed in two of the three plant genotypes used in this study following inoculation with the pathogen. In one of the genotypes, induction occurred within 6 hr after inoculation, and no decay was observed within 8 days. The highest level of induction was observed in reproductive tissues (spikes and stalks) where infection took place. In these tissues, iridoid glycoside levels in infected plants were, on average, 97% and 37% higher than the constitutive levels in the corresponding control plants, respectively. Significant induction was also observed in leaves (24%) and roots (17%). In addition to significant genotypic variation in the level of induction, we found genetic variation for the tissue-specific pattern of induction, further broadening the scope for evolutionary fine-tuning of induced responses. Recent studies have revealed a negative association between iridoid glycoside levels in P. lanceolata genotypes and the amount of growth and reproduction of D. adunca that these genotypes support. However, for the three genotypes used in the present study, differences in resistance were not related to their constitutive or induced levels of iridoid glycosides, suggesting that additional resistance mechanisms are important in this host-pathogen system. We conclude that iridoid glycosides in P. lanceolata can be induced both by arthropods and pathogenic micro-organisms. Pathogen infection could, therefore, potentially enhance resistance to generalist insect herbivores in this

  6. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major.

    PubMed

    Pankoke, Helga; Buschmann, Torsten; Müller, Caroline

    2013-10-01

    The typical defense compounds of Plantaginaceae are the iridoid glycosides, which retard growth and/or enhance mortality of non-adapted herbivores. In plants, glycosidic defense compounds and hydrolytic enzymes often form a dual defense system, in which the glycosides are activated by the enzymes to exert biological effects. Yet, little is known about the activating enzymes in iridoid glycoside-containing plants. To examine the role of plant-derived β-glucosidases in the dual defense system of two common plantain species, Plantago lanceolata and Plantago major, we determined the concentration of iridoid glycosides as well as the β-glucosidase activity in leaves of different age. To investigate the presence of other leaf metabolites potentially involved in plant defense, we used a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. According to the optimal defense hypothesis, more valuable parts such as young leaves should be better protected than less valuable parts. Therefore, we expected that both, the concentrations of defense compounds as well as the β-glucosidase activity, should be highest in younger leaves and decrease with increasing leaf age. Both species possessed β-glucosidase activity, which hydrolyzed aucubin, one of the two most abundant iridoid glycosides in both plant species, with high activity. In line with the optimal defense hypothesis, the β-glucosidase activity in both Plantago species as well as the concentration of defense-related metabolites such as iridoid glycosides correlated negatively to leaf age. When leaf extracts were incubated with bovine serum albumin and aucubin, SDS-PAGE revealed a protein-denaturing effect of the leaf extracts of both plantain species, suggesting that iridoid glycosides and plant β-glucosidase interact in a dual defense system. PMID:23773298

  7. Anti-inflammatory activity of iridoids and verbascoside isolated from Castilleja tenuiflora.

    PubMed

    Carrillo-Ocampo, Danae; Bazaldúa-Gómez, Sugeyla; Bonilla-Barbosa, Jaime R; Aburto-Amar, Rola; Rodríguez-López, Verónica

    2013-09-30

    Castilleja tenuiflora (Orobanchaceae) has been used in Mexican traditional medicine as a treatment for cough, dysentery, anxiety, nausea and vomiting as well as hepatic and gastrointestinal diseases. The ethanolic extract of the aerial parts of Castilleja tenuiflora was separated by silica gel column chromatography. The fractions were evaluated using the induced edema acetate 12-O-tetradecanoylphorbol (TPA) anti-inflammatory activity model. The most active fraction was subjected to medium-pressure liquid chromatography (MPLC) with UV detection at 206 and 240 nm. The following iridoids were isolated: geniposidic acid, aucubin, bartioside, 8-epi-loganin, mussaenoside, and the phenylpropanoid verbascoside. The most active iridoid was geniposidic acid, which was more active than the control (indomethacin), and the least active iridoid was mussaenoside. 8-epi-Loganin, and mussaenoside have not been previously reported to be anti-inflammatory compounds. The results of these investigations confirm the potential of Mexican plants for the production of bioactive compounds and validate the ethnomedical use of Castilleja tenuiflora-like anti-inflammatory plants.

  8. Naturally occurring iridoids. A review, part 1.

    PubMed

    Dinda, Biswanath; Debnath, Sudhan; Harigaya, Yoshihiro

    2007-02-01

    A compilation of new naturally occurring iridoid glycosides, iridoid aglycones, iridoid derivatives and bis-iridoids reported during 1994-2005 is provided with available physical and spectral data: mp, [alpha]D, UV, IR, 1H- and 13C-NMR as well as natural source with family and references. 418 compounds with 202 references are cited.

  9. Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus).

    PubMed

    Jensen, Heidi D; Krogfelt, Karen A; Cornett, Claus; Hansen, S Honoré; Christensen, S Brøgger

    2002-11-01

    Analysis of the hydrophilic fraction of cranberry juice by reversed-phase HPLC using an Aqua LUNA column with diode array or MS detection revealed the presence of quinic acid, malic acid, shikimic acid, and citric acid. For the first time, two iridoid glucosides were found in the juice. The two iridoid glucosides were shown to be monotropein and 6,7-dihydromonotropein by MS and NMR spectroscopy. A fast reversed-phase HPLC method for quantification of the hydrophilic carboxylic acids was developed and used for analyses of cranberry, lingonberry, and blueberry juices. The level of hydrophilic carboxylic acids in cranberries was 2.67-3.57% (w/v), in lingonberries 2.27-3.05%, and in blueberries 0.35-0.75%. In lingonberries both iridoid glucosides were present, whereas only monotropein was present in blueberries.

  10. Effect on capillary permeability in rabbits of iridoids from Buddleia scordioides.

    PubMed

    Gutierrez, Rosa Martha Perez; Solis, Rosario Vargas; Baez, Efren Garcia; Martinez, Francisco Martinez

    2006-07-01

    The methanol soluble fraction of the leaves of Buddleia scordioides after column chromatography resulted in the isolation of two known iridoid glucosides, catalpol and methylcatalpol. The structures were elucidated by extensive 1D-2D-NMR spectroscopy. The structure of methylcatalpol was confirmed by single-crystal x-ray diffraction. These compounds showed protective activity against increased (both chloroform and histamine) skin vascular permeability in rabbits. The protective effect was measured as the reduction in leakage of Evans blue. The results showed that the iridoids produced a significant inhibition of microvascular permeability. A comparison was made between the action of the iridoids and a known inhibitor of vascular permeability, troxerutin (50 mg/kg). Methylcatalpol and catalpol were found to be less effective than troxerutin.

  11. Iridoids from Crescentia alata.

    PubMed

    Valladares, María Guadalupe; Rios, María Yolanda

    2007-01-01

    Four new 11-nor-iridoids, 6beta,7beta,8alpha,10-tetrahydroxy-cis-2-oxabicyclo[4.3.0]nonan-3-one (1), 6beta,7beta,8alpha,10-tetra-p-hydroxybenzoyl-cis-2-oxabicyclo[4.3.0]nonan-3-one (2), 1beta,6beta,7alpha,8alpha,10-pentahydroxy-cis-2-oxabicyclo[4.3.0]nonane (3), and 6beta-hydroxy-2-oxabicyclo[4.3.0]Delta8-9-nonen-1-one (4), were isolated from the pulp of the fruits of Crescentia alata. Although a limited number of Crescentia species have been studied chemically, iridoids lacking C-11 have been isolated from the fruits of these species, and the isolation of compounds 1-4 from C. alata is in accordance with the constituents of the species previously analyzed. The structures of these compounds were established on the basis of IR, UV, 1H and 13C NMR, DEPT, COSY, HSQC, HMBC, MS, and X-ray data.

  12. Iridoid glycosides from Gmelina arborea.

    PubMed

    Tiwari, Neerja; Yadav, Akhilesh K; Srivastava, Pooja; Shanker, Karuna; Verma, Ram K; Gupta, Madan M

    2008-09-01

    Three iridoid glycosides 6-O-(3''-O-benzoyl)-alpha-L-rhamnopyranosylcatalpol (1a), 6-O-(3''-O-trans-cinnamoyl)-alpha-L-rhamnopyranosylcatalpol (2a) and 6-O-(3''-O-cis-cinnamoyl)-alpha-L-rhamnopyranosylcatalpol (3a) were isolated from aerial parts of Gmelina arborea and structures were elucidated by spectral analysis. Additionally a known iridoid 6-O-(3'', 4''-O-dibenzoyl)-alpha-L-rhamnopyranosylcatalpol (4) was also isolated and identified. PMID:18684476

  13. Iridoids are natural glycation inhibitors.

    PubMed

    West, Brett J; Deng, Shixin; Uwaya, Akemi; Isami, Fumiyuki; Abe, Yumi; Yamagishi, Sho-Ichi; Jensen, C Jarakae

    2016-08-01

    Glycation of amino acid residues in proteins leads to the eventual formation of advanced glycation end products (AGEs). AGE formation significantly influences human health and the aging process. AGE accumulation rates may be slowed by modifications to lifestyle or by pharmacological strategies. But the use of therapeutic drugs is not an appropriate means of controlling AGEs within the general population. However, phytochemical constituents in plant-based foods exhibit anti-glycation activities and may be more appropriate for general consumption. Among these phytochemicals are iridoids. The anti-AGE potential of iridoids has been demonstrated in vitro and in vivo, while also revealing possible mechanisms of action. Inclusion of iridoid food sources in the diet may be a useful component of strategies intended to mitigate AGE accumulation within the body.

  14. Phenylethanoids, iridoids and a spirostanol saponin from Veronica turrilliana.

    PubMed

    Kostadinova, Emanuela P; Alipieva, Kalina I; Kokubun, Tetsuo; Taskova, Rilka M; Handjieva, Nedjalka V

    2007-05-01

    From the aerial parts of Veronica turrilliana two phenylethanoid glycosides, turrilliosides A and B and a steroidal saponin, turrillianoside were isolated and their structures elucidated as beta-(3,4-dihydroxyphenyl)ethyl-4-O-E-caffeoyl-O-[beta-glucopyranosyl-(1-->4)-alpha-rhamnopyranosyl-(1-->6)]-beta-glucopyranoside, beta-(3,4-dihydroxyphenyl)ethyl-4-O-E-caffeoyl-[6-O-E-feruloyl-beta-glucopyranosyl-(1-->4)-alpha-rhamnopyranosyl-(1-->6)]-beta-glucopyranoside and (23S,25S)-12beta,23-dihydroxyspirost-5-en-3beta-yl O-alpha-rhamnopyranosyl-(1-->4)-beta-glucopyranoside, respectively. Furthermore, eight known glucosides are reported namely, catalpol, catalposide, verproside, amphicoside, isovanilloylcatalpol, aucubin, arbutin, and 6-O-E-caffeoylarbutin, the latter two for the first time in the genus Veronica. The two phenylethanoid glycosides were found to be potent DPPH radical scavengers. All of the tested compounds were inactive against the representative species of fungi and bacteria.

  15. [Determination of aucubin in Plantago asiatica L., P. major L. and P. depressa Willd. by HPLC].

    PubMed

    Guo, Y; Cha, M; Chao, A; Yuan, C

    1991-12-01

    A HPLC method for the determination of aucubin in P. asiatica, P. major and P. depressa was established. The mobile phase is MeOH-H2O (17:83). Good in producibility and high in rate of recovery, this method provides an effective way for the study of Plantago.

  16. Iridoids from Scutellaria albida ssp. albida.

    PubMed

    Gousiadou, Chrysoula; Karioti, Anastasia; Heilmann, Jörg; Skaltsa, Helen

    2007-07-01

    Three iridoid glycosides, 6'-O-E-p-coumaroylgardoside (1), 6'-O-p-E-coumaroyl-8-epi-loganic acid (2) and scutelloside (3) were isolated from the aerial parts of Scutellaria albida subsp. albida, in addition to an anomeric mixture in equilibrium of one iridoid aglycone (4, 4a), nine iridoid glycosides (5-13), four known phenylethanoid glycosides (14-17), and six known phenolic derivatives (18-23).

  17. Chemotaxonomy of iridoids in Linaria vulgaris.

    PubMed

    Guiso, Marcella; Tassone, Grazia; Nicoletti, Marcello; Serafini, Mauro; Bianco, Armandodoriano

    2007-11-01

    The phytochemical analysis of the extracts of Linaria vulgaris, has allowed to underline an iridoidic pattern similar to that of the other Linaria plants, with the presence of antirrinoside, antirride, 6-beta-idrossiantirride, 10-beta-glucosilaucubina and a new iridoidic compound, whose structure was demonstrated to be that of 4-carboxy-boonein.

  18. Determination of phenylethanoid glycosides and iridoid glycosides from therapeutically used Plantago species by CE-MEKC.

    PubMed

    Gonda, Sándor; Nguyen, Nhat Minh; Batta, Gyula; Gyémánt, Gyöngyi; Máthé, Csaba; Vasas, Gábor

    2013-09-01

    CE methods are valuable tools for medicinal plant quality management, screening, and analysis. Therefore, the aim of the current study was to optimize and validate a CE-MEKC method for simultaneous quantification of four chief bioactive metabolites from Plantago species. The two most important secondary metabolite groups were aimed to be separated. Different electrolyte and surfactant types were tested. Surfactant concentration, BGE pH, electrolyte concentration, and buffering capacity were optimized. The final BGE consisted of 15 mM sodium tetraborate, 20 mM TAPS, and 250 mM DOC at pH 8.50. Acceptable precision, good stability, and accuracy were achieved, with high resolution for phenylethanoid glycosides. Analytes were separated within 20 min. The method was shown to be suitable for the quantification of the iridoid glycosides aucubin and catalpol, and the phenylethanoid glycosides acteoside (verbascoside) and plantamajoside from water extracts of different samples. The method was shown to be applicable to leaf extracts of Plantago lanceolata, Plantago major, and Plantago asiatica, the main species with therapeutic applications, and a biotechnological product, plant tissue cultures (calli) of P. lanceolata. Baseline separation of the main constituents from minor peaks was achieved, regardless of the matrix type.

  19. Determination of phenylethanoid glycosides and iridoid glycosides from therapeutically used Plantago species by CE-MEKC.

    PubMed

    Gonda, Sándor; Nguyen, Nhat Minh; Batta, Gyula; Gyémánt, Gyöngyi; Máthé, Csaba; Vasas, Gábor

    2013-09-01

    CE methods are valuable tools for medicinal plant quality management, screening, and analysis. Therefore, the aim of the current study was to optimize and validate a CE-MEKC method for simultaneous quantification of four chief bioactive metabolites from Plantago species. The two most important secondary metabolite groups were aimed to be separated. Different electrolyte and surfactant types were tested. Surfactant concentration, BGE pH, electrolyte concentration, and buffering capacity were optimized. The final BGE consisted of 15 mM sodium tetraborate, 20 mM TAPS, and 250 mM DOC at pH 8.50. Acceptable precision, good stability, and accuracy were achieved, with high resolution for phenylethanoid glycosides. Analytes were separated within 20 min. The method was shown to be suitable for the quantification of the iridoid glycosides aucubin and catalpol, and the phenylethanoid glycosides acteoside (verbascoside) and plantamajoside from water extracts of different samples. The method was shown to be applicable to leaf extracts of Plantago lanceolata, Plantago major, and Plantago asiatica, the main species with therapeutic applications, and a biotechnological product, plant tissue cultures (calli) of P. lanceolata. Baseline separation of the main constituents from minor peaks was achieved, regardless of the matrix type. PMID:23784714

  20. A new iridoid diglucoside from Harpagophytum procumbens.

    PubMed

    Tomassini, Lamberto; Serafini, Mauro; Foddai, Sebastiano; Ventrone, Antonio; Nicoletti, Marcello

    2016-01-01

    A new iridoid diglucoside has been isolated from an aqueous extract of Harpagophytum procumbens secondary roots, together with six known compounds. Its structure has been assigned as 6'-O-glucopyranosyl-8-O-trans-coumaroylharpagide by spectroscopic means.

  1. Two new bioactive iridoids from Rothmannia wittii.

    PubMed

    Chaipukdee, Nattapong; Kanokmedhakul, Kwanjai; Kanokmedhakul, Somdej; Lekphrom, Ratsami; Pyne, Stephen G

    2016-09-01

    The first reported study of the isolation and identification of compounds from the bark and fruit of Rothmannia wittii yielded two new iridoids, 6β-hydroxy-10-O-acetylgenipin (1) and 10-O-acetylmacrophyllide (2) together with six known iridoids; 6β-hydroxygenipin (3), genipin (4), garjasmine (5), cerbinal (6), and mixture of β-gardiol (7) and α-gardiol (8); benzoic acid (9); vanillic acid (10); and stigmasterol (11). Their structures were elucidated by spectroscopic methods. Iridoid 1 showed antimycobacterial activity against Mycobacterium tuberculosis with a MIC value of 12.50μg/mL. Iridoid 2 showed cytotoxicity against the NCI-H187 cancer cell line with an IC50 value of 6.82μg/mL. In addition, 2 and 5 exhibited weak cytotoxic activity against KB and MCF-7 cell lines, while 4 was active against the NCI-H187 cancer cell line.

  2. Two new bioactive iridoids from Rothmannia wittii.

    PubMed

    Chaipukdee, Nattapong; Kanokmedhakul, Kwanjai; Kanokmedhakul, Somdej; Lekphrom, Ratsami; Pyne, Stephen G

    2016-09-01

    The first reported study of the isolation and identification of compounds from the bark and fruit of Rothmannia wittii yielded two new iridoids, 6β-hydroxy-10-O-acetylgenipin (1) and 10-O-acetylmacrophyllide (2) together with six known iridoids; 6β-hydroxygenipin (3), genipin (4), garjasmine (5), cerbinal (6), and mixture of β-gardiol (7) and α-gardiol (8); benzoic acid (9); vanillic acid (10); and stigmasterol (11). Their structures were elucidated by spectroscopic methods. Iridoid 1 showed antimycobacterial activity against Mycobacterium tuberculosis with a MIC value of 12.50μg/mL. Iridoid 2 showed cytotoxicity against the NCI-H187 cancer cell line with an IC50 value of 6.82μg/mL. In addition, 2 and 5 exhibited weak cytotoxic activity against KB and MCF-7 cell lines, while 4 was active against the NCI-H187 cancer cell line. PMID:27431771

  3. Two new iridoids from Verbena officinalis L.

    PubMed

    Shu, Jicheng; Chou, Guixin; Wang, Zhengtao

    2014-07-18

    Two new iridoids, 3-(5-(methoxycarbonyl)-2-oxo-2H-pyran-3-yl)butanoic acid, named verbeofflin I (1), and 7-hydroxydehydrohastatoside (2), were isolated from the aerial part of Verbena officinalis L, along with three known iridoids, verbenalin (3), 3,4-dihydroverbenalin (4), hastatoside (5) by means of various column chromatography steps. The structures of these compounds were elucidated through analysis of their spectroscopic data obtained using 1D and 2D NMR and MS techniques. Verbeofflin I (1) is the new class of secoiridoid in the family Verbenaceae.

  4. Five new iridoids from Patrinia rupestris.

    PubMed

    Yang, Xiu-Ping; Li, Er-Wei; Zhang, Qi; Yuan, Cheng-Shan; Jia, Zhong-Jian

    2006-07-01

    Five new iridoids, namely rupesin A-E (1-5, resp.), together with six known iridoids, 6-11, were isolated from the roots of Patrinia rupestris. Their structures were elucidated by spectroscopic methods including IR, UV, MS, and 1D- and 2D-NMR experiments, and comparison with data of known analogues. Compounds 4 and 11, compounds 1, 2, 5, 6, 8, 9, and 10, and compounds 3, 4, and 8 showed significant antibacterial activities against Bacillus subtilis, Escherichia coli, and Staphylococcus aureus, respectively.

  5. Iridoids from Spathodea campanulata P. Beauvais leaves.

    PubMed

    Gouda, Yaser G

    2009-06-01

    Three new and four known iridoids have been isolated from the leaves of Spathodea campanulata, the structures of the new compounds were determined as 6-O-trans-caffeoyl-decinnamoyl globularimin, 6-O-trans-caffeoyl-asystasioside E and 6-O-trans-caffeoyl-5,7-bisdeoxycynanchoside and provisionally named as spatheosides A (1), B (2) and C (3) respectively. The known iridoids were identified as verminoside (4), 6'-O-trans-caffeoyl-loganic acid (5), catalpol (6) and ajugol (7). The structures of the isolated compounds were characterized by different spectroscopic methods.

  6. A new iridoid diglucoside from Harpagophytum procumbens.

    PubMed

    Tomassini, Lamberto; Serafini, Mauro; Foddai, Sebastiano; Ventrone, Antonio; Nicoletti, Marcello

    2016-01-01

    A new iridoid diglucoside has been isolated from an aqueous extract of Harpagophytum procumbens secondary roots, together with six known compounds. Its structure has been assigned as 6'-O-glucopyranosyl-8-O-trans-coumaroylharpagide by spectroscopic means. PMID:26119468

  7. Anti-inflammatory iridoids of botanical origin.

    PubMed

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo.

  8. Anti-inflammatory iridoids of botanical origin.

    PubMed

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  9. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  10. The distribution of two major Iridoids in different organs of Antirrhinum majus L. at selected stages of development.

    PubMed

    Beninger, Clifford W; Cloutier, Renée R; Monteiro, Mario A; Grodzinski, Bernard

    2007-04-01

    Two iridoid glucosides isolated from leaves of Antirrhinum majus L. were identified as the known compounds antirrhinoside and antirrhide. Plants grown hydroponically demonstrated that antirrhinoside is present in all plant organs including the roots. In contrast, antirrhide is found only in leaves. Furthermore, both iridoids were identified in the main stem axillary leaves and leaves on the lateral branches. The highest concentrations of antirrhinoside were found in the main and lateral stems as well as the buds and flowers. As leaves age, for both cultivars, the levels of antirrhinoside drop significantly, and there is a corresponding increase in antirrhide. In spite of the different genetic backgrounds of the two cultivars, the overall distribution of the iridoids was similar during vegetative and flowering development. Radiolabeling of recently expanded axillary leaves with (14)CO(2) showed that both antirrhinoside and antirrhide were prominently labeled in the laminar tissue. However, only (14)C-antirrhinoside was recovered in the subtending petiole tissue, consistent with the suggestion that it is a phloem mobile compound.

  11. Structural determinants of reductive terpene cyclization in iridoid biosynthesis.

    PubMed

    Kries, Hajo; Caputi, Lorenzo; Stevenson, Clare E M; Kamileen, Mohammed O; Sherden, Nathaniel H; Geu-Flores, Fernando; Lawson, David M; O'Connor, Sarah E

    2016-01-01

    The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (from Catharanthus roseus) bound to a mechanism-inspired inhibitor that illuminates substrate binding and catalytic function of the enzyme. Key features that distinguish iridoid synthase from its close homolog progesterone 5β-reductase are highlighted.

  12. Structural determinants of reductive terpene cyclization in iridoid biosynthesis

    PubMed Central

    Stevenson, Clare E. M.; Kamileen, Mohammed O.; Sherden, Nathaniel H.; Geu-Flores, Fernando; Lawson, David M.; O’Connor, Sarah E.

    2015-01-01

    The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (Catharanthus roseus) bound to a mechanism-inspired inhibitor that illuminates substrate binding and catalytic function of the enzyme. Key features that distinguish iridoid synthase from its close homologue, progesterone 5β-reductase, are highlighted. PMID:26551396

  13. Eucommia ulmoides Oliver Extract, Aucubin, and Geniposide Enhance Lysosomal Activity to Regulate ER Stress and Hepatic Lipid Accumulation

    PubMed Central

    Lee, Hwa-Young; Lee, Geum-Hwa; Lee, Mi-Rin; Kim, Hye-Kyung; Kim, Nan-young; Kim, Seung-Hyun; Lee, Yong-Chul; Kim, Hyung-Ryong; Chae, Han-Jung

    2013-01-01

    Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE) on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER) stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia. PMID:24349058

  14. Iridoids and lignans from Valeriana jatamansi.

    PubMed

    Lin, Sheng; Chen, Tao; Liu, Xiao-Hua; Shen, Yun-Heng; Li, Hui-Liang; Shan, Lei; Liu, Run-Hui; Xu, Xi-Ke; Zhang, Wei-Dong; Wang, Hui

    2010-04-23

    Thirteen new iridoids including seven iridolactones, jatamanins A-M (1-13), and a new lignan, (+)-9'-isovaleroxylariciresinol (14), together with seven known iridoids and 13 lignans were obtained from whole plants of Valeriana jatamansi. Structures of the new compounds were determined by spectroscopic and crystallographic methods, and the absolute configuration of compound 1 was assigned by application of the modified Mosher method. Jatamanins H (8) and I (9) are iridolactones with an unusual C-8-C-11 oxygen bridge, forming a cage-like structure. (+)-9'-Isovaleroxylariciresinol (14) showed significant in vitro cytotoxicity against PC-3M and HCT-8 cell lines, with IC(50) values of 8.1 and 5.3 microM, respectively.

  15. Three new iridoids from two Viburnum species.

    PubMed

    Fan, Min; Liu, Yu-Cheng; Jiang, Wei-Wei; Su, Jia; Wu, Xing-De; Peng, Li-Yan; Cheng, Xiao; He, Juan; Zhao, Qin-Shi

    2015-01-01

    Three new iridoids, 10-deacetyl suspensolide A aglycone (1), 7-deacetyl suspensolide A aglycone (2), and 7,10-dideacetyl suspensolide A aglycone (3), were isolated from two species of Viburnum. Their structures were elucidated on the basis of spectroscopic methods, including 1D and 2D NMR techniques. Compound 2 exhibited moderate anti-inflammatory activity against NO production in LPS-stimulated RAW 264.7 cells with IC50 of 17.2 μM.

  16. Two novel iridoids from Morinda longifolia.

    PubMed

    Ban, Ninh Khac; Giang, Vu Huong; Linh, Tran My; Lien, Le Quynh; Ngoc, Ninh Thi; Dat, Le Duc; Thao, Nguyen Phuong; Nhiem, Nguyen Xuan; Cuong, Nguyen Xuan; Van Pham, Cuong; Nam, Nguyen Hoai; Regalado, Jacinto; Van Keo, Huynh; Van Kiem, Phan; Van Minh, Chau

    2014-07-01

    Six secondary metabolites, including two novel iridoids, longifolides A (1) and B (2), were isolated by various chromatographic methods from a methanol extract of branches and leaves of Morinda longifolia Craib. The structures of the compounds were determined on the basis of NMR spectroscopic (1H and 13C NMR, HSQC, HMBC, 1H-1H COSY, NOESY) and FTICR-MS data, as well as by comparison of them with literature values.

  17. Iridoids from the roots of Valeriana jatamansi.

    PubMed

    Xu, Jing; Guo, Ping; Fang, Ling-Zhi; Li, Yu-Shan; Guo, Yuan-Qiang

    2012-01-01

    Two new iridoids, jatamanvaltrates N (1) and O (2), together with four known compounds (3-6), were isolated from the roots of Valeriana jatamansi. Their structures and relative configurations were elucidated by spectroscopic methods (IR, ESI-MS, HR-ESI-MS, 1D, and 2D NMR) and by comparison of their NMR spectral data with those of related compounds. All the isolated compounds were evaluated for their neuroprotective effects, and only compound 1 showed weak neuroprotective activities.

  18. Abietane lactones and iridoids from Goldfussia yunnanensis.

    PubMed

    Yu, Hong-Wei; Li, Bo-Gang; Li, Guo-You; Li, Chang-Song; Fang, Dong-Mei; Zhang, Guo-Lin

    2007-12-01

    Two new abietane diterpene lactones (1--2), three new abietane diterpene lactone glycosides (3--5) and a new iridoid glycoside (6), together with five known compounds, were isolated from the aerial parts of Goldfussia yunnanensis. The new compounds were determined to be 18-hydroxyhelioscopinolide A (1), 18-oxohelioscopinolide A (2), 18-hydroxy-3-O-beta-D-glucopyranosylhelioscopinolide A (3), 3-O-beta-D-glucopyranosylhelioscopinolide A (4), 3-O-beta-D-galactopyranosylhelioscopinolide A (5), and 6-O-trans-cinnamoyl E-harpagoside (6) on the basis of spectral data and chemical evidence.

  19. Acylated iridoids with cytotoxicity from Valeriana jatamansi.

    PubMed

    Lin, Sheng; Shen, Yun-Heng; Li, Hui-Liang; Yang, Xian-Wen; Chen, Tao; Lu, Long-Hai; Huang, Zheng-Sheng; Liu, Run-Hui; Xu, Xi-Ke; Zhang, Wei-Dong; Wang, Hui

    2009-04-01

    Thirteen new acylated iridoids, jatamanvaltrates A-M (1-13), together with nine known valepotriates (14-22), were isolated from the whole plants of Valeriana jatamansi (syn. Valeriana wallichii). The structures of these new compounds were assigned by detailed interpretation of spectroscopic data. Jatamanvaltrates D (4) and H (9) are the first examples of naturally occurring valepotriates containing an o-hydroxybenzoyloxy moiety at C-10. All isolated compounds were tested for their cytotoxicity against lung adenocarcinoma (A549), metastatic prostate cancer (PC-3M), colon cancer (HCT-8), and hepatoma (Bel7402) cell lines.

  20. A rapid and sensitive determination of aucubin in rat plasma by liquid chromatography-tandem mass spectrometry and its pharmacokinetic application.

    PubMed

    Xu, Wei; Deng, Zhipeng; Guo, Hong; Ling, Peixue

    2012-09-01

    A sensitive, accurate, rapid and robust LC-MS-MS method for the quantification of aucubin, a major bioactive constituent of Aucuba japonica, Eucommia ulmoides and Plantago asiatica, was established and validated in rat plasma. Plasma samples were simply precipitated by adding methanol and the supernatant was chromatographed by a Diamonsil® C(18)(2) column with the mobile phase comprising a mixture of 10 mm ammonium acetate in methanol and that in water with the ratio of 50:50 (v/v). Quantification of aucubin was performed by mass spectrometry in the multiple-reaction monitoring mode with positive atmospheric ionization at m/z 364 → 149 for aucubin, and m/z 380 → 165 for catalpol (IS), respectively. The retention time was 2.47 and 2.44 min for aucubin and the IS, respectively. The calibration curve (10.0-30,000 ng/mL) was linear (r²  > 0.99) and the lower limit of quantification was 10.0 ng/mL in the rat plasma sample. The method showed satisfactory results such as sensitivity, specificity, precision, accuracy, recovery, freeze-thaw and long-term stability. This simple LC-MS method was successfully applied in a pharmacokinetic study carried out in Sprague-Dawley rats after oral administration of aucubin at a single dose of 50 mg/kg. Herein the pharmacokinetic study of aucubin is reported for the first time. PMID:22113886

  1. Iridoids from Neopicrorhiza scrophulariiflora and their hepatoprotective activities in vitro.

    PubMed

    Wang, Hao; Wu, Fei-Hua; Xiong, Fei; Wu, Jia-Jun; Zhang, Lu-Yong; Ye, Wen-Cai; Li, Ping; Zhao, Shou-Xun

    2006-08-01

    Four new non-glycosidic iridoids, piscrocins D (1), E (2), F (6), and G (7), as well as two new iridoid glycosides, piscrosides A (8) and B (9), were isolated from the roots of Neopicrorhiza scrophulariiflora (Scrophulariaceae), together with seven known iridoids. The structures of the isolated compounds were established by means of 1D and 2D NMR spectroscopy and chemical methods. The hepatoprotective activities of these compounds were evaluated by measuring their effects on CCl(4)-induced hepatocytes damage in vitro, and the structure-activity relationships were also discussed.

  2. Iridoids from the green leaves of Eucommia ulmoides.

    PubMed

    Takamura, Chika; Hirata, Tetsuya; Ueda, Taro; Ono, Masateru; Miyashita, Hiroyuki; Ikeda, Tsuyoshi; Nohara, Toshihiro

    2007-08-01

    The bark of Eucommia ulmoides is a well-known crude drug in oriental medicine, and its leaves have been consumed as a beverage. From the green leaves of this plant, three new iridoids (1-3) were isolated, together with 12 known compounds. Compound 1 is the first iridoid possessing a saturated bond between C-3 and C-4 and having an ether linkage between C-3 and C-2 of the glucose unit. Furthermore, 2 and 3 may be regarded as the first naturally occurring conjugates of an iridoid and an amino acid.

  3. Minor iridoids from the roots of Valeriana wallichii.

    PubMed

    Wang, Rui; Xiao, Dan; Bian, Yan-Hong; Zhang, Xiao-Yue; Li, Bang-Jing; Ding, Li-Sheng; Peng, Shu-Lin

    2008-07-01

    Four new iridoids, valeriotetrates B and C (1 and 2), 8-methylvalepotriate (3), and 1,5-dihydroxy-3,8-epoxyvalechlorine A (4), together with three known iridoids, were isolated from the roots of Valeriana wallichii. The structures of the new compounds were elucidated by analysis of 1D and 2D NMR and HRESIMS data. Compound 4 is an unusual iridoid bearing a C-10 chloro group and an oxo bridge connecting C-3 and C-8, resulting in a rigid skeleton.

  4. Biological and pharmacological activities of iridoids: recent developments.

    PubMed

    Tundis, Rosa; Loizzo, Monica R; Menichini, Federica; Statti, Giancarlo A; Menichini, Francesco

    2008-04-01

    Iridoids represent a large group of cyclopenta[c]pyran monoterpenoids that occur wide-spread in nature, mainly in dicotyledonous plant families like Apocynaceae, Scrophulariaceae, Diervillaceae, Lamiaceae, Loganiaceae and Rubiaceae. Recently, more extensive studies revealed that iridoids exhibit a wide range of bioactivity, such as neuroprotective, antinflammatory and immunomodulator, hepatoprotective and cardioprotective effects. Anticancer, antioxidant, antimicrobic, hypoglycaemic, hypolipidemic, choleretic, antispasmodic and purgative properties were also reported. The aim of the present review is to discuss the recent developments on biological and pharmacological activities of iridoids, supporting the new therapeutic possibilities for the use of these compounds.

  5. Iridoids and sesquiterpenoids from the roots of Valeriana officinalis.

    PubMed

    Wang, Peng-Cheng; Hu, Jiang-Miao; Ran, Xin-Hui; Chen, Zhong-Quan; Jiang, He-Zhong; Liu, Yu-Qing; Zhou, Jun; Zhao, You-Xing

    2009-09-01

    Two new iridoids, volvaltrates A and B (1 and 2), and three new sesquiterpenoids, E-(-)-3beta,4beta-epoxyvalerenal (3), E-(-)-3beta,4beta-epoxyvalerenyl acetate (4), and mononorvalerenone (5), together with five known iridoids and two known sesquiterpenoids were isolated from the roots of Valeriana officinalis. The structures and relative configurations of 1-5 were elucidated by spectroscopic evidence. Compound 1 was an unusual iridoid with an oxygen bridge connecting C-3 and C-10, forming a cage-like structure, and compound 5 was a mononorsesquiterpenoid.

  6. Naturally occurring iridoids and secoiridoids. An updated review, part 4.

    PubMed

    Dinda, Biswanath; Debnath, Sudhan; Banik, Rajarshi

    2011-01-01

    A compilation of new naturally occurring iridoids and secoiridoids including their glycosides, esters, aglycones, derivatives and dimers reported during mid 2008-2010 is provided with available physical and spectral data: mp, [α](D), UV, IR, circular dichroism (CD), (1)H- and (13)C-NMR as well as natural source with family and references. The important bioactivity of new and known iridoids and secoiridoids reported during this period is also highlighted.

  7. Three new iridoids from leaves of Cornus officinalis.

    PubMed

    Li, Yong-Chao; Yang, Jing; Wu, Xing-Gang; Xu, Xin-Juan; Fu, Qing-Yun

    2015-01-01

    Three new iridoids, cornifins A-C (1-3), together with a known iridoid, were obtained from EtOAc layer of leaves of Cornus officinalis. The structures of new compounds were elucidated on the basis of extensive spectroscopic analyses. Compound 2 showed weak inhibitory activity against lung cancer cell line A-549 with IC50 value of 29.1 μM.

  8. New iridoids from the fruits of Crescentia cujete.

    PubMed

    Wang, Gang; Yin, Wei; Zhou, Zhong-Yu; Hsieh, Kun-Lung; Liu, Ji-Kai

    2010-09-01

    Four new 11-nor-iridoids, 6-O-p-hydroxybenzoyl-10-deoxyeucommiol (1), 6-O-benzoyl-10-deoxyeucommiol (2), 6-O-benzoyl-dihydrocatalpolgenin (a mixture of 3 and 4), as well as two known iridoids, ningpogenin (5) and 6-O-p-hydroxybenzoylaucubin (6), were isolated from the fruits of Crescentia cujete Linn. The structures of these compounds were established on the basis of spectroscopic analysis.

  9. New iridoids from the fruits of Crescentia cujete.

    PubMed

    Wang, Gang; Yin, Wei; Zhou, Zhong-Yu; Hsieh, Kun-Lung; Liu, Ji-Kai

    2010-09-01

    Four new 11-nor-iridoids, 6-O-p-hydroxybenzoyl-10-deoxyeucommiol (1), 6-O-benzoyl-10-deoxyeucommiol (2), 6-O-benzoyl-dihydrocatalpolgenin (a mixture of 3 and 4), as well as two known iridoids, ningpogenin (5) and 6-O-p-hydroxybenzoylaucubin (6), were isolated from the fruits of Crescentia cujete Linn. The structures of these compounds were established on the basis of spectroscopic analysis. PMID:20839124

  10. Antiglycation Activity of Iridoids and Their Food Sources

    PubMed Central

    West, Brett J.; Uwaya, Akemi; Isami, Fumiyuki; Deng, Shixin; Nakajima, Sanae; Jensen, C. Jarakae

    2014-01-01

    Iridoids are dietary phytochemicals that may have the ability to inhibit the formation of advanced glycation end products (AGEs). Three studies were conducted to investigate this anti-AGE potential. First, the inhibition of fluorescence intensity by food-derived iridoids, after 4 days of incubation with bovine serum albumin, glucose, and fructose, was used to evaluate in vitro antiglycation activity. Next, an 8-week open-label pilot study used the AGE Reader to measure changes in the skin autofluorescence of 34 overweight adults who consumed daily a beverage containing food sources of iridoids. Finally, a cross-sectional population study with 3913 people analyzed the relationship between daily iridoid intake and AGE accumulation, as measured by skin autofluorescence with the TruAge scanner. In the in vitro test, deacetylasperulosidic acid and loganic acid both inhibited glycation in a concentration-dependent manner, with respective IC50 values of 3.55 and 2.69 mM. In the pilot study, average skin autofluorescence measurements decreased by 0.12 units (P < 0.05). The cross-sectional population survey revealed that, for every mg of iridoids consumed, there is a corresponding decline in AGE associated age of 0.017 years (P < 0.0001). These results suggest that consumption of dietary sources of iridoids may be a useful antiaging strategy. PMID:26904624

  11. Antiglycation Activity of Iridoids and Their Food Sources.

    PubMed

    West, Brett J; Uwaya, Akemi; Isami, Fumiyuki; Deng, Shixin; Nakajima, Sanae; Jensen, C Jarakae

    2014-01-01

    Iridoids are dietary phytochemicals that may have the ability to inhibit the formation of advanced glycation end products (AGEs). Three studies were conducted to investigate this anti-AGE potential. First, the inhibition of fluorescence intensity by food-derived iridoids, after 4 days of incubation with bovine serum albumin, glucose, and fructose, was used to evaluate in vitro antiglycation activity. Next, an 8-week open-label pilot study used the AGE Reader to measure changes in the skin autofluorescence of 34 overweight adults who consumed daily a beverage containing food sources of iridoids. Finally, a cross-sectional population study with 3913 people analyzed the relationship between daily iridoid intake and AGE accumulation, as measured by skin autofluorescence with the TruAge scanner. In the in vitro test, deacetylasperulosidic acid and loganic acid both inhibited glycation in a concentration-dependent manner, with respective IC50 values of 3.55 and 2.69 mM. In the pilot study, average skin autofluorescence measurements decreased by 0.12 units (P < 0.05). The cross-sectional population survey revealed that, for every mg of iridoids consumed, there is a corresponding decline in AGE associated age of 0.017 years (P < 0.0001). These results suggest that consumption of dietary sources of iridoids may be a useful antiaging strategy.

  12. Antiglycation Activity of Iridoids and Their Food Sources.

    PubMed

    West, Brett J; Uwaya, Akemi; Isami, Fumiyuki; Deng, Shixin; Nakajima, Sanae; Jensen, C Jarakae

    2014-01-01

    Iridoids are dietary phytochemicals that may have the ability to inhibit the formation of advanced glycation end products (AGEs). Three studies were conducted to investigate this anti-AGE potential. First, the inhibition of fluorescence intensity by food-derived iridoids, after 4 days of incubation with bovine serum albumin, glucose, and fructose, was used to evaluate in vitro antiglycation activity. Next, an 8-week open-label pilot study used the AGE Reader to measure changes in the skin autofluorescence of 34 overweight adults who consumed daily a beverage containing food sources of iridoids. Finally, a cross-sectional population study with 3913 people analyzed the relationship between daily iridoid intake and AGE accumulation, as measured by skin autofluorescence with the TruAge scanner. In the in vitro test, deacetylasperulosidic acid and loganic acid both inhibited glycation in a concentration-dependent manner, with respective IC50 values of 3.55 and 2.69 mM. In the pilot study, average skin autofluorescence measurements decreased by 0.12 units (P < 0.05). The cross-sectional population survey revealed that, for every mg of iridoids consumed, there is a corresponding decline in AGE associated age of 0.017 years (P < 0.0001). These results suggest that consumption of dietary sources of iridoids may be a useful antiaging strategy. PMID:26904624

  13. Conversion of Substrate Analogs Suggests a Michael Cyclization in Iridoid Biosynthesis

    PubMed Central

    Lindner, Stephanie; Geu-Flores, Fernando; Bräse, Stefan; Sherden, Nathaniel H.; O’Connor, Sarah E.

    2014-01-01

    Summary The core structure of the iridoid monoterpenes is formed by a unique cyclization reaction. The enzyme that catalyzes this reaction, iridoid synthase, is mechanistically distinct from other terpene cyclases. Here we describe the synthesis of two substrate analogs to probe the mechanism of iridoid synthase. Enzymatic assay of these substrate analogs along with clues from the product profile of the native substrate strongly suggest that iridoid synthase utilizes a Michael reaction to achieve cyclization. This improved mechanistic understanding will facilitate the exploitation of the potential of iridoid synthase to synthesize new cyclic compounds from nonnatural substrates. PMID:25444551

  14. The seco-iridoid pathway from Catharanthus roseus

    PubMed Central

    Miettinen, Karel; Dong, Lemeng; Navrot, Nicolas; Schneider, Thomas; Burlat, Vincent; Pollier, Jacob; Woittiez, Lotte; van der Krol, Sander; Lugan, Raphaël; Ilc, Tina; Verpoorte, Robert; Oksman-Caldentey, Kirsi-Marja; Martinoia, Enrico; Bouwmeester, Harro; Goossens, Alain; Memelink, Johan; Werck-Reichhart, Danièle

    2014-01-01

    The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications. PMID:24710322

  15. Host plant influences on iridoid glycoside sequestration of generalist and specialist caterpillars.

    PubMed

    Lampert, Evan C; Bowers, M Deane

    2010-10-01

    The effect of diet on sequestration of iridoid glycosides was examined in larvae of three lepidopteran species. Larvae were reared upon Plantago major, or P. lanceolata, or switched from one to the other in the penultimate instar. Junonia coenia is a specialist on iridoid glycoside-producing plants, whereas the arctiids, Spilosoma congrua and Estigmene acrea, are both polyphagous and eat iridoid-producing plants. All species sequestered iridoids. The specialist J. coenia sequestered from three to seven times the amounts sequestered by the two generalist species. Junonia coenia iridoid glycoside content depended on diet, and they sequestered from 5 to 15% dry weight iridoid glycosides. Estigmene acrea iridoid glycoside sequestration was relatively low, around 2% dry weight and did not vary with diet. Spilosoma congrua sequestration varied with diet and ranged from approximately 3 to 6% dry weight. PMID:20809144

  16. Iridoid glycosides from Harpagophytum procumbens D.C. (devil's claw).

    PubMed

    Qi, Jin; Chen, Ji-Jun; Cheng, Zhi-Hong; Zhou, Jia-Hong; Yu, Bo-Yang; Qiu, Samuel X

    2006-07-01

    Iridoid glycosides, harprocumbide A (6''-O-alpha-D-galactopyranosylharpagoside, 1) and harprocumbide B (6''-O-(cis-p-coumaroyl)-procumbide, 2) were isolated from the tubers of Harpagophytum prucumbens D.C., along with nine known iridoid glycosides 6-O-alpha-D-galactopyranosylharpagoside (3), and harpagoside (4), harpagide (5), 8-cinnamoylmyoporoside (6), 8-O-feruloylhapagide (7), procumbide (8), 6''-O-(p-coumaroyl)-procumbide (9), 8-O-(p-coumaroyl)-harpagide (10) and 8-O-(cis-p-coumaroyl)-harpagide (11). Compound 10 showed marginal inhibition activity against macrophages respiratory burst. PMID:16857222

  17. Immunosuppressive iridoids from the fruits of Gardenia jasminoides.

    PubMed

    Chang, Wen-Liang; Wang, Hua-Ying; Shi, Li-Shian; Lai, Jenn-Haung; Lin, Hang-Ching

    2005-11-01

    A new iridoid, gardaloside (1), and a new safranal-type monoterpene, jasminoside G (2), together with 10 known compounds including nine iridoids and a second safranal-type monoterpene, were isolated from the fruits of Gardenia jasminoides. The structures of 1 and 2 were established on the basis of spectroscopic evidence. Of these compounds, geniposide (3), 6alpha-hydroxygeniposide (5), ixoroside (7), and shanzhiside (8) showed significant inhibition of IL-2 secretion by phorbol myristate acetate and anti-CD28 monoclonal antibody co-stimulated activation of human peripheral blood T cells.

  18. Iridoids and sesquiterpenoids from the roots of Valeriana jatamansi Jones.

    PubMed

    Dong, Fa-Wu; Liu Yang; Wu, Zhi-Kun; Wei-Gao; Zi, Chen-Ting; Dan Yang; Luo, Huai-Rong; Jun Zhou; Hu, Jiang-Miao

    2015-04-01

    Three new iridoids, jatamanvaltrates R-S (1-2) and jatamanin Q (3), as well as three new sesquiterpenoids, valeriananoids D-E (4, 5) and clovane-2β-isovaleroxy-9α-ol (6), together with nine known compounds were isolated from the roots of Valeriana jatamansi Jones. Compound 2 was the first reported iridoid with fatty acid esters in the Valerianaceae family. The structures of new compounds were established on the basis of extensive spectroscopic analysis. Moreover, all the isolates were evaluated for inhibitory activity on acetylcholinesterase (AChE).

  19. A New Iridoid from the Aerial Parts of Hedyotis pilulifera.

    PubMed

    Hoai, Nguyen Thi; Duc, Ho Viet; Phu, Nguyen Dinh Quynh; Kodama, Takeshi; Itob, Takuya; Morita, Hiroyuki

    2016-03-01

    A new iridoid, 10-acetylborreriagenin (1), and five known iridoid glycosides (2-6), were isolated from the aerial parts of Hedyotis pilulifera. Their structures were elucidated by spectral analyses, including 1D- and 2D-NMR, and HR-ESI-MS, and comparisons with the NMR data reported in the literature. The isolated compounds 1-6 were tested against six bacterial species. Among them, 10-acetylborreriagenin (1) showed antibacterial activity against Staphylococcus aureus, with an MIC value of 100 µg/mL.

  20. Iridoids and sesquiterpenoids from the roots of Valeriana jatamansi Jones.

    PubMed

    Dong, Fa-Wu; Liu Yang; Wu, Zhi-Kun; Wei-Gao; Zi, Chen-Ting; Dan Yang; Luo, Huai-Rong; Jun Zhou; Hu, Jiang-Miao

    2015-04-01

    Three new iridoids, jatamanvaltrates R-S (1-2) and jatamanin Q (3), as well as three new sesquiterpenoids, valeriananoids D-E (4, 5) and clovane-2β-isovaleroxy-9α-ol (6), together with nine known compounds were isolated from the roots of Valeriana jatamansi Jones. Compound 2 was the first reported iridoid with fatty acid esters in the Valerianaceae family. The structures of new compounds were established on the basis of extensive spectroscopic analysis. Moreover, all the isolates were evaluated for inhibitory activity on acetylcholinesterase (AChE). PMID:25665939

  1. Enzymatic Synthesis of Novel Phloretin Glucosides

    PubMed Central

    Pandey, Ramesh Prasad; Li, Tai Feng; Kim, Eun-Hee; Yamaguchi, Tokutaro; Park, Yong Il; Kim, Joong Su

    2013-01-01

    A UDP-glycosyltransferase from Bacillus licheniformis was exploited for the glycosylation of phloretin. The in vitro glycosylation reaction confirmed the production of five phloretin glucosides, including three novel glucosides. Consequently, we demonstrated the application of the same glycosyltransferase for the efficient whole-cell biocatalysis of phloretin in engineered Escherichia coli. PMID:23542617

  2. New anti-malarial phenylpropanoid conjugated iridoids from Morinda morindoides.

    PubMed

    Tamura, Satoru; Kubata, Bruno Kilunga; Syamsurizal; Itagaki, Sawako; Horii, Toshihiro; Taba, Muzele Kalulu; Murakami, Nobutoshi

    2010-03-01

    A new phenylpropanoid conjugated iridoid together with four known congeners was isolated from Morinda morindoides, used for the therapy of malaria traditionally in some African countries, as anti-malarial principles through bioassay-guided separation. Furthermore, their absolute stereostructures were unambiguously established by a combination of modified Mosher's method and chemical correlation.

  3. Two new non-glycosidic iridoids from Sambucus ebulus.

    PubMed

    Tomassini, Lamberto; Foddai, Sebastiano; Ventrone, Antonio; Nicoletti, Marcello

    2013-01-01

    Two new 'Valeriana-type' non-glycosidic iridoids were isolated from the aerial parts (leaves and young branches) of Sambucus ebulus L., a perennial herbaceous species widespread in Europe. The structures were elucidated, by spectroscopic means, as 7-O-acetylpatrinoside aglycone (1) and 10-O-acetylpatrinoside aglycone (2).

  4. Antiamoebic activity of iridoids from Morinda morindoides leaves.

    PubMed

    Cimanga, Kanyanga; Kambu, Kabangu; Tona, Lutete; Hermans, Nina; Apers, Sandra; Totté, Jozef; Pieters, Luc; Vlietinck, Arnold J

    2006-06-01

    An aqueous decoction (dried extract), an 80 % methanolic extract from Morinda morindoides (Rubiaceae) leaves, and five iridoids isolated from the 80 % methanolic extract were evaluated in vitro for their activity against Entamoeba histolytica and their cytotoxicity. The aqueous decoction and the 80 % methanolic extract exhibited a promising antiamoebic activity with IC (50) values of 3.1 +/- 1.7 and 1.7 +/- 0.6 microg/mL, respectively. All tested iridoids displayed antiamoebic activity, the most active being epoxygaertneroside (IC (50): 1.3 +/- 0.4 microg/mL) and methoxygaertneroside (IC (50): 2.3 +/- 0.7 microg/mL) followed by gaertneroside, acetylgaertneroside and gaertneric acid with IC (50) values of 4.3 +/- 1.8, 5.4 +/- 1.4 and 7.1 +/- 1.4 microg/mL, respectively. Synergistic effects between the iridoids tested, or with other constituents, may explain the high activity of the extracts. All extracts and iridoids were devoid of any cytotoxic effect against MT-4 cells at the highest test concentration of 250 microg/mL. These findings support at least in part the traditional use of Morinda morindoides leaves for the treatment of amoebiasis in the Democratic Republic of Congo.

  5. The experimental study of Cortex Eucommiae on meridian tropsim: the distribution study of aucubin in rat tissues.

    PubMed

    Zhao, Ye; Li, Yang; Wang, Xiang; Sun, Wenji

    2008-01-22

    Meridian tropism (MT) theory is a core principle of traditional Chinese medicine (TCM) theories and plays an essential role in instructing clinical pharmacy. The scientific explanation of MT theory will certainly further promote the reasonable, effective application of TCM. In view of the MT of Cortex Eucommiae (CE), aucubin (AU), the effective component of CE, was appointed and observed its distribution in rat tissues following a single intravenous (i.v.) dose. A simple, inexpensive and accurate high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of AU in rat tissues. Acceptable intra-day and inter-day precision and accuracy at high, medium and low concentration ranged from 0.56% to 4.18% and 0.73% to 4.53%, respectively. Good assay and extraction recoveries were obtained with a single and relatively fast precipitation protein step. The mean assay recovery and extraction recovery of AU were 94.7% and 90.9%, respectively. All tissues reached maximum AU level at 5 min post-dose. Considerable AU was present in kidney and liver. AU concentration was highest in kidney and remained much higher than that in other tissues over the experiment course. Lung, heart, spleen and testis were also detected to contain AU. The results closely conformed to the MT of CE and clearly demonstrated that AU was one of the material bases of the MT of CE.

  6. Iridoids from the aerial parts of Verbena littoralis (Verbenaceae).

    PubMed

    Castro-Gamboa, Ian; Castro, Oscar

    2004-08-01

    The iridoids, 6S-hydroxy-8S-methyl-4-methylene-hexahydro-cyclopenta[c]pyran-3-one and 6S,9S-dihydroxy-8S-methyl-4-methylene-hexahydro-cyclopenta[c]pyran-3-one, were isolated from the aerial parts of Verbena littoralis. Their structures and stereochemistry were elucidated by means of NMR spectral data analysis. Both compounds showed moderate in vitro activity against gram positive and negative bacteria as well as moderate in vivo intestinal peristaltic action in mouse. The iridoids also showed moderate free radical scavenging activity against l,l-diphenyl-2-picrylhydrazyl (DPPH) as well as antioxidant activity, the latter being evidenced by redox properties measured using E1CD-HPLC.

  7. Anti-inflammatory effect of three iridoids in human neutrophils.

    PubMed

    Wei, Shihu; Chi, Haidong; Kodama, Hiroyuki; Chen, Guang

    2013-01-01

    To verify the anti-inflammatory potency of iridoids, three iridoids (two natural, loganic acid: LA; geniposide: GE; and an artefact, 7(S)-n-butyl morroniside: BM) were investigated in vitro on the inhibition of superoxide generation in human neutrophils. All compounds showed inhibitory effect on fMLP-induced superoxide generation in a concentration-dependent manner with the following order: BM>LA>GE. BM exhibits potent inhibitory activity on superoxide anion induced by PMA, while LA and GE showed weak effect. When AA was used as stimulus, the generation of superoxide anion was suppressed by BM in a concentration-dependent manner. LA and GE exhibit both sides effect on superoxide generation.

  8. Reassessment of Melittis melissophyllum L. subsp. melissophyllum iridoidic fraction.

    PubMed

    Venditti, A; Frezza, C; Guarcini, L; Maggi, F; Bianco, A; Serafini, M

    2016-01-01

    The analysis of the polar fraction of Melittis melissophyllum L. subsp. melissophyllum led to the identification of several iridoid glycosides: monomelittoside (1), melittoside (2), harpagide (3), acetyl-harpagide (4) and ajugoside (5). Compounds 3 and 4 are considered marker compounds for the genus and, as well as compounds 1, 2 and 5, were already evidenced in a previous study on the nominal species. It was noteworthy of the presence of allobetonicoside (6) which was never reported for this genus. The isolation of 6 is very relevant because of its allose residue on the structure. Allose has been often found in the species of the subfamily Lamioideae even if it mostly regarded flavonoids considered of chemotaxonomical relevance for some correlated genera of Lamiaceae. Same as allosyl-glycosidic flavonoids, the presence of allosyl-glycosidic iridoids may also be an additional chemosystematic evidence of botanical relationships among Lamiaceae species and genera.

  9. Lipoxygenase inhibiting and antioxidant iridoids from Buddleja crispa.

    PubMed

    Ahmad, Ijaz; Chen, Shilin; Peng, Yong; Chen, Sibao; Xu, Lijia

    2008-02-01

    Phytochemical investigations on the ethyl acetate-soluble fraction of the whole plant of Buddleja crispa led to the isolation of the iridoids 1-7. Compound 2 displayed significant inhibitory potential against enzyme lipoxygenase in a concentration-dependant fashion with IC(50) value of 39.7 +/- 0.02microM, along with DPPH radical scavenging activity with IC(50) value 0.638 mM.

  10. Three new iridoids from the roots of Valeriana jatamansi.

    PubMed

    Xu, Jing; Guo, Yuanqiang; Jin, Da-qing; Zhao, Peng; Guo, Ping; Yamakuni, Tohru; Ohizumi, Yasushi

    2012-10-01

    Three new iridoids, valeriandoids D-F (1-3), have been isolated from the roots of Valeriana jatamansi. Structure elucidation, especially the positions of the acyloxy groups, and complete (1)H- and (13)C-NMR assignments of these new compounds were carried out using one- and two-dimensional NMR measurements, including (1)H- and (13)C-NMR, DEPT-135, (1)H-(1)H COSY, HMQC, HMBC, and HR-ESI-MS experiments.

  11. Iridoids and a norsesquiterpenoid from the leaves of Villaria odorata.

    PubMed

    Tan, Mario A; Villacorta, Raychel Ann U; Alejandro, Jonathan D; Takayama, Hiromitsu

    2014-09-01

    Phytochemical investigation of Villaria odorata, a Philippine endemic Rubiaceae species, led to the identification of three iridoids, morindolide (1), hydrophylin A (2), hydrophylin B (3) and a norsesquiterpenoid, vomifoliol (4). This is the first report of compounds 1-4 from the genus Villaria. These classes of compounds proved to be important chemotaxonomic markers in the Rubiaceae family in combination with morphology and molecular data.

  12. Five new iridoids from roots of Salvia digitaloides.

    PubMed

    Wu, Shwu-Jen; Chan, Yu-Yi

    2014-09-29

    Five new iridoids, salvialosides A-E (compounds 1-5), together with fifty known compounds were isolated from the roots of Salvia digitaloides. The structures of the new compounds were completely elucidated using a combination of 2D NMR techniques (COSY, NOESY, HMQC and HMBC) and HR-ESI-MS analyses. The known compounds were identified by comparison of their spectroscopic and physical data with those reported in the literature.

  13. New Iridoid Glycosides with Antidepressant Activity Isolated from Cyperus rotundus.

    PubMed

    Zhou, Zhong-Liu; Yin, Wen-Qing; Yang, Ya-Mei; He, Chun-Hong; Li, Xiao-Na; Zhou, Cui-Ping; Guo, Hong

    2016-01-01

    Based on bioactive screening results, two new iridoid glycosides, named rotunduside G (1) and rotunduside H (2), were isolated from the rhizomes of Cyperus rotundus, together with four known ones, negundoside (3), nishindaside (4), isooleuropein (5) and neonuezhenide (6). Their structures were elucidated on the basis of spectroscopic methods and from literature values. In mice models of despair, 1 and 2 showed significant antidepressant activity. PMID:26726748

  14. Four new bis-iridoids isolated from the traditional Tibetan herb Pterocephalus hookeri.

    PubMed

    Wu, Ying-Chun; Guo, Chen-Xu; Zhu, Yuan-Zhang; Li, Yi-Ming; Guo, Fu-Jiang; Zhu, Guo-Fu

    2014-10-01

    Pterocenoids A-E (1-4), which Pterocenoids A(1) is one novel dimer containing a pyridine monoterpene alkaloid; and Pterocenoids B-E (2-4) are rare arranged non-glycosidic bis-iridoids were isolated from Pterocephlus hookeri. The structures of the compounds were established by 1D and 2D NMR spectroscopy and mass spectrometry. All bis-iridoids isolated from P. hookeri were found to possess secoiridoid/iridoid subtype skeletons. Hence, bis-iridoids can be regarded as the chemotaxonomic markers of P. hookeri. The origins of the new bis-iridoids (1-4) were postulated and their activities of inhibition of the NF-κB pathway were assayed and compounds 1-3 showed moderate activity in inhibiting NF-κB.

  15. Development and validation of high liquid performance chromatography-tandem mass spectrometry method for simultaneous determination of geniposidic acid and aucubin in rat plasma for pharmacokinetic study after oral administration of Du-zhong tea extract.

    PubMed

    Zhang, Lin; Ma, Yu-Liang; Liu, Yang; Zu, Yuan-Gang

    2014-07-15

    A specific and sensitive high performance liquid chromatography coupled with tandem mass spectrometric (HPLC-MS/MS) method was developed and validated for the simultaneous determination of geniposidic acid and aucubin in rat plasma after oral administration of Du-zhong tea extract. The plasma samples were pretreated by protein precipitation with methanol and the chromatographic separation was performed on a Hypersil C18 column (4.6 mm×250 mm, 5 μm), using a gradient mobile phase system of water-methanol (0.05% formic acid). The detection was accomplished by multiple-reaction monitoring (MRM) scanning via electrospray ionization source operating in the negative ionization mode. The linear range was 1-1,000 ng/mL for geniposidic acid and 0.2-200 ng/mL for aucubin, respectively. The accuracy (relative error, R.E.%) were between -5.40 and 5.00%, while the intra-day and inter-day precisions were less than 7.95 and 7.87% for the two analytes, respectively. The method was fully validated for the sensitivity, selectivity, recovery, matrix effect and stability. Then this method was successfully applied to the pharmacokinetic study of geniposidic acid and aucubin after oral administration of Du-zhong tea extract to rats and the results indicated that this HPLC-MS/MS assay is a valuable method for the pharmacokinetic study of geniposidic acid and aucubin in rat plasma.

  16. Two new iridoids from roots of Patrinia scabra Bunge.

    PubMed

    Liu, R H; Zhang, W D; Gu, Z B; Zhang, C; Su, J; Xu, X K

    2006-07-20

    Two new iridoids 1,3-dimethyloxy-7-hydroxymethyl-4-(3-methyl-butyryloxymethyl)-1-hydrocyclopenta-4,7-diene[c]pyran-6-one (1) and 1,3-dimethyloxy-7-hydroxymethyl-4-methyloxymethyl-1-hydrocyclopenta-4,7-diene[c]pyran-6-one (2) were isolated from the roots of Patrinia scabra Bunge. The structure elucidation of the isolated compounds was based primarily on HRESIMS, EIMS, IR, UV, 1D- and 2D-NMR analyses, including COSY, HMQC, HMBC and NOESY correlations, as well as X-ray crystallographic analysis.

  17. Isolation and neuroprotective activities of acylated iridoids from Valeriana jatamansi.

    PubMed

    Xu, Jing; Guo, Yuanqiang; Xie, Chunfeng; Jin, Da-Qing; Gao, Jie; Gui, Liping

    2012-07-01

    Three new iridoids, jatairidoids A-C (1-3, resp.), have been isolated from the roots of Valeriana jatamansi (V. wallichii). Their structures were elucidated by spectroscopic methods (IR, ESI-MS, HR-ESI-MS, 1D- and 2D-NMR). Compounds 1 and 2 are C(3)-epimers. The three compounds were evaluated for their neuroprotective effects against MPP(+)-induced neuronal cell death in human dopaminergic neuroblastoma SH-SY5Y cells. All the isolates exhibited moderate neuroprotective effects.

  18. Monoterpenoid glucoindole alkaloids and iridoids from Pterocephalus pinardii.

    PubMed

    Gülcemal, Derya; Masullo, Milena; Alankuş-Calişkan, Ozgen; Karayildirim, Tamer; Senol, Serdar G; Piacente, Sonia; Bedir, Erdal

    2010-03-01

    A new secondary metabolite, pterocephaline, along with the known cantleyoside, 7alpha-morroniside, 3beta,5alpha-tetrahydrodesoxycordifoline lactam, 5S-5-carboxyvincoside, sweroside, and loganin have been isolated from the aerial parts of P. pinardii (Dipsacaceae). Moreover, cantleyoside-methyl-hemiacetal and cantleyoside-dimethyl-acetal were obtained as seco-iridoid artifacts. The structures were elucidated by extensive spectroscopic methods including 1D-((1)H, (13)C and TOCSY) and 2D-NMR (DQF-COSY, HSQC and HMBC). Monoterpenoid glucoindole alkaloids were encountered for the first time in Dipsacaceae family.

  19. Bioactive Iridoid Glycosides from the Whole Plants of Rehmannia chingii.

    PubMed

    Liu, Yan-Fei; Shi, Guo-Ru; Wang, Xin; Zhang, Chun-Lei; Wang, Yan; Chen, Ruo-Yun; Yu, De-Quan

    2016-02-26

    Nine new iridoid glycosides, rehmachingiiosides A-I (1-9), together with 16 known analogues, were isolated from the whole plants of Rehmannia chingii. The structures of compounds 1-9 were elucidated on the basis of spectroscopic data analysis and from chemical evidence. Furthermore, in two vitro assays, compounds 5 and 10 showed an inhibitory effect on LPS-induced NO production with IC50 values of 2.5 and 7.3 μM, and compounds 4, 6, and 10-12 (when evaluated at 10 μM) exhibited evidence of hepatoprotective effects against APAP-induced HepG2 cell damage.

  20. Cytogenetic activity of the coumarin glucoside seseloside

    SciTech Connect

    Arshava, E.A.

    1986-05-01

    The cytogenetic effect of the coumarin glucoside seseloside on plant objects was studied. It was established that low concentrations of the preparation (from 1 x 10/sup -5/ to 1 x 10/sup -3/ ..mu..g/ml) inhibit both spontaneous and radiation-induced mutagenesis. The effect of high concentrations (10 and 100 ..mu..g/ml) causes a mutagenic effect.

  1. Oligomeric secoiridoid glucosides from Jasminum abyssinicum.

    PubMed

    Gallo, Francesca Romana; Palazzino, Giovanna; Federici, Elena; Iurilli, Raffaella; Monache, Franco Delle; Chifundera, Kusamba; Galeffi, Corrado

    2006-03-01

    From the root bark of Jasminum abyssinicum (Oleaceae) collected in Congo was isolated tree oligomeric secoiridoid glucosides named craigosides A-C. The three compounds are esters of a cyclopentanoid monoterpene with an iridane skeleton, esterified with three, two and two, respectively, units of oleoside 11-methyl ester. The structures were elucidated by spectroscopic methods and chemical correlations. PMID:16376958

  2. Transcriptome Analysis Reveals Putative Genes Involved in Iridoid Biosynthesis in Rehmannia glutinosa

    PubMed Central

    Sun, Peng; Song, Shuhui; Zhou, Lili; Zhang, Bing; Qi, Jianjun; Li, Xianen

    2012-01-01

    Rehmannia glutinosa, one of the most widely used herbal medicines in the Orient, is rich in biologically active iridoids. Despite their medicinal importance, no molecular information about the iridoid biosynthesis in this plant is presently available. To explore the transcriptome of R. glutinosa and investigate genes involved in iridoid biosynthesis, we used massively parallel pyrosequencing on the 454 GS FLX Titanium platform to generate a substantial EST dataset. Based on sequence similarity searches against the public sequence databases, the sequences were first annotated and then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) based analysis. Bioinformatic analysis indicated that the 454 assembly contained a set of genes putatively involved in iridoid biosynthesis. Significantly, homologues of the secoiridoid pathway genes that were only identified in terpenoid indole alkaloid producing plants were also identified, whose presence implied that route II iridoids and route I iridoids share common enzyme steps in the early stage of biosynthesis. The gene expression patterns of four prenyltransferase transcripts were analyzed using qRT-PCR, which shed light on their putative functions in tissues of R. glutinosa. The data explored in this study will provide valuable information for further studies concerning iridoid biosynthesis. PMID:23202979

  3. Secondary metabolites from Scrophularia canina L.

    PubMed

    Venditti, A; Frezza, C; Riccardelli, M; Foddai, S; Nicoletti, M; Serafini, M; Bianco, A

    2016-07-01

    A re-examination of Scrophularia canina L. confirmed the presence of iridoid glucosides considered as chemotaxonomic markers for the Scrophulariaceae family, like aucubin, harpagide and 8-O-acetylharpagide, besides the further presence of 8-epiloganic acid, which is, indeed, considered the biogenetic precursor of iridoids normally found in Scrophulariaceae, and was recognised here for the first time in the studied species. Also verbascoside and (E)-phytol were evidenced for the first time in S. canina. The former compound is an almost ubiquitous glycosidic phenyl-ethanoid, which attains systematic importance when in co-occurrence with iridoids, and its taxonomical implications were discussed. The latter compound, even though it is omnipresent, is interestingly endowed with several biological activities, which may give an additional reason for the traditional uses of this plant.

  4. Comparison of pharmacokinetic behavior of two iridoid glycosides in rat plasma after oral administration of crude Cornus officinals and its jiuzhipin by high performance liquid chromatography triple quadrupole mass spectrometry combined with multiple reactions monitoring mode

    PubMed Central

    Chen, Xiaocheng; Cao, Gang; Jiang, Jianping

    2014-01-01

    Objective: The present study examined the pharmacokinetic profiles of two iridoid glycosides named morroniside and loganin in rat plasma after oral administration of crude and processed Cornus officinals. Materials and Methods: A rapid, selective and specific high-performance liquid chromatography/electrospray ionization tandem mass spectrometry with multiple reactions monitoring mode was developed to simultaneously investigate the pharmacokinetic profiles of morroniside and loganin in rat plasma after oral administration of crude C. officinals and its jiuzhipin. Results: The morroniside and loganin in crude and processed C. officinals could be simultaneously determined within 7.4 min. Linear calibration curves were obtained over the concentration ranges of 45.45-4800 ng/mL for all the analytes. The intra-and inter-day precisions relative standard deviation was lesser than 2.84% and 4.12%, respectively. Conclusion: The pharmacokinetic parameters of two iridoid glucosides were also compared systematically between crude and processed C. officinals. This paper provides the theoretical proofs for further explaining the processing mechanism of Traditional Chinese Medicines. PMID:24914290

  5. Naturally occurring iridoids, secoiridoids and their bioactivity. An updated review, part 3.

    PubMed

    Dinda, Biswanath; Chowdhury, Debashis Roy; Mohanta, Bikas Chandra

    2009-08-01

    Naturally occurring new iridoids and secoiridoids published during 2005-2008 are reviewed with available physical and spectral data: mp, [alpha](D), UV, IR, (1)H- and (13)C-NMR and plant source. The works on biological and pharmacological activity of naturally occurring iridoids and secoiridoids reported during 2005-2008 are also reviewed. Bioactivities like antibacterial, anticancer, anticoagulant, antifungal, anti-inflammatory, antioxidative, antiprotozoal, hepatoprotective and neuroprotective activities are highlighted.

  6. Gmelinosides A-L, twelve acylated iridoid glycosides from Gmelina arborea.

    PubMed

    Hosny, M; Rosazza, J P

    1998-06-26

    Besides the known iridoids 6-O-alpha-L-rhamnopyranosylcatalpol (1), 6-O-(3"-O-trans-feruloyl)-alpha-L-rhamnopyranosylcatalpol (14), 6-O-(2"-O-acetyl-3", 4"-O-di-trans-cinnamoyl)-alpha-L-rhamnopyranosylcatalpol (15) and the known phenylpropanoid glycosides verbascoside (acteoside) and martynoside, 12 new acylated iridoid glycosides named gmelinosides A-L (2-13) have been isolated from the leaves of Gmelina arborea. These compounds were structurally characterized using a variety of spectral methods. PMID:9644056

  7. Metabolically Active Glucosides in Oleaceae Seeds

    PubMed Central

    Sondheimer, E.; Blank, G. E.; Galson, Eva C.; Sheets, F. M.

    1970-01-01

    The seeds of six woody species of Oleaceae representing three genera, contain high concentrations of water-soluble glucosides, with major absorption maxima below 240 nanometers. In Fraxinus americana seeds three of these compounds, designated GL-3, GL-5, and GL-6, account for almost 10% of the dry weight. They are found in the endosperm and embryo but not in the pericarp. While the level of GL-5 is not particularly influenced by the physiological state of the embryo, that of GL-3 and GL-6 decreases as a result of germination and growth during a 10-day period. As the concentrations of GL-3 and GL-6 decrease, new ultraviolet-absorbing compounds are formed. The changes in the concentration of the ultraviolet-absorbing glucosides during cold temperature after-ripening, prior to germination, are small. When germination of dormant embryos is induced with gibberellic acid, the concentrations of GL-3 and GL-6 decrease in a manner similar to that observed with nondormant embryos. In the presence of abscisic acid no losses of GL-3 and GL-6 were observed. It is suggested that GL-3 and GL-6 fulfill some definite functions in the germination and growth of F. americana embryos, and that gibberellic acid and abscisic acid can exert a regulatory effect on the metabolism of these glucosides. Images PMID:16657368

  8. UPLC-TOF-MS Characterization and Identification of Bioactive Iridoids in Cornus mas Fruit

    PubMed Central

    West, Brett J.; Jensen, C. Jarakae

    2013-01-01

    Cornus mas L. is indigenous to Europe and parts of Asia. Although Cornus is widely considered to be an iridoid rich genera, only two iridoids have been previously found in this plant. The lack of information on taxonomically and biologically active iridoids prompted us to develop and optimize an analytical method for characterization of additional phytochemicals in C. mas fruit. An ultra performance liquid chromatography (UPLC) coupled with photodiode array spectrophotometry (PDA) and electrospray time-of-flight mass spectrometry (ESI-TOF-MS) was employed and mass parameters were optimized. Identification was made by elucidating the mass spectral data and further confirmed by comparing retention times and UV spectra of target peaks with those of reference compounds. Primary DNA damage and antigenotoxicity tests in E. coli PQ37 were used to screen the iridoids for biological activity. As a result, ten phytochemicals were identified, including iridoids loganic acid, loganin, sweroside, and cornuside. Nine of these were reported for the first time from C. mas fruit. The iridoids did not induce SOS repair of DNA, indicating a lack of genotoxic activity in E. coli PQ37. However, loganin, sweroside, and cornuside did reduce the amount of DNA damage caused by 4-nitroquinoline 1-oxide, suggesting potential antigenotoxic activity. PMID:24228188

  9. Minor iridoids from Scutellaria albida ssp. albida. Inhibitory potencies on lipoxygenase, linoleic acid lipid peroxidation and antioxidant activity of iridoids from Scutellaria sp.

    PubMed

    Gousiadou, Chrysoula; Gotfredsen, Charlotte H; Matsa, Marina; Hadjipavlou-Litina, Dimitra; Skaltsa, Helen

    2013-08-01

    A new iridoid glycoside, 6'-O-E-caffeoyl-mussaenosidic acid , in addition to one known aglycon, four known triterpenes and one known flavonoid, were isolated from the aerial parts of Scutellaria albida subsp. albida. Furthermore, 12 iridoids with similar structures isolated from Scutellaria sp., were examined for their inhibitory potency on lipoxygenase and lipid peroxidation, as well as their antioxidant activity, in comparison to known antioxidants e.g. caffeic acid, nordihydroguaretic acid (NDGA) and trolox. AAPH, DPPH and soybean lipoxygenase (LOX) assays were used for the tests. This investigation led to interesting observations considering the Structure-Activity Relationship. According to our results, the presence of a p-coumaroyl group optimized and even dramatically changed the biological responses of the investigated iridoids.

  10. Coumaroyl iridoids and a depside from cranberry (Vaccinium macrocarpon).

    PubMed

    Turner, Allison; Chen, Shao-Nong; Nikolic, Dejan; van Breemen, Richard; Farnsworth, Norman R; Pauli, Guido F

    2007-02-01

    Cranberry (Vaccinium macrocarpon) juice has been used for urinary tract infections for approximately 50 years. Recent research suggests that this botanical blocks adherence of pathogenic E. coli to urinary tract cells, thus preventing infection. While current evidence indicates that proanthocyanidins are responsible for this activity, these compounds may not reach the urinary tract; thus further investigation is warranted. Fractionation of cranberry juice concentrate was guided by a recently published antiadherence assay, and the resulting fractions were phytochemically characterized. Two new coumaroyl iridoid glycosides, 10-p-trans- (1) and 10-p-cis-coumaroyl-1S-dihydromonotropein (2), and a depside, 2-O-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxyphenylmethylacetate (3), were isolated, and although these compounds did not have antiadherent activity in isolation, they might constitute a new group of marker compounds for this active fraction of cranberry.

  11. A chemical-biological study reveals C9-type iridoids as novel heat shock protein 90 (Hsp90) inhibitors.

    PubMed

    Dal Piaz, Fabrizio; Vassallo, Antonio; Temraz, Abeer; Cotugno, Roberta; Belisario, Maria A; Bifulco, Giuseppe; Chini, Maria G; Pisano, Claudio; De Tommasi, Nunziatina; Braca, Alessandra

    2013-02-28

    The potential of heat shock protein 90 (Hsp90) as a therapeutic target for numerous diseases has made the identification and optimization of novel Hsp90 inhibitors an emerging therapeutic strategy. A surface plasmon resonance (SPR) approach was adopted to screen some iridoids for their Hsp90 α binding capability. Twenty-four iridoid derivatives, including 13 new natural compounds, were isolated from the leaves of Tabebuia argentea and petioles of Catalpa bignonioides. Their structures were elucidated by NMR, electrospray ionization mass spectrometry, and chemical methods. By means of a panel of chemical and biological approaches, four iridoids were demonstrated to bind Hsp90 α. In particular, the dimeric iridoid argenteoside A was shown to efficiently inhibit the chaperone in biochemical and cellular assays. Our results disclose C9-type iridoids as a novel class of Hsp90 inhibitors.

  12. [Development and research advances of iridoids from Valeriana jatamansi and their bioactivity].

    PubMed

    Zhang, Ning-ning; Ding, Guang-zhi

    2015-05-01

    Valeriana jatamansi (syn. V. wallichii), a traditional Chinese medicine recorded in Chinese Pharmacopeia (1977 and 2010 edition), has been used for treatment of a variety of conditions including sleep problems, obesity, nervous disorders, epilepsy, insanity, snake poisoning, eye trouble, and skin diseases. Also, it was used as an important substitute for the European V. officinalis, whose root preparation, popularly known as valerian, has been employed as a mild sedative for a long time. In recent years, much attention has been draw to the iridoids, one of the major bioactive constituents of V. jatamansi, leading to the discovery of a series of new iridoids with anti-tumor and neuroprotective activities. Their action machnism also has been discussed. This paper summerized the iridoids and their bioactivities from V. jatamansi in recent years, which could provide basic foundation for development and research of V. jatamansi.

  13. Analysis of flavonoids and iridoids in Vitex negundo by HPLC-PDA and method validation.

    PubMed

    Roy, Somendu K; Bairwa, Khemraj; Grover, Jagdeep; Srivastava, Amit; Jachak, Sanjay M

    2013-09-01

    The leaves of Vitex negundo have been reported to contain various bioactive constituents including iridoids and flavonoids. This is the first report on the simultaneous determination of iridoids and flavonoids by HPLC in three different samples of V. negundo leaves collected from three regions of India. Separation of iridoids and flavonoids was accomplished by HPLC and further elaborated for their quantification in V. negundo leaves using a C-18 column with detection at 254 and 330 nm, respectively. The developed HPLC method showed good linearity (r2 > or = 0.999), high precision (RSD < 5%) and a good recovery (99.3-103.0%) of the compounds. All the validation parameters of the developed HPLC were found to be within the permissible limits according to the ICH guidelines. The developed method was robust, accurate and reliable for the quality control of V. negundo leaves.

  14. [Development and research advances of iridoids from Valeriana jatamansi and their bioactivity].

    PubMed

    Zhang, Ning-ning; Ding, Guang-zhi

    2015-05-01

    Valeriana jatamansi (syn. V. wallichii), a traditional Chinese medicine recorded in Chinese Pharmacopeia (1977 and 2010 edition), has been used for treatment of a variety of conditions including sleep problems, obesity, nervous disorders, epilepsy, insanity, snake poisoning, eye trouble, and skin diseases. Also, it was used as an important substitute for the European V. officinalis, whose root preparation, popularly known as valerian, has been employed as a mild sedative for a long time. In recent years, much attention has been draw to the iridoids, one of the major bioactive constituents of V. jatamansi, leading to the discovery of a series of new iridoids with anti-tumor and neuroprotective activities. Their action machnism also has been discussed. This paper summerized the iridoids and their bioactivities from V. jatamansi in recent years, which could provide basic foundation for development and research of V. jatamansi. PMID:26390643

  15. Acylated iridoids from the roots of Valeriana officinalis var. latifolia.

    PubMed

    Han, Zhu-zhen; Yan, Zhao-hui; Liu, Qing-xin; Hu, Xian-qing; Ye, Ji; Li, Hui-liang; Zhang, Wei-dong

    2012-10-01

    Phytochemical investigation of the roots of Valeriana officinalis var. latifolia resulted in the isolation and characterization of six new acylated iridoids, (5S,7S,8S,9S)-7-hydroxy-8-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (1), (5S,7S,8S,9S)-7-hydroxy-10-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (2), (5S,8S,9S)-10-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (3), (5S,6S,8S,9R)-6-isovaleroyloxy-Δ⁴,¹¹-1,3-diol (4), (5S,6S,8S,9R)-1,3-isovaleroxy-Δ4,11-1,3-diol (5), and (5S,6S,8S,9R)-3-isovaleroxy-6-isovaleroyloxy-Δ⁴,¹¹-1,3-diol (6). Their structures were determined mainly by 1D and 2D NMR spectroscopic techniques. We also report herein for the first time the single crystal X-ray structure of compound 1. In addition, the cytotoxic activities of compounds 1-6 were evaluated against A549 (human lung adenocarcinoma), HCT116 (human colon carcinoma), SK-BR-3 (human breast carcinoma), and HepG2 (human hepatoma) cell lines. Compound 6 showed weak cell growth inhibition of A549, HCT116, SK-BR-3, and HepG2 cells.

  16. Isolation, structural elucidation, and neuroprotective effects of iridoids from Valeriana jatamansi.

    PubMed

    Xu, Jing; Li, Yushan; Guo, Yuanqiang; Guo, Ping; Yamakuni, Tohru; Ohizumi, Yasushi

    2012-01-01

    Two new iridoids, jatadoids A (1) and B (2), and two known compounds (3 and 4) were isolated from Valeriana jatamansi. Their structures were elucidated on the basis of extensive spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D and 2D NMR). Compound 1 possessed an isovaleroxy group at the C-3 position that has previously been unreported in the class of iridoids. Four compounds were evaluated and compounds 1 and 3 showed moderate neuroprotective effects against MPP+-induced neuronal cell death in human dopaminergic neuroblastoma SH-SY5Y cells.

  17. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 172.816... § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the methyl glucoside-coconut oil...

  18. Are iridoids in leaf beetle larvae synthesized de novo or derived from plant precursors? A methodological approach.

    PubMed

    Søe, Astrid R B; Bartram, Stefan; Gatto, Nathalie; Boland, Wilhelm

    2004-09-01

    Iridoids, belonging to a group of cyclopentanoid monoterpenoids, are secreted by many species of leaf beetles as a defense against predators. Using chemically modified precursors of iridoid biosynthesis, it has been shown that some leaf beetle larvae can synthesize these iridoids de novo as well as sequester plant-produced molecules. Stable isotope techniques can provide useful methods for studying terpenoid biosynthesis without disturbing the natural conditions much. Two terpenoid biosynthesis pathways (mevalonic acid (MVA) pathway and methylerythritol-4-phosphate (MEP) pathway) may lead to different delta13C signatures of the products. Our results from natural abundance 13C and 13C-labelled iridoid precursors in Gastrophysa viridula and Phaedon cochleariae suggested that the two leaf beetle species use only de novo synthesis of their defensive iridoids. We observed that the isotope signature of the leaf-beetle-produced iridoids (via the MVA pathway) resembled that of the MEP-derived monoterpenoids from plants. Owing to this close similarity in the natural 13C abundances in the plant and insect compounds, a determination of iridoid-origin in leaf beetle secretion may only be possible by use of isotopically labelled compounds.

  19. Secoiridoids and other chemotaxonomically relevant compounds in Pedicularis: phytochemical analysis and comparison of Pedicularis rostratocapitata Crantz and Pedicularis verticillata L. from Dolomites.

    PubMed

    Venditti, Alessandro; Frezza, Claudio; Sciubba, Fabio; Foddai, Sebastiano; Serafini, Mauro; Nicoletti, Marcello; Bianco, Armandodoriano

    2016-08-01

    We compared the respective metabolite patterns of two Pedicularis species from Dolomites. Seven phenylethanoid glycosides, i.e., verbascoside (1), echinacoside (2), angoroside A (3), cistantubuloside B1 (4), wiedemannioside C (5), campneoside II (11) and cistantubuloside C1 (12), together with several iridoid glucosides as aucubin (6), euphroside (7), monomelittoside (8), mussaenosidic acid (9) and 8-epiloganic acid (13) were identified. Pedicularis verticillata showed also the presence of greatly unexpected secoiridoids, ligustroside (14) and excelside B (15), very rare compounds in Lamiales. Both PhGs and iridoids are considered of taxonomical relevance in the Asteridae and their occurrence in Pedicularis was discussed. In particular, the exclusive presence of several compounds such as 8-epiloganic acid (13), campneoside II (11), cistantubuloside C1 (12), ligustroside (14) and excelside B (15) in Pedicularis rostratocapitata, and angoroside A (3), cistantubuloside B1 (4) and wiedemannioside C (5) in P. verticillata could be considered specific markers for the two botanical entities.

  20. [Simultaneous determination of five iridoids in gentianae macrophyllae radix and their local variety by HPLC].

    PubMed

    Wu, Jin-Rong; Wu, Li-Hong; Zhao, Zhi-Li; Wang, Zheng-Tao

    2014-02-01

    This study aims to establish a new method for quality evaluation of Gentianae Macrophyllae Radix by simultaneous determination of five iridoids (loganic acid, 6'-O-beta-D-glucopyranosylgentiopicroside, swertiamarin, gentiopicroside, sweroside), and to detect five iridoids in the root of eight species (Gentiana macrophylla, G. straminea, G. crassicaulis, G. dahurica, G. robusta, G. waltonii, G. lhassica, and G. tibetica). The separation was carried out on a Shiseido SPOLAR C18 (4.6 mm x 250 mm, 5 microm) column eluted with mobile phase of water containing 0.04% formic acid (A) and acetonitrile (B) in a gradient program. The flow rate was 0.8 mL x min(-1). The detect wavelength was set at 240 nm. The column temperature was kept at 30 degrees C. The volume of injection was 5 microL. The five iridoids were well separated with ideal linear correlations. The average recoveries were 97.35% - 106.23%. All the five iridoids were detected in the root of eight species. The contents of same species changed in a somewhat wider range. The contents in root of G. dahurica were lower than that in other species.

  1. A divergent approach to the diastereoselective synthesis of several ant-associated iridoids.

    PubMed

    Beckett, Joel S; Beckett, James D; Hofferberth, John E

    2010-04-01

    The ant-associated iridoids nepetalactol, actinidine, dolichodial, isoiridomyrmecin, and dihydronepetalactone were prepared from citronellal using a divergent approach. Key features include a three-step synthesis of the individual antipodes of actinidine by a novel tandem cycloaddition/pyridine formation and a facile diastereoselective synthesis of both enantiomers of dolichodial.

  2. Hepatoprotective and antioxidant activity of two iridoids from Mussaenda 'dona aurora'.

    PubMed

    Vidyalakshmi, Kandulva Sethuraman; Nagarajan, Sulochana; Vasanthi, Hannah Rachel; Venkappaya; Rajamanickam, Victor

    2009-01-01

    Mussaenda 'dona aurora' (sepals) has been investigated for its hepatoprotective and antioxidant activities. The highest activity was observed in the ethyl acetate fraction. The separation of the ethyl acetate fraction gave two iridoids, sanshiside-D and lamalbide. Sanshiside-D exhibited a hepatoprotective activity greater than silimarin as was evidenced by significant reduction of ALT and AST in the serum enzyme levels.

  3. [Process of iridoids in gardenia and its effect on relevant enzymes in vivo].

    PubMed

    Zhang, Yan; Zhu, Huaxu; Guo, Liwei

    2012-02-01

    To introduces the body process of iridoid in gardenia and effect of biological activity of enzymes systematically and discusses the mechanism of these compounds on the basis of the domestic and foreign recent literatures. It also provides a literature basis for the instruction of rational clinical prescription, reform of dosage forms, and development and utilization.

  4. Loganin and secologanin derived tryptamine-iridoid alkaloids from Palicourea crocea and Palicourea padifolia (Rubiaceae).

    PubMed

    Berger, Andreas; Kostyan, Maria Katharina; Klose, Simon Immo; Gastegger, Michael; Lorbeer, Eberhard; Brecker, Lothar; Schinnerl, Johann

    2015-08-01

    During comparative analysis on Palicourea species from Costa Rica, two unusual loganin derived tryptamine-iridoid alkaloids were isolated from an accession of Palicourea crocea. Besides the already known brachycerine (2), palicroceaine (1) features a novel hexacyclic backbone. A second provenance, however, yielded strictosidinic acid (3), belonging to the more common secologanin derived tryptamine-iridoid alkaloids, such as those found in Palicourea padifolia. From this species, strictosidine (4), lyaloside (5) and its derivative (E)-O-(6')-(4″-hydroxy-3″,5″-dimethoxy)-cinnamoyl lyaloside (6) could be isolated. A herbarium specimen-based screening was performed, indicating some degree of regional differentiation in alkaloid content and biosynthetic pathways within the widespread and variable Pal. crocea. It further shows its differentiation from the related strictosidine containing Palicourea croceoides. The occurrence of loganin derived tryptamine-iridoid alkaloids in Pal. crocea, Psychotria brachyceras and Psychotria brachypoda, all putatively unrelated members of the Palicourea s.l. clade, is a noteworthy exception within the genus, otherwise largely characterized by secologanin-derived tryptamine-iridoid alkaloids. PMID:26043882

  5. Characterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis

    PubMed Central

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P.; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)+ dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP+ yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  6. A new iridoid from Guettarda grazielae M.R.V. Barbosa (Rubiaceae).

    PubMed

    Moura, Fabyanne S; Lima, Gerson S; Meneghetti, Mario R; Lyra Lemos, Rosangela P; Conserva, Lucia M

    2011-10-01

    Chromatographic fractionation of the chloroform extracts from the stem bark and stems of Guettarda grazielae resulted in the isolation of a new iridoid (guettardodiol, 1) and the secoiridoid sarracenin (2), described for the first time in this genus. The structural elucidation of these compounds was based on spectroscopic analyses (IR, MS as well as 1-D and 2-D NMR experiments).

  7. Influence of the stage of ripeness on the composition of iridoids and phenolic compounds in genipap (Genipa americana L.).

    PubMed

    Bentes, Adria de Sousa; Mercadante, Adriana Zerlotti

    2014-11-01

    Genipap fruits, native to the Amazon region, were classified in relation to their stage of ripeness according to firmness and peel color. The influence of the part of the genipap fruit and ripeness stage on the iridoid and phenolic compound profiles was evaluated by HPLC-DAD-MS(n), and a total of 17 compounds were identified. Geniposide was the major compound in both parts of the unripe genipap fruits, representing >70% of the total iridoids, whereas 5-caffeoylquinic acid was the major phenolic compound. In ripe fruits, genipin gentiobioside was the major compound in the endocarp (38%) and no phenolic compounds were detected. During ripening, the total iridoid content decreased by >90%, which could explain the absence of blue pigment formation in the ripe fruits after their injury. This is the first time that the phenolic compound composition and iridoid contents of genipap fruits have been reported in the literature.

  8. Iridoids and sesquiterpenoids of Valeriana stenoptera and their effects on NGF-induced neurite outgrowth in PC12 cells.

    PubMed

    Dong, Fa-Wu; Wu, Zhi-Kun; Yang, Liu; Zi, Chen-Ting; Yang, Dan; Ma, Rui-Jing; Liu, Zhen-Hua; Luo, Huai-Rong; Zhou, Jun; Hu, Jiang-Miao

    2015-10-01

    Twenty-one compounds (nine iridoids and twelve sesquiterpenoids), including ten previously unknown (five iridoids and five sesquiterpenoids) were isolated from whole dried material of Valeriana stenoptera. Structures were established on the basis of extensive spectroscopic analysis and the relative stereochemistry of 13-hydroxypatchoulol A was further confirmed by X-ray crystallographic data. All isolates were evaluated for their effects on nerve growth factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells and seven compounds showed potent promoting effects.

  9. Divergent synthetic route to new cyclopenta[c]pyran iridoids: syntheses of jatamanin A, F, G and J, gastrolactone and nepetalactone.

    PubMed

    Sim, Jaehoon; Yoon, Inah; Yun, Hwayoung; An, Hongchan; Suh, Young-Ger

    2016-01-28

    Six natural iridoids including jatamanin A, F, G and J, gastrolactone and nepetalactone have been synthesized via the efficient transformation of a core cyclopenta[c]pyran intermediate. Key features of the syntheses include the stereoselective construction of the core cyclopenta[c]pyran skeleton of the iridoid lactones via a Pd(0)-catalyzed intramolecular allylic alkylation, and the facile transformation of the common intermediate into natural iridoids.

  10. Nicotinamide metabolism in ferns: formation of nicotinic acid glucoside.

    PubMed

    Ashihara, Hiroshi; Yin, Yuling; Watanabe, Shin

    2011-03-01

    The metabolic fate of [carbonyl-(14)C]nicotinamide was investigated in 9 fern species, Psilotum nudum, Angiopteris evecta, Lygodium japonicum, Acrostichum aureum, Asplenium antiquum, Diplazium subsinuatum, Thelypteris acuminate, Blechnum orientale and Crytomium fortune. All fern species produce a large quantity of nicotinic acid glucoside from [(14)C]nicotinamide, but trigonelline formation is very low. Increases in the release of (14)CO(2) with incubation time was accompanied by decreases in [carboxyl-(14)C]nicotinic acid glucoside. There was slight stimulation of nicotinic acid glucoside formation by 250 mM NaCl in mature leaves of the mangrove fern, Acrostichum aureum, but it is unlikely that this compound acts as a compatible solute. Nicotinamide and nicotinic acid salvage for pyridine nucleotide synthesis was detected in all fern species, although this activity was always less than nicotinic acid glucoside synthesis. Predominant formation of nicotinic acid glucoside is characteristic of nicotinic acid metabolism in ferns. This reaction appears to act as a detoxication mechanism, removing excess nicotinic acid.

  11. Iridoids from the roots of Valeriana jatamansi and their neuroprotective effects.

    PubMed

    Xu, Jing; Zhao, Peng; Guo, Yuanqiang; Xie, Chunfeng; Jin, Da-Qing; Ma, Yonggang; Hou, Wenbin; Zhang, Tiejun

    2011-10-01

    Three new iridoids, valeriandoids A-C (1-3), together with three known analogues (4-6), were isolated from the roots of Valeriana jatamansi. Their structures and relative configurations were elucidated by spectroscopic methods (IR, ESIMS, HRESIMS, 1D and 2D NMR) and by comparison of their NMR data with those of related compounds. All the isolated compounds were evaluated for their neuroprotective effects and compounds 1, 3, 4 and 6 showed moderate neuroprotective effects.

  12. Naturally occurring secoiridoids and bioactivity of naturally occurring iridoids and secoiridoids. A review, part 2.

    PubMed

    Dinda, Biswanath; Debnath, Sudhan; Harigaya, Yoshihiro

    2007-05-01

    Naturally occurring new secoiridoids published during 1994-2005 are reviewed with available physical and spectral data: mp, [alpha](D), UV, IR, (1)H- and (13)C-NMR and plant source. The works on biological and pharmacological activity of naturally occurring iridoids and secoiridoids reported during 1998-2005 are also reviewed. Bioactivities like antiallergic, antiarthritis, antibacterial, anticancer, anticoagulant, anticomplement, antifungal, antiinflammatory, antioxidative, antiprotozoal, antispasmodic, antiviral, immunomodulatory, neuroprotective, nerve growth factor potentiating and wound healing activities are highlighted.

  13. Iridoids from the roots of Valeriana jatamansi and their biological activities.

    PubMed

    Xu, Jing; Guo, Ping; Guo, Yuanqiang; Fang, Lingzhi; Li, Yushan; Sun, Zhanping; Gui, Liping

    2012-11-01

    A new iridoid, jatamandoid A (1), and four known analogues (2-5) were isolated from the roots of Valeriana jatamansi. Their structures were elucidated on the basis of extensive spectroscopic analysis (IR, ESI-MS, HR-ESI-MS, 1-D and 2-D NMR). Five compounds were evaluated and compounds 1, 2 and 5 showed moderate neuroprotective effects against MPP(+)-induced neuronal SH-SY5Y cell death.

  14. Absorption and excretion of conjugated flavonols, including quercetin-4'-O-beta-glucoside and isorhamnetin-4'-O-beta-glucoside by human volunteers after the consumption of onions.

    PubMed

    Aziz, A A; Edwards, C A; Lean, M E; Crozier, A

    1998-09-01

    Flavonols are polyphenols found ubiquitously in plants and plant-products. Flavonols, particularly quercetin, are potent antioxidants in vitro and their intake has been associated inversely with the incidence of coronary heart disease. The aim of this study was to investigate the accumulation in plasma and excretion in urine of flavonol glucosides following ingestion of lightly fried onions. Five healthy volunteers followed a low-flavonoid diet for 3 days. On day 4, after an overnight fast, subjects were given 300 g of lightly fried yellow onions which contain conjugates of quercetin and isorhamnetin, including quercetin-3,4 '-diO-beta-glucoside, isorhamnetin-4'-O-beta-glucoside and quercetin-4'-O-beta-glucoside. Blood collection was carried out at 0 min, 0.5, 1.0, 1.5, 2, 3, 4, 5 and 24h after the supplement. In addition, subjects collected all their urine for 24h following the onion supplement. Isorhamnetin-4'-O-beta-glucoside and quercetin-4 '-O-beta-glucoside accumulated in plasma with maximum levels, defined as proportion of intake, of 10.7+/-2.6% and 0.13+/-0.03% respectively. The time of the quercetin-4'glucoside peak plasma concentration was 1.3+/-0.2 h after the ingestion of onions while a value of 1.8+/-0.7 h was obtained for isorhamnetin-4'-glucoside. Excretion in urine, as a proportion of intake, was 17.4+/-8.3% for isorhamnetin-4'-O-beta-glucoside and 0.2+/-0.1% for quercetin-4'-O-beta-glucoside. Possible reasons for the accumulation and excretion of isorhamnetin-4'-glucoside in proportionally much higher amounts than quercetin-4'-glucoside are discussed. It is concluded that flavonols are absorbed into the bloodstream as glucosides and minor structural differences affect markedly both the level of accumulation and the extent to which the conjugates are excreted. PMID:9802557

  15. Iridoids and Flavonoids of Four Siberian Gentians: Chemical Profile and Gastric Stimulatory Effect.

    PubMed

    Olennikov, Daniil N; Kashchenko, Nina I; Chirikova, Nadezhda K; Tankhaeva, Larisa M

    2015-10-21

    Some Gentiana species have been used by the nomadic people of Siberia as bitter teas or appetizers to eliminate digestive disorders (dyspepsia, heartburn, nausea, etc.). We studied the most frequently used gentians: Gentiana algida, G. decumbens, G. macrophylla and G. triflora. The aim of the present study was to evaluate the phytochemical features and gastrostimulatnt activity of these four gentian herbs. Five iridoids, seven flavones and mangiferin were detected in gentian herbs after analysis by microcolumn-RP-HPLC-UV-ESI-MS. A componential phytochemical profile of the G. decumbens herb is presented for the first time, as well as information about distinct phytochemicals found in gentian herbs. HPLC quantification of the specific compounds of gentian herbs demonstrated the high content of iridoids (24.73-73.53 mg/g) and flavonoids (12.92-78.14 mg/g). The results of biological activity evaluation of four gentian decoctions demonstrated their good ability to stimulate acid-, enzyme- and mucin-forming functions of the stomach attributed to mostly by iridoids and flavonoids. In general, it can be claimed that the gentian decoctions can be used as effective and safe appetizers and are also a good source of biologically active agents.

  16. Coping with toxic plant compounds--the insect's perspective on iridoid glycosides and cardenolides.

    PubMed

    Dobler, Susanne; Petschenka, Georg; Pankoke, Helga

    2011-09-01

    Specializing on host plants with toxic secondary compounds enforces specific adaptation in insect herbivores. In this review, we focus on two compound classes, iridoid glycosides and cardenolides, which can be found in the food plants of a large number of insect species that display various degrees of adaptation to them. These secondary compounds have very different modes of action: Iridoid glycosides are usually activated in the gut of the herbivores by β-glucosidases that may either stem from the food plant or be present in the gut as standard digestive enzymes. Upon cleaving, the unstable aglycone is released that unspecifically acts by crosslinking proteins and inhibiting enzymes. Cardenolides, on the other hand, are highly specific inhibitors of an essential ion carrier, the sodium pump. In insects exposed to both kinds of toxins, carriers either enabling the safe storage of the compounds away from the activating enzymes or excluding the toxins from sensitive tissues, play an important role that deserves further analysis. To avoid toxicity of iridoid glycosides, repression of activating enzymes emerges as a possible alternative strategy. Cardenolides, on the other hand, may lose their toxicity if their target site is modified and this strategy has evolved multiple times independently in cardenolide-adapted insects.

  17. Iridoid glycoside sequestration byThessalia leanira (Lepidoptera: Nymphalidae) feeding onCastilleja integra (Scrophulariaceae).

    PubMed

    Mead, E W; Foderaro, T A; Gardner, D R; Stermitz, F R

    1993-06-01

    A small population of a polyvoltine checkerspot butterfly,Thessalia leanira fulvia (also known asChlosyne leanira ssp.fulvia), was found to useCastilleja integra as a larval food plant at a localized site (Burnt Mill) southwest of Pueblo, Colorado. Field-captured adult butterflies contained the major iridoid glycosides (catalpol and macfadienoside) of theCastilleja. The content of a third iridoid glycoside, methyl shanzhiside, was also relatively high in the collected butterflies even though most individualCastilleja plants at Burnt Mill contained little or no methyl shanzhiside. Only a few plants, restricted to a small area, did contain appreciable methyl shanzhiside. Most of the plants that lacked the ester methyl shanzhiside contained shanzhiside, the corresponding free carboxylic acid.Thessalia larvae did not normally methylate the acid to produce methyl shanzhiside. Larvae that stopped feeding at an early instar, but yet survived several weeks, did contain major amounts of methyl shanzhiside. It is suggested that only larvae that overwinter or otherwise enter diapause convert shanzhiside to methyl shanzhiside. TheCastilleja food plant also contained iridoids other than catalpol and macfadienoside, sometimes in major amounts, but these were never found in larvae, pupae, or butterflies.

  18. Intestinal Bacterium Eubacterium cellulosolvens Deglycosylates Flavonoid C- and O-Glucosides

    PubMed Central

    Blaut, Michael

    2012-01-01

    Eubacterium cellulosolvens cleaved the flavone C-glucosides homoorientin and isovitexin to their aglycones luteolin and apigenin, respectively. The corresponding isomers, orientin and vitexin, or other polyphenolic C-glucosides were not deglycosylated. E. cellulosolvens also cleaved several O-coupled glucosides of flavones and isoflavones to their corresponding aglycones. PMID:22961906

  19. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660 Section 573.660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut...

  20. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is...

  1. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a...

  2. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a...

  3. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a...

  4. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 178.3600 Section 178.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester...

  5. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is...

  6. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is...

  7. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester....

  8. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester....

  9. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester....

  10. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a...

  11. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is...

  12. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 573.660 Section 573.660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut...

  13. Enzymatic Synthesis of Acylphloroglucinol 3-C-Glucosides from 2-O-Glucosides using a C-Glycosyltransferase from Mangifera indica.

    PubMed

    Chen, Dawei; Sun, Lili; Chen, Ridao; Xie, Kebo; Yang, Lin; Dai, Jungui

    2016-04-18

    A green and cost-effective process for the convenient synthesis of acylphloroglucinol 3-C-glucosides from 2-O-glucosides was exploited using a novel C-glycosyltransferase (MiCGTb) from Mangifera indica. Compared with previously characterized CGTs, MiCGTb exhibited unique de-O-glucosylation promiscuity and high regioselectivity toward structurally diverse 2-O-glucosides of acylphloroglucinol and achieved high yields of C-glucosides even with a catalytic amount of uridine 5'-diphosphate (UDP). These findings demonstrate for the first time the significant potential of a single-enzyme approach to the synthesis of bioactive C-glucosides from both natural and unnatural acylphloroglucinol 2-O-glucosides. PMID:26918309

  14. Enzymatic Synthesis of Acylphloroglucinol 3-C-Glucosides from 2-O-Glucosides using a C-Glycosyltransferase from Mangifera indica.

    PubMed

    Chen, Dawei; Sun, Lili; Chen, Ridao; Xie, Kebo; Yang, Lin; Dai, Jungui

    2016-04-18

    A green and cost-effective process for the convenient synthesis of acylphloroglucinol 3-C-glucosides from 2-O-glucosides was exploited using a novel C-glycosyltransferase (MiCGTb) from Mangifera indica. Compared with previously characterized CGTs, MiCGTb exhibited unique de-O-glucosylation promiscuity and high regioselectivity toward structurally diverse 2-O-glucosides of acylphloroglucinol and achieved high yields of C-glucosides even with a catalytic amount of uridine 5'-diphosphate (UDP). These findings demonstrate for the first time the significant potential of a single-enzyme approach to the synthesis of bioactive C-glucosides from both natural and unnatural acylphloroglucinol 2-O-glucosides.

  15. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors.

    PubMed

    Zhang, Yang; Liu, Zhao-Peng

    2016-01-01

    Sodium-glucose cotransporter 2 (SGLT2) is almost exclusively expressed in the proximal renal tubules. It is responsible for about 90% of the glucose reabsorption from tubular fluid. Selective inhibition of SGLT2 is expected to favor in the normalization of plasma glucose levels in T2DM patients through the prevention of renal glucose reabsorption and the promotion of glucose excretion from urine. Selective SGLT2 inhibitors have the merits to minimize the gastrointestinal side effects associated with SGLT1 inhibition, and selective SGLT2 inhibition may have a low risk of hypoglycemia. Since the C-aryl glucosides are metabolically more stable than the O-glucosides, numerous efforts have been made in the development of potent and selective C-aryl glucoside SGLT2 inhibitors, and a number of them are now used as anti-diabetes drugs in clinic or at various stages of clinical developments. Based on their structural features, in this review, these SGLT2 inhibitors are classified as three types: the phenyl/arylmethylphenyl C-glucosides, with an emphasis on the modifications on the proximal and/or the distal phenyl ring, and the spacer; the heteroarylmethylphenyl Cglucosides, with a replacement of the distal phenyl ring by a heterocycle like pyridazine, pyrimidine, thiophene and benzothiophene, thiazole, 1,3,4-thiadiazole, and triazolopyridinone; and the glucose-modified Caryl glucosides, including the glucose C-1 derived O-spiroketals, C-4 gem-difluoro analogues, C-5 and C-6 modified derivatives, dioxa-bicyclo[3.2.1]octane bridged ketals, the thioglucosides, and carbasugars. The structure-activity relationships (SARs) of each type along with their inhibitory potency against human SGLT2 and selectivity over human SGLT1 are discussed. PMID:26861002

  16. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors.

    PubMed

    Zhang, Yang; Liu, Zhao-Peng

    2016-01-01

    Sodium-glucose cotransporter 2 (SGLT2) is almost exclusively expressed in the proximal renal tubules. It is responsible for about 90% of the glucose reabsorption from tubular fluid. Selective inhibition of SGLT2 is expected to favor in the normalization of plasma glucose levels in T2DM patients through the prevention of renal glucose reabsorption and the promotion of glucose excretion from urine. Selective SGLT2 inhibitors have the merits to minimize the gastrointestinal side effects associated with SGLT1 inhibition, and selective SGLT2 inhibition may have a low risk of hypoglycemia. Since the C-aryl glucosides are metabolically more stable than the O-glucosides, numerous efforts have been made in the development of potent and selective C-aryl glucoside SGLT2 inhibitors, and a number of them are now used as anti-diabetes drugs in clinic or at various stages of clinical developments. Based on their structural features, in this review, these SGLT2 inhibitors are classified as three types: the phenyl/arylmethylphenyl C-glucosides, with an emphasis on the modifications on the proximal and/or the distal phenyl ring, and the spacer; the heteroarylmethylphenyl Cglucosides, with a replacement of the distal phenyl ring by a heterocycle like pyridazine, pyrimidine, thiophene and benzothiophene, thiazole, 1,3,4-thiadiazole, and triazolopyridinone; and the glucose-modified Caryl glucosides, including the glucose C-1 derived O-spiroketals, C-4 gem-difluoro analogues, C-5 and C-6 modified derivatives, dioxa-bicyclo[3.2.1]octane bridged ketals, the thioglucosides, and carbasugars. The structure-activity relationships (SARs) of each type along with their inhibitory potency against human SGLT2 and selectivity over human SGLT1 are discussed.

  17. Iridoid glycoside content ofEuphydryas anicia (Lepidoptera: Nymphalidae) and its major hostplant,Besseya plantaginea (Scrophulariaceae), at a high plains colorado site.

    PubMed

    L'empereur, K M; Stermitz, F R

    1990-01-01

    The checkerspot butterfly,Euphydryas anicia, utilizes mainlyBesseya plantaginea and only occasionallyCastilleja integra as a larval hostplant at Michigan Hill, a few kilometers from a site whereC. integra is used by over 90% of the butterflies. TheB. plantaginea leaves that are consumed contain 9-22% iridoid glycosides, composed mainly of catalpol and catalpol esters, while larvae from the same plants contain 6-18% iridoids, mainly catalpol and no esters. Field-collected adult butterflies contain 0.5-4.3% iridoids. Laboratory-reared adults secrete iridoids in the meconium upon eclosion and retain similar amounts. The adult and meconium iridoid content is considerably lower than in the larvae, and metabolism in the pupal stage may be occurring.

  18. Analysis of limonoid glucosides from citrus by electrospray ionization liquid chromatography-mass spectrometry.

    PubMed

    Schoch, T K; Manners, G D; Hasegawa, S

    2001-03-01

    An electrospray ionization liquid chromatography-mass spectrometry (ESI-LC-MS) method for the detection and quantitation of limonoid glucosides has been developed. Negative ions [M - H(+)](-) characteristic of six limonoid glucosides can be detected and quantified from selected ion monitoring chromatograms using carminic acid as an internal standard. The described method has been applied to the analysis of limonoid glucoside content in various liquid and solid Citrus spp. samples as well as complex mixtures of partially purified limonoid glucosides. Rapid and sensitive qualitative screening of samples for limonoid glucosides can also be accomplished with slight modifications of the method. PMID:11312819

  19. One New Conjugate of a Secoiridoid Glucoside with a Sesquiterpene Glucoside from the Flower Buds of Lonicera japonica.

    PubMed

    Yang, Biao; Meng, Zhaoqing; Ma, Yimin; Wang, Zhenzhong; Ding, Gang; Huang, Wenzhe; Sun, Lin; Hu, Yumei; Liu, Wenjun; Zhang, Chunxiao; Cao, Zeyu; Li, Jiachun; Zhong, Yan; Xiao, Wei

    2015-09-01

    Secosesquside (1), a new secoiridoid glucoside-sesquiterpene conjugate, together with three known secoiridoid derivatives, were isolated from flower buds of Lonicerajaponica. The isolated compounds were elucidated by extensive spectroscopic analyses, especially 2D NMR experiments. The anti-inflammatory activities of the new compound were also evaluated by enzyme-linked immunosorbent assay. PMID:26594743

  20. Urinary excretion of bile acid glucosides and glucuronides in extrahepatic cholestasis.

    PubMed

    Wietholtz, H; Marschall, H U; Reuschenbach, R; Matern, H; Matern, S

    1991-04-01

    Recently the formation of bile acid glucosides has been described as a novel conjugation mechanism in vitro and in vivo. In 10 patients with extrahepatic cholestasis caused by carcinoma of the head of the pancreas we investigated excretion rates and profiles of urinary bile acid glucosides. Urinary bile acid glucosides and, for comparison, bile acid glucuronides were extracted and characterized according to established methods. In controls total urinary bile acid glucoside excretion was 0.22 +/- 0.03 mumol/24 hr (mean +/- S.E.M.)-in the range of bile acid glucuronide excretion (0.41 +/- 0.06 mumol/24 hr; mean +/- S.E.M.). A gas chromatography-mass spectrometry-characterized trihydroxy bile acid glucoside of still-unknown hydroxyl positions accounted for 65% of total urinary bile acid glucosides. In extrahepatic cholestasis total urinary bile acid glucoside excretion was 0.52 +/- 0.13 mumol/24 hr (mean +/- SEM), yet significantly lower than bile acid glucuronide excretion (1.53 +/- 0.13 mumol/24 hr; mean +/- SEM; p less than 0.001). In cholestasis the primary bile acid derivatives cholic and chenodeoxycholic acid glucosides amounted to 90%, whereas the trihydroxy bile acid glucoside had decreased to 5% of total bile acid glucoside excretion, indicating its alteration during enterohepatic circulation. The data establish the composition and quantity of urinary bile acid glucosides in healthy controls and cholestasis and constitute a quantitative comparison with another glycosidic conjugation reaction, bile acid glucuronidation.

  1. A quantitative ¹H nuclear magnetic resonance (qHNMR) method for assessing the purity of iridoids and secoiridoids.

    PubMed

    Li, Zeyun; Welbeck, Edward; Yang, Li; He, Chunyong; Hu, Haijun; Song, Ming; Bi, Kaishun; Wang, Zhengtao

    2015-01-01

    This paper utilized a quantitative (1)H nuclear magnetic resonance (qHNMR) method for assessing the purity of iridoids and secoiridoids. The method was fully validated, including specificity, linearity, accuracy, precision, reproducibility, and robustness. For optimization of experimental conditions, several experimental parameters were investigated, including relaxation delay (D1), scan numbers (NS) and power length (PL1). The quantification was based on the area ratios of H-3 from analytes relative to aromatic protons from 1,4-dinitrobenzene (internal standard) with methanol-d4 as solvent. Five iridoids and secoiridoids (sweroside, swertiamarin, gentiopicroside, geniposide, genipin) were analyzed. Furthermore, the results were validated by the high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV) method. It can be concluded that the qHNMR method was simple, rapid, and accurate, providing a reliable and superior method for assessing the purity of iridoids and secoiridoids.

  2. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    PubMed

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds.

  3. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    PubMed

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. PMID:24594312

  4. Iridoids and sesquiterpenoids of Valeriana stenoptera and their effects on NGF-induced neurite outgrowth in PC12 cells.

    PubMed

    Dong, Fa-Wu; Wu, Zhi-Kun; Yang, Liu; Zi, Chen-Ting; Yang, Dan; Ma, Rui-Jing; Liu, Zhen-Hua; Luo, Huai-Rong; Zhou, Jun; Hu, Jiang-Miao

    2015-10-01

    Twenty-one compounds (nine iridoids and twelve sesquiterpenoids), including ten previously unknown (five iridoids and five sesquiterpenoids) were isolated from whole dried material of Valeriana stenoptera. Structures were established on the basis of extensive spectroscopic analysis and the relative stereochemistry of 13-hydroxypatchoulol A was further confirmed by X-ray crystallographic data. All isolates were evaluated for their effects on nerve growth factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells and seven compounds showed potent promoting effects. PMID:26343415

  5. A new iridoid glycoside and potential MRB inhibitory activity of isolated compounds from the rhizomes of Cyperus rotundus L.

    PubMed

    Zhou, Zhongliu; Yin, Wenqing; Zhang, Hualin; Feng, Zongcai; Xia, Jingmin

    2013-01-01

    A new iridoid glycoside, rotunduside (1), along with four known iridoid glycosides, 10-O-p-hydroxybenzoyltheviridoside (2), 10-O-vanilloyltheviridoside (3), 6″-O-(trans-p-coumaroyl)-procumbide (4) and loganic acid (5), was isolated from the rhizomes of Cyperus rotundus L. Their chemical structures were elucidated on the basis of UV, IR, MS and NMR spectroscopic analyses. In addition, the macrophages respiratory burst (MRB) inhibitory activity of the isolated compounds was reported. Compound 2 exhibited considerable MRB inhibitory activity in the test with IC50 value of ~37 μM. PMID:23356789

  6. Geniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors.

    PubMed

    Gong, Nian; Fan, Hui; Ma, Ai-Niu; Xiao, Qi; Wang, Yong-Xiang

    2014-09-01

    We recently discovered that the activation of the spinal glucagon-like peptide-1 receptors (GLP-1Rs) by the peptidic agonist exenatide produced antinociception in chronic pain. We suggested that the spinal GLP-1Rs are a potential target molecule for the management of chronic pain. This study evaluated the antinociceptive activities of geniposide, a presumed small molecule GLP-1R agonist. Geniposide produced concentration-dependent, complete protection against hydrogen peroxide-induced oxidative damage in PC12 and HEK293 cells expressing rat and human GLP-1Rs, but not in HEK293T cells that do not express GLP-1Rs. The orthosteric GLP-1R antagonist exendin(9-39) right-shifted the concentration-response curve of geniposide without changing the maximal protection, with identical pA2 values in both cell lines. Subcutaneous and oral geniposide dose-dependently blocked the formalin-induced tonic response but not the acute flinching response. Subcutaneous and oral geniposide had maximum inhibition of 72% and 68%, and ED50s of 13.1 and 52.7 mg/kg, respectively. Seven days of multidaily subcutaneous geniposide and exenatide injections did not induce antinociceptive tolerance. Intrathecal geniposide induced dose-dependent antinociception, which was completely prevented by spinal exendin(9-39), siRNA/GLP-1R and cyclic AMP/PKA pathway inhibitors. The geniposide iridoid analogs geniposidic acid, genipin methyl ether, 1,10-anhydrogenipin, loganin and catalpol effectively inhibited hydrogen peroxide-induced oxidative damage and formalin pain in an exendin(9-39)-reversible manner. Our results suggest that geniposide and its iridoid analogs produce antinociception during persistent pain by activating the spinal GLP-1Rs and that the iridoids represented by geniposide are orthosteric agonists of GLP-1Rs that function similarly in humans and rats and presumably act at the same binding site as exendin(9-39).

  7. Two new γ-pyrone glucosides from Paeonia albiflora.

    PubMed

    Chen, Shao-Dan; Wang, Dong-Mei; Lu, Chuan-Jian; Zhao, Rui-Zhi

    2016-01-01

    Two new γ-pyrone glucosides, along with three known compounds, were isolated from the roots of Paeonia albiflora, and their structures were elucidated by spectral experiments, chemical analysis, and comparison with literature data. The structures of the new compounds were established as 2-(hydroxymethyl)-4-oxo-4H-pyran-3-yl-6-O-α-L-rhamnopyranosyl-β-D-glucopyranoside (1), and 2-(hydroxymethyl)-4-oxo-4H-pyran-3-yl-6-O-galloyl-β-D-glucopyranoside (2). The inhibitory activity on the release of TNF-α of compounds 1-5 was evaluated in vitro. This is the first report of the presence of γ-pyrone glucoside in P. albiflora.

  8. Effect of Morinda citrifolia fruit extract and its iridoid glycosides on blood fluidity.

    PubMed

    Murata, Kazuya; Abe, Yumi; Futamura-Masuda, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Deng, Shixin; Matsuda, Hideaki

    2014-07-01

    The aim of this study was to investigate the effect of Morinda citrifolia fruit on blood fluidity. M. citrifolia fruit extract (MCF-ext) was investigated for its influence on blood aggregation and fibrinolysis. MCF-ext inhibited polybrene-induced erythrocyte aggregation and thrombin activity. The fibrinolytic activity of MCF-ext, in the euglobulin lysis time test and fibrin plate assay, is reported here for the first time. One of the active compounds was an iridoid glycoside, asperulosidic acid. The results indicated that MCF-ext is a potentially useful health food which is capable of improving blood flow and preventing lifestyle-related diseases.

  9. Two new simple iridoids from the ant-plant Myrmecodia tuberosa and their antimicrobial effects.

    PubMed

    Hanh, Nguyen Phuong; Phan, Nguyen Huu Toan; Thuan, Nguyen Thi Dieu; Hanh, Tran Thi Hong; Vien, Le Thi; Thao, Nguyen Phuong; Thanh, Nguyen Van; Cuong, Nguyen Xuan; Binh, Nguyen Quoc; Nam, Nguyen Hoai; Kiem, Phan Van; Kim, Young Ho; Minh, Chau Van

    2016-09-01

    Six iridoid derivatives (1-6), including two new compounds myrmecodoides A and B (1 and 2), were isolated from the ant-plant Myrmecodia tuberosa. Their structures were determined on the basis of spectroscopic data ((1)H and (13)C NMR, HSQC, HMBC, (1)H-(1)H COSY, NOESY and HR-ESI-MS) and by comparison with the literature values. Among isolates, 3 and 4 exhibit weak antibacterial effect against Staphylococcus aureus subsp. aureus with MIC value of 100.0 μg/mL.

  10. Prenylated xanthone glucosides from Ural's lichen Umbilicaria proboscidea.

    PubMed

    Rezanka, Tomás; Jáchymová, Jitka; Dembitsky, Valery M

    2003-02-01

    Two new compounds isolated from an extract of a Central Asian lichen [Umbilicaria proboscidea (L.) Schrader=Syn.: Gyrophora proboscidea (L.) Ach.] are glucosides with mono- and di-prenylated xanthones as the aglycones and a saccharide moiety from two glucoses linked at C-7. The structures were elucidated on the basis of extensive spectroscopic analysis (1D and 2D NMR, MS, IR and UV) and by hydrolysis.

  11. The glucosidic pathways and glucose production by frog muscle.

    PubMed

    Fournier, P A; Petrof, E O; Guderley, H

    1992-04-25

    Resting muscle is generally perceived as a glucose-utilizing organ; however, we show that resting well-oxygenated frog muscle recovering from strenuous exercise can release significant amounts of glucose. The metabolic pathway responsible for this process does not involve glucose-6-phosphatase because this enzyme is undetectable in frog muscle. The participation of amylo-1,6-glucosidase in the production of glucose is also ruled out since neither marked net phosphorolytic breakdown of glycogen nor considerable cycling between glycogen and glucose 6-phosphate occur. The glucosidic pathways of glycogen breakdown are the likely source of glucose as they are the only metabolic avenues with sufficient capacity to account for the rate at which glucose is released from post-exercised muscle. This rate of glucose production is high enough to be of physiological importance. Our results clearly indicate that to measure lactate glycogenesis in muscle, the simultaneous hydrolysis of muscle glycogen by the glucosidic pathways must be taken into account to prevent marked underestimation of the rate of glycogen synthesis. The glucosidic pathways seem the predominant avenues of glycogen breakdown in post-exercised resting frog muscle and are active enough to account for the rate of glycogen breakdown in resting muscle, suggesting that these rather than the phosphorolytic pathways are the chief routes of glycogen breakdown in resting muscle. PMID:1569076

  12. Dianthosaponins A-F, triterpene saponins, flavonoid glycoside, aromatic amide glucoside and γ-pyrone glucoside from Dianthus japonicus.

    PubMed

    Nakano, Takahiro; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki

    2011-01-01

    From aerial parts of Dianthus japonicus, six new and seven known oleanane-type triterpene saponins were isolated. The structures of the new saponins, named dianthosaponins A-F, were elucidated by means of high resolution mass spectrometry, and extensive inspection of one- and two-dimensional NMR spectroscopic data. A new C-glycosyl flavone, a glycosidic derivative of anthranilic acid amide and a maltol glucoside were also isolated.

  13. Antitrypanosomal Activities and Mechanisms of Action of Novel Tetracyclic Iridoids from Morinda lucida Benth.

    PubMed Central

    Kwofie, Kofi D.; Tung, Nguyen Huu; Amoa-Bosompem, Michael; Adegle, Richard; Sakyiamah, Maxwell M.; Ayertey, Frederick; Owusu, Kofi Baffour-Awuah; Tuffour, Isaac; Atchoglo, Philip; Frempong, Kwadwo K.; Anyan, William K.; Uto, Takuhiro; Morinaga, Osamu; Yamashita, Taizo; Aboagye, Frederic; Appiah, Alfred A.; Appiah-Opong, Regina; Nyarko, Alexander K.; Yamaguchi, Yasuchika; Edoh, Dominic; Koram, Kwadwo A.; Yamaoka, Shoji; Boakye, Daniel A.; Ohta, Nobuo; Shoyama, Yukihiro; Ayi, Irene

    2016-01-01

    Trypanosoma brucei parasites are kinetoplastid protozoa that devastate the health and economic well-being of millions of people in Africa through the disease human African trypanosomiasis (HAT). New chemotherapy has been eagerly awaited due to severe side effects and the drug resistance issues plaguing current drugs. Recently, there has been an emphasis on the use of medicinal plants worldwide. Morinda lucida Benth. is a popular medicinal plant widely distributed in Africa, and several research groups have reported on the antiprotozoal activities of this plant. In this study, we identified three novel tetracyclic iridoids, molucidin, ML-2-3, and ML-F52, from the CHCl3 fraction of M. lucida leaves, which possess activity against the GUTat 3.1 strain of T. brucei brucei. The 50% inhibitory concentrations (IC50) of molucidin, ML-2-3, and ML-F52 were 1.27 μM, 3.75 μM, and 0.43 μM, respectively. ML-2-3 and ML-F52 suppressed the expression of paraflagellum rod protein subunit 2, PFR-2, and caused cell cycle alteration, which preceded apoptosis induction in the bloodstream form of Trypanosoma parasites. Novel tetracyclic iridoids may be promising lead compounds for the development of new chemotherapies for African trypanosomal infections in humans and animals. PMID:26953191

  14. Anti-inflammatory iridoids from the stems of Cistanche deserticola cultured in Tarim Desert.

    PubMed

    Nan, Ze-Dong; Zhao, Ming-Bo; Zeng, Ke-Wu; Tian, Shuai-Hua; Wang, Wei-Nan; Jiang, Yong; Tu, Peng-Fei

    2016-01-01

    In order to determine the chemical constituents of Cistanche deserticola cultured in Tarim desert, a systematically phytochemical investigation was carried out. The constituents were isolated by silica gel, Sephadex LH-20, MCI gel, ODS column chromatography, and semi-preparative HPLC. Their structures were determined on the basis of MS and NMR spectroscopic analyses, by chemical methods, and/or comparison with literature data. The anti-inflammatory activities of the isolates were evaluated for their inhibitory effects on the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2 mouse microglial cells. Nine iridoids were isolated and identified as cistadesertoside A (1), cistanin (2), cistachlorin (3), 6-deoxycatalpol (4), gluroside (5), kankanoside A (6), ajugol (7), bartsioside (8), and 8-epi-loganic acid (9). Compound 9 exhibited potent inhibition on the NO production with an IC50 value being 5.2 μmol·L(-1), comparable to the positive control quercetin (4.3 μmol·L(-1)). Compound 1 was a new iridoid, and compounds 5, 6, and 8 were isolated from this species for the first time.

  15. Antitrypanosomal Activities and Mechanisms of Action of Novel Tetracyclic Iridoids from Morinda lucida Benth.

    PubMed

    Kwofie, Kofi D; Tung, Nguyen Huu; Suzuki-Ohashi, Mitsuko; Amoa-Bosompem, Michael; Adegle, Richard; Sakyiamah, Maxwell M; Ayertey, Frederick; Owusu, Kofi Baffour-Awuah; Tuffour, Isaac; Atchoglo, Philip; Frempong, Kwadwo K; Anyan, William K; Uto, Takuhiro; Morinaga, Osamu; Yamashita, Taizo; Aboagye, Frederic; Appiah, Alfred A; Appiah-Opong, Regina; Nyarko, Alexander K; Yamaguchi, Yasuchika; Edoh, Dominic; Koram, Kwadwo A; Yamaoka, Shoji; Boakye, Daniel A; Ohta, Nobuo; Shoyama, Yukihiro; Ayi, Irene

    2016-06-01

    Trypanosoma brucei parasites are kinetoplastid protozoa that devastate the health and economic well-being of millions of people in Africa through the disease human African trypanosomiasis (HAT). New chemotherapy has been eagerly awaited due to severe side effects and the drug resistance issues plaguing current drugs. Recently, there has been an emphasis on the use of medicinal plants worldwide. Morinda lucida Benth. is a popular medicinal plant widely distributed in Africa, and several research groups have reported on the antiprotozoal activities of this plant. In this study, we identified three novel tetracyclic iridoids, molucidin, ML-2-3, and ML-F52, from the CHCl3 fraction of M. lucida leaves, which possess activity against the GUTat 3.1 strain of T. brucei brucei The 50% inhibitory concentrations (IC50) of molucidin, ML-2-3, and ML-F52 were 1.27 μM, 3.75 μM, and 0.43 μM, respectively. ML-2-3 and ML-F52 suppressed the expression of paraflagellum rod protein subunit 2, PFR-2, and caused cell cycle alteration, which preceded apoptosis induction in the bloodstream form of Trypanosoma parasites. Novel tetracyclic iridoids may be promising lead compounds for the development of new chemotherapies for African trypanosomal infections in humans and animals.

  16. RP-HPLC analysis of seco-iridoid glycoside swertiamarin from different Swertia species.

    PubMed

    Kshirsagar, Parthraj R; Pai, Sandeep R; Nimbalkar, Mansingraj S; Gaikwad, Nikhil B

    2016-01-01

    Genus Swertia is valued for its great medicinal potential; mainly Swertia chirayita (Roxb. ex Fleming) H. Karst. is used in traditional medicine for a wide range of diseases. Seco-iridoid glycosides like swertiamarin is referred with enormous pharmacological potentials. The aim of the study was to identify a suitable substitute to S. chirayita by quantifying seco-iridoid swertiamarin from five different Swertia species endemic to the Western Ghats. The reverse-phase high-performance liquid chromatography diode array detector analyses were performed and chromatographic separation was achieved on a Lichrospher 100, C18e (5 µm) column (250-4.6 mm). A mobile phase consisting of acetonitrile and water (25:75) was used for separation. Results indicated that the concentration of the marker compound has been found to vary largely between and within the species from different localities. The content of swertiamarin was the highest in S. chirayita compared to the other species studied herein, advocating the use of Swertia minor as an alternate source to S. chirayita. PMID:26299409

  17. Application of Cornelian Cherry Iridoid-Polyphenolic Fraction and Loganic Acid to Reduce Intraocular Pressure

    PubMed Central

    Szumny, Dorota; Sozański, Tomasz; Kucharska, Alicja Z.; Dziewiszek, Wojciech; Piórecki, Narcyz; Magdalan, Jan; Chlebda-Sieragowska, Ewa; Kupczynski, Robert; Szeląg, Adam; Szumny, Antoni

    2015-01-01

    One of the most common diseases of old age in modern societies is glaucoma. It is strongly connected with increased intraocular pressure (IOP) and could permanently damage vision in the affected eye. As there are only a limited number of chemical compounds that can decrease IOP as well as blood flow in eye vessels, the up-to-date investigation of new molecules is important. The chemical composition of the dried Cornelian cherry (Cornus mas L.) polar, iridoid-polyphenol-rich fraction was investigated. Loganic acid (50%) and pelargonidin-3-galactoside (7%) were found as the main components. Among the other constituents, iridoid compound cornuside and the anthocyans cyanidin 3-O-galactoside, cyanidin 3-O-robinobioside, and pelargonidin 3-O-robinobioside were quantified in the fraction. In an animal model (New Zealand rabbits), the influence of loganic acid and the polyphenolic fraction isolated from Cornelian cherry fruit was investigated. We found a strong IOP-hypotensive effect for a 0.7% solution of loganic acid, which could be compared with the widely ophthalmologically used timolol. About a 25% decrease in IOP was observed within the first 3 hours of use. PMID:26124854

  18. Application of Cornelian Cherry Iridoid-Polyphenolic Fraction and Loganic Acid to Reduce Intraocular Pressure.

    PubMed

    Szumny, Dorota; Sozański, Tomasz; Kucharska, Alicja Z; Dziewiszek, Wojciech; Piórecki, Narcyz; Magdalan, Jan; Chlebda-Sieragowska, Ewa; Kupczynski, Robert; Szeląg, Adam; Szumny, Antoni

    2015-01-01

    One of the most common diseases of old age in modern societies is glaucoma. It is strongly connected with increased intraocular pressure (IOP) and could permanently damage vision in the affected eye. As there are only a limited number of chemical compounds that can decrease IOP as well as blood flow in eye vessels, the up-to-date investigation of new molecules is important. The chemical composition of the dried Cornelian cherry (Cornus mas L.) polar, iridoid-polyphenol-rich fraction was investigated. Loganic acid (50%) and pelargonidin-3-galactoside (7%) were found as the main components. Among the other constituents, iridoid compound cornuside and the anthocyans cyanidin 3-O-galactoside, cyanidin 3-O-robinobioside, and pelargonidin 3-O-robinobioside were quantified in the fraction. In an animal model (New Zealand rabbits), the influence of loganic acid and the polyphenolic fraction isolated from Cornelian cherry fruit was investigated. We found a strong IOP-hypotensive effect for a 0.7% solution of loganic acid, which could be compared with the widely ophthalmologically used timolol. About a 25% decrease in IOP was observed within the first 3 hours of use. PMID:26124854

  19. Effect of the temperature and the exclusion of UVB radiation on the phenolics and iridoids in Menyanthes trifoliata L. leaves in the subarctic.

    PubMed

    Martz, Françoise; Turunen, Minna; Julkunen-Tiitto, Riitta; Lakkala, Kaisa; Sutinen, Marja-Liisa

    2009-12-01

    The long-term effects of UVB exclusion and temperature on the methanol extractable (ME) phenolics (flavonoids, phenolic acids) and iridoids of Menyanthes trifoliata L. (Mt) leaves were studied in northern Finland (68 degrees N) using wooden frames covered with filters for UVB exclusion (polyester filter), control (cellulose acetate filter) and ambient (no filter) conditions. Analysis of ambient plots showed no effect of the daily mean temperature (2sigma = 1.58 degrees C) on the leaf ME compound content and composition, but minimum temperatures decreased the flavonol content. UVB exclusion did not affect the total ME compound content but significantly decreased the proportion of flavonols concomitantly with an increase in iridoids. Due to its high iridoid content, Mt appears as an interesting model plant for studying the iridoid biosynthesis and its regulation under stress conditions.

  20. Guaiane-type sesquiterpenoid glucosides from Gardenia jasminoides Ellis.

    PubMed

    Yu, Yang; Gao, Hao; Dai, Yi; Xiao, Gao-Keng; Zhu, Hua-Jie; Yao, Xin-Sheng

    2011-05-01

    Two new guaiane-type sesquiterpenoid glucosides (1 and 2) were isolated from the fruit of Gardenia jasminoides Ellis. Their structures were elucidated to be (1R,7R,10S)-11-O-β-D-glucopyranosyl-4-guaien-3-one (1) and (1R,7R,10S)-7-hydroxy-11-O-β-D-glucopyranosyl-4-guaien-3-one (2) by one- and two-dimensional NMR techniques ((1)H NMR, (13)C NMR, HSQC, HMBC and NOESY), MS, CD spectrometry and chemical methods. PMID:21491483

  1. Identification of Iridoids in Edible Honeysuckle Berries (Lonicera caerulea L. var. kamtschatica Sevast.) by UPLC-ESI-qTOF-MS/MS.

    PubMed

    Kucharska, Alicja Z; Fecka, Izabela

    2016-09-01

    Iridoid profiles of honeysuckle berry were studied. Compounds were identified by ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry UPLC-ESI-qTOF-MS/MS in positive and negative ions mode. The MS fragmentation pathways of detected iridoid glycosides were also studied in both modes. In the negative ESI mass spectra, iridoids with a methyl ester or lactone structure have preferentially produced adduct [M + HCOOH - H](-) ions. However, protonated ions of molecular fragments, which were released by glycosidic bond cleavage and following fragmentation of aglycone rings, were more usable for iridoid structure analysis. In addition, the neutral losses of H₂O, CO, CO₂, CH₃OH, acetylene, ethenone and cyclopropynone have provided data confirming the presence of functional substituents in the aglycone. Among the 13 iridoids, 11 were identified in honeysuckle berries for the first time: pentosides of loganic acid (two isomers), pentosides of loganin (three isomers), pentosyl sweroside, and additionally 7-epi-loganic acid, 7-epi-loganin, sweroside, secologanin, and secoxyloganin. The five pentoside derivatives of loganic acid and loganin have not been previously detected in the analyzed species. Honeysuckle berries are a source of iridoids with different structures, compounds that are rarely present in fruits.

  2. Identification of Iridoids in Edible Honeysuckle Berries (Lonicera caerulea L. var. kamtschatica Sevast.) by UPLC-ESI-qTOF-MS/MS.

    PubMed

    Kucharska, Alicja Z; Fecka, Izabela

    2016-01-01

    Iridoid profiles of honeysuckle berry were studied. Compounds were identified by ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry UPLC-ESI-qTOF-MS/MS in positive and negative ions mode. The MS fragmentation pathways of detected iridoid glycosides were also studied in both modes. In the negative ESI mass spectra, iridoids with a methyl ester or lactone structure have preferentially produced adduct [M + HCOOH - H](-) ions. However, protonated ions of molecular fragments, which were released by glycosidic bond cleavage and following fragmentation of aglycone rings, were more usable for iridoid structure analysis. In addition, the neutral losses of H₂O, CO, CO₂, CH₃OH, acetylene, ethenone and cyclopropynone have provided data confirming the presence of functional substituents in the aglycone. Among the 13 iridoids, 11 were identified in honeysuckle berries for the first time: pentosides of loganic acid (two isomers), pentosides of loganin (three isomers), pentosyl sweroside, and additionally 7-epi-loganic acid, 7-epi-loganin, sweroside, secologanin, and secoxyloganin. The five pentoside derivatives of loganic acid and loganin have not been previously detected in the analyzed species. Honeysuckle berries are a source of iridoids with different structures, compounds that are rarely present in fruits. PMID:27598106

  3. Anomericity of T-2 toxin-glucoside: masked mycotoxin in cereal crops.

    PubMed

    McCormick, Susan P; Kato, Takayuki; Maragos, Chris M; Busman, Mark; Lattanzio, Veronica M T; Galaverna, Gianni; Dall-Asta, Chiara; Crich, David; Price, Neil P J; Kurtzman, Cletus P

    2015-01-21

    T-2 toxin is a trichothecene mycotoxin produced when Fusarium fungi infect grains, especially oats and wheat. Ingestion of T-2 toxin contaminated grain can cause diarrhea, hemorrhaging, and feed refusal in livestock. Cereal crops infected with mycotoxin-producing fungi form toxin glycosides, sometimes called masked mycotoxins, which are a potential food safety concern because they are not detectable by standard approaches and may be converted back to the parent toxin during digestion or food processing. The work reported here addresses four aspects of T-2 toxin-glucosides: phytotoxicity, stability after ingestion, antibody detection, and the anomericity of the naturally occurring T-2 toxin-glucoside found in cereal plants. T-2 toxin-β-glucoside was chemically synthesized and compared to T-2 toxin-α-glucoside prepared with Blastobotrys muscicola cultures and the T-2 toxin-glucoside found in naturally contaminated oats and wheat. The anomeric forms were separated chromatographically and differ in both NMR and mass spectrometry. Both anomers were significantly degraded to T-2 toxin and HT-2 toxin under conditions that mimic human digestion, but with different kinetics and metabolic end products. The naturally occurring T-2 toxin-glucoside from plants was found to be identical to T-2 toxin-α-glucoside prepared with B. muscicola. An antibody test for the detection of T-2 toxin was not effective for the detection of T-2 toxin-α-glucoside. This anomer was produced in sufficient quantity to assess its animal toxicity.

  4. Glucosides from MBOA and BOA detoxification by Zea mays and Portulaca oleracea.

    PubMed

    Hofmann, Diana; Knop, Mona; Hao, Huang; Hennig, Lothar; Sicker, Dieter; Schulz, Margot

    2006-01-01

    Incubation of Zea mays cv. Nicco seedlings with 6-methoxybenzoxazolin-2(3H)-one (MBOA) led to a minor detoxification product hitherto only found in Poaceae. This new compound was identified as 1-(2-hydroxy-4-methoxyphenylamino)-1-deoxy-beta-glucoside 1,2-carbamate (1) (methoxy glucoside carbamate) and represents an analogue to the previously described 1-(2-hydroxyphenylamino)-1-deoxy-beta-glucoside 1,2-carbamate (glucoside carbamate) from benzoxazolin-2(3H)-one (BOA). In Portulaca oleracea var. sativa cv. Gelber treatment with BOA resulted in further unknown detoxification products, which were not synthesized in detectable amounts after BOA absorption in all other species tested. Compound 1 easily undergoes decay into BOA-5-O-glucoside (2). Z. mays seedlings, known to produce BOA-6-O-Glc on incubation with BOA, are able to transform BOA-5-OH into BOA-5-O-glucoside (2). Besides the known compounds, maize contained a formerly unseen product that accumulated during late stages of the detoxification process. It was isolated and identified as 1-(2-hydroxyphenylamino)-6-O-malonyl-1-deoxy-beta-glucoside 1,2-carbamate (3) (malonyl glucoside carbamate).

  5. Water-soluble constituents of caraway: carvone derivatives and their glucosides.

    PubMed

    Matsumura, Tetsuko; Ishikawa, Toru; Kitajima, Junichi

    2002-01-01

    Nine monoterpenoids related to carvone and seven glucosides were isolated from the water-soluble portion of the methanolic extract of the caraway (fruit of Carum carvi L.), and their structures were clarified by spectral investigation. Among them, eight monoterpenoids and six glucosides were new.

  6. Citrus limonin glucoside supplementation decreased biomarkers of liver disease in overweight human subjects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orange juice and mixtures of citrus limonoid glucosides isolated from orange juice or its byproducts demonstrated health benefits in human and animal studies. However, the risks and benefits of purified limonin glucoside (LG) in humans are unknown. Aim of this study was to determine the safety and m...

  7. Anomericity of T-2 Toxin-glucoside: Masked Mycotoxin in Cereal Crops

    PubMed Central

    2015-01-01

    T-2 toxin is a trichothecene mycotoxin produced when Fusarium fungi infect grains, especially oats and wheat. Ingestion of T-2 toxin contaminated grain can cause diarrhea, hemorrhaging, and feed refusal in livestock. Cereal crops infected with mycotoxin-producing fungi form toxin glycosides, sometimes called masked mycotoxins, which are a potential food safety concern because they are not detectable by standard approaches and may be converted back to the parent toxin during digestion or food processing. The work reported here addresses four aspects of T-2 toxin-glucosides: phytotoxicity, stability after ingestion, antibody detection, and the anomericity of the naturally occurring T-2 toxin-glucoside found in cereal plants. T-2 toxin-β-glucoside was chemically synthesized and compared to T-2 toxin-α-glucoside prepared with Blastobotrys muscicola cultures and the T-2 toxin-glucoside found in naturally contaminated oats and wheat. The anomeric forms were separated chromatographically and differ in both NMR and mass spectrometry. Both anomers were significantly degraded to T-2 toxin and HT-2 toxin under conditions that mimic human digestion, but with different kinetics and metabolic end products. The naturally occurring T-2 toxin-glucoside from plants was found to be identical to T-2 toxin-α-glucoside prepared with B. muscicola. An antibody test for the detection of T-2 toxin was not effective for the detection of T-2 toxin-α-glucoside. This anomer was produced in sufficient quantity to assess its animal toxicity. PMID:25520274

  8. Antibacterial and Antiproliferative Activities of Plumericin, an Iridoid Isolated from Momordica charantia Vine

    PubMed Central

    Saengsai, Jutamas; Kongtunjanphuk, Sumonthip; Yoswatthana, Nuttawan; Kummalue, Tanawan

    2015-01-01

    Plumericin, an iridoid lactone, was isolated with relatively high yield from Momordica charantia vine using the supercritical fluid extraction (SFE) and the separation box (Sepbox) comprising dual combination of high-performance liquid chromatography and solid phase extraction. This compound showed antibacterial activity against Enterococcus faecalis and Bacillus subtilis with minimum inhibitory concentration (MIC) values better than cloxacillin. Plumericin potently inhibited proliferation of two leukemic cancer cell lines: they were acute and chronic leukemic cancer cell lines, NB4 and K562, with the effective doses (ED50) of 4.35 ± 0.21 and 5.58 ± 0.35 μg/mL, respectively. In addition, the mechanism of growth inhibition in both cell lines was induced by apoptosis, together with G2/M arrest in K562 cells. PMID:25945113

  9. Preparative isolation and purification of iridoid glycosides from Fructus Corni by high-speed countercurrent chromatography

    PubMed Central

    Liang, Jinru; He, Jiao; Zhu, Sha; Zhao, Wenna; Zhang, Yongmin; Ito, Yoichiro; Sun, Wenji

    2012-01-01

    Using a two-phase solvent system composed of dichloromethane–methanol–n-butanol–water–acetic acid (5:5:3:4:0.1, v/v/v/v/v), high-speed countercurrent chromatography was successfully performed for isolation and purification of three iridoid glycosides from Fructus Corni for the first time. From 100 mg of a crude extract of Fructus Corni 7.9 mg of sweroside, 13.1 mg of morroniside, and 10.2 mg of loganin were obtained in less than 3 h with purities of 92.3, 96.3 and 94.2%, respectively. These target compounds were identified by ESI-MS, 1H NMR and 13C NMR. PMID:24899790

  10. Enzymatic Synthesis of Apigenin Glucosides by Glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13

    PubMed Central

    Gurung, Rit Bahadur; Kim, Eun-Hee; Oh, Tae-Jin; Sohng, Jae Kyung

    2013-01-01

    Apigenin, a member of the flavone subclass of flavonoids, has long been considered to have various biological activities. Its glucosides, in particular, have been reported to have higher water solubility, increased chemical stability, and enhanced biological activities. Here, the synthesis of apigenin glucosides by the in vitro glucosylation reaction was successfully performed using a UDP-glucosyltransferase YjiC, from Bacillus licheniformis DSM 13. The glucosylation has been confirmed at the phenolic groups of C-4′ and C-7 positions ensuing apigenin 4′-O-glucoside, apigenin 7-O-glucoside and apigenin 4′,7-O-diglucoside as the products leaving the C-5 position unglucosylated. The position of glucosylation and the chemical structures of glucosides were elucidated by liquid chromatography/mass spectroscopy and nuclear magnetic resonance spectroscopy. The parameters such as pH, UDP glucose concentration and time of incubation were also analyzed during this study. PMID:24170092

  11. Amaranthin in feather cockscombs is synthesized via glucuronylation at the cyclo-DOPA glucoside step in the betacyanin biosynthetic pathway.

    PubMed

    Sasaki, Nobuhiro; Abe, Yutaka; Wada, Katsuhiro; Koda, Takatoshi; Goda, Yukihiro; Adachi, Taiji; Ozeki, Yoshihiro

    2005-12-01

    Uridine 5'-diphosphate (UDP)-glucuronic acid: cyclo-DOPA 5-glucoside glucuronosyltransferase activity was detected in a crude extract prepared from the purple flowers of feather cockscombs. This suggests that the glucuronic acid moiety of amaranthin and its derivatives may be introduced at the cyclo-DOPA glucoside step, but not at the betanidin glucoside step.

  12. Humoral and cellular immune responses induced in mice by purified iridoid mixture that inhibits penetration of Schistosoma mansoni cercariae upon topical treatment of mice tails.

    PubMed

    Bahgat, Mahmoud; Shalaby, Nagwa M M; Ruppel, Andreas; Maghraby, Amany S

    2005-08-01

    When tested for possible blocking effect on the cercarial, serine proteinase, elastase (CE) activity, an iridoid mixture extracted from leaves of Citharexylum quadrangular abolished 31% of the enzyme activity at final concentration 15 microg. When formulated in jojoba oil and applied to mice tails followed by infection with Schistosoma mansoni cercariae, the iridoid mixture blocked cercarial penetration and caused significant reducetion (94%; P < 0.05) in worm burden in treated mice in comparison to controls. Also, immunomodulatory effects of iridoid mixture, iridoid-treated S. mansoni worm homogenate on mice were studied by measuring IgG and IgM levels against E. coli lysates (ECL), solube S. mansoni worm antigenic preparation (SWAP) and cancer bladder homogenates (CBH) as antigens by ELISA. Cellular immune responses were studied by calculating mean percent of CD4+, CD8(+)-T, B-mesenteric lymph node cells (MLNC) and CD4+, CD8(+)-T thymocytes by direct immunofluorescence staining in treated mice as compared to untreated homogenate given mice or untreated mice. Injecting mice with serial dilutions of iridoid mixture resulted in fluctuation, peaks and troughs, in both IgG and IgM responses against the above mentioned antigens. 1st and 2nd immunizations with iridoid mixture treated homogenate resulted in significantly elevated (P < 0.05). IgM and IgG levels against the 3 used antigens in comparison with sera from control mice. Immunized mice with homogenate treated with iridoid mixture showed a significant increase (P < 0.05) in CD4+T thymocytes, a non significant increase in CD8+T thymocytes, a significant increase (P < 0.05) in CD4+T lymphocytes (MLNC) and a non significant increase in CD8+ T- and B-lymphocytes (MLNC) compared with mice immunized with untreated homogenate or non-injected normal mice.

  13. Three new lignan glucosides from the roots of Scutellaria baicalensis

    PubMed Central

    Long, Hailin; Zhang, Haijing; Deng, Anjun; Ma, Lin; Wu, Lianqiu; Li, Zhihong; Zhang, Zhihui; Wang, Wenjie; Jiang, Jiandong; Qin, Hailin

    2016-01-01

    Three new lignan glucosides, baicalensinosides A–C (1–3), were isolated from the roots of Scutellaria baicalensis. The structural elucidation was achieved by in-depth spectroscopic examinations and qualitative chemical test. Structurally, these compounds belong to the 3,4-dibenzyltetrahydrofuran-type lignan glycoside with a mono-hydroxyl substitution at the 7′-position of benzylidene group on the numbering system of lignans being one of their shared critical features. The anti-osteoporotic activity of the isolated compounds was assessed in an in vitro osteoprotegerin (OPG) transcriptional activity assay using dual luciferase reporter detection. At 10 μmol/L, compounds 1–3 increased the relative activating ratio of OPG transcription to 1.83, 0.84 and 0.98 times that of the control group, respectively. PMID:27175334

  14. Officinalioside, a new lignan glucoside from Borago officinalis L.

    PubMed

    Samy, Mamdouh Nabil; Hamed, Ashraf Nageeb El-Sayed; Sugimoto, Sachiko; Otsuka, Hideaki; Kamel, Mohamed Salah; Matsunami, Katsuyoshi

    2016-01-01

    A new lignan glucoside, officinalioside (1), was isolated from n-BuOH fraction of the aerial parts of Borago officinalis L., together with four known compounds: actinidioionoside (2), roseoside (3), crotalionoside C (4) and kaempferol 3-O-β-D-galactopyranoside (5). The structure of the new compound was established by means of spectroscopic and chemical analyses. Compounds 1 and 2 showed a moderate DPPH radical scavenging activity (IC50: 52.6 ± 1.70 and 41.3 ± 0.25 μM, respectively) comparable with that of the standard trolox (16.6 ± 2.2 μM) without any significant cytotoxicity towards human cell line A549 (IC50 > 100 μM). PMID:26382913

  15. Four new neolignan glucosides from the fruits of Arctium lappa.

    PubMed

    Huang, Xiao-Ying; Feng, Zi-Ming; Yang, Ya-Nan; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2015-05-01

    Four new neolignan glucosides named (7S, 8R)-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan-9'-O-β-d-apiofuranosyl-(1 → 6)-O-β-d-glucopyranoside (1), (8R)-4,9,9'-trihydroxy-3,3'-dimethoxy-7-oxo-8-O-4'-neolignan-4-O-β-d-glucopyranoside (2), (7R, 8S)-dihydrodehydrodiconiferyl alcohol-7'-oxo-4-O-β-d-glucopyranoside (3), and (7'S, 8'R, 8S)-4,4',9'-trihydroxy-3,3'-dimethoxy-7',9-epoxylignan-7-oxo-4-O-β-d-glucopyranoside (4) were isolated from the fruits of Arctium lappa L. Their structures and absolute configurations were elucidated on the basis of comprehensive spectroscopic analyses (UV, IR, HR-ESI-MS, 1D and 2D NMR, CD), as well as by comparison with known analogues in the literature.

  16. Four new neolignan glucosides from the fruits of Arctium lappa.

    PubMed

    Huang, Xiao-Ying; Feng, Zi-Ming; Yang, Ya-Nan; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2015-05-01

    Four new neolignan glucosides named (7S, 8R)-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan-9'-O-β-d-apiofuranosyl-(1 → 6)-O-β-d-glucopyranoside (1), (8R)-4,9,9'-trihydroxy-3,3'-dimethoxy-7-oxo-8-O-4'-neolignan-4-O-β-d-glucopyranoside (2), (7R, 8S)-dihydrodehydrodiconiferyl alcohol-7'-oxo-4-O-β-d-glucopyranoside (3), and (7'S, 8'R, 8S)-4,4',9'-trihydroxy-3,3'-dimethoxy-7',9-epoxylignan-7-oxo-4-O-β-d-glucopyranoside (4) were isolated from the fruits of Arctium lappa L. Their structures and absolute configurations were elucidated on the basis of comprehensive spectroscopic analyses (UV, IR, HR-ESI-MS, 1D and 2D NMR, CD), as well as by comparison with known analogues in the literature. PMID:25978776

  17. Officinalioside, a new lignan glucoside from Borago officinalis L.

    PubMed

    Samy, Mamdouh Nabil; Hamed, Ashraf Nageeb El-Sayed; Sugimoto, Sachiko; Otsuka, Hideaki; Kamel, Mohamed Salah; Matsunami, Katsuyoshi

    2016-01-01

    A new lignan glucoside, officinalioside (1), was isolated from n-BuOH fraction of the aerial parts of Borago officinalis L., together with four known compounds: actinidioionoside (2), roseoside (3), crotalionoside C (4) and kaempferol 3-O-β-D-galactopyranoside (5). The structure of the new compound was established by means of spectroscopic and chemical analyses. Compounds 1 and 2 showed a moderate DPPH radical scavenging activity (IC50: 52.6 ± 1.70 and 41.3 ± 0.25 μM, respectively) comparable with that of the standard trolox (16.6 ± 2.2 μM) without any significant cytotoxicity towards human cell line A549 (IC50 > 100 μM).

  18. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles.

    PubMed

    Zagrobelny, Mika; Bak, Søren; Ekstrøm, Claus Thorn; Olsen, Carl Erik; Møller, Birger Lindberg

    2007-01-01

    Zygaena larvae sequester the cyanogenic glucosides linamarin and lotaustralin from their food plants (Fabaceae) as well as carry out de novo biosynthesis of these compounds. In this study, Zygaena filipendulae were reared on wild-type Lotus corniculatus and wild-type and transgenic L. japonicus plants with differing content and ratios of the cyanogenic glucosides linamarin and lotaustralin and of the cyanoalkenyl glucosides rhodiocyanoside A and D. LC-MS analyses, free choice feeding experiments and developmental studies were used to examine the effect of varying content and ratios of these secondary metabolites on the feeding preferences, growth and development of Z. filipendulae. Larvae reared on cyanogenic L. corniculatus developed faster compared to larvae reared on L. japonicus although free choice feeding trials demonstrated that the latter plant source was the preferred food plant. Larvae reared on acyanogenic L. corniculatus showed decelerated development. Analysis of different life stages and tissues demonstrate that Z. filipendulae strive to maintain certain threshold content and ratios of cyanogenic glucosides regardless of the composition of the food plants. Despite this, the ratios of cyanogenic glucosides in Z. filipendulae remain partly affected by the ratio of the food plant due to the high proportion of sequestering that takes place. PMID:17175442

  19. Olive leaf components apigenin 7-glucoside and luteolin 7-glucoside direct human hematopoietic stem cell differentiation towards erythroid lineage.

    PubMed

    Samet, Imen; Villareal, Myra O; Motojima, Hideko; Han, Junkyu; Sayadi, Sami; Isoda, Hiroko

    2015-06-01

    The generation of blood cellular components from hematopoietic stem cells is important for the therapy of a broad spectrum of hematological disorders. In recent years, several lines of evidence suggested that certain nutrients, vitamins and flavonoids may have important roles in controlling the stem cell fate decision by maintaining their self-renewal or stimulating the lineage-specific differentiation. In this study, main olive leaf phytochemicals oleuropein (Olp), apigenin 7-glucoside (Api7G) and luteolin 7-glucoside (Lut7G) were investigated for their potential effects on hematopoietic stem cell differentiation using both phenotypic and molecular analysis. Oleuropein and the combination of the three compounds enhanced the differentiation of CD34+ cells into myelomonocytic cells and lymphocytes progenitors and inhibited the commitment to megakaryocytic and erythroid lineages. Treatment with Lut7G stimulated both the erythroid and the myeloid differentiation, while treatment with Api7G specifically induced the differentiation of CD34+ cells towards the erythroid lineage and inhibited the myeloid differentiation. Erythroid differentiation induced by Api7G and Lut7G treatments was confirmed by the increase in hemoglobin genes expressions (α-hemoglobin, β-hemoglobin and γ-hemoglobin) and erythroid transcription factor GATA1 expression. As revealed by microarray analysis, the mechanisms underlying the erythroid differentiation-inducing effect of Api7G on hematopoietic stem cells involves the activation of JAK/STAT signaling pathway. These findings prove the differentiation-inducing effects of olive leaf compounds on hematopoietic stem cells and highlight their potential use in the ex vivo generation of blood cells.

  20. Olive leaf components apigenin 7-glucoside and luteolin 7-glucoside direct human hematopoietic stem cell differentiation towards erythroid lineage.

    PubMed

    Samet, Imen; Villareal, Myra O; Motojima, Hideko; Han, Junkyu; Sayadi, Sami; Isoda, Hiroko

    2015-06-01

    The generation of blood cellular components from hematopoietic stem cells is important for the therapy of a broad spectrum of hematological disorders. In recent years, several lines of evidence suggested that certain nutrients, vitamins and flavonoids may have important roles in controlling the stem cell fate decision by maintaining their self-renewal or stimulating the lineage-specific differentiation. In this study, main olive leaf phytochemicals oleuropein (Olp), apigenin 7-glucoside (Api7G) and luteolin 7-glucoside (Lut7G) were investigated for their potential effects on hematopoietic stem cell differentiation using both phenotypic and molecular analysis. Oleuropein and the combination of the three compounds enhanced the differentiation of CD34+ cells into myelomonocytic cells and lymphocytes progenitors and inhibited the commitment to megakaryocytic and erythroid lineages. Treatment with Lut7G stimulated both the erythroid and the myeloid differentiation, while treatment with Api7G specifically induced the differentiation of CD34+ cells towards the erythroid lineage and inhibited the myeloid differentiation. Erythroid differentiation induced by Api7G and Lut7G treatments was confirmed by the increase in hemoglobin genes expressions (α-hemoglobin, β-hemoglobin and γ-hemoglobin) and erythroid transcription factor GATA1 expression. As revealed by microarray analysis, the mechanisms underlying the erythroid differentiation-inducing effect of Api7G on hematopoietic stem cells involves the activation of JAK/STAT signaling pathway. These findings prove the differentiation-inducing effects of olive leaf compounds on hematopoietic stem cells and highlight their potential use in the ex vivo generation of blood cells. PMID:26299581

  1. Fragmentation study of iridoid glycosides including epimers by liquid chromatography-diode array detection/electrospray ionization mass spectrometry and its application in metabolic fingerprint analysis of Gardenia jasminoides Ellis.

    PubMed

    Zhou, Tingting; Liu, Hua; Wen, Jun; Fan, Guorong; Chai, Yifeng; Wu, Yutian

    2010-09-15

    A high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD/ESI-MS) method was applied to the characterization of ten iridoid glycosides in Gardenia jasminoides Ellis, a traditional Chinese medicine. During the process of structural elucidation, two groups of isomers including two epimers were structurally characterized and differentiated according to their distinctive fragmentation patterns which were closely related to their isomeric differentiations. Subsequently, the major compounds were purified by multi-dimensional chromatography and semi-preparative HPLC and the structure identification was confirmed with NMR techniques. The major fragmentation pathways of iridoid glycosides in Gardenia jasminoides Ellis obtained through the MS data were schemed systematically, which provided the best sensitivity and specificity for characterization of the iridoid glycosides especially the isomers so far. Based on the fragmentation patterns of iridoid glycosides concluded, seven major iridoid glycosides were characterized in rat plasma after intravenous administration of Gardenia jasminoides Ellis. PMID:20740525

  2. Regioselective glucosidation of trans-resveratrol in Escherichia coli expressing glucosyltransferase from Phytolacca americana.

    PubMed

    Ozaki, Shin-ichi; Imai, Hiroya; Iwakiri, Tomoya; Sato, Takehiro; Shimoda, Kei; Nakayama, Toru; Hamada, Hiroki

    2012-03-01

    A glucosyltransferase (GT) of Phytolacca americana (PaGT3) was expressed in Escherichia coli and purified for the synthesis of two O-β-glucoside products of trans-resveratrol. The reaction was moderately regioselective with a ratio of 4'-O-β-glucoside: 3-O-β-glucoside at 10:3. We used not only the purified enzyme but also the E. coli cells containing the PaGT3 gene for the synthesis of glycoconjugates. E. coli cell cultures also have other advantages, such as a shorter incubation time compared with cultured plant cells, no need for the addition of exogenous glucosyl donor compounds such as UDP-glucose, and almost complete conversion of the aglycone to the glucoside products. Furthermore, a homology model of PaGT3 and mutagenesis studies suggested that His-20 would be a catalytically important residue.

  3. Thesinine-4'-O-beta-D-glucoside the first glycosylated plant pyrrolizidine alkaloid from Borago officinalis.

    PubMed

    Herrmann, Martina; Joppe, Holger; Schmaus, Gerhard

    2002-06-01

    The glycosylated pyrrolizidine alkaloid, thesinine-4'-O-beta-D-glucoside, has been isolated from the aqueous methanol extract of dried, defatted seeds of Borago officinalis (Boraginaceae). The structure was established by means of spectroscopic and chemical analysis. PMID:12031432

  4. Isolation of gibberellin A8-glucoside from shoot apices of Althaea rosea.

    PubMed

    Harada, H; Yokota, T

    1970-03-01

    Gibberellin A8-glucoside has been isolated from shoot apices of Althaea rosea. It showed a weak growth-promoting activity on rice seedlings and oat mesocotyl sections but did not induce germination of lettuce seeds in darkness.

  5. Small intestinal hydrolysis of plant glucosides: higher glucohydrolase activities in rodents than passerine birds.

    PubMed

    Lessner, Krista M; Dearing, M Denise; Izhaki, Ido; Samuni-Blank, Michal; Arad, Zeev; Karasov, William H

    2015-09-01

    Glycosides are a major group of plant secondary compounds characterized by one or more sugars conjugated to a lipophilic, possibly toxic aglycone, which is released upon hydrolysis. We compared small intestinal homogenate hydrolysis activity of three rodent and two avian species against four substrates: amygdalin and sinigrin, two plant-derived glucosides, the sugar lactose, whose hydrolysis models some activity against flavonoid and isoflavonoid glucosides, and the disaccharide sugar maltose (from starch), used as a comparator. Three new findings extend our understanding of physiological processing of plant glucosides: (1) the capacity of passerine birds to hydrolyze plant glucosides seems relatively low, compared with rodents; (2) in this first test of vertebrates' enzymic capacity to hydrolyze glucosinolates, sinigrin hydrolytic capacity seems low; (3) in laboratory mice, hydrolytic activity against lactose resides on the enterocytes' apical membrane facing the intestinal lumen, but activity against amygdalin seems to reside inside enterocytes.

  6. Thesinine-4'-O-beta-D-glucoside the first glycosylated plant pyrrolizidine alkaloid from Borago officinalis.

    PubMed

    Herrmann, Martina; Joppe, Holger; Schmaus, Gerhard

    2002-06-01

    The glycosylated pyrrolizidine alkaloid, thesinine-4'-O-beta-D-glucoside, has been isolated from the aqueous methanol extract of dried, defatted seeds of Borago officinalis (Boraginaceae). The structure was established by means of spectroscopic and chemical analysis.

  7. Quantification of nitropropanoyl glucosides in karaka nuts before and after treatment.

    PubMed

    MacAskill, J J; Manley-Harris, M; Field, Richard J

    2015-05-15

    A high performance liquid chromatography (HPLC) method was developed to assay nitropropanoyl glucosides in the nuts of karaka (Corynocarpus laevigatus) a traditional food of New Zealand Māori. Levels of glucosides, measured as 3-nitropropanoic acid, ranged from 50.25 to 138.62 g kg(-1) (5.0-13.9% w/w) and were highest in nuts from unripe drupes; these levels are higher than any previously reported. Other parts of the drupe also contained nitropropanoyl glucosides but at lower levels than the nut. Treatment procedures to remove the glucosides from the nuts varied in their efficacy with soxhlet extraction removing 98.7% and prolonged boiling and cold water extraction both removing 96%. These findings confirm the traditional methods for preparation of these nuts for consumption.

  8. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans.

    PubMed

    Izumi, T; Piskula, M K; Osawa, S; Obata, A; Tobe, K; Saito, M; Kataoka, S; Kubota, Y; Kikuchi, M

    2000-07-01

    Isoflavones are contained in soybean or soy foods in two chemical forms, i.e., aglycones and glucosides. We investigated the difference in the absorption of soy isoflavone aglycones and glucosides in humans. After a single, low dose intake (0.11 mmol), the highest isoflavone concentrations in plasma were reached 2 and 4 h after ingestion of aglycones and glucosides, respectively; subjects were four men (41 y old) and four women (45 y old). The highest plasma concentration after aglycone intake was more than two times greater than that after glucoside ingestion. In a similar manner, we then compared the plasma isoflavone concentration profiles after intake of a single, high dose of isoflavones (1.7 mmol) in eight subjects (four men, 40 y old; four women, 47 y old) and found the highest plasma concentration after aglycone intake was more than five times higher than that after glucoside intake. In both high and low dose intake tests, the plasma concentration of genistein was significantly higher than that of daidzein despite the similar levels of intake. After long-term (4 wk) intakes (0.30 mmol/d), we also measured the plasma concentration of isoflavones (eight men, 45 y old). After 2 and 4 wk, these concentrations remained >100% higher after ingestion of aglycones than of glucosides. The isoflavone aglycones were absorbed faster and in greater amounts than their glucosides in humans. Isoflavone aglycone-rich products may be more effective than glucoside-rich products in preventing chronic disease such as coronary heart disease.

  9. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells.

    PubMed

    Tannin-Spitz, Tehila; Grossman, Shlomo; Dovrat, Sara; Gottlieb, Hugo E; Bergman, Margalit

    2007-01-01

    Our aim was to study the effects of cucurbitacin glucosides extracted from Citrullus colocynthis leaves on human breast cancer cell growth. Leaves were extracted, resulting in the identification of cucurbitacin B/E glucosides. The cucurbitacin glucoside combination (1:1) inhibited growth of ER(+) MCF-7 and ER(-) MDA-MB-231 human breast cancer cell lines. Cell-cycle analysis showed that treatment with isolated cucurbitacin glucoside combination resulted in accumulation of cells at the G(2)/M phase of the cell cycle. Treated cells showed rapid reduction in the level of the key protein complex necessary to the regulation of G(2) exit and initiation of mitosis, namely the p34(CDC2)/cyclin B1 complex. cucurbitacin glucoside treatment also caused changes in the overall cell morphology from an elongated form to a round-shaped cell, which indicates that cucurbitacin treatment caused impairment of actin filament organization. This profound morphological change might also influence intracellular signaling by molecules such as PKB, resulting in inhibition in the transmission of survival signals. Reduction in PKB phosphorylation and inhibition of survivin, an anti-apoptosis family member, was observed. The treatment caused elevation in p-STAT3 and in p21(WAF), proven to be a STAT3 positive target in absence of survival signals. Cucurbitacin glucoside treatment also induced apoptosis, as measured by Annexin V/propidium iodide staining and by changes in mitochondrial membrane potential (DeltaPsi) using a fluorescent dye, JC-1. We suggest that cucurbitacin glucosides exhibit pleiotropic effects on cells, causing both cell cycle arrest and apoptosis. These results suggest that cucurbitacin glucosides might have therapeutic value against breast cancer cells.

  10. New α-glucosides of caffeoyl quinic acid from the leaves of Moringa oleifera Lam.

    PubMed

    Kashiwada, Yoshiki; Ahmed, Fakhruddin Ali; Kurimoto, Shin-ichiro; Kim, Sang-Yong; Shibata, Hirofumi; Fujioka, Toshihiro; Takaishi, Yoshihisa

    2012-01-01

    Two new caffeoyl quinic acid α-glucosides, together with three known caffeoyl quinic acids and five known flavonoid glucosides, were isolated from the leaves of Moringa oleifera Lam. The structures of the new compounds were elucidated as 4-O-(4'-O-α-D-glucopyranosyl)-caffeoyl quinic acid (1) and 4-O-(3'-O-α-D-glucopyranosyl)-caffeoyl quinic acid (2) by spectroscopic analyses.

  11. In vitro COX-1 and COX-2 enzyme inhibitory activities of iridoids from Penstemon barbatus, Castilleja tenuiflora, Cresentia alata and Vitex mollis.

    PubMed

    Ramírez-Cisneros, M Ángeles; Rios, María Yolanda; Aguilar-Guadarrama, A Berenice; Rao, Praveen P N; Aburto-Amar, Rola; Rodríguez-López, Verónica

    2015-10-15

    A group of sixteen iridoids isolated from plants used as anti-inflammatory remedies in Mexican folk medicine were evaluated for their potential to inhibit cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes. From these assays, loganic acid (10) was identified as the most promising compound with both COX-1 (36.0 ± 0.6%) and COX-2 (80.8 ± 4.0%) inhibition at 10 μM. Compound 10 shows a better inhibition against the COX-2 enzyme. Other iridoids tested in the present study showed weak or no inhibition against these enzymes. Furthermore, herein are presented key interactions of iridoid 10 with COX-1 and COX-2 enzymes through molecular docking studies. These studies suggest that 10 exhibits anti-inflammatory activity due to COX inhibition.

  12. In vitro anti-Leishmania activity of tetracyclic iridoids from Morinda lucida, benth.

    PubMed

    Amoa-Bosompem, Michael; Ohashi, Mitsuko; Mosore, Mba-Tihssommah; Agyapong, Jeffrey; Tung, Nguyen Huu; Kwofie, Kofi D; Ayertey, Frederick; Owusu, Kofi Baffuor-Awuah; Tuffour, Isaac; Atchoglo, Philip; Djameh, Georgina I; Azerigyik, Faustus A; Botchie, Senyo K; Anyan, William K; Appiah-Opong, Regina; Uto, Takuhiro; Morinaga, Osamu; Appiah, Alfred A; Ayi, Irene; Shoyama, Yukihiro; Boakye, Daniel A; Ohta, Nobuo

    2016-01-01

    Leishmaniasis is an infectious disease transmitted by the sand fly. It is caused by over 20 different species of Leishmania and has affected over 14 million people worldwide. One of the main forms of control of leishmaniasis is chemotherapy, but this is limited by the high cost and/or toxicity of available drugs. We previously found three novel compounds with an iridoid tetracyclic skeleton to have activity against trypanosome parasites. In this study, we determined the activity of the three anti-trypanosome compounds against Leishmania using field strain, 010, and the lab strain Leishmania hertigi. The minimum inhibitory concentration (MIC) of the compounds against 010 was determined by microscopy while the IC50 of compounds against L. hertigi was determined by fluorescence-activated cell sorting with Guava viacount analysis. We found two of the three compounds, molucidin and ML-F52, to have anti-Leishmania activity against both strains. The fluor-microscope observation with DAPI stain revealed that both Molucidin and ML-F52 induced abnormal parasites with two sets of nucleus and kinetoplast in a cell, suggesting that compounds might inhibit cytokinesis in Leishmania parasites. Molucidin and ML-F52 might be good lead compounds for the development of new anti-Leishmania chemotherapy.

  13. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits.

    PubMed

    Alagna, Fiammetta; Geu-Flores, Fernando; Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E; Osbourn, Anne

    2016-03-11

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species.

  14. A systematic review of the wound-healing effects of monoterpenes and iridoid derivatives.

    PubMed

    Barreto, Rosana S S; Albuquerque-Júnior, Ricardo L C; Araújo, Adriano A S; Almeida, Jackson R G S; Santos, Márcio R V; Barreto, André S; DeSantana, Josimari M; Siqueira-Lima, Pollyana S; Quintans, Jullyana S S; Quintans-Júnior, Lucindo J

    2014-01-13

    The search for more effective and lower cost therapeutic approaches for wound healing remains a challenge for modern medicine. In the search for new therapeutic options, plants and their metabolites are a great source of novel biomolecules. Among their constituents, the monoterpenes represent 90% of essential oils, and have a variety of structures with several activities such as antimicrobial, anti-inflammatory, antioxidant and wound healing. Based on that, and also due to the lack of reviews concerning the wound-healing activity of monoterpenes, we performed this systematic review-which provides an overview of their characteristics and mechanisms of action. In this search, the terms "terpenes", "monoterpenes", "wound healing" and "wound closure techniques" were used to retrieve articles published in LILACS, PUBMED and EMBASE until May 2013. Seven papers were found concerning the potential wound healing effect of five compouds (three monoterpenes and two iridoid derivatives) in preclinical studies. Among the products used for wound care, the films were the most studied pharmaceutical form. Monoterpenes are a class of compounds of great diversity of biological activities and therapeutic potential. The data reviewed here suggest that monoterpenes, although poorly studied in this context, are promising compounds for the treatment of chronic wound conditions.

  15. In vitro anti-Leishmania activity of tetracyclic iridoids from Morinda lucida, benth.

    PubMed

    Amoa-Bosompem, Michael; Ohashi, Mitsuko; Mosore, Mba-Tihssommah; Agyapong, Jeffrey; Tung, Nguyen Huu; Kwofie, Kofi D; Ayertey, Frederick; Owusu, Kofi Baffuor-Awuah; Tuffour, Isaac; Atchoglo, Philip; Djameh, Georgina I; Azerigyik, Faustus A; Botchie, Senyo K; Anyan, William K; Appiah-Opong, Regina; Uto, Takuhiro; Morinaga, Osamu; Appiah, Alfred A; Ayi, Irene; Shoyama, Yukihiro; Boakye, Daniel A; Ohta, Nobuo

    2016-01-01

    Leishmaniasis is an infectious disease transmitted by the sand fly. It is caused by over 20 different species of Leishmania and has affected over 14 million people worldwide. One of the main forms of control of leishmaniasis is chemotherapy, but this is limited by the high cost and/or toxicity of available drugs. We previously found three novel compounds with an iridoid tetracyclic skeleton to have activity against trypanosome parasites. In this study, we determined the activity of the three anti-trypanosome compounds against Leishmania using field strain, 010, and the lab strain Leishmania hertigi. The minimum inhibitory concentration (MIC) of the compounds against 010 was determined by microscopy while the IC50 of compounds against L. hertigi was determined by fluorescence-activated cell sorting with Guava viacount analysis. We found two of the three compounds, molucidin and ML-F52, to have anti-Leishmania activity against both strains. The fluor-microscope observation with DAPI stain revealed that both Molucidin and ML-F52 induced abnormal parasites with two sets of nucleus and kinetoplast in a cell, suggesting that compounds might inhibit cytokinesis in Leishmania parasites. Molucidin and ML-F52 might be good lead compounds for the development of new anti-Leishmania chemotherapy. PMID:27536194

  16. Low Toxicity of Deoxynivalenol-3-Glucoside in Microbial Cells

    PubMed Central

    Suzuki, Tadahiro; Iwahashi, Yumiko

    2015-01-01

    Host plants excrete a glucosylation enzyme onto the plant surface that changes mycotoxins derived from fungal secondary metabolites to glucosylated products. Deoxynivalenol-3-glucoside (DON3G) is synthesized by grain uridine diphosphate-glucosyltransferase, and is found worldwide, although information on its toxicity is lacking. Here, we conducted growth tests and DNA microarray analysis to elucidate the characteristics of DON3G. The Saccharomyces cerevisiae PDR5 mutant strain exposed to DON3G demonstrated similar growth to the dimethyl sulfoxide control, and DNA microarray analysis revealed limited differences. Only 10 genes were extracted, and the expression profile of stress response genes was similar to that of DON, in contrast to metabolism genes like SER3, which encodes 3-phosphoglycerate dehydrogenase. Growth tests with Chlamydomonas reinhardtii also showed a similar growth rate to the control sample. These results suggest that DON3G has extremely low toxicity to these cells, and the glucosylation of mycotoxins is a useful protective mechanism not only for host plants, but also for other species. PMID:25609182

  17. Qualitative and quantitative determination of ten iridoids and secoiridoids in Gentiana straminea Maxim. by LC-UV-ESI-MS.

    PubMed

    Wei, Shihu; Zhang, Peicheng; Feng, Xizhi; Kodama, Hiroyuki; Yu, Changyuan; Chen, Guang

    2012-01-01

    A simple and accurate HPLC-UV/MS method was developed for the simultaneous determination of ten iridoids and secoiridoids in the roots of Gentiana straminea Maxim. Separations were performed on a Kromasil-C18 column by gradient elution using methanol and water containing phosphoric acid. Analytes were identified by HPLC coupled with ESI-MS experiments. The chromatographic method was validated for selectivity, linearity, precision, limit of detection, limit of quantification, accuracy, and stability. The developed assay could be considered as a suitable quality control method for G. straminea and other "Qinjiao" herbs.

  18. Morinlongosides A-C, Two New Naphthalene Glycoside and a New Iridoid Glycoside from the Roots of Morinda longissima.

    PubMed

    Cuong, Nguyen Manh; Huong, Tran Thu; Son, Ninh The; Cuong, To Dao; Van, Doan Thi; Khanh, Pham Ngoc; Ha, Vu Thi; Tram, Nguyen Cong Thuy; Long, Pham Quoc; Kim, Young Ho

    2016-01-01

    Two new naphthalene glycosides, morinlongosides A and B (1, 2) and a new iridoid glycoside, morinlongoside C (3), together with four known ones, geniposidic acid (4), (3R)-3-O-[β-D-xylopyranosyl-(1→6)-β-D-glucopyranosyl]-l-octen-3-ol (5), lucidin-3-O-β-primeveroside (6), and morindone-6-O-β-gentiobioside (7), were isolated from the roots of Morinda longissima Y. Z. RUAN. The structures of all isolated compounds (1-7) were elucidated on the basis of spectroscopic data (high resolution (HR)-MS, one and two dimensional (1/2D)-NMR). PMID:27477665

  19. The β-Glucosidases Responsible for Bioactivation of Hydroxynitrile Glucosides in Lotus japonicus1[W

    PubMed Central

    Morant, Anne Vinther; Bjarnholt, Nanna; Kragh, Mads Emil; Kjærgaard, Christian Hauge; Jørgensen, Kirsten; Paquette, Suzanne Michelle; Piotrowski, Markus; Imberty, Anne; Olsen, Carl Erik; Møller, Birger Lindberg; Bak, Søren

    2008-01-01

    Lotus japonicus accumulates the hydroxynitrile glucosides lotaustralin, linamarin, and rhodiocyanosides A and D. Upon tissue disruption, the hydroxynitrile glucosides are bioactivated by hydrolysis by specific β-glucosidases. A mixture of two hydroxynitrile glucoside-cleaving β-glucosidases was isolated from L. japonicus leaves and identified by protein sequencing as LjBGD2 and LjBGD4. The isolated hydroxynitrile glucoside-cleaving β-glucosidases preferentially hydrolyzed rhodiocyanoside A and lotaustralin, whereas linamarin was only slowly hydrolyzed, in agreement with measurements of their rate of degradation upon tissue disruption in L. japonicus leaves. Comparative homology modeling predicted that LjBGD2 and LjBGD4 had nearly identical overall topologies and substrate-binding pockets. Heterologous expression of LjBGD2 and LjBGD4 in Arabidopsis (Arabidopsis thaliana) enabled analysis of their individual substrate specificity profiles and confirmed that both LjBGD2 and LjBGD4 preferentially hydrolyze the hydroxynitrile glucosides present in L. japonicus. Phylogenetic analyses revealed a third L. japonicus putative hydroxynitrile glucoside-cleaving β-glucosidase, LjBGD7. Reverse transcription-polymerase chain reaction analysis showed that LjBGD2 and LjBGD4 are expressed in aerial parts of young L. japonicus plants, while LjBGD7 is expressed exclusively in roots. The differential expression pattern of LjBGD2, LjBGD4, and LjBGD7 corresponds to the previously observed expression profile for CYP79D3 and CYP79D4, encoding the two cytochromes P450 that catalyze the first committed step in the biosyntheis of hydroxynitrile glucosides in L. japonicus, with CYP79D3 expression in aerial tissues and CYP79D4 expression in roots. PMID:18467457

  20. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers.

    PubMed

    Boyer, Jeanelle; Brown, Dan; Liu, Rui Hai

    2004-11-17

    Evidence suggests that regular consumption of fruits and vegetables may reduce the risk of chronic diseases, and phytochemicals from fruits and vegetables may be responsible for this health benefit. However, there is limited knowledge on the bioavailability of specific phytochemicals from whole fruits and vegetables. This study used Caco-2 cells to examine uptake of quercetin aglycon and quercetin 3-glucoside as purified compounds and from whole onion and apple peel extracts. Pure quercetin aglycon was absorbed by the Caco-2 cells in higher concentrations than quercetin 3-glucoside (p < 0.05). Caco-2 cells treated with quercetin 3-glucoside accumulated both quercetin 3-glucoside and quercetin. Caco-2 cells absorbed more onion quercetin aglycon than onion quercetin 3-glucoside (p < 0.05), and the percentage of onion quercetin absorbed was greater than that of pure quercetin, most likely due to enzymatic hydrolysis of quercetin 3-glucoside and other quercetin glucosides found in the onion by the Caco-2 cells. Caco-2 cells absorbed low levels of quercetin 3-glucoside from apple peel extracts, but quercetin aglycon absorption was not detected. Caco-2 cell homogenates demonstrated both lactase and glucosidase activities when incubated with lactose and quercetin 3-glucoside, respectively. This use of the Caco2 cell model appears to be a simple and useful system for studying bioavailability of whole food phytochemicals and may be used to assess differences in bioavailability between foods. PMID:15537334

  1. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers.

    PubMed

    Boyer, Jeanelle; Brown, Dan; Liu, Rui Hai

    2004-11-17

    Evidence suggests that regular consumption of fruits and vegetables may reduce the risk of chronic diseases, and phytochemicals from fruits and vegetables may be responsible for this health benefit. However, there is limited knowledge on the bioavailability of specific phytochemicals from whole fruits and vegetables. This study used Caco-2 cells to examine uptake of quercetin aglycon and quercetin 3-glucoside as purified compounds and from whole onion and apple peel extracts. Pure quercetin aglycon was absorbed by the Caco-2 cells in higher concentrations than quercetin 3-glucoside (p < 0.05). Caco-2 cells treated with quercetin 3-glucoside accumulated both quercetin 3-glucoside and quercetin. Caco-2 cells absorbed more onion quercetin aglycon than onion quercetin 3-glucoside (p < 0.05), and the percentage of onion quercetin absorbed was greater than that of pure quercetin, most likely due to enzymatic hydrolysis of quercetin 3-glucoside and other quercetin glucosides found in the onion by the Caco-2 cells. Caco-2 cells absorbed low levels of quercetin 3-glucoside from apple peel extracts, but quercetin aglycon absorption was not detected. Caco-2 cell homogenates demonstrated both lactase and glucosidase activities when incubated with lactose and quercetin 3-glucoside, respectively. This use of the Caco2 cell model appears to be a simple and useful system for studying bioavailability of whole food phytochemicals and may be used to assess differences in bioavailability between foods.

  2. The synthesis and antitumor activity of twelve galloyl glucosides.

    PubMed

    Li, Chang-Wei; Dong, Hua-Jin; Cui, Cheng-Bin

    2015-01-27

    Twelve galloyl glucosides 1-12, showing diverse substitution patterns with two or three galloyl groups, were synthesized using commercially available, low-cost D-glucose and gallic acid as starting materials. Among them, three compounds, methyl 3,6-di-O-galloyl-α-D-glucopyranoside (9), ethyl 2,3-di-O-galloyl-α-D-glucopyranoside (11) and ethyl 2,3-di-O-galloyl-β-D-glucopyranoside (12), are new compounds and other six, 1,6-di-O-galloyl-β-D-glucopyranose (1), 1,4,6-tri-O-galloyl-β-D-glucopyranose (2), 1,2-di-O-galloyl-β-D-glucopyranose (3), 1,3-di-O-galloyl-β-D-glucopyranose (4), 1,2,3-tri-O-galloyl-α-D-glucopyranose (6) and methyl 3,4,6-tri-O-galloyl-α-D-glucopyranoside (10), were synthesized for the first time in the present study. In in vitro MTT assay, 1-12 inhibited human cancer K562, HL-60 and HeLa cells with inhibition rates ranging from 64.2% to 92.9% at 100 μg/mL, and their IC50 values were determined to be varied in 17.2-124.7 μM on the tested three human cancer cell lines. In addition, compounds 1-12 inhibited murine sarcoma S180 cells with inhibition rates ranging from 38.7% to 52.8% at 100 μg/mL in the in vitro MTT assay, and in vivo antitumor activity of 1 and 2 was also detected in murine sarcoma S180 tumor-bearing Kunming mice using taxol as positive control.

  3. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats.

    PubMed

    Nagl, Veronika; Schwartz, Heidi; Krska, Rudolf; Moll, Wulf-Dieter; Knasmüller, Siegfried; Ritzmann, Mathias; Adam, Gerhard; Berthiller, Franz

    2012-09-18

    Deoxynivalenol-3-β-D-glucoside (D3G), a plant metabolite of the Fusarium mycotoxin deoxynivalenol (DON), might be hydrolyzed in the digestive tract of mammals, thus contributing to the total dietary DON exposure of individuals. Yet, D3G has not been considered in regulatory limits set for DON for foodstuffs due to the lack of in vivo data. The aim of our study was to evaluate whether D3G is reactivated in vivo by investigation of its metabolism in rats. Six Sprague-Dawley rats received water, DON (2.0 mg/kg body weight (b.w.)) and the equimolar amount of D3G (3.1 mg/kg b.w.) by gavage on day 1, 8 and 15, respectively. Urine and feces were collected for 48 h and analyzed for D3G, DON, deoxynivalenol-glucuronide (DON-GlcA) and de-epoxy deoxynivalenol (DOM-1) by a validated LC-tandem mass spectrometry (MS/MS) based biomarker method. After administration of D3G, only 3.7±0.7% of the given dose were found in urine in the form of analyzed analytes, compared to 14.9±5.0% after administration of DON, and only 0.3±0.1% were detected in the form of urinary D3G. The majority of administered D3G was recovered as DON and DOM-1 in feces. These results suggest that D3G is little bioavailable, hydrolyzed to DON during digestion, and partially converted to DOM-1 and DON-GlcA prior to excretion. Our data indicate that D3G is of considerably lower toxicological relevance than DON, at least in rats.

  4. Enzyme bread improvers affect the stability of deoxynivalenol and deoxynivalenol-3-glucoside during breadmaking.

    PubMed

    Vidal, Arnau; Ambrosio, Asier; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2016-10-01

    The stability of deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON-3-glucoside) during the breadmaking process was studied. Some enzymes used in the bakery industry were examined to evaluate their effects on DON and DON-3-glucoside. The level of DON in breads without added enzymes was reduced (17-21%). Similarly, the addition of cellulase, protease, lipase and glucose-oxidase did not modify this decreasing trend. The effect of xylanase and α-amylase on DON content depended on the fermentation temperature. These enzymes reduced the DON content by 10-14% at 45°C. In contrast, at 30°C, these enzymes increased the DON content by 13-23%. DON-3-glucoside levels decreased at the end of fermentation, with a final reduction of 19-48% when no enzymes were used. However, the presence of xylanase, α-amylase, cellulase and lipase resulted in bread with greater quantities of DON-3-glucoside when fermentation occurred at 30°C. The results showed that wheat bran and flour may contain hidden DON that may be enzymatically released during the breadmaking process when the fermentation temperature is close to 30°C. PMID:27132852

  5. [Research on the separation of limonoid glucosides by reversed-phase preparative high performance liquid chromatography].

    PubMed

    Tian, Q G; Dai, J; Ding, X L

    2000-03-01

    Obacunone-17-beta-D-glucopyranoside (OG) was isolated from the seeds of Citrus Sinensis Osbeck by using solvent extraction, classical polymer adsorption column separation and weak base anion ion-exchange separation, OG was finally purified by C18 reversed-phase preparative high performance liquid chromatography and was identified by thin-layer chromatography. The purity of OG was analyzed by analytical reversed-phase HPLC. At last the structure of OG was determined by 1H and 13C nuclear magnetic resonance spectrometry (NMR). In this work, the conditions of the reversed-phase preparative HPLC technique to purify limonoid glucosides was optimized. The reversed-phase preparative HPLC on a C18 column with a mobile phase of acidic acetonitrile-water (about 0.2% TFA, V/V) at pH 3 enabled the baseline separation of limonoid glucosides in the extract. The results show that OG is the predominant limonoid glucoside in the seeds of Citrus Sinensis Osbeck and nomilin glucoside is the second one. The results also show that the classical polymer adsorption column separation and weak base anion ion-exchange separation are effective for purifying limonoid glucosides.

  6. Enzyme bread improvers affect the stability of deoxynivalenol and deoxynivalenol-3-glucoside during breadmaking.

    PubMed

    Vidal, Arnau; Ambrosio, Asier; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2016-10-01

    The stability of deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON-3-glucoside) during the breadmaking process was studied. Some enzymes used in the bakery industry were examined to evaluate their effects on DON and DON-3-glucoside. The level of DON in breads without added enzymes was reduced (17-21%). Similarly, the addition of cellulase, protease, lipase and glucose-oxidase did not modify this decreasing trend. The effect of xylanase and α-amylase on DON content depended on the fermentation temperature. These enzymes reduced the DON content by 10-14% at 45°C. In contrast, at 30°C, these enzymes increased the DON content by 13-23%. DON-3-glucoside levels decreased at the end of fermentation, with a final reduction of 19-48% when no enzymes were used. However, the presence of xylanase, α-amylase, cellulase and lipase resulted in bread with greater quantities of DON-3-glucoside when fermentation occurred at 30°C. The results showed that wheat bran and flour may contain hidden DON that may be enzymatically released during the breadmaking process when the fermentation temperature is close to 30°C.

  7. Simultaneous determination of iridoid glycosides and flavanoids in Lamionphlomis rotate and its herbal preparation by a simple and rapid capillary zone electrophoresis method.

    PubMed

    Lü, Wenjuan; Li, Maoxing; Chen, Yonglei; Chen, Hongli; Chen, Xingguo

    2012-02-01

    Iridoid glycosides and flavanoids are two main effective components of Lamiophlomis rotata (Benth.) kudo. However, there is no method for simultaneous analysis of iridoid glycosides and flavanoids in L. rotata and its pharmaceutical preparations. A simple and rapid capillary zone electrophoresis (CZE) method was developed and validated for simultaneous determination of two iridoid glycosides (8-O-acetylshanzhiside methylester and 8-deoxyshanzhiside) and three flavanoids (apigenin, quercetin and luteolin) in L. rotata. Operational variables, such as the voltage, buffer concentration and pH were optimized, the final optimum separation condition was 10 mM sodium tetraborate-20 mM NaH(2) PO(4) (pH 8.5)-15% (v/v) methanol, 238 nm UV detection, 18 kV applied voltage. The linearity and the recovery of the proposed method were very satisfactory (correlation coefficients were 0.9994-0.9998 and the recoveries were 94.5-108.8% for the analytes) and the method allowed analytes in real samples to be determined within 9 min. The proposed CZE method can be used for quality control of iridoid glycosides and flavanoids in L. rotata and its herbal preparation.

  8. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis.

    PubMed

    Salim, Vonny; Yu, Fang; Altarejos, Joaquín; De Luca, Vincenzo

    2013-12-01

    Iridoids are a major group of biologically active molecules that are present in thousands of plant species, and one versatile iridoid, secologanin, is a precursor for the assembly of thousands of monoterpenoid indole alkaloids (MIAs) as well as a number of quinoline alkaloids. This study uses bioinformatics to screen large databases of annotated transcripts from various MIA-producing plant species to select candidate genes that may be involved in iridoid biosynthesis. Virus-induced gene silencing of the selected genes combined with metabolite analyses of silenced plants was then used to identify the 7-deoxyloganic acid 7-hydroxylase (CrDL7H) that is involved in the 3rd to last step in secologanin biosynthesis. Silencing of CrDL7H reduced secologanin levels by at least 70%, and increased the levels of 7-deoxyloganic acid to over 4 mg g(-1) fresh leaf weight compared to control plants in which this iridoid is not detected. Functional expression of this CrDL7H in yeast confirmed its biochemical activity, and substrate specificity studies showed its preference for 7-deoxyloganic acid over other closely related substrates. Together, these results suggest that hydroxylation precedes carboxy-O-methylation in the secologanin pathway in Catharanthus roseus.

  9. A study of the substance dependence effect of the ethanolic extract and iridoid-rich fraction from Valeriana jatamansi Jones in mice

    PubMed Central

    Yu, Lin; Ke-ke, Xu; Chao-yong, Chen; Rui-tong, Zhang; Ming, Lan; Shao-hua, Li; Ling-zhen, Pan; Tian-e, Zhang; Zhi-yong, Yan

    2015-01-01

    Background: Recently we found the ethanolic extract and iridoid-rich fraction from Valeriana jatamansi Jones, which is a traditional Chinese medicine exhibited anxiolytic properties. Objective: This study aims to the substance dependence effect of the ethanolic extract and iridoid-rich fraction. Materials and Methods: The study included two experiments: Mice were given orally with ethanolic extract for 12 weeks or iridoid-rich fraction for 16 weeks in experiment I and experiment II, respectively. Diazepam was used as a control drug and the normal mice groups were administered with 0.5% carboxymethyl cellulose Na in both experiments. All groups were administered twice daily. Natural withdrawal symptoms, withdrawal-induced body weight change, audiogenic tail-erection test (in experiment I), and pentylenetetrazol (PTZ)-induced convulsion test (in experiment II) were measured. Results: (1) Compared to normal group in both experiments, the diazepam-treated group exhibited obvious withdrawal symptoms of tail-erection, irritability, teeth chattering, etc; the body weight of them after withdrawal had a period of significant loss (P < 0.05 or P < 0.01); and the ratios of tail-erection and seizure in two experiments were improved significantly when mice were induced by mixer noise ringtone (experiment I) or PTZ (experiment II) (P < 0.05 or P < 0.01).(2) In experiment I and II, there were no significant differences between mice that received ethanolic extract or iridoid-rich fraction and normal group in terms of natural withdrawal symptoms and withdrawal-induced body weight change (P > 0.05); in audiogenic tail-erection test, it found that the significant difference compared with normal group was just in ethanolic extract 900 mg/kg dose group on week 8 (P < 0.05); in PTZ-induced convulsion test, mice in iridoid-rich fraction groups had a slightly tail-erection and seizure, all results of them were with no significant difference compare to normal mice (P > 0.05), while

  10. Purification and structure determination of glucosides of capsaicin and dihydrocapsaicin from various Capsicum fruits.

    PubMed

    Higashiguchi, Fumiharu; Nakamura, Hiroyasu; Hayashi, Hideo; Kometani, Takashi

    2006-08-01

    Two new glucosides, capsaicin-beta-D-glucopyranoside (1) and dihydrocapsaicin-beta-D-glucopyranoside (2), were discovered in the fruit of the Capsicum annuum cultivar 'High Heat'. They were sequentially purified by acetone extraction, n-hexane extraction, and acetonitrile extraction, followed by medium-pressure liquid chromatography and high-performance liquid chromatography performed on an octadecylsilane column. Their chemical structures were elucidated by proton nuclear magnetic resonance, carbon nuclear magnetic resonance, and hydrolysis with alpha- and beta-glucosidases. The glucosides were also detected in various pungent cultivars of C. annuum, Capsicum frutescens, and Capsicum chinense by liquid chromatography-mass spectrometry. However, they were not detected in nonpungent cultivars of C. annuum. Furthermore, a positive correlation was observed between the quantity of the capsaicinoids, capsaicin, and dihydrocapsaicin and their glucosides.

  11. General and Stereocontrolled Approach to the Chemical Synthesis of Naturally Occurring Cyanogenic Glucosides.

    PubMed

    Møller, Birger L; Olsen, Carl E; Motawia, Mohammed S

    2016-04-22

    An effective method for the chemical synthesis of cyanogenic glucosides has been developed as demonstrated by the synthesis of dhurrin, taxiphyllin, prunasin, sambunigrin, heterodendrin, and epiheterodendrin. O-Trimethylsilylated cyanohydrins were prepared and subjected directly to glucosylation using a fully acetylated glucopyranosyl fluoride donor with boron trifluoride-diethyl etherate as promoter to afford a chromatographically separable epimeric mixture of the corresponding acetylated cyanogenic glucosides. The isolated epimers were deprotected using a triflic acid/MeOH/ion-exchange resin system without any epimerization of the cyanohydrin function. The method is stereocontrolled and provides an efficient approach to chemical synthesis of other naturally occurring cyanogenic glucosides including those with a more complex aglycone structure.

  12. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs.

    PubMed

    Nagl, Veronika; Woechtl, Bettina; Schwartz-Zimmermann, Heidi Elisabeth; Hennig-Pauka, Isabel; Moll, Wulf-Dieter; Adam, Gerhard; Berthiller, Franz

    2014-08-17

    Plants can metabolize the Fusarium mycotoxin deoxynivalenol (DON) by forming the masked mycotoxin deoxynivalenol-3-β-D-glucoside (D3G). D3G might be cleaved during digestion, thus increasing the total DON burden of an individual. Due to a lack of in vivo data, D3G has not been included in the various regulatory limits established for DON so far. The aim of our study was to contribute to the risk assessment of D3G by determination of its metabolism in pigs. Four piglets received water, D3G (116 μg/kg b.w.) and the equimolar amount of DON (75 μg/kg b.w.) by gavage on day 1, 5 and 9 of the experiment, respectively. Additionally, 15.5 μg D3G/kg b.w. were administered intravenously on day 13. Urine and feces were collected for 24 h and analyzed for DON, D3G, deoxynivalenol-3-glucuronide (DON-3-GlcA), deoxynivalenol-15-GlcA (DON-15-GlcA) and deepoxy-deoxynivalenol (DOM-1) by UHPLC-MS/MS. After oral application of DON and D3G, in total 84.8±9.7% and 40.3±8.5% of the given dose were detected in urine, respectively. The majority of orally administered D3G was excreted in form of DON, DON-15-GlcA, DOM-1 and DON-3-GlcA, while urinary D3G accounted for only 2.6±1.4%. In feces, just trace amounts of metabolites were found. Intravenously administered D3G was almost exclusively excreted in unmetabolized form via urine. Data indicate that D3G is nearly completely hydrolyzed in the intestinal tract of pigs, while the toxin seems to be rather stable after systemic absorption. Compared to DON, the oral bioavailability of D3G and its metabolites seems to be reduced by a factor of up to 2, approximately.

  13. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore.

    PubMed

    Zagrobelny, Mika; Olsen, Carl Erik; Pentzold, Stefan; Fürstenberg-Hägg, Joel; Jørgensen, Kirsten; Bak, Søren; Møller, Birger Lindberg; Motawia, Mohammed Saddik

    2014-01-01

    Considering the staggering diversity of bioactive natural products present in plants, insects are only able to sequester a small number of phytochemicals from their food plants. The mechanisms of how only some phytochemicals are sequestered and how the sequestration process takes place remains largely unknown. In this study the model system of Zygaena filipendulae (Lepidoptera) and their food plant Lotus corniculatus is used to advance the knowledge of insect sequestration. Z. filipendulae larvae are dependent on sequestration of the cyanogenic glucosides linamarin and lotaustralin from their food plant, and have a much lower fitness if reared on plants without these compounds. This study investigates the fate of the cyanogenic glucosides during ingestion, sequestration in the larvae, and in the course of insect ontogeny. To this purpose, double-labeled linamarin and lotaustralin were chemically synthesized carrying two stable isotopes, a (2)H labeled aglucone and a (13)C labeled glucose moiety. In addition, a small amount of (14)C was incorporated into the glucose residue. The isotope-labeled compounds were applied onto cyanogenic L. corniculatus leaves that were subsequently presented to the Z. filipendulae larvae. Following ingestion by the larvae, the destiny of the isotope labeled cyanogenic glucosides was monitored in different tissues of larvae and adults at selected time points, using radio-TLC and LC-MS analyses. It was shown that sequestered compounds are taken up intact, contrary to earlier hypotheses where it was suggested that the compounds would have to be hydrolyzed before transport across the gut. The uptake from the larval gut was highly stereo selective as the β-glucosides were retained while the α-glucosides were excreted and recovered in the frass. Sequestered compounds were rapidly distributed into all analyzed tissues of the larval body, partly retained throughout metamorphosis and transferred into the adult insect where they were

  14. Further characterization and regulation of malonyl-coenzyme A: flavonoid glucoside malonyltransferases from parsley cell suspension cultures

    SciTech Connect

    Matern, U.; Feser, C.; Hammer, D.

    1983-10-01

    Two malonyltransferases, malonyl-CoA:flavone/flavonol 7-O-glucoside malonyltransferase and malonyl-CoA:flavonol 3-O-glucoside malonyltransferase, were purified to apparent homogeneity from uv-irradiated parsley cell cultures. Both purified enzymes appear to be specific for flavonoid glycosides. Additional malonyltransferases, active toward several phenol glucosides other than flavonoids, were present in partially purified 7-O-glucoside malonyltransferase preparations. Antibodies raised against the purified 3-O-glucoside malonyltransferase did not inhibit the activity of the 7-O-glucoside malonyltransferase over a wide antibody concentration range. Determination of the rate of synthesis in vivo of the 3-O-glucoside malonyltransferase after ultraviolet light-pulse induction of parsley cells revealed two maxima at 6 and 30 h, respectively. These results indicate that the induced changes in 3-O-glucoside malonyltransferase activity were the consequence of either a repeated change in the rate of synthesis of one enzyme species or changes in the synthesis rates of more than one enzyme species.

  15. Metabolic utilization of pyridoxine-beta-glucoside in rats: influence of vitamin B-6 status and route of administration

    SciTech Connect

    Trumbo, P.R.; Gregory, J.F. 3d.

    1988-11-01

    (3H)5'-O-(beta-D-glucopyranosyl) pyridoxine (PN-glucoside) and (14C)pyridoxine (PN) were administered orally or intraperitoneally to vitamin B-6-adequate or -deficient rats. Analysis of intestinal contents and feces indicated effective intestinal absorption of PN-glucoside relative to PN. There was greater retention of 14C than 3H in the liver and carcass regardless of the route of administration of the radiolabeled vitamins. There was no major difference in the relative distribution of 3H and 14C among the vitamin B-6 metabolites in the liver between the treatment groups, and no (3H)PN-glucoside was detected in any of the livers. For all groups, the majority of the 3H administered was detected in the urine within 24 h. Less excretion of both 3H and 14C in the urine was observed for the deficient rats. There was no major difference in the relative proportion of urinary (3H)PN-glucoside or (3H)4-PA between rats fed or injected with the radiolabeled vitamins. These results indicate that vitamin B-6 status influences the clearance of metabolites derived from PN and PN-glucoside, as well as the clearance of intact PN-glucoside. Vitamin B-6 status, however, has little or no effect on the utilization of PN-glucoside. This study also suggests that the intestine is the primary site of the limited conversion of PN-glucoside to biologically active PN in the rat.

  16. Genotoxic activity in vivo of the naturally occurring glucoside, cycasin, in the Drosophila wing spot test.

    PubMed

    Kawai, K; Furukawa, H; Hirono, I

    1995-03-01

    Cycasin, methylazoxymethanol-beta-glucoside, is a naturally occurring carcinogenic compound. The genotoxicity of cycasin was assayed in the Drosophila wing spot test. Cycasin induced small single and large single spots on feeding at 10 mumol/g medium. The presence of these spots indicates that cycasin is genotoxic in Drosophila melanogaster. Microorganisms which showed beta-glucosidase activity for cleaving cycasin to toxic aglycon were isolated from gut flora of the Drosophila larvae. Consequently, the Drosophila wing spot test would be useful for mutagenicity screening of other naturally occurring glucosides.

  17. N-Glucosides as human sodium-dependent glucose cotransporter 2 (hSGLT2) inhibitors.

    PubMed

    Yamamoto, Yasuo; Kawanishi, Eiji; Koga, Yuichi; Sakamaki, Shigeki; Sakamoto, Toshiaki; Ueta, Kiichiro; Matsushita, Yasuaki; Kuriyama, Chiaki; Tsuda-Tsukimoto, Minoru; Nomura, Sumihiro

    2013-10-15

    Inhibition of renal sodium-dependent glucose cotransporter 2 (SGLT2) increases urinary glucose excretion (UGE), and thus reduces blood glucose levels in hyperglycemia. A series of N-glucosides was synthesized for biological evaluation as human SGLT2 (hSGLT2) inhibitors. Among these compounds, N-glucoside 9d possessing an indole core structure showed good in vitro activity (IC50=7.1 nM against hSGLT2). Furthermore, 9d exhibited favorable in vivo potency with regard to UGE in rats based on good pharmacokinetic profiles. PMID:23999047

  18. [Study on antioxidant activity of two major secoiridoid glucosides in the fruits of Ligustrum lucidum Ait].

    PubMed

    Li, Yang; Zuo, Yan; Sun, Wen-Ji

    2007-05-01

    The antioxidant effects of two major secoiridoid glucosides (nuezhenoside and G13, separated in our laboratory) from Fructus Ligustri Lucidi had already been assayed though DPPH radicals, respectively. The results revealed that these ingredients showed significant antioxidant activities. A positive correlation existed between total content and antioxidant activity. G13 had shown higher antioxidant activity than nuezhenoside. It implied that the structure of secoiridoid glucoside was postitive to antioxidant activity. Otherwise, the results could promote the deep research of Furctus Ligustri Lucidi on antioxidant mechanism. PMID:17727057

  19. Identification of delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3'-O-beta-glucoside, a postulated intermediate in the biosynthesis of ternatin C5 in the blue petals of Clitoria ternatea (butterfly pea).

    PubMed

    Kazuma, Kohei; Kogawa, Koichiro; Noda, Naonobu; Kato, Naoki; Suzuki, Masahiko

    2004-11-01

    Ternatins are blue anthocyanins found in the petals of Clitoria ternata (butterfly pea). Among them, ternatin C5 (delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3',5'-di-O-beta-glucoside; 2) has the structure common to all the ternatins, which is characterized by its glucosylation pattern: a 3,3',5'-triglucosylated anthocyanidin. In the course of studying biosynthetic pathways of ternatins, the key enzymatic activities to produce ternatin C5 were discovered in a crude enzyme preparation from the petals of a blue petal line of C. ternatea. When this preparation was tested for activity against several delphinidin glycosides, delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3'-O-beta-glucoside (6), a postulated intermediate, was found in the reaction mixture, together with three known anthocyanins, which were spectroscopically structurally identified. As a result of structural identification, the following enzymatic activities were identified: UDP-glucose :delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3'-O-beta-glucoside 5'-O-glucosyltransferase (5'GT), UDP-glucose :delphinidin 3-O-(6''-O-malonyl)-beta-glucoside 3'-O-glucosyltransferase (3'GT), UDP-glucose :delphinidin 3-O-glucosyltransferase, and malonyl-CoA :delphinidin 3-O-beta-glucoside 6''-malonyltransferase. In a mauve petal line, which did not accumulate ternatins but delphinidin 3-O-(6''-O-malonyl)-beta-glucoside in its petal, there were neither 5'GT nor 3'GT activities. Thus, the early biosynthetic pathway of ternatins may be characterized by the stepwise transfer of two glucose residues to 3'- and 5'-position of delphinidin 3-O-(6''-O-malonyl)-beta-glucoside (1; Scheme) from UDP-glucose. PMID:17191814

  20. Demonstration of long-chain n-alkyl caffeates and delta7-steryl glucosides in the bark of Acacia species by gas chromatography-mass spectrometry.

    PubMed

    Freire, Carmen S R; Silvestre, Armando J D; Neto, Carlos Pascoal

    2007-01-01

    The GC-MS identification of several abundant long-chain aliphatic n-alkyl caffeates, together with other phydroxycinnamic acid esters, in the dichloromethane extracts of the bark of Acacia dealbata and A. melanoxylon, is reported. In addition, the unambiguous differentiation between two delta7-steryl glucosides (namely, spinasteryl glucoside and dihydrospinasteryl glucosides) and the homologous delta5-steryl glucosides was achieved based on the EI-MS fragmentation features of their trimethylsilyl derivatives. PMID:17439016

  1. Purification and functional characterization of the first stilbene glucoside-specific β-glucosidase isolated from Lactobacillus kimchi.

    PubMed

    Ko, Jin-A; Park, J Y; Kwon, H J; Ryu, Y B; Jeong, H J; Park, S J; Kim, C Y; Oh, H M; Park, C S; Lim, Y H; Kim, D; Rho, M C; Lee, W S; Kim, Y M

    2014-12-01

    This study aimed to develop viable enzymes for bioconversion of resveratrol-glucoside into resveratrol. Out of 13 bacterial strains tested, Lactobacillus kimchi JB301 could completely convert polydatin into resveratrol. The purified enzyme had an optimum temperature of 30-40°C and optimum pH of pH 5.0 against polydatin. This enzyme showed high substrate specificities towards different substrates in the following order: isorhaponticin>polydatin>mulberroside A>oxyresveratrol-3-O-glucoside. Additionally, it rarely hydrolyzed astringin and desoxyrhaponticin. Based on these catalytic specificities, we suggest this enzyme be named stilbene glucoside-specific β-glucosidase. Furthermore, polydatin extracts from Polygonum cuspidatum were successfully converted to resveratrol with a high yield (of over 99%). Stilbene glucoside-specific β-glucosidase is the first enzyme isolated from lactic acid bacteria capable of bio-converting various stilbene glucosides into stilbene. PMID:25442950

  2. Purification and functional characterization of the first stilbene glucoside-specific β-glucosidase isolated from Lactobacillus kimchi.

    PubMed

    Ko, Jin-A; Park, J Y; Kwon, H J; Ryu, Y B; Jeong, H J; Park, S J; Kim, C Y; Oh, H M; Park, C S; Lim, Y H; Kim, D; Rho, M C; Lee, W S; Kim, Y M

    2014-12-01

    This study aimed to develop viable enzymes for bioconversion of resveratrol-glucoside into resveratrol. Out of 13 bacterial strains tested, Lactobacillus kimchi JB301 could completely convert polydatin into resveratrol. The purified enzyme had an optimum temperature of 30-40°C and optimum pH of pH 5.0 against polydatin. This enzyme showed high substrate specificities towards different substrates in the following order: isorhaponticin>polydatin>mulberroside A>oxyresveratrol-3-O-glucoside. Additionally, it rarely hydrolyzed astringin and desoxyrhaponticin. Based on these catalytic specificities, we suggest this enzyme be named stilbene glucoside-specific β-glucosidase. Furthermore, polydatin extracts from Polygonum cuspidatum were successfully converted to resveratrol with a high yield (of over 99%). Stilbene glucoside-specific β-glucosidase is the first enzyme isolated from lactic acid bacteria capable of bio-converting various stilbene glucosides into stilbene.

  3. Structural determination of a nivalenol glucoside and development of an analytical method for the simultaneous determination of nivalenol and deoxynivalenol, and their glucosides, in wheat.

    PubMed

    Yoshinari, Tomoya; Sakuda, Shohei; Furihata, Kazuo; Furusawa, Hiroko; Ohnishi, Takahiro; Sugita-Konishi, Yoshiko; Ishizaki, Naoto; Terajima, Jun

    2014-02-01

    Trichothecene mycotoxins such as nivalenol and deoxynivalenol frequently contaminate foodstuffs. Recently, several trichothecene glucosides have been found in trichothecene-contaminated foods, and information about their chemistry, toxicity, and occurrence is required. In this study, a glucoside of nivalenol was isolated from nivalenol-contaminated wheat and was identified as nivalenol-3-O-β-D-glucopyranoside. Analytical methods using a multifunctional column or an immunoaffinity column have been developed for the simultaneous determination of nivalenol, nivalenol-3-O-β-D-glucopyranoside, deoxynivalenol, and deoxynivalenol-3-O-β-D-glucopyranoside in wheat. The methods were validated in a single laboratory, and recovery from wheat samples spiked at four levels ranged between 86.4 and 103.5% for the immunoaffinity column cleanup. These mycotoxins in contaminated wheat samples were quantitated by the validated method. Nivalenol-3-O-β-D-glucopyranoside was detected in the nivalenol-contaminated wheat, and the percentage of nivalenol-3-O-β-D-glucopyranoside to nivalenol ranged from 12 to 27%. This result indicates that the analytical method developed in this study is useful for obtaining data concerning the state and level of food contamination by nivalenol, deoxynivalenol, and their glucosides.

  4. Iridoids from Fraxinus excelsior with adipocyte differentiation-inhibitory and PPARalpha activation activity.

    PubMed

    Bai, Naisheng; He, Kan; Ibarra, Alvin; Bily, Antoine; Roller, Marc; Chen, Xiaozhuo; Rühl, Ralph

    2010-01-01

    Two new secoiridoid glucosides, excelsides A (1) and B (2), were isolated from the seeds of Fraxinus excelsior. Their structures were elucidated as (2S,4S,3E)-methyl 3-ethylidene-4-(2-methoxy-2-oxoethyl)-2-[(6-O-beta-D-glucopyranosyl-beta-d-glucopyranosyl)oxy]-3,4-dihydro-2H-pyran-5-carboxylate and (2S,4S,3E)-methyl 3-ethylidene-4-{2-[2-(4-hydroxyphenyl)ethyl]oxy-2-oxoethyl}-2-[(6-O-beta-d-glucopyranosyl-beta-d-glucopyranosyl)oxy]-3,4-dihydro-2H-pyran-5-carboxylate, respectively, on the basis of NMR and MS data. Eight known compounds were identified as nuzhenide (3), GI3 (4), GI5 (5), ligstroside (6), oleoside 11-methyl ester (7), oleoside dimethyl ester (8), 1'''-O-beta-D-glucosylformoside (9), and salidroside (10). Compounds 1-9 inhibited adipocyte differentiation in 3T3-L1 cells. Dilutions of the aqueous extract of F. excelsior (1:10,000) as well as compounds 2, 3, 4, 5, and 8 activated the peroxisome proliferator-mediated receptor-alpha (PPARalpha) reporter cell system in the range of 10(-4) M, compared to 10(-7)-10(-8) M for the synthetic PPARalpha activator, WY14,643. Both biological activity profiles support the hypothesis that inhibition of adipocyte differentiation and PPARalpha-mediated mechanisms might be relevant pathways for the antidiabetic activity of F. excelsior extract.

  5. Simultaneous extraction of bioactive limonoid aglycones and glucoside from Citrus aurantium L. using hydrotropy.

    PubMed

    Dandekar, Deepak V; Jayaprakasha, Guddadarangavvanahally K; Patil, Bhimanagouda S

    2008-01-01

    Citrus limonoids were demonstrated to possess potential biological activities in reducing the risk of certain diseases. Limonoids are present in citrus fruits in the form of aglycones and glucosides. At present, limonoid aglycones and limonoid glucosides are extracted in multiple steps using different solvents. In order to understand their potential bioactivity, it may be beneficial to isolate and purify these compounds using environment friendly methods. A new method of extraction and purification of limonoids was established using a hydrotrope polystyrene adsorbent resin. Extraction of aglycones and glucosides was achieved in a single step, using an aqueous solution of sodium cumene sulphonate (Na-CuS). Sour orange (Citrus aurantium L.) seed powder was extracted with 2 M Na-CuS solution at 45 degrees C for 6 h. The filtered extract was diluted with water and loaded on an SP 700 adsorbent column. The column was washed with distilled water to remove the hydrotrope and then eluted using water and methanol in different compositions to obtain three compounds. The structures of the isolated compounds were confirmed by NMR spectroscopy as deacetyl nomilinic acid glucoside (DNAG), deacetyl nomilin (DAN) and limonin (LIM).

  6. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.).

    PubMed

    Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won

    2015-07-01

    Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4'-diglucoside and quercetin-4'-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products.

  7. Serotonin 5-O-β-Glucoside and Its N-Methylated Forms in Citrus Genus Plants.

    PubMed

    Servillo, Luigi; Giovane, Alfonso; Casale, Rosario; D'Onofrio, Nunzia; Ferrari, Giovanna; Cautela, Domenico; Balestrieri, Maria Luisa; Castaldo, Domenico

    2015-04-29

    Citrus genus is characterized by a specific presence of indole metabolites deriving from the N-methylation of tryptamine and its hydroxylated form, 5-hydroxytryptamine (serotonin), which are likely involved in plant defense mechanisms. In this study, we identified for the first time the occurrence in Citrus plants of serotonin 5-O-β-glucoside and all its N-methylated derivatives, that is, N-methylserotonin 5-O-β-glucoside, N,N-dimethylserotonin (bufotenine) 5-O-β-glucoside, and N,N,N-trimethylserotonin (bufotenidine) 5-O-β-glucoside. The identification of the glucosylated compounds was based on mass spectrometric studies, hydrolysis by glucosidase, and in some cases, comparison to authentic compounds. Beside leaves, the distribution of the glucosylated forms and their aglycones in some Citrus species was evaluated in flavedo, albedo, juice, and seeds. The simultaneous presence of serotonin and its N-methylated derivatives, together with the corresponding glucosylated forms, is consistent with the occurrence of a metabolic pathway, specific for Citrus, aimed at potentiating the defensive response to biotic stress through the optimization of the production and use of the most toxic of such metabolites. PMID:25893818

  8. Water-soluble constituents of caraway: aromatic compound, aromatic compound glucoside and glucides.

    PubMed

    Matsumura, Tetsuko; Ishikawa, Toru; Kitajima, Junichi

    2002-10-01

    From the water-soluble portion of the methanolic extract of caraway (fruit of Carum carvi L.), an aromatic compound, an aromatic compound glucoside and a glucide were isolated together with 16 known compounds. Their structures were clarified as 2-methoxy-2-(4'-hydroxyphenyl)ethanol, junipediol A 2-O-beta-D-glucopyranoside and L-fucitol, respectively.

  9. A new coumarin glucoside, coumarins and alkaloids from Ruta corsica roots.

    PubMed

    Bertrand, Cédric; Fabre, Nicolas; Moulis, Claude

    2004-03-01

    A new coumarin glucoside, 3'(S)-hydroxy-2',2'-dimethyl-dihydropyranocoumarin-8-beta-d-glucopyranosyl, one coumarin, five furanocoumarins, three bicoumarins, three quinoline alkaloids and one sinapoyl sucrose derivative have been isolated from the roots of Ruta corsica.

  10. [Preparation of soybean isoflavone glucosides by reversed-phase high performance liquid chromatography].

    PubMed

    Yang, Xuedong; Deng, Zhicheng; Wang, Jing; Ding, Mingyu

    2006-07-01

    A method was established for the isolation of soybean isoflavone glucosides from the total isoflavone extracts of soybean using preparative reversed-phase high performance liquid chromatography (RP-HPLC). The total isoflavone extracts were separated into four parts by solvent extraction, those are the ethyl acetate extract, butanol extract, precipitate (D4), and the remaining aqueous phase. The part D4 containing soybean isoflavone glucosides was acquired and subjected to preparative HPLC for the isolation of target components. A preparative Nova-Pak HR C18 column (100 mm x 25 mm i. d. , 6 microm) was used in the preparation process. By isocratic elution with methanol-0.1% aqueous acetic acid (23:77, v/v) as the mobile phase at a flow rate of 20 mL/min, followed by concentration and desalination, three soybean isoflavone glucosides were obtained and subsequently identified by mass spectrometry as daidzin, glycitin, and genistin. HPLC analysis showed that the purities of the three soybean isoflavone glucosides were all higher than 99%.

  11. Serotonin 5-O-β-Glucoside and Its N-Methylated Forms in Citrus Genus Plants.

    PubMed

    Servillo, Luigi; Giovane, Alfonso; Casale, Rosario; D'Onofrio, Nunzia; Ferrari, Giovanna; Cautela, Domenico; Balestrieri, Maria Luisa; Castaldo, Domenico

    2015-04-29

    Citrus genus is characterized by a specific presence of indole metabolites deriving from the N-methylation of tryptamine and its hydroxylated form, 5-hydroxytryptamine (serotonin), which are likely involved in plant defense mechanisms. In this study, we identified for the first time the occurrence in Citrus plants of serotonin 5-O-β-glucoside and all its N-methylated derivatives, that is, N-methylserotonin 5-O-β-glucoside, N,N-dimethylserotonin (bufotenine) 5-O-β-glucoside, and N,N,N-trimethylserotonin (bufotenidine) 5-O-β-glucoside. The identification of the glucosylated compounds was based on mass spectrometric studies, hydrolysis by glucosidase, and in some cases, comparison to authentic compounds. Beside leaves, the distribution of the glucosylated forms and their aglycones in some Citrus species was evaluated in flavedo, albedo, juice, and seeds. The simultaneous presence of serotonin and its N-methylated derivatives, together with the corresponding glucosylated forms, is consistent with the occurrence of a metabolic pathway, specific for Citrus, aimed at potentiating the defensive response to biotic stress through the optimization of the production and use of the most toxic of such metabolites.

  12. Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides.

    PubMed

    Wiczkowski, Wieslaw; Romaszko, Jerzy; Bucinski, Adam; Szawara-Nowak, Dorota; Honke, Joanna; Zielinski, Henryk; Piskula, Mariusz K

    2008-05-01

    The lipophilic character of quercetin suggests that it can cross enterocyte membranes via simple diffusion. Therefore, it should be more bioavailable than its glucosides, which require preliminary hydrolysis or active transport for absorption. However, the published human studies show that quercetin is less bioavailable than its glucosides. Assuming that low bioavailability of quercetin aglycone provided to humans as a pure substance is the result of its low solubility in the digestive tract, we studied its bioavailability from dietary sources in which quercetin was dispersed in the food matrix. In a randomized crossover study, 9 volunteers took a single dose of either shallot flesh (99.2% quercetin glucosides and 0.8% quercetin aglycone) or dry shallot skin (83.3% quercetin aglycone and 16.7% quercetin glucosides), providing 1.4 mg quercetin per kg of body weight. Blood samples were collected before and after consumption of shallot preparations. Plasma quercetin was measured on HPLC with electrochemical detection after plasma enzymatic treatment. The maximum plasma quercetin concentration of 1.02 +/- 0.13 micromol/L was reached at 2.33 +/- 0.50 h after shallot flesh consumption compared with 3.95 +/- 0.62 micromol/L at 2.78 +/- 0.15 h after dry skin consumption. The area under the concentration-time curve after dry skin consumption was 47.23 +/- 7.53 micromol x h(-1) x L(-1) and was significantly higher than that after shallot flesh intake (22.23 +/- 2.32 micromol x h(-1) x L(-1)). When provided along with dietary sources, quercetin aglycone is more bioavailable than its glucosides in humans. Results point to the food matrix as a key factor.

  13. Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides.

    PubMed

    Wiczkowski, Wieslaw; Romaszko, Jerzy; Bucinski, Adam; Szawara-Nowak, Dorota; Honke, Joanna; Zielinski, Henryk; Piskula, Mariusz K

    2008-05-01

    The lipophilic character of quercetin suggests that it can cross enterocyte membranes via simple diffusion. Therefore, it should be more bioavailable than its glucosides, which require preliminary hydrolysis or active transport for absorption. However, the published human studies show that quercetin is less bioavailable than its glucosides. Assuming that low bioavailability of quercetin aglycone provided to humans as a pure substance is the result of its low solubility in the digestive tract, we studied its bioavailability from dietary sources in which quercetin was dispersed in the food matrix. In a randomized crossover study, 9 volunteers took a single dose of either shallot flesh (99.2% quercetin glucosides and 0.8% quercetin aglycone) or dry shallot skin (83.3% quercetin aglycone and 16.7% quercetin glucosides), providing 1.4 mg quercetin per kg of body weight. Blood samples were collected before and after consumption of shallot preparations. Plasma quercetin was measured on HPLC with electrochemical detection after plasma enzymatic treatment. The maximum plasma quercetin concentration of 1.02 +/- 0.13 micromol/L was reached at 2.33 +/- 0.50 h after shallot flesh consumption compared with 3.95 +/- 0.62 micromol/L at 2.78 +/- 0.15 h after dry skin consumption. The area under the concentration-time curve after dry skin consumption was 47.23 +/- 7.53 micromol x h(-1) x L(-1) and was significantly higher than that after shallot flesh intake (22.23 +/- 2.32 micromol x h(-1) x L(-1)). When provided along with dietary sources, quercetin aglycone is more bioavailable than its glucosides in humans. Results point to the food matrix as a key factor. PMID:18424596

  14. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system.

    PubMed

    Zagrobelny, Mika; Møller, Birger Lindberg

    2011-09-01

    Cyanogenic glucosides are important components of plant defense against generalist herbivores due to their bitter taste and the release of toxic hydrogen cyanide upon tissue disruption. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their own predator defense. Burnet moths (Zygaena) sequester the cyanogenic glucosides linamarin and lotaustralin from their food plants (Fabaceae) and, in parallel, are able to carry out de novo synthesis of the very same compounds. The ratio and content of cyanogenic glucosides is tightly regulated in the different stages of the Zygaena filipendulae lifecycle and the compounds play several important roles in addition to defense. The transfer of a nuptial gift of cyanogenic glucosides during mating of Zygaena has been demonstrated as well as the possible involvement of hydrogen cyanide in male assessment and nitrogen metabolism. As the capacity to de novo synthesize cyanogenic glucosides was developed independently in plants and insects, the great similarities of the pathways between the two kingdoms indicate that cyanogenic glucosides are produced according to a universal route providing recruitment of the enzymes required. Pyrosequencing of Z. filipendulae larvae de novo synthesizing cyanogenic glucosides served to provide a set of good candidate genes, and demonstrated that the genes encoding the pathway in plants and Z. filipendulae are not closely related phylogenetically. Identification of insect genes involved in the biosynthesis and turn-over of cyanogenic glucosides will provide new insights into biological warfare as a determinant of co-evolution between plants and insects.

  15. Profiling of components and validated determination of iridoids in Gardenia Jasminoides Ellis fruit by a high-performance-thin-layer- chromatography/mass spectrometry approach.

    PubMed

    Coran, Silvia A; Mulas, Stefano; Vasconi, Alessio

    2014-01-17

    A novel method was set up with the aim to obtain a simultaneous cross comparative evaluation of different Gardenia Jasminoides Ellis fruits by the HPTLC fingerprint approach. The main components among the iridoid, hydroxycinnamic derivative and crocin classes were identified by TLC-MS ancillary techniques. The iridoids geniposide, gardenoside and genepin-1-β-d-gentiobioside were also quantitated by densitometric scanning at 240nm. LiChrospher HPTLC Silica gel 60 RP-18 W F254, 20cm×10cm plates with acetonitrile: formic acid 0.1% (40:60 v/v) as the mobile phase was used. The method was validated giving rise to a dependable and high throughput procedure well suited to routine applications. Iridoids were quantified in the range of 240-1140ng with RSD of repeatability and intermediate precision between 0.9-2.5% and accuracy with bias 1.6-2.6%. The method was tested on six commercial Gardenia Jasminoides fruit samples.

  16. Profiling of components and validated determination of iridoids in Gardenia Jasminoides Ellis fruit by a high-performance-thin-layer- chromatography/mass spectrometry approach.

    PubMed

    Coran, Silvia A; Mulas, Stefano; Vasconi, Alessio

    2014-01-17

    A novel method was set up with the aim to obtain a simultaneous cross comparative evaluation of different Gardenia Jasminoides Ellis fruits by the HPTLC fingerprint approach. The main components among the iridoid, hydroxycinnamic derivative and crocin classes were identified by TLC-MS ancillary techniques. The iridoids geniposide, gardenoside and genepin-1-β-d-gentiobioside were also quantitated by densitometric scanning at 240nm. LiChrospher HPTLC Silica gel 60 RP-18 W F254, 20cm×10cm plates with acetonitrile: formic acid 0.1% (40:60 v/v) as the mobile phase was used. The method was validated giving rise to a dependable and high throughput procedure well suited to routine applications. Iridoids were quantified in the range of 240-1140ng with RSD of repeatability and intermediate precision between 0.9-2.5% and accuracy with bias 1.6-2.6%. The method was tested on six commercial Gardenia Jasminoides fruit samples. PMID:24365117

  17. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus

    PubMed Central

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O’Connor, Sarah E.; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-01-01

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  18. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus.

    PubMed

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O'Connor, Sarah E; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-06-30

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix-loop-helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures.

  19. Exclusive accumulation of Z-isomers of monolignols and their glucosides in bark of Fagus grandifolia

    NASA Technical Reports Server (NTRS)

    Lewis, N. G.; Inciong, E. J.; Ohashi, H.; Towers, G. H.; Yamamoto, E.

    1988-01-01

    In addition to Z-coniferyl and Z-sinapyl alcohols, bark extracts of Fagus grandifolia also contain significant amounts of the glucosides, Z-coniferin, Z-isoconiferin (previously called faguside) and Z-syringin. The corresponding E-isomers of these glucosides do not accumulate to a detectable level. The accumulation of the Z-isomers suggests that either they are not lignin precursors or that they are reservoirs of monolignols for subsequent lignin biosynthesis; it is not possible to distinguish between these alternatives. The co-occurrence of Z-coniferin and Z-isoconiferin demonstrate that glucosylation of monolignols can occur at either the phenolic or the allylic hydroxyl groups.

  20. Effects of caffeoyl conjugates of isoprenyl-hydroquinone glucoside and quinic acid on leukocyte function.

    PubMed

    Góngora, Luis; Giner, Rosa María; Máñez, Salvador; Recio, María del Carmen; Schinella, Guillermo; Ríos, José Luis

    2002-11-01

    The activity of three prenylhydroquinone glucosides (1-3) and four caffeoylquinic esters (4-7), obtained from Phagnalon rupestre, on elastase release, myeloperoxidase activity and superoxide and leukotriene B(4) production from polymorphonuclear leukocytes was determined. 4,5-Dicaffeoylquinic acid strongly inhibited elastase release with an IC(50) value of 4.8 microM. Methylated caffeoylquinic derivatives were the most potent inhibitors of myeloperoxidase (IC(50) near 60 microM), whereas both methylated and free carboxyl isomers inhibited superoxide production with similar potency (IC(50) between 27 and 42 microM). The monocaffeoyl conjugate of prenylhydroquinone glucoside (3), the most potent inhibitor of leukotriene B(4) production (IC(50) = 33 microM), possesses a mixed hydroquinone-caffeoyl character that could be considered as a potential anti-inflammatory entity.

  1. Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst.

    PubMed

    Dora, Sambha; Bhaskar, Thallada; Singh, Rawel; Naik, Desavath Viswanatha; Adhikari, Dilip Kumar

    2012-09-01

    An amorphous carbon based catalyst was prepared by sulfonation of the bio-char obtained from fast pyrolysis (N(2) atm; ≈ 550°C) of biomass. The sulfonated carbon catalyst contained high acidity of 6.28 mmol/g as determined by temperature programmed desorption of ammonia of sulfonated carbon catalyst and exhibited high catalytic performance for the hydrolysis of cellulose. Amorphous carbon based catalyst containing -SO(3)H groups was successfully tested and the complete conversion of cellulose in methanol at moderate temperatures with high yields ca. ≥ 90% of α, β-methyl glucosides in short reaction times was achieved. The methyl glucosides formed in methanol are more stable for further conversion than the products formed in water. The carbon catalyst was demonstrated to be stable for five cycles with slight loss in catalytic activity. The utilization of bio-char as a sulfonated carbon catalyst provides a green and efficient process for cellulose conversion. PMID:22776237

  2. Hepatoprotective activity of twelve novel 7'-hydroxy lignan glucosides from Arctii Fructus.

    PubMed

    Yang, Ya-Nan; Huang, Xiao-Ying; Feng, Zi-Ming; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2014-09-17

    Twelve novel 7'-hydroxy lignan glucosides (1-12), including two benzofuran-type neolignans, two 8-O-4' neolignans, two dibenzylbutyrolactone lignans, and six tetrahydrofuranoid lignans, together with six known lignan glucosides (13-18), were isolated from the fruit of Arctium lappa L. (Asteraceae), commonly known as Arctii Fructus. Their structures were elucidated using spectroscopy (1D and 2D NMR, MS, IR, ORD, and UV) and on the basis of chemical evidence. The absolute configurations of compounds 1-12 were confirmed using rotating frame nuclear overhauser effect spectroscopy (ROESY), the circular dichroic (CD) exciton chirality method, and Rh2(OCOCF3)4-induced CD spectrum analysis. All of the isolated compounds were tested for hepatoprotective effects against D-galactosamine-induced cytotoxicity in HL-7702 hepatic cells. Compounds 1, 2, 7-12, and 17 showed significantly stronger hepatoprotective activity than the positive control bicyclol at a concentration of 1 × 10(-5) M.

  3. Hepatoprotective activity of twelve novel 7'-hydroxy lignan glucosides from Arctii Fructus.

    PubMed

    Yang, Ya-Nan; Huang, Xiao-Ying; Feng, Zi-Ming; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2014-09-17

    Twelve novel 7'-hydroxy lignan glucosides (1-12), including two benzofuran-type neolignans, two 8-O-4' neolignans, two dibenzylbutyrolactone lignans, and six tetrahydrofuranoid lignans, together with six known lignan glucosides (13-18), were isolated from the fruit of Arctium lappa L. (Asteraceae), commonly known as Arctii Fructus. Their structures were elucidated using spectroscopy (1D and 2D NMR, MS, IR, ORD, and UV) and on the basis of chemical evidence. The absolute configurations of compounds 1-12 were confirmed using rotating frame nuclear overhauser effect spectroscopy (ROESY), the circular dichroic (CD) exciton chirality method, and Rh2(OCOCF3)4-induced CD spectrum analysis. All of the isolated compounds were tested for hepatoprotective effects against D-galactosamine-induced cytotoxicity in HL-7702 hepatic cells. Compounds 1, 2, 7-12, and 17 showed significantly stronger hepatoprotective activity than the positive control bicyclol at a concentration of 1 × 10(-5) M. PMID:25180661

  4. Biosynthesis of isoxazolin-5-one and 3-nitropropanoic acid containing glucosides in juvenile Chrysomelina.

    PubMed

    Becker, Tobias; Ploss, Kerstin; Boland, Wilhelm

    2016-07-14

    Stable-isotope-labeled precursors were used to establish the biosynthetic pathway leading from β-alanine towards isoxazolin-5-one glucoside 1 and its 3-nitropropanoate (3-NPA) ester 2 in Chrysomelina larvae. Both structural elements originate from sequestered plant-derived β-alanine or from propanoyl-CoA that is derived from the degradation of some essential amino acids, e.g. valine. β-Alanine is converted into 3-NPA and isoxazolinone 5 by consecutive oxidations of the amino group of β-Ala. Substituting the diphospho group of α-UDP-glucose with 5 generates the isoxazolin-5-one glucoside 1, which serves in the circulating hemolymph of the larva as a platform for esterification with 3-nitropropanoyl-CoA. The pathway was validated with larvae of Phaedon cochleariae, Chrysomela populi as well as Gastrophysa viridula. PMID:27272952

  5. Purunusides A-C, alpha-glucosidase inhibitory homoisoflavone glucosides from Prunus domestica.

    PubMed

    Kosar, Shaheen; Fatima, Itrat; Mahmood, Azhar; Ahmed, Rehana; Malik, Abdul; Talib, Sumaira; Chouhdary, Muhammad Iqbal

    2009-12-01

    Purunusides A-C (1-3), new homoisoflavone glucosides together with the known compounds beta-sitosterol (4) and 6,7-methylenedioxy-8-methoxycoumarin (5) have been isolated from n-butanol and ethyl acetate soluble fractions of Prunus domestica. Their structures were assigned on the basis of spectral studies. The compounds 1-3 showed potent inhibitory activity against the enzyme alpha-glucosidase.

  6. New isopimarane diterpene and new cineole type glucoside from Nepeta prattii.

    PubMed

    Hou, Zhen-Fu; Tu, Yong-Qiang; Li, Yu

    2002-04-01

    Together with sixteen known compounds, a new isopimarane diterpene (prattol) and a new cineole type glucoside were isolated from Nepeta prattii. Their structures were elucidated on the basis of spectral methods as isopimar-15-en-3 beta,8 beta,20-triol, and (1R, 2R, 4S)-1,8-epoxy-p-methan-2-O-beta-D-glucopyranosyl(1-->6)-beta- D-glucopyranoside.

  7. Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus.

    PubMed

    Chiu, Hsi-Ho; Hsieh, Yin-Cheng; Chen, Ya-Huei; Wang, Hsin-Ying; Lu, Chia-Yu; Chen, Chun-Jung; Li, Yaw-Kuen

    2016-10-01

    Glycosyltransferase-1 from Bacillus cereus (BcGT1) catalyzes a reaction that transfers a glucosyl moiety to flavonoids, such as quercetin, kaempferol, and myricetin. The enzymatic glucosidation shows a broad substrate specificity when the reaction is catalyzed by wild-type BcGT1. Preliminary assays demonstrated that the F240A mutant significantly improves the regioselectivity of enzymatic glucosidation toward quercetin. To unveil and further to control the catalytic function of BcGT1, mutation of F240 to other amino acids, such as C, E, G, R, Y, W, and K, was performed. Among these mutants, F240A, F240G, F240R, and F240K greatly altered the regioselectivity. The quercetin-3-O-glucoside, instead of quercetin-7-O-glucoside as for the wild-type enzyme, was obtained as the major product. Among these mutants, F240R showed nearly 100 % product specificity but only retained 25 % catalytic efficiency of wild-type enzyme. From an inspection of the protein structure, we found two other amino acids, F132 and F138, together with F240, are likely to form a hydrophobic binding region, which is sufficiently spacious to accommodate substrates with varied aromatic moieties. Through the replacement of a phenylalanine by a tyrosine residue in the substrate-binding region, the mutants may be able to fix the orientation of flavonoids, presumably through the formation of a hydrogen bond between substrates and mutants. Multiple mutants-F240R_F132Y, F240R_F138Y, and F240R_F132Y_F138Y-were thus constructed for further investigation. The multiple points of mutants not only maintained the high product specificity but also significantly improved the catalytic efficiency, relative to F240R. The same product specificity was obtained when kaempferol and myricetin were used as a substrate. PMID:27198725

  8. Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus.

    PubMed

    Chiu, Hsi-Ho; Hsieh, Yin-Cheng; Chen, Ya-Huei; Wang, Hsin-Ying; Lu, Chia-Yu; Chen, Chun-Jung; Li, Yaw-Kuen

    2016-10-01

    Glycosyltransferase-1 from Bacillus cereus (BcGT1) catalyzes a reaction that transfers a glucosyl moiety to flavonoids, such as quercetin, kaempferol, and myricetin. The enzymatic glucosidation shows a broad substrate specificity when the reaction is catalyzed by wild-type BcGT1. Preliminary assays demonstrated that the F240A mutant significantly improves the regioselectivity of enzymatic glucosidation toward quercetin. To unveil and further to control the catalytic function of BcGT1, mutation of F240 to other amino acids, such as C, E, G, R, Y, W, and K, was performed. Among these mutants, F240A, F240G, F240R, and F240K greatly altered the regioselectivity. The quercetin-3-O-glucoside, instead of quercetin-7-O-glucoside as for the wild-type enzyme, was obtained as the major product. Among these mutants, F240R showed nearly 100 % product specificity but only retained 25 % catalytic efficiency of wild-type enzyme. From an inspection of the protein structure, we found two other amino acids, F132 and F138, together with F240, are likely to form a hydrophobic binding region, which is sufficiently spacious to accommodate substrates with varied aromatic moieties. Through the replacement of a phenylalanine by a tyrosine residue in the substrate-binding region, the mutants may be able to fix the orientation of flavonoids, presumably through the formation of a hydrogen bond between substrates and mutants. Multiple mutants-F240R_F132Y, F240R_F138Y, and F240R_F132Y_F138Y-were thus constructed for further investigation. The multiple points of mutants not only maintained the high product specificity but also significantly improved the catalytic efficiency, relative to F240R. The same product specificity was obtained when kaempferol and myricetin were used as a substrate.

  9. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.

    PubMed

    Harwani, Dharmesh

    2014-01-01

    Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside) operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s) apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP) phenotype to Bgl(+) cells and exerts its regulation on at least twelve downstream target genes.

  10. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.

    PubMed

    Harwani, Dharmesh

    2014-01-01

    Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside) operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s) apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP) phenotype to Bgl(+) cells and exerts its regulation on at least twelve downstream target genes. PMID:25763016

  11. Quantitative Analysis of Phenylpropanoid Glycerol Glucosides in Different Organs of Easter Lily (Lilium longiflorum Thunb.).

    PubMed

    Munafo, John P; Gianfagna, Thomas J

    2015-05-20

    The Easter lily (Lilium longiflorum Thunb.) is esteemed worldwide as an attractive ornamental plant, and the flower buds and bulbs are used for both culinary and medicinal purposes in many parts of the world. L. longiflorum contains significant amounts of phenylpropanoid glycerol glucosides, a group of compounds that may contribute to plant pathogen defense, ultraviolet/high-intensity visible light (UV/high light) protection, and the purported medicinal uses of lilies. To define the natural distribution of these compounds within the plant, a liquid chromatography-mass spectrometry (LC-MS) method performed in selected ion monitoring (SIM) mode was employed for the quantitative analysis of five phenylpropanoid glycerol glucosides, namely, (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosylglycerol, 1; (2R)-1-O-β-D-glucopyranosyl-2-O-p-coumaroylglycerol, 2; (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosylglycerol, 3; (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 4; and (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 5, in the different organs of L. longiflorum. The p-coumaroyl-based 3 and its acetylated derivative 5 were determined to be the most abundant of the phenylpropanoid glycerol glucosides found in Easter lily bulbs, at 776.3 ± 8.4 and 650.7 ± 32.6 μg/g dry weight, respectively. The acetylated p-coumaroyl- and caffeoyl-based derivatives, 5 and 4, accumulated to the highest concentration in the closed flower buds, at 4925.2 ± 512.8 and 3216.8 ± 406.4 μg/g dry weight, respectively. Compound 4, followed by 5 and 1, proved to be the most abundant in the mature flowers, occurring at 6006.2 ± 625.8, 2160.3 ± 556.5, and 1535.8 ± 174.1 μg/g dry weight, respectively. Total concentrations of the phenylpropanoid glycerol glucosides were 10-100-fold higher in the above-ground plant organs as compared to the bulbs and fleshy roots. Two of the five compounds, 1 and 2, were identified in L. longiflorum for the first time. The quantitative

  12. Engineering of a Nepetalactol-Producing Platform Strain of Saccharomyces cerevisiae for the Production of Plant Seco-Iridoids.

    PubMed

    Campbell, Alex; Bauchart, Philippe; Gold, Nicholas D; Zhu, Yun; De Luca, Vincenzo; Martin, Vincent J J

    2016-05-20

    The monoterpene indole alkaloids (MIAs) are a valuable family of chemicals that include the anticancer drugs vinblastine and vincristine. These compounds are of global significance-appearing on the World Health Organization's list of model essential medicines-but remain exorbitantly priced due to low in planta levels. Chemical synthesis and genetic manipulation of MIA producing plants such as Catharanthus roseus have so far failed to find a solution to this problem. Synthetic biology holds a potential answer, by building the pathway into more tractable organisms such as Saccharomyces cerevisiae. Recent work has taken the first steps in this direction by producing small amounts of the intermediate strictosidine in yeast. In order to help improve on these titers, we aimed to optimize the early biosynthetic steps of the MIA pathway to the metabolite nepetalactol. We combined a number of strategies to create a base strain producing 11.4 mg/L of the precursor geraniol. We also show production of the critical intermediate 10-hydroxygeraniol and demonstrate nepetalactol production in vitro. Lastly we demonstrate that activity of the iridoid synthase toward the intermediates geraniol and 10-hydroxygeraniol results in the synthesis of the nonproductive intermediates citronellol and 10-hydroxycitronellol. This discovery has serious implications for the reconstruction of the MIA in heterologous organisms.

  13. The cytotoxic and tyrosine kinase inhibitory properties of C21 steroids and iridoids from the tubers of Alocasia cucullata.

    PubMed

    Peng, Wei; Liang, Shuang; Hu, JiaLiang; Chen, ZhiYu; Zheng, Xiangwei

    2016-07-01

    Ten steroids and iridoids were isolated from the tubers of Alocasia cucullata (Lour.) G. Don. Among them, alocasgenin A (1) and alocasgenoside B-C (2-3) were new compounds and the aglycone of compound 1, obtained from the acid hydrolysis of 1, was named alocasgenol (1a). Also, for the first time, tenacigenin B (4), 17β-tenacigenin-B (5), 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-β-D-oleandropyranosyl-tenacigenin C (6), marsdenoside A-B (7-8) and tenacigenoside A-B (9-10) were isolated from the genus Alocasia. The chemical structures were elucidated by the extensive analysis of spectral data and compared with the literature. By evaluation of the cytotoxic and tyrosine kinase inhibition, compounds 1-10, 1a and compound 2 showed significant growth inhibition against two tumour cell lines, MGC-803 and HT-29, while compounds 1, 1a, 3, 6 and 8 presented moderate inhibition. Furthermore, compound 2 had the inhibitory property against the enzyme activity biochemically.

  14. Structures of Iridoid Synthase from Cantharanthus roseus with Bound NAD(+) , NADPH, or NAD(+) /10-Oxogeranial: Reaction Mechanisms.

    PubMed

    Hu, Yumei; Liu, Weidong; Malwal, Satish R; Zheng, Yingying; Feng, Xinxin; Ko, Tzu-Ping; Chen, Chun-Chi; Xu, Zhongxia; Liu, Meixia; Han, Xu; Gao, Jian; Oldfield, Eric; Guo, Rey-Ting

    2015-12-14

    Structures of the iridoid synthase nepetalactol synthase in the presence of NAD(+) , NADPH or NAD(+) /10-oxogeranial were solved. The 10-oxogeranial substrate binds in a transoid-O1-C3 conformation and can be reduced by hydride addition to form the byproduct S-10-oxo-citronellal. Tyr178 Oζ is positioned 2.5 Å from the substrate O1 and provides the second proton required for reaction. Nepetalactol product formation requires rotation about C1-C2 to form the cisoid isomer, leading to formation of the cis-enolate, together with rotation about C4-C5, which enables cyclization and lactol production. The structure is similar to that of progesterone-5β-reductase, with almost identical positioning of NADP, Lys146(147), Tyr178(179), and F342(343), but only Tyr178 and Phe342 appear to be essential for activity. The transoid 10-oxogeranial structure also serves as a model for β-face hydride attack in progesterone 5β-reductases and is of general interest in the context of asymmetric synthesis. PMID:26768532

  15. Chemical Synthesis of Deoxynivalenol-3-β-d-[(13)C₆]-glucoside and Application in Stable Isotope Dilution Assays.

    PubMed

    Habler, Katharina; Frank, Oliver; Rychlik, Michael

    2016-01-01

    Modified mycotoxins have been gaining importance in recent years and present a certain challenge in LC-MS/MS analysis. Due to the previous lack of a labeled isotopologue of the modified mycotoxin deoxynivalenol-3-glucoside, in our study we synthesized the first (13)C-labeled internal standard. Therefore, we used the Königs-Knorr method to synthesize deoxynivalenol-3-β-d-[(13)C₆]-glucoside originated from unlabeled deoxynivalenol and [(13)C₆]-labeled glucose. Using the synthesized isotopically-labeled standard deoxynivalenol-3-β-d-[(13)C₆]-glucoside and the purchased labeled standard [(13)C15]-deoxynivalenol, a stable isotope dilution LC-MS/MS method was firstly developed for deoxynivalenol-3-glucoside and deoxynivalenol in beer. The preparation and purification of beer samples was based on a solid phase extraction. The validation data of the newly developed method gave satisfying results. Intra- and interday precision studies revealed relative standard deviations below 0.5% and 7%, respectively. The recoveries ranged for both analytes between 97% and 112%. The stable isotope dilution assay was applied to various beer samples from four different countries. In summary, deoxynivalenol-3-glucoside and deoxynivalenol mostly appeared together in varying molar ratios but were quantified in rather low contents in the investigated beers. PMID:27355938

  16. Chemical Synthesis of Deoxynivalenol-3-β-d-[(13)C₆]-glucoside and Application in Stable Isotope Dilution Assays.

    PubMed

    Habler, Katharina; Frank, Oliver; Rychlik, Michael

    2016-06-27

    Modified mycotoxins have been gaining importance in recent years and present a certain challenge in LC-MS/MS analysis. Due to the previous lack of a labeled isotopologue of the modified mycotoxin deoxynivalenol-3-glucoside, in our study we synthesized the first (13)C-labeled internal standard. Therefore, we used the Königs-Knorr method to synthesize deoxynivalenol-3-β-d-[(13)C₆]-glucoside originated from unlabeled deoxynivalenol and [(13)C₆]-labeled glucose. Using the synthesized isotopically-labeled standard deoxynivalenol-3-β-d-[(13)C₆]-glucoside and the purchased labeled standard [(13)C15]-deoxynivalenol, a stable isotope dilution LC-MS/MS method was firstly developed for deoxynivalenol-3-glucoside and deoxynivalenol in beer. The preparation and purification of beer samples was based on a solid phase extraction. The validation data of the newly developed method gave satisfying results. Intra- and interday precision studies revealed relative standard deviations below 0.5% and 7%, respectively. The recoveries ranged for both analytes between 97% and 112%. The stable isotope dilution assay was applied to various beer samples from four different countries. In summary, deoxynivalenol-3-glucoside and deoxynivalenol mostly appeared together in varying molar ratios but were quantified in rather low contents in the investigated beers.

  17. Total glucosides of peony attenuates experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Huang, Qiling; Ma, Xiaomeng; Zhu, Dong Liang; Chen, Li; Jiang, Ying; Zhou, Linli; Cen, Lei; Pi, Rongbiao; Chen, Xiaohong

    2015-07-15

    Total glucosides of peony (TGP), an active compound extracted from the roots of Paeonia lactiflora Pall, has wide pharmacological effects on nervous system. Here we examined the effects of TGP on experimental autoimmune encephalomyelitis (EAE), an established model of multiple sclerosis (MS). The results showed that TGP can reduce the severity and progression of EAE in C57 BL/6 mice. In addition, TGP also down-regulated the Th1/Th17 inflammatory response and prevented the reduced expression of brain-derived neurotrophic factor and 2',3'-cyclic nucleotide 3'-phosphodiesterase of EAE. These findings suggest that TGP could be a potential therapeutic agent for MS.

  18. Functional and antiischemic effects of luteolin-7-glucoside in isolated rabbit hearts.

    PubMed

    Rump, A F; Schüssler, M; Acar, D; Cordes, A; Theisohn, M; Rösen, R; Klaus, W; Fricke, U

    1994-10-01

    1. The functional effects of the flavonoid luteolin-7-glucoside (LUT) were investigated in Langendorff-rabbit hearts perfused at constant pressure. Repetitive myocardial ischemia was induced by coronary artery ligature and quantified from NADH-fluorescence photography. 2. LUT significantly enhanced left ventricular pressure and the global and relative coronary flow (= global coronary flow/pressure-rate product). 3. LUT significantly diminished epicardial NADH-fluorescence area and intensity. 4. LUT is an inodilator possessing cardioprotective properties. These might be related to an improvement of myocardial perfusion and/or to free radical scavenging properties.

  19. Functional and antiischemic effects of luteolin-7-glucoside in isolated rabbit hearts.

    PubMed

    Rump, A F; Schüssler, M; Acar, D; Cordes, A; Theisohn, M; Rösen, R; Klaus, W; Fricke, U

    1994-10-01

    1. The functional effects of the flavonoid luteolin-7-glucoside (LUT) were investigated in Langendorff-rabbit hearts perfused at constant pressure. Repetitive myocardial ischemia was induced by coronary artery ligature and quantified from NADH-fluorescence photography. 2. LUT significantly enhanced left ventricular pressure and the global and relative coronary flow (= global coronary flow/pressure-rate product). 3. LUT significantly diminished epicardial NADH-fluorescence area and intensity. 4. LUT is an inodilator possessing cardioprotective properties. These might be related to an improvement of myocardial perfusion and/or to free radical scavenging properties. PMID:7875536

  20. Total glucosides of peony attenuates experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Huang, Qiling; Ma, Xiaomeng; Zhu, Dong Liang; Chen, Li; Jiang, Ying; Zhou, Linli; Cen, Lei; Pi, Rongbiao; Chen, Xiaohong

    2015-07-15

    Total glucosides of peony (TGP), an active compound extracted from the roots of Paeonia lactiflora Pall, has wide pharmacological effects on nervous system. Here we examined the effects of TGP on experimental autoimmune encephalomyelitis (EAE), an established model of multiple sclerosis (MS). The results showed that TGP can reduce the severity and progression of EAE in C57 BL/6 mice. In addition, TGP also down-regulated the Th1/Th17 inflammatory response and prevented the reduced expression of brain-derived neurotrophic factor and 2',3'-cyclic nucleotide 3'-phosphodiesterase of EAE. These findings suggest that TGP could be a potential therapeutic agent for MS. PMID:26025060

  1. On the masked mycotoxin zearalenone-14-glucoside. Does the mask truly hide?

    PubMed

    Dellafiora, Luca; Perotti, Alessio; Galaverna, Gianni; Buschini, Annamaria; Dall'Asta, Chiara

    2016-03-01

    In the matter of foodborne mycotoxins, beside a number of regulated compounds, regulations are totally missing for phase-II plant metabolites--the toxicological knowledge of which is still in its infancy. Currently, zearalenone-14-glucoside is in the pipeline and its toxicological role is under a glowing scientific debate. In our work it clearly showed high toxicological concerns as it is prone to conversion to well-known toxic compounds (i.e. zearalenone and both zearalenol isomers) when exposed to breast cancer cells culture. The need of future risk assessment studies has been pointed out accordingly. PMID:26792714

  2. A new flavonol glucoside from the aerial parts of Sida glutinosa.

    PubMed

    Das, Niranjan; Achari, Basudev; Harigaya, Yoshihiro; Dinda, Biswanath

    2011-10-01

    Phytochemical investigation on the dried aerial parts of Sida glutinosa has led to the isolation of a new flavonol glucoside, glutinoside (1), along with seven known compounds, 24(28)-dehydromakisterone A (2), 1,2,3,9-tetrahydropyrrolo[2,1-b]-quinazolin-3-amine (3), docosanoic acid, 1-triacontanol, campesterol, stigmasterol, and β-sitosterol. The structures of these compounds were elucidated by means of extensive spectroscopic techniques as well as GC/MS analysis (for sterols) and comparison with the literature data. All these seven known compounds are reported from this plant for the first time.

  3. The unusual canangafruticosides A-E: five monoterpene glucosides, two monoterpenes and a monoterpene glucoside diester of the aryldihydronaphthalene lignan dicarboxylic acid from leaves of Cananga odorata var. fruticosa.

    PubMed

    Nagashima, Jiro; Matsunami, Katsuyoshi; Otsuka, Hideaki; Lhieochaiphant, Duangporn; Lhieochaiphant, Sorasak

    2010-09-01

    From the leaves of Cananga odorata var. fruticosa, five unusual monoterpene glucosides, named canangafruticosides A-E (1-5), along with two unusual non-glucosidic monoterpenes (6, 7) were isolated. An aryldihydronaphthalene-type lignan dicarboxylate (8) was also isolated, with two moles of canangafruticoside A (1) on its ester moiety. This lignan also showed strong blue fluorescence emission under basic conditions. The structures of these compounds were elucidated by means of spectroscopic methods, with their absolute configurations determined by application of the modified Mosher's method to a compound chemically derived from canangafruticoside E. PMID:20619865

  4. Megastigmane glucosides and an unusual monoterpene from the leaves of Cananga odorata var. odorata, and absolute structures of megastigmane glucosides isolated from C. odorata var. odorata and Breynia officinalis.

    PubMed

    Matsunami, Katsuyoshi; Nagashima, Jiro; Sugimoto, Sachiko; Otsuka, Hideaki; Takeda, Yoshio; Lhieochaiphant, Duangporn; Lhieochaiphant, Sorasak

    2010-10-01

    From a 1-BuOH-soluble fraction of a MeOH extract of Cananga odorata var. odorata, collected at the Botanical Garden of Chiang Mai University, a new megastigmane glucoside, named canangaionoside, and an irregular monoterpene were isolated. A known compound, breyniaionoside A, which has been obtained from the leaves of Breynia officinalis, was also isolated, and its absolute structure was substantiated for the first time in this study. On this occasion, the absolute stereochemistries of structurally related megastigmane glucosides, breyniaionosides B and C, isolated from B. officinalis were examined. PMID:20571926

  5. Specific accumulation and revised structures of acridone alkaloid glucosides in the tips of transformed roots of Ruta graveolens.

    PubMed

    Kuzovkina, Inna; Al'terman, Irina; Schneider, Bernd

    2004-04-01

    The root tips of Ruta graveolens (common rue) show strong autofluorescence of acridone alkaloids, which are characteristic secondary metabolites of this plant. To study the specific distribution and accumulation of acridone alkaloids in various root segments of Ruta graveolens, root material was harvested from genetically transformed root cultures and extracts were investigated by chromatographic techniques and HPLC-(1)H NMR spectroscopy. The cells of the elongation and differentiation zones contained acridone glucosides and large amounts of acridone alkaloids, mainly rutacridone. Gravacridondiol glucoside was identified as the dominant secondary compound of the root tips and its structure revised by means of spectroscopic methods. In addition, minor acridones, including the structurally revised gravacridontriol glucoside and unknown natural products, were found in the root tip.

  6. Novel Indole-N-glucoside, TA-1887 As a Sodium Glucose Cotransporter 2 Inhibitor for Treatment of Type 2 Diabetes

    PubMed Central

    2013-01-01

    Inhibition of the renal sodium glucose cotransporter (SGLT) increases urinary glucose excretion (UGE) and thus reduces blood glucose levels during hyperglycemia. To explore the potential of new antihyperglycemic agents, we synthesized and determined the human SGLT2 (hSGLT2) inhibitory potential of novel substituted 3-benzylindole-N-glucosides 6. Optimization of 6 resulted in the discovery of 3-(4-cyclopropylbenzyl)-4-fluoroindole-N-glucoside 6a-4 (TA-1887), a highly potent and selective hSGLT2 inhibitor, with pronounced antihyperglycemic effects in high-fat diet-fed KK (HF-KK) mice. Our results suggest the potential of indole-N-glucosides as novel antihyperglycemic agents through inhibition of renal SGLT2. PMID:24900773

  7. In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer

    PubMed Central

    Boyer, Jeanelle; Brown, Dan; Liu, Rui Hai

    2005-01-01

    Background Quercetin and quercetin glycosides are widely consumed flavonoids found in many fruits and vegetables. These compounds have a wide range of potential health benefits, and understanding the bioavailability of flavonoids from foods is becoming increasingly important. Methods This study combined an in vitro digestion, a lactase treatment and the Caco-2 cell model to examine quercetin and quercetin glucoside uptake from shallot and apple homogenates. Results The in vitro digestion alone significantly decreased quercetin aglycone recovery from the shallot digestate (p < 0.05), but had no significant effect on quercetin-3-glucoside recovery (p > 0.05). Digestion increased the Caco-2 cell uptake of shallot quercetin-4'-glucoside by 2-fold when compared to the non-digested shallot. Despite the loss of quercetin from the digested shallot, the bioavailability of quercetin aglycone to the Caco-2 cells was the same in both the digested and non-digested shallot. Treatment with lactase increased quercetin recovery from the shallot digestate nearly 10-fold and decreased quercetin-4'-glucoside recovery by more than 100-fold (p < 0.05), but had no effect on quercetin recovery from apple digestates. Lactase treatment also increased shallot quercetin bioavailability to the Caco-2 cells approximately 14-fold, and decreased shallot quercetin-4'-glucoside bioavailability 23-fold (p < 0.05). These Caco-2 cells had lactase activity similar to that expressed by a lactose intolerant human. Conclusions The increase in quercetin uptake following treatment with lactase suggests that dietary supplementation with lactase may increase quercetin bioavailability in lactose intolerant humans. Combining the digestion, the lactase treatment and the Caco-2 cell culture model may provide a reliable in vitro model for examining flavonoid glucoside bioavailability from foods. PMID:15644141

  8. Analgesic effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on spared nerve injury rat model of neuropathic pain.

    PubMed

    Liu, Mei; Zhou, Lanlan; Chen, Zhiwu; Hu, Caibiao

    2012-09-01

    Iridoid glycosides of Paederia scandens (IGPS) is a major active component isolated from traditional Chinese herb P. scandens (LOUR.) MERRILL (Rubiaceae). The aim of the present study was to investigate the analgesic effect of IGPS on spared nerve injury (SNI) model of neuropathic pain. The SNI model in rats was established by complete transection of the common peroneal and tibial distal branches of the sciatic nerve, leaving the sural branch intact. The mechanical withdrawal threshold (MWT) in response to mechanical stimulation was measured by electronic von Frey filaments on day 1 before operation and on days 1, 3, 5, 7, 10, and 14 after operation, respectively. Nitric oxide synthase (NOS) activity and nitric oxide (NO) production of spinal cord were measured by spectrophotometry and its cyclic guanosine monophosphate (cGMP) content by radioimmunoassay, mRNA expression of inducible NOS (iNOS) and protein kinase G type I (PKG-I, including PKG Ια and PKG Iβ) of spinal cord were analyzed by RT-PCR. There was a marked mechanical hypersensitivity response observed on day 1 after operation in SNI model, which accompanied with decreased MWT. Treatment with IGPS (70, 140, 280 mg/kg) significantly alleviated SNI-induced mechanical hypersensitivity response evidenced by increased MWT; as well as markedly decreased NOS activity, NO and cGMP levels. At the same time, IGPS (70, 140, 280 mg/kg) could also inhibit mRNA expression of iNOS, PKG Ια and PKG Iβ in the spinal cord. The results suggested that IGPS possesses antinociceptive effect, which may be partly related to the inhibition of NO/cGMP/PKG signaling pathway in the rat SNI model of neuropathic pain. PMID:22698486

  9. Protective Effect of Cyanidin-3-O-Glucoside against Ultraviolet B Radiation-Induced Cell Damage in Human HaCaT Keratinocytes

    PubMed Central

    Hu, Yunfeng; Ma, Yuetang; Wu, Shi; Chen, Tianfeng; He, Yong; Sun, Jianxia; Jiao, Rui; Jiang, Xinwei; Huang, Yadong; Deng, Liehua; Bai, Weibin

    2016-01-01

    Ultraviolet radiation is the major environmental harmful factor that has emotional impact on human skin. The aim of the present study was to determine the mechanism of protection of cyanidin-3-O-glucoside against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. Our results show that cyanidin-3-O-glucoside decreased the levels of intracellular reactive oxygen species generated by UVB treatment. Cyanidin-3-O-glucoside also decreased the UVB-augmented levels of the DNA damage indicators phospho-p53 and phospho-ATM/ATR. In addition, cyanidin-3-O-glucoside protected keratinocytes from UVB-induced injury by overturning the disruption of mitochondrial membrane potential and reversing apoptosis. The expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) was attenuated in UVB-exposed cells but restored in UVB/cyanidin-3-O-glucoside-treated cells. Furthermore, expression of the proapoptotic proteins Bcl-2-associated X (Bax) and the key apoptosis executer cleaved caspase-3 were increased in UVB-irradiated cells and decreased in UVB/cyanidin-3-O-glucoside-treated cells. For these reasons, the results demonstrate that cyanidin-3-O-glucoside protects human keratinocytes against UVB-induced oxidative stress and apoptosis. Our study provides a theoretical basis for the use of cyanidin-3-O-glucoside in the fight against light damage. PMID:27656146

  10. Protective Effect of Cyanidin-3-O-Glucoside against Ultraviolet B Radiation-Induced Cell Damage in Human HaCaT Keratinocytes

    PubMed Central

    Hu, Yunfeng; Ma, Yuetang; Wu, Shi; Chen, Tianfeng; He, Yong; Sun, Jianxia; Jiao, Rui; Jiang, Xinwei; Huang, Yadong; Deng, Liehua; Bai, Weibin

    2016-01-01

    Ultraviolet radiation is the major environmental harmful factor that has emotional impact on human skin. The aim of the present study was to determine the mechanism of protection of cyanidin-3-O-glucoside against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. Our results show that cyanidin-3-O-glucoside decreased the levels of intracellular reactive oxygen species generated by UVB treatment. Cyanidin-3-O-glucoside also decreased the UVB-augmented levels of the DNA damage indicators phospho-p53 and phospho-ATM/ATR. In addition, cyanidin-3-O-glucoside protected keratinocytes from UVB-induced injury by overturning the disruption of mitochondrial membrane potential and reversing apoptosis. The expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) was attenuated in UVB-exposed cells but restored in UVB/cyanidin-3-O-glucoside-treated cells. Furthermore, expression of the proapoptotic proteins Bcl-2-associated X (Bax) and the key apoptosis executer cleaved caspase-3 were increased in UVB-irradiated cells and decreased in UVB/cyanidin-3-O-glucoside-treated cells. For these reasons, the results demonstrate that cyanidin-3-O-glucoside protects human keratinocytes against UVB-induced oxidative stress and apoptosis. Our study provides a theoretical basis for the use of cyanidin-3-O-glucoside in the fight against light damage.

  11. Protective Effect of Cyanidin-3-O-Glucoside against Ultraviolet B Radiation-Induced Cell Damage in Human HaCaT Keratinocytes.

    PubMed

    Hu, Yunfeng; Ma, Yuetang; Wu, Shi; Chen, Tianfeng; He, Yong; Sun, Jianxia; Jiao, Rui; Jiang, Xinwei; Huang, Yadong; Deng, Liehua; Bai, Weibin

    2016-01-01

    Ultraviolet radiation is the major environmental harmful factor that has emotional impact on human skin. The aim of the present study was to determine the mechanism of protection of cyanidin-3-O-glucoside against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. Our results show that cyanidin-3-O-glucoside decreased the levels of intracellular reactive oxygen species generated by UVB treatment. Cyanidin-3-O-glucoside also decreased the UVB-augmented levels of the DNA damage indicators phospho-p53 and phospho-ATM/ATR. In addition, cyanidin-3-O-glucoside protected keratinocytes from UVB-induced injury by overturning the disruption of mitochondrial membrane potential and reversing apoptosis. The expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) was attenuated in UVB-exposed cells but restored in UVB/cyanidin-3-O-glucoside-treated cells. Furthermore, expression of the proapoptotic proteins Bcl-2-associated X (Bax) and the key apoptosis executer cleaved caspase-3 were increased in UVB-irradiated cells and decreased in UVB/cyanidin-3-O-glucoside-treated cells. For these reasons, the results demonstrate that cyanidin-3-O-glucoside protects human keratinocytes against UVB-induced oxidative stress and apoptosis. Our study provides a theoretical basis for the use of cyanidin-3-O-glucoside in the fight against light damage. PMID:27656146

  12. Protective Effect of Cyanidin-3-O-Glucoside against Ultraviolet B Radiation-Induced Cell Damage in Human HaCaT Keratinocytes.

    PubMed

    Hu, Yunfeng; Ma, Yuetang; Wu, Shi; Chen, Tianfeng; He, Yong; Sun, Jianxia; Jiao, Rui; Jiang, Xinwei; Huang, Yadong; Deng, Liehua; Bai, Weibin

    2016-01-01

    Ultraviolet radiation is the major environmental harmful factor that has emotional impact on human skin. The aim of the present study was to determine the mechanism of protection of cyanidin-3-O-glucoside against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. Our results show that cyanidin-3-O-glucoside decreased the levels of intracellular reactive oxygen species generated by UVB treatment. Cyanidin-3-O-glucoside also decreased the UVB-augmented levels of the DNA damage indicators phospho-p53 and phospho-ATM/ATR. In addition, cyanidin-3-O-glucoside protected keratinocytes from UVB-induced injury by overturning the disruption of mitochondrial membrane potential and reversing apoptosis. The expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) was attenuated in UVB-exposed cells but restored in UVB/cyanidin-3-O-glucoside-treated cells. Furthermore, expression of the proapoptotic proteins Bcl-2-associated X (Bax) and the key apoptosis executer cleaved caspase-3 were increased in UVB-irradiated cells and decreased in UVB/cyanidin-3-O-glucoside-treated cells. For these reasons, the results demonstrate that cyanidin-3-O-glucoside protects human keratinocytes against UVB-induced oxidative stress and apoptosis. Our study provides a theoretical basis for the use of cyanidin-3-O-glucoside in the fight against light damage.

  13. Arabidopsis thaliana β-glucosidase BGLU15 attacks flavonol 3-O-β-glucoside-7-O-α-rhamnosides.

    PubMed

    Roepke, Jonathon; Bozzo, Gale G

    2015-01-01

    Kaempferol and quercetin 3-O-β-glucoside-7-O-α-rhamnoside (K3G7R and Q3G7R, respectively) are major flavonol bisglycosides accumulating in Arabidopsis thaliana with synergistic abiotic stresses (i.e., nitrogen deficiency and low temperature, NDLT). However, these molecules disappear rapidly during recovery from NDLT. Typically, catabolism of related chemicals relies on β-glucosidase (BGLU) action. Evidence for flavonol 3-O-β-glucoside-7-O-α-rhamnoside BGLU activity is provided here. Major losses of Q3G7R and K3G7R coincided with an approximate 250% induction in flavonol 3-O-β-glucoside-7-O-α-rhamnoside BGLU activity within 2days of NDLT recovery relative to plants cultured under nitrogen sufficiency and high temperature (NSHT, control). QTOF-MS/MS established the product of Q3G7R hydrolysis in the presence of Arabidopsis cell free extracts was quercetin 7-O-α-rhamnoside. A phylogenetic analysis of the Arabidopsis glycoside hydrolase family 1 identified BGLU15 (At2g44450) and five other members that cluster with Fabaceae hydrolases known to attack isoflavones and isoflavonoids, which are structurally somewhat related to flavonol 3-O-β-glucoside-7-O-α-rhamnosides. Real time quantitative PCR analysis established a 300% higher expression of BGLU15 within 1day of the recovery from NDLT relative to control plants; lower or negligible changes in expression were evident for the remaining BGLUs. Recombinant thioredoxin-His6-tagged mature BGLU15 protein was expressed in Escherichia coli and purified to homogeneity. A comparison of a wide spectrum of β-glucosides showed that recombinant BGLU15 preferentially hydrolyses the 3-O-β-glucosides of flavonols, but does not attack quercetin 3-O-α-rhamnoside, quercetin 3-O-β-galactoside and rutin. BGLU15 displayed the highest catalytic efficiency for Q3G7R and K3G7R yielding their respective 7-O-rhamnosides as products; flavonol 3-O-glucosides were also attacked, albeit with lower efficiency. Together, it appears the

  14. Engineering of glucoside acceptors for the regioselective synthesis of beta-(1-->3)-disaccharides with glycosynthases.

    PubMed

    Marton, Zsuzanna; Tran, Vinh; Tellier, Charles; Dion, Michel; Drone, Jullien; Rabiller, Claude

    2008-11-24

    Glycosynthase mutants obtained from Thermotogamaritima were able to catalyze the regioselective synthesis of aryl beta-D-Galp-(1-->3)-beta-D-Glcp and aryl beta-D-Glcp-(1-->3)-beta-D-Glcp in high yields (up to 90 %) using aryl beta-D-glucosides as acceptors. The need for an aglyconic aryl group was rationalized by molecular modeling calculations, which have emphasized a high stabilizing interaction of this group by stacking with W312 of the enzyme. Unfortunately, the deprotection of the aromatic group of the disaccharides was not possible without partial hydrolysis of the glycosidic bond. The replacement of aryl groups by benzyl ones could offer the opportunity to deprotect the anomeric position under very mild conditions. Assuming that benzyl acceptors could preserve the stabilizing stacking, benzyl beta-d-glucoside firstly assayed as acceptor resulted in both poor yields and poor regioselectivity. Thus, we decided to undertake molecular modeling calculations in order to design which suitable substituted benzyl acceptors could be used. This study resulted in the choice of 2-biphenylmethyl beta-D-glucopyranoside. This choice was validated experimentally, since the corresponding beta-(1-->3) disaccharide was obtained in good yields and with a high regioselectivity. At the same time, we have shown that phenyl 1-thio-beta-D-glucopyranoside was also an excellent substrate leading to similar results as those obtained with the O-phenyl analogue. The NBS deprotection of the S-phenyl group afforded the corresponding disaccharide quantitatively.

  15. Enhanced production of β-glucosides by in-situ UDP-glucose regeneration.

    PubMed

    Huang, Fong-Chin; Hinkelmann, Jens; Hermenau, Alexandra; Schwab, Wilfried

    2016-04-20

    Glycosyltransferase (GT)-mediated methodology is recognized as one of the most practical approaches for large-scale production of glycosides. However, GT enzymes require a sugar nucleotide as donor substrate that must be generated in situ for preparative applications by recycling of the nucleotide moiety, e.g. by sucrose synthase (SUS). Three plant GT genes CaUGT2, VvGT14a, and VvGT15c and the fungal SbUGTA1 were successfully co-expressed with GmSUS from soybean in Escherichia coli BL21 and W cells. In vitro, the crude protein extracts prepared from four GT genes and GmSUS co-expressing cells were able to convert several small molecules to the corresponding glucosides, when sucrose and UDP were supplied. In addition, GmSUS was able to enhance the glucosylation efficiency and reduced the amount of supplying UDP-glucose. In the biotransformation system, co-expression of VvGT15c with GmSUS also improved the glucosylation of geraniol and enhanced the resistance of the cells against the toxic terpenol. GT-EcW and GTSUS-EcW cells tolerated up to 2mM geraniol and converted more than 99% of the substrate into the glucoside at production rates exceeding 40μgml(-1)h(-1). The results confirm that co-expression of SUS allows in situ regeneration of UDP-sugars and avoids product inhibition by UDP. PMID:26912290

  16. Effects on Liver Lipid Metabolism of the Naturally Occurring Dietary Flavone Luteolin-7-glucoside.

    PubMed

    Sá, Carla; Oliveira, Ana Rita; Machado, Cátia; Azevedo, Marisa; Pereira-Wilson, Cristina

    2015-01-01

    Disruptions in whole-body lipid metabolism can lead to the onset of several pathologies such as nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs). The present study aimed at elucidating the molecular mechanisms behind the lipid-lowering effects of the flavone luteolin-7-glucoside (L7G) which we previously showed to improve plasma lipid profile in rats. L7G is abundant in plant foods of Mediterranean diet such as aromatic plants used as herbs. Results show that dietary supplementation with L7G for one week induced the expression of peroxisome proliferator-activated receptor-alpha (PPAR-α) and of its target gene carnitine palmitoyl transferase 1 (CPT-1) in rat liver. L7G showed a tendency to decrease the hepatic expression of sterol regulatory element-binding protein-1 (SREBP-1), without affecting fatty acid synthase (FAS) protein levels. Although SREBP-2 and LDLr mRNA levels did not change, the expression of HMG CoA reductase (HMGCR) was significantly repressed by L7G. L7G also inhibited this enzyme's in vitro activity in a dose dependent manner, but only at high and not physiologically relevant concentrations. These results add new evidence that the flavone luteolin-7-glucoside may help in preventing metabolic diseases and clarify the mechanisms underlying the beneficial health effects of diets rich in fruits and vegetables.

  17. Glucosylation of Steviol and Steviol-Glucosides in Extracts from Stevia rebaudiana Bertoni

    PubMed Central

    Shibata, Hitoshi; Sonoke, Satoru; Ochiai, Hideo; Nishihashi, Hideji; Yamada, Masaharu

    1991-01-01

    To evaluate and characterize stevioside biosynthetic pathway in Stevia rebaudiana Bertoni cv Houten, two enzyme fractions that catalyze glucosylation of steviol (ent-13-hydroxy kaur-16-en-19-oic acid) and steviol-glucosides (steviol-13-O-glucopyranoside, steviolbioside and stevioside), utilizing UDP-glucose as the glucose donor, were prepared from the soluble extracts of S. rebaudiana leaves. Enzyme fraction I, passed through DEAE-Toyopearl equilibrated with 50 millimolar K-phosphate pH 7.5, catalyzed the glucosylation to steviol and 19-O-methylsteviol, but not to iso-steviol and 13-O-methylsteviol, indicating that 13-hydroxyl group of the steviol skeleton is glucosylated first from UDP-glucose to produce steviol-13-O-glucopyranoside. Enzyme fraction II, eluted from the DEAE-Toyopearl column with 0.15 molar KCI, catalyzed the glucose transfer from UDP-glucose to steviol-13-O-glucopyranoside, steviolbioside and stevioside, but not to rubusoside (13, 19-di-O-glucopyranoside) and rebaudioside A. The reaction products glucosylated from steviol-13-O-glucopyranoside, steviolbioside and stevioside were identified to be steviolbioside, stevioside and rebaudioside A, respectively. These results indicate that in the steviol-glucoside biosynthetic pathway, steviol-13-O-glucopyranoside produced from the steviol glucosylation is successively glucosylated to steviolbioside, then to stevioside producing rebaudioside A. PMID:16667943

  18. Effects on Liver Lipid Metabolism of the Naturally Occurring Dietary Flavone Luteolin-7-glucoside

    PubMed Central

    Sá, Carla; Oliveira, Ana Rita; Machado, Cátia; Azevedo, Marisa; Pereira-Wilson, Cristina

    2015-01-01

    Disruptions in whole-body lipid metabolism can lead to the onset of several pathologies such as nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs). The present study aimed at elucidating the molecular mechanisms behind the lipid-lowering effects of the flavone luteolin-7-glucoside (L7G) which we previously showed to improve plasma lipid profile in rats. L7G is abundant in plant foods of Mediterranean diet such as aromatic plants used as herbs. Results show that dietary supplementation with L7G for one week induced the expression of peroxisome proliferator-activated receptor-alpha (PPAR-α) and of its target gene carnitine palmitoyl transferase 1 (CPT-1) in rat liver. L7G showed a tendency to decrease the hepatic expression of sterol regulatory element-binding protein-1 (SREBP-1), without affecting fatty acid synthase (FAS) protein levels. Although SREBP-2 and LDLr mRNA levels did not change, the expression of HMG CoA reductase (HMGCR) was significantly repressed by L7G. L7G also inhibited this enzyme's in vitro activity in a dose dependent manner, but only at high and not physiologically relevant concentrations. These results add new evidence that the flavone luteolin-7-glucoside may help in preventing metabolic diseases and clarify the mechanisms underlying the beneficial health effects of diets rich in fruits and vegetables. PMID:26113868

  19. Effects on Liver Lipid Metabolism of the Naturally Occurring Dietary Flavone Luteolin-7-glucoside.

    PubMed

    Sá, Carla; Oliveira, Ana Rita; Machado, Cátia; Azevedo, Marisa; Pereira-Wilson, Cristina

    2015-01-01

    Disruptions in whole-body lipid metabolism can lead to the onset of several pathologies such as nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs). The present study aimed at elucidating the molecular mechanisms behind the lipid-lowering effects of the flavone luteolin-7-glucoside (L7G) which we previously showed to improve plasma lipid profile in rats. L7G is abundant in plant foods of Mediterranean diet such as aromatic plants used as herbs. Results show that dietary supplementation with L7G for one week induced the expression of peroxisome proliferator-activated receptor-alpha (PPAR-α) and of its target gene carnitine palmitoyl transferase 1 (CPT-1) in rat liver. L7G showed a tendency to decrease the hepatic expression of sterol regulatory element-binding protein-1 (SREBP-1), without affecting fatty acid synthase (FAS) protein levels. Although SREBP-2 and LDLr mRNA levels did not change, the expression of HMG CoA reductase (HMGCR) was significantly repressed by L7G. L7G also inhibited this enzyme's in vitro activity in a dose dependent manner, but only at high and not physiologically relevant concentrations. These results add new evidence that the flavone luteolin-7-glucoside may help in preventing metabolic diseases and clarify the mechanisms underlying the beneficial health effects of diets rich in fruits and vegetables. PMID:26113868

  20. Indoline Amide Glucosides from Portulaca oleracea: Isolation, Structure, and DPPH Radical Scavenging Activity.

    PubMed

    Jiao, Ze-Zhao; Yue, Su; Sun, Hong-Xiang; Jin, Tian-Yun; Wang, Hai-Na; Zhu, Rong-Xiu; Xiang, Lan

    2015-11-25

    A polyamide column chromatography method using an aqueous ammonia mobile phase was developed for large-scale accumulation of water-soluble indoline amide glucosides from a medicinal plant, Portulaca oleracea. Ten new [oleraceins H, I, K, L, N, O, P, Q, R, S (1-10)] and four known [oleraceins A-D (11-14)] indoline amide glucosides were further purified and structurally characterized by various chromatographic and spectroscopic methods. The DPPH radical scavenging activities of oleraceins K (5) and L (6), with EC50 values of 15.30 and 16.13 μM, respectively, were twice that of a natural antioxidant, vitamin C; the EC50 values of the 12 other indoline amides, which ranged from 29.05 to 43.52 μM, were similar to that of vitamin C. Structure-activity relationships indicated that the DPPH radical scavenging activities of these indoline amides correlate with the numbers and positions of the phenolic hydroxy groups. PMID:26562741

  1. Red clover Trifolium pratense L. phytoestrogens: UV-B radiation increases isoflavone yield, and postharvest drying methods change the glucoside conjugate profiles.

    PubMed

    Swinny, Ewald E; Ryan, Ken G

    2005-10-19

    Isoflavone extracts of red clover Trifolium pratense L. (cv. Pawera) with dissimilar glucoside conjugate profiles were obtained by employing different postharvest drying methods. The most prominent isoflavones found were formononetin and biochanin A and their corresponding glucosides and malonyl glucoside esters. Postharvest freeze drying inhibited the conversion of the glycosides to the aglycones, while vacuum drying allowed for maximum conversion of the glycosides to their corresponding aglycones. Air drying produced a low level of the aglycones formononetin and biochanin A, and oven drying promoted decarboxylation of the malonyl glucosides to the acetyl glucosides. Exposure to enhanced UV-B radiation resulted in an increase in total formononetin and biochanin A isoflavone levels, indicating that harvest during a period of high ambient UV-B radiation may be appropriate for maximum yield. The levels of caffeic acid and flavonols also increased by about 40 and 250%, respectively, on exposure to enhanced UV-B radiation.

  2. [UPLC-MS/MS determination of content of three iridoids of xingnaojing oral preparation in rat brains and study on their brain pharmacokinetics].

    PubMed

    Xu, Pan; Du, Shou-Ying; Lu, Yang; Bai, Jie; Liu, Hui-Min; Du, Qiu; Chen, Zhen-Zhen; Wang, Zhen

    2014-06-01

    To establish a UPLC-MS/MS method for the simultaneous determination of geniposide, genipin 1-O-beta-D-gentiobioside and geniposidic acid in rat brains and study the brain pharmacokinetics of the three iridoid glycosides in stroke rat after the oral administration of Xingnaojing. In this experiment, brain samples were precipitated with protein for twice. Acquity BEH C18 column was adopted, with acetonitrile-0.1% formic acid-water as the mobile phase for gradient elution. ESI source was adopted for mass spectra; multiple reaction monitoring (MRM) was conducted to detect negative ions. The time for sample analysis was 3.5 min. the results showed good linear relations among the three iridoid glycosides, with the extraction recovery between 99.6% and 114.3%, good intra- and inter-day precisions and accuracies and stability in line with the requirements. The t1/2 and MRT in the three components were similar in brains of stroke rats. Geniposide and genipin 1-O-beta-D-gentiobioside showed double peaks; where as geniposidic acid showed a single peak. In conclusion, the method is so specific, sensitive, accurate and reliable that it can be used to study the brain pharmacokinetics of Xingnaojing oral preparation.

  3. Isolation and purification of six iridoid glycosides from gardenia jasminoides fruit by medium-pressure liquid chromatography combined with macroporous resin chromatography.

    PubMed

    Wang, Yun; Liu, Hui; Shen, Lifeng; Yao, Lan; Ma, Yinlian; Yu, Dingrong; Chen, Jianhong; Li, Puling; Chen, Ying; Zhang, Cun

    2015-12-01

    Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium-pressure liquid chromatography combined with macroporous resin and reversed-phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high-performance liquid chromatography. After fractionation using HPD-100 column chromatography, a 30% ethanol fraction was selected based on high-performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds-deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin-1-O-β-d-gentiobioside, and geniposide-were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high-performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large-scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine. PMID:26768549

  4. Iridoid glycoside-based quantitative chromatographic fingerprint analysis: a rational approach for quality assessment of Indian medicinal plant Gambhari (Gmelina arborea).

    PubMed

    Yadav, Akhilesh K; Tiwari, N; Srivastava, P; Singh, Subhash C; Shanker, K; Verma, Ram K; Gupta, Madan M

    2008-08-01

    A sensitive, selective and robust qualitative and quantitative densitometric high-performance thin layer chromatographic method was developed and validated for the determination of iridoid glycoside in the aerial part of Gambhari (Gmelina arborea). Iridoid gycoside 6-O-(2'',3''-dibenzoyl)-alpha-l-rhamnopyranosylcatalpol (IG) was used as a chemical marker for the standardization of G. arborea plant extracts. The separation was performed on aluminum Kieselgel 60F254 TLC plates using chloroform-methanol as mobile phase. The quantitation of IG was carried out using the densitometric reflection/absorption mode at 240 and 430 nm after post-chromatographic derivatization with vanillin-sulphuric acid reagent. A precise and accurate quantification can be performed in the linear working concentration range of 1000-5000 ng/spot with good correlation (r2=0.994). The method was validated for peak purities, precision, robustness, limit of detection (LOD) and quantitation (LOQ), etc., as per ICH guidelines. Specificity of quantitation was confirmed using retention factor (R(f)), UV-vis spectral correlation and ESI-MS spectra of marker compound (IG) in sample track. PMID:18524530

  5. Isolation and purification of six iridoid glycosides from gardenia jasminoides fruit by medium-pressure liquid chromatography combined with macroporous resin chromatography.

    PubMed

    Wang, Yun; Liu, Hui; Shen, Lifeng; Yao, Lan; Ma, Yinlian; Yu, Dingrong; Chen, Jianhong; Li, Puling; Chen, Ying; Zhang, Cun

    2015-12-01

    Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium-pressure liquid chromatography combined with macroporous resin and reversed-phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high-performance liquid chromatography. After fractionation using HPD-100 column chromatography, a 30% ethanol fraction was selected based on high-performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds-deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin-1-O-β-d-gentiobioside, and geniposide-were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high-performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large-scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine.

  6. Freezing and melting behavior of an octyl β-D-glucoside-water binary system--inhibitory effect of octyl β-D-glucoside on ice crystal formation.

    PubMed

    Ogawa, Shigesaburo; Asakura, Kouichi; Osanai, Shuichi

    2012-12-21

    Phase transition behavior of lyotropic liquid crystals of an octyl β-D-glucoside (OG)-water binary system during ice freezing and melting was studied by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Not the thermotropic, but the lyotropic phase transition due to the change of OG concentration during ice freezing and melting was observed. The concentration-temperature phase diagram of the binary system was constructed. Melting temperature of ice, T(m), lyotropic phase transition temperature, T(tr), and glass transition temperatures of unfrozen phases in the absence and presence of ice, T(g) and T(g)', were shown in the phase diagram. The phase diagram indicated that the OG aqueous system was concentrated to ca. 90-92 wt% by ice freezing and exhibited glass transition at T(g)'. An observation of the concentration-gradient specimen by the cryo-POM showed the evidence of the inhibitory effects of OG on nucleation and growth of ice crystals in the extremely high OG concentration system in which the lamellar liquid crystalline phase was formed. This study provided the importance of the influence of concentration change by ice freezing on the behaviour of the sugar-based surfactant-water system under low temperature conditions.

  7. Two novel aromatic glucosides, marylaurencinosides D and E, from the fresh flowers of Cymbidium Great Flower 'Marylaurencin'.

    PubMed

    Yoshikawa, Kazuko; Okahuji, Mariko; Iseki, Kanako; Ito, Takuya; Asakawa, Yoshinori; Kawano, Sachiko; Hashimoto, Toshihiro

    2014-04-01

    Two novel aromatic glucosides, named marylaurencinosides D (1) and E (2), were isolated from the fresh flowers of Cymbidium Great Flower 'Marylaurencin'. In addition, eight known aromatic compounds (3-10) were isolated. These structures were determined on the basis of NMR experiments as well as chemical evidence.

  8. Flavonoid C-glucosides Derived from Flax Straw Extracts Reduce Human Breast Cancer Cell Growth In vitro and Induce Apoptosis

    PubMed Central

    Czemplik, Magdalena; Mierziak, Justyna; Szopa, Jan; Kulma, Anna

    2016-01-01

    Flax straw of flax varieties that are grown for oil production is a by product which represents a considerable biomass source. Therefore, its potential application for human use is of high interest. Our research has revealed that flax straw is rich in flavonoid C-glucosides, including vitexin, orientin, and isoorientin. The objective of this study was to evaluate the cytotoxicity and possible proapoptotic effect of flax straw derived C-glucosides of flavonoids in the human breast adenocarcinoma cell line (MCF-7). The effects of flax straw derived flavonoid C-glucosides on cell proliferation of MCF-7 cells were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and sulforhodamine B assays. The expression of apoptosis-related genes was assessed by real-time PCR. Our data revealed that flax C-glucosides as well as pure compounds are cytotoxic toward MCF-7 cells and inhibit their proliferation. Moreover, the induction of apoptosis was correlated with the changes in the mRNA level of pro-apoptotic genes. Increased expression of bax and caspase-7, -8, and -9 and decreased mRNA expression of bcl-2 was observed, whereas the mRNA levels of p53 and mdm2 were not altered. These results clearly demonstrated that flax straw metabolites effectively induced growth inhibition and apoptosis in human breast adenocarcinoma cells.

  9. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria × ananassa).

    PubMed

    Song, Chuankui; Zhao, Shuai; Hong, Xiaotong; Liu, Jingyi; Schulenburg, Katja; Schwab, Wilfried

    2016-03-01

    Physiologically active acylphloroglucinol (APG) glucosides were recently found in strawberry (Fragaria sp.) fruit. Although the formation of the APG aglycones has been clarified, little is known about APG glycosylation in plants. In this study we functionally characterized ripening-related glucosyltransferase genes in Fragaria by comprehensive biochemical analyses of the encoded proteins and by a RNA interference (RNAi) approach in vivo. The allelic proteins UGT71K3a/b catalyzed the glucosylation of diverse hydroxycoumarins, naphthols and flavonoids as well as phloroglucinols, enzymatically synthesized APG aglycones and pelargonidin. Total enzymatic synthesis of APG glucosides was achieved by co-incubation of recombinant dual functional chalcone/valerophenone synthase and UGT71K3 proteins with essential coenzyme A esters and UDP-glucose. An APG glucoside was identified in strawberry fruit which has not yet been reported in other plants. Suppression of UGT71K3 activity in transient RNAi-silenced fruits led to a loss of pigmentation and a substantial decrease of the levels of various APG glucosides and an anthocyanin. Metabolite analyses of transgenic fruits confirmed UGT71K3 as a UDP-glucose:APG glucosyltransferase in planta. These results provide the foundation for the breeding of fruits with improved health benefits and for the biotechnological production of bioactive natural products. PMID:26859691

  10. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria × ananassa).

    PubMed

    Song, Chuankui; Zhao, Shuai; Hong, Xiaotong; Liu, Jingyi; Schulenburg, Katja; Schwab, Wilfried

    2016-03-01

    Physiologically active acylphloroglucinol (APG) glucosides were recently found in strawberry (Fragaria sp.) fruit. Although the formation of the APG aglycones has been clarified, little is known about APG glycosylation in plants. In this study we functionally characterized ripening-related glucosyltransferase genes in Fragaria by comprehensive biochemical analyses of the encoded proteins and by a RNA interference (RNAi) approach in vivo. The allelic proteins UGT71K3a/b catalyzed the glucosylation of diverse hydroxycoumarins, naphthols and flavonoids as well as phloroglucinols, enzymatically synthesized APG aglycones and pelargonidin. Total enzymatic synthesis of APG glucosides was achieved by co-incubation of recombinant dual functional chalcone/valerophenone synthase and UGT71K3 proteins with essential coenzyme A esters and UDP-glucose. An APG glucoside was identified in strawberry fruit which has not yet been reported in other plants. Suppression of UGT71K3 activity in transient RNAi-silenced fruits led to a loss of pigmentation and a substantial decrease of the levels of various APG glucosides and an anthocyanin. Metabolite analyses of transgenic fruits confirmed UGT71K3 as a UDP-glucose:APG glucosyltransferase in planta. These results provide the foundation for the breeding of fruits with improved health benefits and for the biotechnological production of bioactive natural products.

  11. Flavonoid C-glucosides Derived from Flax Straw Extracts Reduce Human Breast Cancer Cell Growth In vitro and Induce Apoptosis

    PubMed Central

    Czemplik, Magdalena; Mierziak, Justyna; Szopa, Jan; Kulma, Anna

    2016-01-01

    Flax straw of flax varieties that are grown for oil production is a by product which represents a considerable biomass source. Therefore, its potential application for human use is of high interest. Our research has revealed that flax straw is rich in flavonoid C-glucosides, including vitexin, orientin, and isoorientin. The objective of this study was to evaluate the cytotoxicity and possible proapoptotic effect of flax straw derived C-glucosides of flavonoids in the human breast adenocarcinoma cell line (MCF-7). The effects of flax straw derived flavonoid C-glucosides on cell proliferation of MCF-7 cells were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and sulforhodamine B assays. The expression of apoptosis-related genes was assessed by real-time PCR. Our data revealed that flax C-glucosides as well as pure compounds are cytotoxic toward MCF-7 cells and inhibit their proliferation. Moreover, the induction of apoptosis was correlated with the changes in the mRNA level of pro-apoptotic genes. Increased expression of bax and caspase-7, -8, and -9 and decreased mRNA expression of bcl-2 was observed, whereas the mRNA levels of p53 and mdm2 were not altered. These results clearly demonstrated that flax straw metabolites effectively induced growth inhibition and apoptosis in human breast adenocarcinoma cells. PMID:27630565

  12. Flavonoid C-glucosides Derived from Flax Straw Extracts Reduce Human Breast Cancer Cell Growth In vitro and Induce Apoptosis.

    PubMed

    Czemplik, Magdalena; Mierziak, Justyna; Szopa, Jan; Kulma, Anna

    2016-01-01

    Flax straw of flax varieties that are grown for oil production is a by product which represents a considerable biomass source. Therefore, its potential application for human use is of high interest. Our research has revealed that flax straw is rich in flavonoid C-glucosides, including vitexin, orientin, and isoorientin. The objective of this study was to evaluate the cytotoxicity and possible proapoptotic effect of flax straw derived C-glucosides of flavonoids in the human breast adenocarcinoma cell line (MCF-7). The effects of flax straw derived flavonoid C-glucosides on cell proliferation of MCF-7 cells were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and sulforhodamine B assays. The expression of apoptosis-related genes was assessed by real-time PCR. Our data revealed that flax C-glucosides as well as pure compounds are cytotoxic toward MCF-7 cells and inhibit their proliferation. Moreover, the induction of apoptosis was correlated with the changes in the mRNA level of pro-apoptotic genes. Increased expression of bax and caspase-7, -8, and -9 and decreased mRNA expression of bcl-2 was observed, whereas the mRNA levels of p53 and mdm2 were not altered. These results clearly demonstrated that flax straw metabolites effectively induced growth inhibition and apoptosis in human breast adenocarcinoma cells. PMID:27630565

  13. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside.

    PubMed

    Panda, Sunanda; Kar, Anand

    2007-01-01

    Present investigation was made to reveal the involvement of a quercetin in the antidiabetic and antiperoxidative effects of Annona squamosa leaf extract. Quercetin-3-O-glucoside (characterized by UV, IR, MS and NMR analyses) was isolated from Annona squamosa leaves and examined for its potential to regulate alloxan-induced hyperglycemia and lipid peroxidation (LPO) in rats. While in alloxan treated animals, an increase in the concentration of serum glucose with a parallel decrease in insulin level was observed, administration of 15 mg/kg/day of isolated quercetin-3-O-glucoside for 10 consecutive days to the hyperglycemic animals reversed these effects and simultaneously inhibited the activity of hepatic glucose-6-phosphatase. It further decreased the hepatic and renal LPO with a concomitant increase in the activities of antioxidative enzymes, such as catalase (CAT) and superoxide dismutase (SOD) and in glutathione (GSH) content, indicating its safe and antiperoxidative effects. These findings suggest the potential of quercetin-3-O-glucoside in the amelioration of diabetes mellitus and tissue lipid peroxidation. It also appears that the antidiabetic effects of A. squamosa leaf extract is possibly mediated through the insulin stimulating and/or free radical scavenging properties of its active constituent, quercetin-3-O-glucoside. PMID:18997283

  14. Synthesis and biological evaluation of novel dioxa-bicycle C-aryl glucosides as SGLT2 inhibitors.

    PubMed

    Yan, Qi; Ding, Ning; Li, Yingxia

    2016-02-01

    A series of novel C-aryl glucosides containing dioxa-bicycle were synthesized and evaluated for inhibition activity against hSGLT2. Among the compounds tested, compound 6a showed moderate SGLT2 inhibition activities at 700 nM. The results could benefit the discovery of new SGLT2 inhibitors. PMID:26735747

  15. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca

    PubMed Central

    Behbahani, M.; Sayedipour, S.; Pourazar, A.; Shanehsazzadeh, M.

    2014-01-01

    Previously, we reported that the kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca showed potent anti-HSV activity. In the present study the anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside are investigated at different concentrations (100, 50, 25 and 10 μg/ml) using HIV-1 p24 Antigen kit. Real-time Polymerase chain reaction (RT-PCR) assay was also used for quantification of full range of virus load observed in treated and untreated cells. According to the results of RT- PCR, tested compounds at a concentration of 100 μg/ml exerted potent inhibitory effect. Time of drug addition experiments demonstrated that these compounds exerted their inhibitory effects on the early stage of HIV infection. The results also showed potent anti-HIV-1 reverse transcriptase activity. Antiviral activity of kaempferol-7-O-glucoside was more pronounced than that of kaempferol. These findings demonstrate that kaempferol-7-O-glucoside could be considered as a new potential drug candidate for the treatment of HIV infection which requires further assessments. PMID:26339261

  16. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca.

    PubMed

    Behbahani, M; Sayedipour, S; Pourazar, A; Shanehsazzadeh, M

    2014-01-01

    Previously, we reported that the kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca showed potent anti-HSV activity. In the present study the anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside are investigated at different concentrations (100, 50, 25 and 10 μg/ml) using HIV-1 p24 Antigen kit. Real-time Polymerase chain reaction (RT-PCR) assay was also used for quantification of full range of virus load observed in treated and untreated cells. According to the results of RT- PCR, tested compounds at a concentration of 100 μg/ml exerted potent inhibitory effect. Time of drug addition experiments demonstrated that these compounds exerted their inhibitory effects on the early stage of HIV infection. The results also showed potent anti-HIV-1 reverse transcriptase activity. Antiviral activity of kaempferol-7-O-glucoside was more pronounced than that of kaempferol. These findings demonstrate that kaempferol-7-O-glucoside could be considered as a new potential drug candidate for the treatment of HIV infection which requires further assessments. PMID:26339261

  17. Flavonoid C-glucosides Derived from Flax Straw Extracts Reduce Human Breast Cancer Cell Growth In vitro and Induce Apoptosis.

    PubMed

    Czemplik, Magdalena; Mierziak, Justyna; Szopa, Jan; Kulma, Anna

    2016-01-01

    Flax straw of flax varieties that are grown for oil production is a by product which represents a considerable biomass source. Therefore, its potential application for human use is of high interest. Our research has revealed that flax straw is rich in flavonoid C-glucosides, including vitexin, orientin, and isoorientin. The objective of this study was to evaluate the cytotoxicity and possible proapoptotic effect of flax straw derived C-glucosides of flavonoids in the human breast adenocarcinoma cell line (MCF-7). The effects of flax straw derived flavonoid C-glucosides on cell proliferation of MCF-7 cells were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and sulforhodamine B assays. The expression of apoptosis-related genes was assessed by real-time PCR. Our data revealed that flax C-glucosides as well as pure compounds are cytotoxic toward MCF-7 cells and inhibit their proliferation. Moreover, the induction of apoptosis was correlated with the changes in the mRNA level of pro-apoptotic genes. Increased expression of bax and caspase-7, -8, and -9 and decreased mRNA expression of bcl-2 was observed, whereas the mRNA levels of p53 and mdm2 were not altered. These results clearly demonstrated that flax straw metabolites effectively induced growth inhibition and apoptosis in human breast adenocarcinoma cells.

  18. Absorption of toxic beta-glucosides produced by plants and their effect on tissue trehalases from insects.

    PubMed

    Silva, Maria C P; Terra, Walter R; Ferreira, Clélia

    2006-03-01

    Trehalases present in body wall, Malpighian tubules, fat body, midgut and haemolymph from Tenebrio molitor (Coleoptera), Musca domestica (Diptera), Spodoptera frugiperda and Diatraea saccharalis (Lepidoptera) were assayed in the presence and absence of toxic beta-glucosides produced by plants or their aglycones. The glucosides used were phlorizin, amygdalin, prunasin and the aglycone mandelonitrile. In addition, T. molitor and S. frugiperda trehalases were assayed with and without esculin. More than 60% of total trehalase activity was found in the midgut of these insects. As a rule, trehalases present in each insect were inhibited by at least two of the glucosides. Prunasin was the best inhibitor in tissues with highest trehalase activity. S. frugiperda beta-glucosidases were not able to hydrolyze esculin. Nevertheless, their larval midguts absorb the intact glucoside that is recovered from the fat body, Malpighian tubules and mainly from haemolymph. Mature larvae fed on a diet containing 3 mM (0.1%) esculin have 0.2 mM esculin in their haemolymph, and weigh 60% of control larvae. In vitro, haemolymph trehalase activity is abolished by 0.5 mM esculin. This inhibition may play a role in the decrease of body weight and in animal survival. S. frugiperda larvae reared in 0.1% amygdalin-containing diet present higher trehalase activity in tissues than the larvae reared in 0.1% esculin-containing diet. Higher trehalase activity should be the reason why the S. frugiperda development is not impaired by 1% dietary amygdalin, in contrast to what is observed when insects are reared in 0.1% esculin. The data suggest that many plant beta-glucosides are toxic because they inhibit trehalase, a key enzyme controlling glucose availability in insects.

  19. Potential applications of glucosyltransferases in terpene glucoside production: impacts on the use of aroma and fragrance.

    PubMed

    Schwab, Wilfried; Fischer, Thilo C; Giri, Ashok; Wüst, Matthias

    2015-01-01

    The detection of glucoconjugated forms of monoterpene alcohols in rose petals in the late 1960s opened the new field of nonvolatile aroma precursors in flavor research. It is now well established that odorless glycosides represent a significant pool of aroma precursors in plants where they act as preformed but inactivated defense or attractive chemicals. Technical improvements in the separation and identification of plant secondary metabolites have provided a multitude of chemical structures, but functional characterization of glycosyltransferases that catalyze their formation lags behind. As technical efforts and costs for DNA sequencing dramatically dropped during the last decade, the number of plant genome sequences increased significantly, thus providing opportunities to functionally characterize the glycosyltransferase gene families in plants. These studies yielded the first glycosyltransferase genes that encode efficient biocatalysts for the production of monoterpene glucosides. They have applications in the food, feed, chemical, cosmetic, and pharmaceutical industries as slow release aroma chemicals. PMID:25431013

  20. New polyacetylene glucosides from the florets of Carthamus tinctorius and their weak anti-inflammatory activities.

    PubMed

    He, Jun; Shen, Yi; Jiang, Jian-Shuang; Yang, Ya-Nan; Feng, Zi-Ming; Zhang, Pei-Cheng; Yuan, Shao-Peng; Hou, Qi

    2011-09-27

    Eight new linear polyacetylene glucosides (1-8), containing two C(10)-, one C(13)- and five C(14)-acetylenes, together with three known polyacetylenes (9-11) were isolated from the florets of Carthamus tinctorius L. Their structures were elucidated by means of spectroscopic methods and chemical evidence. The absolute configurations of compounds 3-9 were confirmed by Snatzke and Gerards's method, observing the induced circular dichroism after addition of dirhodium tetrakis (trifluoroacetate) [Rh(2)(OCOCF(3))(4)] in CHCl(3). All the isolated compounds (1-11) were also tested for inhibitory activities against LPS-induced NO production in murine macrophages and just showed weak activities at concentrations of 1×10(-5)M.

  1. Synthesis, characterisation and antioxidant features of procyanidin B4 and malvidin-3-glucoside stearic acid derivatives.

    PubMed

    Cruz, Luis; Fernandes, Virgínia C; Araújo, Paula; Mateus, Nuno; de Freitas, Victor

    2015-05-01

    The acylation of procyanidin B4 with a saturated fatty acid chloride containing 18 carbon atoms was studied in order to obtain procyanidin B4 3-O-di-stearic acid conjugate. This compound was structurally characterised by mass spectrometry and 1D and 2D NMR techniques. Derivatization of malvidin-3-glucoside using stearoyl chloride in acetonitrile was also performed yielding mono-, di- and tri-stearic ester derivatives. The novel derivatives obtained revealed significant antioxidant activity, although lower than the respective precursors. However, the chemical modification of anthocyanins and procyanidins (water soluble pigments) to more lipophilic compounds has the advantage of increased bioavailability in biological matrices, and to potentiate their application in food matrices and cosmetic products.

  2. Sesquiterpene lactone glucosides and alkyl glycosides from the fruit of cumin.

    PubMed

    Takayanagi, Tomomi; Ishikawa, Toru; Kitajima, Junichi

    2003-06-01

    From the polar portion of the methanolic extract of cumin (fruit of Cuminum cyminum L.), two sesquiterpenoid glucosides, cuminoside A and B, and two alkyl glycosides were isolated together with five known compounds. Their structures were established as (1S,5S,6S,10S)-10-hydroxyguaia-3,7(11)-dien-12,6-olide beta-D-glucopyranoside, (1R,5R,6S,7S,9S,10R,11R)-1,9-dihydroxyeudesm-3-en-12,6-olide 9-O-beta-D-glucopyranoside, methyl beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside and ethane-1,2-diol 1-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside, respectively.

  3. Benzoxazinoids-cyclic hydroxamic acids, lactams and their corresponding glucosides in the genus Aphelandra (Acanthaceae).

    PubMed

    Baumeler, A; Hesse, M; Werner, C

    2000-01-01

    An improved method of sample preparation and simultaneous HPLC separation was developed that allowed the separation of 2,4-dihydroxy-1,4-benzoxazine-3(4H)-one (DIBOA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazine-3(4H)-one (DIMBOA), 2-hydroxy-1,4-benzoxazine-3(2H)-one (HBOA), 2-hydroxy-7-methoxy-1,4-benzoxazine-3(2H)-one (HMBOA) and their corresponding glucosides as well as the benzoxazolinones BOA and MBOA. The amount and distribution of these compounds was determined in the roots of Aphelandra squarrosa and A. fuscopunctata plants. There is a significant difference in the amount and distribution of this substance class in the two species analyzed. The results are discussed in relation to their function as defence compounds and allelochemicals.

  4. Mozambioside Is an Arabica-Specific Bitter-Tasting Furokaurane Glucoside in Coffee Beans.

    PubMed

    Lang, Roman; Klade, Stefan; Beusch, Anja; Dunkel, Andreas; Hofmann, Thomas

    2015-12-01

    Sensory-guided fractionation of a roasted coffee beverage revealed a highly polar, bitter-tasting subfraction, from which the furokaurane glucoside mozambioside was isolated and identified in its chemical structure by means of HDMS and NMR spectra. Sensory evaluation revealed a bitter taste recognition threshold of 60 (± 10) μmol/L. UPLC-HDMS quantitation of raw coffee beans showed that Arabica coffees contained 396-1188 nmol/g mozambioside, whereas only traces (<5 nmol/g) were detected in Robusta coffees, thus suggesting that mozambioside can be used as an analytical marker for Arabica coffee. Roasted Arabica contained a substantially reduced concentration (232 ± 37 nmol/g), indicating partial degradation of mozambioside during coffee roasting. Mozambioside was nearly quantitatively extracted into the aqueous brew during coffee-making (86-98%).

  5. Synthesis and antimicrobial activity of 6-triazolo-6-deoxy eugenol glucosides.

    PubMed

    de Souza, Thiago Belarmino; Raimundo, Paulo Otávio Botelho; Andrade, Saulo Fernandes; Hipólito, Taciane Maira Magalhães; Silva, Naiara Chaves; Dias, Amanda Latercia Tranches; Ikegaki, Masaharu; Rocha, Raissa Prado; Coelho, Luiz Felipe Leomil; Veloso, Marcia Paranho; Carvalho, Diogo Teixeira; Dias, Danielle Ferreira

    2015-06-17

    A new series of 1,2,3-triazole eugenol glucosides were synthesized. The new compound structures were confirmed by MS, (1)H NMR and (13)C NMR. All of the synthesized compounds were screened for antimicrobial and cytotoxic activity. Five compounds exerted significant activity against the Gram-negative bacteria Salmonella typhimurium with low IC50 values (49.73-68.53 μΜ), and seven compounds were active against the Gram-positive bacteria Micrococcus luteus (42.89-210.94 μM). In vitro cytotoxicity on mouse spleen cells was also evaluated. One compound bearing a phenyl substituent at the triazole ring showed good activity against Salmonella typhimurium (49.73 μM) and low toxicity to normal cells (CC50=157.83 μM). Thus, the compounds herein can be considered for further modification for improving their antibacterial activity or obtaining novel antibacterial drug candidates.

  6. Mozambioside Is an Arabica-Specific Bitter-Tasting Furokaurane Glucoside in Coffee Beans.

    PubMed

    Lang, Roman; Klade, Stefan; Beusch, Anja; Dunkel, Andreas; Hofmann, Thomas

    2015-12-01

    Sensory-guided fractionation of a roasted coffee beverage revealed a highly polar, bitter-tasting subfraction, from which the furokaurane glucoside mozambioside was isolated and identified in its chemical structure by means of HDMS and NMR spectra. Sensory evaluation revealed a bitter taste recognition threshold of 60 (± 10) μmol/L. UPLC-HDMS quantitation of raw coffee beans showed that Arabica coffees contained 396-1188 nmol/g mozambioside, whereas only traces (<5 nmol/g) were detected in Robusta coffees, thus suggesting that mozambioside can be used as an analytical marker for Arabica coffee. Roasted Arabica contained a substantially reduced concentration (232 ± 37 nmol/g), indicating partial degradation of mozambioside during coffee roasting. Mozambioside was nearly quantitatively extracted into the aqueous brew during coffee-making (86-98%). PMID:26585544

  7. New fatty acid, aromatic ester and monoterpenic benzyl glucoside from the fruits of Withania coagulans Dunal.

    PubMed

    Ali, Abuzer; Jameel, Mohammad; Ali, Mohammed

    2015-01-01

    The fruits of Withania coagulans Dunal (family: Solanaceae) are sweet, sedative, emetic, alterative and diuretic; used to treat asthma, biliousness, strangury, wounds, dyspepsia, flatulent colic, liver complaints and intestinal infections in the indigenous system of medicine. Phytochemical investigation of the methanolic extract of W. coagulans fruits led to the isolation of a new fatty acid, an aromatic ester and a monoterpenic benzyl glucoside characterised as n-octatriacont-17-enoic acid (3), geranilan-10-olyl dihydrocinnamoate (4) and geranilan-8-oic acid-10-olyl salicyloxy-2-O-β-D-glucofuranosyl-(6″→1‴)-O-β-D-glucofuranosyl-6‴-n-octadec-9‴',11‴'-dienoate (5) along with two known fatty acids, n-dotriacont-21-enoic acid (1) and n-tetratriacontanoic acid (2). The structures of isolated phytoconstituents were established on the basis of 1D and 2D NMR, FT-IR, UV, and MS data and chemical means.

  8. Decyl glucoside as a corrosion inhibitor for magnesium-air battery

    NASA Astrophysics Data System (ADS)

    Deyab, M. A.

    2016-09-01

    In this research, the effects of decyl glucoside (DG) on the corrosion inhibition and battery performance of Mg-air battery have been investigated. Chemical and electrochemical techniques have been used to evaluate the corrosion rate and inhibitor efficiency. Mg surface has been characterized with scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). A significant reduction in the corrosion rate of Mg in battery electrolyte (3.5% NaCl solution) has been observed in the presence of DG surfactant. Maximum inhibition efficiency (>94%) is achieved at critical micelle concentration of DG surfactant (CMC = 2.5 mM). The presence of DG surfactant increases the activation energy of the corrosion reaction. Physisorption mechanism has been suggested for the inhibition action of DG surfactant. The Mg-air battery containing DG surfactant offers higher operating voltage, discharge capacity and anodic utilization than in its absence.

  9. Isolation of new flavan-3-ol and lignan glucoside from Loropetalum chinense and their antimicrobial activities.

    PubMed

    Zhang, Qinghua; Fan, Dan; Xiong, Bingjian; Kong, Lingbao; Zhu, Xiangdong

    2013-10-01

    Phytochemical and antimicrobial activity study on the ethanol extract of the leaves and stems of Loropetalum chinense led to the isolation of a new flavan-3-ol compounds, 8-[1-(3,4-dihydroxyphenyl)-3-methoxy-3-oxopropyl]-catechin (loropetaliside A) (1) and a new lignan glucoside, 1-(5-hydroxy-3-methoxyphenyl)-2-(2-β-glucopyranosyl-4-hydroxy-5-(1-(E)propen-3-ol)-phenyl)-propane-3-ol (loropetaliside B) (3) and several known compounds manglieside D (2), quercetin (4), kaempferol-3-O-D-glucopyranoside (5), quercetin-3-O-β-L-rhamnoside (6) and tiliroside (7). Their structures were elucidated on the basis of extensive spectroscopic analysis.

  10. Stability studies of ascorbic acid 2-glucoside in cosmetic lotion using surface response methodology.

    PubMed

    Huang, Wen-Ying; Lee, Pei-Chi; Huang, Ling-Kuei; Lu, Li-Ping; Liao, Wayne C

    2013-03-15

    Ascorbic acid 2-glucoside (AA-2G) has been widely used in cream and lotion types of cosmetic products. Thus, the degradation of AA-2G caused by the temperature change and pH variation was very critical for determining the bio-functionality of cosmetics. Response surface methodology (RSM) was introduced to study the influence of temperature and pH on the stability of AA-2G. The optimal condition of retaining AA-2G with the highest stability was determined to be 55.3°C and pH 6.4. The antioxidative activities of AA-2G including DPPH and ABTS free radical scavenging activities, metal chelating activity, and reducing ability were also determined. AA-2G was a good ascorbic acid derivative which could be used in cosmetic products as an active ingredient.

  11. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in hard red spring wheat grown in the USA.

    PubMed

    Simsek, Senay; Ovando-Martínez, Maribel; Ozsisli, Bahri; Whitney, Kristin; Ohm, Jae-Bom

    2013-12-18

    Deoxynivalenol (DON) is a mycotoxin found in wheat that is infected with Fusarium fungus. DON may also be converted to a type of "masked mycotoxin", named deoxynivalenol-3-glucoside (D3G), as a result of detoxification of the plant. In this study, DON and D3G were measured using gas chromatographic (GC) and liquid chromatography-mass spectrometry (LC-MS) in wheat samples collected during 2011 and 2012 in the USA. Results indicate that the growing region had a significant effect on the DON and D3G (p < 0.0001). There was a positive correlation between both methods (GC and LC-MS) used for determination of DON content. DON showed a significant and positive correlation with D3G during 2011. Overall, DON production had an effect on D3G content and kernel damage, and was dependent on environmental conditions during Fusarium infection.

  12. Some aspects of the inhibitory activity of hypolaetin-8-glucoside in acute inflammation.

    PubMed

    Villar, A; Gascó, M A; Alcaraz, M J

    1987-07-01

    Hypolaetin-8-glucoside (H-8-G) has been examined for its mode of action in several models of acute inflammation. Its anti-inflammatory activity in carrageenan-induced inflammation of the rat hind-paw is not affected either by adrenalectomy or by phentolamine given with propranolol. H-8-G and its aglycone, hypolaetin, did not antagonize the actions of histamine, 5-hydroxytryptamine (5-HT), bradykinin or prostaglandin E2 (PGE2) on various smooth muscle preparations in-vitro, but protected erythrocytes from heat-induced lysis. The glycoside was more potent than troxerutin on capillary permeability increased by histamine and exerted inhibitory effects on protein exudation, leucocyte migration and beta-glucuronidase activity in the carrageenan air pouch, thereby showing some difference from indomethacin. These results are discussed in relation to the features of non-steroidal anti-inflammatory drugs (NSAID) and flavonoid anti-inflammatory actions.

  13. Molecular cloning and characterization of genistein 4'-O-glucoside specific glycosyltransferase from Bacopa monniera.

    PubMed

    Ruby; Santosh Kumar, R J; Vishwakarma, Rishi K; Singh, Somesh; Khan, Bashir M

    2014-07-01

    Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.

  14. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.

    PubMed

    Balyejusa Kizito, Elizabeth; Rönnberg-Wästljung, Ann-Christin; Egwang, Thomas; Gullberg, Urban; Fregene, Martin; Westerbergh, Anna

    2007-09-01

    Cassava (Manihot esculenta Crantz) is a starchy root crop grown in the tropics mainly by small-scale farmers even though agro-industrial processing is rapidly increasing. For this processing market improved varieties with high dry matter root content (DMC) is required. Potentially toxic cyanogenic glucosides are synthesized in the leaves and translocated to the roots. Selection for varieties with low cyanogenic glucoside potential (CNP) and high DMC is among the principal objectives in cassava breeding programs. However, these traits are highly influenced by the environmental conditions and the genetic control of these traits is not well understood. An S(1) population derived from a cross between two bred cassava varieties (MCOL 1684 and Rayong 1) that differ in CNP and DMC was used to study the heritability and genetic basis of these traits. A broad-sense heritability of 0.43 and 0.42 was found for CNP and DMC, respectively. The moderate heritabilities for DMC and CNP indicate that the phenotypic variation of these traits is explained by a genetic component. We found two quantitative trait loci (QTL) on two different linkage groups controlling CNP and six QTL on four different linkage groups controlling DMC. One QTL for CNP and one QTL for DMC mapped near each other, suggesting pleiotrophy and/or linkage of QTL. The two QTL for CNP showed additive effects while the six QTL for DMC showed additive effect, dominance or overdominance. This study is a first step towards developing molecular marker tools for efficient breeding of CNP and DMC in cassava.

  15. Molecular cloning and characterization of genistein 4'-O-glucoside specific glycosyltransferase from Bacopa monniera.

    PubMed

    Ruby; Santosh Kumar, R J; Vishwakarma, Rishi K; Singh, Somesh; Khan, Bashir M

    2014-07-01

    Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism. PMID:24664316

  16. UPLC/Q-TOF-MS analysis of iridoid glycosides and metabolites in rat plasma after oral administration of Paederia scandens extracts.

    PubMed

    Wang, Dong-Mei; Xu, Yi-Fei; Chen, Zhu; Huang, Lin-Fang; Chen, Shi-Lin

    2015-03-01

    A rapid and validated UPLC-MS method was developed for investigating the absorbed components of Paederia scandens (Lour.) Merrill (P. scandensy) in rat plasma. The bioactive constituents in plasma samples from rats administrated orally with P. scandens extract were analyzed by Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Four prototype compounds were identified in rat serum as potential bioactive components of P. scandens by comparing their retention times and mass spectrometry data or by mass spectrometry analysis and retrieving the reference literatures. Glucuronidation after deglycosylation was the major metabolic pathway for the iridoid glycosides in P. scandens. These results showed that the methods had high sensitivity and resolution and were suitable for identifying the bioactive constituents in plasma after oral administration of P. scandens. providing helpful chemical information for further pharmacological and mechanistic researched on the P. scandens. PMID:25835366

  17. Metabolism of Monoterpenes : Early Steps in the Metabolism of d-Neomenthyl-beta-d-Glucoside in Peppermint (Mentha piperita) Rhizomes.

    PubMed

    Croteau, R; Sood, V K; Renstrøm, B; Bhushan, R

    1984-11-01

    Previous studies have shown that the monoterpene ketone l-[G-(3)H] menthone is reduced to the epimeric alcohols l-menthol and d-neomenthol in leaves of flowering peppermint (Mentha piperita L.), and that a portion of the menthol is converted to menthyl acetate while the bulk of the neomenthol is transformed to neomenthyl-beta-d-glucoside which is then transported to the rhizome (Croteau, Martinkus 1979 Plant Physiol 64: 169-175). Analysis of the disposition of l-[G-(3)H]menthone applied to midstem leaves of intact flowering plants allowed the kinetics of synthesis and transport of the monoterpenyl glucoside to be determined, and gave strong indication that the glucoside was subsequently metabolized in the rhizome. Studies with d-[G-(3)H]neomenthyl-beta-d-glucoside as substrate, using excised rhizomes or rhizome segments, confirmed the hydrolysis of the glucoside as an early step in metabolism at this site, and revealed that the terpenoid moiety was further converted to a series of ether-soluble, methanol-soluble, and water-soluble products. Studies with d-[G-(3)H]neomenthol as the substrate, using excised rhizomes, showed the subsequent metabolic steps to involve oxidation of the alcohol back to menthone, followed by an unusual lactonization reaction in which oxygen is inserted between the carbonyl carbon and the carbon bearing the isopropyl group, to afford 3,4-menthone lactone. The conversion of menthone to the lactone, and of the lactone to more polar products, were confirmed in vivo using l-[G-(3)H]menthone and l-[G-(3)H]-3,4-menthone lactone as substrates. Additional oxidation products were formed in vivo via the desaturation of labeled neomenthol and/or menthone, but none of these transformations appeared to lead to ring opening of the p-menthane skeleton. Each step in the main reaction sequence, from hydrolysis of neomenthyl glucoside to lactonization of menthone, was demonstrated in cell-free extracts from the rhizomes of flowering mint plants. The

  18. Phytochemistry, micromorphology and bioactivities of Ajuga chamaepitys (L.) Schreb. (Lamiaceae, Ajugoideae): Two new harpagide derivatives and an unusual iridoid glycosides pattern.

    PubMed

    Venditti, A; Frezza, C; Maggi, F; Lupidi, G; Bramucci, M; Quassinti, L; Giuliani, C; Cianfaglione, K; Papa, F; Serafini, M; Bianco, A

    2016-09-01

    Ajuga chamaepitys (L.) Schreb, well-known as Camaepitium or Ground Pine, is an annual herb typical of the Mediterranean area accounting several uses in the traditional medicine. In this work we have, analyzed the plant iridoid fraction together with the essential oil composition and study of the plant indumentum. Finally, we assayed the polar extracts and essential oil obtained from the aerial parts for antioxidant activity and cytotoxicity on tumor cells. The analysis of the monoterpene glycosides allowed us to isolate from roots and aerial parts and to structurally elucidate by NMR and MS the following compounds: ajugoside (1), reptoside (2), 8-O-acetylharpagide (3), harpagide (4), 5-O-β-d-glucopyranosyl-harpagide (5), asperulosidic acid (6), deacetyl asperulosidic acid (7) and 5-O-β-d-glucopyranosyl-8-O-acetylharpagide (8), among which 5 and 8 were two new natural products. Chemotaxomic relevance of these constituents was discussed. The chemical analysis of A. chamaepitys essential oil by GC-FID and GC-MS showed ethyl linoleate (13.7%), germacrene D (13.4%), kaurene (8.4%), β-pinene (6.8%), and (E)-phytol (5.3%) as the major volatile components. The micromorphological and histochemical study showed that iridoids and essential oil are mainly produced in the type III capitates and peltate trichomes of leaves and flowers. Biological evaluations of A. chamaepitys polar extracts and essential oil showed that the former were more potent as radical scavengers than the latter. MTT assay revealed that essential oil and ethanolic extracts were moderately cytotoxic on tumor cells with IC50 of 36.88 and 59.24μg/mL on MDA-MB 231 cell line, respectively, and IC50 of 60.48 and 64.12μg/mL on HCT116, respectively.

  19. HSCCC Separation of the Two Iridoid Glycosides and Three Phenolic Compounds from Veronica ciliata and Their in Vitro Antioxidant and Anti-Hepatocarcinoma Activities.

    PubMed

    Lu, Qiuxia; Sun, Yiran; Shu, Yueyue; Tan, Shancai; Yin, Li; Guo, Yiran; Tang, Lin

    2016-01-01

    Five main compounds, including two iridoid glycosides (catalposide, verproside) and three phenolic compounds (luteolin, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid), were separated and prepared from the crude extract of Veronica ciliata by high-speed countercurrent chromatography. n-Hexane/n-butanol/water (1.5:5:5, v/v/v) was used for the separation of catalposide and verproside. n-Hexane/n-butanol/water (3:2:5, v/v/v) was used for the separation of luteolin, 4-hydroxy benzoic acid and 3,4-dihydroxy benzoic acid. The head-to-tail elution mode was used with a flow rate of 5.0 mL/min and a rotary speed of 800 rpm. Finally, a total of 1.28 mg luteolin, 6 mg 4-hydroxy benzoic acid, 2 mg 3,4-dihydroxy benzoic acid, 2 mg verproside and 10 mg catalposide with purities of 98%, 99.1%, 99.5%, 99.8% and 99%, respectively, were obtained from 200 mg of crude extract. In addition, their structure was identified using MS, ¹H-NMR and (13)C-NMR. To the best of our knowledge, this is the first report of the separation and purification of iridoid glycosides and phenolic compounds from V. ciliata by high-speed countercurrent chromatography (HSCCC). Among these compounds, luteolin, 4-hydroxy benzoic acid and 3,4-dihydroxy benzoic acid were separated from V. ciliata Fisch. for the first time. The results of the antioxidant activity show that protocatechuic acid and luteolin have strong antioxidant activity compared to 2,6-di-tert-butyl-4-methylphenol (BHT) and vitamin C (Vc). Five compounds also exhibited strong anti-hepatocarcinoma activities.

  20. Phytochemistry, micromorphology and bioactivities of Ajuga chamaepitys (L.) Schreb. (Lamiaceae, Ajugoideae): Two new harpagide derivatives and an unusual iridoid glycosides pattern.

    PubMed

    Venditti, A; Frezza, C; Maggi, F; Lupidi, G; Bramucci, M; Quassinti, L; Giuliani, C; Cianfaglione, K; Papa, F; Serafini, M; Bianco, A

    2016-09-01

    Ajuga chamaepitys (L.) Schreb, well-known as Camaepitium or Ground Pine, is an annual herb typical of the Mediterranean area accounting several uses in the traditional medicine. In this work we have, analyzed the plant iridoid fraction together with the essential oil composition and study of the plant indumentum. Finally, we assayed the polar extracts and essential oil obtained from the aerial parts for antioxidant activity and cytotoxicity on tumor cells. The analysis of the monoterpene glycosides allowed us to isolate from roots and aerial parts and to structurally elucidate by NMR and MS the following compounds: ajugoside (1), reptoside (2), 8-O-acetylharpagide (3), harpagide (4), 5-O-β-d-glucopyranosyl-harpagide (5), asperulosidic acid (6), deacetyl asperulosidic acid (7) and 5-O-β-d-glucopyranosyl-8-O-acetylharpagide (8), among which 5 and 8 were two new natural products. Chemotaxomic relevance of these constituents was discussed. The chemical analysis of A. chamaepitys essential oil by GC-FID and GC-MS showed ethyl linoleate (13.7%), germacrene D (13.4%), kaurene (8.4%), β-pinene (6.8%), and (E)-phytol (5.3%) as the major volatile components. The micromorphological and histochemical study showed that iridoids and essential oil are mainly produced in the type III capitates and peltate trichomes of leaves and flowers. Biological evaluations of A. chamaepitys polar extracts and essential oil showed that the former were more potent as radical scavengers than the latter. MTT assay revealed that essential oil and ethanolic extracts were moderately cytotoxic on tumor cells with IC50 of 36.88 and 59.24μg/mL on MDA-MB 231 cell line, respectively, and IC50 of 60.48 and 64.12μg/mL on HCT116, respectively. PMID:27373875

  1. HSCCC Separation of the Two Iridoid Glycosides and Three Phenolic Compounds from Veronica ciliata and Their in Vitro Antioxidant and Anti-Hepatocarcinoma Activities.

    PubMed

    Lu, Qiuxia; Sun, Yiran; Shu, Yueyue; Tan, Shancai; Yin, Li; Guo, Yiran; Tang, Lin

    2016-01-01

    Five main compounds, including two iridoid glycosides (catalposide, verproside) and three phenolic compounds (luteolin, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid), were separated and prepared from the crude extract of Veronica ciliata by high-speed countercurrent chromatography. n-Hexane/n-butanol/water (1.5:5:5, v/v/v) was used for the separation of catalposide and verproside. n-Hexane/n-butanol/water (3:2:5, v/v/v) was used for the separation of luteolin, 4-hydroxy benzoic acid and 3,4-dihydroxy benzoic acid. The head-to-tail elution mode was used with a flow rate of 5.0 mL/min and a rotary speed of 800 rpm. Finally, a total of 1.28 mg luteolin, 6 mg 4-hydroxy benzoic acid, 2 mg 3,4-dihydroxy benzoic acid, 2 mg verproside and 10 mg catalposide with purities of 98%, 99.1%, 99.5%, 99.8% and 99%, respectively, were obtained from 200 mg of crude extract. In addition, their structure was identified using MS, ¹H-NMR and (13)C-NMR. To the best of our knowledge, this is the first report of the separation and purification of iridoid glycosides and phenolic compounds from V. ciliata by high-speed countercurrent chromatography (HSCCC). Among these compounds, luteolin, 4-hydroxy benzoic acid and 3,4-dihydroxy benzoic acid were separated from V. ciliata Fisch. for the first time. The results of the antioxidant activity show that protocatechuic acid and luteolin have strong antioxidant activity compared to 2,6-di-tert-butyl-4-methylphenol (BHT) and vitamin C (Vc). Five compounds also exhibited strong anti-hepatocarcinoma activities. PMID:27649125

  2. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    PubMed Central

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-01-01

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives. PMID:26274975

  3. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate.

    PubMed

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-08-12

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  4. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana

    PubMed Central

    2011-01-01

    Background Brassinosteroids (BRs) are signaling molecules that play essential roles in the spatial regulation of plant growth and development. In contrast to other plant hormones BRs act locally, close to the sites of their synthesis, and thus homeostatic mechanisms must operate at the cellular level to equilibrate BR concentrations. Whilst it is recognized that levels of bioactive BRs are likely adjusted by controlling the relative rates of biosynthesis and by catabolism, few factors, which participate in these regulatory events, have as yet been identified. Previously we have shown that the UDP-glycosyltransferase UGT73C5 of Arabidopsis thaliana catalyzes 23-O-glucosylation of BRs and that glucosylation renders BRs inactive. This study identifies the closest homologue of UGT73C5, UGT73C6, as an enzyme that is also able to glucosylate BRs in planta. Results In a candidate gene approach, in which homologues of UGT73C5 were screened for their potential to induce BR deficiency when over-expressed in plants, UGT73C6 was identified as an enzyme that can glucosylate the BRs CS and BL at their 23-O-positions in planta. GUS reporter analysis indicates that UGT73C6 shows over-lapping, but also distinct expression patterns with UGT73C5 and YFP reporter data suggests that at the cellular level, both UGTs localize to the cytoplasm and to the nucleus. A liquid chromatography high-resolution mass spectrometry method for BR metabolite analysis was developed and applied to determine the kinetics of formation and the catabolic fate of BR-23-O-glucosides in wild type and UGT73C5 and UGT73C6 over-expression lines. This approach identified novel BR catabolites, which are considered to be BR-malonylglucosides, and provided first evidence indicating that glucosylation protects BRs from cellular removal. The physiological significance of BR glucosylation, and the possible role of UGT73C6 as a regulatory factor in this process are discussed in light of the results presented. Conclusion

  5. Diversified glucosinolate metabolism: biosynthesis of hydrogen cyanide and of the hydroxynitrile glucoside alliarinoside in relation to sinigrin metabolism in Alliaria petiolata.

    PubMed

    Frisch, Tina; Motawia, Mohammed S; Olsen, Carl E; Agerbirk, Niels; Møller, Birger L; Bjarnholt, Nanna

    2015-01-01

    Alliaria petiolata (garlic mustard, Brassicaceae) contains the glucosinolate sinigrin as well as alliarinoside, a γ-hydroxynitrile glucoside structurally related to cyanogenic glucosides. Sinigrin may defend this plant against a broad range of enemies, while alliarinoside confers resistance to specialized (glucosinolate-adapted) herbivores. Hydroxynitrile glucosides and glucosinolates are two classes of specialized metabolites, which generally do not occur in the same plant species. Administration of [UL-(14)C]-methionine to excised leaves of A. petiolata showed that both alliarinoside and sinigrin were biosynthesized from methionine. The biosynthesis of alliarinoside was shown not to bifurcate from sinigrin biosynthesis at the oxime level in contrast to the general scheme for hydroxynitrile glucoside biosynthesis. Instead, the aglucon of alliarinoside was formed from metabolism of sinigrin in experiments with crude extracts, suggesting a possible biosynthetic pathway in intact cells. Hence, the alliarinoside pathway may represent a route to hydroxynitrile glucoside biosynthesis resulting from convergent evolution. Metabolite profiling by LC-MS showed no evidence of the presence of cyanogenic glucosides in A. petiolata. However, we detected hydrogen cyanide (HCN) release from sinigrin and added thiocyanate ion and benzyl thiocyanate in A. petiolata indicating an enzymatic pathway from glucosinolates via allyl thiocyanate and indole glucosinolate derived thiocyanate ion to HCN. Alliarinoside biosynthesis and HCN release from glucosinolate-derived metabolites expand the range of glucosinolate-related defenses and can be viewed as a third line of defense, with glucosinolates and thiocyanate forming protein being the first and second lines, respectively.

  6. Skin absorption and metabolism of a new vitamin E prodrug, delta-tocopherol-glucoside: in vitro evaluation in human skin models.

    PubMed

    Mavon, Alain; Raufast, Véronique; Redoulès, Daniel

    2004-11-24

    The aim of this study was to investigate the cutaneous penetration and metabolism of the new vitamin E prodrug delta-tocopherol glucoside (delta-TG), as compared to those of common vitamin E acetate, in vitro, both in reconstituted human epidermis and in viable human skin. Better diffusion was observed with alpha-tocopherol acetate (alpha-TAc) than with delta-tocopherol glucoside in both skin models, at 0.1% and 0.05% in a myritol solution; however, no metabolism was detected with alpha-tocopherol acetate. In all conditions tested (two skin models, two concentrations, three test times, and compartmental analysis) the delta-tocopherol glucoside was metabolized into free tocopherol. In the reconstituted human epidermis, after 18 h, over 90% of the delta-tocopherol glucoside was bioconverted. In the viable human skin, the extent of metabolism was about 20%, with 0.12 and 0.10 microg/cm2 of delta-tocopherol glucoside in the stratum corneum and epidermis, respectively. After topical application, the delta-tocopherol glucoside had a considerable reservoir effect, associated with gradual delivery of free tocopherol. The use of this gluco-conjugated vitamin E at a low concentration shows the capability of the skin to metabolize the prodrug in a slow and prolonged manner, making this gluco-conjugated vitamin E an excellent candidate for continuous reinforcement of antioxidants in the skin.

  7. Diversified glucosinolate metabolism: biosynthesis of hydrogen cyanide and of the hydroxynitrile glucoside alliarinoside in relation to sinigrin metabolism in Alliaria petiolata

    PubMed Central

    Frisch, Tina; Motawia, Mohammed S.; Olsen, Carl E.; Agerbirk, Niels; Møller, Birger L.; Bjarnholt, Nanna

    2015-01-01

    Alliaria petiolata (garlic mustard, Brassicaceae) contains the glucosinolate sinigrin as well as alliarinoside, a γ-hydroxynitrile glucoside structurally related to cyanogenic glucosides. Sinigrin may defend this plant against a broad range of enemies, while alliarinoside confers resistance to specialized (glucosinolate-adapted) herbivores. Hydroxynitrile glucosides and glucosinolates are two classes of specialized metabolites, which generally do not occur in the same plant species. Administration of [UL-14C]-methionine to excised leaves of A. petiolata showed that both alliarinoside and sinigrin were biosynthesized from methionine. The biosynthesis of alliarinoside was shown not to bifurcate from sinigrin biosynthesis at the oxime level in contrast to the general scheme for hydroxynitrile glucoside biosynthesis. Instead, the aglucon of alliarinoside was formed from metabolism of sinigrin in experiments with crude extracts, suggesting a possible biosynthetic pathway in intact cells. Hence, the alliarinoside pathway may represent a route to hydroxynitrile glucoside biosynthesis resulting from convergent evolution. Metabolite profiling by LC-MS showed no evidence of the presence of cyanogenic glucosides in A. petiolata. However, we detected hydrogen cyanide (HCN) release from sinigrin and added thiocyanate ion and benzyl thiocyanate in A. petiolata indicating an enzymatic pathway from glucosinolates via allyl thiocyanate and indole glucosinolate derived thiocyanate ion to HCN. Alliarinoside biosynthesis and HCN release from glucosinolate-derived metabolites expand the range of glucosinolate-related defenses and can be viewed as a third line of defense, with glucosinolates and thiocyanate forming protein being the first and second lines, respectively. PMID:26583022

  8. Cool-cultivated red leaf lettuce accumulates cyanidin-3-O-(6″-O-malonyl)-glucoside and caffeoylmalic acid.

    PubMed

    Becker, Christine; Klaering, Hans-Peter; Kroh, Lothar W; Krumbein, Angelika

    2014-03-01

    Cultivating lettuce in greenhouses at low temperatures improves its CO2-balance and may increase its content of flavonoid glycosides and phenolic acids. We cultivated 5weeks old red leaf lettuce seedlings at 20/15°C (day/night) or 12/7°C until plants reached comparable growth stages: small heads were harvested after 13 (warm) and 26 (cool)days, while mature heads were harvested after 26 (warm) or 52 (cool)days. Additionally, some plants were cultivated first cool then warm and vice versa (39days). Cool-cultivated small heads had higher concentrations of cyanidin-3-O-(6″-O-malonyl)-glucoside and caffeoylmalic acid than warm-cultivated ones but we detected no differences concerning quercetin and luteolin glycosides or di-O-caffeoyltartaric and 5-O-caffeoylquinic acid. Regarding mature heads, there were only differences concerning cyanidin-3-O-(6″-O-malonyl)-glucoside. We therefore suggest that only cyanidin-3-O-(6″-O-malonyl)-glucoside was truly responsive to temperatures alone. Previously reported contrasting effects may rather be due to comparison of different growth stages or interactive effects with radiation.

  9. Hydrolysis of aromatic β-glucosides by non-pathogenic bacteria confers a chemical weapon against predators.

    PubMed

    Sonowal, Robert; Nandimath, Krithi; Kulkarni, Sucheta S; Koushika, Sandhya P; Nanjundiah, Vidyanand; Mahadevan, S

    2013-07-01

    Bacteria present in natural environments such as soil have evolved multiple strategies to escape predation. We report that natural isolates of Enterobacteriaceae that actively hydrolyze plant-derived aromatic β-glucosides such as salicin, arbutin and esculin, are able to avoid predation by the bacteriovorous amoeba Dictyostelium discoideum and nematodes of multiple genera belonging to the family Rhabditidae. This advantage can be observed under laboratory culture conditions as well as in the soil environment. The aglycone moiety released by the hydrolysis of β-glucosides is toxic to predators and acts via the dopaminergic receptor Dop-1 in the case of Caenorhabditis elegans. While soil isolates of nematodes belonging to the family Rhabditidae are repelled by the aglycone, laboratory strains and natural isolates of Caenorhabditis sp. are attracted to the compound, mediated by receptors that are independent of Dop-1, leading to their death. The β-glucosides-positive (Bgl(+)) bacteria that are otherwise non-pathogenic can obtain additional nutrients from the dead predators, thereby switching their role from prey to predator. This study also offers an evolutionary explanation for the retention by bacteria of 'cryptic' or 'silent' genetic systems such as the bgl operon. PMID:23677347

  10. Synthesis of α - mangostin-D-glucoside in supercritical carbon dioxide media.

    PubMed

    Zarena, A S; Sankar, Kadimi Udaya

    2015-10-01

    α-Mangostin, the major xanthone constituent of mangoteen fruit pericarp, has several important pharmaceutical application but its bioavailability is restricted due to its insolubility in water. Herein, we synthesized water soluble α-mangostin-D-glucoside by glycosylation of α-mangostin at hydroxyl group; using amyloglucosidase (3.2.1.3) catalyzed reaction in supercritical carbon dioxide (SC-CO2) media. Response surface methodology (RSM) based on a five-variable central composite rotatable design involving 32 experiments was used to determine the effect of pressure (80-160 bar), temperature (35-75 °C), enzyme concentration (15-45 mg), buffer pH (4.0-8.0) and buffer volume (1.0-5.0 mL). Experimental data fitted the second-order polynomial equation as indicated by R(2) value of 0.94. The optimal enzymatic conversion within the experimental range of the variables reached 20.3 % at a pressure of 120 bar, temperature of 55 °C, enzyme concentration of 30 mg, buffer volume of 3 mL and pH 6.0 which is well matched with the predictive yield.

  11. Furofuran Lignan Glucosides with Estrogen-Inhibitory Properties from the Bangladeshi Medicinal Plant Terminalia citrina.

    PubMed

    Muhit, Md Abdul; Umehara, Kaoru; Mori-Yasumoto, Kanami; Noguchi, Hiroshi

    2016-05-27

    Extracts from the leaves of the Bangladeshi medicinal plant Terminalia citrina were prepared, and 13 new furofuran lignan glucosides, terminalosides A-K (1-4, 6-12), 2-epiterminaloside D (5), and 6-epiterminaloside K (13), were characterized using various spectroscopic techniques. Twelve of the isolates were found to contain rare tetraoxygenated aryl groups in their structures. Analysis of the NMR chemical shifts for the oxymethine signals in the furofuran ring suggested a pragmatic approach to determining the relative configuration of these compounds. The ECD and NOESY spectroscopic data obtained allowed for the deduction of the absolute configurations and conformations of the compounds. The isolates were tested for their estrogenic/antiestrogenic activity using the MCF-7 and T47D estrogen-responsive human breast cancer cell lines. Terminalosides B (2) and G (8) exhibited inhibitory effects for both cell lines, and estradiol-enhanced cell proliferation was suppressed by 90% at concentrations lower than 10 μM. Terminaloside E (6) showed inhibitory activity against the T47D cell line, whereas terminalosides C (3), F (7), and I (10) and 6-epiterminaloside K (13) displayed antiestrogenic activity against MCF-7 cells. PMID:27110635

  12. Prophylactic Efficacy of Quercetin 3-β-O-d-Glucoside against Ebola Virus Infection.

    PubMed

    Qiu, Xiangguo; Kroeker, Andrea; He, Shihua; Kozak, Robert; Audet, Jonathan; Mbikay, Majambu; Chrétien, Michel

    2016-09-01

    Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola. However, these prophylactics and therapeutics have been designed and tested only against the same species of Ebola virus as the one causing the current outbreak. Future outbreaks involving other species would require reformulation and possibly redevelopment. Therefore, a broad-spectrum alternative is highly desirable. We have found that a flavonoid derivative called quercetin 3-β-O-d-glucoside (Q3G) has the ability to protect mice from Ebola even when given as little as 30 min prior to infection. Furthermore, we have demonstrated that this compound targets the early steps of viral entry. Most promisingly, antiviral activity against two distinct species of Ebola virus was seen. This study serves as a proof of principle that Q3G has potential as a prophylactic against Ebola virus infection.

  13. Prophylactic Efficacy of Quercetin 3-β-O-d-Glucoside against Ebola Virus Infection.

    PubMed

    Qiu, Xiangguo; Kroeker, Andrea; He, Shihua; Kozak, Robert; Audet, Jonathan; Mbikay, Majambu; Chrétien, Michel

    2016-09-01

    Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola. However, these prophylactics and therapeutics have been designed and tested only against the same species of Ebola virus as the one causing the current outbreak. Future outbreaks involving other species would require reformulation and possibly redevelopment. Therefore, a broad-spectrum alternative is highly desirable. We have found that a flavonoid derivative called quercetin 3-β-O-d-glucoside (Q3G) has the ability to protect mice from Ebola even when given as little as 30 min prior to infection. Furthermore, we have demonstrated that this compound targets the early steps of viral entry. Most promisingly, antiviral activity against two distinct species of Ebola virus was seen. This study serves as a proof of principle that Q3G has potential as a prophylactic against Ebola virus infection. PMID:27297486

  14. Glucosidic pathways of glycogen breakdown and glucose production by muscle from postexercised frogs.

    PubMed

    Fournier, P A; Guderley, H

    1993-11-01

    Muscle and body glucose in frogs increases markedly during the initial hour of recovery after strenuous exercise. The liver is not the major source responsible for this accumulation. This is indicated by the stability of liver glycogen levels after exercise and by the observation that hepatectomized and normal frogs accumulate similar amounts of glucose in their muscles and body during recovery. The renal contribution cannot account for this increase in body glucose. Most of the glucose that accumulates in the body after exercise has a muscular origin, as indicated by the facts that two-thirds of the body glucose is found in muscle and that the intracellular levels of muscle glucose are much higher than those of the plasma. The glucose that accumulates outside muscle may also have a muscular origin. The glucosidic pathways of glycogen breakdown are the only metabolic avenue with sufficient capacity to account for the amount of glucose accumulated in muscle during the first hour of recovery. These results indicate that the ability of an isolated preparation of frog muscle to liberate glucose during recovery from exercise (Fournier et al. J. Biol. Chem. 267: 8234-8238, 1992) is not an artifactual metabolic curiosity but rather a metabolic reality that takes place in vivo. Glucose accumulation during recovery is thought to facilitate the metabolic transition of frog carbohydrate metabolism from a catabolic state, characteristic of exercise, to an anabolic one. PMID:8238616

  15. Investigation of coco-glucoside as a novel intestinal permeation enhancer in rat models.

    PubMed

    Aguirre, Tanira A S; Rosa, Mónica; Guterres, Sílvia S; Pohlmann, Adriana R; Coulter, Ivan; Brayden, David J

    2014-11-01

    Due to instability in the GI tract and low intestinal permeability, peptides invariably have oral bioavailabilities below 1% and this has prevented the development of oral formulations. A mild plant-derived naturalalkyl polyglycoside (APG), coco-glucoside (CG), was studied for its capacity to enable rat intestinal permeation of the paracellular sugar marker, fluorescein isothiocyanate-dextran 4000 (FD4), across isolated rat jejunal and colonic mucosae mounted in Ussing chambers, as well as the polypeptide, salmon calcitonin (sCT) following intra-intestinal instillations in rats. 0.1% (w/v) CG enabled a 2.9-fold increase in the apparent permeability coefficient (Papp) of FD4 over the basal Papp across colonic mucosae, but it was without effect in jejunal mucosae. In situ intestinal instillations revealed that although sCT was absorbed across rat colonic loops to a greater extent than jejunal, CG still improved sCT absolute bioavailability(F) from both segments. Histopathology of rat intestinal mucosae following exposure to CG indicated only minor perturbation with adequate maintenance of secretory function. High content analysis(HCA) on Caco-2 showed that acute and chronic exposure to a range of concentrations of CG did not cause sub-lethal damage at concentrations at which it was effective as an enhancer. Overall, CG increased bioavailability of sCT across rat jejunal and colonic loops without indication of tissue damage. Thus, CG has potential as a safe and effective intestinal enhancer for oral delivery of proteins and peptides.

  16. Protective effects of luteolin-7-glucoside against liver injury caused by carbon tetrachloride in rats.

    PubMed

    Qiusheng, Zheng; Xiling, Sun; Xubo; Meng, Song; Changhai, Wang

    2004-04-01

    Ixeris chinensis (Thunb.) Nakai has been used as a Chinese folk medicine; the information on the physiological and biochemical functions of the compounds extracted from I. chinensis is still scanty. We investigated the effects of luteolin -7-glucoside (LUTG) isolated from I. chinensis against liver injury caused by carbon tetrachloride (CCl4). CCl4 significantly increased the enzyme activities of glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) in blood serum, as well as the level of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) in liver tissue, and decreased the levels of reduced glutathione (GSH). Pretreatment with LUTG was not only able to suppress the elevation of GPT, GOT, MDA and 8-OHdG, and inhibit the reduction of GSH in a dose-dependent manner in vivo, but also reduce the damage of hepatocytes in vitro. On the other hand, we also found LUTG has strong antioxidant activity against reactive oxygen species (ROS) in vitro in a concentration-dependent manner. The hepatoprotective activity of LUTG was possibly due to its antioxidant properties, acting as scavengers of ROS. These results obtained in vivo and in vitro suggest that LUTG had protective effects against hepatic oxidative injury induced by chemicals. Further studies on the pharmaceutical functions and immunological responses of LUTG may help in the development of a clinical application.

  17. Effects of iriflophenone 3-C-β-glucoside on fasting blood glucose level and glucose uptake

    PubMed Central

    Pranakhon, Ratree; Aromdee, Chantana; Pannangpetch, Patchareewan

    2015-01-01

    Background: One of the biological activities of agar wood (Aquilaria sinensis Lour., Thymelaeaceae), is anti-hyperglycemic activity. The methanolic extract (ME) was proven to possess the fasting blood glucose activity in rat and glucose uptake transportation by rat adipocytes. Objective: To determine the decreasing fasting blood glucose level of constituents affordable for in vivo test. If the test was positive, the mechanism which is positive to the ME, glucose transportation, will be performed. Materials and Methods: The ME was separated by column chromatography and identified by spectroscopic methods. Mice was used as an animal model (in vivo), and rat adipocytes were used for the glucose transportation activity (in vitro). Result: Iriflophenone 3-C-β-glucoside (IPG) was the main constituent, 3.17%, and tested for the activities. Insulin and the ME were used as positive controls. The ME, IPG and insulin lowered blood glucose levels by 40.3, 46.4 and 41.5%, respectively, and enhanced glucose uptake by 152, 153, and 183%, respectively. Conclusion: These findings suggest that IPG is active in lowering fasting blood glucose with potency comparable to that of insulin. PMID:25709215

  18. PLS-Prediction and Confirmation of Hydrojuglone Glucoside as the Antitrypanosomal Constituent of Juglans Spp.

    PubMed

    Ellendorff, Therese; Brun, Reto; Kaiser, Marcel; Sendker, Jandirk; Schmidt, Thomas J

    2015-05-29

    Naphthoquinones (NQs) occur naturally in a large variety of plants. Several NQs are highly active against protozoans, amongst them the causative pathogens of neglected tropical diseases such as human African trypanosomiasis (sleeping sickness), Chagas disease and leishmaniasis. Prominent NQ-producing plants can be found among Juglans spp. (Juglandaceae) with juglone derivatives as known constituents. In this study, 36 highly variable extracts were prepared from different plant parts of J. regia, J. cinerea and J. nigra. For all extracts, antiprotozoal activity was determined against the protozoans Trypanosoma cruzi, T. brucei rhodesiense and Leishmania donovani. In addition, an LC-MS fingerprint was recorded for each extract. With each extract's fingerprint and the data on in vitro growth inhibitory activity against T. brucei rhodesiense a Partial Least Squares (PLS) regression model was calculated in order to obtain an indication of compounds responsible for the differences in bioactivity between the 36 extracts. By means of PLS, hydrojuglone glucoside was predicted as an active compound against T. brucei and consequently isolated and tested in vitro. In fact, the pure compound showed activity against T. brucei at a significantly lower cytotoxicity towards mammalian cells than established antiprotozoal NQs such as lapachol.

  19. Analysis of Deoxynivalenol and Deoxynivalenol-3-glucoside in Hard Red Spring Wheat Inoculated with Fusarium Graminearum

    PubMed Central

    Ovando-Martínez, Maribel; Ozsisli, Bahri; Anderson, James; Whitney, Kristin; Ohm, Jae-Bom; Simsek, Senay

    2013-01-01

    Deoxynivalenol (DON) is a mycotoxin affecting wheat quality. The formation of the “masked” mycotoxin deoxinyvalenol-3-glucoside (D3G) results from a defense mechanism the plant uses for detoxification. Both mycotoxins are important from a food safety point of view. The aim of this work was to analyze DON and D3G content in inoculated near-isogenic wheat lines grown at two locations in Minnesota, USA during three different years. Regression analysis showed positive correlation between DON content measured with LC and GC among wheat lines, locality and year. The relationship between DON and D3G showed a linear increase until a certain point, after which the DON content and the D3G increased. Wheat lines having higher susceptibility to Fusarium showed the opposite trend. ANOVA demonstrated that the line and location have a greater effect on variation of DON and D3G than do their interaction among years. The most important factor affecting DON and D3G was the growing location. In conclusion, the year, environmental conditions and location have an effect on the D3G/DON ratio in response to Fusarium infection. PMID:24351715

  20. pH-dependent interaction of rhodopsin with cyanidin-3-glucoside. 1. Structural aspects.

    PubMed

    Yanamala, Naveena; Tirupula, Kalyan C; Balem, Fernanda; Klein-Seetharaman, Judith

    2009-01-01

    Anthocyanins are a class of natural compounds common in flowers and vegetables. Because of the increasing preference of consumers for food containing natural colorants and the demonstrated beneficial effects of anthocyanins on human health, it is important to decipher the molecular mechanisms of their action. Previous studies indicated that the anthocyanin cyanidin-3-glucoside (C3G) modulates the function of the photoreceptor rhodopsin. In this paper, we show using selective excitation (1)H NMR spectroscopy that C3G binds to rhodopsin. Ligand resonances broaden upon rhodopsin addition and rhodopsin resonances exhibit chemical shift changes as well as broadening effects in specific resonances, in an activation state-dependent manner. Furthermore, dark-adapted and light-activated states of rhodopsin show preferences for different C3G species. Molecular docking studies of the flavylium cation, quinoidal base, carbinol pseudobase and chalcone forms of C3G to models of the dark, light-activated and opsin structures of rhodopsin also support this conclusion. The results provide new insights into anthocyanin-protein interactions and may have relevance for the enhancement of night vision by this class of compounds. This work is also the first report of the study of ligand binding to a full-length membrane receptor in detergent micelles by (1)H NMR spectroscopy. Such studies were previously hampered by the presence of detergent micelle resonances, a problem overcome by the selective excitation approach. PMID:19192199

  1. Effect of heat/pressure on cyanidin-3-glucoside ethanol model solutions

    NASA Astrophysics Data System (ADS)

    Corrales, M.; Lindauer, R.; Butz, P.; Tauscher, B.

    2008-07-01

    The stability of cyanidin-3-glucoside (Cy3gl) in 50% ethanol model solutions under heat/pressure treatments was investigated. Cy3gl was rapidly degraded when solutions were subjected to a heat/pressure treatment. The higher the pressure and the temperature used, the higher the degradation. Moreover, the degradation was increased according to increasing holding times. Parallel to the degradation of Cy3gl several hydrolytic products were formed and identified by LC-DAD/ESI-MS. The degradation of Cy3gl was well fitted to a first order reaction (R=0.99). This study pointed out the rate of susceptibility of Cy3gl in model solutions to degrade when exposed to a heat/pressure treatment and the trigger effect of high hydrostatic pressure to hydrolyse Cy3gl. By contrast, the degradation of anthocyanins in a food matrix (red grape extract solutions) was negligible after a heat/pressure process at 600MPa, 70°C during 1h (P >0.05).

  2. Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats.

    PubMed

    Bhaswant, Maharshi; Fanning, Kent; Netzel, Michael; Mathai, Michael L; Panchal, Sunil K; Brown, Lindsay

    2015-12-01

    Increased consumption of dark-coloured fruits and vegetables may mitigate metabolic syndrome. This study has determined the changes in metabolic parameters, and in cardiovascular and liver structure and function, following chronic administration of either cyanidin 3-glucoside (CG) or Queen Garnet plum juice (QG) containing cyanidin glycosides to rats fed either a corn starch (C) or a high-carbohydrate, high-fat (H) diet. Eight to nine-week-old male Wistar rats were randomly divided into six groups for 16-week feeding with C, C with CG or QG, H or H with CG or QG. C or H were supplemented with CG or QG at a dose of ∼ 8 mg/kg/day cyanidin glycosides from week 8 to 16. H rats developed signs of metabolic syndrome including visceral adiposity, impaired glucose tolerance, hypertension, cardiovascular remodelling, increased collagen deposition in left ventricle, non-alcoholic fatty liver disease, increased plasma liver enzymes and increased inflammatory cell infiltration in the heart and liver. Both CG and QG reversed these cardiovascular, liver and metabolic signs. However, no intact anthocyanins or common methylated/conjugated metabolites could be detected in the plasma samples and plasma hippuric acid concentrations were unchanged. Our results suggest CG is the most likely mediator of the responses to QG but that further investigation of the pharmacokinetics of oral CG in rats is required.

  3. Degradation kinetics of malvidin-3-glucoside and malvidin-3,5-diglucoside exposed to microwave treatment.

    PubMed

    Zhao, Mengyao; Li, Yuan; Xu, Xiayang; Wu, Jihong; Liao, Xiaojun; Chen, Fang

    2013-01-16

    Understanding the factors that contribute to the degradation of bioactive compounds during microwave treatment is meaningful for the practical application of this novel technology. The influence of microwave power, energy density, temperature, pH value, and initial concentration of anthocyanins (Acys) on the degradation behavior of malvidin-3-glucoside (Mv-3-glu) and malvidin-3,5-diglucoside (Mv-3,5-diglu) was investigated in this study. Results showed that the degradation of both Acys was accelerated with the increase of microwave power, energy density, temperature, pH value, and initial concentration of Acys. The degradation process of both Acys followed the first-order kinetics model (R² > 0.94), whereas the relationship between Acys degradation and energy density fitted to the logistic model well (R² > 0.98). In addition, Mv-3-glu was more susceptible to the microwave treatment than Mv-3,5-diglu. Compared with heating in a 98 ± 2 °C water bath, both Acys degraded more rapidly under microwave treatment at 100 °C, indicating the occurrence of microwave effect. The results provide a guide for the scientific application of microwave treatment.

  4. Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound.

    PubMed

    Ojwang, Leonnard O; Yang, Liyi; Dykes, Linda; Awika, Joseph

    2013-08-15

    Proanthocyanidin (PA) profile and content can have important nutritional and health implications on plant foods. Six diverse cowpea phenotypes (black, red, green, white, light-brown and golden-brown) were investigated for PA composition using normal-phase HPLC and reversed-phase UPLC-TQD-MS. Catechin and (epi)afzelechin were the major flavan-3-ol units. Unusual composition was observed in all cowpea phenotypes with significant degrees of glycosylation in the monomers and dimers. The PA content of cowpea (dry basis) ranged between 2.2 and 6.3 mg/g. Monomeric flavan-3-ols were the largest group of PA (36-69%) in cowpea, with catechin-7-O-glucoside accounting for most (about 88%) of the monomers. The oligomers with degree of polymerization (DP) 2-4 ranged from 0.41 to 1.3 mg/g (15-20%), whereas DP>10 polymers accounted for only 13.5% of PA. Future studies that highlight the impact of the unusual cowpea PA profile on nutritional and bioactive properties of this important legume are warranted.

  5. Protective effects of luteolin-7-glucoside against liver injury caused by carbon tetrachloride in rats.

    PubMed

    Qiusheng, Zheng; Xiling, Sun; Xubo; Meng, Song; Changhai, Wang

    2004-04-01

    Ixeris chinensis (Thunb.) Nakai has been used as a Chinese folk medicine; the information on the physiological and biochemical functions of the compounds extracted from I. chinensis is still scanty. We investigated the effects of luteolin -7-glucoside (LUTG) isolated from I. chinensis against liver injury caused by carbon tetrachloride (CCl4). CCl4 significantly increased the enzyme activities of glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) in blood serum, as well as the level of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) in liver tissue, and decreased the levels of reduced glutathione (GSH). Pretreatment with LUTG was not only able to suppress the elevation of GPT, GOT, MDA and 8-OHdG, and inhibit the reduction of GSH in a dose-dependent manner in vivo, but also reduce the damage of hepatocytes in vitro. On the other hand, we also found LUTG has strong antioxidant activity against reactive oxygen species (ROS) in vitro in a concentration-dependent manner. The hepatoprotective activity of LUTG was possibly due to its antioxidant properties, acting as scavengers of ROS. These results obtained in vivo and in vitro suggest that LUTG had protective effects against hepatic oxidative injury induced by chemicals. Further studies on the pharmaceutical functions and immunological responses of LUTG may help in the development of a clinical application. PMID:15125574

  6. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    SciTech Connect

    Jing, Xu; Ren, Dongmei; Wei, Xinbing; Shi, Huanying; Zhang, Xiumei; Perez, Ruth G.; Lou, Haiyan; Lou, Hongxiang

    2013-12-15

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury.

  7. Dispersion of Vesicles Composed of Industrially Produced Alkyl (Oligo) Glucoside Using Diol-Boron Complexation.

    PubMed

    Aikawa, Tatsuo; Asano, Yuuka; Kondo, Takeshi; Yuasa, Makoto

    2016-07-01

    Alkyl (oligo)glucosides (AOG) are known to be environmentally compatible amphiphiles whose commercial applicability should be broadened. The present paper describes the preparation of molecular assemblies of industrially produced AOG, which is a mixture composed of different length of alkyl chains (C9-C12) with oligoglucoside moiety with a few (1-3) of glucose units. It was also described that regulation of the dispersibility of the molecular assemblies prepared by diol-boron complexation between the sugar moiety on AOG and boric acid in a dispersion medium. The molecular assembly of AOG was successfully formed by mixing AOG and cholesterols (CH). When using a suitable amount of CH (20-40 mol% with respect to AOG), the molecular assembly formed a vesicle structure. The dispersion ability of the resulting vesicle was dependent on both the boric acid concentration and pH of the dispersion medium. The light-scattering and ζ-potential measurements revealed that high concentrations (≥10 mM) of boric acid improved dispersibility the vesicles. In contrast, the vesicle agglomerated at low concentrations of boric acid (1-7.5 mM). In the absence of boric acid in dispersion medium, the vesicles were completely agglomerated. The optimum pH range for vesicle dispersion was found to be from neutral to basic (7.4-10.1). The (11)B NMR study revealed that borate ester formation occurred between boric acid and the diol of the sugar moiety on AOG vesicle. The present data suggest that borate ester formation that occurred on the surface of the vesicle provided negative charge to the vesicles, contributing to their dispersion via repulsive forces. PMID:27321117

  8. Phenylethanoid glucosides from in vitro propagated plants and callus cultures of Plantago lanceolata.

    PubMed

    Budzianowska, Anna; Skrzypczak, Lutosława; Budzianowski, Jaromir

    2004-09-01

    The well-known medicinal plant Plantago lanceolata L. (ribwort plantain) was effectively propagated by direct organogenesis from segments of leaves and roots using MS medium supplemented with IAA (11.42 microM), kinetin (9.29 microM) for multiplication and IAA (5.71 microM) for rooting. The plantlets were successfully hardened (80 %) and transferred to field cultivation (100 %). Two lines of callus tissue, derived from leaves and roots, were obtained on MS medium without NH (4)NO (3) and supplemented with 2,4-D (4.52 microM) and kinetin ( 0.46 microM). From plant materials--leaf rosettes from in vitro, leaves from plants in field cultivation obtained by micropropagation, root-derived callus and leaf-derived callus--sixteen phenylethanoid glucosides representing nine different structures were isolated and identified by spectral methods (1D and 2D NMR) as known for the species: lavandulifolioside ( 1), plantamajoside ( 2,) acteoside ( 3); new for the species: leucosceptoside A ( 4), martynoside ( 5), desrhamnosylisoacteoside ( 6), plantainoside D ( 7), desrhamnosylacteoside ( 8) and - 2-(4-hydroxyphenyl)ethyl beta- D-glucopyranosyl-(1-->3)-4- O- trans- and cis- p-coumaroyl-beta- D-glucopyranoside ( 9)--the latter also being found for the first time in nature and named lancetoside. Only plantamajoside ( 2) and acteoside ( 3) were common to all plant materials, the former was the main constituent of calli (1.19 - 2.84 % of dry weight), while the latter was the main constituent of the leaves (1.78 - 10.43 % of dry weight). Flavonoids were present only in plants of field cultivation. PMID:15386192

  9. Trihydroxybenzoic acid glucoside as a global skin color modulator and photo-protectant

    PubMed Central

    Chajra, Hanane; Redziniak, Gérard; Auriol, Daniel; Schweikert, Kuno; Lefevre, Fabrice

    2015-01-01

    Background 3,4,5-Trihydroxybenzoic acid glucoside (THBG), a molecule produced by an original biocatalysis-based technology, was assessed in this study with respect to its skin photoprotective capacity and its skin color control property on Asian-type skin at a clinical level and on skin explant culture models. Methods The double-blinded clinical study was done in comparison to a vehicle by the determination of objective color parameters thanks to recognized quantitative and qualitative analysis tools, including Chroma-Meter, VISIA-CR™, and SIAscope™. Determination of L* (brightness), a* and b* (green–red and blue–yellow chromaticity coordinates), individual typology angle, and C* (chroma) and h* (hue angle) parameters using a Chroma-Meter demonstrated that THBG is able to modify skin color while quantification of ultraviolet (UV) spots by VISIA-CR™ confirmed its photoprotective effect. The mechanism of action of THBG molecule was determined using explant skin culture model coupled to histological analysis (epidermis melanin content staining). Results We have demonstrated that THBG was able to modulate significantly several critical parameters involved in skin color control such as L* (brightness), a* (redness), individual typology angle (pigmentation), and hue angle (yellowness in this study), whereas no modification occurs on b* and C* parameters. We have demonstrated using histological staining that THBG decrease epidermis melanin content under unirradiated and irradiated condition. We also confirmed that THBG molecule is not a sunscreen agent. Conclusion This study demonstrated that THBG controls skin tone via the inhibition of melanin synthesis as well as the modulation of skin brightness, yellowness, and redness. PMID:26648748

  10. The Flavonoid Luteolin, but Not Luteolin-7-O-Glucoside, Prevents a Transthyretin Mediated Toxic Response

    PubMed Central

    Pokrzywa, Malgorzata; Walfridsson, Malin; Sauer-Eriksson, A. Elisabeth; Olofsson, Anders

    2015-01-01

    Transthyretin (TTR) is a homotetrameric plasma protein with amyloidogenic properties that has been linked to the development of familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy, and senile systemic amyloidosis. The in vivo role of TTR is associated with transport of thyroxine hormone T4 and retinol-binding protein. Loss of the tetrameric integrity of TTR is a rate-limiting step in the process of TTR amyloid formation, and ligands with the ability to bind within the thyroxin binding site (TBS) can stabilize the tetramer, a feature that is currently used as a therapeutic approach for FAP. Several different flavonoids have recently been identified that impair amyloid formation. The flavonoid luteolin shows therapeutic potential with low incidence of unwanted side effects. In this work, we show that luteolin effectively attenuates the cytotoxic response to TTR in cultured neuronal cells and rescues the phenotype of a Drosophila melanogaster model of FAP. The plant-derived luteolin analogue cynaroside has a glucoside group in position 7 of the flavone A-ring and as opposed to luteolin is unable to stabilize TTR tetramers and thus prevents a cytotoxic effect. We generated high-resolution crystal-structures of both TTR wild type and the amyloidogenic mutant V30M in complex with luteolin. The results show that the A-ring of luteolin, in contrast to what was previously suggested, is buried within the TBS, consequently explaining the lack of activity from cynaroside. The flavonoids represent an interesting group of drug candidates for TTR amyloidosis. The present investigation shows the potential of luteolin as a stabilizer of TTR in vivo. We also show an alternative orientation of luteolin within the TBS which could represent a general mode of binding of flavonoids to TTR and is of importance concerning the future design of tetramer stabilizing drugs. PMID:26020516

  11. Orcinol glucoside produces antidepressant effects by blocking the behavioural and neuronal deficits caused by chronic stress.

    PubMed

    Ge, Jin-Fang; Gao, Wen-Chao; Cheng, Wen-Ming; Lu, Wei-Li; Tang, Jie; Peng, Lei; Li, Ning; Chen, Fei-Hu

    2014-01-01

    This study focused on the antidepressant potential of orcinol glucoside (OG) and its possible mechanisms of action. We established a depressed rat model using 3 consecutive weeks of chronic unpredictable mild stress (CUMS). The antidepressant-like effect of OG was revealed using the sucrose preference test, the open field test, the forced swimming test (FST), and the tail suspension test (TST). The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by detecting the serum corticosterone (CORT) concentrations and mRNA expression of corticotrophin-releasing hormone (CRH) in the hypothalamus. The protein expression levels of brain-derived neurotrophic factor (BDNF) and total phosphorylated-ERK1/2 were detected by western blot. The results showed that OG treatment (1.5, 3, or 6mg/kg) alleviated the depression-like behaviour of rats under CUMS, as indicated by the increased sucrose preference and the decreased immobility in both the FST and TST, although the rearing frequency in the open field test increased only in the group that received the lowest dose (1.5mg/kg OG). Rats that received OG treatment exhibited reduced serum CORT levels and CRH mRNA expression in the hypothalamus, suggesting that the hyperactivity of the HPA axis in CUMS rats was reversed by OG treatment. Moreover, OG treatment upregulated the protein levels of BDNF and phosphorylated-ERK1/2 in the hippocampus, even above control levels. Our findings suggest that OG improved depressive behaviour in CUMS rats by downregulating HPA axis hyperactivity and increasing BDNF expression and ERK1/2 phosphorylation in the hippocampus. PMID:23838013

  12. The flavonoid luteolin, but not luteolin-7-O-glucoside, prevents a transthyretin mediated toxic response.

    PubMed

    Iakovleva, Irina; Begum, Afshan; Pokrzywa, Malgorzata; Walfridsson, Malin; Sauer-Eriksson, A Elisabeth; Olofsson, Anders

    2015-01-01

    Transthyretin (TTR) is a homotetrameric plasma protein with amyloidogenic properties that has been linked to the development of familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy, and senile systemic amyloidosis. The in vivo role of TTR is associated with transport of thyroxine hormone T4 and retinol-binding protein. Loss of the tetrameric integrity of TTR is a rate-limiting step in the process of TTR amyloid formation, and ligands with the ability to bind within the thyroxin binding site (TBS) can stabilize the tetramer, a feature that is currently used as a therapeutic approach for FAP. Several different flavonoids have recently been identified that impair amyloid formation. The flavonoid luteolin shows therapeutic potential with low incidence of unwanted side effects. In this work, we show that luteolin effectively attenuates the cytotoxic response to TTR in cultured neuronal cells and rescues the phenotype of a Drosophila melanogaster model of FAP. The plant-derived luteolin analogue cynaroside has a glucoside group in position 7 of the flavone A-ring and as opposed to luteolin is unable to stabilize TTR tetramers and thus prevents a cytotoxic effect. We generated high-resolution crystal-structures of both TTR wild type and the amyloidogenic mutant V30M in complex with luteolin. The results show that the A-ring of luteolin, in contrast to what was previously suggested, is buried within the TBS, consequently explaining the lack of activity from cynaroside. The flavonoids represent an interesting group of drug candidates for TTR amyloidosis. The present investigation shows the potential of luteolin as a stabilizer of TTR in vivo. We also show an alternative orientation of luteolin within the TBS which could represent a general mode of binding of flavonoids to TTR and is of importance concerning the future design of tetramer stabilizing drugs. PMID:26020516

  13. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields.

  14. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae.

    PubMed

    Genta, Fernando A; Dillon, Rod J; Terra, Walter R; Ferreira, Clélia

    2006-06-01

    Tenebrio molitor larvae were successfully reared free of cultivatable gut lumen bacteria, yeasts and fungi using two approaches; aseptic rearing from surface sterilized eggs and by feeding larvae with antibiotic-containing food. Insects were reared on a rich-nutrient complete diet or a nutrient-poor refractory diet. A comparison of digestive enzyme activities in germ free and conventional insects containing a gut microbiota did not reveal gross differences in enzymes that degrade cell walls from bacteria (lysozyme), fungi (chitinase and laminarinase) and plants (cellulase and licheninase). This suggested that microbial-derived enzymes are not an essential component of the digestive process in this insect. However, more detailed analysis of T. molitor midgut proteins using an electrophoretic separation approach showed that some digestive enzymes were absent and others were newly expressed in microbiota-free larvae. Larvae reared in antibiotic-containing refractory wheat bran diet performed poorly in comparison with controls. The addition of saligenin, the aglycone of the plant glucoside salicin, has more deleterious effects on microbiota-free larvae than on the conventionally reared larvae, suggesting a detoxifying role of midgut microbiota. Analysis of the volatile organic compounds released from the faecal pellets of the larvae shows key differences in the profiles from conventionally reared and aseptically reared larvae. Pentadecene is a semiochemical commonly found in other beetle species. Here we demonstrate the absence of pentadecene from aseptically reared larvae in contrast to its presence in conventionally reared larvae. The results are discussed in the light of the hypothesis that microbial products play subtle roles in the life of the insect, they are involved in the digestion of refractory food, detoxification of secondary plant compounds and modify the volatile profiles of the insect host.

  15. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields. PMID:15898503

  16. Total glucosides of paeony for rheumatoid arthritis: a protocol for a systematic review

    PubMed Central

    Luo, Jing; Jin, Di-Er; Yang, Guo-Yan; Zhang, Ying-Ze; Wang, Jian-Ming; Kong, Wei-Ping; Tao, Qing-Wen

    2016-01-01

    Introduction Total glucosides of paeony (TGP) is a natural plant extract, which is widely used in China for treating rheumatoid arthritis (RA). Many relevant randomised controlled trials (RCTs) of TGP for RA are available, but they have not been systematically reviewed. This systematic review aims to examine the effectiveness and safety of TGP in patients with RA. Methods and analyses We will search for RCTs of TGP in the treatment of RA, performed up until February 2016, in PubMed, Embase, Cochrane Central Register of Controlled Trials, and four Chinese databases (Chinese Biomedical Database, China National Knowledge Infrastructure, Wanfang Database and Chinese Scientific Journal Database). Trial registers and reference lists of retrieved articles will also be searched to identify potential articles. RCTs comparing TGP with placebo, no treatment, or disease-modifying antirheumatic drugs for patients with RA will be retrieved. The primary outcomes will be disease improvement and disease remission. The secondary outcomes will be surrogate outcomes, symptoms, adverse effects, and quality of life. Two reviewers will independently extract data on participants, interventions, comparisons, outcomes, etc. The methodological quality of each included study will be evaluated using the Cochrane risk of bias tool, and the strength of evidence on prespecified outcomes will be assessed in accordance with the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. Review Manager 5.3 software will be used for data analyses. Meta-analyses will be performed if the data are sufficiently homogeneous, both statistically and clinically. Possible publication bias will also be checked using funnel plots once the number of included studies is sufficient. Ethics and dissemination Ethics approval is not required, as this study will not involve patients. The results of this study will be submitted to a peer-reviewed journal for publication, to inform both clinical

  17. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.

    PubMed

    Takos, Adam M; Knudsen, Camilla; Lai, Daniela; Kannangara, Rubini; Mikkelsen, Lisbeth; Motawia, Mohammed S; Olsen, Carl E; Sato, Shusei; Tabata, Satoshi; Jørgensen, Kirsten; Møller, Birger L; Rook, Fred

    2011-10-01

    Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.

  18. Luteolin and luteolin-7-O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO-1 signaling cascade in RAW 264.7 cells.

    PubMed

    Song, Young Sun; Park, Chung Mu

    2014-03-01

    It has been understood that glycosidic forms of flavonoids were hydrolyzed by gut bacteria and absorbed as aglycones. However, several reports suggested that glycosides were partly absorbed without hydrolysis and remained biologically active. In this study, we evaluated the antioxidative potential of luteolin and luteolin-7-O-glucoside, glycosidic form of luteolin, against the oxidative damage and compared their antioxidative mechanisms in RAW 264.7 cells. Heme oxygenase-1 (HO-1), one of the phase II enzymes showing an antioxidative activity, was potently induced by luteolin and luteolin-7-O-glucoside treatment, which was in accordance with the translocated nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into nucleus. Moreover, luteolin and the luteolin-7-O-glucoside activated HO-1 expression by p38 and c-Jun NH2-terminal kinase (JNK) regulation. In order to identify the antioxidation potential by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and ameliorated by luteolin and the luteolin-7-O-glucoside treatment in a dose dependent manner, which was confirmed by HO-1 selective inhibitor and inducer, tin protoporphyrin (SnPP) and cobalt protoporphyrin (CoPP), respectively. Consequently, luteolin and luteolin-7-O-glucoside potently strengthen the HO-1-mediated antioxidative potential through the modulation of the Nrf2/MAPK signaling pathways.

  19. Luteolin and luteolin-7-O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO-1 signaling cascade in RAW 264.7 cells.

    PubMed

    Song, Young Sun; Park, Chung Mu

    2014-03-01

    It has been understood that glycosidic forms of flavonoids were hydrolyzed by gut bacteria and absorbed as aglycones. However, several reports suggested that glycosides were partly absorbed without hydrolysis and remained biologically active. In this study, we evaluated the antioxidative potential of luteolin and luteolin-7-O-glucoside, glycosidic form of luteolin, against the oxidative damage and compared their antioxidative mechanisms in RAW 264.7 cells. Heme oxygenase-1 (HO-1), one of the phase II enzymes showing an antioxidative activity, was potently induced by luteolin and luteolin-7-O-glucoside treatment, which was in accordance with the translocated nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into nucleus. Moreover, luteolin and the luteolin-7-O-glucoside activated HO-1 expression by p38 and c-Jun NH2-terminal kinase (JNK) regulation. In order to identify the antioxidation potential by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and ameliorated by luteolin and the luteolin-7-O-glucoside treatment in a dose dependent manner, which was confirmed by HO-1 selective inhibitor and inducer, tin protoporphyrin (SnPP) and cobalt protoporphyrin (CoPP), respectively. Consequently, luteolin and luteolin-7-O-glucoside potently strengthen the HO-1-mediated antioxidative potential through the modulation of the Nrf2/MAPK signaling pathways. PMID:24361407

  20. Comparison of nano and conventional liquid chromatographic methods for the separation of (+)-catechin-ethyl-malvidin-3-glucoside diastereoisomers.

    PubMed

    Kučera, Lukáš; Fanali, Salvatore; Aturki, Zeineb; Pospíšil, Tomáš; Bednář, Petr

    2016-01-01

    Nano-liquid chromatography and conventional HPLC were used for the separation of diastereomers of (+)-catechin-ethyl-malvidin-3-glucoside. Those bridged anthocyanin dyes were obtained by reaction of (+)-catechin with malvidin-3-glucoside in the presence of acetaldehyde. Both diastereomers were isolated with semipreparative chromatography and their structures were confirmed by nuclear magnetic resonance and mass spectrometry. In-laboratory prepared capillary columns packed with fully porous particles Chromosphere C18, dp=3μm, core-shell particles Kinetex C18, dp=2.6μm (100μm i.d.) and monolithic column Chromolith CapRod (100μm i.d.) were used for the separation of (+)-catechin, malvidin-3-glucoside and both diastereomers. Chromosphere C18 stationary phase provided the best chromatographic performance. Mobile phase containing water:acetonitrile (80:20) acidified with trifluoroacetic acid (0.1%, v/v/v) was used in an isocratic elution mode with a flow rate of 360nLmin(-1). Separation of studied compounds was achieved in less than 7min under optimized conditions. The nano-liquid chromatographic method and a conventional HPLC one using the same fully porous particles (Chromosphere C18, 3μm, 100mm×4.6mm) were compared providing higher separation efficiency with the first analytical method and similar selectivity. A better peak symmetry and higher resolution of the studied diastereomers was achieved by conventional chromatography. Nevertheless, nano-liquid chromatography appeared to be useful for the separation of complex anthocyanin dyes and can be utilized for their analysis in plant and food micro-samples. The developed method was used for analysis of red wine grape pomace. PMID:26433264

  1. Effect of Multiple Dietary Supplement Containing Lutein, 
Astaxanthin, Cyanidin-3-Glucoside, and DHA on Accommodative Ability

    PubMed Central

    Kono, Keiko; Shimizu, Yoshiki; Takahashi, Satomi; Matsuoka, Sayuri; Yui, Kei

    2014-01-01

    Objective The study aimed to verify that ingestion of multiple dietary supplement containing lutein, astaxanthin, cyanidin-3-glucoside and docosahexaenoic acid (DHA) would improve accommodative ability of aged and older subjects who were aware of eye strain on a daily basis. Methods A randomized double-blind placebo-controlled parallel group comparison study was conducted for 48 participants aged 45 to 64 years who complained of eye strain. The subjects took multiple dietary supplement containing 10 mg of lutein, 20 mg of bilberry extract and 26.5 mg of black soybean hull extract (a total of 2.3 mg of cyanidin-3-glucoside in both extracts), 4 mg of astaxanthin, and 50 mg of DHA (test supplement) or placebo for four consecutive weeks. Near-point accommodation (NPA) and subjective symptoms were evaluated both before and after four weeks’ intake. Results The variation of the NPA of both eyes from baseline to 4 weeks’ post-intake in the test supplement group was significantly higher than in the placebo group (1.321±0.394 diopter (D) in the test supplement group and 0.108±0.336 D in the placebo group, p=0.023). The multiple dietary supplement group showed improvement in the NPA. Regarding subjective symptoms, significant improvement of “stiff shoulders or neck” and “blurred vision” was also found in the test supplement group compared to the placebo group (p<0.05). There were no safety concerns in this study. Conclusion This study shows that multiple dietary supplement containing lutein, astaxanthin, cyanidin-3-glucoside, and DHA has effect to improve accommodative ability and subjective symptoms related to eye fatigue.

  2. Application of amylomaltase for the synthesis of salicin-α-glucosides as efficient anticoagulant and anti-inflammatory agents.

    PubMed

    Rudeekulthamrong, Prakarn; Kaulpiboon, Jarunee

    2016-09-01

    The focus of this study was the synthesis of α-glucosyl derivatives of salicin by a transglucosylation reaction. The reaction was catalyzed by recombinant amylomaltase using tapioca starch as a glucosyl donor. Several reaction parameters, such as the enzyme-substrate concentrations, pH, temperature and incubation time, were optimized. Using the optimum conditions, at least three products with retention times (Rt) of 6.2, 9.2 and 14.1 were observed. The maximum yield of glucosylated salicin derivatives was 63% (w/w) of the total products. The structures of the glucosylated salicin derivatives were confirmed to be salicin-α-D-glucopyranoside, salicin-α-D-maltopyranoside and salicin-α-D-maltotriopyranoside through a combination of enzyme treatments, mass spectrometry and NMR analyses. The glycosidic bond between glucose units consisted of an α-1,4-configuration. The water solubility of salicin-α-D-glucopyranoside, salicin-α-D-maltopyranoside and salicin-α-D-maltotriopyranoside was 3-, 5- and 8-fold higher, respectively, than that of salicin, whereas their relative sweetness values were lower than that of sucrose. Interestingly, the long-chain salicin-α-D-glucosides showed greater anticoagulant and anti-inflammatory activities than salicin. In addition, the synthesized salicin-α-D-glucosides were able to tolerate acidic and high temperature conditions, but not α-glucosidase or human digestive enzymes. Therefore, these salicin-α-D-glucosides should be applied by the injection route to achieve greater bioavailability than is possible by the oral route. PMID:27394039

  3. Chronic Exposure to Dietary Sterol Glucosides is Neurotoxic to Motor Neurons and Induces an ALS-PDC Phenotype

    PubMed Central

    Tabata, R. C.; Wilson, J. M. B.; Ly, P.; Zwiegers, P.; Kwok, D.; Van Kampen, J. M.; Cashman, N.; Shaw, C. A.

    2008-01-01

    Epidemiological studies of the Guamanian variants of amyotrophic lateral sclerosis (ALS) and parkinsonism, amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC), have shown a positive correlation between consumption of washed cycad seed flour and disease occurrence. Previous in vivo studies by our group have shown that the same seed flour induces ALS and PDC phenotypes in out bred adult male mice. In vitro studies using isolated cycad compounds have also demonstrated that several of these are neurotoxic, specifically, a number of water insoluble phytosterol glucosides of which β-sitosterol β-d-glucoside (BSSG) forms the largest fraction. BSSG is neurotoxic to motor neurons and other neuronal populations in culture. The present study shows that an in vitro hybrid motor neuron (NSC-34) culture treated with BSSG undergoes a dose-dependent cell loss. Surviving cells show increased expression of HSP70, decreased cytosolic heavy neurofilament expression, and have various morphological abnormalities. CD-1 mice fed mouse chow pellets containing BSSG for 15 weeks showed motor deficits and motor neuron loss in the lumbar and thoracic spinal cord, along with decreased glutamate transporter labelling, and increased glial fibrillary acid protein reactivity. Other pathological outcomes included increased caspase-3 labelling in the striatum and decreased tyrosine-hydroxylase labelling in the striatum and substantia nigra. C57BL/6 mice fed BSSG-treated pellets for 10 weeks exhibited progressive loss of motor neurons in the lumbar spinal cord that continued to worsen even after the BSSG exposure ended. These results provide further support implicating sterol glucosides as one potential causal factor in the motor neuron pathology previously associated with cycad consumption and ALS-PDC. PMID:18196479

  4. Identification of delta7 phytosterols and phytosteryl glucosides in the wood and bark of several Acacia species.

    PubMed

    Freire, Carmen S R; Coelho, Dora S C; Santos, Nuno M; Silvestre, Armando J D; Pascoal Neto, Carlos

    2005-03-01

    The wood and bark of four Acacia species growing in Portugal, namely, A. longifolia, A. dealbata, A. melanoxylon, and A. retinodes, were investigated for their sterol content. The lipids fractions of the different wood and bark samples were isolated, and the sterols were identified and quantified by GC-MS. Two delta7 sterols, specifically, spinasterol and dihydrospinasterol, were the main sterols found in considerable amounts, particularly in wood tissues (more than 0.5 g/kg of dry wood in the case of A. melanoxylon and A. retinodes). The corresponding unusual steryl glucosides were also identified in significant amounts in the wood and bark extracts. PMID:15957259

  5. A study of transglucosylation kinetic in an enzymatic synthesis of benzyl alcohol glucoside by α-glucosidase from S. cerevisiae

    NASA Astrophysics Data System (ADS)

    Pavlović, M.; Dimitrijević, A.; Trbojević, J.; Milosavić, N.; Gavrović-Jankulović, M.; Bezbradica, D.; Veličković, D.

    2013-12-01

    α-1,4-Glucosidase from Saccharomyces cerevisiae is an enzyme which is widely used in synthesis of different drugs. Glucosidase inhibitors are studied as potential drugs for prevention of HIV and diabetes. For understanding of these processes it is very important to have insights in the transglucosylation activity of this enzyme. In this paper the kinetics of transglucosylation reaction catalyzed by this enzyme in the synthesis of benzyl alcohol glucoside was studied and all relevant kinetic constants for this system are found. It was shown one additional property of transglycosylation reactions catalyzed by glycosidases—inhibition by both, glucose acceptor and glucose donor, and mechanisms for these inhibitions were proposed.

  6. Simultaneous determination of iridoids, phenolic acids, flavonoids, and saponins in Flos Lonicerae and Flos Lonicerae Japonicae by HPLC-DAD-ELSD coupled with principal component analysis.

    PubMed

    Chen, Chun-Yun; Qi, Lian-Wen; Li, Hui-Jun; Li, Ping; Yi, Ling; Ma, Hong-Liang; Tang, Dan

    2007-12-01

    A method, HPLC coupled with diode-array and evaporative light scattering detectors (HPLC-DAD-ELSD), was newly developed to evaluate the quality of Flos Lonicerae (FL) and Flos Lonicerae Japonicae (FLJ), through a simultaneous determination of multiple types of bioactive components. By employing DAD, the detection wavelengths were set at 240 nm for the determination of iridoids, 330 nm for phenolic acids, and 360 nm for flavonoids, respectively. While ELSD, connected in series after DAD, was applied to the determination of saponins. This assay was fully validated with respect to precision, repeatability, and accuracy. Moreover, principal component analysis (PCA) was used for the similarity evaluation of different samples, and it was proven straightforward and reliable to differentiate FL and FLJ samples from different origins. For PCA, two principal components have been extracted. Principal component 1 (PC1) influences the separation between different sample sets, capturing 54.598% variance, while principal component 2 (PC2) affects differentiation within sample sets, capturing 12.579% variance. In conclusion, simultaneous quantification of bioactive components by HPLC-DAD-ELSD coupled with PCA would be a well-acceptable strategy to differentiate the sources and to comprehensively control the quality of the medicinal plants FL and FLJ.

  7. Analysis of iridoids, secoiridoids and xanthones in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea using LC-MS and RP-HPLC.

    PubMed

    Aberham, Anita; Pieri, Valerio; Croom, Edward M; Ellmerer, Ernst; Stuppner, Hermann

    2011-02-20

    This study presents a new and validated HPLC method for the simultaneous determination of bioactive compounds in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea. The iridoid loganic acid, four secoiridoids and 29 xanthones were separated on a RP-18 column, using aqueous o-phosphoric acid (0.085%, v/v) and acetonitrile as mobile phase. Phytochemical investigation of C. erythraea herb and F. caroliniensis roots resulted into isolation of 25 xanthones and three secoiridoids the structure of which was elucidated by spectroscopic means (NMR, MS and UV). 1,3,8-Trihydroxy-5,6-dimethoxyxanthone, isolated from C. erythraea, turned out to be a novel xanthone. The stability of the analytes was tested by subjecting samples to light, moisture and different temperatures. After six months of storage, decomposition of gentiopicroside and sweroside was observed. The swertiamarin content was nearly unchanged when stored at room temperature or in the refrigerator, but high temperature conditions reduced the content to 85%. In contrast, xanthones were stable under long-term, refrigerated and accelerated conditions. The established chromatographic method has been successfully applied for the quantification of the bioactive compounds in the three plants. The presence and distribution of polyoxygenated xanthones within the three members of the Gentianaceae family and their significance as analytical markers are discussed.

  8. Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC-MS.

    PubMed

    Aberham, Anita; Schwaiger, Stefan; Stuppner, Hermann; Ganzera, Markus

    2007-11-01

    The here described HPLC-method enables the determination of all major, currently known bioactive compounds in gentian roots. A separation of iridoids (loganic acid), secoiridoids (swertiamarin, gentiopicroside, amarogentin, sweroside), xanthones (gentisin, isogentisin) and two xanthone glycosides (gentiosides) was possible on RP-18 column material, using 0.025% aqueous TFA, acetonitrile and n-propanol as mobile phase. The method is sensitive (LOD

  9. Protective effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on uric acid nephropathy rats induced by yeast and potassium oxonate.

    PubMed

    Hou, Shi-xiang; Zhu, Wen-jing; Pang, Ming-qun; Jeffry, Joseph; Zhou, Lan-lan

    2014-02-01

    Iridoid glycosides of Paederia scandens (IGPS) are an active component isolated from Chinese herb P. scandens (LOUR.) MERRILL (Rubiaceae). Uric acid nephropathy (UAN) is caused by excessive uric acid, which results in damage of kidney tissue via urate crystals deposition in the kidneys. This study aimed to investigate the protective effects of IGPS on UAN in rats induced by yeast and potassium oxonate. Treatment groups received different doses of IGPS and allopurinol (AP) daily for 35 days respectively. The results showed that treatment with IGPS significantly prevented the increases of uric acid in serum and the elevation of systolic blood pressure (SBP), attenuated renal tissue injury, improved renal function and reserved the biological activity of NOS-1. IGPS also inhibited the biological activity of TNF-α and TGF-β1, and suppressed the mRNA expressions of TNF-α and TGF-β1 in renal tissue. Taken together, the present and our previous findings suggest that IGPS exerts protective effects against kidney damage in UAN rats through its uric acid-lowering, anti-inflammatory and immunomodulatory properties. Furthermore, decreasing SBP by up regulation of NOS-1 expression and down regulation of TNF-α and TGF-β1 expression are involved in the effect of IGPS on high uric acid-induced nephropathy. PMID:24287205

  10. Oviposition Cues for a Specialist Butterfly–Plant Chemistry and Size

    PubMed Central

    Biere, A.; Harvey, J. A.; van Nouhuys, S.

    2008-01-01

    The oviposition choice of an insect herbivore is based on a complex set of stimuli and responses. In this study, we examined the effect of plant secondary chemistry (the iridoid glycosides aucubin and catalpol) and aspects of size of the plant Plantago lanceolata, on the oviposition behavior of the specialist butterfly Melitaea cinxia. Iridoid glycosides are known to deter feeding or decrease the growth rate of generalist insect herbivores, but can act as oviposition cues and feeding stimulants for specialized herbivores. In a previous observational study of M. cinxia in the field, oviposition was associated with high levels of aucubin. However, this association could have been the cause (butterfly choice) or consequence (plant induction) of oviposition. We conducted a set of dual- and multiple-choice experiments in cages and in the field. In the cages, we found a positive association between the pre-oviposition level of aucubin and the number of ovipositions. The association reflects the butterfly oviposition selection rather than plant induction that follows oviposition. Our results also suggest a threshold concentration below which females do not distinguish between levels of iridoid glycosides. In the field, the size of the plant appeared to be a more important stimulus than iridoid glycoside content, with bigger plants receiving more oviposition than smaller plants, regardless of their secondary chemistry. Our results illustrate that the rank of a cue used for oviposition may be dependent on environmental context. PMID:18612691

  11. LC determination of luteolin-7-O-β-D-glucoside and apigenin-7-O-β-D-glucoside in rat plasma after administration of Humulus scandens extract and its application to pharmacokinetic studies.

    PubMed

    Chen, Zaixing; Ying, Xixiang; Meng, Shu; Zhu, Xu; Jiang, Hong; Cao, Qishen; Wang, Lin; Meng, Fanhao

    2012-01-01

    The present study was to investigate the pharmacokinetics of luteolin-7-O-β-D-glucoside (LGL) and apigenin-7-O-β-D-glucoside (AGL) in rat plasma after intravenous administration of the Humulus scandens extract (HSE). A simple and accurate high-performance liquid chromatographic (HPLC) method was successfully developed for simultaneous determination of LGL and AGL in rat plasma after the plasma protein was precipitated with methanol. HPLC analysis was performed on a C₁₈ column with UV detection at 350 nm and a mobile phase of methanol-0.2% phosphoric acid (1 : 1, v/v). Calibration curves of LGL and AGL were linear over the concentration range of 0.16-20.0 and 0.06-7.20 µg mL⁻¹, respectively. The accuracy and precision of the two analytes at low, medium and high concentrations were within the range of -3.4% to 8.1%. The relative standard deviations (RSDs) of the intra- and inter-day precisions were less than 11.7% and 10.0%, respectively. The extraction recoveries (n = 5) varied from 91.9% to 104.1% for LGL and from 92.6% to 109.3% for AGL. The method was fully validated and successfully applied to a pharmacokinetic study of LGL and AGL in rat plasma after the intravenous administration of HSE. PMID:21756194

  12. Occurrence and fate of the norsesquiterpene glucoside ptaquiloside (PTA) in soils

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; Cavoski, Ivana; Costi, Roberta; Sarais, Giorgia; Caboni, Pierluigi; Miano, Teodoro M.; Lattanzio, Vincenzo

    2014-05-01

    The bracken fern Pteridium aquilinum (L.) Kuhn, one of the most common plant species on Earth, produces a wide range of secondary metabolites including the norsesquiterpene glucoside ptaquiloside (PTA). This bracken constituent causes acute poisoning, blindness and cancer in animals, and can be transferred to man when bracken is utilized as food. Also milk from cows eating bracken is thought to be the vector for the transfer of PTA to humans, as well as PTA-contaminated drinking waters. Although some studies on the effect of growth conditions and soil properties on the production and mobility of PTA have been carried out (mainly in the North of Europe), results are sometimes conflicting and further investigations are needed. The aim of the present work is to study the occurrence and the fate of PTA in soils showing different physico-chemical features, collected in different pedoclimatic areas (from the South of Italy), but having the extensive ("wild") livestock farming as common denominator. The PTA content was determined in both soil and fern samples by GC-MS; both the extraction protocol and recovery were previously tested through incubation studies. Soils samples were also characterizes from the physical and chemical point of view (pH, EC, texture, total carbonates, cation exchange capacity, organic C, total N, available nutrients and heavy metal concentration) in order to correlate the possible influence of soil parameters on PTA production, occurrence and mobility. PTA concentration in soil samples was always

  13. Metabolism of monoterpenes: early steps in the metabolism of d-neomenthyl-. beta. -D-glucoside in peppermint (Mentha piperita) rhizomes

    SciTech Connect

    Croteau, R.; Sood, V.K.; Renstroem, B.; Bhushan, R.

    1984-11-01

    Previous studies have shown that the monoterpene ketone l-(G-/sup 3/H) menthone is reduced to the epimeric alcohols l-menthol and d-neomenthol in leaves of flowering peppermint (Mentha piperita L.), and that a portion of the menthol is converted to methyl acetate while the bulk of the neomenthol is transformed to neomenthyl-..beta..-D-glucoside which is then transported to the rhizome. Analysis of the disposition of l-(G)/sup 3/H)menthone applied to midstem leaves of intact flowering plants allowed the kinetics of synthesis and transport of the monoterpenyl glucoside to be determined, and gave strong indication that the glucoside was subsequently metabolized in the rhizome. Studies with d-(G-/sup 3/H)neomenthyl-..beta..-D-glucoside as substrate, using excised rhizomes or rhizome segments, confirmed the hydrolysis of the glucoside as an early step in metabolism at this site, and revealed that the terpenoid moiety was further converted to a series of ether-soluble, methanol-soluble, and water-soluble products. The conversion of menthone to the lactone, and of the lactone to more polar products, were confirmed in vivo using l-(G-/sup 3/H)menthone and l-(G-/sup 3/H)-3,4-menthone lactone as substrates. Additional oxidation products were formed in vivo via the desaturation of labeled neomenthol and/or menthone, but none of these transformations appeared to lead to ring opening of the p-menthane skeleton. Each step in the main reaction sequence, from hydrolysis of neomenthyl glucoside to lactonization of menthone, was demonstrated in cell-free extracts from the rhizomes of flowering mint plants. The lactomization step is of particular significance in providing a means of cleaving the p-methane ring to afford an acyclic carbon skeleton that can be further degraded by modifications of the well-known ..beta..-oxidation sequence. 41 references, 3 figures, 1 table.

  14. A novel anti-inflammatory compound, artonkin-4'-O-glucoside, from the leaves of Artocarpus tonkinensis suppresses experimentally induced arthritis.

    PubMed

    Dang, D T N; Eriste, E; Liepinsh, E; Trinh, T T; Erlandsson-Harris, H; Sillard, R; Larsson, P

    2009-02-01

    Artocarpus tonkinenesis (Moraceae) has been used in Vietnamese traditional medicine for the treatment of backache and joint diseases since many 100 years. We have previously shown that a crude extract of A. tonkinensis elicited anti-inflammatory effects in rat collagen-induced arthritis (CIA), with significant improvement of disease symptoms. However, the pharmacological basis of the bioactivity of A. tonkinensis extract is not known. In the present study, we have isolated four individual active components from A. tonkinensis extract by reverse phase high-pressure liquid chromatography. The structures of the compounds were determined by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry and their biological effects investigated. A novel biologically active flavonoid glucoside (5-hydroxy-8-hydroxymethyl-8-methyl-2-[4-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-phenyl]-8H-pyrano[3,2-g]chromen-4-one) with an average molecular mass of 514.49 Da was isolated.We have named the compound artonkin-4'-O-glucoside. The name 'artonkin' for the novel flavonoid part of the compound was coined from the Latin name of its source Artocarpus tonkinensis. The three other active flavonoid glucosides isolated and characterized were alphitonin-4-O-beta-D-glucoside, maesopsin-4-O-beta-D-glucoside and kaempherol-3-O-beta-D-glucoside. All four compounds were found to cause anti-inflammatory effect with different potencies. The anti-inflammatory effects demonstrated in the rat model of arthritis correlate well with the inhibition of mitogen-induced T-cell proliferation. Furthermore, the compounds inhibit production of cytokines, such as tumour necrosis factor-a and interferon-c, in mitogen-stimulated T cells in a concentration-dependent manner. We postulate that the isolated flavonoids suppress T-cell proliferation as well as cytokine expression and thereby contribute to an amelioration of arthritis severity in CIA.

  15. Occurrence of different trichothecenes and deoxynivalenol-3-β-D-glucoside in naturally and artificially contaminated Danish cereal grains and whole maize plants.

    PubMed

    Rasmussen, P H; Nielsen, K F; Ghorbani, F; Spliid, N H; Nielsen, G C; Jørgensen, L N

    2012-08-01

    Fusarium mycotoxins such as deoxynivalenol (DON) can occur in cereals conjugated to glucose and probably also to other sugars. These conjugates, which are often referred to as "masked mycotoxins", will not be detected with routine analytical techniques. Furthermore, it is suspected that the parent toxin may again be released after hydrolysis in the digestive tracts of animals and humans. Today, our knowledge of the occurrence of these compounds in cereal grains is limited. In this paper, a LC-MS/MS method for the simultaneous determination of DON, deoxynivalenol-3-β-D-glucoside (DON-3-glucoside), 3 acetyl-DON, nivalenol, fusarenon-X, diacetoxyscirpenol, HT-2 toxin, and T-2 toxin in naturally (n = 48) and artificially (n = 30) contaminated cereal grains (wheat, barley, oat, rye triticale) is reported. The method has also been applied to whole fresh maize plant intended for production of maize silage (n = 10). The samples were collected from the harvest years 2006-2010, The results show that DON-3-glucoside and DON co-occurred in cereal grains and, especially in several of the highly contaminated samples, the concentration of the glucoside can be relatively high, corresponding to over 37 % of the DON concentration. The DON-3-glucoside levels in both the naturally and in the artificially grain inoculated with Fusarium were second only to DON, and were generally higher than those of the other tested trichothecenes, which were found at low concentrations in most samples, in many cases even below the detection limit of the method. This argues for the importance of taking DON-3-glucoside into account in the ongoing discussion within the European Community concerning exposure re-evaluations for setting changed values for the tolerable intake for DON. Our results indicate that, in the naturally contaminated grains and in the Fusarium infested cereal grains (winter and spring wheat, oat, triticale), the concentration level of DON-3-glucoside is positively

  16. Crotocascarins I-K: Crotofolane-Type Diterpenoids, Crotocascarin γ, Isocrotofolane Glucoside and Phenolic Glycoside from the Leaves of Croton cascarilloides.

    PubMed

    Kawakami, Susumu; Matsunami, Katsuyoshi; Otsuka, Hideaki; Inagaki, Masanori; Takeda, Yoshio; Kawahata, Masatoshi; Yamaguchi, Kentaro

    2015-01-01

    From the 1-BuOH-soluble fraction of a methanol (MeOH) extract of the leaves of Croton cascarilloides, crotofolanes: crotocascarins I-K, nor-crotofolane: crotocascarin γ, isocrotofolane glucoside and phenolic glycoside were isolated by a combination of various separation techniques. Their structures were elucidated mainly from the NMR spectroscopic evidence. The structure of crotocascarin K was first elucidated by spectroscopic analysis and then was confirmed by X-ray crystallographic analysis. Its absolute structure was finally determined by the modified Mosher's method. Isocrotofolane glucoside was found to possess a new skeleton, however, its absolute structure remains to be determined.

  17. In vitro evaluation of the effects of protein-polyphenol-polysaccharide interactions on (+)-catechin and cyanidin-3-glucoside bioaccessibility.

    PubMed

    Oliveira, Ana; Pintado, Manuela

    2015-11-01

    The bioaccessibility of cyanidin-3-glucoside and (+)-catechin in model solutions when β-lactoglobulin (β-LG) and pectin/chitosan are present was investigated using an in vitro model simulating gastrointestinal conditions. In the mouth, the free cyanidin content increased (+) 90 and 14% while the (+)-catechin content decreased (-) 23 and 13%, respectively for mixtures with -pectin and -β-LG-pectin. Under gastric conditions, the cyanidin content decreased 85 and 28% for mixtures with -pectin and -β-LG-pectin. On the contrary, after gastric digestion, (+)-catechin bioaccessibility increased and exhibited values similar to the original samples for all the systems tested. The transition to the intestinal environment induced a significant alteration on both polyphenols and this effect was more marked for cyanidin. Systems with pectin allowed obtaining a higher content of bioaccessible cyanidin. The gastric conditions promoted an increase in the antioxidant capacity, followed by a decrease of it in the intestine. The free (+)-catechin and cyanidin-3-glucoside contents decreased when exposed to the gastrointestinal tract conditions. However, when incorporated in food matrix components, the gastrointestinal tract may act positively on the extraction of polyphenols, since they are progressively released from protein and polysaccharide bonds, being available for the absorption and to exert their biological effects.

  18. [Effect of algorithms for calibration set selection on quantitatively determining asiaticoside content in Centella total glucosides by near infrared spectroscopy].

    PubMed

    Zhan, Xue-yan; Zhao, Na; Lin, Zhao-zhou; Wu, Zhi-sheng; Yuan, Rui-juan; Qiao, Yan-jiang

    2014-12-01

    The appropriate algorithm for calibration set selection was one of the key technologies for a good NIR quantitative model. There are different algorithms for calibration set selection, such as Random Sampling (RS) algorithm, Conventional Selection (CS) algorithm, Kennard-Stone(KS) algorithm and Sample set Portioning based on joint x-y distance (SPXY) algorithm, et al. However, there lack systematic comparisons between two algorithms of the above algorithms. The NIR quantitative models to determine the asiaticoside content in Centella total glucosides were established in the present paper, of which 7 indexes were classified and selected, and the effects of CS algorithm, KS algorithm and SPXY algorithm for calibration set selection on the accuracy and robustness of NIR quantitative models were investigated. The accuracy indexes of NIR quantitative models with calibration set selected by SPXY algorithm were significantly different from that with calibration set selected by CS algorithm or KS algorithm, while the robustness indexes, such as RMSECV and |RMSEP-RMSEC|, were not significantly different. Therefore, SPXY algorithm for calibration set selection could improve the predicative accuracy of NIR quantitative models to determine asiaticoside content in Centella total glucosides, and have no significant effect on the robustness of the models, which provides a reference to determine the appropriate algorithm for calibration set selection when NIR quantitative models are established for the solid system of traditional Chinese medcine.

  19. [Effect of algorithms for calibration set selection on quantitatively determining asiaticoside content in Centella total glucosides by near infrared spectroscopy].

    PubMed

    Zhan, Xue-yan; Zhao, Na; Lin, Zhao-zhou; Wu, Zhi-sheng; Yuan, Rui-juan; Qiao, Yan-jiang

    2014-12-01

    The appropriate algorithm for calibration set selection was one of the key technologies for a good NIR quantitative model. There are different algorithms for calibration set selection, such as Random Sampling (RS) algorithm, Conventional Selection (CS) algorithm, Kennard-Stone(KS) algorithm and Sample set Portioning based on joint x-y distance (SPXY) algorithm, et al. However, there lack systematic comparisons between two algorithms of the above algorithms. The NIR quantitative models to determine the asiaticoside content in Centella total glucosides were established in the present paper, of which 7 indexes were classified and selected, and the effects of CS algorithm, KS algorithm and SPXY algorithm for calibration set selection on the accuracy and robustness of NIR quantitative models were investigated. The accuracy indexes of NIR quantitative models with calibration set selected by SPXY algorithm were significantly different from that with calibration set selected by CS algorithm or KS algorithm, while the robustness indexes, such as RMSECV and |RMSEP-RMSEC|, were not significantly different. Therefore, SPXY algorithm for calibration set selection could improve the predicative accuracy of NIR quantitative models to determine asiaticoside content in Centella total glucosides, and have no significant effect on the robustness of the models, which provides a reference to determine the appropriate algorithm for calibration set selection when NIR quantitative models are established for the solid system of traditional Chinese medcine. PMID:25881421

  20. In vitro evaluation of the effects of protein-polyphenol-polysaccharide interactions on (+)-catechin and cyanidin-3-glucoside bioaccessibility.

    PubMed

    Oliveira, Ana; Pintado, Manuela

    2015-11-01

    The bioaccessibility of cyanidin-3-glucoside and (+)-catechin in model solutions when β-lactoglobulin (β-LG) and pectin/chitosan are present was investigated using an in vitro model simulating gastrointestinal conditions. In the mouth, the free cyanidin content increased (+) 90 and 14% while the (+)-catechin content decreased (-) 23 and 13%, respectively for mixtures with -pectin and -β-LG-pectin. Under gastric conditions, the cyanidin content decreased 85 and 28% for mixtures with -pectin and -β-LG-pectin. On the contrary, after gastric digestion, (+)-catechin bioaccessibility increased and exhibited values similar to the original samples for all the systems tested. The transition to the intestinal environment induced a significant alteration on both polyphenols and this effect was more marked for cyanidin. Systems with pectin allowed obtaining a higher content of bioaccessible cyanidin. The gastric conditions promoted an increase in the antioxidant capacity, followed by a decrease of it in the intestine. The free (+)-catechin and cyanidin-3-glucoside contents decreased when exposed to the gastrointestinal tract conditions. However, when incorporated in food matrix components, the gastrointestinal tract may act positively on the extraction of polyphenols, since they are progressively released from protein and polysaccharide bonds, being available for the absorption and to exert their biological effects. PMID:26289110

  1. Structure elucidation of Sch 20562, a glucosidic cyclic dehydropeptide lactone--the major component of W-10 antifungal antibiotic.

    PubMed

    Afonso, A; Hon, F; Brambilla, R

    1999-04-01

    A novel bacterium designated as Aeromonas sp. W-10 produces the antibiotic W-10 complex which comprises of two major and several minor components. The two major components from this complex, Sch 20562 (1) and Sch 20561 (1a), are of biological interest in view of their potent antifungal activity. The chemical degradation studies utilized for the assignment of structure 1 for Sch 20562 are described here. Some of the noteworthy diversity of structural features in this glucosidic cyclic dehydrononapeptide lactone 1 are: an N-terminal (D)-beta-hydroxymyristyl unit, three D-amino acid units, two (E)-alpha-aminocrotonyl units, and an O-alpha-D-glucosyl-N-methyl-L-allo-threonine unit. The structure determination of 1 utilized the selective cleavage of the dehydropeptide units by ozonolysis to form fragments that were sequenced by mass spectrometry. The stereochemistry of the amino acid units were assigned by isolation of the free amino acids from the hydrolysates of the fragments. The stereochemistry of the alpha-aminocrotonyl units and the glucosidic linkage were assigned by nmr spectroscopy and molecular rotation data.

  2. Non-water miscible ionic liquid improves biocatalytic production of geranyl glucoside with Escherichia coli overexpressing a glucosyltransferase.

    PubMed

    Schmideder, Andreas; Priebe, Xenia; Rubenbauer, Mark; Hoffmann, Thomas; Huang, Fong-Chin; Schwab, Wilfried; Weuster-Botz, Dirk

    2016-09-01

    Whole cells of Escherichia coli overexpressing a glucosyltransferase from Vitis vinifera were used for the glucosylation of geraniol to geranyl glucoside. A high cell density cultivation process for the production of whole-cell biocatalysts was developed, gaining a dry cell mass concentration of up to 67.6 ± 1.2 g L(-1) and a glucosyltransferase concentration of up to 2.7 ± 0.1 g protein L(-1) within a process time of 48 h. Whole-cell batch biotransformations in milliliter-scale stirred-tank bioreactors showed highest conversion of geraniol at pH 7.0 although the pH optimum of the purified glucosyltransferase was at pH 8.5. The biocatalytic batch process performance was improved significantly by the addition of a water-immiscible ionic liquid (N-hexylpyridinium bis(trifluoromethylsulfonyl)imid) for in situ substrate supply. The so far highest final geranyl glucoside concentration (291 ± 9 mg L(-1)) and conversion (71 ± 2 %) reported for whole-cell biotransformations of geraniol were achieved with 5 % (v/v) of the ionic liquid. PMID:27142377

  3. Dirigent Protein-Mediated Lignan and Cyanogenic Glucoside Formation in Flax Seed: Integrated Omics and MALDI Mass Spectrometry Imaging.

    PubMed

    Dalisay, Doralyn S; Kim, Kye Won; Lee, Choonseok; Yang, Hong; Rübel, Oliver; Bowen, Benjamin P; Davin, Laurence B; Lewis, Norman G

    2015-06-26

    An integrated omics approach using genomics, transcriptomics, metabolomics (MALDI mass spectrometry imaging, MSI), and bioinformatics was employed to study spatiotemporal formation and deposition of health-protecting polymeric lignans and plant defense cyanogenic glucosides. Intact flax (Linum usitatissimum) capsules and seed tissues at different development stages were analyzed. Transcriptome analyses indicated distinct expression patterns of dirigent protein (DP) gene family members encoding (-)- and (+)-pinoresinol-forming DPs and their associated downstream metabolic processes, respectively, with the former expressed at early seed coat development stages. Genes encoding (+)-pinoresinol-forming DPs were, in contrast, expressed at later development stages. Recombinant DP expression and DP assays also unequivocally established their distinct stereoselective biochemical functions. Using MALDI MSI and ion mobility separation analyses, the pinoresinol downstream derivatives, secoisolariciresinol diglucoside (SDG) and SDG hydroxymethylglutaryl ester, were localized and detectable only in early seed coat development stages. SDG derivatives were then converted into higher molecular weight phenolics during seed coat maturation. By contrast, the plant defense cyanogenic glucosides, the monoglucosides linamarin/lotaustralin, were detected throughout the flax capsule, whereas diglucosides linustatin/neolinustatin only accumulated in endosperm and embryo tissues. A putative biosynthetic pathway to the cyanogens is proposed on the basis of transcriptome coexpression data. Localization of all metabolites was at ca. 20 μm resolution, with the web based tool OpenMSI enabling not only resolution enhancement but also an interactive system for real-time searching for any ion in the tissue under analysis.

  4. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora

    PubMed Central

    Li, Bin; Bhandari, Dhaka Ram; Römpp, Andreas; Spengler, Bernhard

    2016-01-01

    High-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) at 10 μm pixel size was performed to unravel the spatio-chemical distribution of major secondary metabolites in the root of Paeonia lactiflora. The spatial distributions of two major classes of bioactive components, gallotannins and monoterpene glucosides, were investigated and visualized at the cellular level in tissue sections of P. lactiflora roots. Accordingly, other primary and secondary metabolites were imaged, including amino acids, carbohydrates, lipids and monoterpenes, indicating the capability of untargeted localization of metabolites by using high-resolution MSI platform. The employed AP-SMALDI MSI system provides significant technological advancement in the visualization of individual molecular species at the cellular level. In contrast to previous histochemical studies of tannins using unspecific staining reagents, individual gallotannin species were accurately localized and unequivocally discriminated from other phenolic components in the root tissues. High-quality ion images were obtained, providing significant clues for understanding the biosynthetic pathway of gallotannins and monoterpene glucosides and possibly helping to decipher the role of tannins in xylem cells differentiation and in the defence mechanisms of plants, as well as to investigate the interrelationship between tannins and lignins. PMID:27796322

  5. GABA, β-alanine and glycine in the digestive juice of privet-specialist insects: convergent adaptive traits against plant iridoids.

    PubMed

    Konno, Kotaro; Hirayama, Chikara; Yasui, Hiroe; Okada, Sachiko; Sugimura, Masahiro; Yukuhiro, Fumiko; Tamura, Yasumori; Hattori, Makoto; Shinbo, Hiroshi; Nakamura, Masatoshi

    2010-09-01

    The privet tree, Ligustrum obtusifolium (Oleaceae), defends its leaves against insects with a strong lysine-decreasing activity that make proteins non-nutritive. This is caused by oleuropein, an iridoid glycoside. We previously found that some privet-specialist caterpillars adapt by secreting glycine in the digestive juice as a neutralizer that prevents the loss of lysine. Here, we extended the survey into 42 lepidopteran and hymenopteran species. The average concentration of glycine in digestive juice for 11 privet-feeding species (40.396 mM) was higher than that for 32 non-privet-feeding species (2.198 mM). The glycine concentrations exceeded 10 mM in 7 out of 11 privet-feeding species. In Macrophya timida (Hymenoptera), it reached 164.8 mM. Three out of the four remaining privet-feeding species had other amino acids instead. Larvae of a privet-specialist butterfly, Artopoetes pryeri (Lycaenidae), had a high concentration (60.812 mM) of GABA. In two other specialists, β-alanine was found. GABA, β-alanine, and glycine as well as alanine, amines, and ammonium ion inhibited the lysine decrease, indicating that amino residues are responsible for the inhibition. However, the three amino acids found in the specialists were far more effective (20 mM showed 80% inhibition) than the rest (>140 mM was required for 80% inhibition). Our results show a clear and rare case of the apparent convergent evolution of herbivores' molecular adaptations of feeding on a plant with a chemical defense in a manner that minimizes the cost of adaptation. The novel role of GABA in plant-herbivore interactions shown here is probably the first reported non-neuronal role of animal-derived GABA.

  6. Iridoid and secoiridoid glycosides in a hybrid complex of bush honeysuckles (Lonicera spp., Caprifolicaceae): implications for evolutionary ecology and invasion biology.

    PubMed

    Whitehead, Susan R; Bowers, M Deane

    2013-02-01

    Interspecific hybridization among non-native plant species can generate genotypes that are more reproductively successful in the introduced habitat than either parent. One important mechanism that may serve as a stimulus for the evolution of invasiveness in hybrids is increased variation in secondary metabolite chemistry, but still very little is known about patterns of chemical trait introgression in plant hybrid zones. This study examined the occurrence of iridoid and secoiridoid glycosides (IGs), an important group of plant defense compounds, in three species of honeysuckle, Lonicera morrowii A. Gray, Lonicera tatarica L., and their hybrid Lonicera×bella Zabel. (Caprifoliaceae), all of which are considered invasive in various parts of North America. Hybrid genotypes had a diversity of IGs inherited from both parent species, as well as one component not detected in either parent. All three species were similar in that overall concentrations of IGs were significantly higher in fruits than in leaves, and several compounds that were major components of fruits were never found in leaves. However, specific patterns of quantitative distribution among leaves, unripe fruits, and ripe fruits differed among the three species, with a relatively higher allocation to fruits in the hybrid species than for either parent. These patterns likely have important consequences for plant interactions with antagonistic herbivores and pathogens as well as mutualistic seed dispersers, and thus the potential invasiveness of hybrid and parental species in their introduced range. Methods established here for quantitative analysis of IGs will allow for the exploration of many compelling research questions related to the evolutionary ecology and invasion biology of these and other related species in the genus Lonicera.

  7. Shanzhiside methylester, the principle effective iridoid glycoside from the analgesic herb Lamiophlomis rotata, reduces neuropathic pain by stimulating spinal microglial β-endorphin expression.

    PubMed

    Fan, Hui; Li, Teng-Fei; Gong, Nian; Wang, Yong-Xiang

    2016-02-01

    Lamiophlomis rotata (L. rotata, Duyiwei) is an orally available Tibetan analgesic herb widely prescribed in China. Shanzhiside methylester (SM) is a principle effective iridoid glycoside of L. rotata and serves as a small molecule glucagon-like peptide-1 (GLP-1) receptor agonist. This study aims to evaluate the signal mechanisms underlying SM anti-allodynia, determine the ability of SM to induce anti-allodynic tolerance, and illustrate the interactions between SM and morphine, or SM and β-endorphin, in anti-allodynia and anti-allodynic tolerance. Intrathecal SM exerted dose-dependent and long-lasting (>4 h) anti-allodynic effects in spinal nerve injury-induced neuropathic rats, with a maximal inhibition of 49% and a projected ED50 of 40.4 μg. SM and the peptidic GLP-1 receptor agonist exenatide treatments over 7 days did not induce self-tolerance to anti-allodynia or cross-tolerance to morphine or β-endorphin. In contrast, morphine and β-endorphin induced self-tolerance and cross-tolerance to SM and exenatide. In the spinal dorsal horn and primary microglia, SM significantly evoked β-endorphin expression, which was completely prevented by the microglial inhibitor minocycline and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. SM anti-allodynia was totally inhibited by the GLP-1 receptor antagonist exendin(9-39), minocycline, β-endorphin antiserum, μ-opioid receptor antagonist CTAP, and SB203580. SM and exenatide specifically activated spinal p38 MAPK phosphorylation. These results indicate that SM reduces neuropathic pain by activating spinal GLP-1 receptors and subsequently stimulating microglial β-endorphin expression via the p38 MAPK signaling. Stimulation of the endogenous β-endorphin expression may be a novel and effective strategy for the discovery and development of analgesics for the long-term treatment of chronic pain. PMID:26363192

  8. Observation of T-2 Toxin and HT-2 Toxin Glucosides from Fusarium sporotrichioides by Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS)

    PubMed Central

    Busman, Mark; Poling, Stephen M.; Maragos, Chris M.

    2011-01-01

    The trichothecenes produced by solid and liquid cultures of Fusarium sporotrichioides were evaluated with high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Along with the expected T-2 toxin HT-2 toxin and neosolaniol, two additional compounds were detected, which had ions 162 m/z higher than those in the mass spectra of T-2 toxin or HT-2 toxin. Fragmentation behavior of these two compounds was similar to that of T-2 toxin and HT-2 toxin. Based on LC-MS/MS behavior, it is proposed that the two compounds are T-2 toxin 3-O-glucoside and HT-2 toxin 3-O-glucoside. Production of the two glucosides was measured in kernels from wheat and oat inoculated with F. sporotrichiodes, as well as in cultures grown in liquid media and on cracked corn or rice. Production of glucosides in wheat and oats suggest that they may also be present in naturally contaminated cereals. PMID:22295176

  9. A Versatile Family 3 Glycoside Hydrolase from Bifidobacterium adolescentis Hydrolyzes β-Glucosides of the Fusarium Mycotoxins Deoxynivalenol, Nivalenol, and HT-2 Toxin in Cereal Matrices.

    PubMed

    Michlmayr, Herbert; Varga, Elisabeth; Malachova, Alexandra; Nguyen, Nhung Thi; Lorenz, Cindy; Haltrich, Dietmar; Berthiller, Franz; Adam, Gerhard

    2015-08-01

    Glycosylation plays a central role in plant defense against xenobiotics, including mycotoxins. Glucoconjugates of Fusarium toxins, such as deoxynivalenol-3-O-β-d-glucoside (DON-3G), often cooccur with their parental toxins in cereal-based food and feed. To date, only limited information exists on the occurrence of glucosylated mycotoxins and their toxicological relevance. Due to a lack of analytical standards and the requirement of high-end analytical instrumentation for their direct determination, hydrolytic cleavage of β-glucosides followed by analysis of the released parental toxins has been proposed as an indirect determination approach. This study compares the abilities of several fungal and recombinant bacterial β-glucosidases to hydrolyze the model analyte DON-3G. Furthermore, substrate specificities of two fungal and two bacterial (Lactobacillus brevis and Bifidobacterium adolescentis) glycoside hydrolase family 3 β-glucosidases were evaluated on a broader range of substrates. The purified recombinant enzyme from B. adolescentis (BaBgl) displayed high flexibility in substrate specificity and exerted the highest hydrolytic activity toward 3-O-β-d-glucosides of the trichothecenes deoxynivalenol (DON), nivalenol, and HT-2 toxin. A Km of 5.4 mM and a Vmax of 16 μmol min(-1) mg(-1) were determined with DON-3G. Due to low product inhibition (DON and glucose) and sufficient activity in several extracts of cereal matrices, this enzyme has the potential to be used for indirect analyses of trichothecene-β-glucosides in cereal samples.

  10. Determination of citrus limonoid glucosides by high performance liquid chromatography coupled to post-column reaction with Ehrlich’s Reagent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the identification and quantification of citrus limonoid glucosides in juices based upon high performance liquid chromatography (HPLC) separation coupled to post-column reaction with Ehrlichs’s reagent has been developed. This method utilizes a phenyl stationary phase and an isocratic ...

  11. Application of ESI/MS, CID/MS and tandem MS/MS to the fragmentation study of eriodictyol 7-O-glucosyl-(1-->2)-glucoside and luteolin 7-O-glucosyl-(1-->2)-glucoside

    NASA Astrophysics Data System (ADS)

    Es-Safi, Nour-Eddine; Kerhoas, Lucien; Einhorn, Jacques; Ducrot, Paul-Henri

    2005-12-01

    A mass spectrometric method based on the combined use of positive and negative electrospray ionization, collision-induced dissociation and tandem mass spectrometry has been applied to the structural characterization of the eriodictyol 7-O-glucosyl-(1-->2)-glucoside and luteolin 7-O-glucosyl-(1-->2)-glucoside. The low-energy product ion mass spectrum of [M + H]+ and [M - H]- ions showed extensive fragmentation of the diglucose moiety, loss of the glycan residue, and fragmentation of the aglycon units that permit characterization of the interglycosidic linkage and the substituents in the A- and B-rings. Both glycosides were shown to yield the 0,2X00,2X1 ion which can be considered as characteristic of the 1-->2 interglycosidic linkage in the glucoglucoside adducts, since it can not be formed in the case of other interglycosidic types. In the case of the eriodictyol diglucoside the 1, 3 fragmentation of the C-ring was observed before those involving the carbohydrates thus allowing the position determination of the diglucoside moiety on the A-ring. In the negative ion mode only the luteolin diglucoside was shown to undergo collision-induced homolytic and heterolytic cleavages of the O-glycosidic bond producing the aglycone radical-anion [Y0-H]-- and Y0- product ions, while this was not observed in the case of eriodictyol glycoside. CID MS/MS analysis of the sodiated molecules gave complementary informations for the structural characterization of the studied compounds. The B2+ fragment which is useful for establishing that the terminal carbohydrate unit is linked to another carbohydrate and not directly to the aglycone was obtained as base peak. This result is of analytical value for the differentiation of O-diglycosyl and di-O-glycosyl flavonoids.

  12. Identification of rice Os4BGlu13 as a β-glucosidase which hydrolyzes gibberellin A4 1-O-β-d-glucosyl ester, in addition to tuberonic acid glucoside and salicylic acid derivative glucosides.

    PubMed

    Hua, Yanling; Ekkhara, Watsamon; Sansenya, Sompong; Srisomsap, Chantragan; Roytrakul, Sittiruk; Saburi, Wataru; Takeda, Ryosuke; Matsuura, Hideyuki; Mori, Haruhide; Ketudat Cairns, James R

    2015-10-01

    Gibberellin 1-O-β-d-glucose ester hydrolysis activity has been detected in rice seedling extracts, but no enzyme responsible for this activity has ever been purified and identified. Therefore, gibberellin A4 glucosyl ester (GA4-GE) β-d-glucosidase activity was purified from ten-day rice seedling stems and leaves. The family 1 glycoside hydrolase Os4BGlu13 was identified in the final purification fraction. The Os4BGlu13 cDNA was amplified from rice seedlings and expressed as an N-terminal thioredoxin-tagged fusion protein in Escherichia coli. The purified recombinant Os4BGlu13 protein (rOs4BGlu13) had an optimum pH of 4.5, for hydrolysis of p-nitrophenyl β-d-glucopyranoside (pNPGlc), which was the best substrate identified, with a kcat/Km of 637 mM(-1) s(-1). rOs4BGlu13 hydrolyzed helicin best among natural glycosides tested (kcat/Km of 74.4 mM(-1) s(-1)). Os4BGlu13 was previously designated tuberonic acid glucoside (TAG) β-glucosidase (TAGG), and here the kcat/Km of rOsBGlu13 for TAG was 6.68 mM(-1) s(-1), while that for GA4-GE was 3.63 mM(-1) s(-1) and for salicylic acid glucoside (SAG) is 0.88 mM(-1) s(-1). rOs4BGlu13 also hydrolyzed oligosaccharides, with preference for short β-(1 → 3)-linked over β-(1 → 4)-linked glucooligosaccharides. The enzymatic data suggests that Os4BGlu13 may contribute to TAG, SAG, oligosaccharide and GA4-GE hydrolysis in the rice plant, although helicin or a similar compound may be its primary target.

  13. An LC-MS method for simultaneous determination of five iridoids from Zhi-zi-chi Decoction in rat brain microdialysates and tissue homogenates: towards an in depth study for its antidepressive activity.

    PubMed

    Qu, Kankan; Zhao, Longshan; Luo, Xinyi; Zhang, Chenning; Hou, Pengyi; Bi, Kaishun; Chen, Xiaohui

    2014-08-15

    Zhi-zi-chi Decoction has been clinically utilized for the treatment of depression for more than thousand years. In order to investigate the possible bioactive components that could pass through the blood brain barrier (BBB) and the mechanism of antidepressant, a sensitive LC-MS method was developed to detect the ingredients (geniposide, scandoside methyl ester, gardenoside, deacetyl asperulosidic acid methyl ester and genipin-1-β-gentiobioside) in rat brain microdialysates and tissue homogenates samples (hippocampus, hypothalamus, premotor cortex, striatum, oblongata and cerebellum). Method development and validation are described in terms of calibration curves, extraction yield, lower limit of quantification (LLOQ), precision, accuracy, intra- and inter-day variability, which are in accordance with the requirements. Microdialysis in hippocampus demonstrated that the five iridoids possessed complete pharmacokinetic process while brain tissue homogenate method testified the distribution regularity in brain. The work clarified that the five iridoids, as antidepressant ingredients, could pass through the BBB, distribute targeted and possess complete pharmacokinetics in brain. These observations, along with the large database of rat brain microdialysates and tissue homogenates data, could enable future efforts aimed to improve our understanding of the relationship between bioactive ingredients and clinical therapy of depression.

  14. A sensitive liquid chromatographic-mass spectrometric method for simultaneous quantification of six iridoid glycosides from Zhi-zi-chi Decoction in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Qu, Kankan; Dai, Jinna; Zhao, Longshan; Lu, Yanan; Li, Bin; Zhao, Xu; Hou, Pengyi; Zhang, Yuanting; Bi, Kaishun; Chen, Xiaohui

    2013-05-01

    A sensitive liquid chromatographic-mass spectrometric (LC-MS) method was developed and validated for simultaneous determination of geniposide, geniposidic acid, scandoside methyl ester, gardenoside, deacetyl asperulosidic acid methyl ester and genipin-1-β-gentiobioside after oral administration of Zhi-zi-chi Decoction in rat plasma. The six iridoid glycosides were extracted from plasma samples by protein precipitation, and then separated on an Apollo C18 column (250 mm × 4.6mm, 5 μm) through the application of a gradient elution. The analytes were monitored in positive electrospray ionization by selected ion monitoring mode (SIM). The lower limits of quantitation (LLOQ) of the six analytes were all lower than 6 ng/mL. The accuracy (relative error, RE%) was between -7.0% and 9.9%, while the intra- and inter-day precisions (relative standard deviation, RSD%) were less than 6.3% and 9.8% for the six analytes, respectively. The developed method was successfully applied to a comparative pharmacokinetic study of the six iridoids in rat plasma after oral administration of Zhi-zi-chi Decoction and Gardenia jasminoides extract.

  15. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava.

    PubMed

    Kannangara, Rubini; Motawia, Mohammed S; Hansen, Natascha K K; Paquette, Suzanne M; Olsen, Carl E; Møller, Birger L; Jørgensen, Kirsten

    2011-10-01

    Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosynthesized from l-valine and l-isoleucine, respectively. In this study, cDNAs encoding two uridine diphosphate glycosyltransferase (UGT) paralogs, assigned the names UGT85K4 and UGT85K5, have been isolated from cassava. The paralogs display 96% amino acid identity, and belong to a family containing cyanogenic glucoside-specific UGTs from Sorghum bicolor and Prunus dulcis. Recombinant UGT85K4 and UGT85K5 produced in Escherichia coli were able to glucosylate acetone cyanohydrin and 2-hydroxy-2-methylbutyronitrile, forming linamarin and lotaustralin. UGT85K4 and UGT85K5 show broad in vitro substrate specificity, as documented by their ability to glucosylate other hydroxynitriles, some flavonoids and simple alcohols. Immunolocalization studies indicated that UGT85K4 and UGT85K5 co-occur with CYP79D1/D2 and CYP71E7 paralogs, which catalyze earlier steps in cyanogenic glucoside synthesis in cassava. These enzymes are all found in mesophyll and xylem parenchyma cells in the first unfolded cassava leaf. In situ PCR showed that UGT85K4 and UGT85K5 are co-expressed with CYP79D1 and both CYP71E7 paralogs in the cortex, xylem and phloem parenchyma, and in specific cells in the endodermis of the petiole of the first unfolded leaf. Based on the data obtained, UGT85K4 and UGT85K5 are concluded to be the UGTs catalyzing in planta synthesis of cyanogenic glucosides. The localization of the biosynthetic enzymes suggests that cyanogenic glucosides may play a role in both defense reactions and in fine-tuning nitrogen assimilation in cassava.

  16. Identification, amounts, and kinetics of extraction of C-glucosidic ellagitannins during wine aging in oak barrels or in stainless steel tanks with oak chips.

    PubMed

    Jourdes, Michaël; Michel, Julien; Saucier, Cédric; Quideau, Stéphane; Teissedre, Pierre-Louis

    2011-09-01

    The C-glucosidic ellagitannins are found in wine as a result of its aging in oak barrels or in stainless steel tanks with oak chips. Once dissolved in this slightly acidic solution, the C-glucosidic ellagitannins vescalagin can react with nucleophilic entities present in red wine, such as ethanol, catechin, and epicatechin, to generate condensed hybrid products such as the β-1-O-ethylvescalagin and the flavano-ellagitannins (acutissimin A/B and epiacutissimin A/B), respectively. During this study, we first monitored the extraction kinetic and the evolution of the eight major oak-derived C-glucosidic ellagitannins in red wines aged in oak barrels or in stainless steel tank with oak chips. Their extraction rates appeared to be faster during red wine aging in stainless steel tanks with oak chips. However, their overall concentrations in wines were found higher in the wine aged in barrels. The formation rates of the vescalagin-coupled derivatives were also estimated for the first time under both red wine aging conditions (i.e., oak barrels or stainless steel tanks with oak chips). As observed for the oak-native C-glucosidic ellagitannins, the concentrations of these vescalagin derivatives were higher in the red wine aged in oak barrels than in stainless steel tanks with oak chips. Despite these differences, their relative composition was similar under both red wine aging conditions. Finally, the impact of the oak chips size and toasting level on the C-glucosidic ellagitannins concentration in wine was also investigated.

  17. Isolation of cyanidin 3-glucoside from blue honeysuckle fruits by high-speed counter-current chromatography.

    PubMed

    Chen, Liang; Xin, Xiulan; Lan, Rong; Yuan, Qipeng; Wang, Xiaojie; Li, Ye

    2014-01-01

    Blue honeysuckle fruits are rich in anthocyanins with many beneficial effects such as reduction of the risk of cardiovascular diseases, diabetes and cancers. High-speed counter-current chromatography (HSCCC) was used for the separation of anthocyanin on a preparative scale from blue honeysuckle fruit crude extract with a biphasic solvent system composed of tert-butyl methyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (2:2:1:5:0.01, v/v) for the first time in this paper. Each injection of 100 mg crude extract yielded 22.8 mg of cyanidin 3-glucoside (C3G) at 98.1% purity. The compound was identified by means of electro-spray ionisation mass (ESI/MS) and (1)H and (13)C nuclear magnetic resonance (NMR) spectra.

  18. Protection of cyanidin-3-glucoside against oxidative stress induced by acrylamide in human MDA-MB-231 cells.

    PubMed

    Song, Jian; Zhao, Mengyao; Liu, Xin; Zhu, Yuchen; Hu, Xiaosong; Chen, Fang

    2013-08-01

    Acrylamide (AA) occurs in many cooked starchy foods and has caused widespread concern as a possible carcinogen. In the present study, we investigate the intervention of AA toxicity in MDA-MB-231 cells pretreated with cyanidin-3-glucoside (Cy-3-glu). Compared to the cells treated with AA, Cy-3-glu significantly inhibited AA-induced cytotoxicity, reduced reactive oxygen species (ROS) generation, recovered glutathione (GSH) depletion and decreased the activities of glutathione peroxidase (GPx) and glutathione S-transferase (GST). Moreover, the expression of GPx1, GSTP1 and gamma-glutamyl cysteine synthase (γ-GCS) were enhanced, and cytochrome P450 2E1 (CYP2E1) expression was inhibited by the pretreatment of Cy-3-glu. Cy-3-glu presents the protective role against oxidative stress induced by AA in MDA-MB-231 cells.

  19. Validated HPLC method for simultaneous estimation of khellol glucoside, khellin and visnagin in Ammi visnaga L. fruits and pharmaceutical preparations.

    PubMed

    Badr, Jihan M; Hadad, Ghada M; Nahriry, Khaled; Hassanean, Hashem A

    2015-01-01

    Tea bags including fruits of Ammi visnaga L. are used in Egypt as remedy for the treatment of kidney stones. Our study focuses on developing simple and rapid method utilising HPLC for quantitative estimation of khellol glucoside (KG), khellin (KH) and visnagin (VS) simultaneously. Their concentrations were determined in A. visnaga L. fruits at different developmental stages and in pharmaceutical formulations together with following up them during shelf life. Separation was accomplished using HPLC. Perfect resolution between KG, KH and VS was possible through using a mobile phase consisting of water:methanol:tetrahydrofuran (50:45:5, v/v/v). Peaks were detected at 245 nm. The suggested method for the determination of KG, KH and VS was successful in determining the analytes of interest without any interference of other compounds and matrix. All validation parameters were satisfactory and the procedure was relatively easy and fast as extracts are evaluated without previous steps of purification.

  20. CTG-loaded liposomes as an approach for improving the intestinal absorption of asiaticoside in Centella Total Glucosides.

    PubMed

    Wang, Jiayu; Ma, Changhua; Guo, Chengjie; Yuan, Ruijuan; Zhan, Xueyan

    2016-07-25

    Centella Total Glucosides (CTG),obtained from Centella asiatica (L.), have been shown to possess a multitude of pharmacological activities, however, oral administeration of CTG failed to fulfill their therapeutic potentials due to the low bioavailability. In this study, the author prepared the liposomes encapsulated CTG using the ethanol injection method in order to enhance their intestinal absorption. The average particle size and the polydispersityindex(PDI) of CTG-loaded liposome in a batch are 137.0nm and 0.283, and the CTG-loaded amounts in CTG-loaded liposomes were 0.177mgmL(-1) and the zeta potential of CTG-loaded lipsomes is -21.2mV. The TEM images of CTG-loaded lipsomes showed that CTG-loaded liposomes are round and maintain high structural integrity, and their DSC thermograms indicated that CTG might be incorporated into the aqueous phase of DPPC to become more stable. The everted rat gut sac model was used to study the absorption characteristic of CTG-loaded solution in rat intestines. The cumulative absorption amount (Q) and the cumulative absorption percentage (P%) of asiaticoside in the CTG-loaded liposome was significantly higher than that in CTG (P<0.05), both the steady-state infiltration rate (Jss, μgcm(-2)s(-1)) and the permeability coefficient (Papp, cms(-1)) of asiaticoside in CTG-loaded liposomes were significantly higher than those in CTG (P<0.05), which revealed that the liposomes encapsulated CTG can promote the absorption of asiaticoside in the ileum of the rats by enhancing its transmembrane permeability. The above study will provide the experimental evidence and a reference for the development of the oral dosage forms of Centella total glucosides.

  1. Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness.

    PubMed

    Richardson, Leif L; Bowers, M Deane; Irwin, Rebecca E

    2016-02-01

    Plants produce an array of secondary metabolites that play important ecological roles as anti-herbivore and anti-pathogen defenses. Many herbivores experience physiological costs when they consume secondary metabolites, yet some also benefit, for example when these chemicals confer resistance to parasites and predators. Secondary metabolites are often present in nectar and pollen, which is paradoxical given that floral rewards are important in the attraction of mutualists rather than deterrence of antagonists. Motivated by studies of interactions among plants, herbivores, and parasites, as well as research showing that secondary metabolites can reduce bee disease, we characterized the occurrence of two iridoid glycosides, aucubin and catalpol, in floral rewards and other tissues of the bee pollinated plant, Chelone glabra. We then experimentally investigated effects of nectar iridoid glycoside concentrations on the foraging behavior of bumble bee pollinators naturally afflicted by a parasitoid fly and a protozoan intestinal parasite, and subsequent effects on an estimate of plant reproduction. We found that floral nectar had lower iridoid glycoside concentrations than leaves, pollen, and corollas, and that, compared to those plant parts, the relative ratio of the two primary iridoid glycosides, aucubin and catalpol, was reversed in nectar. Whether bees carried parasitoid fly larvae did not affect their response to nectar chemistry; however, there was a significant interaction between protozoan parasite infection and nectar treatment, with infected bees foraging longer at flowers with high compared to low nectar iridoid glycoside concentrations. Parasitized bees were also more likely to return to inflorescences with high iridoid glycoside nectar. Consequently, flowers in the high iridoid glycoside nectar treatment donated significantly more pollen to conspecific stigmas than did flowers in the low iridoid glycoside treatment, suggesting an increase in male plant

  2. Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness.

    PubMed

    Richardson, Leif L; Bowers, M Deane; Irwin, Rebecca E

    2016-02-01

    Plants produce an array of secondary metabolites that play important ecological roles as anti-herbivore and anti-pathogen defenses. Many herbivores experience physiological costs when they consume secondary metabolites, yet some also benefit, for example when these chemicals confer resistance to parasites and predators. Secondary metabolites are often present in nectar and pollen, which is paradoxical given that floral rewards are important in the attraction of mutualists rather than deterrence of antagonists. Motivated by studies of interactions among plants, herbivores, and parasites, as well as research showing that secondary metabolites can reduce bee disease, we characterized the occurrence of two iridoid glycosides, aucubin and catalpol, in floral rewards and other tissues of the bee pollinated plant, Chelone glabra. We then experimentally investigated effects of nectar iridoid glycoside concentrations on the foraging behavior of bumble bee pollinators naturally afflicted by a parasitoid fly and a protozoan intestinal parasite, and subsequent effects on an estimate of plant reproduction. We found that floral nectar had lower iridoid glycoside concentrations than leaves, pollen, and corollas, and that, compared to those plant parts, the relative ratio of the two primary iridoid glycosides, aucubin and catalpol, was reversed in nectar. Whether bees carried parasitoid fly larvae did not affect their response to nectar chemistry; however, there was a significant interaction between protozoan parasite infection and nectar treatment, with infected bees foraging longer at flowers with high compared to low nectar iridoid glycoside concentrations. Parasitized bees were also more likely to return to inflorescences with high iridoid glycoside nectar. Consequently, flowers in the high iridoid glycoside nectar treatment donated significantly more pollen to conspecific stigmas than did flowers in the low iridoid glycoside treatment, suggesting an increase in male plant

  3. cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme a:anthocyanidin 3-o-glucoside-6"-o-malonyltransferase from dahlia flowers.

    PubMed

    Suzuki, Hirokazu; Nakayama, Toru; Yonekura-Sakakibara, Keiko; Fukui, Yuko; Nakamura, Noriko; Yamaguchi, Masa-Atsu; Tanaka, Yoshikazu; Kusumi, Takaaki; Nishino, Tokuzo

    2002-12-01

    In the flowers of important ornamental Compositae plants, anthocyanins generally carry malonyl group(s) at their 3-glucosyl moiety. In this study, for the first time to our knowledge, we have identified a cDNA coding for this 3-glucoside-specific malonyltransferase for anthocyanins, i.e. malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6"-O-malonyltransferase, from dahlia (Dahlia variabilis) flowers. We isolated a full-length cDNA (Dv3MaT) on the basis of amino acid sequences specifically conserved among anthocyanin acyltransferases of the versatile plant acyltransferase family. Dv3MaT coded for a protein of 460 amino acids. Quantitative real-time PCR analyses of Dv3MaT showed that the transcript was present in accordance with the distribution of 3MaT activities and the anthocyanin accumulation pattern in the dahlia plant. The Dv3MaT cDNA was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity and characterized. The recombinant Dv3MaT catalyzed the regiospecific transfer of the malonyl group from malonyl-coenzyme A (K(m), 18.8 microM) to pelargonidin 3-O-glucoside (K(m), 46.7 microM) to produce pelargonidin 3-O-6"-O-malonylglucoside with a k(cat) value of 7.3 s(-1). The other enzymatic profiles of the recombinant Dv3MaT were closely related to those of native anthocyanin malonyltransferase activity in the extracts of dahlia flowers. Dv3MaT cDNA was introduced into petunia (Petunia hybrida) plants whose red floral color is exclusively provided by cyanidin 3-O-glucoside and 3,5-O-diglucoside. Thirteen transgenic lines of petunia were found to produce malonylated products of these anthocyanins (11-63 mol % of total anthocyanins in the flower). The spectral stability of cyanidin 3-O-6"-O-malonylglucoside at the pHs of intracellular milieus of flowers was significantly higher than that of cyanidin 3-O-glucoside. Moreover, 6"-O-malonylation of cyanidin 3-O-glucoside effectively prevented the anthocyanin from attack of beta

  4. In vitro and in vivo study of cucurbitacins-type triterpene glucoside from Citrullus colocynthis growing in Saudi Arabia against hepatocellular carcinoma.

    PubMed

    Ayyad, Seif-Eldin N; Abdel-Lateff, Ahmed; Alarif, Walied M; Patacchioli, Francesca R; Badria, Farid A; Ezmirly, Saleh T

    2012-03-01

    Chromatographic investigation of fruits obtained from Citrullus colocynthis, growing in Saudi Arabia, led to isolation of two compounds; Cucurbitacin E glucoside (Cu E, 1), and Cucurbitacin I glucoside (Cu I, 2). The chemical structures of 1 and 2, were elucidated by spectroscopic analyses include; 1D ((1)H and (13)C) and 2D (COSY, HMQC and HMBC) NMR and ESI-MS spectroscopy. The in vitro cytotoxic activity against hepatoma cell line (HepG2) and mice-bearing tumor of Ehrlich's ascites carcinoma (EAC) of the compounds were estimated. Both compounds had potent inhibitory activity on HepG2 with IC(50) 3.5 and 2.8 nmol/mL, respectively. In addition to these activities, the in vivo study employing EAC, showed the capability of both compounds to prolong the survival time, life span and normalize the biochemical parameters of the infected mice with EAC.

  5. Enzymic synthesis of alpha- and beta-D-glucosides of 1-deoxynojirimycin and their glycosidase inhibitory activities.

    PubMed

    Asano, N; Oseki, K; Kaneko, E; Matsui, K

    1994-05-20

    1-Deoxynojirimycin (1) is a potent inhibitor of mammalian and rice alpha-glucosidase. Several glucosides of 1 were synthesized by use of the native and immobilized enzyme and their effect on various enzymes was investigated. Transglucosylation reactions using rice alpha-glucosidase, yeast alpha- and beta-glucosidases purified from Rhodotorula lactosa were performed with maltose or cellobiose as a glucose donor and N-(benzyloxycarbonyl)-1-deoxynojirimycin (2) as an acceptor. The transglucosylation reaction using native rice alpha-glucosidase afforded 3-O-alpha-D-glucopyranosyl-N-(benzyloxycarbonyl)-1-deoxynojirimycin (4), 4-O-alpha-D-glucopyranosyl-N-(benzyloxycarbonyl)-1-deoxynojirimycin (5), and 2-O-alpha-D-glucopyranosyl-N-(benzyloxycarbonyl)-1-deoxynojirimycin (3) in yields of 40, 13, and 2%, respectively, after 30 min. The transglucosylation reaction using immobilized rice alpha-glucosidase was similar to that using the native enzyme. In the system using native yeast alpha-glucosidase, 3, 5, and 4 were formed in yields of 34, 13, and 6%, respectively, after 15 h. The immobilization of yeast alpha-glucosidase caused a significant decrease in transglucosylation activity. Yeast beta-glucosidase showed a high transglucosylation activity and incubation with the reaction system afforded 2-O-beta-D-glucopyranosyl-N-(benzyloxycarbonyl)-1-deoxynojirimycin (6) and 4-O-beta-D-glucopyranosyl-N-(benzyloxycarbonyl)-1-deoxynojirimycin (7) in yields of 69 and 3%, respectively, after 3 h. The transglucosylation reaction using immobilized yeast beta-glucosidase preferentially afforded 6 in a yield of 73% after 3 h. After removal of N-benzyloxycarbonyl group from the product glucosides, their glycosidase inhibitory activities were measured. 3-O-alpha-D-Glucopyranosyl-1-deoxynojirimycin (9) retained the potent inhibition of 1 against rat intestinal sucrase activity and was more effective than 1 against rice alpha-glucosidase. 4-O-alpha-D-Glucopyranosyl-1-deoxynojirimycin (10

  6. Enhanced catalytic efficiency in quercetin-4'-glucoside hydrolysis of Thermotoga maritima β-glucosidase A by site-directed mutagenesis.

    PubMed

    Sun, Huihui; Xue, Yemin; Lin, Yufei

    2014-07-16

    Te-BglA and Tm-BglA are glycoside hydrolase family 1 β-glucosidases from Thermoanaerobacter ethanolicus JW200 and Thermotoga maritima, respectively, with 53% sequence identity. However, Te-BglA could more effectively hydrolyze isoflavone glucosides to their aglycones than could Tm-BglA, possibly due to the difference in amino acid residues around their glycone binding pockets. Site-directed mutagenesis was used to replace the amino acid residues of Tm-BglA with the corresponding residues of Te-BglA, generating three single mutants (F221L, N223L, and G224T), as well as the corresponding three double mutants (F221L/N223L, F221L/G224T, and N223L/G224T) and one triple mutant (F221L/N223L/G224T). The seven mutants have been purified, characterized, and compared to the wild-type Tm-BglA. The effects of the mutations on kinetics, enzyme activity, and substrate specificity were determined. All mutants showed pH-activity curves narrower on the basic side and wider on the acid side and had similar optimal pH and stability at pH 6.5-8.3. They were more stable up to 85 °C, but G224T displayed higher optimal temperature than Tm-BglA. Seven mutants indicated an obvious increase in catalytic efficiency toward p-nitrophenyl β-D-glucopyranoside (pNPG) but an increase or not change in K(m). All mutants showed a decrease in catalytic efficiency of isoflavonoid glycosides and were not changed for F221L and lost for N223L in enzymatic hydrolysis on quercetin glucosides. Contrarily, G224T resulted in a dramatic increase conversion of Q4' (35.5%) and Q3,4' (28.6%) in accord with an increased turnover number (k(cat), 1.4×) and catalytic efficiency (k(cat)/K(m), 2.2×) as well as a decrease in K(m) (0.24) for Q4'. Modeling showed that G224T mutation at position 224 may enhance the interaction between G224T and 5-OH and 3-OH on the quercetin backbone of Q4'.

  7. Dianthosaponins G-I, triterpene saponins, an anthranilic acid amide glucoside and a flavonoid glycoside from the aerial parts of Dianthus japonicus and their cytotoxicity.

    PubMed

    Kanehira, Yuka; Kawakami, Susumu; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki

    2016-10-01

    Extensive isolation work on the 1-BuOH-soluble fraction of a MeOH extract of the aerial parts of Dianthus japonicus afforded three further triterpene glycosyl estsers, termed dianthosaponins G-I, an anthranilic acid amide glucoside and a C-glycosyl flavonoid along with one known triterpene saponin. Their structures were elucidated from spectroscopic evidence. The cytotoxicity of the isolated compounds toward A549 cells was evaluated.

  8. Dianthosaponins G-I, triterpene saponins, an anthranilic acid amide glucoside and a flavonoid glycoside from the aerial parts of Dianthus japonicus and their cytotoxicity.

    PubMed

    Kanehira, Yuka; Kawakami, Susumu; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki

    2016-10-01

    Extensive isolation work on the 1-BuOH-soluble fraction of a MeOH extract of the aerial parts of Dianthus japonicus afforded three further triterpene glycosyl estsers, termed dianthosaponins G-I, an anthranilic acid amide glucoside and a C-glycosyl flavonoid along with one known triterpene saponin. Their structures were elucidated from spectroscopic evidence. The cytotoxicity of the isolated compounds toward A549 cells was evaluated. PMID:27351981

  9. A flavonoid 3-O-glucoside:2″-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana

    PubMed Central

    Yonekura-Sakakibara, Keiko; Nakabayashi, Ryo; Sugawara, Satoko; Tohge, Takayuki; Ito, Takuya; Koyanagi, Misuzu; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2014-01-01

    Flavonol 3-O-diglucosides with a 1→2 inter-glycosidic linkage are representative pollen-specific flavonols that are widely distributed in plants, but their biosynthetic genes and physiological roles are not well understood. Flavonoid analysis of four Arabidopsis floral organs (pistils, stamens, petals and calyxes) and flowers of wild-type and male sterility 1 (ms1) mutants, which are defective in normal development of pollen and tapetum, showed that kaempferol/quercetin 3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosides accumulated in Arabidopsis pollen. Microarray data using wild-type and ms1 mutants, gene expression patterns in various organs, and phylogenetic analysis of UDP-glycosyltransferases (UGTs) suggest that UGT79B6 (At5g54010) is a key modification enzyme for determining pollen-specific flavonol structure. Kaempferol and quercetin 3-O-glucosyl-(1→2)-glucosides were absent from two independent ugt79b6 knockout mutants. Transgenic ugt79b6 mutant lines transformed with the genomic UGT79B6 gene had the same flavonoid profile as wild-type plants. Recombinant UGT79B6 protein converted kaempferol 3-O-glucoside to kaempferol 3-O-glucosyl-(1→2)-glucoside. UGT79B6 recognized 3-O-glucosylated/galactosylated anthocyanins/flavonols but not 3,5- or 3,7-diglycosylated flavonoids, and prefers UDP-glucose, indicating that UGT79B6 encodes flavonoid 3-O-glucoside:2″-O-glucosyltransferase. A UGT79B6-GUS fusion showed that UGT79B6 was localized in tapetum cells and microspores of developing anthers. PMID:24916675

  10. Retargeting a maize β-glucosidase to the vacuole--evidence from intact plants that zeatin-O-glucoside is stored in the vacuole.

    PubMed

    Kiran, Nagavalli S; Benková, Eva; Reková, Alena; Dubová, Jaroslava; Malbeck, Jiří; Palme, Klaus; Brzobohatý, Břetislav

    2012-07-01

    Cytokinin (CK) activity is regulated by the complex interplay of their metabolism, transport, stability and cellular/tissue localization. O-glucosides of zeatin-type CKs are postulated to be storage and/or transport forms. Active CK levels are determined in part by their differential distribution of CK metabolites across different subcellular compartments. We have previously shown that overexpressing chloroplast-localized Zm-p60.1, a maize β-glucosidase capable of releasing active cytokinins from their O- and N3-glucosides, perturbs CK homeostasis in transgenic tobacco. We obtained tobacco (Nicotiana tabacum L., cv Petit Havana SR1) plants overexpressing a recombinant Zm-p60.1 that is targeted to the vacuole. The protein is correctly processed and localized to the vacuole. When grown on medium containing exogenous zeatin, transgenic seedlings rapidly accumulate fresh weight due to ectopic growths at the base of the hypocotyl. The presence of the enzyme in these ectopic structures is shown by histochemical staining. CK quantification reveals that these transgenic seedlings are unable to accumulate zeatin-O-glucoside to levels similar to those observed in the wild type. When crossed with tobacco overexpressing the zeatin-O-glucosyltransferase gene from Phaseolus, the vacuolar variant shows an almost complete reversion in the root elongation assay. This is the first evidence from intact plants that the vacuole is the storage organelle for CK O-glucosides and that they are available to attack by Zm-p60.1. We propose the use of Zm-p60.1 as a robust molecular tool that exploits the reversibility of O-glucosylation and enables delicate manipulations of active CK content at the cellular level.

  11. Resistance of glucose-6-phosphate dehydrogenase deficiency to malaria: effects of fava bean hydroxypyrimidine glucosides on Plasmodium falciparum growth in culture and on the phagocytosis of infected cells.

    PubMed

    Ginsburg, H; Atamna, H; Shalmiev, G; Kanaani, J; Krugliak, M

    1996-07-01

    The balanced polymorphism of glucose-6-phosphate dehydrogenase deficiency (G6PD-) is believed to have evolved through the selective pressure of malarial combined with consumption of fava beans. The implicated fava bean constituents are the hydroxypyrimidine glucosides vicine and convicine, which upon hydrolysis of their beta-O-glucosidic bond, became protein pro-oxidants. In this work we show that the glucosides inhibit the growth of Plasmodium falciparum, increase the hexose-monophosphate shunt activity and the phagocytosis of malaria-infected erythrocytes. These activities are exacerbated in the presence of beta-glucosidase, implicating their pro-oxidant aglycones in the toxic effect, and are more pronounced in infected G6PD- erythrocytes. These results suggest that G6PD- infected erythrocytes are more susceptible to phagocytic cells, and that fava bean pro-oxidants are more efficiently suppressing parasite propagation in G6PD- erythrocytes, either by directly affecting parasite growth, or by means of enhanced phagocytic elimination of infected cells. The present findings could account for the relative resistance of G6PD- bearers to falciparum malaria, and establish a link between dietary habits and malaria in the selection of the G6PD- genotype.

  12. Resistance of glucose-6-phosphate dehydrogenase deficiency to malaria: effects of fava bean hydroxypyrimidine glucosides on Plasmodium falciparum growth in culture and on the phagocytosis of infected cells.

    PubMed

    Ginsburg, H; Atamna, H; Shalmiev, G; Kanaani, J; Krugliak, M

    1996-07-01

    The balanced polymorphism of glucose-6-phosphate dehydrogenase deficiency (G6PD-) is believed to have evolved through the selective pressure of malarial combined with consumption of fava beans. The implicated fava bean constituents are the hydroxypyrimidine glucosides vicine and convicine, which upon hydrolysis of their beta-O-glucosidic bond, became protein pro-oxidants. In this work we show that the glucosides inhibit the growth of Plasmodium falciparum, increase the hexose-monophosphate shunt activity and the phagocytosis of malaria-infected erythrocytes. These activities are exacerbated in the presence of beta-glucosidase, implicating their pro-oxidant aglycones in the toxic effect, and are more pronounced in infected G6PD- erythrocytes. These results suggest that G6PD- infected erythrocytes are more susceptible to phagocytic cells, and that fava bean pro-oxidants are more efficiently suppressing parasite propagation in G6PD- erythrocytes, either by directly affecting parasite growth, or by means of enhanced phagocytic elimination of infected cells. The present findings could account for the relative resistance of G6PD- bearers to falciparum malaria, and establish a link between dietary habits and malaria in the selection of the G6PD- genotype. PMID:8710417

  13. Comparative abilities and optimal conditions for beta-glycosidase enzymes to hydrolyse the glucuronide, glucoside, and N-acetylglucosaminide conjugates of bile acids.

    PubMed

    Momose, T; Maruyama, J; Iida, T; Goto, J; Nambara, T

    1997-08-01

    Enzymatic hydrolyses were described for three variants of glycosidic conjugated bile acids with one beta-glucuronidase (Helix pomatia), three beta-glucosidase (almonds, sweet almonds, and Escherichia coli), and four beta-N-acetylglucosaminidase (jack beans, bovine kidney, human placenta, and Diplococcus pneumoniae) preparations. The substrates include the beta-glucuronide, beta-glucoside, and beta-N-acetylglucosaminide conjugates of bile acids related to hyodeoxycholic, murideoxycholic, chenodeoxycholic, and ursodeoxycholic acids possessing a sugar moiety at position C-3, C-6 or C-7. The comparative abilities and optimal conditions for the beta-glycosidases to catalyze the hydrolyses of the substrates were clarified by changing pHs and incubation times. Hydrolysis rates of the bile acid glycosides with beta-glycosidase treatments were influenced by both the source of the enzyme preparations and the conjugated position of a sugar moiety in the substrates, and the 3-glucoside and 3-N-acetylglucosaminide conjugates were usually hydrolyzed more efficiently than their corresponding 6- and 7-analogs. Escherichia coli and jack bean enzymes were chosen to hydrolyse the glucosidic and N-acetylglucosaminidic conjugated bile acids, respectively. PMID:9300125

  14. Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells.

    PubMed

    Hu, Chun; Kitts, David D

    2004-10-01

    Both reactive oxygen- and nitrogen-derived reactive species play important roles in physiological and pathophysiological conditions. Flavones, luteolin and luteolin-7-O-glucoside along with a rich plant source of both flavones, namely dandelion (Taraxacum officinale) flower extract were studied for antioxidant activity in different in vitro model systems. In this current study, luteolin and luteolin-7-O-glucoside at concentrations lower than 20 microM, significantly (p < 0.05) suppressed the productions of nitric oxide and prostaglandin E2 (PGE2) in bacterial lipopolysaccharide activated-mouse macrophage RAW264.7 cells without introducing cytotoxicity. The inhibitory effects were further attributed to the suppression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression, and not reduced enzymatic activity. Similar suppression for both inducible enzymes was also found with the presence of dandelion flower extract, specifically, the ethyl acetate fraction of dandelion flower extract which contained 10% luteolin and luteolin-7-O-glucoside. PMID:15543940

  15. Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology

    PubMed Central

    Generotti, Silvia; Cirlini, Martina; Malachova, Alexandra; Sulyok, Michael; Berthiller, Franz; Dall’Asta, Chiara; Suman, Michele

    2015-01-01

    In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range. PMID:26213969

  16. Flavonol Glucoside and Antioxidant Enzyme Biosynthesis Affected by Mycorrhizal Fungi in Various Cultivars of Onion (Allium cepa L.).

    PubMed

    Mollavali, Mohanna; Bolandnazar, Saheb Ali; Schwarz, Dietmar; Rohn, Sascha; Riehle, Peer; Zaare Nahandi, Fariborz

    2016-01-13

    The objective of this study was to investigate the impact of mycorrhizal symbiosis on qualitative characteristics of onion (Allium cepa L.). For this reason, five onion cultivars with different scale color and three different strains of arbuscular mycorrhizal fungi (Diversispora versiformis, Rhizophagus intraradices, Funneliformis mosseae) were used. Red cultivars, mainly 'Red Azar-shahr', showed the highest content in vitamin C, flavonols, and antioxidant enzymes. Mycorrhizal inoculation increased total phenolic, pyruvic acid, and vitamin C of onion plants. Considerable increase was observed in quercetin-4'-O-monoglucoside and isorhamnetin-4'-O-monoglucoside content in plants inoculated with Diversispora versiformis, but quercetin-3,4'-O-diglucoside was not significantly influenced. Analyses for phenylalanine ammonia-lyase (PAL) and antioxiodant enzyme activities such as polyphenol oxidase (PPO), catalase (CAT), and peroxidase (POD) revealed that all except PPO were enhanced by mycorrhizal inoculation. Overall, these findings suggested that mycorrhizal inoculation influenced biosynthesis of flavonol glucosides and antioxidant enzymes by increasing nutrient uptake or by induction of the plant defense system. PMID:26694086

  17. Characterization of intermolecular interaction between cyanidin-3-glucoside and bovine serum albumin: spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-hua; Wang, Jing; Zhu, Ying-yao; Chen, Jun

    2014-08-01

    The intermolecular interaction between cyanidin-3-glucoside (Cy-3-G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy-3-G resulted from the formation of Cy-3-G-BSA complex. The number of binding sites (n) for Cy-3-G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy-3-G to BSA, Cy-3-G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy-3-G with BSA is spontaneous, and Cy-3-G can be inserted into the hydrophobic cavity of BSA (site II') in the binding process of Cy-3-G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH(0)  = - 29.64 kcal/mol and ΔS(0)  = - 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy-3-G with BSA are Van der Waals and hydrogen bonding interactions.

  18. Anti-human rhinovirus 2 activity and mode of action of quercetin-7-glucoside from Lagerstroemia speciosa.

    PubMed

    Song, Jae Hyoung; Park, Kwi Sung; Kwon, Dur Han; Choi, Hwa Jung

    2013-04-01

    Human rhinoviruses (HRVs) are a major cause of the common cold, but there is currently, no registered clinically effective antiviral chemotherapeutic agent for treatment of diseases caused by HRVs. In this study, we examined the antiviral activity of quercetin 7-glucoside (Q7G) from Lagerstroemia speciosa against human rhinovirus 2 (HRV2) using a cytopathic effect (CPE) reduction method. Furthermore, to elucidate the action of Q7G on HRV2 multiplication in more detail, we investigated the effect of Q7G on the infection cycle of HRV2 through time-of-addition study, reverse transcription-polymerase chain reaction analysis, and effects of Q7G on the infectivity of HRV2 particles. Q7G potently showed anti-HRV2 activity by reducing the formation of a visible CPE. Q7G also inhibited virus replication in the initial stage of virus infection by indirect interaction with virus particles, and ribavirin had a relative weaker efficacy compared to Q7G. Therefore, these data suggest that Q7G exerted its anti-HRV2 effect via the inhibition of virus replication in the early stage and these findings provide important information for the utilization of Q7G for HRV2 treatment.

  19. Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides.

    PubMed

    Nguyen, Thi Thanh Hanh; Si, Jinbeom; Kang, Choongil; Chung, Byoungsang; Chung, Donghwa; Kim, Doman

    2017-01-01

    Curcuminoids from rhizomes of Curcuma longa possess various biological activities. However, low aqueous solubility and consequent poor bioavailability of curcuminoids are major limitations to their use. In this study, curcuminoids extracted from turmeric powder using stevioside (Ste), rebaudioside A (RebA), or steviol glucosides (SG) were solubilized in water. The optimum extraction condition by Ste, RebA, or SG resulted in 11.3, 9.7, or 6.7mg/ml water soluble curcuminoids. Curcuminoids solubilized in water showed 80% stability at pH from 6.0 to 10.0 after 1week of storage at 25°C. The particle sizes of curcuminoids prepared with Ste, RebA, and SG were 110.8, 95.7, and 32.7nm, respectively. The water soluble turmeric extracts prepared with Ste, RebA, and SG showed the 2,2-diphenyl-1-picrylhydrazyl radical scavenging (SC50) activities of 127.6, 105.4, and 109.8μg/ml, and the inhibition activities (IC50) against NS2B-NS3(pro) from dengue virus type IV of 14.1, 24.0 and 15.3μg/ml, respectively. PMID:27507487

  20. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature.

    PubMed

    Sun, Jianxia; Mei, Zhouxiong; Tang, Yajuan; Ding, Lijun; Jiang, Guichuan; Zhang, Chi; Sun, Aidong; Bai, Weibin

    2016-01-01

    As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200-500 W) and treatment time (0-60 min). The degradation trend was consistent with first-order reaction kinetics (R² > 0.9100). Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R² = 0.8790), which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s) containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment. PMID:27563863

  1. In-vivo absorption of pinocembrin-7-O-β-D-glucoside in rats and its in-vitro biotransformation

    PubMed Central

    Guo, Wei-Wei; Qiu, Feng; Chen, Xiao-Qing; Ba, Yin-Ying; Wang, Xing; Wu, Xia

    2016-01-01

    Pinocembrin-7-O-β-D-glucoside (PCBG), a flavonoid isolated from Penthorum chinense Pursh., has significant liver-protecting effects. The pharmacokinetics of PCBG and its major metabolite pinocembrin (PCB) in rats were investigated in this study. A sensitive and accurate UPLC-MS/MS method was developed and validated for the simultaneous quantitative determination of PCBG and PCB in rat plasma after oral and intravenous administration of PCBG. After intravenous administration, PCBG was the main form in plasma. In contrast, after oral administration, the concentration of PCB was about 4-fold higher than that of PCBG, indicating that PCBG was metabolized to PCB. We also investigated the biotransformation of PCBG in vitro in order to understand whether the pH and the intestinal flora of gastrointestinal tract could affect the metabolism of PCBG. PCBG was incubated in rat plasma, liver homogenization, gastrointestial contents, liver microsomes (RLM) and hepatocytes in vitro. The data showed that PCB was quickly formed in the gastrointestinal incubation but PCBG was converted to PCB gradually in other incubations. The results indicated that the majority of PCBG was converted to its aglycone PCB in digestive system after oral administration, and PCB could be the active ingredient in the body. PMID:27378517

  2. Flavonol Glucoside and Antioxidant Enzyme Biosynthesis Affected by Mycorrhizal Fungi in Various Cultivars of Onion (Allium cepa L.).

    PubMed

    Mollavali, Mohanna; Bolandnazar, Saheb Ali; Schwarz, Dietmar; Rohn, Sascha; Riehle, Peer; Zaare Nahandi, Fariborz

    2016-01-13

    The objective of this study was to investigate the impact of mycorrhizal symbiosis on qualitative characteristics of onion (Allium cepa L.). For this reason, five onion cultivars with different scale color and three different strains of arbuscular mycorrhizal fungi (Diversispora versiformis, Rhizophagus intraradices, Funneliformis mosseae) were used. Red cultivars, mainly 'Red Azar-shahr', showed the highest content in vitamin C, flavonols, and antioxidant enzymes. Mycorrhizal inoculation increased total phenolic, pyruvic acid, and vitamin C of onion plants. Considerable increase was observed in quercetin-4'-O-monoglucoside and isorhamnetin-4'-O-monoglucoside content in plants inoculated with Diversispora versiformis, but quercetin-3,4'-O-diglucoside was not significantly influenced. Analyses for phenylalanine ammonia-lyase (PAL) and antioxiodant enzyme activities such as polyphenol oxidase (PPO), catalase (CAT), and peroxidase (POD) revealed that all except PPO were enhanced by mycorrhizal inoculation. Overall, these findings suggested that mycorrhizal inoculation influenced biosynthesis of flavonol glucosides and antioxidant enzymes by increasing nutrient uptake or by induction of the plant defense system.

  3. Spectrophotometric study of the copigmentation of malvidin 3-O-glucoside with p-coumaric, vanillic and syringic acids.

    PubMed

    Malaj, Naim; De Simone, Bruna Clara; Quartarolo, Angelo Domenico; Russo, Nino

    2013-12-15

    Anthocyanins are a natural source of pigments in plants and their processed food products have become attractive and excellent candidates to replace the synthetic colourants due to their characteristic intense colours and associated health benefits. The intermolecular copigmentation between anthocyanins and other colourless compounds has been reported to be an important way to enhance and stabilise the colour intensity of aqueous solutions. In the present work we report the equilibrium constant, stoichiometric ratio and the thermodynamic parameters (ΔG°, ΔH° and ΔS°) related to the intermolecular copigmentation reactions of the anthocyanin malvidin 3-O-glucoside with one hydroxycinnamic acid (p-coumaric acid) and two O-methylated hydroxybenzoic acids (vanillic and syringic acid). Different factors which affect their interactions such as copigment concentration, pH and temperature of the medium are examined at two pH levels (pH=2.50 and 3.65) corresponding to those of the major food mediums where these reactions take place (fruit juices, wine, jams etc.).

  4. Isolation of a flavonoid, apigenin 7-O-glucoside, from Mentha longifolia (L.) Hudson subspecies longifolia and its genotoxic potency.

    PubMed

    Gulluce, Medine; Orhan, Furkan; Yanmis, Derya; Arasoglu, Tulin; Guvenalp, Zuhal; Demirezer, Lutfiye Omur

    2015-09-01

    Mentha is a medicinal and aromatic plant belonging to the Lamiaceae family, which is widely used in food, flavor, cosmetic and pharmaceutical industries. Recently, it has been found that the use of Mentha as a pharmaceutical source is based on its phytochemical constituents that have far been identified as tannins, saponins, phenolic acids and flavonoids. This study was designed to evaluate the mutagenic and antimutagenic activities of apigenin 7-O-glucoside (A7G), a flavonoid isolated from Mentha longifolia (L.) Hudson subspecies longifolia (ML). The possible antimutagenic potential of A7G was examined against mutagens ethyl methanesulfonate and acridine in an eukaryotic cell system Saccharomyces cerevisiae and sodium azide in Salmonella typhimurium TA1535 and 9-aminoacridine in S. typhimurium TA1537. According to our findings, any concentrations of the A7G used did not show mutagenic activity but exerted strong antimutagenic activities at tested concentrations. The inhibition rates for the Ames test ranged from 27.2% (S. typhimurium TA1535: 0.4 μM/plate) to 91.1% (S. typhimurium TA1537: 0.2 μM/plate) and for the yeast deletion assay from 4% to 57.7%. This genotoxicological study suggests that a flavonoid from ML owing to antimutagenic properties is of great pharmacological importance and might be beneficial to industries producing food additives, cosmetics and pharmaceuticals products.

  5. Binding of the alkaloid aristololactam-β-D-glucoside and daunomycin to human hemoglobin: spectroscopy and calorimetry studies.

    PubMed

    Das, Abhi; Suresh Kumar, Gopinatha

    2016-01-01

    The interaction of the plant alkaloid aristololactam-β-D-glucoside (ADG) and the anticancer agent daunomycin (DAN) with human hemoglobin was studied by different spectroscopic and calorimetric methods. The binding affinity values of ADG and DAN, estimated from spectroscopic experiments, were 3.79 × 10(4) and 6.68 × 10(4) M(-1), respectively. From circular dichroism, 3D fluorescence, and FTIR studies it was observed that, DAN induced stronger conformational changes than ADG in the protein. From synchronous fluorescence spectroscopy results, a pronounced shift in the maximum emission wavelength of tyrosine residues was observed in both cases suggesting that the drugs changed the polarity around tyrosine residues with marginal change around the tryptophan residues. The thermodynamics of the binding interaction analyzed using microcalorimetry presented single binding events that were exothermic in nature in both cases. The binding was driven by large positive standard molar entropy changes with small favorable enthalpy contributions. Negative heat capacity changes in both cases are correlated to the involvement of significant hydrophobic forces in the complexation process. The affinity of DAN to Hb was higher than that of ADG. PMID:26065442

  6. The inhibitory effect and mechanism of luteolin 7-glucoside on rat aortic vascular smooth muscle cell proliferation.

    PubMed

    Kim, Tack-Joong; Kim, Jin-Ho; Jin, Yong-Ri; Yun, Yeo-Pyo

    2006-01-01

    The abnormal proliferation of aortic vascular smooth muscle cells (VSMCs) plays a central role in the pathogenesis of atherosclerosis and restenosis after angioplasty and possibly also in the development of hypertension. The present study was designed to examine the inhibitory effects and the mechanism of luteolin 7-glucoside (L7G) on the platelet-derived growth factor (PDGF)-BB-induced proliferation of VSMCs. L7G significantly inhibited the PDGF-BB-induced proliferation and the DNA synthesis of the VSMCs in a concentration-dependent manner. Pre-incubation of the VSMCs with L7G significantly inhibited the PDGF-BB-induced extracellular signal-regulated kinase 1/2 (ERK1/2), Akt and the phospholipase C (PLC)-gamma1 activation. However, L7G had almost no affect on the phosphorylation of PDGF-beta receptor tyrosine kinase, which was induced by PDGF-BB. These results suggest that L7G inhibits the PDGF-BB-induced proliferation of VSMCs via the blocking of PLC-gamma1, Akt, and ERK1/2 phosphorylation.

  7. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    PubMed

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition.

  8. ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3-O-Glucosides[W][OA

    PubMed Central

    Francisco, Rita Maria; Regalado, Ana; Ageorges, Agnès; Burla, Bo J.; Bassin, Barbara; Eisenach, Cornelia; Zarrouk, Olfa; Vialet, Sandrine; Marlin, Thérèse; Chaves, Maria Manuela; Martinoia, Enrico; Nagy, Réka

    2013-01-01

    Accumulation of anthocyanins in the exocarp of red grapevine (Vitis vinifera) cultivars is one of several events that characterize the onset of grape berry ripening (véraison). Despite our thorough understanding of anthocyanin biosynthesis and regulation, little is known about the molecular aspects of their transport. The participation of ATP binding cassette (ABC) proteins in vacuolar anthocyanin transport has long been a matter of debate. Here, we present biochemical evidence that an ABC protein, ABCC1, localizes to the tonoplast and is involved in the transport of glucosylated anthocyanidins. ABCC1 is expressed in the exocarp throughout berry development and ripening, with a significant increase at véraison (i.e., the onset of ripening). Transport experiments using microsomes isolated from ABCC1-expressing yeast cells showed that ABCC1 transports malvidin 3-O-glucoside. The transport strictly depends on the presence of GSH, which is cotransported with the anthocyanins and is sensitive to inhibitors of ABC proteins. By exposing anthocyanin-producing grapevine root cultures to buthionine sulphoximine, which reduced GSH levels, a decrease in anthocyanin concentration is observed. In conclusion, we provide evidence that ABCC1 acts as an anthocyanin transporter that depends on GSH without the formation of an anthocyanin-GSH conjugate. PMID:23723325

  9. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    PubMed Central

    Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha

    2014-01-01

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198

  10. Effects of baking on cyanidin-3-glucoside content and antioxidant properties of black and yellow soybean crackers.

    PubMed

    Slavin, Margaret; Lu, Yingjian; Kaplan, Nicholas; Yu, Liangli Lucy

    2013-11-15

    Black soybean is a potential functional food ingredient with high anthocyanin content, but the ability to maintain anthocyanin content under dry heat processing has not been reported. This study investigated the effects of soybean seed coat colour and baking time-temperature combinations on the extractable antioxidant properties of a soy cracker food model. Crackers prepared with black soybeans had significantly higher TPC, total isoflavones, and peroxyl, hydroxyl, and ABTS(+) radical scavenging abilities than their yellow counterparts, at all time-temperature combinations. Cyanidin-3-glucoside (C3G) was detected only in black soybean crackers, and all baking treatments significantly decreased C3G. The greatest losses occurred at the low temperature×long time and high temperature×short time, the smallest loss with moderate temperature×short/medium time. The high temperature treatment altered phenolic acid and isoflavone profiles; however, total isoflavones were unaffected. Overall results suggest that moderate baking temperature at minimal time may best preserve anthocyanin and other phenolics in baked black soybean crackers.

  11. Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides.

    PubMed

    Nguyen, Thi Thanh Hanh; Si, Jinbeom; Kang, Choongil; Chung, Byoungsang; Chung, Donghwa; Kim, Doman

    2017-01-01

    Curcuminoids from rhizomes of Curcuma longa possess various biological activities. However, low aqueous solubility and consequent poor bioavailability of curcuminoids are major limitations to their use. In this study, curcuminoids extracted from turmeric powder using stevioside (Ste), rebaudioside A (RebA), or steviol glucosides (SG) were solubilized in water. The optimum extraction condition by Ste, RebA, or SG resulted in 11.3, 9.7, or 6.7mg/ml water soluble curcuminoids. Curcuminoids solubilized in water showed 80% stability at pH from 6.0 to 10.0 after 1week of storage at 25°C. The particle sizes of curcuminoids prepared with Ste, RebA, and SG were 110.8, 95.7, and 32.7nm, respectively. The water soluble turmeric extracts prepared with Ste, RebA, and SG showed the 2,2-diphenyl-1-picrylhydrazyl radical scavenging (SC50) activities of 127.6, 105.4, and 109.8μg/ml, and the inhibition activities (IC50) against NS2B-NS3(pro) from dengue virus type IV of 14.1, 24.0 and 15.3μg/ml, respectively.

  12. Five furofuranone lignan glucosides from Terminalia citrina inhibit in vitro E2-enhanced breast cancer cell proliferation.

    PubMed

    Muhit, Md Abdul; Umehara, Kaoru; Noguchi, Hiroshi

    2016-09-01

    Five new polyalkoxylated furofuranone lignan glucosides, terminalosides L-P (1-5), were isolated from EtOAc extracts of the leaves of Terminalia citrina, a Bangladeshi medicinal plant. The structures of the isolates were deduced primarily by NMR spectroscopy, and four of the isolates were found to contain rare tetraoxygenated aryl groups in their structures. The absolute configurations and conformations of the furofuranone ring were confirmed by ECD spectroscopy. All of the isolates were evaluated for their estrogenic and/or antiestrogenic properties using two estrogen responsive breast cancer cell lines, T47D and MCF-7. At a concentration of 10nM, terminaloside L (1) suppressed E2-enhanced T47D cell proliferation by 90%, while terminaloside M (2) showed 90% antiestrogenic activity against MCF-7 cells. Compared to 2, the antiestrogenic activity of terminaloside O (4) and P (5) was weak, possibly due to the different attachment positions of the sugar moiety that they share in common. This is the first report of furofuranone lignans from any Terminalia species, and also of their antiestrogenic activity. PMID:27425446

  13. Analysis of deoxynivalenol and deoxynivalenol-3-glucosides content in Canadian spring wheat cultivars inoculated with Fusarium graminearum.

    PubMed

    Amarasinghe, Chami C; Simsek, Senay; Brûlé-Babel, Anita; Fernando, W G Dilantha

    2016-07-01

    Contamination of wheat grains with Fusarium mycotoxins and their modified forms is an important issue in wheat industry. The objective of this study was to analyse the deoxynivalenol (DON) and deoxynivalenol-3-glucosides (D3G) content in Canadian spring wheat cultivars grown in two locations, inoculated with a mixture of 3-acetyldeoxynivalenol (3-ADON)-producing Fusarium graminearum strains and a mixture of 15-acetlyldeoxynivalenol (15-ADON)-producing F. graminearum strains. According to the analysis of variance, significant differences were observed among the cultivars for Fusarium head blight (FHB) disease index, Fusarium-damaged kernel percentage (%FDK), DON content and D3G content. When the effect of chemotype was considered, significant differences were observed for FHB disease index, FDK percentage and DON content. The D3G content and D3G/DON ratio were not significantly different between the chemotypes, except for D3G content at the Winnipeg location. The Pearson correlation coefficient between DON and D3G was 0.84 and 0.77 at Winnipeg and Carman respectively. The highest D3G/DON ratio was observed in cultivars Carberry (44%) in Carman and CDC Kernen (63.8%) in Winnipeg. The susceptible cultivars showed lower D3G/DON ratio compared with the cultivars rated as moderately resistant and intermediate. The current study indicated that Canadian spring cultivars produce D3G upon Fusarium infection.

  14. Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology.

    PubMed

    Generotti, Silvia; Cirlini, Martina; Malachova, Alexandra; Sulyok, Michael; Berthiller, Franz; Dall'Asta, Chiara; Suman, Michele

    2015-07-24

    In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range.

  15. Behaviour of cyanidin-3-glucoside, β-lactoglobulin and polysaccharides nanoparticles in bulk and oil-in-water interfaces.

    PubMed

    Oliveira, Ana; Ruiz-Henestrosa, Víctor M Pizones; von Staszewski, Mariana; Pilosof, Ana M R; Pintado, Manuela

    2015-11-01

    Particle size distributions as well the interfacial and rheological properties of the films at the oil/water interface were used to study the effect of the interacting system between β-lactoglobulin, cyanidin-3-glucoside and pectin or chitosan in buffer solutions. The particles obtained were smaller with cy-3-gluc-β-lg-pectin and had reduced polydispersity with cy-3-gluc-β-lg-chitosan. Based on time dependent surface pressure results, β-lg-pectin mixtures showed a slower increase at the beginning of the measurement, while β-lg-chitosan mixtures showed no differences with β-lg alone. Contrarily, dilatational properties increased for ternary chitosan mixtures, but they remained similar to the pure protein in ternary pectin mixtures. Cy-3-gluc interfacial properties were reduced by the presence of pectin and chitosan. The interactions between cy-3-gluc and the biopolymers that have been selected in the present work resulted in a lower content of free polyphenol, reduced antioxidant properties as well as free β-lg. The impact of this effect was more relevant when pectin was used. PMID:26256371

  16. A new monoterpene glucoside and complete assignments of dihydroflavonols of Pulicaria jaubertii: potential cytotoxic and blood pressure lowering activity.

    PubMed

    Ragab, Ehab A; Raafat, Mohamed

    2016-06-01

    One new monoterpene glucoside and five dihydroflavonols were isolated for the first time from the aerial parts of Pulicaria jaubertii and identified as p-menthane-2-O-β-D-glucopyranoside [1], dihydroquercetin (taxifolin) [2], 7,3'-di-O-methyltaxifolin [3], 3'-O-methyltaxifolin [4], 7-O-methyltaxifolin (padmatin) [5] and 7-O-methyl-dihydrokampferol (7-O-methylaromadenderin) [6]. The structures of these compounds were unambiguously assigned on the basis of NMR spectroscopic data ((1)H, (13)C, DEPT, HSQC, HMBC) and MS analysis. 2D-NMR methods required revision of assignments of H-6 and H-8 for dihydroflavonol compounds. Possible cytotoxic activity as well as blood pressure (BP) lowering activity were tested. The alcoholic extract showed cytotoxic activity against prostate carcinoma (PC-3), breast carcinoma (MCF-7) and hepatocellular carcinoma (HepG-2) human cell lines with IC50 19.1, 20.0 and 24.1 μg, respectively. The higher dose levels of the alcoholic extract significantly reduced normal BP of rats in a dose-dependent manner.

  17. Differentiation of flavonol glucoside and galactoside isomers combining chemical isopropylidenation with liquid chromatography-mass spectrometry analysis.

    PubMed

    de Souza, Lauro M; Dartora, Nessana; Scoparo, Camila T; Gorin, Philip A J; Iacomini, Marcello; Sassaki, Guilherme L

    2016-05-20

    Flavonol glycosides are important components of leaves from vascular plants. A lot of isomers of these compounds are produced by plants, making their analysis very difficult and causing many structural misinterpretations. Galactosides and glucosides as mono- or oligosaccharides yield many diastereoisomers, hindering the analysis by mass spectrometry. In order to enable the mass spectrometric distinctions of these isomers, in this work we combine an isopropylidene based chemical derivatization with liquid chromatography with multiple-stage mass spectrometry (LC-MS(n)) analysis. The isomers of flavonol triglycosides, after the reaction, yielded products with different molecular weight, therefore, they were no longer isomers, allowing their identification by MS(1) analysis. However, to the 4 isomers of flavonol diglycosides, only one yielded, after isopropylidenation, a product with different molecular weight. To the other 3 species, the incorporation of 2 isopropylidene groups retained them in the isomeric form. For such species, chromatographic separation and MS(n) detection targeting the lithium adducts of 3,4-O-isopropylidene-galactosyl or 4,6-O-isopropylidene-glucosyl residues (m/z 209.099) provided specific MS profile. PMID:27109198

  18. The inhibitory effect and mechanism of luteolin 7-glucoside on rat aortic vascular smooth muscle cell proliferation.

    PubMed

    Kim, Tack-Joong; Kim, Jin-Ho; Jin, Yong-Ri; Yun, Yeo-Pyo

    2006-01-01

    The abnormal proliferation of aortic vascular smooth muscle cells (VSMCs) plays a central role in the pathogenesis of atherosclerosis and restenosis after angioplasty and possibly also in the development of hypertension. The present study was designed to examine the inhibitory effects and the mechanism of luteolin 7-glucoside (L7G) on the platelet-derived growth factor (PDGF)-BB-induced proliferation of VSMCs. L7G significantly inhibited the PDGF-BB-induced proliferation and the DNA synthesis of the VSMCs in a concentration-dependent manner. Pre-incubation of the VSMCs with L7G significantly inhibited the PDGF-BB-induced extracellular signal-regulated kinase 1/2 (ERK1/2), Akt and the phospholipase C (PLC)-gamma1 activation. However, L7G had almost no affect on the phosphorylation of PDGF-beta receptor tyrosine kinase, which was induced by PDGF-BB. These results suggest that L7G inhibits the PDGF-BB-induced proliferation of VSMCs via the blocking of PLC-gamma1, Akt, and ERK1/2 phosphorylation. PMID:16491846

  19. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    PubMed

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition. PMID:20127879

  20. Rice bran extract containing acylated steryl glucoside fraction decreases elevated blood LDL cholesterol level in obese Japanese men.

    PubMed

    Ito, Yukihiko; Nakashima, Yuri; Matsuoka, Sayuri

    2015-01-01

    People who frequently consume whole grains show a lower incidence of arteriosclerotic disease than people who consume primarily refined grains. We examined whether or not rice bran extract containing the acylated steryl glucosides (ASG) fraction decreases blood LDL cholesterol levels in obese Japanese men with high blood levels of LDL cholesterol. The study utilized a randomized, double-blind design. A total of 51 subjects were randomly allocated to either a rice bran extract containing ASG fraction (RB-ASG) group or a placebo group. Subjects in the RB-ASG group received 30-50 mg/day of RB-ASG, and the placebo group took 9 capsules/day for 12 weeks. Before and after intake, height, weight, body fat percentage, systolic and diastolic blood pressure were measured, blood was collected, and visceral fat area, subcutaneous fat area, and abdominal circumference were determined based on umbilical computed tomography. Percentage decreases in blood LDL cholesterol, non-HDL cholesterol, LDL/HDL ratio, abdominal circumference and subcutaneous fat area were significantly better in the RB-ASG group than in the placebo group. These findings suggest that RB-ASG fraction may reduce blood LDL cholesterol levels and the risk of arteriosclerosis in obese Japanese men with high LDL cholesterol levels.

  1. Glass transition behavior of octyl β-D-glucoside and octyl β-D-thioglucoside/water binary mixtures.

    PubMed

    Ogawa, Shigesaburo; Asakura, Kouichi; Osanai, Shuichi

    2010-11-22

    The lyotropic behavior and glass-forming properties of octyl β-D-glucoside (C8Glu) and octyl β-D-thioglucoside (C8SGlu)/water binary mixtures were evaluated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The results clearly indicate that the mixture forms a glass in the supercooling state of liquid crystalline phases such as cubic, lamellar, and smectic. The glass transition temperature (T(g)) of the mixture was strongly dependent on solute concentration, with a higher concentration correlating with a higher T(g). The experimental T(g) was consistent with the predicted value calculated using the Couchman-Karasz equation in both the C8Glu and C8SGlu/water mixtures. The change of heat capacity at T(g) showed the two bending points under variation of concentrations. And the highest temperature of phase transition from lamellar to isotropic solution was observed at around 50% molar concentration. It was expected that non-percolated state of water existed in extremely higher concentration ranges.

  2. In-vivo absorption of pinocembrin-7-O-β-D-glucoside in rats and its in-vitro biotransformation.

    PubMed

    Guo, Wei-Wei; Qiu, Feng; Chen, Xiao-Qing; Ba, Yin-Ying; Wang, Xing; Wu, Xia

    2016-01-01

    Pinocembrin-7-O-β-D-glucoside (PCBG), a flavonoid isolated from Penthorum chinense Pursh., has significant liver-protecting effects. The pharmacokinetics of PCBG and its major metabolite pinocembrin (PCB) in rats were investigated in this study. A sensitive and accurate UPLC-MS/MS method was developed and validated for the simultaneous quantitative determination of PCBG and PCB in rat plasma after oral and intravenous administration of PCBG. After intravenous administration, PCBG was the main form in plasma. In contrast, after oral administration, the concentration of PCB was about 4-fold higher than that of PCBG, indicating that PCBG was metabolized to PCB. We also investigated the biotransformation of PCBG in vitro in order to understand whether the pH and the intestinal flora of gastrointestinal tract could affect the metabolism of PCBG. PCBG was incubated in rat plasma, liver homogenization, gastrointestial contents, liver microsomes (RLM) and hepatocytes in vitro. The data showed that PCB was quickly formed in the gastrointestinal incubation but PCBG was converted to PCB gradually in other incubations. The results indicated that the majority of PCBG was converted to its aglycone PCB in digestive system after oral administration, and PCB could be the active ingredient in the body. PMID:27378517

  3. Determination of the relative contribution of quercetin and its glucosides to the antioxidant capacity of onion by cyclic voltammetry and spectrophotometric methods.

    PubMed

    Zielinska, Danuta; Wiczkowski, Wieslaw; Piskula, Mariusz Konrad

    2008-05-28

    This paper describes the use of cyclic voltammetry (CV), spectrophotometric methods [Trolox equivalent antioxidant capacity (TEAC), peroxyl radical trapping capacity (PRTC), DPPH radical scavenging activity (RSA), and Folin-Ciocalteu reagent (FCR) reducing capacity], and photochemiluminescence (PCL) for the measurement of the antioxidant capacity of onion var. Sochaczewska and var. Szalotka. The antioxidant and reducing activity of the dominant onion flavonoids quercetin (Q), quercetin-3- O-beta-glucoside (Q3G), quercetin-4'- O-beta-glucoside (Q4'G), and quercetin-3,4'-di- O-beta-glucoside (Q3,4'G) were determined by spectrophotometric (TEAC and PRTC) and CV methods, respectively. The contribution of quercetin and its glucosides to the antioxidant capacity of onion was calculated in consequence of the qualitative and quantitative analysis of onion flavonoids by high-performance liquid chromatography-ultraviolet-mass spectrometry. The dominant forms of quercetin in the onion var. Sochaczewska and Szalotka included Q4'G (61 and 54%), Q3,4'G (37 and 44%), Q3G (1.4 and 1.1%), and free quercetin (1.1 and 0.7%), respectively. The CV experiment showed the highest reducing activity of Q while Q3G, Q4'G, and Q3,4'G exhibited about 68, 51, and 30% of the reducing power noted for Q. The order of the reducing activity of onion flavonoids was confirmed by their free radical scavenging activity and evaluated by TEAC and PRTC assays as follows: Q > Q3G > Q4'G > Q3,4'G. The Q4'G and Q3,4'G showed poor antioxidant activity under both applied spectrophotometric assays but still exhibited reducing activity based on CV experiments. The reducing capacity of onions determined by CV method was twice higher than the antioxidant capacity formed by water-soluble compounds (ACW) evaluated by PCL, and it was about 50% higher than PRTC and DPPH RSA results and the converted FCR reducing capacity. In contrast, the reducing capacity of onions determined by the CV method was 3-fold and about four

  4. Total Glucosides of Paeony Promote Intestinal Motility in Slow Transit Constipation Rats through Amelioration of Interstitial Cells of Cajal

    PubMed Central

    Zhu, Feiye; Xu, Shan; Zhang, Yongsheng; Chen, Fangming; Ji, Jinjun; Xie, Guanqun

    2016-01-01

    Objectives Using an atropine-diphenoxylate-induced slow transit constipation (STC) model, this study explored the effects of the total glucosides of paeony (TGP) in the treatment of STC and the possible mechanisms. Study Design A prospective experimental animal study. Methods The constipation model was set up in rats with an oral gavage of atropine-diphenoxylate and then treated with the TGP. The volume and moisture content of the faeces were observed and the intestinal kinetic power was evaluated. Meanwhile, the colorimetric method and enzyme linked immunosorbent assay (ELISA) were employed to determine the changes of nitric oxide (NO), nitric oxide synthase (NOS), vasoative intestinal peptide (VIP) and the P substance (SP) in the serum, respectively. The protein expressions of c-kit and stem cell factor (SCF) were assessed by immunohistochemical analysis and western blot, respectively, and the mRNA level of c-kit was measured by a reverse transcription polymerase chain reaction (RT-PCR). Results The TGP attenuated STC responses in terms of an increase in the fecal volume and moisture content, an enhancement of intestinal transit rate and the reduction of NO, NOS and VIP in the serum. In addition, the c-kit, a labeling of interstitial cells of Cajal (ICC) increased at both protein and mRNA levels. SCF, which serves as a ligand of c-kit also increased at protein level. Conclusion The analysis of our data indicated that the TGP could obviously attenuate STC through improving the function of ICC and blocking the inhibitory neurotransmitters such as NO, NOS and VIP. PMID:27478893

  5. Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans.

    PubMed

    Dueñas, Montserrat; Surco-Laos, Felipe; González-Manzano, Susana; González-Paramás, Ana M; Gómez-Orte, Eva; Cabello, Juan; Santos-Buelga, Celestino

    2013-10-01

    Due to their purported healthful activities, quercetin and other flavonoids are being increasingly proposed as nutraceuticals. Quercetin occurs in food as glycosides; however, most assays on its activity have been performed with the aglycone, despite glycosylation deeply affects compound bioavailability. In this work, the uptake and lifespan effects of quercetin-3-O-glucoside (Q3Glc) and quercetin have been assessed in Caenorhabditis elegans. Q3Glc was taken up by this nematode in a concentration-dependent manner and rapidly deglycosylated to quercetin, which was accumulated in the worm and partially biotransformed to conjugated metabolites. Significant mean lifespan extension up to 23% compared to controls was observed in wild type worms cultivated in the presence of low concentrations of Q3Glc (10 μM and 25 μM), whereas exposure to greater concentrations of Q3Glc (50-200 μM) caused a reduction in mean and maximum lifespan compared with the control. By contrast, treatment of klo-1 and klo-2 mutant worms lacking β-glucosidase activity with 200 μM of Q3Glc led to extended mean lifespan (up to 39%), similar to quercetin aglycone at the same concentration levels. In those mutants, Q3Glc was accumulated without important deglycosylation to quercetin was produced. Taken together, these findings indicated that Q3Glc was taken up by the nematode in greater extent than quercetin, and that deglycosylation and subsequent aglycone accumulation in the worm appeared as key points to explain the observed lifespan effects. The obtained results also suggested that facilitated absorption should be more important for the uptake of quercetin derivatives than passive diffusion.

  6. Charge Transfer Dynamics of Highly Efficient Cyanidin-3-O- Glucoside Sensitizer for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Prima, E. C.; Yuliarto, B.; Suyatman; Dipojono, H. K.

    2016-08-01

    This paper reports the novel efficiency achievement of black rice-based natural dye- sensitized solar cells. The higher dye concentration, the longer dye extraction as well as dye immersion onto a TiO2 film, and the co-adsorption addition are key strategies for improved-cell performance compared to the highest previous achievement. The black rice dye containing 1.38 mM cyanidin-3-O-glucoside has been extracted without purification for 3 weeks at dark condition and room temperature. The anatase TiO2 photoanode was dipped into dye solution within 4 days. Its electrode was firmly sealed to be a cell and was filled by I-/I3- electrolyte using vacuum technique. As a result, the overall solar-to-energy conversion efficiency was 1.49% at AM 1.5 illumination (100 mW.cm-2). The voltametric analysis has reported the interfacial electronic band edges of TiO2-Dye-Electrolyte. Furthermore, electrochemical impedance spectroscopy has shown the kinetic of interfacial electron transfer dynamics among TiO2-dye-electrolyte. The cell has the transfer resistance (Rt) of 12.5 ω, the recombination resistance (Rr) of 266.8 ω, effective electron diffusion coefficients (Dn) of 1.4 × 10-3 cm2/s, Dye-TiO2 effective electron transfer (τd) of 26.6 μs, effective diffusion length (Ln)of 33.78 μm, chemical capacitance (Cμ) of 12.43 μF, and electron lifetime (τn) of 3.32 ms.

  7. Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis.

    PubMed

    Lee, Jong Seok; Kim, Young Rae; Song, In Gyu; Ha, Suk-Jin; Kim, Young Eon; Baek, Nam-In; Hong, Eock Kee

    2015-02-01

    The extract obtained from berries contains high amounts of anthocyanins, and this extract is used as a phytotherapeutic agent for different types of diseases. In this study, we examined the cytoprotective effects of cyanidin-3-glucoside (C3G) isolated from mulberry fruit against pancreatic β-cell apoptosis caused by hydrogen peroxide (H2O2)-induced oxidative stress. The MIN6 pancreatic β-cells were used to investigate the cytoprotective effects of C3G on the oxidative stress-induced apoptosis of cells. Cell viability was examined by MTT assay and lipid peroxidation was assayed by thiobarbituric acid (TBA) reaction. Immunofluorescence staining, flow cytometry and western blot analysis were also used to determine apoptosis and the expression of proteins associated with apoptosis. Our results revealed that H2O2 increased the rate of apoptosis by stimulating various pro-apoptotic processes, such as the generation of intracellular reactive oxygen species (ROS), lipid peroxidation, DNA fragmentation and caspase-3 activation. However, C3G reduced the H2O2-induced cell death in the MIN6N pancreatic β-cells. In addition, we confirmed that H2O2 activated mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK. C3G inhibited the phosphorylation of ERK and p38 without inducing the phosphorylation of JNK. Furthermore, C3G regulated the intrinsic apoptotic pathway-associated proteins, such as proteins belonging to the Bcl-2 family, cytochrome c and caspase-3. Taken together, our results suggest that C3G isolated from mulberry fruit has potential for use as a phytotherapeutic agent for the prevention of diabetes by preventing oxidative stress-induced β-cell apoptosis.

  8. A Validated HPLC Method for Simultaneous Determination of Caffeoyl Phenylethanoid Glucosides and Flavone 8-C-glycosides in Haberlea rhodopensis.

    PubMed

    Zheleva-Dimitrova, Dimitrina; Nedialkov, Paraskev; Giresser, Ulrich

    2016-06-01

    A HPLC-UV method for analysis of the main compounds: caffeoyl phenylethanoid glucosides myconoside (1) and paucifloside (2) and flavone 8-C-glycosides: hispidulin 8-C-β-galactopyranoside (3), hispidulin 8-C-(2"-O-syringoyl-β-glucopyranoside) (4), hispidulin 8-C-(6-O-acetyl-β-glucopyranoside) (5) and hispidulin 8-C-(6-O-acetyl-2"-O-syringoyl--glucopyranoside) (6) in Haberlea rhodopensis leaves was developed and validated. Compound 3 was isolated for the first time from the title species. Ultrasound extraction with 80% methanol at room temperature allowed a good recovery of analytes (from 87.2 % for 1 to 109.8 % for 3) and the precision of the entire procedure was between 1.6% and 6.9%. The subsequent HPLC separation and quantification was achieved using a Hypersil ODS C18 column and UV detection at 280 nm. The mobile phase comprised methanol and 0.1 % o-phosphoric acid, and gradient elution mode was applied. The detection limits ranged from 0.042 μg/mL (6) to 0.18 μg/mL (5). The total amount in leaves of the assayed phenolic compounds was 374.2 mg/g. Myconoside was found to be the dominant compound in H. rhodopensis extract (332.2 ± 0.7 mg/g dw) and reached up to 88.8% of the analyzed mixture in leaves, while the total content of flavone C-glycosides was 17.1 mg/g dw. PMID:27534117

  9. The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol.

    PubMed

    Gratz, Silvia W; Duncan, Gary; Richardson, Anthony J

    2013-03-01

    Deoxynivalenol (DON) is a potent mycotoxin produced by Fusarium molds and affects intestinal nutrient absorption and barrier function in experimental and farm animals. Free DON and the plant metabolite DON-3-β-d-glucoside (D3G) are frequently found in wheat and maize. D3G is stable in the upper human gut, but some human intestinal bacteria release DON from D3G in vitro. Furthermore, some bacteria derived from animal digestive systems degrade DON to a less toxic metabolite, deepoxy-deoxynivalenol (DOM-1). The metabolism of D3G and DON by the human microbiota has not been fully assessed. We therefore conducted in vitro batch culture experiments assessing the activity of the human fecal microbiota to release DON from D3G. We also studied detoxification of DON to DOM-1 by the microbiota and its potential effect on urinary DON excretion in humans. Fecal slurry from five volunteers was spiked with DON or D3G and incubated anaerobically (from 1 h to 7 days), and mycotoxins were extracted into acetonitrile. Mycotoxins were detected in fecal extracts and urine by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The fecal microbiota released DON from D3G very efficiently, with hydrolysis peaking after 4 to 6 h. The fecal microbiota from one volunteer transformed DON to DOM-1. Urine from the same volunteer also contained DOM-1 (4.7% of DON), whereas DOM-1 was not detectable in urine from other volunteers. Our results confirm that the fecal microbiota releases DON from its glycosylated form, hence increasing the toxic burden in exposed individuals. Furthermore, this is first evidence that the human fecal microbiota of one volunteer detoxifies DON, resulting in the appearance of DOM-1 in urine.

  10. Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market.

    PubMed

    Malachova, Alexandra; Dzuman, Zbynek; Veprikova, Zdenka; Vaclavikova, Marta; Zachariasova, Milena; Hajslova, Jana

    2011-12-28

    Fusarium toxins, Alternaria toxins, and ergot alkaloids represent common groups of mycotoxins that can be found in cereals grown under temperate climatic conditions. Because most of them are chemically and thermally stable, these toxic fungal secondary metabolites might be transferred from grains into the final products. To get information on the commensurate contamination of various cereal-based products collected from the Czech retail market in 2010, the occurrence of "traditional" mycotoxins such as groups of A and B trichothecenes and zearalenone, less routinely determined Alternaria toxins (alternariol, alternariol monomethyl ether and altenuene), ergot alkaloids (ergosine, ergocryptine, ergocristine, and ergocornine) and "emerging" mycotoxins (enniatins A, A1, B, and B1 and beauvericin) were monitored. In a total 116 samples derived from white flour and mixed flour, breakfast cereals, snacks, and flour, only trichothecenes A and B and enniatins were found. Deoxynivalenol was detected in 75% of samples with concentrations ranging from 13 to 594 μg/kg, but its masked form, deoxynivalenol-3-β-d-glucoside, has an even higher incidence of 80% of samples, and concentrations ranging between 5 and 72 μg/kg were detected. Nivalenol was found only in three samples at levels of 30 μg/kg. For enniatins, all of the samples investigated were contaminated with at least one of four target enniatins. Enniatin A was detected in 97% of samples (concentration range of 20-2532 μg/kg) followed by enniatin B with an incidence in 91% of the samples (concentration range of 13-941 μg/kg) and enniatin B1 with an incidence of 80% in the samples tested (concentration range of 8-785 μg/kg). Enniatin A1 was found only in 44% of samples at levels ranging between 8 and 851 μg/kg.

  11. Plant Food Delphinidin-3-Glucoside Significantly Inhibits Platelet Activation and Thrombosis: Novel Protective Roles against Cardiovascular Diseases

    PubMed Central

    Yang, Yan; Shi, Zhenyin; Reheman, Adili; Jin, Joseph W.; Li, Conglei; Wang, Yiming; Andrews, Marc C.; Chen, Pingguo; Zhu, Guangheng; Ling, Wenhua; Ni, Heyu

    2012-01-01

    Delphinidin-3-glucoside (Dp-3-g) is one of the predominant bioactive compounds of anthocyanins in many plant foods. Although several anthocyanin compounds have been reported to be protective against cardiovascular diseases (CVDs), the direct effect of anthocyanins on platelets, the key players in atherothrombosis, has not been studied. The roles of Dp-3-g in platelet function are completely unknown. The present study investigated the effects of Dp-3-g on platelet activation and several thrombosis models in vitro and in vivo. We found that Dp-3-g significantly inhibited human and murine platelet aggregation in both platelet-rich plasma and purified platelets. It also markedly reduced thrombus growth in human and murine blood in perfusion chambers at both low and high shear rates. Using intravital microscopy, we observed that Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for vessel occlusion. Dp-3-g also significantly inhibited thrombus growth in a carotid artery thrombosis model. To elucidate the mechanisms, we examined platelet activation markers via flow cytometry and found that Dp-3-g significantly inhibited the expression of P-selectin, CD63, CD40L, which reflect platelet α- and δ-granule release, and cytosol protein secretion, respectively. We further demonstrated that Dp-3-g downregulated the expression of active integrin αIIbβ3 on platelets, and attenuated fibrinogen binding to platelets following agonist treatment, without interfering with the direct interaction between fibrinogen and integrin αIIbβ3. We found that Dp-3-g reduced phosphorylation of adenosine monophosphate-activated protein kinase, which may contribute to the observed inhibitory effects on platelet activation. Thus, Dp-3-g significantly inhibits platelet activation and attenuates thrombus growth at both arterial and venous shear stresses, which likely contributes to its protective roles against thrombosis and CVDs. PMID:22624015

  12. Total glucosides of peony ameliorates Sjögren's syndrome by affecting Th1/Th2 cytokine balance

    PubMed Central

    WU, GUOLIN; WU, NAYUAN; LI, TIANYI; LU, WENWEN; YU, GUOYOU

    2016-01-01

    The present study aimed to investigate the molecular mechanisms underlying the effects of total glucosides of peony (TGP) in the treatment of Sjögren's syndrome (SS). A total of 40 mice with SS were evenly assigned into four groups, including: Control group; TGP group, receiving 1 mg TGP daily; hydroxychloroquine (HCQ) group, receiving 0.25 mg HCQ daily; and a combined group, receiving 1 mg TGP and 0.25 mg HCQ daily. After 8 weeks, quantitative polymerase chain reaction and an enzyme-linked immunosorbent assay were used to detect the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), Fas and FasL in each group of mice. In addition, immunohistochemical analysis was used to determine the expression levels of IFN-γ and IL-4. IFN-γ, IL-4, Fas and FasL levels were significantly increased in the control group compared with the other three groups (P<0.05). Furthermore, the expression levels of these factors were reduced in the combined group in comparison with the HCQ group (P<0.05). The ratios of IFN-γ to IL-4 were decreased in the TGP and combined groups compared with the control group (P<0.05). The present results indicate that TGP ameliorates SS by affecting the Th1/Th2 cytokine balance and decreasing the expression levels of IFN-γ, IL-4, Fas and FasL. Therefore, TGP may represent a potential novel therapeutic agent for the treatment of SS. PMID:26998049

  13. A semiquinone glucoside derivative provides protection to male reproductive system of the mice against gamma radiation toxicity.

    PubMed

    Patel, Dev Dutt; Bansal, Deen Dayal; Mishra, Saurabh; Arora, Rajesh; Sharma, Rakesh Kumar; Jain, Swatantra Kumar; Kumar, Raj

    2014-05-01

    Present investigation was carried out to evaluate the radioprotective efficacy of a novel Semiquinone glucoside derivative (SQGD), isolated from Bacillus sp. INM-1, in the male reproductive system of BALB/c mice. Animals were administered 50 mg/kg b.wt. (i.p.) SQGD 2 h before whole body γ-irradiation (10 Gy). Radiation-induced cellular toxicity and its modulation by SQGD pretreatment was evaluated in the mice testes by quantitative histological and protein expression analysis. SQGD pretreatment protects irradiated mice from radiation-induced testicular atrophy and germ cells degeneration, which may lead to emptiness of seminiferous tubules. Significant decrease in P53 and P21((Cip/WAF-1)) expression was observed in the irradiated mice pretreated (2 h) by SQGD at 6 h compared with only irradiated mice. However, contrary to P53, expressions of P21 at latter time, that is, 24-72 h was found to be increased significantly in the irradiated mice pretreated by SQGD. Significant increase in the intact PARP-1 protein expression were observed in the testes of the mice pretreated by SQGD 2 h before irradiation at 24-72 h compared with the only irradiated mice, whereas significant increase in PARP-1 cleaved fragment was noticed at 24 h. Similarly, significant increase in NF-kB and BCL-2/BAX expressions ratio was noticed in SQGD-treated mice (± irradiation) compared with irradiated mice, suggested a role of SQGD in the activation of prosurvival signaling in the testicular germinal cells population of the irradiated mice and thus contributed to protection against lethal γ-irradiation.

  14. Purfication and properties of a specific isoflavone 7-O-glucoside-6''-malonate malonyestrase from roots of chickpea (Cicer arietinum L.).

    PubMed

    Hinderer, W; Köster, J; Barz, W

    1986-08-01

    Protein extracts from roots of chickpea (Cicer arietinum L.) plants contained high esterase activity hydrolyzing malonate hemiesters of isoflavone 7-O-glucosides. Using 5,7-dihydroxy-4'-methoxyisoflavone (biochanin A) 7-O-glucoside-6"-malonate as a substrate, a specific malonylesterase was purified about 700-fold to near homogeneity. The purified enzyme possesses an extremely low enzyme activity with synthetic esterase substrates. Various putative nonspecific esterases, as tested with alpha-naphthylacetate, were removed during enzyme purification. The malonylesterase demonstrated a very high molecular mass in gel chromatography and in sedimentation analyses with sucrose gradients (greater than or equal to 2 X 10(6)). Analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis pointed to a single subunit of 32,000. The catalyzed reaction showed a pH optimum at 7.5 and a temperature optimum between 30 and 35 degrees C. The apparent Km for biochanin A 7-O-glucoside-6"-malonate was (4.2 +/- 1.2) X 10(-4) M. The malonylesterase was insensitive to the esterase inhibitors eserine and neostigmine (10(-3) M) as well as phenylmethylsulfonyl fluoride, paraoxon, and diisopropylfluorophosphate (10(-4) M). On the other hand enzyme activity was totally inhibited by Hg2+ ions (10(-5) M) and p-hydroxymercuribenzoate (10(-4) M), whereas iodoacetamide (10(-6)-10(-4) M) inhibited only partially. Di- and tricarboxylic acids strongly stimulated enzyme activity at 10(-2) M. These properties indicate that the malonylesterase from chickpea roots greatly differs from other known esterases. The possible biological function of the specific malonylesterase is discussed in relation to isoflavone conjugate metabolism in chickpea.

  15. Functional characterization, homology modeling and docking studies of β-glucosidase responsible for bioactivation of cyanogenic hydroxynitrile glucosides from Leucaena leucocephala (subabul).

    PubMed

    Shaik, Noor M; Misra, Anurag; Singh, Somesh; Fatangare, Amol B; Ramakumar, Suryanarayanarao; Rawal, Shuban K; Khan, Bashir M

    2013-02-01

    Glycosyl hydrolase family 1 β-glucosidases are important enzymes that serve many diverse functions in plants including defense, whereby hydrolyzing the defensive compounds such as hydroxynitrile glucosides. A hydroxynitrile glucoside cleaving β-glucosidase gene (Llbglu1) was isolated from Leucaena leucocephala, cloned into pET-28a (+) and expressed in E. coli BL21 (DE3) cells. The recombinant enzyme was purified by Ni-NTA affinity chromatography. The optimal temperature and pH for this β-glucosidase were found to be 45 °C and 4.8, respectively. The purified Llbglu1 enzyme hydrolyzed the synthetic glycosides, pNPGlucoside (pNPGlc) and pNPGalactoside (pNPGal). Also, the enzyme hydrolyzed amygdalin, a hydroxynitrile glycoside and a few of the tested flavonoid and isoflavonoid glucosides. The kinetic parameters K (m) and V (max) were found to be 38.59 μM and 0.8237 μM/mg/min for pNPGlc, whereas for pNPGal the values were observed as 1845 μM and 0.1037 μM/mg/min. In the present study, a three dimensional (3D) model of the Llbglu1 was built by MODELLER software to find out the substrate binding sites and the quality of the model was examined using the program PROCHEK. Docking studies indicated that conserved active site residues are Glu 199, Glu 413, His 153, Asn 198, Val 270, Asn 340, and Trp 462. Docking of rhodiocyanoside A with the modeled Llbglu1 resulted in a binding with free energy change (ΔG) of -5.52 kcal/mol on which basis rhodiocyanoside A could be considered as a potential substrate. PMID:23079707

  16. A Novel Sinorhizobium meliloti Operon Encodes an α-Glucosidase and a Periplasmic-Binding-Protein-Dependent Transport System for α-Glucosides

    PubMed Central

    Willis, Laura B.; Walker, Graham C.

    1999-01-01

    The most abundant carbon source transported into legume root nodules is photosynthetically produced sucrose, yet the importance of its metabolism by rhizobia in planta is not yet known. To identify genes involved in sucrose uptake and hydrolysis, we screened a Sinorhizobium meliloti genomic library and discovered a segment of S. meliloti DNA which allows Ralstonia eutropha to grow on the α-glucosides sucrose, maltose, and trehalose. Tn5 mutagenesis localized the required genes to a 6.8-kb region containing five open reading frames which were named agl, for α-glucoside utilization. Four of these (aglE, aglF, aglG, and aglK) appear to encode a periplasmic-binding-protein-dependent sugar transport system, and one (aglA) appears to encode an α-glucosidase with homology to family 13 of glycosyl hydrolases. Cosmid-borne agl genes permit uptake of radiolabeled sucrose into R. eutropha cells. Analysis of the properties of agl mutants suggests that S. meliloti possesses at least one additional α-glucosidase as well as a lower-affinity transport system for α-glucosides. It is possible that the Fix+ phenotype of agl mutants on alfalfa is due to these additional functions. Loci found by DNA sequencing to be adjacent to aglEFGAK include a probable regulatory gene (aglR), zwf and edd, which encode the first two enzymes of the Entner-Doudoroff pathway, pgl, which shows homology to a gene encoding a putative phosphogluconolactonase, and a novel Rhizobium-specific repeat element. PMID:10400573

  17. Biological Activities of 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside in Antiaging and Antiaging-Related Disease Treatments.

    PubMed

    Ling, Shuang; Xu, Jin-Wen

    2016-01-01

    2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is active component of the Chinese medicinal plant Polygonum multiflorum Thunb. (THSG). Pharmacological studies have demonstrated that THSG exhibits numerous biological functions in treating atherosclerosis, lipid metabolism, vascular and cardiac remodeling, vascular fibrosis, cardiac-cerebral ischemia, learning and memory disorders, neuroinflammation, Alzheimer and Parkinson diseases, diabetic complications, hair growth problems, and numerous other conditions. This review focuses on the biological effects of THSG in antiaging and antiaging-related disease treatments and discusses its molecular mechanisms. PMID:27413420

  18. Biological Activities of 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-Glucoside in Antiaging and Antiaging-Related Disease Treatments

    PubMed Central

    2016-01-01

    2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is active component of the Chinese medicinal plant Polygonum multiflorum Thunb. (THSG). Pharmacological studies have demonstrated that THSG exhibits numerous biological functions in treating atherosclerosis, lipid metabolism, vascular and cardiac remodeling, vascular fibrosis, cardiac-cerebral ischemia, learning and memory disorders, neuroinflammation, Alzheimer and Parkinson diseases, diabetic complications, hair growth problems, and numerous other conditions. This review focuses on the biological effects of THSG in antiaging and antiaging-related disease treatments and discusses its molecular mechanisms. PMID:27413420

  19. Human lens coloration and aging. Evidence for crystallin modification by the major ultraviolet filter, 3-hydroxy-kynurenine O-beta-D-glucoside.

    PubMed

    Hood, B D; Garner, B; Truscott, R J

    1999-11-12

    The human lens becomes increasingly yellow with age and thereby reduces our perception of blue light. This coloration is associated with lens proteins (crystallins), but its molecular basis was unknown. Here we show that the coloration occurs because of the interaction of crystallins with a UV filter compound, 3-hydroxykynurenine glucoside (3-OHKG). Crystallin modification results from deamination of the 3-OHKG amino acid side chain, yielding an unsaturated ketone that is susceptible to nucleophilic attack by cysteine, histidine, and lysine residues. This novel protein modification contributes to age-related lens coloration and may play a role in human nuclear cataractogenesis. PMID:10551806

  20. Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites.

    PubMed

    Birkett, Michael A; Hassanali, Ahmed; Hoglund, Solveig; Pettersson, Jan; Pickett, John A

    2011-01-01

    The repellent activity of the essential oil of the catmint plant, Nepeta cataria (Lamiaceae), and the main iridoid compounds (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone, was assessed against (i) major Afro-tropical pathogen vector mosquitoes, i.e. the malaria mosquito, Anopheles gambiae s.s. and the Southern house mosquito, Culex quinquefasciatus, using a World Health Organisation (WHO)-approved topical application bioassay (ii) the brown ear tick, Rhipicephalus appendiculatus, using a climbing repellency assay, and (iii) the red poultry mite, Dermanyssus gallinae, using field trapping experiments. Gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS) analysis of two N. cataria chemotypes (A and B) used in the repellency assays showed that (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone were present in different proportions, with one of the oils (from chemotype A) being dominated by the (4aS,7S,7aR) isomer (91.95% by GC), and the other oil (from chemotype B) containing the two (4aS,7S,7aR) and (4aS,7S,7aS) isomers in 16.98% and 69.83% (by GC), respectively. The sesquiterpene hydrocarbon (E)-(1R,9S)-caryophyllene was identified as the only other major component in the oils (8.05% and 13.19% by GC, respectively). Using the topical application bioassay, the oils showed high repellent activity (chemotype A RD(50)=0.081 mg cm(-2) and chemotype B RD(50)=0.091 mg cm(-2)) for An. gambiae comparable with the synthetic repellent DEET (RD(50)=0.12 mg cm(-2)), whilst for Cx. quinquefasciatus, lower repellent activity was recorded (chemotype A RD(50)=0.34 mg cm(-2) and chemotype B RD(50)=0.074 mg cm(-2)). Further repellency testing against An. gambiae using the purified (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone isomers revealed overall lower repellent activity, compared to the chemotype A and B oils. Testing of binary mixtures of the (4aS,7S,7aR) and (4aS,7S,7aS) isomers across a range of ratios, but all at the same overall dose (0.1 mg), revealed not only a

  1. Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites.

    PubMed

    Birkett, Michael A; Hassanali, Ahmed; Hoglund, Solveig; Pettersson, Jan; Pickett, John A

    2011-01-01

    The repellent activity of the essential oil of the catmint plant, Nepeta cataria (Lamiaceae), and the main iridoid compounds (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone, was assessed against (i) major Afro-tropical pathogen vector mosquitoes, i.e. the malaria mosquito, Anopheles gambiae s.s. and the Southern house mosquito, Culex quinquefasciatus, using a World Health Organisation (WHO)-approved topical application bioassay (ii) the brown ear tick, Rhipicephalus appendiculatus, using a climbing repellency assay, and (iii) the red poultry mite, Dermanyssus gallinae, using field trapping experiments. Gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS) analysis of two N. cataria chemotypes (A and B) used in the repellency assays showed that (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone were present in different proportions, with one of the oils (from chemotype A) being dominated by the (4aS,7S,7aR) isomer (91.95% by GC), and the other oil (from chemotype B) containing the two (4aS,7S,7aR) and (4aS,7S,7aS) isomers in 16.98% and 69.83% (by GC), respectively. The sesquiterpene hydrocarbon (E)-(1R,9S)-caryophyllene was identified as the only other major component in the oils (8.05% and 13.19% by GC, respectively). Using the topical application bioassay, the oils showed high repellent activity (chemotype A RD(50)=0.081 mg cm(-2) and chemotype B RD(50)=0.091 mg cm(-2)) for An. gambiae comparable with the synthetic repellent DEET (RD(50)=0.12 mg cm(-2)), whilst for Cx. quinquefasciatus, lower repellent activity was recorded (chemotype A RD(50)=0.34 mg cm(-2) and chemotype B RD(50)=0.074 mg cm(-2)). Further repellency testing against An. gambiae using the purified (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone isomers revealed overall lower repellent activity, compared to the chemotype A and B oils. Testing of binary mixtures of the (4aS,7S,7aR) and (4aS,7S,7aS) isomers across a range of ratios, but all at the same overall dose (0.1 mg), revealed not only a

  2. Survey of deoxynivalenol and its conjugates deoxynivalenol-3-glucoside and 3-acetyl-deoxynivalenol in 374 beer samples.

    PubMed

    Varga, Elisabeth; Malachova, Alexandra; Schwartz, Heidi; Krska, Rudolf; Berthiller, Franz

    2013-01-01

    Beer is one of the most popular beverages worldwide. Malted cereal grains are among the basic ingredients and hence mycotoxin contamination might occur. Previous studies reported the presence of the Fusarium mycotoxins deoxynivalenol (DON) and 3-acetyl-deoxynivalenol (3ADON), as well as of the masked mycotoxin deoxynivalenol-3-glucoside (D3G) in beer. In the present survey, 374 beer samples from 38 countries with a focus on Austrian (156) and German (64) beers were analysed for the presence of D3G, DON and 3ADON. Beers were assigned to the following six categories: pale (217), wheat (46), dark (47), bock (20), nonalcoholic beers (19) and shandies (25). In total, 348 and 289 beers (93 and 77%, respectively) contained D3G and DON at the levels above the limit of detection, whereas 3ADON was not detected in any of the samples. Average concentrations of all beers were 6.9 µg L(-1) for D3G and 8.4 µg L(-1) in the case of DON. Nonalcoholic beers and shandies showed the lowest contaminations, 1.5 and 3.2 µg L(-1) for D3G and 2.7 and 4.4 µg L(-1) for DON, respectively. In bock beers characterised by a higher gravity, a significant trichothecene load of 14.8 µg L(-1) D3G and 12.4 µg L(-1) DON was found. The highest contamination (81 µg L(-1) D3G, 89 µg L(-1) DON) was detected in a pale beer from Austria, underlining the importance of this study for food safety. The molar D3G to DON ratio ranged between 0.11 and 1.25 and was 0.56 on average. Concluding, the average contamination of beer is not of toxicological concern for moderate beer drinkers. However, in the case of heavy beer drinkers, beer consumption may considerably contribute to the overall intake of DON, which might even lead to exceeding the maximum tolerable limits established for this Fusarium toxin.

  3. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    PubMed

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.

  4. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    PubMed

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation. PMID:27098519

  5. Molecular Cloning and Biochemical Characterization of a Recombinant Sterol 3-O-Glucosyltransferase from Gymnema sylvestre R.Br. Catalyzing Biosynthesis of Steryl Glucosides

    PubMed Central

    Sangwan, Rajender Singh; Asha; Mishra, B. N.; Sangwan, Neelam S.

    2014-01-01

    Gymnema sylvestre R.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572 bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed in Escherichia coli and biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene from G. sylvestre R.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants. PMID:25250339

  6. Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-D-glucoside.

    PubMed

    Michlmayr, Herbert; Malachová, Alexandra; Varga, Elisabeth; Kleinová, Jana; Lemmens, Marc; Newmister, Sean; Rayment, Ivan; Berthiller, Franz; Adam, Gerhard

    2015-07-21

    Glycosylation is an important plant defense mechanism and conjugates of Fusarium mycotoxins often co-occur with their parent compounds in cereal-based food and feed. In case of deoxynivalenol (DON), deoxynivalenol-3-O-β-D-glucoside (D3G) is the most important masked mycotoxin. The toxicological significance of D3G is not yet fully understood so that it is crucial to obtain this compound in pure and sufficient quantities for toxicological risk assessment and for use as an analytical standard. The aim of this study was the biochemical characterization of a DON-inactivating UDP-glucosyltransferase from rice (OsUGT79) and to investigate its suitability for preparative D3G synthesis. Apparent Michaelis constants (Km) of recombinant OsUGT79 were 0.23 mM DON and 2.2 mM UDP-glucose. Substrate inhibition occurred at DON concentrations above 2 mM (Ki = 24 mM DON), and UDP strongly inhibited the enzyme. Cu2+ and Zn2+ (1 mM) inhibited the enzyme completely. Sucrose synthase AtSUS1 was employed to regenerate UDP-glucose during the glucosylation reaction. With this approach, optimal conversion rates can be obtained at limited concentrations of the costly co-factor UDP-glucose. D3G can now be synthesized in sufficient quantity and purity. Similar strategies may be of interest to produce β-glucosides of other toxins.

  7. Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-d-glucoside

    PubMed Central

    Michlmayr, Herbert; Malachová, Alexandra; Varga, Elisabeth; Kleinová, Jana; Lemmens, Marc; Newmister, Sean; Rayment, Ivan; Berthiller, Franz; Adam, Gerhard

    2015-01-01

    Glycosylation is an important plant defense mechanism and conjugates of Fusarium mycotoxins often co-occur with their parent compounds in cereal-based food and feed. In case of deoxynivalenol (DON), deoxynivalenol-3-O-β-d-glucoside (D3G) is the most important masked mycotoxin. The toxicological significance of D3G is not yet fully understood so that it is crucial to obtain this compound in pure and sufficient quantities for toxicological risk assessment and for use as an analytical standard. The aim of this study was the biochemical characterization of a DON-inactivating UDP-glucosyltransferase from rice (OsUGT79) and to investigate its suitability for preparative D3G synthesis. Apparent Michaelis constants (Km) of recombinant OsUGT79 were 0.23 mM DON and 2.2 mM UDP-glucose. Substrate inhibition occurred at DON concentrations above 2 mM (Ki = 24 mM DON), and UDP strongly inhibited the enzyme. Cu2+ and Zn2+ (1 mM) inhibited the enzyme completely. Sucrose synthase AtSUS1 was employed to regenerate UDP-glucose during the glucosylation reaction. With this approach, optimal conversion rates can be obtained at limited concentrations of the costly co-factor UDP-glucose. D3G can now be synthesized in sufficient quantity and purity. Similar strategies may be of interest to produce β-glucosides of other toxins. PMID:26197338

  8. Impact of the dual defence system of Plantago lanceolata (Plantaginaceae) on performance, nutrient utilisation and feeding choice behaviour of Amata mogadorensis larvae (Lepidoptera, Erebidae).

    PubMed

    Pankoke, Helga; Gehring, René; Müller, Caroline

    2015-11-01

    Iridoid glycosides are plant defence compounds with potentially detrimental effects on non-adapted herbivores. Some plant species possess β-glucosidases that hydrolyse iridoid glycosides and thereby release protein-denaturing aglycones. To test the hypothesis that iridoid glycosides and plant β-glucosidases form a dual defence system, we used Plantago lanceolata and a polyphagous caterpillar species. To analyse the impact of leaf-age dependent differences in iridoid glycoside concentrations and β-glucosidase activities on insect performance, old or young leaves were freeze-dried and incorporated into artificial diets or were provided freshly to the larvae. We determined larval consumption rates and the amounts of assimilated nitrogen. Furthermore, we quantified β-glucosidase activities in artificial diets and fresh leaves and the amount of iridoid glycosides that larvae feeding on fresh leaves ingested and excreted. Compared to fresh leaves, caterpillars grew faster on artificial diets, on which larval weight gain correlated positively to the absorbed amount of nitrogen. When feeding fresh young leaves, larvae even lost weight and excreted only minute proportions of the ingested iridoid glycosides intact with the faeces, indicating that the hydrolysis of these compounds might have interfered with nitrogen assimilation and impaired larval growth. To disentangle physiological effects from deterrent effects of iridoid glycosides, we performed dual choice feeding assays. Young leaves, their methanolic extracts and pure catalpol reduced larval feeding in comparison to the respective controls, while aucubin had no effect on larval consumption. We conclude that the dual defence system of P. lanceolata consisting of iridoid glycosides and β-glucosidases interferes with the nutrient utilisation via the hydrolysis of iridoid glycosides and also mediates larval feeding behaviour in a concentration- and substance-specific manner. PMID:26306994

  9. Plant Community Diversity Influences Allocation to Direct Chemical Defence in Plantago lanceolata

    PubMed Central

    Mraja, Anne; Unsicker, Sybille B.; Reichelt, Michael; Gershenzon, Jonathan; Roscher, Christiane

    2011-01-01

    Background Forecasting the consequences of accelerating rates of changes in biodiversity for ecosystem functioning requires a mechanistic understanding of the relationships between the structure of biological communities and variation in plant functional characteristics. So far, experimental data of how plant species diversity influences the investment of individual plants in direct chemical defences against herbivores and pathogens is lacking. Methodology/Principal Findings We used Plantago lanceolata as a model species in experimental grasslands differing in species richness and composition (Jena Experiment) to investigate foliar concentrations of the iridoid glycosides (IG), catalpol and its biosynthetic precursor aucubin. Total IG and aucubin concentrations decreased, while catalpol concentrations increased with increasing plant diversity in terms of species or functional group richness. Negative plant diversity effects on total IG and aucubin concentrations correlated with increasing specific leaf area of P. lanceolata, suggesting that greater allocation to light acquisition reduced the investment into these carbon-based defence components. In contrast, increasing leaf nitrogen concentrations best explained increasing concentrations of the biosynthetically more advanced IG, catalpol. Observed levels of leaf damage explained a significant proportion of variation in total IG and aucubin concentrations, but did not account for variance in catalpol concentrations. Conclusions/Significance Our results clearly show that plants growing in communities of varying species richness and composition differ in their defensive chemistry, which may modulate plant susceptibility to enemy attack and consequently their interactions with higher trophic level organisms. PMID:22174766

  10. C-Aryl Glucosides with Substituents at the Distal Aryl Ring as Sodium-Dependent Glucose Cotransporter Inhibitors for the Treatment of Diabetes Mellitus.

    PubMed

    Wang, Xuekun; Li, Ying; Yang, Baowei; Li, Zheng; Huang, Wenlong; Qian, Hai

    2015-08-01

    A series of novel C-aryl glucosides with various substituents at the distal aryl ring have been synthesized and evaluated for hypoglycemic effect in normal and diabetic mice and in type 2 diabetic rats. The results indicated that introduction of electron-donating group at the distal aryl ring could improve glucose tolerance in normal mice, whereas introduction of electron-withdrawing group at this position could deteriorate. The urinary glucose excretion was significantly increased after glucose (3 g/kg) administration in normal mice with the treatment of 13c. Moreover, compound 13c could reduce fed blood glucose levels in a dose-dependent manner in type 2 diabetic rats, showed a remarkable antihyperglycemic effect with 2 weeks of treatment in diabetic mice, and might be a promising drug candidate for the treatment of diabetes mellitus.

  11. Fluorescence Up-Conversion Studies of [2,2'-Bipyridyl]-3,3'-diol in Octyl-β-d-glucoside and Other Micellar Aggregates.

    PubMed

    Satpathi, Sagar; Gavvala, Krishna; Hazra, Partha

    2015-12-24

    In this present work, excited state double proton transfer dynamics (ESIDPT) of 2,2'-bipyridyl-3,3'-diol (BP(OH)2) molecules has been probed in a nontoxic, biocompatible sugar surfactant assembly, namely, octyl-β-d-glucoside (OBG) micelle with the help of steady state and fluorescence up-conversion techniques. Moreover, the ultrafast double proton transfer dynamics in conventional micelles (SDS, CTAB) and bile salts aggregates have been probed and compared. Interestingly, in all these supramolecular aggregates, the ESIDPT dynamics is found to follow sequential pathway; however, the time-scale of proton transfer dynamics varies from 11 to 30 ps. This difference in proton transfer time scale in different supramolecular aggregates has been explained in terms of accessibility of water molecules in the vicinity of probe.

  12. The color expression of copigmentation between malvidin-3-O-glucoside and three phenolic aldehydes in model solutions: The effects of pH and molar ratio.

    PubMed

    Zhang, Bo; He, Fei; Zhou, Pan-Pan; Liu, Yue; Duan, Chang-Qing

    2016-05-15

    Copigmentation was investigated in model solutions between the anthocyanin malvidin-3-O-glucoside and three phenolic aldehydes (vanillic, syringic and coniferyl aldehydes) as a function of the pH and the pigment/copigment molar ratio. Tristimulus colorimetry was applied to evaluate the chromatic variations induced by copigmentation process. The results indicated that the greatest magnitude of copigmentation was obtained at pH 3.0 and molar ratio of 1:100, being significantly higher with coniferyl aldehyde, followed by syringic and vanillic aldehydes. The equilibrium constant (K) and Gibbs free energies (ΔG°) determined here show a spontaneous exothermic reaction. Theoretical calculations (ΔGbinding, ΔE) specified the relative arrangement of the pigment and copigment molecules within the complexes. In addition, an atoms in molecules (AIM) analysis was used to explore the main driving forces contributing to the formation of copigmentation complexes. PMID:26775964

  13. Higenamine 4'-O-β-d-glucoside in the lotus plumule induces glucose uptake of L6 cells through β2-adrenergic receptor.

    PubMed

    Kato, Eisuke; Inagaki, Yosuke; Kawabata, Jun

    2015-07-01

    Hypoglycemic effect is an efficient means to modulate elevated blood glucose levels in patients with diabetes. We found that the extract of lotus plumule (the germ of Nelumbo nucifera Gaertn. seed) showed potent glucose uptake enhancement activity against L6 myotubes, which results in a hypoglycemic effect. This activity was further investigated, and an active constituent was identified as a single bioactive compound, higenamine 4'-O-β-d-glucoside. Mechanistic studies employing phosphatidylinositol 3-kinase (PI3K) inhibitor, AMP-activated protein kinase (AMPK) inhibitor, or adrenergic receptor antagonist showed that the compound induced its activity through β2-adrenergic receptor. Patients with type II diabetes mellitus frequently develop insulin resistance. Owing to the differences between the mechanism of action of insulin and of the isolated compound, the compound or lotus plumule itself may have the possibility of modulating blood glucose levels in insulin-resistant patients effectively. PMID:25943853

  14. Higenamine 4'-O-β-d-glucoside in the lotus plumule induces glucose uptake of L6 cells through β2-adrenergic receptor.

    PubMed

    Kato, Eisuke; Inagaki, Yosuke; Kawabata, Jun

    2015-07-01

    Hypoglycemic effect is an efficient means to modulate elevated blood glucose levels in patients with diabetes. We found that the extract of lotus plumule (the germ of Nelumbo nucifera Gaertn. seed) showed potent glucose uptake enhancement activity against L6 myotubes, which results in a hypoglycemic effect. This activity was further investigated, and an active constituent was identified as a single bioactive compound, higenamine 4'-O-β-d-glucoside. Mechanistic studies employing phosphatidylinositol 3-kinase (PI3K) inhibitor, AMP-activated protein kinase (AMPK) inhibitor, or adrenergic receptor antagonist showed that the compound induced its activity through β2-adrenergic receptor. Patients with type II diabetes mellitus frequently develop insulin resistance. Owing to the differences between the mechanism of action of insulin and of the isolated compound, the compound or lotus plumule itself may have the possibility of modulating blood glucose levels in insulin-resistant patients effectively.

  15. Phenylalanine ammonia lyase functions as a switch directly controlling the accumulation of calycosin and calycosin-7-O-beta-D-glucoside in Astragalus membranaceus var. mongholicus plants.

    PubMed

    Pan, Haiyun; Wang, Yuguo; Zhang, Yongfeng; Zhou, Tongshui; Fang, Changming; Nan, Peng; Wang, Xiaoqiang; Li, Xiaobing; Wei, Yinlong; Chen, Jiakuan

    2008-01-01

    Previously it had been shown that calycosin and calycosin-7-O-beta-D-glucoside (CGs) accumulate in whole plants, mainly in leaves, of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao (A. mongholicus) plants in response to low temperature. In this work, it was demonstrated that the influences of different conditions on CGs biosynthesis, by examining the changes in CGs content, as well as the expression of related genes, including phenylalanine ammonia lyase (PAL1), cinnamic acid 4-hydroxylase (C4H), chalcone synthase (CHS), chalcone reductase (CHR), chalcone isomerase (CHI), isoflavone synthase (IFS), and isoflavone 3'-hydroxylase (I3'H). The seven gene mRNAs accumulated in leaves of A. mongholicus upon exposure to low temperature in a light-dependent manner, though they exhibited different expression patterns. Transcriptions of CHS, CHR, CHI, IFS, and I3'H of the calycosin-7-O-beta-D-glucoside pathway were all up-regulated when plants were transferred from 16 degrees C to 2 degrees C or 25 degrees C or from 2 degrees C (kept for 24 h) to 25 degrees C. However, fluctuations in temperature influenced differently the transcriptions of PAL1 and C4H of the general phenylpropanoid pathway in leaves. Moreover, the amount of PAL1 expression changed sharply up and down, consistent with the variation of the content of CGs. PAL enzyme activity appears to be the limiting factor in determining the CGs levels. The inhibitor of PAL enzyme, L-alpha-aminooxy-beta-phenylpropionic acid, almost entirely shut down CGs accumulation at low temperature. All these results confirmed that PAL1, as a smart gene switch, directly controls the accumulation of CGs in A. mongholicus plants, in a light-dependent manner, during low temperature treatment.

  16. Analgesic and antiinflammatory effects of mollic acid glucoside, a 1 alpha-hydroxycycloartenoid saponin extractive from Combretum molle R. Br. ex G. Don (Combretaceae) leaf.

    PubMed

    Ojewole, John A O

    2008-01-01

    The analgesic and antiinflammatory properties of mollic acid glucoside (MAG), a 1 alpha-hydroxycycloartenoid extract from Combretum molle leaf, have been investigated in mice and rats. The effects of graded doses of mollic acid glucoside (MAG, 5-80 mg/kg i.p.) were examined against thermally- and chemically-induced nociceptive pain in mice. Furthermore, the effects of graded doses of the plant extract (MAG, 5-80 mg/kg p.o.) were also investigated on rat paw oedema induced by subplantar injections of fresh egg albumin (0.5 mg/kg). Morphine (MPN, 10 mg/kg i.p.) and diclofenac (DIC, 100 mg/kg i.p.) were used as reference analgesic and antiinflammatory agents for comparison, respectively. Like DIC (100 mg/kg i.p.) and MPN (10 mg/kg i.p.), MAG (5-80 mg/kg i.p.) produced dose-dependent, significant (p < 0.05-0.001) analgesic effects against thermally and chemically induced nociceptive pain in mice. The extractive (MAG, 5-80 mg/kg i.p.) also significantly reduced (p < 0.05-0.001) rat paw oedema induced by subplantar injections of fresh egg albumin in a dose-related fashion. However, the extract (MAG, 5-80 mg/kg i.p.) was found to be less potent than diclofenac (DIC) as an analgesic or antiinflammatory agent. Experimental evidence obtained from this laboratory animal study indicates that the Combretum molle leaf extractive (MAG) possesses analgesic and antiinflammatory properties, and thus lend pharmacological credence to the folkloric, ethnomedical uses of the plant's leaf in the management, control and/or treatment of painful, arthritic and other inflammatory conditions in some rural communities of southern Africa.

  17. Simultaneous determination of major type B trichothecenes and deoxynivalenol-3-glucoside in animal feed and raw materials using improved DSPE combined with LC-MS/MS.

    PubMed

    Zhao, Zhiyong; Rao, Qinxiong; Song, Suquan; Liu, Na; Han, Zheng; Hou, Jiafa; Wu, Aibo

    2014-07-15

    A simple and reliable method for simultaneous determination of deoxynivalenol-3-glucoside and major type B trichothecenes (deoxynivalenol, nivalenol, fusarenon X, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol and deepoxy-deoxynivalenol) in animal feed and raw materials has been developed and validated in this study. The method was based on an improved dispersive solid-phase extraction (DSPE) followed by analysis using high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Also, matrix-matched calibration curve (R(2)>0.99) was employed to minimize matrix effects and ensure accurate quantification. The recoveries during sample preparation process (including extraction and clean-up) ranged from 79.03% to 118.39%, with intra-day and inter-day relative standard deviation lower than 20% for all the analytes. The limit of quantification ranged from 5.0 μg/kg for deoxynivalenol to 13.6 μg/kg for fusarenon X. The validated method was successfully applied to the analysis of animal feed and corn. The pilot study showed that 37 out of 41 samples were contaminated with deoxynivalenol-3-glucoside at the levels of 6.0-121.0 μg/kg. Most of the type B trichothecenes were also found with the exception of fusarenon X, at the contaminated levels of 10.0-1,382 μg/kg. To the best of our knowledge, this was the first scientific report on the co-occurrence of masked deoxynivalenol and type B trichothecenes in animal feed and raw materials.

  18. Natural Variation in Maize Aphid Resistance Is Associated with 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One Glucoside Methyltransferase Activity[C][W

    PubMed Central

    Meihls, Lisa N.; Handrick, Vinzenz; Glauser, Gaetan; Barbier, Hugues; Kaur, Harleen; Haribal, Meena M.; Lipka, Alexander E.; Gershenzon, Jonathan; Buckler, Edward S.; Erb, Matthias; Köllner, Tobias G.; Jander, Georg

    2013-01-01

    Plants differ greatly in their susceptibility to insect herbivory, suggesting both local adaptation and resistance tradeoffs. We used maize (Zea mays) recombinant inbred lines to map a quantitative trait locus (QTL) for the maize leaf aphid (Rhopalosiphum maidis) susceptibility to maize Chromosome 1. Phytochemical analysis revealed that the same locus was also associated with high levels of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) and low levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc). In vitro enzyme assays with candidate genes from the region of the QTL identified three O-methyltransferases (Bx10a-c) that convert DIMBOA-Glc to HDMBOA-Glc. Variation in HDMBOA-Glc production was attributed to a natural CACTA family transposon insertion that inactivates Bx10c in maize lines with low HDMBOA-Glc accumulation. When tested with a population of 26 diverse maize inbred lines, R. maidis produced more progeny on those with high HDMBOA-Glc and low DIMBOA-Glc. Although HDMBOA-Glc was more toxic to R. maidis than DIMBOA-Glc in vitro, BX10c activity and the resulting decline of DIMBOA-Glc upon methylation to HDMBOA-Glc were associated with reduced callose deposition as an aphid defense response in vivo. Thus, a natural transposon insertion appears to mediate an ecologically relevant trade-off between the direct toxicity and defense-inducing properties of maize benzoxazinoids. PMID:23898034

  19. Quercetin 7-O-glucoside suppresses nitrite-induced formation of dinitrosocatechins and their quinones in catechin/nitrite systems under stomach simulating conditions.

    PubMed

    Morina, Filis; Takahama, Umeo; Yamauchi, Ryo; Hirota, Sachiko; Veljovic-Jovanovic, Sonja

    2015-01-01

    Foods of plant origin contain flavonoids. In the adzuki bean, (+)-catechin, quercetin 3-O-rutinoside (rutin), and quercetin 7-O-β-D-glucopyranoside (Q7G) are the major flavonoids. During mastication of foods prepared from the adzuki bean, the flavonoids are mixed with saliva and swallowed into the stomach. Here we investigated the interactions between Q7G and (+)-catechin at pH 2, which may proceed in the stomach after the ingestion of foods prepared from the adzuki bean. Q7G reacted with nitrous acid producing nitric oxide (˙NO) and a glucoside of 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone. (+)-Catechin reacted with nitrous acid producing ˙NO and 6,8-dinitrosocatechin. The production of the dinitrosocatechin was partly suppressed by Q7G, and the suppression resulted in the enhancement of Q7G oxidation. 6,8-Dinitrosocatechin reacted further with nitrous acid generating the o-quinone, and the quinone formation was effectively suppressed by Q7G. In the flavonoids investigated, the suppressive effect decreased in the order Q7G≈quercetin>kaempferol>quercetin 4'-O-glucoside>rutin. Essentially the same results were obtained when (-)-epicatechin was used instead of (+)-catechin. The results indicate that nitrous acid-induced formation of 6,8-dinitrosocatechins and the o-quinones can be suppressed by flavonols in the stomach, and that both a hydroxyl group at C3 and ortho-hydroxyl groups in the B-ring are required for efficient suppression.

  20. Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice.

    PubMed

    Aseervatham, G Smilin Bell; Suryakala, U; Doulethunisha; Sundaram, S; Bose, P Chandra; Sivasudha, T

    2016-08-01

    The present study was aimed to evaluate the effect of apigenin 8-C-glucoside (Vitexin) and chlorogenic acid on epileptic mice induced by pilocarpine and explored its possible mechanisms. Intraperitonial administration of pilocarpine (85mg/kg) induced seizure in mice was assessed by behavior observations, which is significantly (p>0.05) reduced by apigenin 8-C-glucoside (AP8CG) (10mg/kg) and chlorogenic acid (CA) (5mg/kg), similar to diazepam. Seizure was accompanied by an imbalance in the levels of Gamma-aminobutyric acid (GABA) and glutamate in the pilocarpine administered group. Moreover, convulsion along with reduced acetylcholinesterase, increased monoamine oxidase and oxidative stress was observed in epileptic mice brain. AP8CG and CA significantly restored back to normal levels even at lower doses. Further, increased lipid peroxidation and nitrite content was also significantly attenuated by AP8CG and CA. However, CA was found to be more effective when compared to AP8CG. In addition, the mRNA expression of N-methyl-d-aspartate receptor (NMDAR), mGluR1 and mGlu5 was significantly (P≤0.05) inhibited by AP8CG and CA in a lower dose. The mRNA expression of GRIK1 did not differ significantly in any of the group and showed a similar pattern of expression. Our result shows that AP8CG and CA selectively inhibit NMDAR, mGluR1 and mGlu5 expression. Modification in the provoked NMDAR calcium response coupled with neuronal death. Hence, these findings underline that the polyphenolics, AP8CG and CA have exerted antiepileptic and neuroprotective activity by suppressing glutamate receptors. PMID:27470339