Science.gov

Sample records for iron core nanoparticle

  1. Application of novel iron core/iron oxide shell nanoparticles to sentinel lymph node identification

    NASA Astrophysics Data System (ADS)

    Cousins, Aidan; Howard, Douglas; Henning, Anna M.; Nelson, Melanie R. M.; Tilley, Richard D.; Thierry, Benjamin

    2015-12-01

    Current `gold standard' staging of breast cancer and melanoma relies on accurate in vivo identification of the sentinel lymph node. By replacing conventional tracers (dyes and radiocolloids) with magnetic nanoparticles and using a handheld magnetometer probe for in vivo identification, it is believed the accuracy of sentinel node identification in nonsuperficial cancers can be improved due to increased spatial resolution of magnetometer probes and additional anatomical information afforded by MRI road-mapping. By using novel iron core/iron oxide shell nanoparticles, the sensitivity of sentinel node mapping via MRI can be increased due to an increased magnetic saturation compared to traditional iron oxide nanoparticles. A series of in vitro magnetic phantoms (iron core vs. iron oxide nanoparticles) were prepared to simulate magnetic particle accumulation in the sentinel lymph node. A novel handheld magnetometer probe was used to measure the relative signals of each phantom, and determine if clinical application of iron core particles can improve in vivo detection of the sentinel node compared to traditional iron oxide nanoparticles. The findings indicate that novel iron core nanoparticles above a certain size possess high magnetic saturation, but can also be produced with low coercivity and high susceptibility. While some modification to the design of handheld magnetometer probes may be required for particles with large coercivity, use of iron core particles could improve MRI and magnetometer probe detection sensitivity by up to 330 %.

  2. Synthesis of core-shell iron nanoparticles via a new (novel) approach

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Koymen, Ali R.

    2014-03-01

    Carbon-encapsulated iron (Fe) nanoparticles were synthesized by a newly developed method in toluene. Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM) of the as prepared sample reveal that core-shell nanostructures have been formed with Fe as core and graphitic carbon as shell. Fe nanoparticles with diameter 11nm to 102 nm are encapsulated by 6-8 nm thick graphitic carbon layers. There was no iron carbide formation observed between the Fe core and the graphitic shell. The Fe nanoparticles have body centered cubic (bcc) crystal structure. The magnetic hysteresis loop of the as synthesized powder at room temperature showed a saturation magnetization of 9 Am2 kg-1. After thermal treatment crystalline order of the samples improved and hence saturation magnetization increased to 24 Am2kg-1. We foresee that the carbon-encapsulated Fe nanoparticles are biologically friendly and could have potential applications in Magnetic Resonance Imaging (MRI) and Photothermal cancer therapy.

  3. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    NASA Astrophysics Data System (ADS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-03-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe3+/Fe2+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe3+ ions in a nitrate complex with urea ([Fe((CO(NH2)2)6](NO3)3) and by using solid Mg(OH)2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe3+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe3+ ions prior to the addition of Mg(OH)2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)2, the pH increases and at pH 5.7 the Fe2+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.

  4. Porphyrin-Cored Polymer Nanoparticles: Macromolecular Models for Heme Iron Coordination.

    PubMed

    Rodriguez, Kyle J; Hanlon, Ashley M; Lyon, Christopher K; Cole, Justin P; Tuten, Bryan T; Tooley, Christian A; Berda, Erik B; Pazicni, Samuel

    2016-10-03

    Porphyrin-cored polymer nanoparticles (PCPNs) were synthesized and characterized to investigate their utility as heme protein models. Created using collapsible heme-centered star polymers containing photodimerizable anthracene units, these systems afford model heme cofactors buried within hydrophobic, macromolecular environments. Spectroscopic interrogations demonstrate that PCPNs display redox and ligand-binding reactivity similar to that of native systems and thus are potential candidates for modeling biological heme iron coordination.

  5. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia

    PubMed Central

    Liao, Shih-Hsiang; Liu, Chia-Hung; Bastakoti, Bishnu Prasad; Suzuki, Norihiro; Chang, Yung; Yamauchi, Yusuke; Lin, Feng-Huei; Wu, Kevin C-W

    2015-01-01

    Hyperthermia is one of the promising treatments for cancer therapy. However, the development of a magnetic fluid agent that can selectively target a tumor and efficiently elevate temperature while exhibiting excellent biocompatibility still remains challenging. Here a new core-shell nanostructure consisting of inorganic iron oxide (Fe3O4) nanoparticles as the core, organic alginate as the shell, and cell-targeting ligands (ie, D-galactosamine) decorated on the outer surface (denoted as Fe3O4@Alg-GA nanoparticles) was prepared using a combination of a pre-gel method and coprecipitation in aqueous solution. After treatment with an AC magnetic field, the results indicate that Fe3O4@Alg-GA nanoparticles had excellent hyperthermic efficacy in a human hepatocellular carcinoma cell line (HepG2) owing to enhanced cellular uptake, and show great potential as therapeutic agents for future in vivo drug delivery systems. PMID:26005343

  6. SAXS analysis of single- and multi-core iron oxide magnetic nanoparticles

    PubMed Central

    Szczerba, Wojciech; Costo, Rocio; Morales, Maria del Puerto; Thünemann, Andreas F.

    2017-01-01

    This article reports on the characterization of four superparamagnetic iron oxide nanoparticles stabilized with dimercaptosuccinic acid, which are suitable candidates for reference materials for magnetic properties. Particles p1 and p2 are single-core particles, while p3 and p4 are multi-core particles. Small-angle X-ray scattering analysis reveals a lognormal type of size distribution for the iron oxide cores of the particles. Their mean radii are 6.9 nm (p1), 10.6 nm (p2), 5.5 nm (p3) and 4.1 nm (p4), with narrow relative distribution widths of 0.08, 0.13, 0.08 and 0.12. The cores are arranged as a clustered network in the form of dense mass fractals with a fractal dimension of 2.9 in the multi-core particles p3 and p4, but the cores are well separated from each other by a protecting organic shell. The radii of gyration of the mass fractals are 48 and 44 nm, and each network contains 117 and 186 primary particles, respectively. The radius distributions of the primary particle were confirmed with transmission electron microscopy. All particles contain purely maghemite, as shown by X-ray absorption fine structure spectroscopy. PMID:28381973

  7. High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions

    NASA Astrophysics Data System (ADS)

    Blanco-Andujar, C.; Ortega, D.; Southern, P.; PankhurstJoint Last Authors., Q. A.; Thanh, N. T. K.

    2015-01-01

    The adoption of magnetic hyperthermia as either a stand-alone or adjunct therapy for cancer is still far from being optimised due to the variable performance found in many iron oxide nanoparticle systems, including commercially available formulations. Herein, we present a reproducible and potentially scalable microwave-based method to make stable citric acid coated multi-core iron oxide nanoparticles, with exceptional magnetic heating parameters, viz. intrinsic loss parameters (ILPs) of up to 4.1 nH m2 kg-1, 35% better than the best commercial equivalents. We also probe the core-to-core magnetic interactions in the particles via remanence-derived Henkel and ΔM plots. These reveal a monotonic dependence of the ILP on the magnetic interaction field Hint, and show that the interactions are demagnetising in nature, and act to hinder the magnetic heating mechanism.The adoption of magnetic hyperthermia as either a stand-alone or adjunct therapy for cancer is still far from being optimised due to the variable performance found in many iron oxide nanoparticle systems, including commercially available formulations. Herein, we present a reproducible and potentially scalable microwave-based method to make stable citric acid coated multi-core iron oxide nanoparticles, with exceptional magnetic heating parameters, viz. intrinsic loss parameters (ILPs) of up to 4.1 nH m2 kg-1, 35% better than the best commercial equivalents. We also probe the core-to-core magnetic interactions in the particles via remanence-derived Henkel and ΔM plots. These reveal a monotonic dependence of the ILP on the magnetic interaction field Hint, and show that the interactions are demagnetising in nature, and act to hinder the magnetic heating mechanism. Electronic supplementary information (ESI) available: Reproducibility studies and additional characterisation data including SQUID Magnetometry, TEM, ATR-FTIR, XRD and Mossbauer spectroscopy. See DOI: 10.1039/c4nr06239f

  8. Preparation of iron boride-silica core-shell nanoparticles with soft ferromagnetic properties.

    PubMed

    Saiyasombat, C; Petchsang, N; Tang, I M; Hodak, J H

    2008-02-27

    A one-pot aqueous chemical synthesis for silica-passivated ferromagnetic nanoparticles is presented. The average size of these particles is 84 ± 20 nm. The x-ray and electron diffraction experiments revealed that the nanoparticles are mainly composed of polycrystalline iron boride. The broad x-ray diffraction peak leads to an average crystallite size of 1.8 nm, which is much smaller than the overall size of the particles, and is consistent with the polycrystalline nature of the samples. Mössbauer spectroscopy and magnetization experiments were used to establish the room temperature magnetic properties as well as the chemical nature of the particles. Fe(2)B dominates the composition of the nanoparticles, having a hyperfine field broadly distributed in the 10-33 T range. Alpha iron, the second ferromagnetic material identified in the particles, amounts to 4.6% of the composition. Finally, a paramagnetic phase accounting for approximately 14.6% of the material of the particles was also detected. These nanoparticles contain a core with soft ferromagnetic properties surrounded by a passivating silica layer, and are suitable for magnetically targeted drug delivery and electromagnetic induction heating applications.

  9. Core-shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-05-01

    Core-shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core-shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body.

  10. Size-dependent structural evolution of the biomineralized iron-core nanoparticles in ferritins

    NASA Astrophysics Data System (ADS)

    Lee, Eunsook; Kim, D. H.; Hwang, Jihoon; Lee, Kiho; Yoon, Sungwon; Suh, B. J.; Hyun Kim, Kyung; Kim, J.-Y.; Jang, Z. H.; Kim, Bongjae; Min, B. I.; Kang, J.-S.

    2013-04-01

    The structural identity of the biomineralized iron core nanoparticles in Helicobacter pylori ferritins (Hpf's) has been determined by employing soft x-ray absorption spectroscopy and soft x-ray magnetic circular dichroism. Valence states of Fe ions are nearly trivalent in all Hpf's, indicating that the amount of magnetite (Fe3O4) is negligible. With increasing filling of Fe ions, the local configurations of Fe3+ ions change from the mixture of the tetrahedral and octahedral symmetries to the octahedral symmetry. These results demonstrate that the biomineralization of the ferritin core changes from maghemite-like (γ-Fe2O3) formation to hematite-like (α-Fe2O3) formation with increasing Fe content.

  11. Surface design of core-shell superparamagnetic iron oxide nanoparticles drives record relaxivity values in functional MRI contrast agents.

    PubMed

    Maity, Dipak; Zoppellaro, Giorgio; Sedenkova, Veronika; Tucek, Jiri; Safarova, Klara; Polakova, Katerina; Tomankova, Katerina; Diwoky, Clemens; Stollberger, Rudolf; Machala, Libor; Zboril, Radek

    2012-12-04

    Core-shell hydrophilic superparamagnetic iron oxide (SPIO) nanoparticles, surface functionalized with either terephthalic acid or 2-amino terephthalic acid, showed large negative MRI contrast ability, validating the advantage of using low molecular weight and π-conjugated canopies for engineering functional nanostructures with superior performances.

  12. Substitution of manganese and iron into hydroxyapatite: Core/shell nanoparticles

    SciTech Connect

    Pon-On, Weeraphat; Meejoo, Siwaporn; Tang, I.-Ming

    2008-08-04

    The bioceramics, hydroxyapatite (HAP), is a material which is biocompatible to the human body and is well suited to be used in hyperthermia applications for the treatment of bone cancer. We investigate the substitution of iron and manganese into the hydroxyapatite to yield ceramics having the empirical formula Ca{sub 9.4}Fe{sub 0.4}Mn{sub 0.2}(PO{sub 4}){sub 6}(OH){sub 2}. The samples were prepared by the co-precipitation method. The formation of the nanocrystallites in the HAP structure as the heating temperatures were raised to obtain a glass-ceramic system are confirmed by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and electron spin resonance (ESR). TEM images show the core/shell structure of the nanoparticles, with the core being formed by the ferrites and the shell by the hydroxyapatite. The ED patterns indicate the nanoparticles formed at 500 deg. C have an amorphous structure while the nanoparticles formed at 1000 deg. C are crystalline. ESR spectroscopy indicated that the Fe{sup 3+} ions have a g-factor of 4.23 and the Mn{sup 2+} ions have a g-factor of 2.01. The values of the parameters in the spin Hamiltonian which describes the interaction between the transition metal ions and the Ca{sup 2+} ions, indicate that the Mn{sup 2+} ion substitute into the Ca{sup 2+} sites which are ninefold coordinated, i.e., the Ca(1) sites.

  13. Fast synthesis and bioconjugation of (68) Ga core-doped extremely small iron oxide nanoparticles for PET/MR imaging.

    PubMed

    Pellico, Juan; Ruiz-Cabello, Jesús; Saiz-Alía, Marina; Del Rosario, Gilberto; Caja, Sergio; Montoya, María; Fernández de Manuel, Laura; Morales, M Puerto; Gutiérrez, Lucia; Galiana, Beatriz; Enríquez, Jose A; Herranz, Fernando

    2016-05-01

    Combination of complementary imaging techniques, like hybrid PET/MRI, allows protocols to be developed that exploit the best features of both. In order to get the best of these combinations the use of dual probes is highly desirable. On this sense the combination of biocompatible iron oxide nanoparticles and 68Ga isotope is a powerful development for the new generation of hybrid systems and multimodality approaches. Our objective was the synthesis and application of a chelator-free 68Ga-iron oxide nanotracer with improved stability, radiolabeling yield and in vivo performance in dual PET/MRI. We carried out the core doping of iron oxide nanoparticles, without the use of any chelator, by a microwave-driven protocol. The synthesis allowed the production of extremely small (2.5 nm) 68Ga core-doped iron oxide nanoparticles. The microwave approach allowed an extremely fast synthesis with a 90% radiolabeling yield and T1 contrast in MRI. With the same microwave approach the nano-radiotracer was functionalized in a fast and efficient way. We finally evaluated these dual targeting nanoparticles in an angiogenesis murine model by PET/MR imaging. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles

    PubMed Central

    Wagener, Philipp; Jakobi, Jurij; Rehbock, Christoph; Chakravadhanula, Venkata Sai Kiran; Thede, Claas; Wiedwald, Ulf; Bartsch, Mathias; Kienle, Lorenz; Barcikowski, Stephan

    2016-01-01

    This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications. PMID:27004738

  15. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wagener, Philipp; Jakobi, Jurij; Rehbock, Christoph; Chakravadhanula, Venkata Sai Kiran; Thede, Claas; Wiedwald, Ulf; Bartsch, Mathias; Kienle, Lorenz; Barcikowski, Stephan

    2016-03-01

    This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications.

  16. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles.

    PubMed

    Wagener, Philipp; Jakobi, Jurij; Rehbock, Christoph; Chakravadhanula, Venkata Sai Kiran; Thede, Claas; Wiedwald, Ulf; Bartsch, Mathias; Kienle, Lorenz; Barcikowski, Stephan

    2016-03-23

    This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications.

  17. Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge

    NASA Astrophysics Data System (ADS)

    Stević, Dragana; Mihajlović, Dijana; Kukobat, Radovan; Hattori, Yoshiyuki; Sagisaka, Kento; Kaneko, Katsumi; Atlagić, Suzana Gotovac

    2016-08-01

    Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.

  18. Chemical reduction synthesis and ac field effect of iron based core-shell magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Srinivasan; Bonder, Michael J.; Hadjipanayis, George C.

    2009-12-01

    High magnetization nanoparticles coated with a biocompatible polymer have attracted considerable interest in recent times as potential materials for biomedical applications associated with targeted drug delivery, detection and the treatment of cancer. This paper considers the use of sodium borohydride reduction of metal salts to form Fe based nanoparticles coated with carboxyl terminated polyethylene glycol (cPEG). By mixing the reactants in a Y-junction, the synthesis produces uniform nanoparticles in the size range 10-20 nm with a core-shell structure. The particles are subsequently coated with a 1-3 nm thick layer of cPEG. These nanoparticles are soft ferromagnets with Hc = 400 Oe. Exciting these nanoparticles with a 4 Oe, 500 kHz alternating magnetic field leads to particle heating with a maximal increase in the saturation temperature as the particle size is decreased. For the largest particles considered here, the temperature reaches 35 °C with a 10 mg sample mass whilst for the smallest nanoparticles considered the temperature exceeds 40 °C.

  19. Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent

    PubMed Central

    Lee, Ha-Young; Lee, Sang-Hoon; Xu, Chenjie; Xie, Jin; Lee, Jin-Hyung; Wu, Bing; Koh, Ai Leen; Wang, Xiaoying; Sinclair, Robert; Wang, Shan X; Nishimura, Dwight G; Biswal, Sandip; Sun, Shouheng; Cho, Sun Hang; Chen, Xiaoyuan

    2010-01-01

    The purpose of this study was to synthesize biocompatible polyvinylpyrrolidone (PVP)-coated iron oxide (PVP-IO) nanoparticles and to evaluate their efficacy as a magnetic resonance imaging (MRI) contrast agent. The PVP-IO nanoparticles were synthesized by a thermal decomposition method and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and a superconducting quantum interface device (SQUID). The core size of the particles is about 8–10 nm and the overall size is around 20–30 nm. The measured r2 (reciprocal of T2 relaxation time) and r2∗ (reciprocal of T2∗ relaxation time) are 141.2 and 338.1 (s mM)−1, respectively. The particles are highly soluble and stable in various buffers and in serum. The macrophage uptake of PVP-IO is comparable to that of Feridex as measured by a Prussian blue iron stain and phantom study. The signal intensity of a rabbit liver was effectively reduced after intravenous administration of PVP-IO. Therefore PVP-IO nanoparticles are potentially useful for T2-weighted MR imaging. PMID:21394237

  20. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation

    NASA Astrophysics Data System (ADS)

    Xing, Lijuan; ten Brink, Gert H.; Chen, Bin; Schmidt, Franz P.; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J.; Palasantzas, George

    2016-05-01

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction analysis. The core-shell structure, which is composed of an Fe core surrounded by a maghemite (γ-Fe2O3) and/or magnetite (Fe3O4) shell, was confirmed by fast Fourier transform (FFT) analysis combined with EELS. It was found that the particle size and shape strongly depend on the gas environment. Moreover, extensive analysis showed that NPs with a size between 10-20 nm possess a truncated cubic morphology, which is confined by the 6 {100} planes that are truncated by the 12 {110} planes at different degrees. For NPs larger than 20 nm, the rhombic dodecahedron defined by the 12 {110} planes is the predominant crystal shape, while truncated rhombic dodecahedrons, as well as non-truncated and truncated cubic NPs, were also observed. The NPs without truncation showed a characteristic inward relaxation indicating that besides thermodynamics kinetics also plays a crucial role during particle growth.

  1. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation.

    PubMed

    Xing, Lijuan; Ten Brink, Gert H; Chen, Bin; Schmidt, Franz P; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J; Palasantzas, George

    2016-05-27

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction analysis. The core-shell structure, which is composed of an Fe core surrounded by a maghemite (γ-Fe2O3) and/or magnetite (Fe3O4) shell, was confirmed by fast Fourier transform (FFT) analysis combined with EELS. It was found that the particle size and shape strongly depend on the gas environment. Moreover, extensive analysis showed that NPs with a size between 10-20 nm possess a truncated cubic morphology, which is confined by the 6 {100} planes that are truncated by the 12 {110} planes at different degrees. For NPs larger than 20 nm, the rhombic dodecahedron defined by the 12 {110} planes is the predominant crystal shape, while truncated rhombic dodecahedrons, as well as non-truncated and truncated cubic NPs, were also observed. The NPs without truncation showed a characteristic inward relaxation indicating that besides thermodynamics kinetics also plays a crucial role during particle growth.

  2. Earth's core iron

    NASA Astrophysics Data System (ADS)

    Geophysicist J. Michael Brown of Texas A & M University noted recently at the Spring AGU Meeting in Baltimore that the structure and phase of metallic iron at pressures of the earth's inner core (approximately 3.3 Mbar) could have great significance in defining geometrical aspects of the core itself. Brown worked at the Los Alamos Scientific Laboratory with R.B. McQueen to redetermine the phase relations of metallic iron in a series of new shock-wave experiments. They found the melting point of iron at conditions equal to those at the boundary of the earth's outer (liquid) and inner (solid) cores to be 6000°±500°C (Geophysical Research Letters, 7, 533-536, 1980).

  3. Magnetorotational iron core collapse

    NASA Technical Reports Server (NTRS)

    Symbalisty, E. M. D.

    1984-01-01

    During its final evolutionary stages, a massive star, as considered in current astrophysical theory, undergoes rapid collapse, thereby triggering a sequence of a catastrophic event which results in a Type II supernova explosion. A remnant neutron star or a black hole is left after the explosion. Stellar collapse occurs, when thermonuclear fusion has consumed the lighter elements present. At this stage, the core consists of iron. Difficulties arise regarding an appropriate model with respect to the core collapse. The present investigation is concerned with the evolution of a Type II supernova core including the effects of rotation and magnetic fields. A simple neutrino model is developed which reproduced the spherically symmetric results of Bowers and Wilson (1982). Several two-dimensional computational models of stellar collapse are studied, taking into account a case in which a 15 solar masses iron core was artificially given rotational and magnetic energy.

  4. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona.

    PubMed

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Coullerez, Geraldine; Hofmann-Amtenbrink, Margarethe; Vries, Marcel; Motazacker, Mahdi; Rezaee, Farhad; Hofmann, Heinrich

    2015-02-01

    As nanoparticles (NPs) are increasingly used in many applications their safety and efficient applications in nanomedicine have become concerns. Protein coronas on nanomaterials' surfaces can influence how the cell "recognizes" nanoparticles, as well as the in vitro and in vivo NPs' behaviors. The SuperParamagnetic Iron Oxide Nanoparticle (SPION) is one of the most prominent agents because of its superparamagnetic properties, which is useful for separation applications. To mimic surface properties of different types of NPs, a core-shell SPION library was prepared by coating with different surfaces: polyvinyl alcohol polymer (PVA) (positive, neutral and negative), SiO2 (positive and negative), titanium dioxide and metal gold. The SPIONs with different surfaces were incubated at a fixed serum : nanoparticle surface ratio, magnetically trapped and washed. The tightly bound proteins were quantified and identified. The surface charge has a great impact on protein adsorption, especially on PVA and silica where proteins preferred binding to the neutral and positively charged surfaces. The importance of surface material on protein adsorption was also revealed by preferential binding on TiO2 and gold coated SPION, even negatively charged. There is no correlation between the protein net charge and the nanoparticle surface charge on protein binding, nor direct correlation between the serum proteins' concentration and the proteins detected in the coronas.

  5. Iron Oxide Nanoparticles: Tunable Size Synthesis and Analysis in Terms of the Core-Shell Structure and Mixed Coercive Model

    NASA Astrophysics Data System (ADS)

    Phong, P. T.; Oanh, V. T. K.; Lam, T. D.; Phuc, N. X.; Tung, L. D.; Thanh, Nguyen T. K.; Manh, D. H.

    2017-04-01

    Iron oxide nanoparticles (NPs) are currently a very active research field. To date, a comprehensive study of iron oxide NPs is still lacking not only on the size dependence of structural phases but also in the use of an appropriate model. Herein, we report on a systematic study of the structural and magnetic properties of iron oxide NPs prepared by a co-precipitation method followed by hydrothermal treatment. X-ray diffraction and transmission electron microscopy reveal that the NPs have an inverse spinel structure of iron oxide phase (Fe3O4) with average crystallite sizes ( D XRD) of 6-19 nm, while grain sizes ( D TEM) are of 7-23 nm. In addition, the larger the particle size, the closer the experimental lattice constant value is to that of the magnetite structure. Magnetic field-dependent magnetization data and analysis show that the effective anisotropy constants of the Fe3O4 NPs are about five times larger than that of their bulk counterpart. Particle size ( D) dependence of the magnetization and the non-saturating behavior observed in applied fields up to 50 kOe are discussed using the core-shell structure model. We find that with decreasing D, while the calculated thickness of the shell of disordered spins ( t ˜ 0.3 nm) remains almost unchanged, the specific surface areas S a increases significantly, thus reducing the magnetization of the NPs. We also probe the coercivity of the NPs by using the mixed coercive Kneller and Luborsky model. The calculated results indicate that the coercivity rises monotonously with the particle size, and are well matched with the experimental ones.

  6. New Approach to Selective Stem Cell Sorting: Separation of Undifferentiated Stem Cells from Differentiated Stem Cells by Using Iron Oxide Core Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kisa, Fikrullah

    An alternative approach to stem cell enrichment in another words sorting methods without changing the microenvironment of the cells to avoid the detrimental effects of present cell sorting methods by adopting iron-oxide gold (cFeAu) core-shell nanoparticles (NPs) is the focus of this thesis. Each chapter of this thesis focuses on different preliminary research in order to engender the adoption of cFeAu NPs for the selective killing of the mouse embryonic stem cells that are immunolabeled with the nanoparticles. The first part of the research focuses on the synthesis of superparamagnetic iron-oxide nanoparticles with the co-precipitation method and coating the nanoparticles with colloidal gold (cAu) to stabilize the characteristics of the nanoparticles. Detailed information regarding the chemistry of iron-oxide nanoparticles, common synthesis methods, and some of the factors that affect nanoparticle growth and synthesis have been investigated. The heating ability of the nanoparticles under an oscillating magnetic field (OMF) and the size distribution of the particles under a transmission electron microscope (TEM) are shown. The second part of the research focuses on selectively killing the RAW 264.7 macrophages which have internalized the synthesized nanoparticles in order to prove the biocompatibility and effectiveness of the nanoparticles. The particles' effect on the cells, the mechanism of killing, and the effectiveness of nanoparticles coated with colloidal gold and bovine serum albumin are investigated. The last part of the research focuses on effectively labeling the mESCs with a specific antibody conjugated to cFeAu nanoparticles that has an affinity to stage specific embryonic antigen 1 (SSEA-1). The influence of the OMF and the effects of immunolabeling on cell growth were investigated. The successful conjugation of the nanoparticles onto the cell surface is shown under scanning electron microscope. The damage inflicted by the nanoparticles on the cells

  7. Dual mode nanoparticles: CdS coated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Radwan, F. N.; Carroll, K. J.; Carpenter, E. E.

    2010-05-01

    Reverse micelles can be used in a sequential fashion to make core-shell nanoparticles. Using this technique it is possible to make a magnetic quantum dot, by coating an iron core with a cadmium sulfide shell. Transmission electron microscopy indicated core-shell morphology and narrow size distribution of the obtained particles. Collectively, x-ray powder diffraction and x-ray photoelectron spectroscopy verified the presence of cadmium sulfide on the surface of the nanoparticles. Optical properties of the coated particles were demonstrated using fluorescence spectroscopy. A vibrating sample magnetometer was used to determine magnetic properties. Dual mode cadmium sulfide coated iron core-shell nanoparticles make unique candidates for the use in biomedical applications.

  8. 34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  9. Study of iron nanoparticle melting

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Shulgin, A. V.; Lavruk, S. A.

    2016-10-01

    In paper melting process of iron nanoparticles was investigated with molecular dynamics method. Melting temperatures was found for particles with radius from 1.5 to 4 nm. Results match with data of other authors. Heat capacity was calculated based on investigation of caloric curves. Dependence between heat capacity and temperature for different size of nanoparticles was approximated. Heat conductivity of iron nanoparticles was calculated.

  10. Distribution of Iron Oxide Core-Titanium Dioxide Shell Nanoparticles in VX2 Tumor Bearing Rabbits Introduced by Two Different Delivery Modalities

    PubMed Central

    Refaat, Tamer; West, Derek; El Achy, Samar; Parimi, Vamsi; May, Jasmine; Xin, Lun; Harris, Kathleen R.; Liu, William; Wanzer, Michael Beau; Finney, Lydia; Maxey, Evan; Vogt, Stefan; Omary, Reed A.; Procissi, Daniele; Larson, Andrew C.; Paunesku, Tatjana; Woloschak, Gayle E.

    2016-01-01

    This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Both IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. This difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future. PMID:28335271

  11. Distribution of Iron Oxide Core-Titanium Dioxide Shell Nanoparticles in VX2 Tumor Bearing Rabbits Introduced by Two Different Delivery Modalities

    SciTech Connect

    Refaat, Tamer; West, Derek; El Achy, Samar; Parimi, Vamsi; May, Jasmine; Xin, Lun; Harris, Kathleen; Liu, William; Wanzer, Michael; Finney, Lydia; Maxey, Evan; Vogt, Stefan; Omary, Reed; Procissi, Daniele; Larson, Andrew; Paunesku, Tatjana; Woloschak, Gayle

    2016-08-03

    This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Both IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. This difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.

  12. Method of determining nanoparticle core weight.

    PubMed

    Reynolds, Fred; O'loughlin, Terry; Weissleder, Ralph; Josephson, Lee

    2005-02-01

    Polymer-coated metal or metal oxide nanoparticles have a variety of uses in industry, biological research, and medicine. Characterization of nanoparticles often includes determination of the dimensions of the electron-dense core by transmission electron microscopy (TEM), with the weight of the core determined from core volume and core density. However, TEM is labor intensive, has a long turnaround time, and uses equipment that is sometimes not readily available. Here we present an alternative method for determining the weight of nanoparticle cores termed the viscosity/light scattering method, which uses (i) measurements of viscosity over a wide concentration range to obtain the partial specific volume, (ii) measurements of particle diameter by light scattering, to obtain the volume of an individual particle, and (iii) the concentration of nanoparticles (w/v). We have applied this method to determine the weights of nanoparticle cores (iron of amino-CLIO and ferritin), the weights of globular proteins (molecular weight of IgG and albumin), and the weight of polystyrene microspheres. The viscosity/light scattering method is nondestructive of the sample and can be performed with a variety of materials on a routine basis.

  13. Missing Fe: hydrogenated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.; Maksimović, A.; Mohaček-Grošev, V.

    2017-03-01

    Although it was found that the FeH lines exist in the spectra of some stars, none of the spectral features in the interstellar medium (ISM) have been assigned to this molecule. We suggest that iron atoms interact with hydrogen and produce Fe-H nanoparticles which sometimes contain many H atoms. We calculate infrared spectra of hydrogenated iron nanoparticles using density functional theory methods and find broad, overlapping bands. Desorption of H2 could induce spinning of these small Fe-H dust grains. Some of hydrogenated iron nanoparticles possess magnetic and electric moments and should interact with electromagnetic fields in the ISM. FenHm nanoparticles could contribute to the polarization of the ISM and the anomalous microwave emission. We discuss the conditions required to form FeH and FenHm in the ISM.

  14. Morphology of the ferritin iron core by aberration corrected scanning transmission electron microscopy.

    PubMed

    Jian, Nan; Dowle, Miriam; Horniblow, Richard D; Tselepis, Chris; Palmer, Richard E

    2016-11-18

    As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.

  15. Morphology of the ferritin iron core by aberration corrected scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Jian, Nan; Dowle, Miriam; Horniblow, Richard D.; Tselepis, Chris; Palmer, Richard E.

    2016-11-01

    As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.

  16. Effects of Size and Size Distribution on the Magnetic Properties of Maghemite Nanoparticles and Iron-Platinum Core-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Pisane, Kelly

    Magnetic nanoparticles with large magnetic moments that can be manipulated with an external magnetic field, have potential uses in medicine because their sizes are comparable to biological scales. For such applications it is important to understand how their magnetic properties are affected by their size and size distribution inherently present in magnetic nanoparticles. For this purpose, maghemite (gamma-Fe2O3) nanoparticles with average diameters of 7.0+/-0.8 nm, 6.3+/-0.6 nm, 3.4+/-0.8 nm and 2.5+/-0.7 nm and Fe-Pt core-shell nanoparticles with an approximate core diameter of 2.2 nm were synthesized and investigated. To aid in the interpretation of the magnetic properties, the structural properties of these nanoparticles were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). For investigations of the magnetic properties, detailed ac and dc magnetic characterization is presented and discussed in terms of a distribution of particle sizes and magnetic moments. The dc magnetization measurements cover the temperature range from 2 K to 350 K and magnetic fields up to 90 kOe. The temperature dependence of the ac susceptibilities, χ' and χ'', was measured at various frequencies from 10 Hz to 5 kHz. From the zero field-cooled dc magnetization, the values of blocking temperature TB have been determined and the ac magnetic data was used to determine the contribution of interparticle interactions to the observed blocking temperature for different sized nanoparticles. The measured blocking temperatures of the maghemite nanoparticles are TB=35 K, 42 K, 21 K, and 29 K with contributions from interparticle interactions given in terms of To=0 K, 11 K, 2.5 K, and 12.5 K for the 7.0 nm, 6.3 nm, 3.4 nm, and 2.5 nm samples respectively. From the variation of TB with ac measurement frequency, the anisotropy constants Ka determined for the maghemite nanoparticles are: Ka=5.57, 7

  17. 33. BENCH CORE STATION, GREY IRON FOUNDRY CORE ROOM WHERE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BENCH CORE STATION, GREY IRON FOUNDRY CORE ROOM WHERE CORE MOLDS WERE HAND FILLED AND OFTEN PNEUMATICALLY COMPRESSED WITH A HAND-HELD RAMMER BEFORE THEY WERE BAKED. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  18. The use of the core-shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion.

    PubMed

    Su, Lianghu; Zhen, Guangyin; Zhang, Longjiang; Zhao, Youcai; Niu, Dongjie; Chai, Xiaoli

    2015-12-01

    A core-shell structure results in zero-valent iron nanoparticles (NZVI) with manifold functional properties. In this study, the long-term effects of NZVI on hydrogen sulphide removal in an anaerobic sludge digester were investigated. Within 20 days, the average hydrogen sulphide content in the biogas was successfully reduced from 300 (or 3620 of sulphate-rich sludge) mg Nm(-3) to 6.1 (121), 0.9 (3.3) and 0.5 (1.3) mg Nm(-3) in the presence of 0.05, 0.10 and 0.20% (wt) NZVI, respectively. Methane yield was enhanced at the low NZVI dose (0.05-0.10%) but decreased at the elevated dose (0.20%). Methane production and volatile solid degradation analyses implied that doses of 0.5-0.10% NZVI could accelerate sludge stabilization during anaerobic digestion. The phosphorus fractionation profile suggested that methane production could be inhibited at the elevated NZVI dose, partly due to the limited availability of soluble phosphorus due to the immobilization of bioavailable-P through the formation of vivianite. An analysis of the reducible inorganic sulphur species revealed that the elimination of hydrogen sulphide occurred via the reaction between hydrogen sulphide and the oxide shell of NZVI, which mainly formed FeS and some FeS2 and S(0).

  19. Multifunctional iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bloemen, M.; Denis, C.; Van Stappen, T.; De Meester, L.; Geukens, N.; Gils, A.; Verbiest, T.

    2015-03-01

    Multifunctional nanoparticles have attracted a lot of attention since they can combine interesting properties like magnetism, fluorescence or plasmonic effects. As a core material, iron oxide nanoparticles have been the subject of intensive research. These cost-effective and non-toxic particles are used nowadays in many applications. We developed a heterobifunctional PEG ligand that can be used to introduce functional groups (carboxylic acids) onto the surface of the NP. Via click chemistry, a siloxane functionality was added to this ligand, for a subsequent covalent ligand exchange reaction. The functionalized nanoparticles have an excellent colloidal stability in complex environments like buffers and serum or plasma. Antibodies were coupled to the introduced carboxylic acids and these NP-antibody bioconjugates were brought into contact with Legionella bacteria for magnetic separation experiments.

  20. High-yield aqueous synthesis of multi-branched iron oxide core-gold shell nanoparticles: SERS substrate for immobilization and magnetic separation of bacteria

    NASA Astrophysics Data System (ADS)

    Tamer, Ugur; Onay, Aykut; Ciftci, Hakan; Bozkurt, Akif Göktuğ; Cetin, Demet; Suludere, Zekiye; Hakkı Boyacı, İsmail; Daniel, Philippe; Lagarde, Fabienne; Yaacoub, Nader; Greneche, Jean-Marc

    2014-10-01

    The high product yield of multi-branched core-shell Fe3- x O4@Au magnetic nanoparticles was synthesized used as magnetic separation platform and surface-enhanced Raman scattering (SERS) substrates. The multi-branched magnetic nanoparticles were prepared by a seed-mediated growth approach using magnetic gold nanospheres as the seeds and subsequent reduction of metal salt with ascorbic acid in the presence of a stabilizing agent chitosan biopolymer and silver ions. The anisotropic growth of nanoparticles was observed in the presence of chitosan polymer matrix resulting in multi-branched nanoparticles with a diameter over 100 nm, and silver ions also play a crucial role on the growth of multi-branched nanoparticles. We propose the mechanism of the formation of multi-branched nanoparticles while the properties of nanoparticles embedded in chitosan matrix are discussed. The surface morphology of nanoparticles was characterized with transmission electron microscopy, scanning electron microscopy, ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction, and fourier transform infrared spectroscopy and 57Fe Mössbauer spectrometry. Additionally, the magnetic properties of the nanoparticles were also examined. We also demonstrated that the synthesized Fe3- x O4@Au multi-branched nanoparticle is capable of targeted separation of pathogens from matrix and sensing as SERS substrates.

  1. Biocompatible core-shell magnetic nanoparticles for cancer treatment

    SciTech Connect

    Sharma, Amit M.; Qiang, You; Meyer, Daniel R.; Souza, Ryan; Mcconnaughoy, Alan; Muldoon, Leslie; Baer, Donald R.

    2008-04-01

    Non-toxic magnetic nanoparticles (MNPs) have expanded the treatment delivery options in the medical world. With a size range from 2 to 200 nm MNPs can be compiled with most of the small cells and tissues in living body. Monodispersive iron-iron oxide core shell nanoparticles were prepared in our novel cluster deposition system. This unique method of preparing the core shell MNPs gives nanoparticles very high magnetic moment. We tested the nontoxicity and uptake of MNPs coated with/without dextrin by incubating them with rat LX-1 small cell lung cancer cells (SCLC). Since core iron enhances the heating effect [7] the rate of oxidation of iron nanoparticles was tested in deionized water at certain time interval. Both coated and noncoated MNPs were successfully uptaken by the cells, indicating that the nanoparticles were not toxic. The stability of MNPs was verified by X-ray diffraction (XRD) scan after 0, 24, 48, 96, 204 hours. Due to the high magnetic moment offered by MNPs produced in our lab, we predict that even in low applied external alternating field desired temperature can be reached in cancer cells in comparison to the commercially available nanoparticles. Moreover, our MNPs do not require additional anti-coagulating agents and provide a cost effective means of treatment with significantly lower dosage in the body in comparison to commercially available nanoparticles.

  2. Tannin biosynthesis of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Herrera-Becerra, R.; Rius, J. L.; Zorrilla, C.

    2010-08-01

    In this work, iron oxide nanoparticles synthesized with gallic acid and tannic acid are characterized using High-Resolution Transmission Electron Microscopy (HRTEM). Its size, form, and structure are compared with nanoparticles obtained previously using alfalfa biomass in order to find a simpler, consistent, and environmentally friendly method in the production of iron oxide nanoparticles.

  3. Magnetic properties of iron nanoparticles prepared by exploding wire technique.

    PubMed

    Alqudami, Abdullah; Annapoorni, S; Lamba, Subhalakshmi; Kothari, P C; Kotnala, R K

    2007-06-01

    Nanoparticles of iron were prepared in distilled water using very thin iron wires and sheets, by the electro-exploding wire technique. Transmission electron microscopy reveals the size of the nanoparticles to be in the range 10 to 50 nm. However, particles of different sizes can be segregated by using ultrahigh centrifuge. X-ray diffraction studies confirm the presence of the cubic phase of iron. These iron nanoparticles were found to exhibit fluorescence in the visible region in contrast to the normal bulk material. The room temperature hysteresis measurements upto a field of 1.0 tesla were performed on a suspension of iron particles in the solution as well as in the powders obtained by filtration. The hysteresis loops indicate that the particles are superparamagnetic in nature. The saturation magnetizations was approximately 60 emu/gm. As these iron particles are very sensitive to oxygen a coating of non-magnetic iron oxide tends to form around the particles giving it a core-shell structure. The core particle size is estimated theoretically from the magnetization measurements. Suspensions of iron nanoparticles in water have been proposed to be used as an effective decontaminant for ground water.

  4. Biocompatible multishell architecture for iron oxide nanoparticles.

    PubMed

    Wotschadlo, Jana; Liebert, Tim; Clement, Joachim H; Anspach, Nils; Höppener, Stephanie; Rudolph, Tobias; Müller, Robert; Schacher, Felix H; Schubert, Ulrich S; Heinze, Thomas

    2013-01-01

    The coating of super-paramagnetic iron oxide nanoparticles (SPIONs) with multiple shells is demonstrated by building a layer assembled from carboxymethyldextran and poly(diallydimethylammonium chloride). Three shells are produced stepwise around aggregates of SPIONs by the formation of a polyelectrolyte complex. A growing particle size from 96 to 327 nm and a zeta potential in the range of +39 to -51 mV are measured. Microscopic techniques such as TEM, SEM, and AFM exemplify the core-shell structures. Magnetic force microscopy and vibrating sample magnetometer measurements confirm the architecture of the multishell particles. Cell culture experiments show that even nanoparticles with three shells are still taken up by cells.

  5. Thermodynamics and Charging of Interstellar Iron Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hensley, Brandon S.; Draine, B. T.

    2017-01-01

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of ≃4.5 Å, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges, particularly in regions with high gas temperatures and ionization fractions. If ≳10% of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.

  6. Improved Thermoplastic/Iron-Particle Transformer Cores

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min

    2004-01-01

    A method of fabricating improved transformer cores from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer cores, the cores fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer cores, the cores fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior cores have exhibited significant eddy-current losses, the cores fabricated by this method exhibit very small eddy-current losses. The cores made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated cores. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of core material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as core specimens in mechanical and electromagnetic tests. Some of the core specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel core was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to

  7. Platinum Attachments on Iron Oxide Nanoparticle Surfaces

    SciTech Connect

    Palchoudhury, Soubantika; Xu, Yaolin; An, Wei; Turner, C. H.; Bao, Yuping

    2010-04-30

    Platinum nanoparticles supported on metal oxide surfaces have shown great potential as heterogeneous catalysts to accelerate electrochemical processes, such as the oxygen reduction reaction in fuel cells. Recently, the use of magnetic supports has become a promising research topic for easy separation and recovery of catalysts using magnets, such as Pt nanoparticles supported on iron oxide nanoparticles. The attachment of Pt on iron oxide nanoparticles is limited by the wetting ability of the Pt (metal) on ceramic surfaces. A study of Pt nanoparticle attachment on iron oxide nanoparticle surfaces in an organic solvent is reported, which addresses the factors that promote or inhibit such attachment. It was discovered that the Pt attachment strongly depends on the capping molecules of the iron oxide seeds and the reaction temperature. For example, the attachment of Pt nanoparticles on oleic acid coated iron oxide nanoparticles was very challenging, because of the strong binding between the carboxylic groups and iron oxide surfaces. In contrast, when nanoparticles are coated with oleic acid/tri-n-octylphosphine oxide or oleic acid/oleylamine, a significant increase in Pt attachment was observed. Electronic structure calculations were then applied to estimate the binding energies between the capping molecules and iron ions, and the modeling results strongly support the experimental observations.

  8. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores.

    PubMed

    Chekli, L; Brunetti, G; Marzouk, E R; Maoz-Shen, A; Smith, E; Naidu, R; Shon, H K; Lombi, E; Donner, E

    2016-09-01

    The use of zero-valent iron nanoparticles (nZVI) has been advocated for the remediation of both soils and groundwater. A key parameter affecting nZVI remediation efficacy is the mobility of the particles as this influences the reaction zone where remediation can occur. However, by engineering nZVI particles with increased stability and mobility we may also inadvertently facilitate nZVI-mediated contaminant transport away from the zone of treatment. Previous nZVI mobility studies have often been limited to model systems as the presence of background Fe makes detection and tracking of nZVI in real systems difficult. We overcame this problem by synthesising Fe-59 radiolabelled nZVI. This enabled us to detect and quantify the leaching of nZVI-derived Fe-59 in intact soil cores, including a soil contaminated by Chromated-Copper-Arsenate. Mobility of a commercially available nZVI was also tested. The results showed limited mobility of both nanomaterials; <1% of the injected mass was eluted from the columns and most of the radiolabelled nZVI remained in the surface soil layers (the primary treatment zone in this contaminated soil). Nevertheless, the observed breakthrough of contaminants and nZVI occurred simultaneously, indicating that although the quantity transported was low in this case, nZVI does have the potential to co-transport contaminants. These results show that direct injection of nZVI into the surface layers of contaminated soils may be a viable remediation option for soils such as this one, in which the mobility of nZVI below the injection/remediation zone was very limited. This Fe-59 experimental approach can be further extended to test nZVI transport in a wider range of contaminated soil types and textures and using different application methods and rates. The resulting database could then be used to develop and validate modelling of nZVI-facilitated contaminant transport on an individual soil basis suitable for site specific risk assessment prior to n

  9. ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Greenlee, Lauren F.; Rentz, Nikki S.

    2014-11-01

    In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and -40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2-12 and varied from -2 to -55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

  10. Properties of iron under core conditions

    NASA Astrophysics Data System (ADS)

    Brown, J. M.

    2003-04-01

    Underlying an understanding of the geodynamo and evolution of the core is knowledge of the physical and chemical properties of iron and iron mixtures under high pressure and temperature conditions. Key properties include the viscosity of the fluid outer core, thermal diffusivity, equations-of-state, elastic properties of solid phases, and phase equilibria for iron and iron-dominated mixtures. As is expected for work that continues to tax technological and intellectual limits, controversy has followed both experimental and theoretical progress in this field. However, estimates for the melting temperature of the inner core show convergence and the equation-of-state for iron as determined in independent experiments and theories are in remarkable accord. Furthermore, although the structure and elastic properties of the solid inner-core phase remains uncertain, theoretical and experimental underpinnings are better understood and substantial progress is likely in the near future. This talk will focus on an identification of properties that are reasonably well known and those that merit further detailed study. In particular, both theoretical and experimental (static and shock wave) determinations of the density of iron under extreme conditions are in agreement at the 1% or better level. The behavior of the Gruneisen parameter (which determines the geothermal gradient and controls much of the outer core heat flux) is constrained by experiment and theory under core conditions for both solid and liquid phases. Recent experiments and theory are suggestive of structure or structures other than the high-pressure hexagonal close-packed (HCP) phase. Various theories and experiments for the elasticity of HCP iron remain in poor accord. Uncontroversial constraints on core chemistry will likely never be possible. However, reasonable bounds are possible on the basis of seismic profiles, geochemical arguments, and determinations of sound velocities and densities at high pressure and

  11. Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction

    PubMed Central

    Lin, Wei Syuan; Lin, Hong Ming; Brzozka, Katarzyna; Lewinska, Sabina; Nedelko, Natalia; Slawska-Waniewska, Anna; Borysiuk, Jolanta; Wasik, Dariusz

    2015-01-01

    Summary The main goal of this work is to study the structural and magnetic properties of iron nanowires and iron nanoparticles, which have been fabricated in almost the same processes. The only difference in the synthesis is an application of an external magnetic field in order to form the iron nanowires. Both nanomaterials have been examined by means of transmission electron microscopy, energy dispersive X-ray spectrometry, X-ray diffractometry and Mössbauer spectrometry to determine their structures. Structural investigations confirm that obtained iron nanowires as well as nanoparticles reveal core–shell structures and they are composed of crystalline iron cores that are covered by amorphous or highly defected phases of iron and iron oxides. Magnetic properties have been measured using a vibrating sample magnetometer. The obtained values of coercivity, remanent magnetization, saturation magnetization as well as Curie temperature differ for both studied nanostructures. Higher values of magnetizations are observed for iron nanowires. At the same time, coercivity and Curie temperature are higher for iron nanoparticles. PMID:26425415

  12. Core/shell nanoparticles in biomedical applications.

    PubMed

    Chatterjee, Krishnendu; Sarkar, Sreerupa; Jagajjanani Rao, K; Paria, Santanu

    2014-07-01

    Nanoparticles have several exciting applications in different areas and biomedial field is not an exception of that because of their exciting performance in bioimaging, targeted drug and gene delivery, sensors, and so on. It has been found that among several classes of nanoparticles core/shell is most promising for different biomedical applications because of several advantages over simple nanoparticles. This review highlights the development of core/shell nanoparticles-based biomedical research during approximately past two decades. Applications of different types of core/shell nanoparticles are classified in terms of five major aspects such as bioimaging, biosensor, targeted drug delivery, DNA/RNA interaction, and targeted gene delivery.

  13. Synthesis and characterization of iron based nanoparticles for novel applications

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa

    The work in this thesis has been focused on the fabrication and characterization of iron based nanoparticles with controlled size and morphology with the aim: (i) to investigate their properties for potential applications in MICR toners and biomedical field and (ii) to study finite size effects on the magnetic properties of the nanoparticles. For the biomedical applications, core/shell structured iron/iron-oxide and hollow shell nanoparticles were synthesized by thermal decomposition of iron organometallic compounds [Fe(CO)5] at high temperature. Core/shell structured iron/iron-oxide nanoparticles have been prepared in the presence of oleic acid and oleylamine. Particle size and composition was controlled by varying the reaction parameters during synthesis. The as-made particles are hydrophobic and not dispersible in water. Water dispersibility was achieved by ligand exchange a with double hydrophilic diblock copolymer. Relaxometery measurements of the transverse relaxation time T2 of the nanoparticles solution at 3 Tesla confirm that the core/shell nanoparticles are an excellent MRI contrast agent using T2 weighted imaging sequences. In comparison to conventionally used iron oxide nanoparticles, iron/iron-oxide core/shell nanoparticles offer four times stronger T2 shortening effect at comparable core size due to their higher magnetization. The magnetic properties were studied as a function of particle size, composition and morphology. Hollow nanostructures are composed of randomly oriented grains arranged together to make a shell layer and make an interesting class of materials. The hollow morphology can be used as an extra degree of freedom to control the magnetic properties. Owing to their hollow morphology, they can be used for the targeted drug delivery applications by filling the drug inside their cavity. For the magnetic toners applications, particles were synthesized by chemically reducing iron salt using sodium borohydride and then coated with polyethylene

  14. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    PubMed Central

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan

    2016-01-01

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications. PMID:28335349

  15. Photo-Switching of Magnetization in Iron Nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Aqtash, Nabil; Hostetter, Alexander; Sabirianov, Renat

    2012-02-01

    We report the theoretical studies of light induced switching in core-shell nanoparticles. The core of the nanoparticle is made of Fe coated with the shell of azobenzene. The latter is a photochromic material with the reversible trans-cis photoisomerization upon irradiation by UV and visible light. The magnetization of nanoparticles can be reversibly switched by using specific wavelengths of light. trans-cis photoisomerization of azobenzene induces both the change in surface local magnetic moments and alters the exchange interactions on the surfaces of the nanoparticles. These two mechanisms can lead to induced magnetization switchable by light pulse. We study the effects of photoisomerization of azobenzene on iron (Fe) nanoparticle. Ab initio calculations using SIESTA code show that the ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction in Fe dimer increase by 40% due to photoisomerization of azobenzene. While an infinite flat Fe monolayer shows variation on the exchange interactions on the surfaces as result of photoisomerization. The local magnetic moments of Fe sheet increase by 6% due to photoisomerization. Using an ab initio parameterization of magnetic interactions, we propose statistical model based on competing exchange interactions for the investigation of Fe nanoparticle magnetization. We performed Monte Carlo simulations of magnetization of the core-shell nanoparticle as a function of temperature. The results show that Fe nanoparticles magnetization at room temperature can change by at least 40% due to photoisomerization of azobenzene.

  16. The synthesis and characterization of iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  17. Zero-valent iron nanoparticles preparation

    SciTech Connect

    Oropeza, S.; Corea, M.; Gómez-Yáñez, C.; Cruz-Rivera, J.J.; Navarro-Clemente, M.E.

    2012-06-15

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  18. Fe/Au Core-Shell Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sra, Amandeep; Leslie-Pelecky, Diandra

    2009-10-01

    The physical properties of nanoparticles, including size, composition and surface chemistry, greatly influence biological and pharmacological properties and, ultimately, their clinical applications. Superparamagnetic iron oxide nanoparticles are widely used for applications such as MRI contrast agents, drug delivery via magnetic targeting and hyperthermia due to their chemical stability and biocompatibility; however, enhancing the saturation magnetization (Ms) of nanoparticles would produce greater sensitivity. Our design strategy involves a bottom-up wet chemistry approach to the synthesis of Fe nanoparticles. Specific advantages of Fe are the high value of Ms (210 emu/g in bulk) coupled with low toxicity; however, Fe nanoparticles must be protected from oxidation, which causes a dramatic reduction in Ms. To circumvent oxidation, Fe nanoparticles are coated with a Au shell that prevents the oxidation of the magnetic core and also provides the nanoparticles with plasmonic properties for optical stimulation. Ligands of various functionalities can be introduced through the well established Au-thiol surface chemistry for different biomedical applications while maintaining the magnetic functionality of the Fe core. In this presentation, we will discuss the physical, chemical and magnetic properties of our Fe/Au nanoparticles and their resistance to oxidation.

  19. Water soluble dendronized iron oxide nanoparticles.

    PubMed

    Daou, T J; Pourroy, G; Greneche, J M; Bertin, A; Felder-Flesch, D; Begin-Colin, S

    2009-06-21

    The grafting of pegylated dendrons on 9(2) nm and 39(5) nm iron oxide nanoparticles in water, through a phosphonate group as coupling agent has been successfully achieved and its mechanism investigated, with a view to produce biocompatible magnetic nano-objects for biomedical applications. Grafting has been demonstrated to occur by interaction of negatively charged phosphonate groups with positively charged groups and hydroxyl at the iron oxide surface. The isoelectric point of the suspension of dendronized iron oxide nanoparticles is shifted towards lower pH as the amount of dendron increases. It reaches 4.7 for the higher grafting rate and for both particle size. Thus, the grafting of molecules using a phosphonate group allows stabilizing electrostatically the suspensions at physiological pH, a prerequisite for biomedical applications. Moreover the grafting step has been shown to preserve the magnetic properties of iron oxide nanoparticles due to super-super exchange interactions through the phosphonate group.

  20. A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration.

    PubMed

    Zhang, Yalei; Su, Yiming; Zhou, Xuefei; Dai, Chaomeng; Keller, Arturo A

    2013-12-15

    Nanoscale zerovalent iron (nZVI) has shown a high efficacy for removing heavy metals from liquid solution. However, its removal capacity has not been fully explored due to its common shell composition (FeOOH). In this study, a much higher removal capacity of Pb(II) is observed (1667 mg Pb(II)/gFe), which is over 100% higher than the highest removal capacity of nZVI reported before. High-resolution X-ray photoelectron spectroscopy (HR-XPS) reveals that through restricting the dehydration process of Fe(OH)3, nZVI can acquire a unique shell, which is composed of 45.5% Fe(OH)3 and 54.5% FeOOH. The presence of Fe(OH)3 suppresses the reduction of Pb(II), but greatly promotes the co-precipitation and adsorption of Pb(II). Combining the ratio of Fe-released to Pb-immobilized and the result of HR-XPS, a reaction between Fe(0) core, Fe(OH)3, and Pb(II) is proposed. The Fe released from the Fe(0) core leads to the core depletion, observed by transmission electron microscopy (TEM) under high Pb(II) loading. While temperature has little influence on the removal capacity, pH affects the removal capacity greatly. pH<4.5 favors Fe dissolution, while pH>4.5 promotes Pb(II) adsorption. Given the high Pb removal capacity via the Fe(OH)3 shell, nZVI can be used to remedy Pb(II) contamination.

  1. Synthesis, Characterization, and Properties of Zero-Valent Iron Nanoparticles

    SciTech Connect

    Baer, Donald R.; Tratnyek, P. G.; Qiang, You; Amonette, James E.; Linehan, John C.; Sarathy, Vaishnavi; Nurmi, J. T.; Wang, Chong M.; Antony, Jiji

    2007-04-04

    This chapter provides an overview of synthesis, characterization and property measurements techniques important for making understanding the nature of zero valent iron nanoparticles. The chemical reactivity of nanometer-sized materials can be quite different from that of either bulk forms of a material or the individual atoms and molecules that comprise it. Advances in our ability to synthesize, visualize, characterize and model these materials have created new opportunities to control the rates and products of chemical reactions in ways not previously possible. Zero valent iron (ZVI), including non-nanoparticle forms for iron, is one of the most promising remediation technologies for the removal of mobile chlorinated hydrocarbons and reducible inorganic anions for ground water. ZVI nanoparticles may have great potential to assist environmental remediation, but there are significant scientific and technological questions that remain to be answered. Understanding of ZVI reactive metal core-shell nanoparticles requires use of particles that are as well characterized and understood as possible. In this chapter we describe the issues and provide examples that include synthesis of nanoparticles, analytical characterization of the particles and finally measurements of their chemical properties.

  2. Spectroscopic characterization of magnetic Fe3O4@Au core shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Fouad, Dina M.; El-Said, Waleed A.; Mohamed, Mona B.

    2015-04-01

    The magnetic nanoparticles iron oxide (Fe3O4) nanoparticles and iron oxide/gold core-shell (Fe3O4/Au) nanoparticles were synthesized and their catalytic photo-degradation activity towards malathion as example of organophosphorus pesticides were reported. Iron oxide (Fe3O4) magnetic nanoparticle was successfully prepared through co-precipitation method by the reduction of ferric chloride (FeCl3) using ascorbic acid. The morphology of the prepared nanoparticles was characterized by the TEM and XRD (X-ray diffraction) techniques. Degradation of 10 ppm of malathion in the presence of these nanoparticles under UV radiation was monitored using (HPLC) and UV-visible spectra. Fe3O4/Au nanoparticles showed higher efficiency in photo-degradation of malathion than Fe3O4 ones.

  3. Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Strawbridge, R. R.; Gibson, U. J.; Zeng, Q.; Pierce, Z. E.; Savellano, M.; Tate, J. A.; Ogden, J. A.; Baker, I.; Ivkov, R.; Foreman, A. R.

    2007-02-01

    The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. Methods: MTG-B murine breast cancer cells (1 x 106) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm3 +/- 50 mm3. Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle

  4. Chemical design of biocompatible iron oxide nanoparticles for medical applications.

    PubMed

    Ling, Daishun; Hyeon, Taeghwan

    2013-05-27

    Iron oxide nanoparticles are one of the most versatile and safe nanomaterials used in medicine. Recent progress in nanochemistry enables fine control of the size, crystallinity, uniformity, and surface properties of iron oxide nanoparticles. In this review, the synthesis of chemically designed biocompatible iron oxide nanoparticles with improved quality and reduced toxicity is discussed for use in diverse biomedical applications.

  5. 29. DEPENDABLE FORDATHSHELL CORE MACHINES IN THE GREY IRON FOUNDRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. DEPENDABLE FORDATH-SHELL CORE MACHINES IN THE GREY IRON FOUNDRY INJECTS SAND INTO A CLOSED CORE BOX. SOME OF THE UNITS HEAT THE CORE BOX TO FIX THE RESINS AS THE CORE REMAINS IN THE BOX, OTHERS MERELY SHAPED THE CORE SAND REQUIRING BAKING OF THE CORES TO HARDEN THEM. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  6. Core size determination and structural characterization of intravenous iron complexes by cryogenic transmission electron microscopy.

    PubMed

    Wu, Yong; Petrochenko, Peter; Chen, Lynn; Wong, Sook Yee; Absar, Mohammad; Choi, Stephanie; Zheng, Jiwen

    2016-05-30

    Understanding physicochemical properties of intravenous (IV) iron drug products is essential to ensure the manufacturing process is consistent and streamlined. The history of physicochemical characterization of IV iron complex formulations stretches over several decades, with disparities in iron core size and particle morphology as the major source of debate. One of the main reasons for this controversy is room temperature sample preparation artifacts, which affect accurate determination of size, shape and agglomeration/aggregation of nanoscale iron particles. The present study is first to report the ultra-fine iron core structures of four IV iron complex formulations, sodium ferric gluconate, iron sucrose, low molecular weight iron dextran and ferumoxytol, using a cryogenic transmission electron microscopy (cryo-TEM) preservation technique, as opposed to the conventional room temperature (RT-TEM) technique. Our results show that room temperature preparation causes nanoparticle aggregation and deformation, while cryo-TEM preserves IV iron colloidal suspension in their native frozen-hydrated and undiluted state. In contrast to the current consensus in literature, all four IV iron colloids exhibit a similar morphology of their iron oxide cores with a spherical shape, narrow size distribution and an average size of 2nm. Moreover, out of the four tested formulations, ferumoxytol exhibits a cluster-like community of several iron carbohydrate particles which likely accounts for its large hydrodynamic size of 25nm, measured with dynamic light scattering. Our findings outline a suitable method for identifying colloidal nanoparticle core size in the native state, which is increasingly important for manufacturing and design control of complex drug formulations, such as IV iron drug products.

  7. Chemical Synthesis of Iron-Nickel Nanoparticles

    NASA Astrophysics Data System (ADS)

    Abel, Frank; Tzitzios, Vasilias; Hadjipanayis, George

    2015-03-01

    Equiatomic FeNi alloys undergo a phase transformation, like FePt, from a disordered fcc structure to an ordered fct structure. However, unlike FePt in Fe-Ni this transformation is very sluggish and has been only observed in heavily irradiated thin films and in meteorite samples as was recently reported.1,2 In this study, we used a high temperature chemical synthesis route to investigate the possibility of fabricating fct FeNi nanoparticles. The Iron Nickel Boron nanoparticles were made using anhydrous Iron (II) Chloride and Nickel (II) Chloride using Sodium borohydrite as a reducing agent in tetraglyme under a nitrogen hydrogen atmosphere. The high temperature of the reaction allowed for the formation of as made crystalline Iron Nickel nanoparticles without additional annealing. By changing the concentration of sodium borohydrite we were able to prepare nanoparticles either in the pure fcc phase, or in a new mixed phase. The magnetic properties were improved by increasing the concentration of Iron precursor. We obtained FeNi nanoparticles with saturation magnetization of (56 emu/g) and coercivity of (190 Oe). The particle size distribution of the FeNi particles ranged from several hundred nanometers to a half micron. Work Supported by DOE-BES-DMSE (Grants No. DE-FG02-04ER4612).

  8. Iron Nanoparticles in Reactive Environmental Barriers

    SciTech Connect

    Nuxoll, Eric E.; Shimotori, Tsutomu; Arnold, William A.; Cussler, Edward L.

    2003-09-23

    Zero-valent iron is cheap, environmentally innocuous, and effective at reducing chlorinated organics. It has, as a result, become a popular candidate for remediating aquifers contaminated with trichloroethylene and other halogenated pollutants. In this paper, we discuss one such system, where iron nanoparticles are synthesized and incorporated into polyvinyl alcohol membranes, forming water-permeable barriers to these pollutants. These barriers are tested against a variety of contaminants, including carbon tetrachloride, copper, and chromate.

  9. Process to Produce Iron Nanoparticle Lunar Dust Simulant Composite

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; McNatt, Jeremiah

    2010-01-01

    A document discusses a method for producing nanophase iron lunar dust composite simulant by heating a mixture of carbon black and current lunar simulant types (mixed oxide including iron oxide) at a high temperature to reduce ionic iron into elemental iron. The product is a chemically modified lunar simulant that can be attracted by a magnet, and has a surface layer with an iron concentration that is increased during the reaction. The iron was found to be -iron and Fe3O4 nanoparticles. The simulant produced with this method contains iron nanoparticles not available previously, and they are stable in ambient air. These nanoparticles can be mass-produced simply.

  10. Structure and magnetic properties of iron nanoparticles synthesized by chemical vapor condensation

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Jang, T. S.; Lee, D. W.; Kim, B. K.

    2004-06-01

    Iron nanoparticles were synthesized by chemical vapor condensation (CVC) without the aid of LN2 chiller. The powder synthesized at 400 °C was a mixture of amorphous and crystalline -Fe. Fully crystallized iron particles were then obtained at and above 600 °C. When the reactor temperature was 1000 °C, however, nonmagnetic -Fe was stabilized together with -Fe. The synthesized particles, mostly possessing the core-shell type structure, were all nearly spherical, but the average particle size rapidly increased as the temperature increased. The surface layer that enclosed the iron core and became thicker in smaller particles was Fe3O4 or Fe3O4-related amorphous. Except for the one synthesized at 1000 °C, the iron nanoparticles were not fully saturated. The iron nanoparticles (20 nm) synthesized at 600 °C exhibited iHc 1.0 kOe and Ms 170 emu/g.

  11. 30. NATIONAL SHELL CORE MACHINE IN THE GREY IRON FOUNDRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. NATIONAL SHELL CORE MACHINE IN THE GREY IRON FOUNDRY AUTOMATICALLY INJECTS SAND INTO CLOSED, HEATED CORE BOXES THAT SET THE RESINS AND PERMIT A HARDENED CORE TO BE REMOVED BY THE OPERATOR. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  12. Oral exposure to polystyrene nanoparticles effects iron absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron trans...

  13. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    DOE PAGES

    Antony, Jiji; Nutting, Joseph; Baer, Donald R.; ...

    2006-01-01

    Nmore » anoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7 ∘ C . Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM). The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET) process are size-dependent and compared with the calculated data.« less

  14. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface

  15. Hybrid response surface methodology-genetic algorithm optimization of ultrasound-assisted transesterification of waste oil catalysed by immobilized lipase on mesoporous silica/iron oxide magnetic core-shell nanoparticles.

    PubMed

    Karimi, Mahmoud; Keyhani, Alireza; Akram, Asadolah; Rahman, Masoud; Jenkins, Bryan; Stroeve, Pieter

    2013-01-01

    The production ofbiodiesel by transesterification of waste cooking oil (WCO) to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy demand. An environmentally benign process for the enzymatic transesterification using immobilized lipase has attracted considerable attention for biodiesel production. Here, a superparamagnetic, high surface area substrate for lipase immobilization is evaluated. These immobilization substrates are composed of mesoporous silica/superparamagnetic iron oxide core-shell nanoparticles. The effects of methanol ratio to WCO, lipase concentration, water content and reaction time on the synthesis of biodiesel were analysed by utilizing the response surface methodology (RSM). A quadratic response surface equation for calculating fatty acid methyl ester (FAME) content as the objective function was established based on experimental data obtained in accordance with the central composite design. The RSM-based model was then used as the fitness function for genetic algorithm (GA) to optimize its input space. Hybrid RSM-GA predicted the maximum FAME content (91%) at the optimum level of medium variables: methanol ratio to WCO, 4.34; lipase content, 43.6%; water content, 10.22%; and reaction time, 6h. Moreover, the immobilized lipase could be used for four times without considerable loss of the activity.

  16. 28. CORE STORAGE AREA OF THE GREY IRON FOUNDRY SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. CORE STORAGE AREA OF THE GREY IRON FOUNDRY SHOWING CORES THAT WILL BE USED TO CREATE INTERIOR WALLS OF SMALL BALL VALVES, FOREGROUND, AND LARGE GATE VALVES, BACKGROUND. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  17. Polymer/Iron Oxide Nanoparticle Composites--A Straight Forward and Scalable Synthesis Approach.

    PubMed

    Sommertune, Jens; Sugunan, Abhilash; Ahniyaz, Anwar; Bejhed, Rebecca Stjernberg; Sarwe, Anna; Johansson, Christer; Balceris, Christoph; Ludwig, Frank; Posth, Oliver; Fornara, Andrea

    2015-08-20

    Magnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle) and magnetic multi-core nanoparticles (with several magnetic cores per particle). Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION) in a range of polymer matrices of choice, such as poly(styrene), poly(lactid acid), poly(methyl methacrylate), and poly(caprolactone). Multi-core particles were obtained within the Z-average size range of 130 to 340 nm. With the aim to combine the fast room temperature magnetic relaxation of small individual cores with high magnetization of the ensemble of SPIONs, we used small (<10 nm) core nanoparticles. The performed synthesis is highly flexible with respect to the choice of polymer and SPION loading and gives rise to multi-core particles with interesting magnetic properties and magnetic resonance imaging (MRI) contrast efficacy.

  18. Iron oxide/niobium oxide core-shell magnetic nanoparticle-based phosphopeptide enrichment from biological samples for MALDI MS analysis.

    PubMed

    Lin, Hong-Yi; Chen, Wei-Yu; Chen, Yu-Chie

    2009-04-01

    The feasibility of using niobium oxide-coated magnetic nanoparticles (NPs) as affinity probes for selectively trapping phosphopeptides from peptide mixtures including tryptic digest of caseins, serum, and cell lysate was demonstrated in this study. Phosphopeptide enrichment was rapid when subjecting these systems to microwave heating for 1 min; the probe-target species, which were readily isolated through magnetic separation, were then analyzed using matrix-assisted laser desorption/ ionization mass spectrometry (MALDI MS). Only signals for phosphopeptides were present in the resulting mass spectra. The detection limit for monophosphopeptide was as low as 5 fmol.

  19. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  20. The convenient preparation of stable aryl-coated zerovalent iron nanoparticles

    PubMed Central

    Guselnikova, Olga A; Galanov, Andrey I; Gutakovskii, Anton K

    2015-01-01

    Summary A novel approach for the in situ synthesis of zerovalent aryl-coated iron nanoparticles (NPs) based on diazonium salt chemistry is proposed. Surface-modified zerovalent iron NPs (ZVI NPs) were prepared by simple chemical reduction of iron(III) chloride aqueous solution followed by in situ modification using water soluble arenediazonium tosylate. The resulting NPs, with average iron core diameter of 21 nm, were coated with a 10 nm thick organic layer to provide long-term protection in air for the highly reactive zerovalent iron core up to 180 °C. The surface-modified iron NPs possess a high grafting density of the aryl group on the NPs surface of 1.23 mmol/g. FTIR spectroscopy, XRD, HRTEM, TGA/DTA, and elemental analysis were performed in order to characterize the resulting material. PMID:26171295

  1. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves.

    PubMed

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-02-23

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5-20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures.

  2. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    NASA Astrophysics Data System (ADS)

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-02-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures.

  3. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    PubMed Central

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  4. Preparation and characterization of thermosensitive PNIPAA-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Shengmao; Zhang, Linna; He, Benfang; Wu, Zhishen

    2008-08-01

    A new and facile approach was established to fabricate thermoresponsive poly(N-isopropylacrylamide) (PNIPAA) coated iron oxide nanoparticles in a non-aqueous medium. The morphology and structure of the nanoparticle-doped composite were analyzed by means of transmission electron microscopy (TEM), x-ray powder diffraction (XRD), and Fourier transformation infrared spectrometry (FTIR). The thermosensitivity of the composite was also investigated. Results indicated that the oil-soluble iron oxide nanoparticles encapsulated with PNIPAA, composed of an inorganic iron oxide core and biocompatible PNIPAA shell, were dispersed well in water and had a sphere-like shape. The PNIPAA-coated iron oxide nanoparticles with such a kind of core-shell structure showed excellent thermosensitivity. Namely, the aqueous suspension of PNIPAA-coated iron oxide nanoparticles dramatically changed from transparent to opaque as the temperature increased from room temperature to 38 °C, showing potential as optical transmittance switch materials and their significance in the fields of protein adsorption and purification controlled release, and drug delivery.

  5. Characterization of the oleic acid/iron oxide nanoparticle interface by magnetic resonance

    NASA Astrophysics Data System (ADS)

    Masur, S.; Zingsem, B.; Marzi, T.; Meckenstock, R.; Farle, M.

    2016-10-01

    The synthesis of colloidal nanoparticles involves surfactant molecules, which bind to the particle surface and stabilize nanoparticles against aggregation. In many cases these protecting shells also can be used for further functionalization. In this study, we investigated monodisperse single crystalline iron oxide core/shell nanoparticles (FexOy-NPs) in situ covered with an oleic acid layer which showed two electron spin resonance (ESR) signals. The nanoparticles with the ligands attached were characterized by transmission electron microscopy (TEM) and ferro- and paramagnetic resonance (FMR, EPR). Infrared spectroscopy confirmed the presence of the functional groups and revealed that the oleic acid (OA) is chemisorbed as a carboxylate on the iron oxide and is coordinated symmetrically to the oxide atoms. We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle.

  6. Oral exposure to polystyrene nanoparticles affects iron absorption

    NASA Astrophysics Data System (ADS)

    Mahler, Gretchen J.; Esch, Mandy B.; Tako, Elad; Southard, Teresa L.; Archer, Shivaun D.; Glahn, Raymond P.; Shuler, Michael L.

    2012-04-01

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron transport in an in vitro model of the intestinal epithelium and an in vivo chicken intestinal loop model. Intestinal cells that are exposed to high doses of nanoparticles showed increased iron transport due to nanoparticle disruption of the cell membrane. Chickens acutely exposed to carboxylated particles (50 nm in diameter) had a lower iron absorption than unexposed or chronically exposed birds. Chronic exposure caused remodelling of the intestinal villi, which increased the surface area available for iron absorption. The agreement between the in vitro and in vivo results suggests that our in vitro intestinal epithelium model is potentially useful for toxicology studies.

  7. Size analysis of single-core magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ludwig, Frank; Balceris, Christoph; Viereck, Thilo; Posth, Oliver; Steinhoff, Uwe; Gavilan, Helena; Costo, Rocio; Zeng, Lunjie; Olsson, Eva; Jonasson, Christian; Johansson, Christer

    2017-04-01

    Single-core iron-oxide nanoparticles with nominal core diameters of 14 nm and 19 nm were analyzed with a variety of non-magnetic and magnetic analysis techniques, including transmission electron microscopy (TEM), dynamic light scattering (DLS), static magnetization vs. magnetic field (M-H) measurements, ac susceptibility (ACS) and magnetorelaxometry (MRX). From the experimental data, distributions of core and hydrodynamic sizes are derived. Except for TEM where a number-weighted distribution is directly obtained, models have to be applied in order to determine size distributions from the measurand. It was found that the mean core diameters determined from TEM, M-H, ACS and MRX measurements agree well although they are based on different models (Langevin function, Brownian and Néel relaxation times). Especially for the sample with large cores, particle interaction effects come into play, causing agglomerates which were detected in DLS, ACS and MRX measurements. We observed that the number and size of agglomerates can be minimized by sufficiently strong diluting the suspension.

  8. Structure of carbohydrate-bound polynuclear iron oxyhydroxide nanoparticles in parenteral formulations.

    PubMed

    Kudasheva, Dina S; Lai, Jriuan; Ulman, Abraham; Cowman, Mary K

    2004-11-01

    Intravenous iron therapy is used to treat anemia associated with chronic kidney disease. The chemical structures of parenteral iron agents have not been characterized in detail, and correlations between structure, efficiency of iron delivery, and toxicity via catalysis of oxygen-derived free radical creation remain to be established. In this study, two formulations of parenteral iron have been characterized by absorption spectroscopy, X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis. The samples studied were Venofer (Iron Sucrose Injection, USP) and Ferrlecit (Sodium Ferric Gluconate in Sucrose Injection). The 250-800-nm absorption spectra and the XRD patterns showed that both formulations contain a mineral core composed of iron oxyhydroxide in the beta-FeOOH mineral polymorph known as akaganeite. This was further confirmed for each formulation by imaging using TEM and AFM. The average core size for the nanoparticles, after dialysis to remove unbound or loosely bound carbohydrate, was approximately 3+/-2 nm for the iron-sucrose, and approximately 2+/-1 nm for the iron-gluconate. Each of the nanoparticles consists of a mineral core, surrounded by a layer of bound carbohydrate. The overall diameter of the average bead in the dialyzed preparations was approximately 7+/-4 nm for the iron-sucrose, and 3+/-1 nm for the iron-gluconate. Undialyzed preparations have particles with larger average sizes, depending on the extent of dilution of unbound and loosely bound carbohydrate. At a dilution corresponding to a final Fe concentration of 5 mg/mL, the average particle diameter in the iron-sucrose formulation was approximately 22+/-9 nm, whereas that of the iron-gluconate formulation was approximately 12+/-5 nm.

  9. The Earth's Core and the Phase Diagram of Iron

    NASA Astrophysics Data System (ADS)

    Anderson, O. L.

    1982-08-01

    The phase diagram of iron is presented for P <= 330 GPa. The melting curve is derived from Stevenson's generalized form of Lindemann's law, successfully connecting the low-pressure (5-20 GPa) measurements to the new shock-wave measurements of 250 GPa. The isothermal equation of state of ɛ -iron (h.c.p.) and γ -iron (f.c.c.), indicate that the inner core density is that of pure solid iron. The present experiments cannot distinguish between the ɛ or γ phase for the inner core, but preference is given to γ -iron. From these constructions, it is concluded that the melting temperature of iron at the inner core - outer core boundary pressure, Tmi (i.c.b.), is 5200-6600 K. A likely model of the outer core temperature is presented by taking 5800 K as the probable value of Tmi (i.c.b.), and assuming a temperature drop of 1000 K due to chemically induced melting point depression. This yields 3620 K for the T of the core side of the core-mantle boundary (c.m.b.). This model results in a large Δ T (D' '), (700 K), at the c.m.b., but the shock-wave data also allow other models where Δ T (D' ') is less. A numerical experiment reveals that the value for Δ T (D' ') of 700 K does not lead to distortion of the density profile. The (γ -ɛ -liquid) triple point is beyond the i.c.b. Thus, diluted γ -iron in the liquid phase constitutes the outer core. The experiments support a thermally driven model of the geomagnetic dynamo, and further support a model of a slowly freezing inner core for the energy source.

  10. Iron oxide nanoparticle enhancement of radiation cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mazur, Courtney M.; Tate, Jennifer A.; Strawbridge, Rendall R.; Gladstone, David J.; Hoopes, P. Jack

    2013-02-01

    Iron oxide nanoparticles (IONPs) have been investigated as a promising means for inducing tumor cell-specific hyperthermia. Although the ability to generate and use nanoparticles that are biocompatible, tumor specific, and have the ability to produce adequate cytotoxic heat is very promising, significant preclinical and clinical development will be required for clinical efficacy. At this time it appears using IONP-induced hyperthermia as an adjunct to conventional cancer therapeutics, rather than as an independent treatment, will provide the initial IONP clinical treatment. Due to their high-Z characteristics, another option is to use intracellular IONPs to enhance radiation therapy without excitation with AMF (production of heat). To test this concept IONPs were added to cell culture media at a concentration of 0.2 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for either 48 or 72 hours. Extracellular iron was then removed and all cells were irradiated at 4 Gy. Although samples incubated with IONPs for 48 hrs did not demonstrate enhanced post-irradiation cytotoxicity as compared to the non-IONP-containing cells, cells incubated with IONPs for 72 hours, which contained 40% more Fe than 48 hr incubated cells, showed a 25% decrease in clonogenic survival compared to their non-IONP-containing counterparts. These results suggest that a critical concentration of intracellular IONPs is necessary for enhancing radiation cytotoxicity.

  11. Two-component magnetic structure of iron oxide nanoparticles mineralized in Listeria innocua protein cages

    NASA Astrophysics Data System (ADS)

    Usselman, Robert J.; Klem, Michael T.; Russek, Stephen E.; Young, Mark; Douglas, Trevor; Goldfarb, Ron B.

    2010-06-01

    Magnetometry was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within Listeria innocua protein cage. The electron magnetic resonance spectrum shows the presence of at least two magnetization components. The magnetization curves are explained by a sum of two Langevin functions in which each filled protein cage contains both a large magnetic iron oxide core plus an amorphous surface consisting of small noncoupled iron oxide spin clusters. This model qualitatively explains the observed decrease in the temperature dependent saturation moment and removes an unrealistic temperature dependent increase in the particle moment often observed in nanoparticle magnetization measurements.

  12. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chamorro, Susana; Gutiérrez, Lucía; Vaquero, María Pilar; Verdoy, Dolores; Salas, Gorka; Luengo, Yurena; Brenes, Agustín; José Teran, Francisco

    2015-05-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.

  13. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  14. Morphology of Iron-Oxide Nanoparticle-Dispersed Glass Composites

    NASA Astrophysics Data System (ADS)

    Taketomi, Susamu

    2004-10-01

    We obtained dispersed-nanocrystal/glass composites by impregnating amorphous yttrium iron garnet (YIG) nanoparticles (produced by an alkoxide method) into the 49 nm diameter pores in the spongelike structure of porous silica glass (controlled pore glass or CPG) followed by heat treatment at 1000°C for 0.1 h. We observed the surface and cross section of the sample by field emission scanning electron microscopy (FE-SEM). The backscattered electron image (BSEI) of the sample surface clearly showed the nanoparticles while the secondary electron image (SEI) showed them obscurely. A similar observation of the sample cross section revealed that the CPG fused together ˜2 μm in depth from the surface while its inner core preserved the spongelike network structure. The particles were independently dispersed with sizes ranging from 20 nm to 40 nm in this fused shell with an average particle density of approximately 100 μm-2. No particles were found in the inner core. Even in the fused shell, no particles were found in those areas in which the spongelike structure was preserved. It is concluded that the particles act as seeds for triggering the fusion of the spongelike glass.

  15. Bubble nucleation and migration in a lead–iron hydr(oxide) core–shell nanoparticle

    PubMed Central

    Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; Wang, Junling; Asta, Mark; Zheng, Haimei

    2015-01-01

    Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O2 gas and H2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometric phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. Our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration. PMID:26438864

  16. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gabbasov, Raul; Polikarpov, Michael; Cherepanov, Valery; Chuev, Michael; Mischenko, Iliya; Lomov, Andrey; Wang, Andrew; Panchenko, Vladislav

    2015-04-01

    Water soluble magnetite iron oxide nanoparticles with oleic polymer coating and average diameters in the range of 5-25 nm, previously determined by TEM, were characterized using Mössbauer, magnetization and X-ray diffraction measurements. Comparative analysis of the results demonstrated a large diversity of magnetic relaxation regimes. Analysis showed the presence of an additional impurity component in the 25 nm nanoparticles, with principally different magnetic nature at the magnetite core. In some cases, X-ray diffraction measurements were unable to estimate the size of the magnetic core and Mössbauer data were necessary for the correct interpretation of the experimental results.

  17. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core–PNIPAM Shell Nanoparticles

    PubMed Central

    2015-01-01

    Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. “Grafting-to” and “grafting-from” methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction. PMID:26270412

  18. Thermal and electrical conductivity of iron at Earth's core conditions.

    PubMed

    Pozzo, Monica; Davies, Chris; Gubbins, David; Alfè, Dario

    2012-04-11

    The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles--unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work and fit the seismologically determined core density and inner-core boundary density jump. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core.

  19. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers

    PubMed Central

    Wahajuddin; Arora, Sumit

    2012-01-01

    A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite) or Fe3O4 (magnetite) particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to be resolved before they can be moved from bench top to bedside. PMID:22848170

  20. Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2016-11-01

    Enshrined in this review are the biogenic fabrication and applications of coated and uncoated iron and iron oxide nanoparticles. Depending on their magnetic properties, they have been used in the treatment of cancer, drug delivery system, MRI, and catalysis and removal of pesticides from potable water. The polymer-coated iron and iron oxide nanoparticles are made biocompatible, and their slow release makes them more effective and lasting. Their cytotoxicity against microbes under aerobic/anaerobic conditions has also been discussed. The magnetic moment of superparamagnetic iron oxide nanoparticles changes with their interaction with biomolecules as a consequence of which their size decreases. Their biological efficacy has been found to be dependent on the shape, size, and concentration of these nanoparticles.

  1. Effects of iron chelators, iron salts, and iron oxide nanoparticles on the proliferation and the iron content of oligodendroglial OLN-93 cells.

    PubMed

    Hohnholt, Michaela; Geppert, Mark; Dringen, Ralf

    2010-08-01

    The oligodendroglial cell line OLN-93 was used as model system to investigate the consequences of iron deprivation or iron excess on cell proliferation. Presence of ferric or ferrous iron chelators inhibited the proliferation of OLN-93 cells in a time and concentration dependent manner, while the application of a molar excess of ferric ammonium citrate (FAC) prevented the inhibition of proliferation by the chelator deferoxamine. Proliferation of OLN-93 cells was not affected by incubation with 300 microM iron that was applied in the form of FAC, FeCl(2), ferrous ammonium sulfate or iron oxide nanoparticles, although the cells efficiently accumulated iron during exposure to each of these iron sources. The highest specific iron content was observed for cells that were exposed to the nanoparticles. These data demonstrate that the proliferation of OLN-93 cells depends strongly on the availability of iron and that these cells efficiently accumulate iron from various extracellular iron sources.

  2. A novel structural Fenton-like nanocatalyst with highly improved catalytic performance for generalized preparation of iron oxide@organic dye polymer core-shell nanospheres.

    PubMed

    Zhao, Guanghui; Peng, Xiaomen; Li, Hongping; Wang, Jianzhi; Zhou, Lincheng; Zhao, Tianqi; Huang, Zhihao; Jiang, Haifei

    2015-05-01

    FexOy@FexOy/C nanoparticles with a soap-bubble-like shell have been synthesized, and the materials exhibit excellent Fenton catalytic performance. More importantly, FexOy@FexOy/C nanoparticles as catalysts and precursors could catalyze organic dye molecules to form iron oxide@organic dye polymer core-shell nanospheres.

  3. Probing iron at Super-Earth core conditions

    SciTech Connect

    Amadou, N.; Brambrink, E.; Vinci, T.; Benuzzi-Mounaix, A.; Huser, G.; Brygoo, S.; Morard, G.; Guyot, F.; Resseguier, T. de; Mazevet, S.; Miyanishi, K.; Ozaki, N.; Kodama, R.; Henry, O.; Raffestin, D.; Boehly, T.; and others

    2015-02-15

    In this paper, we report on the quasi-isentropic compression of an iron sample using ramp shaped laser irradiation. This technique allows us to quasi-isentropically compress iron up to 700 GPa and 8500 K. To our knowledge, these data are the highest pressures reached on iron in off-Hugoniot conditions and the closest to the thermodynamic states thought to exist in Earth-like planetary cores. The experiment was performed on the Ligne d'Intégration laser facility at CESTA, Bordeaux, France.

  4. Iron oxide and gold nanoparticles in cancer therapy

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  5. Uptake And Intracellular Distribution Of Functionalized Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Panariti, A.; Lettiero, B.; Morjan, I.; Alexandreascu, R.; Wang, D.; Bucci, C.; Miserocchi, G.; Rivolta, I.

    2010-10-01

    Iron oxide Nanoparticles represents promising nanocarrier for magnetic resonance imaging (MRI), targeted drug and gene delivery. In our study we investigated the interaction between lung alveolar epithelial cells and iron oxide NPs coated with L-Dihydroxyphenylalanina (L-Dopa)-TRITC. Our data suggest that particles crossed the plasma membrane with an energy-dependent process.

  6. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    PubMed Central

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-01-01

    Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200

  7. Effect of substrate interface on the magnetism of supported iron nanoparticles.

    PubMed

    Balan, A; Fraile Rodríguez, A; Vaz, C A F; Kleibert, A; Nolting, F

    2015-12-01

    In situ X-ray photo-emission electron microscopy is used to investigate the magnetic properties of iron nanoparticles deposited on different single crystalline substrates, including Si(001), Cu(001), W(110), and NiO(001). We find that, in our room temperature experiments, Fe nanoparticles deposited on Si(001) and Cu(001) show both superparamagnetic and magnetically stable (blocked) ferromagnetic states, while Fe nanoparticles deposited on W(110) and NiO(001) show only superparamagnetic behaviour. The dependence of the magnetic behaviour of the Fe nanoparticles on the contact surface is ascribed to the different interfacial bonding energies, higher for W and NiO, and to a possible relaxation of point defects within the core of the nanoparticles on these substrates, that have been suggested to stabilise the ferromagnetic state at room temperature when deposited on more inert surfaces such as Si and Cu.

  8. Synthesis of binary iron-carbon nanoparticles by UV laser photolysis of Fe(CO)5 with various hydrocarbons

    NASA Astrophysics Data System (ADS)

    Eremin, A. V.; Gurentsov, E. V.; Musikhin, S. A.

    2016-10-01

    In this study the laser photolysis of the mixtures containing vapors of various hydrocarbons and iron pentacarbonyl was implemented to nanoparticle formation. The radiation source used for photo-dissociation of precursors was a pulsed Nd:Yag laser operated at a wavelength of 266 nm. Under UV radiation the molecules of Fe(CO)5 decomposed, forming atomic iron vapor and unsaturated carbonyls at well-known and readily controllable parameters. The subsequent condensation of supersaturated metal vapor resulted in small iron clusters and nanoparticles formation. The growth process of the nanoparticles was observed by a method of laser light extinction. Laser induced incandescence technique was applied for particle sizing during the process of their formation. Additionally nanoparticle samples were investigated by a transmission electron microscope. The particle size distribution was measured by statistical treatment of microphotographs. The elemental analysis by energy-dispersive x-ray spectroscopy and electron diffraction pattern gave the composition and structure of nanoparticles. The core-shell iron-carbon nanoparticles were synthesized by joint laser photolysis of iron pentacarbonyl with benzene and acetylene. The photolysis of the mixtures of toluene, butanol and methane with iron pentacarbonyl revealed in a pure iron particles formation which fast oxidized in air when were extracted out of the reactor.

  9. High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles.

    PubMed

    Dung, Ngo T; Long, Nguyen Viet; Tam, Le T T; Nam, Pham H; Tung, Le D; Phuc, Nguyen X; Lu, Le T; Kim Thanh, Nguyen Th

    2017-03-07

    High magnetisation and monodisperse CoFe alloy nanoparticles are desired for a wide range of biomedical applications. However, these CoFe nanoparticles are prone to oxidation, resulting in the deterioration of their magnetic properties. In the current work, CoFe alloy nanoparticles were prepared by thermal decomposition of cobalt and iron carbonyls in organic solvents at high temperatures. Using a seeded growth method, we successfully synthesised chemically stable CoFe@Pt core/shell nanostructures. The obtained core/shell nanoparticles have high saturation magnetisation up to 135 emu g(-1). The magnetisation value of the core/shell nanoparticles remains 93 emu g(-1) after being exposed to air for 12 weeks. Hydrophobic CoFe@Pt nanoparticles were rendered water-dispersible by encapsulating with poly(maleic anhydride-alt-1-octadecene) (PMAO). These nanoparticles were stable in water for at least 3 months and in a wide range of pH from 2 to 11.

  10. Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents.

    PubMed

    Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina

    2014-08-21

    Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 ± 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.

  11. Binary iron-carbon nanoparticle synthesis in photolysis of Fe(CO)5 with methane and acetylene

    NASA Astrophysics Data System (ADS)

    Eremin, A. V.; Gurentsov, E. V.; Mikheyeva, E. Yu; Musikhin, S. A.

    2016-11-01

    The experimental investigation of iron-carbon nanoparticles synthesis by joint laser photolysis of iron pentacarbonyl in the mixture with methane or acetylene has been carried out. The radiation source used for photo-dissociation of precursors was a pulsed Nd:Yag laser operated at a wavelength of 266 nm. Under uv radiation the molecules of Fe(CO)5 decomposed, forming atomic iron vapor and unsaturated carbonyls at well-known and readily controllable parameters. The subsequent condensation of supersaturated metal vapor resulted in small iron clusters and nanoparticles formation. It was assumed that the active catalytic surface of metal nanoparticles could activate the hydrocarbon molecules up to carbon layer formation on their surface. The growth process of the nanoparticles was observed by a method of laser light extinction. Additionally nanoparticle samples were investigated by a transmission electron microscope. The particle sizes were measured by microphotographs treatment. The sizes of synthesized particles from methane-iron-pentacarbonyl mixture were found to be in a range of 4-16 nm with a count median diameter of 8.9 nm and standard deviation of 1.13. These particles consisted of iron oxide without any carbon content. The particles formed in photolysis of acetylene-iron-pentacarbonyl mixture had the sizes of 3-7 nm with count median diameter of 4 nm and standard deviation of 1.28 and contained the essential amount of carbon. The iron cores were surrounded with a carbon shell.

  12. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Tefft, Brandon J.; Uthamaraj, Susheil; Harburn, J. Jonathan; Klabusay, Martin; Dragomir-Daescu, Dan; Sandhu, Gurpreet S.

    2015-01-01

    Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering. PMID:26554870

  13. The crystal structure of iron at the inner core

    NASA Astrophysics Data System (ADS)

    Tateno, S.; Hirose, K.; Ohishi, Y.; Tatsumi, Y.

    2010-12-01

    The Earth’s solid inner core is mainly composed of iron. Thus the crystal structure of iron is of prime importance for understanding the nature of solid inner core. Despite many efforts to investigate phase relations of iron have by dynamic and static compression, and theoretical calculation, consensus on the stable phase at the inner core condition has never been achieved. While hcp-Fe can persist to core pressures at 300 K, a phase transition at elevated temperature is a possibility. Both theory and experiments proposed different forms of iron at simultaneously high P-T conditions, which include bcc, face-centered-cubic (fcc), and hcp structures. The structure of iron has never been examined experimentally at the inner core P-T conditions (>330 GPa and ≥5000 K), because such extreme conditions could only be achieved by shock-wave compression experiments. Based on static compression experiments in a laser-heated diamond-anvil cell (DAC), we determined the structure of iron up to 377 GPa and 5700 K. Iron powder and thermal insulation layers of SiO2 glass were loaded into a hole of a pre-indented rhenium gasket placed in the For experiments beyond 300 GPa, the double-beveled diamond anvils with 40-μm culets were used, and accordingly the sample size was limited to about 20 μm. Heating was performed from both sides of the sample by employing two single mode, Yb fiber lasers with output power up to 100 W each with flat-top beam shaping optics to minimize temperature gradient across the sample. Angle-dispersive x-ray diffraction measurements were conducted at BL10XU of SPring-8. Six separate sets of experiments were conducted in a wide P-T range from 135 GPa and 2690 K to 377 GPa and 5700 K. We observed crystal growth and hence the stability of hcp-Fe at these P-T conditions with no evidence for a phase transition to bcc nor fcc iron phases. The c/a axial ratio of hcp-Fe at high temperature was also studied, which has significant effect on the nature of the

  14. Melting of Iron Close to the Inner Core Boundary Pressure

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Coppari, F.; Fratanduono, D. E.; Eggert, J.; Collins, G. W.

    2014-12-01

    The melting curve of iron at the pressure of the inner core boundary places a strong constraint on the thermal profile within the Earth, the heat flux to the mantle, and also the power to drive the geodynamo. Recent static diamond anvil cell measurements by Anzellini et al. 2013 have accurately measured the melting curve of iron to 200 GPa, which is a tremendous improvement in the available data but is still only 60% of the pressure at the inner core boundary, and thus requires significant extrapolation. Nguyen and Holmes, 2004, have used the sound velocity technique to measure the melting transition on the principal Hugoniot, up to 270 GPa, but some still believe that sound velocity is not an accurate diagnostic of melting as it detects a loss of strength and also that kinetics can mitigate the utility of dynamic melting techniques. Here we use in-situ x-ray diffraction to unambiguously measure the melting transition on the principal Hugoniot of iron to 270 GPa. We also show that iron melts from the hcp phase at pressures up to 270 GPa, which is significantly closer to the inner core boundary than any previous melting curve measurement capable of phase discrimination. From comparison of our measurements to those of Nguyen and Holmes, we show that sound velocity measurements can accurately constrain the melting curve and that the kinetics of melting iron are faster than both laser shock and gas gun experimental timescales. Thereby, dynamic techniques should be trusted for probing the melting curve of metals and they also offer the greatest opportunity to probe the melting curve of iron at the pressure of the inner core boundary and also the higher pressures achieved within the interiors of super-Earths. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  16. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles.

    PubMed

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-12-28

    The effect of nanoparticle size (30-120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T(2) relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics.

  17. Stem cell tracking using iron oxide nanoparticles.

    PubMed

    Bull, Elizabeth; Madani, Seyed Yazdan; Sheth, Roosey; Seifalian, Amelia; Green, Mark; Seifalian, Alexander M

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI) and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.

  18. Core-Shell Composite Nanoparticles: Synthesis, Characterization, and Applications

    NASA Astrophysics Data System (ADS)

    Sanyal, Sriya

    Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.

  19. Magnetic and optical properties of multifunctional core-shell radioluminescence nanoparticles

    PubMed Central

    Chen, Hongyu; Colvin, Daniel C.; Qi, Bin; Moore, Thomas; He, Jian; Mefford, O. Thompson; Alexis, Frank; Gore, John C.; Anker, Jeffrey N.

    2014-01-01

    When X-rays irradiate radioluminescence nanoparticles, they generate visible and near infrared light that can penetrate through centimeters of tissue. X-ray luminescence tomography (XLT) maps the location of these radioluminescent contrast agents at high resolution by scanning a narrow X-ray beam through the tissue sample and collecting the luminescence at every position. Adding magnetic functionality to these radioluminescent particles would enable them to be guided, oriented, and heated using external magnetic fields, while their location and spectrum could be imaged with XLT and complementary magnetic resonance imaging. In this work, multifunctional monodispersed magnetic radioluminescent nanoparticles were developed as potential drug delivery carriers and radioluminescence imaging agents. The particles consisted of a spindle-shaped magnetic γ-Fe2O3 core and a radioluminescent europium-doped gadolinium oxide shell. Particles with solid iron oxide cores displayed saturation magnetizations consistent with their ~13% core volume, however, the iron oxide quenched their luminescence. In order to increase the luminescence, we partially etched the iron oxide core in oxalic acid while preserving the radioluminescent shell. The core size was controlled by the etching time which in turn affected the particles’ luminescence and magnetic properties. Particles with intermediate core sizes displayed both strong magnetophoresis and luminescence properties. They also served as MRI contrast agents with relaxivities of up to 58 mM−1s−1 (r2) and 120 mM−1s−1 (r2*). These particles offer promising multimodal MRI/fluorescence/X-ray luminescence contrast agents. Our core-shell synthesis technique offers a flexible method to control particle size, shape, and composition for a wide range of biological applications of magnetic/luminescent nanoparticles. PMID:24520183

  20. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  1. Iron oxide magnetic nanoparticles synthesized by atmospheric microplasmas

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Kaur, Parvin; Tan, Augustine Tuck Lee; Singh, Rajveer; Lee, Paul Choon Keat; Springham, Stuart Victor; Ramanujan, Raju V.; Rawat, R. S.

    2014-08-01

    This paper presents the synthesis of iron oxide nanoparticles using the atmospheric microplasma (AMP). The properties of iron oxide nanoparticles synthesized using AMP are compared with particles (i) formed in as-prepared solution and (ii) prepared using thermal decomposition method. Iron oxide nanoparticles prepared by all the 3 treatment methods exhibit quite soft ferromagnetic properties with coercivities less than 10 G. The AMP synthesis technique was found to be more efficient and better than thermal decomposition method due to ultra-shorter experiment time (around 2.5 min) as compared to 90 min required for thermal decomposition method. Moreover, AMP synthesized nanoparticles are better isolated and of smaller size than thermal decomposition ones. The effect of plasma discharge timings on synthesized nanoparticles has also been studied in this work. Coercivity of synthesized nanoparticles decreases with the increasing plasma discharge timings from 3 to 10 min. The nanoparticles synthesized using plasma discharge timing of 10 min exhibit the smallest coercivity of around 3 G. This suggests a high possibility of achieving super-paramagnetic nanoparticles by optimizing the plasma discharge timings of AMP.

  2. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.

    PubMed

    Li, Jian-Feng; Zhang, Yue-Jiao; Ding, Song-Yuan; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2017-03-08

    Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.

  3. Gas phase synthesis of core-shell Fe@FeO x magnetic nanoparticles into fluids

    NASA Astrophysics Data System (ADS)

    Aktas, Sitki; Thornton, Stuart C.; Binns, Chris; Denby, Phil

    2016-12-01

    Sorbitol, short chain molecules, have been used to stabilise of Fe@FeO x nanoparticles produced in the gas phase under the ultra-high vacuum (UHV) conditions. The sorbitol coated Fe@FeO x nanoparticles produced by our method have a narrow size distribution with a hydrodynamic diameter of 35 nm after NaOH is added to the solution. Magnetisation measurement shows that the magnetic nanoparticles are superparamagnetic at 100 K and demonstrate hysteresis at 5 K with an anisotropy constant of 5.31 × 104 J/m3 (similar to bulk iron). Also, it is shown that sorbitol is only suitable for stabilising the Fe@FeO x suspensions, and it does not prevent further oxidation of the metallic Fe core. According to MRI measurement, the nanoparticles have a high transverse relaxation rate of 425 mM-1 s-1.

  4. Enhanced Magnetic Properties in Antiferromagnetic-Core/Ferrimagnetic-Shell Nanoparticles

    PubMed Central

    Vasilakaki, Marianna; Trohidou, Kalliopi N.; Nogués, Josep

    2015-01-01

    Bi-magnetic core/shell nanoparticles are gaining increasing interest due to their foreseen applications. Inverse antiferromagnetic(AFM)/ferrimagnetic(FiM) core/shell nanoparticles are particularly appealing since they may overcome some of the limitations of conventional FiM/AFM systems. However, virtually no simulations exist on this type of morphology. Here we present systematic Metropolis Monte Carlo simulations of the exchange bias properties of such nanoparticles. The coercivity, HC, and loop shift, Hex, present a non-monotonic dependence with the core diameter and the shell thickness, in excellent agreement with the available experimental data. Additionally, we demonstrate novel unconventional behavior in FiM/AFM particles. Namely, while HC and Hex decrease upon increasing FiM thickness for small AFM cores (as expected), they show the opposite trend for large cores. This presents a counterintuitive FiM size dependence for large AFM cores that is attributed to the competition between core and shell contributions, which expands over a wider range of core diameters leading to non-vanishing Hex even for very large cores. Moreover, the results also hint different possible ways to enhance the experimental performance of inverse core/shell nanoparticles for diverse applications. PMID:25872473

  5. Magnesium and iron nanoparticles production using microorganisms and various salts

    NASA Astrophysics Data System (ADS)

    Kaul, R. K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J. C.

    2012-09-01

    Response of five fungi and two bacteria to different salts of magnesium and iron for production of nanoparticles was studied. Pochonia chlamydosporium, and Aspergillus fumigatus were exposed to three salts of magnesium while Curvularia lunata, Chaetomium globosum, A. fumigatus, A. wentii and the bacteria Alcaligenes faecalis and Bacillus coagulans were exposed to two salts of iron for nanoparticle production. The results revealed that P. chlamydosporium induces development of extracellular nanoparticles in MgCl2 solution while A. fumigatus produces also intracellular nanoparticles when exposed to MgSO4 solution. C. globosum was found as the most effective in producing nanoparticles when exposed to Fe2O3 solution. The FTIR analysis of the nanoparticles obtained from Fe2O3 solution showed the peaks similar to iron (Fe). In general, the species of the tested microbes were selective to different chemicals in their response for synthesis of nanoparticles. Further studies on their characterization and improving the efficiency of promising species of fungi need to be undertaken before tapping their potential as nanonutrients for plants.

  6. Molecular Imprinting of Polymeric Core-Shell Nanoparticles

    DTIC Science & Technology

    2002-04-05

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013604 TITLE: Molecular Imprinting of Polymeric Core-Shell Nanoparticles...Soc. Symp. Proc. Vol. 723 © 2002 Materials Research Society M3.2 MOLECULAR IMPRINTING OF POLYMERIC CORE-SHELL NANOPARTICLES Natalia P~rez Moral and...rebinding was performed in an organic solvent. INTRODUCTION Molecularly imprinted polymers ( MIPs ) address the need for robust, simple, fast and efficient

  7. Multifunctional magnetic and fluorescent core-shell nanoparticles for bioimaging.

    PubMed

    Lu, Yanjiao; He, Bicheng; Shen, Jie; Li, Jie; Yang, Wantai; Yin, Meizhen

    2015-02-07

    Novel magnetic and fluorescent core-shell nanoparticles have been fabricated, which exhibit superparamagnetic behavior and emit strong near-infrared fluorescence. The nanoparticles are highly biocompatible and can be internalized into cells with nucleic accumulation via strong interaction with nucleic acids, implying potential applications in the biomedical field.

  8. Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems.

    PubMed

    Tombácz, Etelka; Turcu, Rodica; Socoliuc, Vlad; Vékás, Ladislau

    2015-12-18

    Recent developments in nanotechnology and application of magnetic nanoparticles, in particular in magnetic iron oxide nanosystems, offer exciting possibilities for nanomedicine. Facile and precise synthesis procedures, high magnetic response, tunable morphologies and multiple bio-functionalities of single- and multi-core magnetic particles designed for nanomedicine applications are thoroughly appraised. This review focuses on the structural and magnetic characterization of the cores, the synthesis of single- and multicore iron oxide NPs, especially the design of the latter, as well as their protection, stabilization and functionalization by desired coating in order to protect against the corrosion of core, to prevent non-specific protein adsorption and particle aggregation in biological media, and to provide binding sites for targeting and therapeutic agents.

  9. Tailoring magnetic properties of core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Sun, Shouheng; Li, J.; Wang, Z. L.; Liu, J. P.

    2004-08-01

    Bimagnetic FePt /MFe2O4(M =Fe,Co) core/shell nanoparticles are synthesized via high-temperature solution phase coating of 3.5nm FePt core with MFe2O4 shell. The thickness of the shell is controlled from 0.5 to 3nm. An assembly of the core/shell nanoparticles shows a smooth magnetization transition under an external field, indicating effective exchange coupling between the FePt core and the oxide shell. The coercivity of the FePt /Fe3O4 particles depends on the volume ratio of the hard and soft phases, consistent with previous theoretical predictions. These bimagnetic core/shell nanoparticles represent a class of nanostructured magnetic materials with their properties tunable by varying the chemical composition and thickness of the coating materials.

  10. Is iron at the Earth's core conditions hcp-structured?

    SciTech Connect

    Dubrovinsky, L; Dubrovinskaia, N; Prakapenka, V

    2012-02-07

    Iron is the main component of the Earth's core and its structure and properties are important for interpretation of geophysical observations and modeling dynamics of the core. We argue that the diffraction lines in the high temperature high pressure X-ray diffraction pattern, presented by Tateno et al., 2010 and interpreted as those of solely hot hcp-Fe, correspond indeed to the insufficiently heated part of the sample. We show that observed diffraction spots are either due to bcc-Fe or carbides.

  11. Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI

    NASA Astrophysics Data System (ADS)

    Ali, Ahmed Atef Ahmed; Hsu, Fei-Ting; Hsieh, Chia-Ling; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Wei, Zung-Hang; Chen, Cheng-Yu; Huang, Hsu-Shan

    2016-11-01

    We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR–ERK–NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T2-weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles.

  12. Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI

    PubMed Central

    Ali, Ahmed Atef Ahmed; Hsu, Fei-Ting; Hsieh, Chia-Ling; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Wei, Zung-Hang; Chen, Cheng-Yu; Huang, Hsu-Shan

    2016-01-01

    We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR–ERK–NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T2-weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles. PMID:27833124

  13. Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines

    PubMed Central

    Zhu, Xiao-Ming; Wang, Yi-Xiang J; Leung, Ken Cham-Fai; Lee, Siu-Fung; Zhao, Feng; Wang, Da-Wei; Lai, Josie MY; Wan, Chao; Cheng, Christopher HK; Ahuja, Anil T

    2012-01-01

    Purpose To compare the cellular uptake efficiency and cytotoxicity of aminosilane (SiO2-NH2)-coated superparamagnetic iron oxide (SPIO@SiO2-NH2) nanoparticles with three other types of SPIO nanoparticles coated with SiO2 (SPIO@SiO2), dextran (SPIO@dextran), or bare SPIO in mammalian cell lines. Materials and methods Four types of monodispersed SPIO nanoparticles with a SPIO core size of 7 nm and an overall size in a range of 7–15 nm were synthesized. The mammalian cell lines of MCF-7, MDA-MB-231, HT-29, RAW264.7, L929, HepG2, PC-3, U-87 MG, and mouse mesenchymal stem cells (MSCs) were incubated with four types of SPIO nanoparticles for 24 hours in the serum-free culture medium Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 μg/mL iron concentration. The cellular uptake efficiencies of SPIO nanoparticles were compared by Prussian blue staining and intracellular iron quantification. In vitro magnetic resonance imaging of MSC pellets after SPIO labeling was performed at 3 T. The effect of each SPIO nanoparticle on the cell viability of RAW 264.7 (mouse monocyte/macrophage) cells was also evaluated. Results Transmission electron microscopy demonstrated surface coating with SiO2-NH2, SiO2, and dextran prevented SPIO nanoparticle aggregation in DMEM culture medium. MCF-7, MDA-MB-231, and HT-29 cells failed to show notable iron uptake. For all the remaining six cell lines, Prussian blue staining and intracellular iron quantification demonstrated that SPIO@ SiO2-NH2 nanoparticles had the highest cellular uptake efficiency. SPIO@SiO2-NH2, bare SPIO, and SPIO@dextran nanoparticles did not affect RAW 264.7 cell viability up to 200 μg Fe/mL, while SPIO@SiO2 reduced RAW 264.7 cell viability from 10 to 200 μg Fe/mL in a dose-dependent manner. Conclusion Cellular uptake efficiency of SPIO nanoparticles depends on both the cell type and SPIO surface characteristics. Aminosilane surface coating enhanced the cellular uptake efficiency without inducing cytotoxicity in a

  14. Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics.

    PubMed

    Santhosh, Poornima Budime; Ulrih, Nataša Poklar

    2013-08-09

    Iron-oxide nanoparticles of small dimensions that have superparamagnetic properties show immense potential to revolutionize the future of cancer theranostics, the combinatorial diagnosis and therapeutic approach towards cancer. Superparamagnetic iron-oxide nanoparticles (SPIONs) have unique magnetic properties, due to which they show excellent tumor-targeting efficiency, and this paves the way for effective personalized cancer treatment. The aim of this review is to focus on the ability of SPIONs to perform multiple roles in the field of cancer biology, such as in diagnosis, monitoring, targeting and therapy. Also, other topics are discussed, including the synthesis of SPIONs, the challenges and recent advances.

  15. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles.

    PubMed

    Laurent, Sophie; Dutz, Silvio; Häfeli, Urs O; Mahmoudi, Morteza

    2011-08-10

    Due to their unique magnetic properties, excellent biocompatibility as well as multi-purpose biomedical potential (e.g., applications in cancer therapy and general drug delivery), superparamagnetic iron oxide nanoparticles (SPIONs) are attracting increasing attention in both pharmaceutical and industrial communities. The precise control of the physiochemical properties of these magnetic systems is crucial for hyperthermia applications, as the induced heat is highly dependent on these properties. In this review, the limitations and recent advances in the development of superparamagnetic iron oxide nanoparticles for hyperthermia are presented.

  16. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles

    PubMed Central

    Zeng, Q.; Baker, I.; Loudis, J. A.; Liao, Y.F.; Hoopes, P.J.

    2014-01-01

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl3 within a NaBH4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe3O4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe3O4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization (MS) of Fe/Fe3O4 particles (100–190 emu/g) can be twice as high, and the coercivity (HC) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe3O4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles. PMID:25301983

  17. Continuous flow analysis of labile iron in ice-cores.

    PubMed

    Hiscock, William T; Fischer, Hubertus; Bigler, Matthias; Gfeller, Gideon; Leuenberger, Daiana; Mini, Olivia

    2013-05-07

    The important active and passive role of mineral dust aerosol in the climate and the global carbon cycle over the last glacial/interglacial cycles has been recognized. However, little data on the most important aeolian dust-derived biological micronutrient, iron (Fe), has so far been available from ice-cores from Greenland or Antarctica. Furthermore, Fe deposition reconstructions derived from the palaeoproxies particulate dust and calcium differ significantly from the Fe flux data available. The ability to measure high temporal resolution Fe data in polar ice-cores is crucial for the study of the timing and magnitude of relationships between geochemical events and biological responses in the open ocean. This work adapts an existing flow injection analysis (FIA) methodology for low-level trace Fe determinations with an existing glaciochemical analysis system, continuous flow analysis (CFA) of ice-cores. Fe-induced oxidation of N,N'-dimethyl-p-pheylenediamine (DPD) is used to quantify the biologically more important and easily leachable Fe fraction released in a controlled digestion step at pH ~1.0. The developed method was successfully applied to the determination of labile Fe in ice-core samples collected from the Antarctic Byrd ice-core and the Greenland Ice-Core Project (GRIP) ice-core.

  18. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents.

    PubMed

    Wei, He; Bruns, Oliver T; Kaul, Michael G; Hansen, Eric C; Barch, Mariya; Wiśniowska, Agata; Chen, Ou; Chen, Yue; Li, Nan; Okada, Satoshi; Cordero, Jose M; Heine, Markus; Farrar, Christian T; Montana, Daniel M; Adam, Gerhard; Ittrich, Harald; Jasanoff, Alan; Nielsen, Peter; Bawendi, Moungi G

    2017-02-28

    Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI contrast agents used in the clinic. GBCAs have shown efficacy and are safe to use with most patients; however, some GBCAs have a small risk of adverse effects, including nephrogenic systemic fibrosis (NSF), the untreatable condition recently linked to gadolinium (Gd) exposure during MRI with contrast. In addition, Gd deposition in the human brain has been reported following contrast, and this is now under investigation by the US Food and Drug Administration (FDA). To address a perceived need for a Gd-free contrast agent with pharmacokinetic and imaging properties comparable to GBCAs, we have designed and developed zwitterion-coated exceedingly small superparamagnetic iron oxide nanoparticles (ZES-SPIONs) consisting of ∼3-nm inorganic cores and ∼1-nm ultrathin hydrophilic shell. These ZES-SPIONs are free of Gd and show a high T1 contrast power. We demonstrate the potential of ZES-SPIONs in preclinical MRI and magnetic resonance angiography.

  19. The responses of immune cells to iron oxide nanoparticles.

    PubMed

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping

    2016-04-01

    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications.

  20. Effects of Mesoporous Silica Coating and Post-Synthetic Treatment on the Transverse Relaxivity of Iron Oxide Nanoparticles

    PubMed Central

    Hurley, Katie R.; Lin, Yu-Shen; Zhang, Jinjin; Egger, Sam M.; Haynes, Christy L.

    2013-01-01

    Mesoporous silica nanoparticles have the capacity to load and deliver therapeutic cargo and incorporate imaging modalities, making them prominent candidates for theranostic devices. One of the most widespread imaging agents utilized in this and other theranostic platforms is nanoscale superparamagnetic iron oxide. Although several core-shell magnetic mesoporous silica nanoparticles presented in the literature have provided high T2 contrast in vitro and in vivo, there is ambiguity surrounding which parameters lead to enhanced contrast. Additionally, there is a need to understand the behavior of these imaging agents over time in biologically relevant environments. Herein, we present a systematic analysis of how the transverse relaxivity (r2) of magnetic mesoporous silica nanoparticles is influenced by nanoparticle diameter, iron oxide nanoparticle core synthesis, and the use of a hydrothermal treatment. This work demonstrates that samples which did not undergo a hydrothermal treatment experienced a drop in r2 (75% of original r2 within 8 days of water storage), while samples with hydrothermal treatment maintained roughly the same r2 for over 30 days in water. Our results suggest that iron oxide oxidation is the cause of the r2 loss, and this oxidation can be prevented both during synthesis and storage by the use of deoxygenated conditions during nanoparticle synthesis. The hydrothermal treatment also provides colloidal stability, even in acidic and highly salted solutions, and a resistance against acid degradation of the iron oxide nanoparticle core. The results of this study show the promise of multifunctional mesoporous silica nanoparticles but will also likely inspire further investigation into multiples types of theranostic devices, taking into consideration their behavior over time and in relevant biological environments. PMID:23814377

  1. Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size

    PubMed Central

    Cai, Yao; Cao, Changqian; He, Xiaoqing; Yang, Caiyun; Tian, Lanxiang; Zhu, Rixiang; Pan, Yongxin

    2015-01-01

    Purpose This study is to demonstrate the nanoscale size effect of ferrimagnetic H-ferritin (M-HFn) nanoparticles on magnetic properties, relaxivity, enzyme mimetic activities, and application in magnetic resonance imaging (MRI) and immunohistochemical staining of cancer cells. Materials and methods M-HFn nanoparticles with different sizes of magnetite cores in the range of 2.7–5.3 nm were synthesized through loading different amounts of iron into recombinant human H chain ferritin (HFn) shells. Core size, crystallinity, and magnetic properties of those M-HFn nanoparticles were analyzed by transmission electron microscope and low-temperature magnetic measurements. The MDA-MB-231 cancer cells were incubated with synthesized M-HFn nanoparticles for 24 hours in Dulbecco’s Modified Eagle’s Medium. In vitro MRI of cell pellets after M-HFn labeling was performed at 7 T. Iron uptake of cells was analyzed by Prussian blue staining and inductively coupled plasma mass spectrometry. Immunohistochemical staining by using the peroxidase-like activity of M-HFn nanoparticles was carried out on MDA-MB-231 tumor tissue paraffin sections. Results The saturation magnetization (Ms), relaxivity, and peroxidase-like activity of synthesized M-HFn nanoparticles were monotonously increased with the size of ferrimagnetic cores. The M-HFn nanoparticles with the largest core size of 5.3 nm exhibit the strongest saturation magnetization, the highest peroxidase activity in immunohistochemical staining, and the highest r2 of 321 mM−1 s−1, allowing to detect MDA-MB-231 breast cancer cells as low as 104 cells mL−1. Conclusion The magnetic properties, relaxivity, and peroxidase-like activity of M-HFn nanoparticles are size dependent, which indicates that M-HFn nanoparticles with larger magnetite core can significantly enhance performance in MRI and staining of cancer cells. PMID:25878496

  2. Synthesis and stability of iron nanoparticles for lunar environment studies

    NASA Astrophysics Data System (ADS)

    Hung, Ching-Cheh; McNatt, Jeremiah

    2010-06-01

    Simulants of lunar dust are needed when researching the lunar environment. However, unlike the true lunar dust, today's simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of a lunar dust simulant. (1) The first is to sequentially treat a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300°C in nitrogen, at room temperature in air, and then at 1050°C in nitrogen. The product includes glass beads that are gray in color, can be attracted by a magnet, and contains α-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12months). This product may have some similarity to the lunar glassy agglutinate, which contains FeO. (2) The second is to heat a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050°C in nitrogen. This process simulates lunar dust reactions with the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be α-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process. This growth became undetectable after 6months of ambient air storage, but may last for several years or longer.

  3. Synthesis and Stability of Iron Nanoparticles for Lunar Environment Studies

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; McNatt, Jeremiah

    2009-01-01

    Simulant of lunar dust is needed when researching the lunar environment. However, unlike the true lunar dust, today s simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of the lunar dust simulant: (1) Sequentially treating a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 C in nitrogen, at room temperature in air, and then at 1050 C in nitrogen. The product includes glass beads that are grey in color, can be attracted by a magnet, and contain alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy regolith that contains Fe(sup 0). (2) Heating a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 C in nitrogen. This process simulates lunar dust reaction to the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process, but stabilizes after 6 months of ambient air storage.

  4. From iron coordination compounds to metal oxide nanoparticles

    PubMed Central

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2 IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles. PMID:28144555

  5. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation

    NASA Astrophysics Data System (ADS)

    Skaat, Hadas; Belfort, Georges; Margel, Shlomo

    2009-06-01

    Maghemite (γ-Fe2O3) magnetic nanoparticles of 15.0 ± 2.1 nm are formed by nucleation followed by controlled growth of maghemite thin films on gelatin-iron oxide nuclei. Uniform magnetic γ-Fe2O3/poly (2,2,3,3,4,4,4-heptafluorobutyl acrylate) (γ-Fe2O3/PHFBA) core-shell nanoparticles are prepared by emulsion polymerization of the fluorinated monomer 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) in the presence of the maghemite nanoparticles. The kinetics of the insulin fibrillation process in the absence and in the presence of the γ-Fe2O3/PHFBA core-shell nanoparticles are elucidated. A significant direct slow transition from α-helix to β-sheets during insulin fibril formation is observed in the presence of the γ-Fe2O3/PHFBA nanoparticles. This is in contradiction to our previous manuscript, which illustrated that the γ-Fe2O3 core nanoparticles do not affect the kinetics of the formation of the insulin fibrils, and to other previous publications that describe acceleration of the fibrillation process by using various types of nanoparticles. These core-shell nanoparticles may therefore be also useful for the inhibition of conformational changes of other amyloidogenic proteins that lead to neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, mad cow and prion diseases.

  6. Core-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Chen, An-Yu; Liao, Hung-Liang; Yang, Ming-Chien; Liu, Ting-Yu; Chan, Tzu-Yi; Tsou, Hui-Ming; Kuo, Chih-Yu; Wang, Juen-Kai; Wang, Yuh-Lin

    2015-10-01

    In this study, multifunctional hybrid nanoparticles composed of iron platinum (FePt), silica (SiO2), and gold nanoparticles (AuNPs) had been developed for surface-enhanced Raman scattering (SERS) application. Core-shell structure of SiO2 and FePt nanoparticles (FePt@SiO2) was fabricated through sol-gel process and then immobilized gold nanoparticles onto the surface of FePt@SiO2, which displays huge Raman enhancement effect and magnetic separation capability. The resulting core-shell nanoparticles were subject to evaluation by transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX), zeta potential measurement, and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that the particle size of resultant nanoparticles displayed spherical structure with the size ~30 nm and further proved the successful immobilization of Au onto the surface of FePt@SiO2. Zeta potential measurement exhibited the successful reaction between FePt@SiO2 and AuNPs. The rapid SERS detection and identification of small biomolecules (adenine) and microorganisms (gram-positive bacteria, Staphylococcus aureus) was conducted through Raman spectroscopy. In summary, the novel core-shell magnetic nanoparticles could be anticipated to apply in the rapid magnetic separation under the external magnetic field due to the core of the FePt superparamagnetic nanoparticles and label-free SERS bio-sensing of biomolecules and bacteria.

  7. Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging.

    PubMed

    Shanavas, Asifkhan; Sasidharan, Sisini; Bahadur, Dhirendra; Srivastava, Rohit

    2017-01-15

    Hybrid nanoparticles with magnetic poly (lactide-co-glycolide) (PLGA) nanoparticle 'core', surface modified with folate-chitosan (fol-cht) conjugate 'shell' are evaluated as simultaneous anti-cancer therapeutic and MRI contrast agent. The fol-cht conjugate is prepared using carbodiimide crosslinking chemistry at an optimized folate to amine (chitosan) molar ratio for further coating on PLGA nanoparticles loaded with docetaxel and well packed super paramagnetic iron oxide nanoparticles (SPIONs). Apart from possessing a targeting moiety, the coating provides a physical barrier to avoid undesired burst release of drug and also imparts sensitivity to acidic pH, due to protonated amine group dependent decondensation of the coating and subsequent drug release. The biocompatible hybrid nanoparticles provide receptor targeted docetaxel and SPION delivery for anti-cancer therapy and magnetic resonance (MR) imaging respectively, as tested in both folate receptor positive and negative cancer cells. Enhancement in nanoparticle uptake by folate receptor positive oral cancer cells caused significant increase in docetaxel mediated cytotoxicity. While polymeric encapsulation and fol-cht coating negatively affects the magnetic property of iron oxide nanoparticles, their aggregation in the core, shortened the overall T2 relaxation time thereby enhancing the nanoparticle relaxivity to provide better in vitro MR imaging.

  8. Controlled oxidation of iron nanoparticles in chemical vapour synthesis

    NASA Astrophysics Data System (ADS)

    Ruusunen, Jarno; Ihalainen, Mika; Koponen, Tarmo; Torvela, Tiina; Tenho, Mikko; Salonen, Jarno; Sippula, Olli; Joutsensaari, Jorma; Jokiniemi, Jorma; Lähde, Anna

    2014-02-01

    In the present study, iron oxide nanoparticles (primary particle size of 80-90 nm) with controlled oxidation state were prepared via an atmospheric pressure chemical vapour synthesis (APCVS) method. Iron pentacarbonyl [Fe(CO)5], a precursor material, was thermally decomposed to iron in the APCVS reactor. Subsequently, the iron was oxidized with controlled amount of oxygen in the reactor to produce nearly pure magnetite or haematite particles depending on the oxygen concentration. Size, morphology and crystal structure of the synthesized nanoparticles were studied with scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). In addition, thermodynamic equilibrium calculations and computational fluid dynamics model were used to predict the oxidation state of the iron oxides and the reaction conditions during mixing. Aggregates of crystalline particles were formed, determined as magnetite at the oxygen volumetric fraction of 0.1 % and haematite at volumetric fraction of 0.5 %, according to the XRD. The geometric mean electrical mobility diameter of the aggregates increased from 110 to 155 nm when the volumetric fraction of oxygen increased from 0.1 to 0.5 %, determined using the SMPS. The aggregates were highly sintered based on TEM analyses. As a conclusion, APCVS method can be used to produce nearly pure crystalline magnetite or haematite nanoparticles with controlled oxidation in a continuous one-stage gas-phase process.

  9. Mercury removal in wastewater by iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vélez, E.; Campillo, G. E.; Morales, G.; Hincapié, C.; Osorio, J.; Arnache, O.; Uribe, J. I.; Jaramillo, F.

    2016-02-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe3O4 and γ-Fe2O3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λmax∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements.

  10. Preparation of composite with silica-coated nanoparticles of iron oxide spinels for applications based on magnetically induced hyperthermia

    NASA Astrophysics Data System (ADS)

    Andrade, Angela L.; Fabris, José D.; Pereira, Márcio C.; Domingues, Rosana Z.; Ardisson, José D.

    2013-04-01

    It is reported a novel method to prepare magnetic core (iron oxide spinels)-shell (silica) composites containing well-dispersed magnetic nanoparticles in aqueous solution. The synthetic process consists of two steps. In a first step, iron oxide nanoparticles obtained through co-precipitation are dispersed in an aqueous solution containing tetramethylammonium hydroxide; in a second step, particles of this sample are coated with silica, through hydrolyzation of tetraethyl orthosilicate. The intrinsic atomic structure and essential properties of the core-shell system were assessed with powder X-ray diffraction, Fourier transform infrared spectrometry, Mössbauer spectroscopy and transmission electron microscopy. The heat released by this ferrofluid under an AC-generated magnetic field was evaluated by following the temperature evolution under increasing magnetic field strengths. Results strongly indicate that this ferrofluid based on silica-coated iron oxide spinels is technologically a very promising material to be used in medical practices, in oncology.

  11. Process to make core-shell structured nanoparticles

    DOEpatents

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  12. Measurements of Electrical and Thermal Conductivity of Iron Under Earth's Core Conditions

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Kuwayama, Y.; Shimizu, K.; Yagi, T.; Hirose, K.; Ohishi, Y.

    2014-12-01

    Secular cooling of the Earth's core induces the convection of the conductive liquid outer core, which generates the geomagnetic field, and the growth of the solid inner core. Since iron is the primary component of the Earth's core, the electrical and thermal conductivity of iron in both solid and liquid states are key pieces of information for estimating the transport properties of the core. We performed electrical and thermal conductivity measurements on iron under core conditions in a laser-heated diamond anvil cell. Our electrical conductivity measurements on iron clearly show resistivity saturation phenomena in iron under high pressure and high temperature conditions as predicted in a recent laboratory-based model for the core conductivity (Gomi et al., 2013). Direct measurements of thermal diffusivity of iron have been also preformed at high pressures by using the pulsed light heating thermoreflectance technique, which enable us to confirm the validity of the Wiedemann-Franz law toward transition metal under high pressure.

  13. Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content

    PubMed Central

    Wabler, Michele; Zhu, Wenlian; Hedayati, Mohammad; Attaluri, Anilchandra; Zhou, Haoming; Mihalic, Jana; Geyh, Alison; DeWeese, Theodore L.; Ivkov, Robert; Artemov, Dmitri

    2015-01-01

    Purpose Magnetic iron oxide nanoparticles (MNPs) are used as contrast agents for magnetic resonance imaging (MRI) and hyperthermia for cancer treatment. The relationship between MRI signal intensity and cellular iron concentration for many new formulations, particularly MNPs having magnetic properties designed for heating in hyperthermia, is lacking. In this study, we examine the correlation between MRI T2 relaxation time and iron content in cancer cells loaded with various MNP formulations. Materials and methods Human prostate carcinoma DU-145 cells were loaded with starch-coated bionised nanoferrite (BNF), iron oxide (Nanomag® D-SPIO), Feridex™, and dextran-coated Johns Hopkins University (JHU) particles at a target concentration of 50 pg Fe/cell using poly-D-lysine transfection reagent. T2-weighted MRI of serial dilutions of these labelled cells was performed at 9.4 T and iron content quantification was performed using inductively coupled plasma mass spectrometry (ICP-MS). Clonogenic assay was used to characterise cytotoxicity. Results No cytotoxicity was observed at twice the target intracellular iron concentration (~100 pg Fe/cell). ICP-MS revealed highest iron uptake efficiency with BNF and JHU particles, followed by Feridex and Nanomag-D-SPIO, respectively. Imaging data showed a linear correlation between increased intracellular iron concentration and decreased T2 times, with no apparent correlation among MNP magnetic properties. Conclusions This study demonstrates that for the range of nanoparticle concentrations internalised by cancer cells the signal intensity of T2-weighted MRI correlates closely with absolute iron concentration associated with the cells. This correlation may benefit applications for cell-based cancer imaging and therapy including nanoparticle-mediated drug delivery and hyperthermia. PMID:24773041

  14. Synthesis of nanoparticle-cored dendrimers by convergent dendritic functionalization of monolayer-protected nanoparticles.

    PubMed

    Shon, Young-Seok; Choi, Daeock; Dare, Jonathan; Dinh, Tuong

    2008-06-01

    This article presents a synthesis method for nanoparticle-cored dendrimers (NCDs), which have dendritic architectures around a monolayer-protected gold nanoparticle. The synthesis method is based on a strategy in which the synthesis of monolayer-protected nanoparticles is followed by adding dendrons on functionalized nanoparticles by a single coupling reaction. NMR spectroscopy, IR spectroscopy, and thermogravimetric analysis (TGA) characterizations confirmed the successful coupling reaction between dendrons with different generations ([G1], [G2], and [G3]) and COOH-functionalized nanoparticles ( approximately Au201L71). The dendrimer wedge density also could be controlled by reacting nanoparticles having different loading of COOH groups ( approximately 60 and approximately 10% COOH of the 71 ligands per gold nanoparticle) with functionalized dendrons. Transmission electron microscope results showed that this synthesis strategy maintains the average size of the nanoparticle core during dendron coupling reactions. This control over the composition and core size makes the systematic study of NCDs with different generations possible. The chemical stability of NCDs was found to be affected by dendron generation around the nanoparticle core. The current-potential response of NCD films on microelectrode arrays exhibited better electrical conductivity for NCDs with lower dendron generation.

  15. Direct synthesis of magnetite nanoparticles from iron(II) carboxymethylcellulose and their performance as NMR contrast agents

    NASA Astrophysics Data System (ADS)

    da Silva, Delmarcio Gomes; Hiroshi Toma, Sergio; de Melo, Fernando Menegatti; Carvalho, Larissa Vieira C.; Magalhães, Alvicler; Sabadini, Edvaldo; dos Santos, Antônio Domingues; Araki, Koiti; Toma, e. Henrique E.

    2016-01-01

    Iron(II) carboxymethylcellulose (CMC) has been successfully employed in the synthesis of hydrophylic magnetite nanoparticles stabilized with a biopolymer coating, aiming applications in NMR imaging. The new method encompasses a convenient one-step synthetic procedure, allowing a good size control and yielding particles of about 10 nm (core size). In addition to the biocompatibility, the nanoparticles have promoted a drastic reduction in the transverse relaxation time (T2) of the water protons. The relaxivity rates have been investigated as a function of the nanoparticles concentration, showing a better performance in relation to the common NMR contrast agents available in the market.

  16. Homogeneous Iron Phosphate Nanoparticles by Combustion of Sprays

    PubMed Central

    Rudin, Thomas; Pratsinis, Sotiris E.

    2013-01-01

    Low-cost synthesis of iron phosphate nanostructured particles is attractive for large scale fortification of basic foods (rice, bread, etc.) as well as for Li-battery materials. This is achieved here by flame-assisted and flame spray pyrolysis (FASP and FSP) of inexpensive precursors (iron nitrate, phosphate), solvents (ethanol), and support gases (acetylene and methane). The iron phosphate powders produced here were mostly amorphous and exhibited excellent solubility in dilute acid, an indicator of relative iron bioavailability. The amorphous and crystalline fractions of such powders were determined by X-ray diffraction (XRD) and their cumulative size distribution by X-ray disk centrifuge. Fine and coarse size fractions were obtained also by sedimentation and characterized by microscopy and XRD. The coarse size fraction contained maghemite Fe2O3 while the fine was amorphous iron phosphate. Furthermore, the effect of increased production rate (up to 11 g/h) on product morphology and solubility was explored. Using increased methane flow rates through the ignition/pilot flame of the FSP-burner and inexpensive powder precursors resulted in also homogeneous iron phosphate nanoparticles essentially converting the FSP to a FASP process. The powders produced by FSP at increased methane flow had excellent solubility in dilute acid as well. Such use of methane or even natural gas might be economically attractive for large scale flame-synthesis of nanoparticles. PMID:23407874

  17. Homogeneous Iron Phosphate Nanoparticles by Combustion of Sprays.

    PubMed

    Rudin, Thomas; Pratsinis, Sotiris E

    2012-06-13

    Low-cost synthesis of iron phosphate nanostructured particles is attractive for large scale fortification of basic foods (rice, bread, etc.) as well as for Li-battery materials. This is achieved here by flame-assisted and flame spray pyrolysis (FASP and FSP) of inexpensive precursors (iron nitrate, phosphate), solvents (ethanol), and support gases (acetylene and methane). The iron phosphate powders produced here were mostly amorphous and exhibited excellent solubility in dilute acid, an indicator of relative iron bioavailability. The amorphous and crystalline fractions of such powders were determined by X-ray diffraction (XRD) and their cumulative size distribution by X-ray disk centrifuge. Fine and coarse size fractions were obtained also by sedimentation and characterized by microscopy and XRD. The coarse size fraction contained maghemite Fe(2)O(3) while the fine was amorphous iron phosphate. Furthermore, the effect of increased production rate (up to 11 g/h) on product morphology and solubility was explored. Using increased methane flow rates through the ignition/pilot flame of the FSP-burner and inexpensive powder precursors resulted in also homogeneous iron phosphate nanoparticles essentially converting the FSP to a FASP process. The powders produced by FSP at increased methane flow had excellent solubility in dilute acid as well. Such use of methane or even natural gas might be economically attractive for large scale flame-synthesis of nanoparticles.

  18. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI

    PubMed Central

    Lodhia, J; Mandarano, G; Ferris, NJ; Eu, P; Cowell, SF

    2010-01-01

    Contrast agents, such as iron oxide, enhance MR images by altering the relaxation times of tissues in which the agent is present. They can also be used to label targeted molecular imaging probes. Unfortunately, no molecular imaging probe is currently available on the clinical MRI market. A promising platform for MRI contrast agent development is nanotechnology, where superparamagnetic iron oxide nanoparticles (SPIONS) are tailored for MR contrast enhancement, and/or for molecular imaging. SPIONs can be produced using a range of methods and the choice of method will be influenced by the characteristics most important for a particular application. In addition, the ability to attach molecular markers to SPIONS heralds their application in molecular imaging. There are many reviews on SPION synthesis for MRI; however, these tend to be targeted to a chemistry audience. The development of MRI contrast agents attracts experienced researchers from many fields including some researchers with little knowledge of medical imaging or MRI. This situation presents medical radiation practitioners with opportunities for involvement, collaboration or leadership in research depending on their level of commitment and their ability to learn. Medical radiation practitioners already possess a large portion of the understanding, knowledge and skills necessary for involvement in MRI development and molecular imaging. Their expertise in imaging technology, patient care and radiation safety provides them with skills that are directly applicable to research on the development and application of SPIONs and MRI. In this paper we argue that MRI SPIONs, currently limited to major research centres, will have widespread clinical use in the future. We believe that knowledge about this growing area of research provides an opportunity for medical radiation practitioners to enhance their specialised expertise to ensure best practice in a truly multi-disciplinary environment. This review outlines how and

  19. Characterization and Reactivity of Iron Nanoparticles Prepared with Added Cu, Pd, and Ni

    SciTech Connect

    Chun, Chan Lan; Baer, Donald R.; Matson, Dean W.; Amonette, James E.; Penn, Ryland L.

    2010-07-01

    The presence of a secondary metal on iron particles affects redox reactivity in engineered remediation systems. However, the structural characteristics of the metal additives and mechanism responsible for changes in reactivity have not been fully elucidated. Here, we synthesized iron nanoparticles with Cu, Pd, and Ni content ranging from 0-2 mol% via a solution deposition process (SDP), hydrogen reduction process (HRP), or hydrogen reduction of ferrihydrite coprecipitated with the metal cations (HRCO). Results from solid-state characterization show that the synthetic methods produced similar iron core/magnetite shell particles but produced substantial differences in terms of the distribution of the metal additive. In SDP, the metal additives were heterogeneous distributed on the surface of the particles. The metal additives were clearly discernable in TEM images as spherical nanoparticles (2-4 nm) on the HRP and HRCO particles. In addition, we hypothesize that the metal additive is also present as solute within the iron core of the HRCO particles. Kinetic batch experiments of carbon tetrachloride (CT) degradation were performed to quantitatively compare the redox reactivity of the particles. Overall, metal additives resulted in enhanced overall pseudo-first order rate constants of CT degradation (kO,CT) compared to that of the iron nanoparticles. For the bimetallic iron nanoparticles prepared by SDP and HRP, kO,CT increased with the concentration of metal additives. The values of chloroform yield (YCF) were independent of the identity and amount of metal additives. However, both kO,CT and YCF of the HRCO iron particles were significantly greater. Results suggest that it is the distribution of the metal additives that most strongly impacts reactivity and product distribution. For example, for materials with ca. 0.9 50 mol% Ni, reactivity and YCF varied substantially (HRCO>SDP>HRP), and HRCO-NiFe resulted in the lowest final chloroform concentration because the

  20. Core-shell nanoparticle arrays double the strength of steel

    NASA Astrophysics Data System (ADS)

    Seol, J.-B.; Na, S.-H.; Gault, B.; Kim, J.-E.; Han, J.-C.; Park, C.-G.; Raabe, D.

    2017-02-01

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material’s strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties.

  1. Core-shell nanoparticle arrays double the strength of steel

    PubMed Central

    Seol, J.-B.; Na, S.-H.; Gault, B.; Kim, J.-E.; Han, J.-C.; Park, C.-G.; Raabe, D.

    2017-01-01

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material’s strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties. PMID:28225022

  2. Core-shell nanoparticle arrays double the strength of steel.

    PubMed

    Seol, J-B; Na, S-H; Gault, B; Kim, J-E; Han, J-C; Park, C-G; Raabe, D

    2017-02-22

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material's strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties.

  3. Pressure effects in hollow and solid iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Silva, N. J. O.; Saisho, S.; Mito, M.; Millán, A.; Palacio, F.; Cabot, A.; Iglesias, Ò.; Labarta, A.

    2013-06-01

    We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core.

  4. All Metal Iron Core For A Low Aspect Ratio Tokamak

    SciTech Connect

    D.A. Gates, C. Jun, I. Zatz, A. Zolfaghari

    2010-06-02

    A novel concept for incorporating a iron core transformer within a axisymmetric toroidal plasma containment device with a high neutron flux is described. This design enables conceptual design of low aspect ratio devices which employ standard transformer-driven plasma startup by using all-metal high resistance separators between the toroidal field windings. This design avoids the inherent problems of a multiturn air core transformer which will inevitably suffer from strong neutron bombardment and hence lose the integrity of its insulation, both through long term material degradation and short term neutron- induced conductivity.. A full 3-dimensional model of the concept has been developed within the MAXWELL program and the resultant loop voltage calculated. The utility of the result is found to be dependent on the resistivity of the high resistance separators. Useful loop voltage time histories have been obtained using achievable resistivities.

  5. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    PubMed Central

    2008-01-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed. PMID:21749733

  6. Evaluation of iron oxide nanoparticle biocompatibility.

    PubMed

    Hanini, Amel; Schmitt, Alain; Kacem, Kamel; Chau, François; Ammar, Souad; Gavard, Julie

    2011-01-01

    Nanotechnology is an exciting field of investigation for the development of new treatments for many human diseases. However, it is necessary to assess the biocompatibility of nanoparticles in vitro and in vivo before considering clinical applications. Our characterization of polyol-produced maghemite γ-Fe(2)O(3) nanoparticles showed high structural quality. The particles showed a homogeneous spherical size around 10 nm and could form aggregates depending on the dispersion conditions. Such nanoparticles were efficiently taken up in vitro by human endothelial cells, which represent the first biological barrier to nanoparticles in vivo. However, γ-Fe(2)O(3) can cause cell death within 24 hours of exposure, most likely through oxidative stress. Further in vivo exploration suggests that although γ-Fe(2)O(3) nanoparticles are rapidly cleared through the urine, they can lead to toxicity in the liver, kidneys and lungs, while the brain and heart remain unaffected. In conclusion, γ-Fe(2)O(3) could exhibit harmful properties and therefore surface coating, cellular targeting, and local exposure should be considered before developing clinical applications.

  7. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    PubMed Central

    Pöttler, Marina; Staicu, Andreas; Zaloga, Jan; Unterweger, Harald; Weigel, Bianca; Schreiber, Eveline; Hofmann, Simone; Wiest, Irmi; Jeschke, Udo; Alexiou, Christoph; Janko, Christina

    2015-01-01

    Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA), or with dextran (SEONDEX). Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system. PMID:26540051

  8. Size-dependent magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  9. Tactic response of bacteria to zero-valent iron nanoparticles.

    PubMed

    Ortega-Calvo, José-Julio; Jimenez-Sanchez, Celia; Pratarolo, Paolo; Pullin, Huw; Scott, Thomas B; Thompson, Ian P

    2016-06-01

    The microbial assessment of pollutant toxicity rarely includes behavioral responses. In this study, we investigated the tactic response of Pseudomonas putida G7, a representative of soil bacterium, towards engineered zero-valent iron nanoparticles (nZVIs), as a new end-point assessment of toxicity. The study integrated the characterization of size distribution and charge of nZVIs and tactic reaction response by means of inverted capillary assay and computer-assisted motion analysis of motility behavior. Iron nanoparticles (diameter ≤ 100 nm) were prepared in the absence of oxygen to prevent aggregation, and then exposed in aerobic conditions. We first demonstrate that iron nanoparticles can elicit a negative tactic response in bacteria at low but environmentally-relevant, sub-lethal concentrations (1-10 μg/L). Cells were repelled by nZVIs in the concentration gradients created inside the capillaries, and a significant increase in turning events, characteristic of negative taxis, was detected under exposure to nZVIs. These tactic responses were not detectable after sustained exposure of the nanoparticles to oxygen. This new behavioral assessment may be prospected for the design of sensitive bioassays for nanomaterial toxicity.

  10. Nanodisco Balls: Control over Surface versus Core Loading of Diagnostically Active Nanocrystals into Polymer Nanoparticles

    PubMed Central

    2015-01-01

    Nanoparticles of complex architectures can have unique properties. Self-assembly of spherical nanocrystals is a high yielding route to such systems. In this study, we report the self-assembly of a polymer and nanocrystals into aggregates, where the location of the nanocrystals can be controlled to be either at the surface or in the core. These nanospheres, when surface decorated with nanocrystals, resemble disco balls, thus the term nanodisco balls. We studied the mechanism of this surface loading phenomenon and found it to be Ca2+ dependent. We also investigated whether excess phospholipids could prevent nanocrystal adherence. We found surface loading to occur with a variety of nanocrystal types including iron oxide nanoparticles, quantum dots, and nanophosphors, as well as sizes (10–30 nm) and shapes. Additionally, surface loading occurred over a range of polymer molecular weights (∼30–3000 kDa) and phospholipid carbon tail length. We also show that nanocrystals remain diagnostically active after loading onto the polymer nanospheres, i.e., providing contrast in the case of magnetic resonance imaging for iron oxide nanoparticles and fluorescence for quantum dots. Last, we demonstrated that a fluorescently labeled protein model drug can be delivered by surface loaded nanospheres. We present a platform for contrast media delivery, with the unusual feature that the payload can be controllably localized to the core or the surface. PMID:25188401

  11. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    SciTech Connect

    Vernieres, Jerome Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  12. Reductive degradation of tetrabromobisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation.

    PubMed

    Luo, Si; Yang, Shaogui; Wang, Xiaodong; Sun, Cheng

    2010-04-01

    The present study described the degradation behavior of tetrabromobisphenol A (TBBPA) in Fe-Ag suspension solutions under ultrasonic radiation (US). The Fe-Ag bimetallic nanoparticles with core-shell structure were successfully synthesized by reduction and deposition of Ag on nanoscale Fe surface, and were further characterized by BET, XRD, TEM, SEM, X-ray fluorescence and X-ray photo-electron spectroscopy. The results revealed that the displacement plating produced a non-uniform overlayer of Ag additive on iron; the as-synthesized bimetallic nanoparticles were spherical with diameters of 20-100 nm aggregated in the form of chains. Batch studies demonstrated that the TBBPA (2 mg L(-1)) was completely degraded in 20 min over Fe-Ag nanoparticles, which has higher degradation efficiency than Fe(0) nanoparticles under US. The effects of Fe-Ag bimetallic nanoparticles loading, initial TBBPA concentration, pH of the solution, Ag loading and temperature on the reduction efficiency of TBBPA under US were investigated. The complete reduction of TBBPA in 20 min was determined selectively under the conditions of pH (pH=6.0+/-0.5), Ag loading(1 wt.%) at 30 degrees C over the fabricated Fe-Ag nanoparticles. Additionally, the major intermediates identified by LC-MS technique were tri-BBPA, di-BBPA, mono-BBPA and BPA and the degradation mechanism was also proposed.

  13. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    SciTech Connect

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  14. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    PubMed Central

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  15. Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery

    PubMed Central

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics, an area used to combine therapeutics and diagnostics. The recent applications of NPs in miRNA delivery are also reviewed. PMID:24396508

  16. Nanomagnetism of Core-Shell Magnetic Nanoparticles and Application in Spent Nuclear Fuel Separation

    NASA Astrophysics Data System (ADS)

    Tarsem Singh, Maninder Kaur

    This dissertation presents the study on novel core-shell magnetic nanoparticles (NPs) with unique magnetic properties. Understanding the fundamental physics of antiferromagnetic - ferromagnetic interactions is essential to apply in different applications. Chromium (Cr) doped and undoped core-shell iron/iron-oxide NPs have been synthesized using cluster deposition system and studied with respect to their nanostructures, morphologies, sizes, chemical composition and magnetic properties. The room-temperature magnetic properties of Fe based NPs shows the strong dependence of intra/inter-particle interaction on NP size. The Cr-doped Fe NP shows the origin of sigma-FeCr phase at very low Cr concentration (2 at.%) unlike others reported at high Cr content and interaction reversal from dipolar to exchange interaction. A theoretical model of watermelon is constructed based on the experimental results and core-shell NP system in order to explain the physics of exchange interaction in Cr-doped Fe particles. The magnetic nanoparticle---chelator separation nanotechnology is investigated for spent nuclear fuel recycling and is reported 97% and 80% of extraction for Am(III) and Pu(IV) actinides respectively. If the long-term heat generating actinides such as Am(III) can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. As it is a simple, versatile, compact, and cost efficient process that minimizes secondary waste and improves storage performance.

  17. The effect of coating on heat generation properties of Iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan

    Magnetic nanoparticles have attracted more and more attention for their potential application as heating agents in cancer hyperthermia. The effectiveness of cancer hyperthermia can be increased by using particles that have a higher heat generation rate, quantified by specific absorption rate (SAR), at a smaller applied field. In order to optimize the functionality of nanoparticles as heating agents, it is essential to have a comprehensive understanding of factors that may influence SAR including coating and aggregation. In all biomedical applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration and add functionality. Coatings may profoundly influence particles' clustering behavior and magnetic properties. Yet its effect on the heat generation rate of the nanoparticles has been scarcely investigated. In this context, a systematic investigation was carried out in this dissertation in order to understand the impact of the surface coating of magnetic nanoparticles on their heat generation rate. The study also includes investigation of normal nerve cell viability in presence of biofunctionalized magnetic nanoparticles with and without exposure to magnetic heating. Commercially available suspensions of iron oxide nanoparticles with a diameter of approximately 10 nm and different coatings relevant to biomedical applications such as aminosilane, carboxymethyl-dextran, protein A, biotin were extensively characterized. First of all, magnetic phase reduction of magnetite nanoparticles was examined by studying the discrepancy between the volume fraction of magnetic phase calculated from magnetization curve and the magnetic core concentration obtained from Tiron chelation test. The findings indicated that coatings might interact with the surface atoms of the magnetic core and form a magnetically disordered layer reducing the total amount of the magnetic phase. Secondly, the impact of coating and aggregation

  18. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Douziech-Eyrolles, Laurence; Marchais, Hervé; Hervé, Katel; Munnier, Emilie; Soucé, Martin; Linassier, Claude; Dubois, Pierre; Chourpa, Igor

    2007-01-01

    During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug. PMID:18203422

  19. Magnesium solubility in metallic iron during core formation

    NASA Astrophysics Data System (ADS)

    Badro, J.; Siebert, J.; Nimmo, F.

    2015-12-01

    Terrestrial core formation occurred by gravitational segregation of immiscible metal and silicate melts in an extensively molten proto-Earth. This stripped the bulk silicate Earth of most of its siderophile elements, which were concentrated in the core. The process occurs by virtue of partitioning through a redox reaction (e.g. [1]) whereby iron in the metal exchanges for a bonded siderophile element in the mantle. By performing metal-silicate equilibration experiments at extreme pressures and temperatures using the laser-heated diamond anvil cell, we find that the major lithophile component of the silicate Earth, namely MgO, can also become soluble in the metal. At close to 5000 K, our experiments show that up to 1.2 % MgO can be incorporated in the metal. We show that Mg incorporation in the metal isn't a redox reaction as with siderophile element partitioning, but rather a direct solubility of the MgO component as temperatures approach the metal-silicate solvus; in that respect, our results are fully consistent with the recently calculated Fe-MgO solvus [2]. This confirms that significant amounts of magnesium could have been added to the early core, provided that a giant impact had generated the necessary temperature increase. The subsequent exsolution of MgO driven by core cooling would have provided a significant buoyancy source, likely sufficient to drive core convection and producing an ancient magnetic field [3]. [1] J. Wade and B. J. Wood, Earth Planet. Sci. Lett., 236, 78-95 (2005) [2] S. M. Wahl and B. Militzer, Earth Planet. Sci. Lett. 410, 25-33 (2015) [3] D. J. Stevenson, DI11C-03, Fall AGU 2012.

  20. Iron isotopic fractionation between silicate mantle and metallic core at high pressure

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Dauphas, Nicolas; Roskosz, Mathieu; Hu, Michael Y.; Yang, Hong; Bi, Wenli; Zhao, Jiyong; Alp, Esen E.; Hu, Justin Y.; Lin, Jung-Fu

    2017-02-01

    The +0.1‰ elevated 56Fe/54Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure-temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, even at high pressure. From the measured mean force constants of iron bonds, we calculate an equilibrium iron isotope fractionation between silicate and iron under core formation conditions in Earth of ~0-0.02‰, which is small relative to the +0.1‰ shift of terrestrial basalts. This result is unaffected by small amounts of nickel and candidate core-forming light elements, as the isotopic shifts associated with such alloying are small. This study suggests that the variability in iron isotopic composition in planetary objects cannot be due to core formation.

  1. Dopamine Serves as a Stable Surface Modifier for Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chi, Xiaoqin; Wang, Xiaomin; Hu, Juan; Wang, Lirong; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang

    2013-03-01

    Iron oxide nanoparticles are an important class of nanomaterials in a broad range of biomedical applications because of their superparamagnetism and biocompatibility. The success of biomedical applications of iron oxide nanoparticles relies on the particles' surface functionalization, which requires robust and versatile surface anchors. Here, we report on a detailed examination of the dopamine-based surface modification of iron oxide nanoparticles. We used dopamine (2-(3,4-dihydroxyphenyl)ethylamine) and L-dopa (3,4-dihydroxy-L-phenylalanine) as two surface modifiers and chose Fe2O3 hollow nanoparticles and Fe3O4 nanoparticles as two representative substrates. Optical and TEM images showed that iron oxide nanoparticles dispersed very well in water after surface modification. The analysis of the UV-Vis spectra indicated that dopamine and L-dopa are stable after being immobilized on the surface of iron oxide nanoparticles when the pH value of the environment is about 7. The magnetic properties analysis further showed that the blocking temperature of the dopamine- or L-dopa-decorated iron oxide nanoparticles hardly changed over 20 days, confirming long-term stability of these surface modified nanoparticles. Cell assay indicated that these dopamine- or L-dopa-modified iron oxide nanoparticles were biocompatible. These results confirm that dopamine serves as a stable modifier and a robust anchor to functionalize iron oxide nanoparticles in biomedical applications.

  2. Design of Super-Paramagnetic Core-Shell Nanoparticles for Enhanced Performance of Inverted Polymer Solar Cells.

    PubMed

    Jaramillo, Johny; Boudouris, Bryan W; Barrero, César A; Jaramillo, Franklin

    2015-11-18

    Controlling the nature and transfer of excited states in organic photovoltaic (OPV) devices is of critical concern due to the fact that exciton transport and separation can dictate the final performance of the system. One effective method to accomplish improved charge separation in organic electronic materials is to control the spin state of the photogenerated charge-carrying species. To this end, nanoparticles with unique iron oxide (Fe3O4) cores and zinc oxide (ZnO) shells were synthesized in a controlled manner. Then, the structural and magnetic properties of these core-shell nanoparticles (Fe3O4@ZnO) were tuned to ensure superior performance when they were incorporated into the active layers of OPV devices. Specifically, small loadings of the core-shell nanoparticles were blended with the previously well-characterized OPV active layer of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Upon addition of the core-shell nanoparticles, the performance of the OPV devices was increased up to 25% relative to P3HT-PCBM active layer devices that contained no nanoparticles; this increase was a direct result of an increase in the short-circuit current densities of the devices. Furthermore, it was demonstrated that the increase in photocurrent was not due to enhanced absorption of the active layer due to the presence of the Fe3O4@ZnO core-shell nanoparticles. In fact, this increase in device performance occurred because of the presence of the superparamagnetic Fe3O4 in the core of the nanoparticles as incorporation of ZnO only nanoparticles did not alter the device performance. Importantly, however, the ZnO shell of the nanoparticles mitigated the negative optical effect of Fe3O4, which have been observed previously. This allowed the core-shell nanoparticles to outperform bare Fe3O4 nanoparticles when the single-layer nanoparticles were incorporated into the active layer of OPV devices. As such, the new materials described here present a

  3. Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells

    PubMed Central

    Kasten, Annika; Grüttner, Cordula; Kühn, Jens-Peter; Bader, Rainer; Pasold, Juliane; Frerich, Bernhard

    2014-01-01

    Magnetic resonance imaging (MRI) using measurement of the transverse relaxation time (R2*) is to be considered as a promising approach for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. While the relationship between core composition of nanoparticles and their MRI properties is well studied, little is known about possible effects on progenitor cells. This in vitro study aims at comparing two magnetic iron oxide nanoparticle types, single vs. multi-core nanoparticles, regarding their physico-chemical characteristics, effects on cellular behavior of adipose tissue-derived stem cells (ASC) like differentiation and proliferation as well as their detection and quantification by means of MRI. Quantification of both nanoparticle types revealed a linear correlation between labeling concentration and R2* values. However, according to core composition, different levels of labeling concentrations were needed to achieve comparable R2* values. Cell viability was not altered for all labeling concentrations, whereas the proliferation rate increased with increasing labeling concentrations. Likewise, deposition of lipid droplets as well as matrix calcification revealed to be highly dose-dependent particularly regarding multi-core nanoparticle-labeled cells. Synthesis of cartilage matrix proteins and mRNA expression of collagen type II was also highly dependent on nanoparticle labeling. In general, the differentiation potential was decreased with increasing labeling concentrations. This in vitro study provides the proof of principle for further in vivo tracking experiments of progenitor cells using nanoparticles with different core compositions but also provides striking evidence that combined testing of biological and MRI properties is advisable as improved MRI properties of multi-core nanoparticles may result in altered cell functions. PMID:25244560

  4. Toxicity assessment of zero valent iron nanoparticles on Artemia salina.

    PubMed

    Kumar, Deepak; Roy, Rajdeep; Parashar, Abhinav; Raichur, Ashok M; Chandrasekaran, Natarajan; Mukherjee, Anita; Mukherjee, Amitava

    2017-01-19

    The present study deals with the toxicity assessment of two differently synthesized zero valent iron nanoparticles (nZVI, chemical and biological) as well as Fe(2+) ions on Artemia salina at three different initial concentrations of 1, 10, and 100 mg/L of these particles. The assessment was done till 96 h at time intervals of 24 h. EC50 value was calculated to evaluate the 50% mortality of Artemia salina at all exposure time durations. Between chemically and biologically synthesized nZVI nanoparticles, insignificant differences in the level of mortality were demonstrated. At even 24 h, Fe(2+) ion imparted complete lethality at the highest exposure concentration (100 mg/L). To understand intracellular oxidative stress because of zero valent iron nanoparticles, ROS estimation, SOD activity, GSH activity, and catalase activity was performed which demonstrated that ionic form of iron is quite lethal at high concentrations as compared with the same concentration of nZVI exposure. Lower concentrations of nZVI were more toxic as compared with the ionic form and was in order of CS-nZVI > BS-nZVI > Fe(2+) . Cell membrane damage and bio-uptake of nanoparticles were also evaluated for all three concentrations of BS-nZVI, CS-nZVI, and Fe(2+) using adult Artemia salina in marine water; both of which supported the observations made in toxicity assessment. This study can be further explored to exploit Artemia salina as a model organism and a biomarker in an nZVI prone aquatic system to detect toxic levels of these nanoparticles.

  5. Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers.

    PubMed

    Tamburro, Davide; Fredolini, Claudia; Espina, Virginia; Douglas, Temple A; Ranganathan, Adarsh; Ilag, Leopold; Zhou, Weidong; Russo, Paul; Espina, Benjamin H; Muto, Giovanni; Petricoin, Emanuel F; Liotta, Lance A; Luchini, Alessandra

    2011-11-30

    Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core-shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (K(D) < 10(-11) M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.

  6. Super-iron Nanoparticles with Facile Cathodic Charge Transfer

    SciTech Connect

    M Farmand; D Jiang; B Wang; S Ghosh; D Ramaker; S Licht

    2011-12-31

    Super-irons contain the + 6 valence state of iron. One advantage of this is that it provides a multiple electron opportunity to store additional battery charge. A decrease of particle size from the micrometer to the nanometer domain provides a higher surface area to volume ratio, and opportunity to facilitate charge transfer, and improve the power, voltage and depth of discharge of cathodes made from such salts. However, super-iron salts are fragile, readily reduced to the ferric state, with both heat and contact with water, and little is known of the resultant passivating and non-passivating ferric oxide products. A pathway to decrease the super-iron particle size to the nano-domain is introduced, which overcomes this fragility, and retains the battery capacity advantage of their Fe(VI) valence state. Time and power controlled mechanosynthesis, through less aggressive, dry ball milling, leads to facile charge transfer of super-iron nanoparticles. Ex-situ X-ray Absorption Spectroscopy is used to explore the oxidation state and structure of these iron oxides during discharge and shows the significant change in stability of the ferrate structure to lower oxidation state when the particle size is in the nano-domain.

  7. Solution voltammetry of 4 nm magnetite iron oxide nanoparticles.

    PubMed

    Roberts, Joseph J P; Westgard, John A; Cooper, Laura M; Murray, Royce W

    2014-07-30

    The voltammetry of solution-dispersed magnetite iron oxide Fe3O4 nanoparticles is described. Their currents are controlled by nanoparticle transport rates, as shown with potential step chronoamperometry and rotated disk voltammetry. In pH 2 citrate buffer with added NaClO4 electrolyte, solution cyclic voltammetry of these nanoparticles (average diameter 4.4 ± 0.9 nm, each containing ca. 30 Fe sites) displays an electrochemically irreversible oxidation with E(PEAK) at ca. +0.52 V and an irreversible reduction with E(PEAK) at ca. +0.2 V vs Ag/AgCl reference electrode. These processes are presumed to correspond to the formal potentials for one-electron oxidation of Fe(II) and reduction of Fe(III) at their different sites in the magnetite nanoparticle structure. The heterogeneous electrode reaction rates of the nanoparticles are very slow, in the 10(-5) cm/s range. The nanoparticles are additionally characterized by a variety of tools, e.g., TEM, UV/vis, and XPS spectroscopies.

  8. Synthesis of Core-Shell Nanoparticle Composites

    DTIC Science & Technology

    2010-08-17

    XPS . 2.7 Results and discussion The particle size was determined by TEM. TEM images show that both Gd2O3 and Gd2O3 and Eu inclusion nanoparticles...O (1s) spectrum of PEGylated Gd2O3 NP XPS analysis, indicating the success coating of PEG on the particles. Similarly, the presence of carboxyl (C=O...Australia 6 (a) Gd2O3 NPs in DEG spectrum (b) C (1s) and O (1s) spectrum (c) 1,000-1,400 eV spectrum Figure 1 XPS spectra of Gd2O3 NPs

  9. Uptake and metabolism of iron oxide nanoparticles in brain cells.

    PubMed

    Petters, Charlotte; Irrsack, Ellen; Koch, Michael; Dringen, Ralf

    2014-09-01

    Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.

  10. Synthesis and characterization of platinum decorated iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Palchoudhury, Soubantika

    This dissertation focuses on the development of a bifunctional nanoparticle system that can potentially offer simultaneous imaging and therapy in the future. Recently, small platinum (Pt) nanoparticles (< 5 nm) have shown great potential in therapeutic applications, such as DNA dissociation, radiation therapy, and oxidative stress treatment. Therefore, the small Pt nanoparticles of size comparable to DNA grooves are chosen as potential therapeutic components in this research. However, such small sized Pt nanoparticles tends to aggregate, and are difficult to target. Therefore, this research reports the synthesis, characterization, and DNA interaction of small Pt decorated iron oxide nanoparticles. The iron oxide carriers provide stability to the small Pt nanoparticles, and can potentially serve as MRI contrast agents. The hypothesis of this research is that the Pt nanoparticles supported on iron oxide nanoparticle surfaces can effectively interact with DNA molecules similar to the free Pt nanoparticles. A reproducible synthetic technique was first developed to prepare iron oxide nanoparticles with excellent size control and narrow size distribution. Subsequently, two different approaches were utilized to produce multiple small Pt nanoparticle attached iron oxide nanoparticles. The first route involved attachment of Pt nanoparticles onto iron oxide seeds of various shapes in an organic solvent, followed by an aqueous phase transfer. Here, the shape of the nanoparticles was controlled to facilitate heterogeneous nucleation of Pt nanoparticles. The protective biocompatible polymer coating (polyacrylic acid) in this method could prevent interaction of the Pt nanoparticles with undesirable biomolecules. Several non-spherical iron oxide nanoparticles were explored, including whiskers, worms, plates, and flowers. In the second method, an aqueous phase ligand exchange process was performed first, prior to the deposition of multiple Pt nanoparticles. This facile method

  11. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia.

    PubMed

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world's children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability.

  12. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia

    PubMed Central

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world’s children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability. PMID:25609917

  13. Mössbauer study of carbon coated iron magnetic nanoparticles produced by simultaneous reduction/pyrolysis

    NASA Astrophysics Data System (ADS)

    Mendonça, Fernanda G.; Ardisson, José D.; Rosmaninho, Marcelo G.; Lago, Rochel M.; Tristão, Juliana C.

    2011-11-01

    Magnetic iron nanoparticles immersed in a carbon matrix were produced by a combined process of controlled dispersion of Fe3 + ions in sucrose, thermal decomposition with simultaneous reduction of iron cores and the formation of the porous carbonaceous matrix. The materials were prepared with iron contents of 1, 4 and 8 in %wt in sucrose and heated at 400, 600 and 800°. The samples were analyzed by XRD, Mössbauer spectroscopy, magnetization measurements, TG, SEM and TEM. The materials prepared at 400° are composed essentially of Fe3O4 particles and carbon, while treatments at higher temperatures, e.g. 600 and 800° produced as main phases Fe0 and Fe3C. The Mössbauer spectra of samples heated at 400° showed two sextets characteristic of a magnetite phase and other contributions compatible with Fe3 + and Fe2 + phases in a carbonaceous matrix. Samples treated at temperatures above 600° showed the presence of metallic iron with concentrations between 16-43%. The samples heated at 800° produced higher amounts of Fe3C (between 20% and 58%). SEM showed for the iron 8% sample treated at 600-800°C particle sizes smaller than 50 nm. Due to the presence of Fe0 particles in the carbonaceous porous matrix the materials have great potential for application as magnetic adsorbents.

  14. Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles.

    PubMed

    Cochran, David B; Wattamwar, Paritosh P; Wydra, Robert; Hilt, J Zach; Anderson, Kimberly W; Eitel, Richard E; Dziubla, Thomas D

    2013-12-01

    The biomedical use of superparamagnetic iron oxide nanoparticles has been of continued interest in the literature and clinic. Their ability to be used as contrast agents for imaging and/or responsive agents for remote actuation makes them exciting materials for a wide range of clinical applications. Recently, however, concern has arisen regarding the potential health effects of these particles. Iron oxide toxicity has been demonstrated in in vivo and in vitro models, with oxidative stress being implicated as playing a key role in this pathology. One of the key cell types implicated in this injury is the vascular endothelial cells. Here, we report on the development of a targeted polymeric antioxidant, poly(trolox ester), nanoparticle that can suppress oxidative damage. As the polymer undergoes enzymatic hydrolysis, active trolox is locally released, providing a long term protection against pro-oxidant agents. In this work, poly(trolox) nanoparticles are targeted to platelet endothelial cell adhesion molecules (PECAM-1), which are able to bind to and internalize in endothelial cells and provide localized protection against the cytotoxicity caused by iron oxide nanoparticles. These results indicate the potential of using poly(trolox ester) as a means of mitigating iron oxide toxicity, potentially expanding the clinical use and relevance of these exciting systems.

  15. Experimental determination of the electrical resistivity of iron at Earth's core conditions.

    PubMed

    Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei; Shimizu, Katsuya; Ohishi, Yasuo

    2016-06-02

    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth's core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth's core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth's core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core.

  16. Experimental determination of the electrical resistivity of iron at Earth’s core conditions

    NASA Astrophysics Data System (ADS)

    Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei; Shimizu, Katsuya; Ohishi, Yasuo

    2016-06-01

    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth’s core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth’s core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth’s core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core.

  17. Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds.

    PubMed

    Huang, Kuo-Cheng; Ehrman, Sheryl H

    2007-01-30

    We report on the synthesis of highly monodisperse iron nanoparticles, using a chemical reduction method. Iron nanoparticles with an average diameter of 6 nm and a geometric standard deviation of 1.3 were synthesized at a pH of 9.50 from ferric chloride precursor with sodium borohydride as the reducing agent, polyacrylic acid as the dispersing agent, and palladium ions as seeds for iron nanoparticle nucleation. The resulting nanoparticles were ferromagnetic at 5 K and superparamagnetic at 350 K. The dispersing agent polyacrylic acid (PAA) was shown to prevent iron nanoparticles and possibly palladium clusters from aggregating; in the absence of PAA, only aggregated iron nanoparticles were obtained. The addition of palladium ions decreased the diameter of iron nanoparticles presumably by providing sites for heterogeneous nucleation onto palladium clusters. In the absence of palladium ions, the mean diameter of iron nanoparticles was approximately 110 nm and the standard deviation increased to 2.0. The pH of the solution also was found to have a significant effect on the particle diameter, likely by affecting PAA ionization and altering the conformation of the polymer chains. At lower pH (8.75), the PAA is less ionized and its ability to disperse palladium clusters is reduced, so the number of palladium seeds decreases. Therefore, the resulting iron nanoparticles were larger, 59 nm in diameter, versus 6 nm for nanoparticles formed at a pH of 9.50.

  18. GoldMag nanoparticles with core/shell structure: characterization and application in MR molecular imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Zou, Liguang; Zhang, Dong; Pang, Xin; Yang, Hua; Xu, Ying

    2011-09-01

    GoldMag is a kind of bi-functional nanoparticle, composed of a gold nanoshell and an iron oxide core. GoldMag combines the antibody immobilization property of gold nanoshell with the superparamagnetic feature of the iron oxide core. Rabbit anti-mouse IgG was immobilized on the surface of GoldMag to synthesize GoldMag-IgG in a single-step process. Transmission electron microscopy, UV/Vis spectrophotometry, zeta potential analysis, dynamic light scattering, enzyme-linked immunosorbent assay, and magnetic resonance imaging (MRI) were employed to characterize the nanostructures and the spectroscopic and magnetic properties of GoldMag and GoldMag-IgG. The antibody encapsulation efficiency of GoldMag was measured as 58.7%, and the antibody loading capacity was 88 μg IgG per milligram of GoldMag. The immunoactivity of GoldMag-IgG was estimated to be 43.3% of that of the original IgG. The cytotoxicity of GoldMag was assessed by MTT assay, which showed that it has only little influence on human dermal lymphatic endothelial cells. MR imaging of different concentrations of ultrasmall superparamagnetic iron oxide, GoldMag, and GoldMag-IgG showed that 3 μg/mL of nanoparticles could significantly affect the MRI signal intensity of GRE T2*WI. The results demonstrate that GoldMag nanoparticles can be effectively conjugated with biomacromolecules and possess great potential for MR molecular imaging.

  19. Highly Stable Amine Functionalized Iron Oxide Nanoparticles Designed for Magnetic Particle Imaging (MPI)

    PubMed Central

    Arami, Hamed; Krishnan, Kannan M.

    2014-01-01

    Magnetic particle imaging (MPI) is a promising medical imaging technology that uses iron oxide nanoparticles (NPs) as clinically safe tracers. The core and hydrodynamic size of these NPs determine the signal intensity and spatial resolution in MPI, whilst their monodispersity when preserved during the biomedical applications, generates a consistently high quality MPI image. Using an effective process to coat the synthesized NPs with amine terminated PEG molecules, we show by dynamic light scattering (DLS) that they are water-soluble with long-term stability in biological media such as phosphate buffered saline (PBS) and sodium bicarbonate buffers and Dulbecco’s modified Eagle medium (DMEM) enriched with 10% fetal bovine serum (FBS). Further, using magnetic particle spectroscopy (MPS), to measure the particle response function (PRF), defined as the derivative of the magnetization of the nanoparticles, we predict the MPI performance of these nanoparticles at a driving field frequency of 25 kHz. The MPS efficacy of the functionalized nanoparticles was also monitored over time, and both signal intensity and resolution remained unchanged even after seven days of incubation. This is attributed to the dominant contribution of the Néel relaxation mechanism of the monodisperse and highly stable nanoparticles, which was preserved through the incubation period. PMID:25554710

  20. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    NASA Astrophysics Data System (ADS)

    Soares, Paula I. P.; Laia, César A. T.; Carvalho, Alexandra; Pereira, Laura C. J.; Coutinho, Joana T.; Ferreira, Isabel M. M.; Novo, Carlos M. M.; Borges, João Paulo

    2016-10-01

    Iron oxide nanoparticles (Fe3O4, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of -120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  1. Environment friendly route of iron oxide nanoparticles from Zingiber officinale (ginger) root extract

    NASA Astrophysics Data System (ADS)

    Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew

    2016-11-01

    Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.

  2. Preparation and biodistribution of 59Fe-radiolabelled iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pospisilova, Martina; Zapotocky, Vojtech; Nesporova, Kristina; Laznicek, Milan; Laznickova, Alice; Zidek, Ondrej; Cepa, Martin; Vagnerova, Hana; Velebny, Vladimir

    2017-02-01

    We report on the 59Fe radiolabelling of iron oxide nanoparticle cores through post-synthetic isotope exchange (59Fe-IONPex) and precursor labelling (59Fe-IONPpre). Scanning electron microscopy and dynamic light scattering measurements showed no impact of radiolabelling on nanoparticle size or morphology. While incorporation efficiencies of these methods are comparable—83 and 90% for precursor labelling and post-synthetic isotope exchange, respectively—59Fe-IONPpre exhibited much higher radiochemical stability in citrated human plasma. Quantitative ex vivo biodistribution study of 59Fe-IONPpre coated with triethylene glycol was performed in Wistar rats. Following the intravenous administration, high 59Fe concentration was observed in the lung and the organs of the reticuloendothelial system such as the liver, the spleen and the femur.

  3. Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications.

    PubMed

    Szekeres, Márta; Tóth, Ildikó Y; Illés, Erzsébet; Hajdú, Angéla; Zupkó, István; Farkas, Katalin; Oszlánczi, Gábor; Tiszlavicz, László; Tombácz, Etelka

    2013-07-12

    Despite the large efforts to prepare super paramagnetic iron oxide nanoparticles (MNPs) for biomedical applications, the number of FDA or EMA approved formulations is few. It is not known commonly that the approved formulations in many instances have already been withdrawn or discontinued by the producers; at present, hardly any approved formulations are produced and marketed. Literature survey reveals that there is a lack for a commonly accepted physicochemical practice in designing and qualifying formulations before they enter in vitro and in vivo biological testing. Such a standard procedure would exclude inadequate formulations from clinical trials thus improving their outcome. Here we present a straightforward route to assess eligibility of carboxylated MNPs for biomedical tests applied for a series of our core-shell products, i.e., citric acid, gallic acid, poly(acrylic acid) and poly(acrylic acid-co-maleic acid) coated MNPs. The discussion is based on physicochemical studies (carboxylate adsorption/desorption, FTIR-ATR, iron dissolution, zeta potential, particle size, coagulation kinetics and magnetization measurements) and involves in vitro and in vivo tests. Our procedure can serve as an example to construct adequate physico-chemical selection strategies for preparation of other types of core-shell nanoparticles as well.

  4. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    PubMed Central

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  5. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    PubMed

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively).

  6. Effective delivery of immunosuppressive drug molecules by silica coated iron oxide nanoparticles.

    PubMed

    Hwang, Jangsun; Lee, Eunwon; Kim, Jieun; Seo, Youngmin; Lee, Kwan Hong; Hong, Jong Wook; Gilad, Assaf A; Park, Hansoo; Choi, Jonghoon

    2016-06-01

    Iron oxide nanoparticles have been used in a wide range of biomedical applications, including drug delivery, molecular imaging, and cellular imaging. Various surface modifications have been applied to the particles to stabilize their surface and to give them a moiety for anchoring tags and/or drug molecules. Conventional methods of delivering immunosuppressant drugs often require a high dose of drugs to ensure therapeutic effects, but this can lead to toxic side effects. In this study, we used silica-coated iron oxide nanoparticles (IOSs) for a drug delivery application in which the nanoparticles carry the minimum amount of drug required to be effective to the target cells. IOSs could be loaded with water-insoluble immunosuppressive drug molecules (MPA: mycophenolic acid) and be used as a contrast agent for MRI. We characterized the IOSs for their physicochemical properties and found their average hydrodynamic diameter and core size to be 40.5nm and 5nm, respectively. Following the introduction of MPA-loaded IOSs (IOS/M), we evaluated the secretion dynamics of cytokines from peripheral blood mononuclear cells stimulated with phytohemagglutinin (PHA). The results showed that IOS/M effectively inhibited the secretion of the cytokines interleukin-2 and tumor necrosis factor α, with a minimal concentration of MPA. In conclusion, IOS/M may have potential applications in both efficient drug delivery and MRI.

  7. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility.

    PubMed

    Zaloga, Jan; Janko, Christina; Nowak, Johannes; Matuszak, Jasmin; Knaup, Sabine; Eberbeck, Dietmar; Tietze, Rainer; Unterweger, Harald; Friedrich, Ralf P; Duerr, Stephan; Heimke-Brinck, Ralph; Baum, Eva; Cicha, Iwona; Dörje, Frank; Odenbach, Stefan; Lyer, Stefan; Lee, Geoffrey; Alexiou, Christoph

    2014-01-01

    The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical

  8. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility

    PubMed Central

    Zaloga, Jan; Janko, Christina; Nowak, Johannes; Matuszak, Jasmin; Knaup, Sabine; Eberbeck, Dietmar; Tietze, Rainer; Unterweger, Harald; Friedrich, Ralf P; Duerr, Stephan; Heimke-Brinck, Ralph; Baum, Eva; Cicha, Iwona; Dörje, Frank; Odenbach, Stefan; Lyer, Stefan; Lee, Geoffrey; Alexiou, Christoph

    2014-01-01

    The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical

  9. Influence of different synthesis approach on doping behavior of silver nanoparticles onto the iron oxide-silica coreshell surfaces

    NASA Astrophysics Data System (ADS)

    Mahmed, Norsuria; Jiang, Hua; Heczko, Oleg; Söderberg, Outi; Hannula, Simo-Pekka

    2012-08-01

    Silver (Ag) nanoparticles with the crystallite size ranging from 13-24 nm were successfully doped onto the surface of iron oxide-silica coreshell particles. In the process, iron oxide particles having a size distribution within 8-19 nm were prepared by using a reverse co-precipitation method followed by the formation of iron oxide-core with silica shell (with 50-150 nm diameter of silica spheres) by using a modified Stöber method. The reduction of Ag ions was done at room temperature in a solution containing polyvinylpyrrolidone and ethanol by using mechanical and ultrasonic mixing. Four different synthesis approaches were used in doping of Ag nanoparticles. The phase, morphology, optical and magnetic properties of the synthesized powders were characterized by using X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope, UV-visible spectrometer (UV-Vis) and vibrating sample magnetometer. Spherical morphology of the Ag nanoparticles was found to deposit on the iron oxide-silica surfaces. The particle size distribution is depending on the synthesis approach used. The UV-Vis absorption peak at 404-410 nm of wavelength confirmed the existence of the Ag nanoparticles.

  10. Nanoparticle functionalised small-core suspended-core fibre – a novel platform for efficient sensing

    PubMed Central

    Doherty, Brenda; Csáki, Andrea; Thiele, Matthias; Zeisberger, Matthias; Schwuchow, Anka; Kobelke, Jens; Fritzsche, Wolfgang; Schmidt, Markus A.

    2017-01-01

    Detecting small quantities of specific target molecules is of major importance within bioanalytics for efficient disease diagnostics. One promising sensing approach relies on combining plasmonically-active waveguides with microfluidics yielding an easy-to-use sensing platform. Here we introduce suspended-core fibres containing immobilised plasmonic nanoparticles surrounding the guiding core as a concept for an entirely integrated optofluidic platform for efficient refractive index sensing. Due to the extremely small optical core and the large adjacent microfluidic channels, over two orders of magnitude of nanoparticle coverage densities have been accessed with millimetre-long sample lengths showing refractive index sensitivities of 170 nm/RIU for aqueous analytes where the fibre interior is functionalised by gold nanospheres. Our concept represents a fully integrated optofluidic sensing system demanding small sample volumes and allowing for real-time analyte monitoring, both of which are highly relevant within invasive bioanalytics, particularly within molecular disease diagnostics and environmental science. PMID:28270985

  11. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  12. State of the art of the bi- and trimetallic nanoparticles on the basis of gold and iron.

    PubMed

    Kharisov, Boris I; Kharissova, Oxana V; Yacamán, Miguel J; Ortiz M, Ubaldo

    2009-01-01

    Recently reported patents and experimental articles on the synthesis, properties, and main applications of core-shell nanoparticles, containing iron or its oxides and gold, as well as trimetallic systems on their basis, are reviewed. These nanostructures were obtained by a series of methods, including reduction in reverse micelles, decomposition of organometallic compounds, electron-beam, laser and gamma-irradiation, sonolysis and electrochemical methods. (Fe or Fe(X)O(y))/Au nanoparticles are subject to be functionalized with organic moieties, may expand their main applications, which consist of catalysis, biological and biomedical uses.

  13. The 57Fe hyperfine interactions in human liver ferritin and its iron-polymaltose analogues: the heterogeneous iron core model

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Alenkina, I. V.; Semionkin, V. A.

    2016-12-01

    Human liver ferritin and its iron-polymaltose pharmaceutical analogues Ferrum Lek, Maltofer® and Ferrifol® were studied using Mössbauer spectroscopy at 295 and 90 K. The Mössbauer spectra were fitted on the basis of a new model of heterogeneous iron core structure using five quadrupole doublets. These components were related to the corresponding more or less close-packed iron core layers/regions demonstrating some variations in the 57Fe hyperfine parameters for the studied samples.

  14. Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging.

    PubMed

    Li, Dan; Tang, Xin; Pulli, Benjamin; Lin, Chao; Zhao, Peng; Cheng, Jian; Lv, Zhongwei; Yuan, Xueyu; Luo, Qiong; Cai, Haidong; Ye, Meng

    2014-01-01

    Theranostic nanoparticles based on superparamagnetic iron oxide (SPIO) have a great promise for tumor diagnosis and gene therapy. However, the availability of theranostic nanoparticles with efficient gene transfection and minimal toxicity remains a big challenge. In this study, we construct an intelligent SPIO-based nanoparticle comprising a SPIO inner core and a disulfide-containing polyethylenimine (SSPEI) outer layer, which is referred to as a SSPEI-SPIO nanoparticle, for redox-triggered gene release in response to an intracellular reducing environment. We reveal that SSPEI-SPIO nanoparticles are capable of binding genes to form nano-complexes and mediating a facilitated gene release in the presence of dithiothreitol (5-20 mM), thereby leading to high transfection efficiency against different cancer cells. The SSPEI-SPIO nanoparticles are also able to deliver small interfering RNA (siRNA) for the silencing of human telomerase reverse transcriptase genes in HepG2 cells, causing their apoptosis and growth inhibition. Further, the nanoparticles are applicable as T2-negative contrast agents for magnetic resonance (MR) imaging of a tumor xenografted in a nude mouse. Importantly, SSPEI-SPIO nanoparticles have relatively low cytotoxicity in vitro at a high concentration of 100 μg/mL. The results of this study demonstrate the utility of a disulfide-containing cationic polymer-decorated SPIO nanoparticle as highly potent and low-toxic theranostic nano-system for specific nucleic acid delivery inside cancer cells.

  15. Crystal structure of iron-oxide nanoparticles synthesized from ferritin

    NASA Astrophysics Data System (ADS)

    Krispin, Michael; Ullrich, Aladin; Horn, Siegfried

    2012-02-01

    We have investigated the crystal structure of nanosized iron-oxide by X-ray diffraction (XRD), extended X-ray absorption fine structure measurements at the iron K-edge as well as by transmission electron microscopy (TEM). Iron-oxide nanoparticles were produced by thermal treatment of horse spleen ferritin molecules. The structure of these particles was compared to α-Fe2O3 and γ-Fe2O3 nanopowder references. The thermal treatment of a submonolayer film of ferritin molecules results in pure γ-Fe2O3 nanoparticles, while for films above a certain thickness α-Fe2O3 and γ-Fe2O3 coexist, exhibiting two different crystallite sizes. TEM shows a characteristic particle diameter of 7 nm for γ-Fe2O3 resulting from thermal treatment of monolayers, consistent with the crystallite size of the γ-phase as obtained from XRD measurements on multi-layered samples. XRD shows the α-Fe2O3 phase to be characterized by a crystallite size of 34 nm.

  16. Core-shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy.

    PubMed

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-05

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  17. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  18. Core loss and magnetic susceptibility of superparamagnetic Fe nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Kin, Masane; Kura, Hiroaki; Ogawa, Tomoyuki

    2016-12-01

    Toroidal-shaped high-density Fe nanoparticle assemblies (FNAs) were fabricated by molding different sized Fe nanoparticles (NPs), and the effect of the magnetic behavior of the FNAs on the core loss and the magnetic susceptibility was investigated. An FNA with 4.3 nm diameter Fe NPs exhibits superparamagnetism at room temperature while an FNA with 6.4 nm diameter Fe NPs doesn't exhibit superparamagnetism at room temperature. AC magnetization curves at 1, 10 and 100 kHz were measured to evaluate the core loss of the toroidal-shaped FNAs. Both FNAs exhibited no significant eddy current loss, which suggests that surfactants on the NP surface effectively act to electrically insulate the NPs, and the NPs are not sintered together when the FNAs are molded. The AC magnetization curves had no hysteresis for the FNA with 4.3 nm diameter Fe NPs, i.e., the core loss was minimal for the superparamagnetic FNA. The magnetic susceptibility of the superparamagnetic FNA with 4.3 nm Fe NPs was 12 times higher than that estimated from Langevin theory due to the effect of strong magnetic dipole interaction. These results suggest that the superparamagnetic FNA has potential as a magnetic core material that exhibits low core loss and high magnetic susceptibility, even at high frequency.

  19. Hydride formation in core-shell alloyed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2016-07-01

    The model and analysis presented are focused on hydride formation in nanoparticles with a Pd shell and a core formed by another metal. The arrangement of metal atoms is assumed to be coherent (no dislocations). The lattice strain distribution, elastic energy, and chemical potential of hydrogen atoms are scrutinized. The slope of the chemical potential (as a function of hydrogen uptake) is demonstrated to decrease with increasing the core volume, and accordingly the critical temperature for hydride formation and the corresponding hysteresis loops are predicted to decrease as well.

  20. Iron core formation in horse spleen ferritin: magnetic susceptibility, pH, and compositional studies.

    PubMed

    Hilty, S; Webb, B; Frankel, R B; Watt, G D

    1994-11-15

    Horse spleen ferritin (HoSF) reconstituted with small iron cores ranging in size from 8 to 500 iron atoms was studied by magnetic susceptibility and pH measurements to determine when the added Fe3+ begins to aggregate and form antiferromagnetically coupled clusters and also to determine the hydrolytic state of the iron at low iron loading. The Evans NMR magnetic susceptibility measurements showed that at iron loadings as low as 8 Fe3+/HoSF, at least half of the added iron atoms were involved in antiferromagnetic exchange interactions and the other half were present as isolated iron atoms with S = 5/2. As the core size increased to about 24 iron atoms, the antiferromagnetic exchange interactions among the iron atoms increased until reaching the limiting value of 3.8 Bohr magnetons per iron atom, the value present in holo HoSF. HoSF containing eight or more Fe3+ to which eight Fe2+ were added showed that the Fe2+ ions were at sites remote from the Fe3+ and that the resulting HoSF consisted of individual, noninteracting Fe2+ and the partially aggregated Fe3+. pH measurements for core reduction showed that Fe(OH)3 was initially present at all iron loadings but that in the absence of iron chelators the reduced iron core is partially hydrolyzed. Proton induced x-ray emission spectroscopy showed that Cl- is transported into the iron core during reduction, forming a stable chlorohydroxy Fe(II) mineral phase.

  1. Differentiated planetesimal impacts into a terrestrial magma ocean: Fate of the iron core

    NASA Astrophysics Data System (ADS)

    Kendall, Jordan D.; Melosh, H. J.

    2016-08-01

    The abundance of moderately siderophile elements (;iron-loving;; e.g. Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. We have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments rain through the magma ocean and settle deeper into the planet. Our results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean.

  2. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants.

    PubMed

    Makarov, Valentin V; Makarova, Svetlana S; Love, Andrew J; Sinitsyna, Olga V; Dudnik, Anna O; Yaminsky, Igor V; Taliansky, Michael E; Kalinina, Natalia O

    2014-05-27

    We report the synthesis and characterization of amorphous iron oxide nanoparticles from iron salts in aqueous extracts of monocotyledonous (Hordeum vulgare) and dicotyledonous (Rumex acetosa) plants. The nanoparticles were characterized by TEM, absorbance spectroscopy, SAED, EELS, XPS, and DLS methods and were shown to contain mainly iron oxide and iron oxohydroxide. H. vulgare extracts produced amorphous iron oxide nanoparticles with diameters of up to 30 nm. These iron nanoparticles are intrinsically unstable and prone to aggregation; however, we rendered them stable in the long term by addition of 40 mM citrate buffer pH 3.0. In contrast, amorphous iron oxide nanoparticles (diameters of 10-40 nm) produced using R. acetosa extracts are highly stable. The total protein content and antioxidant capacity are similar for both extracts, but pH values differ (H. vulgare pH 5.8 vs R. acetosa pH 3.7). We suggest that the presence of organic acids (such oxalic or citric acids) plays an important role in the stabilization of iron nanoparticles, and that plants containing such constituents may be more efficacious for the green synthesis of iron nanoparticles.

  3. Recovery of Iron/Iron Oxide Nanoparticles from Solution: Comparison of Methods and their Effects

    SciTech Connect

    Nurmi, James; Sarathy, Vaishnavi; Tratnyek, P. G.; Baer, Donald R.; Amonette, James E.; Karkamkar, Abhijeet J.

    2011-05-15

    Most methods currently being used to recover Fe0-core/oxide-shell nanoparticles from solutions (including the solvents they are synthesized or stored in) are potentially problematic because they may alter the particle composition (e.g., depositing salts formed from solutes) or leave the particles prone to transformations during subsequent storage and handling (e.g., due to residual moisture). In this study, several methods for recovery of nanoparticles from aqueous solution were studied to determine how they affect the structure and reactivity of the recovered materials. Simple washing of the nanoparticles during vacuum filtration (i.e., “flash drying”) can leave up to ~17 weight percent residual moisture. Modeling calculations suggest this moisture is mostly capillary or matric water held between particles and particle aggregates, which can be removed by drying for short periods at relative vapor pressures below 0.9. Flash drying followed by vacuum drying, all under N2, leaves no detectable residue from precipitation of solutes (detectable by X-ray photoelectron spectroscopy, XPS), no significant changes in overall particle composition or structure (determined by transmission electron microscopy, TEM), and negligible residual moisture (by thermogravimetric analysis, TGA). While this improved flash-drying protocol may be the preferred method for recovering nanoparticles for many purposes, we found that Fe0-core/oxide-shell nanoparticles still exhibit gradual aging during storage when characterized electrochemically with voltammetry.

  4. Binding studies of creatinine and urea on iron-nanoparticle.

    PubMed

    Banerji, Biswadip; Pramanik, Sumit Kumar

    2015-01-01

    Kidney diseases are complicated and can be fatal. Dialysis and transplantation are the only survival solutions to the patients suffering from kidney failures. Both hemodialysis and peritoneal dialysis are risky, due to the possibility of infection and these are expensive and time consuming. The development of simple and reliable technique for the clearance of creatinine and urea from the body is an important part of biotechnology. We have synthesized an iron nanoparticle (INP) and studied its binding with creatinine and urea. The DLS, TEM, AFM, FT-IR and Powder-XRD studies demonstrate strong binding of creatinine and urea to the nanoparticles. This finding may be helpful if it is used in the dialysis technologies. The proposed method may substantially decrease dialysis time and improve its quality in terms of urea and creatinine clearances.

  5. Synchrotron speciation data for zero-valent iron nanoparticles

    EPA Pesticide Factsheets

    This data set encompasses a complete analysis of synchrotron speciation data for 5 iron nanoparticle samples (P1, P2, P3, S1, S2, and metallic iron) to include linear combination fitting results (Table 6 and Figure 9) and ab-initio extended x-ray absorption fine structure spectroscopy fitting (Figure 10 and Table 7).Table 6: Linear combination fitting of the XAS data for the 5 commercial nZVI/ZVI products tested. Species proportions are presented as percentages. Goodness of fit is indicated by the chi^2 value.Figure 9: Normalised Fe K-edge k3-weighted EXAFS of the 5 commercial nZVI/ZVIproducts tested. Dotted lines show the best 4-component linear combination fit ofreference spectra.Figure 10: Fourier transformed radial distribution functions (RDFs) of the five samplesand an iron metal foil. The black lines in Fig. 10 represent the sample data and the reddotted curves represent the non-linear fitting results of the EXAFS data.Table 7: Coordination parameters of Fe in the samples.This dataset is associated with the following publication:Chekli, L., B. Bayatsarmadi, R. Sekine, B. Sarkar, A. Maoz Shen, K. Scheckel , W. Skinner, R. Naidu, H. Shon, E. Lombi, and E. Donner. Analytical Characterisation of Nanoscale Zero-Valent Iron: A Methodological Review. Richard P. Baldwin ANALYTICA CHIMICA ACTA. Elsevier Science Ltd, New York, NY, USA, 903: 13-35, (2016).

  6. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies

    NASA Astrophysics Data System (ADS)

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.

    2015-04-01

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 +/- 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described

  7. Iron oxide nanoparticles for plant nutrition? A preliminary Mössbauer study

    NASA Astrophysics Data System (ADS)

    Homonnay, Z.; Tolnai, Gy.; Fodor, F.; Solti, Á.; Kovács, K.; Kuzmann, E.; Ábrahám, A.; Szabó, E. Gy.; Németh, P.; Szabó, L.; Klencsár, Z.

    2016-12-01

    One of the most important micronutrients for plants is iron. We have prepared iron(III) oxyhydroxide and magnetite nanoparticles with the aim to use them as possible nutrition source for plants. The iron(III)-oxide/oxyhydroxide nanoparticles prepared under our experimental conditions as colloidal suspensions proved to be 6-line ferrihydrite nanoparticles as verified by XRD, TEM/SAED and Mössbauer spectroscopy measurements. 57Fe Mössbauer spectra of magnetite nanoparticles prepared under different preparation conditions could be analyzed on the basis of a common model based on the superposition of four sextet components displaying Gaussian-shaped hyperfine magnetic field distributions.

  8. Electrical Properties of Reacted Iron Cores Extracted From a Permeable Reactive Barrier Installation

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Slater, L.; Korte, N.

    2005-12-01

    We conducted experiments to investigate the application of non-invasive electrical method for monitoring iron corrosion and mineral precipitation processes on angle cores recovered from the Kansas City Plant reactive iron barrier. Electrical measurements showed continuous changes from the soil/iron interface into the barrier for all three cores. Scanning electron microscopy (SEM) identified iron surface alteration with thickest corrosion rind, indicating most severe corrosion, occurred close to upgradient soil/iron interface relative to locations further into the cores. Nitrogen adsorption measurements showed decreases in specific surface area of iron minerals from upgradient soil/iron interface into the barrier. X-ray diffractometry (XRD) identified precipitation of iron oxide/hydroxide, carbonate minerals, iron sulfide as well as green rusts in all three cores, and magnetite was identified as the dominant phase. Electrical measurements correlated well with solid phase analysis and illustrated the sensitivity of low frequency electrical method to iron corrosion and mineral precipitation processes. Electrical signature changes are attributed to (1) higher complex interfacial conductivity due to increased surface area and mineralogical alteration, and (2) increased electronic conduction due to enhanced electron transfer across the iron-fluid interface facilitated by mineralogical alternation and increased specific surface area during iron corrosion and mineral precipitation. Electrical measurements along with solid phase analysis also revealed more severe corrosion occurred at north end relative to south end of the barrier correlated with more groundwater flow through north end of the barrier. Our results on field cores are consistent with laboratory studies on synthetic iron columns presented previously and demonstrate that electrical measurements are a proxy indicator of Fe0 surface alteration and could be implemented for field barrier corrosion process monitoring.

  9. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method

    PubMed Central

    Bender, P.; Bogart, L. K.; Posth, O.; Szczerba, W.; Rogers, S. E.; Castro, A.; Nilsson, L.; Zeng, L. J.; Sugunan, A.; Sommertune, J.; Fornara, A.; González-Alonso, D.; Barquín, L. Fernández; Johansson, C.

    2017-01-01

    The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions.

  10. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    SciTech Connect

    Ngoi, Kuan Hoon; Chia, Chin-Hua Zakaria, Sarani; Chiu, Wee Siong

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  11. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    PubMed Central

    Saif, Sadia; Tahir, Arifa; Chen, Yongsheng

    2016-01-01

    Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe2O3/Fe3O4) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles. PMID:28335338

  12. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-02-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core-shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals ( 11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core-shell nanoparticles ( 54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core-shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  13. Synthesis of highly magnetic iron nanoparticles suitable for field structuring using a β-diketone surfactant

    NASA Astrophysics Data System (ADS)

    Huber, Dale L.; Venturini, Eugene L.; Martin, James E.; Provencio, Paula P.; Patel, Rina J.

    2004-07-01

    We describe the synthesis of highly magnetic iron nanoparticles using a novel surfactant, a β-diketone. We have produced 6 nm iron nanoparticles with an unusually high saturation magnetization of more than 80% the value of bulk iron. Additionally, we measured a particle susceptibility of 14 (MKS units), which is far above the value possible for micron-scale spherical particles. These properties will allow for formation of composites that can be highly structured by magnetic fields.

  14. Supramolecular core-shell nanoparticles for photoconductive device applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  15. Cerebral Blood Volume MRI with Intravascular Superparamagentic Iron Oxide Nanoparticles

    PubMed Central

    Kim, Seong-Gi; Harel, Noam; Jin, Tao; Kim, Tae; Lee, Phil; Zhao, Fuqiang

    2013-01-01

    Cerebral blood volume (CBV) is a crucial physiological indicator of tissue viability and vascular reactivity. Thus, non-invasive CBV mapping has been of great interest. For this, ultrasmall superparamagnetic iron oxide nanoparticles (USPIO) including monocrystalline iron oxide nanoparticles (MION) can be used as long half-life, intravascular susceptibility agents of CBV MRI measurements. Also, CBV-weighted fMRI with USPIO provides enhanced sensitivity, reduced large vessel contribution, and improved spatial specificity compared to conventional blood oxygenation-level dependent (BOLD) fMRI, and measures a single physiological parameter that is easily interpretable. We review physiochemical and magnetic properties as well as pharmacokinetics of USPIO in brief. We then extensively discuss quantifications of baseline CBV, vessel size index, and functional CBV change. We also provide reviews of dose-dependent sensitivity, vascular filter function, specificity, characteristics, and impulse response function of CBV fMRI. Examples of CBV fMRI specificity at the laminar and columnar resolution are provided. Finally, we briefly review application of CBV measurements to functional and pharmacological studies in animals. Overall, the use of USPIO can determine baseline CBV and its changes induced by functional activity and pharmacological interventions. PMID:23208650

  16. Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production.

    PubMed

    Casals, Eudald; Barrena, Raquel; García, Ana; González, Edgar; Delgado, Lucía; Busquets-Fité, Martí; Font, Xavier; Arbiol, Jordi; Glatzel, Pieter; Kvashnina, Kristina; Sánchez, Antoni; Puntes, Víctor

    2014-07-23

    A novel concept of dosing iron ions using Fe3O4 engineered nanoparticles is used to improve biogas production in anaerobic digestion processes. Since small nanoparticles are unstable, they can be designed to provide ions in a controlled manner, and the highest ever reported improvement of biogas production is obtained. The nanoparticles evolution during operation is followed by an array of spectroscopic techniques.

  17. Properties and suspension stability of dendronized iron oxide nanoparticles for MRI applications.

    PubMed

    Basly, B; Felder-Flesch, D; Perriat, P; Pourroy, G; Bégin-Colin, S

    2011-01-01

    Functionalized iron oxide nanoparticles have attracted an increasing interest in the last 10 years as contrast agents for MRI. One challenge is to obtain homogeneous and stable aqueous suspensions of iron oxide nanoparticles without aggregates. Iron oxide nanoparticles with sizes around 10 nm were synthesized by two methods: the particle size distribution in water suspension of iron oxide nanoparticles synthesized by the co-precipitation method was improved by a process involving two steps of ligand exchange and phase transfer and was compared with that of iron oxide nanoparticles synthesized by thermal decomposition and functionalized by the same dendritic molecule. The saturation magnetization of dendronized nanoparticles synthesized by thermal decomposition was lower than that of nanoparticles synthesized by co-precipitation. The r(2) relaxivity values were shown to decrease with the agglomeration state in suspension and high r(2) values and r(2) /r(1) ratios were obtained with nanoparticles synthesized by co-precipitation by comparison with those of commercial products. Dendronized iron oxide nanoparticles thus have potential properties as contrast agent.

  18. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  19. Exchange bias phenomenology and models of core/shell nanoparticles.

    PubMed

    Iglesias, Oscar; Labarta, Amílcar; Batlle, Xavier

    2008-06-01

    Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin film bilayers. The main open questions posed by the experimental observations are presented and contrasted to existing theories and models for exchange bias formulated up to date. We also present results of simulations based on a simple model of a core/shell nanoparticle in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and at the interfacial regions, offering new insight on the microscopic origin of the experimental phenomenology. A detailed study of the magnetic order of the interfacial spins shows compelling evidence that most of the experimentally observed effects can be qualitatively accounted within the context of this model and allows also to quantify the magnitude of the loop shifts in striking agreement with the macroscopic observed values.

  20. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    PubMed

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products.

  1. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, Jefferson F. D. F.; Costa, Mateus C.; Louro, Sonia R. W.; Bruno, Antonio C.

    2017-03-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10-7 Am2. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am2/kg (i.e 0.4%) at saturation and below 0.5 Am2/kg (i.e. 10%) at remanence.

  2. Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application

    PubMed Central

    2012-01-01

    Background Iron oxide nanoparticles (IONPs) have increasing applications in biomedicine, however fears over long term stability of polymer coated particles have arisen. Gold coating IONPs results in particles of increased stability and robustness. The unique properties of both the iron oxide (magnetic) and gold (surface plasmon resonance) result in a multimodal platform for use as MRI contrast agents and as a nano-heater. Results Here we synthesize IONPs of core diameter 30 nm and gold coat using the seeding method with a poly(ethylenimine) intermediate layer. The final particles were coated in poly(ethylene glycol) to ensure biocompatibility and increase retention times in vivo. The particle coating was monitored using FTIR, PCS, UV–vis absorption, TEM, and EDX. The particles appeared to have little cytotoxic effect when incubated with A375M cells. The resultant hybrid nanoparticles (HNPs) possessed a maximal absorbance at 600 nm. After laser irradiation in agar phantom a ΔT of 32°C was achieved after only 90 s exposure (50 μgmL-1). The HNPs appeared to decrease T2 values in line with previously clinically used MRI contrast agent Feridex®. Conclusions The data highlights the potential of these HNPs as dual function MRI contrast agents and nano-heaters for therapies such as cellular hyperthermia or thermo-responsive drug delivery. PMID:22731703

  3. Macroscopic and microscopic biodistribution of intravenously administered iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Misra, Adwiteeya; Petryk, Alicia A.; Strawbridge, Rendall R.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONP) are being developed for use as a cancer treatment. They have demonstrated efficacy when used either as a monotherapy or in conjunction with conventional chemotherapy and radiation. The success of IONP as a therapeutic tool depends on the delivery of a safe and controlled cytotoxic thermal dose to tumor tissue following activation with an alternating magnetic field (AMF). Prior to clinical approval, knowledge of IONP toxicity, biodistribution and physiological clearance is essential. This preliminary time-course study determines the acute toxicity and biodistribution of 110 nm dextran-coated IONP (iron) in mice, 7 days post systemic, at doses of 0.4, 0.6, and 1.0 mg Fe/ g mouse bodyweight. Acute toxicity, manifested as changes in the behavior of mice, was only observed temporarily at 1.0 mg Fe/ g mouse bodyweight, the highest dose administered. Regardless of dose, mass spectrometry and histological analysis demonstrated over 3 mg Fe/g tissue in organs within the reticuloendotheilial system (i.e. liver, spleen, and lymph nodes). Other organs (brain, heart, lungs, and kidney) had less than 0.5 mg Fe/g tissue with iron predominantly confined to the organ vasculature.

  4. Iron oxide nanoparticles in modern microbiology and biotechnology.

    PubMed

    Dinali, Ranmadugala; Ebrahiminezhad, Alireza; Manley-Harris, Merilyn; Ghasemi, Younes; Berenjian, Aydin

    2017-01-10

    Iron oxide nanoparticles (IONs) are one of the most developed and used nanomaterials in biotechnology and microbiology. These particles have unique physicochemical properties, which make them unique among nanomaterials. Therefore, many experiments have been conducted to develop facile synthesis methods for these particles and to make them biocompatible. Various effects of IONs on microorganisms have been reported. Depending on the microbial strain and nanoparticle (NP) concentration, IONs can stimulate or inhibit microbial growth. Due to the superparamagnetic properties of IONs, these NPs have used as nano sources of heat for hyperthermia in infected tissues. Antibiotic-loaded IONs are used for targeted delivery of chemical therapy direct to the infected organ and IONs have been used as a dirigible carrier for more potent antimicrobial nanomaterials such as silver nanoparticles. Magnetic NPs have been used for specific separation of pathogen and non-pathogen bacterial strains. Very recently, IONs were used as a novel tool for magnetic immobilization of microbial cells and process intensification in a biotechnological process. This review provides an overview of application of IONs in different microbial processes. Recommendations are also given for areas of future research.

  5. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    NASA Astrophysics Data System (ADS)

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R.; Bohidar, H. B.

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe3O4)) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe3O4 and CA-Fe3O4/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, CA-Fe3O4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe3O4) and 189.51 nm (CA-Fe3O4) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe2O3/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL-1 with a low detection limit of 0.32 ng mL-1, sensitivity 0.03 Ω/ng ml-1 cm-2, and reproducibility more than 11 times.

  6. Iron oxide nanoparticles for magnetically assisted patterned coatings

    NASA Astrophysics Data System (ADS)

    Dodi, Gianina; Hritcu, Doina; Draganescu, Dan; Popa, Marcel I.

    2015-08-01

    Iron oxide nanoparticles able to magnetically assemble during the curing stage of a polymeric support to create micro-scale surface protuberances in a controlled manner were prepared and characterized. The bare Fe3O4 particles were obtained by two methods: co-precipitation from an aqueous solution containing Fe3+/Fe2+ ions with a molar ratio of 2:1 and partial oxidation of ferrous ions in alkaline conditions. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetization measurement. They were subsequently functionalized using oleic acid, sodium oleate, or non-ionic surfactant mixtures with various hydrophilic to lipophilic balance (HLB) values. Composite nanoparticle-polymer films prepared by spraying were deposited and cured by drying on glass slides under a static magnetic field in the range of 1.5-5.5 mT. Magnetic field generated surface roughness was evidenced by optical and scanning electron microscopy. The optimum hierarchical patterning was obtained with the nanoparticles produced by partial oxidation and functionalized with hydrophobic surfactants. Possible applications may include ice-phobic composite coatings.

  7. Inner Core Anisotropy Due to the Magnetic Field--induced Preferred Orientation of Iron.

    PubMed

    Karato, S

    1993-12-10

    Anisotropy of the inner core of the Earth is proposed to result from the lattice preferred orientation of anisotropic iron crystals during their solidification in the presence of a magnetic field. The resultant seismic anisotropy is related to the geometry of the magnetic field in the core. This hypothesis implies that the observed anisotropy (fast velocity along the rotation axis) indicates a strong toroidal field in the core, which supports a strong field model for the geodynamo if the inner core is made of hexagonal close-packed iron.

  8. Introduction of biotin or folic acid into polypyrrole magnetite core-shell nanoparticles

    SciTech Connect

    Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-11-13

    In order to contribute to the trend in contemporary research to develop magnetic core shell nanoparticles with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) in straightforward and reproducible methods new core shell magnetic nanoparticles were developed based on polypyrrole shells functionalized with biotin and folic acid. Magnetite nanoparticles stabilized by sebacic acid were used as magnetic cores. The morphology of magnetite was determined by transmission electron microscopy TEM, while the chemical structure investigated by FT-IR.

  9. Influence of carbon chain length on the synthesis and yield of fatty amine-coated iron-platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Taylor, Robert M.; Monson, Todd C.; Gullapalli, Rama R.

    2014-06-01

    Iron oxide nanoparticles are among the most widely used and characterized magnetic nanoparticles. However, metal alloys such as superparamagnetic iron-platinum particles (SIPPs), which have better magnetic properties, are receiving increased attention. Scalable techniques to routinely synthesize SIPPs in bulk need further study. Here, we focus on the role played by the fatty amine ligand in the formation of the bimetallic FePt nanocrystal. More specifically, we compare the effect of varying lengths of fatty amine ligands on the shape, structure, uniformity, composition, and magnetic properties of the SIPPs. We synthesized SIPPs by employing a `green' thermal decomposition reaction using fatty amine ligands containing 12 to 18 carbons in length. Greater fatty amine chain length increased the polydispersity, particle concentration, iron concentration, and the stability of the SIPPs. Additionally, longer reflux times increased the diameter of the particles, but decreased the iron concentration, suggesting that shorter reaction times are preferable. Fourier transform infrared spectroscopy of the SIPPs indicates that the ligands are successfully bound to the FePt cores through the amine group. Superconducting quantum interference device magnetometry measurements suggest that all of the SIPPs were superparamagnetic at room temperature and that SIPPs synthesized using tetradecylamine had the highest saturation magnetization. Our findings indicate that the octadecylamine ligand, which is currently used for the routine synthesis of SIPPs, may not be optimal. Overall, we found that using tetradecylamine and a 30-min reflux reaction resulted in optimal particles with the highest degree of monodispersity, iron content, stability, and saturation magnetization.

  10. Ion Structure Near a Core-Shell Dielectric Nanoparticle

    NASA Astrophysics Data System (ADS)

    Ma, Manman; Gan, Zecheng; Xu, Zhenli

    2017-02-01

    A generalized image charge formulation is proposed for the Green's function of a core-shell dielectric nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of resolving the dielectric heterogeneity. Based on the formulation, an efficient and accurate algorithm is developed for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems using the Monte Carlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the ion-interface correlation strength can greatly alter electric double-layer structures and capacitances, owing to the complicated interplay between dielectric boundary effects and ion-interface correlations.

  11. Toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community.

    PubMed

    Zabetakis, Kara M; Niño de Guzmán, Gabriela T; Torrents, Alba; Yarwood, Stephanie

    2015-01-01

    The microbiological impact of zero-valent iron used in the remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to two types of iron nanoparticles. Changes in total bacterial and archaeal population numbers were analyzed using qPCR and were compared to results from a blank and negative control to assess for microbial toxicity. Additionally, the results were compared to those of samples exposed to silver nanoparticles and iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three different iron treatments were equally toxic to the total bacteria and archaea populations, as compared with the controls. Conversely, the silver nanoparticles had a limited statistical impact when compared to the controls and increased the microbial populations in some instances. Therefore, the findings suggest that zero-valent iron toxicity does not result from a unique nanoparticle-based effect.

  12. Effects of engineered iron nanoparticles on the bryophyte, Physcomitrella patens (Hedw.) Bruch & Schimp, after foliar exposure.

    PubMed

    Canivet, L; Dubot, P; Garçon, G; Denayer, F-O

    2015-03-01

    The effects of iron nanoparticles on bryophytes (Physcomitrella patens) were studied following foliar exposure. We used iron nanoparticles (Fe-NP) representative of industrial emissions from the metallurgical industries. After a characterization of iron nanoparticles and the validation of nanoparticle internalization in cells, the effects (cytotoxicity, oxidative stress, lipid peroxidation of membrane) of iron nanoparticles were determined through the axenic culturing of Physcomitrella patens exposed at five different concentrations (5 ng, 50 ng, 500 ng, 5 µg and 50 µg per plant). Following exposure, the plant health, measured as ATP concentrations, was not impacted. Moreover, we studied oxidative stress in three ways: through the measure of reactive oxygen species (ROS) production, through malondialdehyde (MDA) production and also through glutathione regulation. At concentrations tested over a short period, the level of ROS, MDA and glutathione were not significantly disturbed.

  13. Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function†

    PubMed Central

    Borcherding, Jennifer; Baltrusaitis, Jonas; Chen, Haihan; Stebounova, Larissa; Wu, Chia-Ming; Rubasinghege, Gayan; Mudunkotuwa, Imali A.; Caraballo, Juan Carlos; Zabner, Joseph

    2014-01-01

    Given the increased use of iron-containing nanoparticles in a number of applications, it is important to understand any effects that iron-containing nanoparticles can have on the environment and human health. Since iron concentrations are extremely low in body fluids, there is potential that iron-containing nanoparticles may influence the ability of bacteria to scavenge iron for growth, affect virulence and inhibit antimicrobial peptide (AMP) function. In this study, Pseudomonas aeruginosa (PA01) and AMPs were exposed to iron oxide nanoparticles, hematite (α-Fe2O3), of different sizes ranging from 2 to 540 nm (2 ± 1, 43 ± 6, 85 ± 25 and 540 ± 90 nm) in diameter. Here we show that the greatest effect on bacterial growth, biofilm formation, and AMP function impairment is found when exposed to the smallest particles. These results are attributed in large part to enhanced dissolution observed for the smallest particles and an increase in the amount of bioavailable iron. Furthermore, AMP function can be additionally impaired by adsorption onto nanoparticle surfaces. In particular, lysozyme readily adsorbs onto the nanoparticle surface which can lead to loss of peptide activity. Thus, this current study shows that co-exposure of nanoparticles and known pathogens can impact host innate immunity. Therefore, it is important that future studies be designed to further understand these types of impacts. PMID:25221673

  14. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    NASA Astrophysics Data System (ADS)

    Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin

    2008-03-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.

  15. The role of interfacial metal silicates on the magnetism in FeCo/SiO{sub 2} and Fe{sub 49%}Co{sub 49%}V{sub 2%}/SiO{sub 2} core/shell nanoparticles

    SciTech Connect

    Desautels, R. D.; Freeland, J. W.; Rowe, M. P.; Lierop, J. van

    2015-05-07

    We have investigated the role of spontaneously formed interfacial metal silicates on the magnetism of FeCo/SiO{sub 2} and Fe{sub 49%}Co{sub 49%}V{sub 2%}/SiO{sub 2} core/shell nanoparticles. Element specific x-ray absorption and photoelectron spectroscopy experiments have identified the characteristic spectral features of metallic iron and cobalt from within the nanoparticle core. In addition, metal silicates of iron, cobalt, and vanadium were found to have formed spontaneously at the interface between the nanoparticle core and silica shell. X-ray magnetic circular dichroism experiments indicated that the elemental magnetism was a result of metallic iron and cobalt with small components from the iron, cobalt, and vanadium silicates. Magnetometry experiments have shown that there was no exchange bias loop shift in the FeCo nanoparticles; however, exchange bias from antiferromagnetic vanadium oxide was measured in the V-doped nanoparticles. These results showed clearly that the interfacial metal silicates played a significant role in the magnetism of these core/shell nanoparticles, and that the vanadium percolated from the FeCo-cores into the SiO{sub 2}-based interfacial shell.

  16. Magnetic and fluorescent core-shell nanoparticles for ratiometric pH sensing.

    PubMed

    Lapresta-Fernández, Alejandro; Doussineau, Tristan; Dutz, Silvio; Steiniger, Frank; Moro, Artur J; Mohr, Gerhard J

    2011-10-14

    This paper describes the preparation of nanoparticles composed of a magnetic core surrounded by two successive silica shells embedding two fluorophores, showing uniform nanoparticle size (50-60 nm in diameter) and shape, which allow ratiometric pH measurements in the pH range 5-8. Uncoated iron oxide magnetic nanoparticles (∼10 nm in diameter) were formed by the coprecipitation reaction of ferrous and ferric salts. Then, they were added to a water-in-oil microemulsion where the hydrophilic silica shells were obtained through hydrolysis and condensation of tetraethoxyorthosilicate together with the corresponding silylated dye derivatives-a sulforhodamine was embedded in the inner silica shell and used as the reference dye while a pH-sensitive fluorescein was incorporated in the outer shell as the pH indicator. The magnetic nanoparticles were characterized using vibrating sample magnetometry, dynamic light scattering, transmission electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The relationship between the analytical parameter, that is, the ratio of fluorescence between the sensing and reference dyes versus the pH was adjusted to a sigmoidal fit using a Boltzmann type equation giving an apparent pK(a) value of 6.8. The fluorescence intensity of the reference dye did not change significantly (∼3.0%) on modifying the pH of the nanoparticle dispersion. Finally, the proposed method was statistically validated against a reference procedure using samples of water and physiological buffer with 2% of horse serum, indicating that there are no significant statistical differences at a 95% confidence level.

  17. Modelling exchange bias in core/shell nanoparticles.

    PubMed

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amílcar

    2007-10-10

    We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice structure and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and interfacial regions. By means of Monte Carlo simulations of the hysteresis loops based on this model, we have determined the range of microscopic parameters for which loop shifts after field cooling can be observed. The study of the magnetic order of the interfacial spins for different particle sizes and values of the interfacial exchange coupling have allowed us to correlate the appearance of loop asymmetries and vertical displacements to the existence of a fraction of uncompensated spins at the shell interface that remain pinned during field cycling, offering new insight on the microscopic origin of the experimental phenomenology.

  18. Characterization of the magnetic moment distribution in low-concentration solutions of iron oxide nanoparticles by a high-T{sub c} superconducting quantum interference device magnetometer

    SciTech Connect

    Saari, M. M. Sakai, K.; Kiwa, T.; Tsukada, K.; Sasayama, T.; Yoshida, T.

    2015-05-07

    We developed a highly sensitive AC/DC magnetometer using a high-temperature superconductor superconducting quantum interference device for the evaluation of magnetic nanoparticles in solutions. Using the developed system, we investigated the distribution of magnetic moments of iron oxide multi-core particles of 100 nm at various iron concentrations that are lower than 96 μg/ml by analyzing the measured magnetization curves. Singular value decomposition and non-regularized non-negative least-squares methods were used during the reconstruction of the distribution. Similar distributions were obtained for all concentrations, and the iron concentration could be determined from the measured magnetization curves. The measured harmonics upon the excitation of AC and DC magnetic fields curves agreed well with the harmonics simulated based on the reconstructed magnetization curves, implying that the magnetization curves of magnetic nanoparticles were successfully obtained as we will show in the article. We compared the magnetization curves between multi-core particles of 100 nm and 130 nm, composed of 12-nm iron oxide nanoparticles. A distinctive magnetic property between the 100 nm and 130 nm particles in low-concentration solutions was successfully characterized. The distribution characteristic of magnetic moments suggests that the net magnetic moment in a multi-core particle is affected by the size of the magnetic cores and their degree of aggregation. Exploration of magnetic properties with high sensitivity can be expected using the developed system.

  19. Preparation of tunable-sized iron nanoparticles based on magnetic manipulation in inert gas condensation (IGC)

    NASA Astrophysics Data System (ADS)

    Xing, Lijuan; ten Brink, Gert H.; Kooi, Bart J.; Palasantzas, George

    2017-01-01

    Iron nanoparticles (NPs) prepared by inert gas condensation were studied using high resolution transmission electron microscopy and Wulff construction shape analysis. The NP size and shape show strong dependence on the magnetic field above the target surface. The effect of the magnetic field could be tuned by adjusting the thickness of the protective backing plate positioned in-between the target and the magnetron head. With increasing backing plate thickness, the particle size decreases and the NP morphologies evolve from faceted to close-to-spherical polyhedral shapes. Moreover, with changes in size and shape, the particle structure also varies so that the NPs exhibit: (i) a core-shell structure for the faceted NPs with size ˜15-24 nm; (ii) a core-shell structure for the close-to-spherical NPs with size ˜8-15 nm; and (iii) a fully oxidized uniform structure for NPs with sizes less than ˜8 nm having a void in the center due to the Kirkendall effect. The decrease of NP size with the increasing backing plate thickness can be attributed to a reduced magnetic field strength above the iron target surface combined with a reduced magnetic field confinement. These results pave the way to drastically control the NP size and shape in a simple manner without any other adjustment of the aggregation volume within the deposition system.

  20. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer

    NASA Astrophysics Data System (ADS)

    Marcu, A.; Pop, S.; Dumitrache, F.; Mocanu, M.; Niculite, C. M.; Gherghiceanu, M.; Lungu, C. P.; Fleaca, C.; Ianchis, R.; Barbut, A.; Grigoriu, C.; Morjan, I.

    2013-09-01

    Present work was focused on producing improved iron oxide nanoparticles for targeted drug delivery in breast cancer. Nanometric-sized iron oxide particles were synthesized by laser pyrolysis and were morphologically/structurally characterized. These new nanoparticles were compared with some commercial, chemically prepared iron oxide ones. Cytotoxicity and the anti-proliferation effects of nanoparticles were tested in vitro on the breast adenocarcinoma cell line MCF-7. Nanoparticles were further coated with the antracyclinic antibiotic Violamycine B1 and tested for the anti-tumor effect on MCF-7 cells. The nanoparticles produced by us seem more effective in vitro than the commercial ones, with respect to cellular uptake and VB1 delivery. Violamycine B1 bound on nanoparticles is as efficient as the free form, but is better delivered into tumor cells.

  1. Relaxometric property of organosilica nanoparticles internally functionalized with iron oxide and fluorescent dye for multimodal imaging.

    PubMed

    Nakamura, Michihiro; Hayashi, Koichiro; Kubo, Hitoshi; Kanadani, Takafumi; Harada, Masafumi; Yogo, Toshinobu

    2017-04-15

    Multimodal imaging using novel multifunctional nanoparticles provides a new approach for the biomedical field. Thiol-organosilica nanoparticles containing iron oxide magnetic nanoparticles (MNPs) as the core and rhodamine B in the thiol-organosilica layer (thiol OS-MNP/Rho) were synthesized in a one-pot process. The thiol OS-MNP/Rho showed enhanced magnetic resonance imaging (MRI) contrast and high fluorescence intensity. The relaxometry of thiol OS-MNP/Rho revealed a novel coating effect of the organosilica layer to the MNPs. The organosilica layer shortened the T2 relaxation time but not the T1 relaxation time of the MNPs. We injected thiol-OS-MNP/Rho into normal mice intravenously. Injected mice revealed an alteration of the liver contrast in the MRI and a fluorescent pattern based on the liver histological structure at the level between macroscopic and microscopic fluorescent imaging (mesoscopic FI). In addition, the labeled macrophages were observed at the single cell level histologically. We demonstrated a new approach to evaluate the liver at the macroscopic, microscopic level as well as the mesoscopic level using multimodal imaging.

  2. Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives

    NASA Astrophysics Data System (ADS)

    Szpak, Agnieszka; Kania, Gabriela; Skórka, Tomasz; Tokarz, Waldemar; Zapotoczny, Szczepan; Nowakowska, Maria

    2013-01-01

    This article presents the synthesis and characterization of biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) coated with ultrathin layer of anionic derivative of chitosan. The water-based fabrication involved a two-step procedure. In the first step, the nanoparticles were obtained by co-precipitation of ferrous and ferric aqueous salt solutions with ammonia in the presence of cationic derivative of chitosan. In the second step, such prepared materials were subjected to adsorption of oppositely charged chitosan derivative which resulted in the preparation of negatively charged SPIONs. They were found to develop highly stable dispersion in water. The core size of the nanocoated SPIONs, determined using transmission electron microscopy, was measured to be slightly above 10 nm. The coated nanoparticles form aggregates with majority of them having hydrodynamic diameter below 100 nm, as measured by dynamic light scattering. Their composition and properties were studied using FTIR and thermogravimetric analyses. They exhibit magnetic properties typical for superparamagnetic material with a high saturation magnetization value of 123 ± 12 emu g-1 Fe. Very high value of the measured r 2 relaxivity, 369 ± 3 mM-1 s-1, is conducive for the potential application of the obtained SPIONs as promising contrast agents in magnetic resonance imaging.

  3. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation.

    PubMed

    Calderon, Blanca; Fullana, Andres

    2015-10-15

    Zero valent iron nanoparticles (nZVI) represent a promising agent for environmental remediation. Nevertheless, their application presents some limitations regarding their rapid oxidation and aggregation in the media. The aim of this study was to determine the effect that nZVI aging has in heavy metal remediation in water. Contaminants studied were Zn, Cd, Ni, Cu and Cr, which are typical elements found in ground and wastewater. Results show a high contaminant removal capacity by the nZVI in the first 2 h of reaction. Nevertheless, for longer reaction times, some of the metal ions that had already been adsorbed in the nZVI were delivered to the water. Cd and Ni show the maximum delivery percentages (65 and 27% respectively after 21 days of contact time). The starting delivery time was shortened when applying lower nZVI amounts. No re-dissolution of Cr was observed in any circumstance because it was the only element incorporated into the nanoparticles core, as TEM images showed. Contaminant release from nZVI is probably due to nanoparticles oxidation caused by aging, which produced a pH decrease and nZVI surface crystallization.

  4. [Influence of iron nanoparticles on cardiac performance and hemodynamics in rabbits after intravenous administration in acute experiment].

    PubMed

    Doroshenko, A M

    2014-01-01

    Iron nanoparticles are possessed by high potential in the creation of effective and safe antianemic drugs due to the enhanced biological activity of metal nanoparticles. As a step of intravenous dosage form development the study of short-term effects of iron nanoparticles on the cardiovascular system is important. Dose-dependent changes of systemic hemodynamics' parameters were established in acute experiment on rabbits after several intravenous injections of zero-valent iron nanoparticles solution.

  5. Biomolecular crystals for material applications and a mechanistic study of an iron oxide nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Falkner, Joshua Charles

    The three projects within this work address the difficulties of controlling biomolecular crystal formats (i.e. size and shape), producing 3-D ordered composite materials from biomolecular crystal templates, and understanding the mechanism of a practical iron oxide synthesis. The unifying thread consistent throughout these three topics is the development of methods to manipulate nanomaterials using a bottom-up approach. Biomolecular crystals are nanometer to millimeter sized crystals that have well ordered mesoporous solvent channels. The overall physical dimensions of these crystals are highly dependent on crystallization conditions. The controlled growth of micro- and nanoprotein crystals was studied to provide new pathways for creating smaller crystalline protein materials. This method produced tetragonal hen egg-white lysozyme crystals (250--100,000 nm) with near monodisperse size distributions (<15%). With this degree of control, existing protein crystal applications such as drug delivery and analytical sensors can reach their full potential. Applications for larger crystals with inherently ubiquitous pore structures could extend to materials used for membranes or templates. In this work, the porous structure of larger cowpea mosaic virus crystals was used to template metal nanoparticle growth within the body centered cubic crystalline network. The final composite material was found to have long range ordering of palladium and platinum nonocrystal aggregates (10nm) with symmetry consistent to the virus template. Nanoparticle synthesis itself is an immense field of study with an array of diverse applications. The final piece of this work investigates the mechanism behind a previously developed iron oxide synthesis to gain more understanding and direction to future synthesis strategies. The particle growth mechanism was found to proceed by the formation of a solvated iron(III)oleate complex followed by a reduction of iron (III) to iron (II). This unstable iron

  6. Water-soluble core/shell nanoparticles for proton therapy through particle-induced radiation

    NASA Astrophysics Data System (ADS)

    Park, Jeong Chan; Jung, Myung-Hwan; Kim, Maeng Jun; Kim, Kye-Ryung

    2015-02-01

    Metallic nanoparticles have been used in biomedical applications such as magnetic resonance imaging (MRI), therapy, and drug delivery systems. Metallic nanoparticles as therapeutic tools have been demonstrated using radio-frequency magnetic fields or near-infrared light. Recently, therapeutic applications of metallic nanomaterials combined with proton beams have been reported. Particle-induced radiation from metallic nanoparticles, which can enhance the therapeutic effects of proton therapy, was released when the nanoparticles were bombarded by a high-energy proton beam. Core/shell nanoparticles, especially Au-coated magnetic nanoparticles, have drawn attention in biological applications due to their attractive characteristics. However, studies on the phase transfer of organic-ligand-based core/shell nanoparticles into water are limited. Herein, we demonstrated that hydrophobic core/shell structured nanomaterials could be successfully dispersed in water through chloroform/surfactant mixtures. The effects of the core/shell nanomaterials and the proton irradiation on Escherichia coli (E. coli) were also explored.

  7. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.

    PubMed

    Boguslavsky, Yonit; Margel, Shlomo

    2008-01-01

    Maghemite (gamma-Fe2O3) nanoparticles of 15 +/- 3 nm diameter were prepared by nucleation of gelatin/iron oxide followed by growth of gamma-Fe2O3 films onto these nuclei. The gamma-Fe2O3 nanoparticles were coated with polydivinylbenzene (PDVB) by emulsion polymerization of divinylbenzene (DVB) in an aqueous continuous phase containing the gamma-Fe2O3 nanoparticles. The PDVB-coated gamma-Fe2O3 nanoparticles, dispersed in water, were separated from homo-PDVB nanoparticles using the high gradient magnetic field (HGMF) technique. The influence of DVB concentration on the amount of PDVB coating, on the size and size distribution of the coated gamma-Fe2O3 nanoparticles and on their magnetic properties, has been investigated. Air-stable carbon-coated iron (alpha-Fe/C) crystalline nanoparticles of 41 +/- 12 nm diameter have been prepared by annealing the PDVB-coated gamma-Fe2O3 nanoparticles at 1050 degrees C in an inert atmosphere. These nanoparticles exhibit high saturation magnetization value (83 emu g(-1)) and excellent resistance to oxidation. Characterization of the PDVB-coated gamma-Fe2O3 and of the alpha-Fe/C nanoparticles has been accomplished by TEM, HRTEM, DLS, FTIR, XRD, thermal analysis, zeta-potential, and magnetic measurements.

  8. Characterization, Quantification, and Determination of the Toxicity of Iron Oxide Nanoparticles to the Bone Marrow Cells

    PubMed Central

    Paik, Sae-Yeol-Rim; Kim, Jong-Seok; Shin, Sung Jae; Ko, Sanghoon

    2015-01-01

    Iron oxide nanoparticles (IONPs) have been used to develop iron supplements for improving the bioavailability of iron in patients with iron deficiency, which is one of the most serious nutritional deficiencies in the world. Accurate information about the characteristics, concentration, and cytotoxicity of IONPs to the developmental and reproductive cells enables safe use of IONPs in the supplement industry. The objective of this study was to analyze the physicochemical properties and cytotoxicity of IONPs in bone marrow cells. We prepared three different types of iron samples (surface-modified iron oxide nanoparticles (SMNPs), IONPs, and iron citrate) and analyzed their physicochemical properties such as particle size distribution, zeta potential, and morphology. In addition, we examined the cytotoxicity of the IONPs in various kinds of bone marrow cells. We analyzed particle size distribution, zeta potential, iron levels, and subcellular localization of the iron samples in bone marrow cells. Our results showed that the iron samples were not cytotoxic to the bone marrow cells and did not affect the expression of cell surface markers and lipopolysaccharide (LPS)-induced the secretion of cytokines by murine bone marrow-derived dendritic cells (BMDCs). Our results may be used to investigate the interactions between nanoparticles and cells and tissues and the developmental toxicity of nanoparticles. PMID:26389886

  9. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles.

    PubMed

    Llamosa, D; Ruano, M; Martínez, L; Mayoral, A; Roman, E; García-Hernández, M; Huttel, Y

    2014-11-21

    Complex core@shell and core@shell@shell nanoparticles are systems that combine the functionalities of the inner core and outer shell materials together with new physico-chemical properties originated by their low (nano) dimensionality. Such nanoparticles are of prime importance in the fast growing field of nanotechnology as building blocks for more sophisticated systems and a plethora of applications. Here, it is shown that although conceptually simple a modified gas aggregation approach allows the one-step generation of well-controlled complex nanoparticles. In particular, it is demonstrated that the atoms of the core and the shell of the nanoparticles can be easily inverted, avoiding intrinsic constraints of chemical methods.

  10. Pharmaceutical formulation of HSA hybrid coated iron oxide nanoparticles for magnetic drug targeting.

    PubMed

    Zaloga, Jan; Pöttler, Marina; Leitinger, Gerd; Friedrich, Ralf P; Almer, Gunter; Lyer, Stefan; Baum, Eva; Tietze, Rainer; Heimke-Brinck, Ralph; Mangge, Harald; Dörje, Frank; Lee, Geoffrey; Alexiou, Christoph

    2016-04-01

    In this work we present a new formulation of superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic drug targeting. The particles were reproducibly synthesized from current good manufacturing practice (cGMP) - grade substances. They were surface coated using fatty acids as anchoring molecules for human serum albumin. We comprehensively characterized the physicochemical core-shell structure of the particles using sophisticated methods. We investigated biocompatibility and cellular uptake of the particles using an established flow cytometric method in combination with microwave-plasma assisted atomic emission spectroscopy (MP-AES). The cytotoxic drug mitoxantrone was adsorbed on the protein shell and we showed that even in complex media it is slowly released with a close to zero order kinetics. We also describe an in vitro proof-of-concept assay in which we clearly showed that local enrichment of this SPION-drug conjugate with a magnet allows site-specific therapeutic effects.

  11. Citric Acid Capped Iron Oxide Nanoparticles as an Effective MALDI Matrix for Polymers

    NASA Astrophysics Data System (ADS)

    Liang, Qiaoli; Sherwood, Jennifer; Macher, Thomas; Wilson, Joseph M.; Bao, Yuping; Cassady, Carolyn J.

    2017-03-01

    A new matrix-assisted laser desorption ionization (MALDI) mass spectrometry matrix is proposed for molecular mass determination of polymers. This matrix contains an iron oxide nanoparticle (NP) core with citric acid (CA) molecules covalently bound to the surface. With the assistance of additives, the particulate nature of NPs allows the matrix to mix uniformly with polar or nonpolar polymer layers and promotes ionization, which may simplify matrix selection and sample preparation procedures. Several distinctively different polymer classes (polyethyleneglycol (PEG), polywax/polyethylene, perfluoropolyether, and polydimethylsiloxane) are effectively detected by the water or methanol dispersed NPCA matrix with NaCl, NaOH, LiOH, or AgNO3 as additives. Furtheremore, successful quantitative measurements of PEG1000 using polypropylene glycol 1000 as an internal standard are demonstrated.

  12. Citric Acid Capped Iron Oxide Nanoparticles as an Effective MALDI Matrix for Polymers

    NASA Astrophysics Data System (ADS)

    Liang, Qiaoli; Sherwood, Jennifer; Macher, Thomas; Wilson, Joseph M.; Bao, Yuping; Cassady, Carolyn J.

    2016-12-01

    A new matrix-assisted laser desorption ionization (MALDI) mass spectrometry matrix is proposed for molecular mass determination of polymers. This matrix contains an iron oxide nanoparticle (NP) core with citric acid (CA) molecules covalently bound to the surface. With the assistance of additives, the particulate nature of NPs allows the matrix to mix uniformly with polar or nonpolar polymer layers and promotes ionization, which may simplify matrix selection and sample preparation procedures. Several distinctively different polymer classes (polyethyleneglycol (PEG), polywax/polyethylene, perfluoropolyether, and polydimethylsiloxane) are effectively detected by the water or methanol dispersed NPCA matrix with NaCl, NaOH, LiOH, or AgNO3 as additives. Furtheremore, successful quantitative measurements of PEG1000 using polypropylene glycol 1000 as an internal standard are demonstrated.

  13. Magnetic Core-Shell Morphology of Structurally Uniform Magnetite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Krycka, Kathryn

    2011-03-01

    Magnetic nanoscale structures are intriguing, in part, because of the exotic properties that emerge compared with bulk. The reduction of magnetic moment per atom in magnetite with decreasing nanoparticle size, for example, has been hypothesized to originate from surface disordering to anisotropy-induced radial canting, which are difficult to distinguish using conventional magnetometry. Small-angle neutron scattering (SANS) is ideal for probing structure, both chemical and magnetic, from nm to microns across an ensemble of particles. Adding polarization analysis (PASANS) of the neutron spin orientation before and after interaction with the scattering particles allows the magnetic structure to be separated into its vector components. Application of this novel technique to 9 nm magnetite nanoparticles closed-packed into face-centered crystallites with order of a micron revealed that at nominal saturation the missing magnetic moments unexpectedly interacted to form well-ordered shells 1.0 to 1.5 nm thick canted perpendicular to their ferrimagnetic cores between 160 to 320 K. These shells additionally displayed intra-particle ``cross-talk'', selecting a common orientation over clusters of tens of nanoparticles. However, the shells disappeared when the external field was removed and interparticle magnetic interactions were negligible (300 K), confirming their magnetic origin. This work has been carried out in collaboration with Ryan Booth, Julie Borchers, Wangchun Chen, Liv Dedon, Thomas Gentile, Charles Hogg, Yumi Ijiri, Mark Laver, Sara Majetich, James Rhyne, and Shannon Watson.

  14. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    NASA Astrophysics Data System (ADS)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold

  15. Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres.

    PubMed

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2004-11-09

    A one-step sequential method for preparing AgCl@polypyrrole-chitosan core-shell nanoparticles and subsequently the formation of polypyrrole-chitosan hollow nanospheres is reported. The formation of the core and the shell is performed in one reaction medium almost simultaneously. Transmission electron microscopy (TEM) images show the presence of core-shell nanoparticles and hollow nanospheres. Ultraviolet-visible (UV-vis) studies reveal that AgCl was formed first followed by polypyrrole. X-ray diffration (XRD) and UV-vis studies show that AgCl was present in the core-shell nanoparticles and could be removed completely from the core.

  16. Superparamagnetic iron oxide nanoparticles (SPIONs) for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Garg, Vijayendra K.; Kuzmann, Erno; Sharma, Virender K.; Kumar, Arun; Oliveira, Aderbal C.

    2016-10-01

    Studies of superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively carried out. Since the earlier work on Mössbauer studies on SPIONs in 1970s, many biomedical applications and their uses in innovative methods to produce new materials with improved performance have appeared. Applications of SPIONs in environmental remediation are also forthcoming. Several different methods of synthesis and coating of the magnetic particles have been described in the literature, and Mössbauer spectroscopy has been an important tool in the characterization of these materials. It is quite possible that the interpretation of the Mössbauer spectra might not be entirely correct because the possible presence of maghemite in the end product of SPIONs might not have been taken into consideration. Nanotechnology is an emerging field that covers a wide range of new technologies under development in nanoscale (1 to 100 nano meters) to produce new products and methodology.

  17. Excellent improvement in the static and dynamic magnetic properties of carbon coated iron nanoparticles for microwave absorption

    NASA Astrophysics Data System (ADS)

    Khani, Omid; Shoushtari, Morteza Zargar; Farbod, Mansoor

    2015-11-01

    Carbon coated iron nanoparticles were synthesized, using a simple arc-discharge method. The morphology and the internal structure of the core/shell nanoparticles were studied, using field emission scanning electron microscopy and transmission electron microscopy. X-ray diffraction analysis showed that both magnetic α-Fe and nonmagnetic γ-Fe phases existed in the as-prepared particles. In order to improve the static and dynamic magnetic properties of the core/shell nanoparticles, the produced nanocapsules were annealed in argon atmosphere at two different temperatures. Hysteresis loops revealed that the value of the saturation magnetization (MS) increased more than 4.1 times of its original value by annealing and this led to 70% increase in the imaginary part of the permeability. Phase analysis showed that heat treatment eliminated the nonmagnetic γ-Fe phase completely. The reflection loss plots were studied for composite layers containing 20 vol% of the annealed and not annealed nanocapsules. One of the absorber layers which contained annealed nanocapsules showed at least -10 dB loss in the whole G, C, X and Ku frequency bands and the optimal absorption exceeded -37 dB at 5.8 GHz for the as-prepared sample with a thickness of 3.2 mm. The results revealed that the magnetic properties of the arc-made Fe/C core/shell nanoparticle can be improved significantly by annealing in argon.

  18. Phase Diagram of Iron, Revised-Core Temperatures

    SciTech Connect

    Ahrens, T.J.; Chen, G.Q.; Holland, K.G.

    1999-01-27

    Shock-wave experiments on iron preheated to 1,573 K conducted from 14 to 73 GPa, yield new data for sound velocities of the {gamma}- and liquid-phases. Melting was observed in the highest pressure ({approximately} 71 {+-} 2 GPa) experiments at calculated shock temperatures of 2,775 {+-} 160 K. This single crossing of the {gamma}-liquid boundary measured here agrees closely with the {gamma}-iron melting line determined by Boehler [1993], Saxena et al. [1993], and Jephcoat and Besedin [1997]. This {gamma}-iron melting curve is {approximately} 300 C lower than that of Shen et al. [1998b] at 80 GPa.

  19. A new approach to the ferritin iron core growth: influence of the H/L ratio on the core shape.

    PubMed

    López-Castro, J D; Delgado, J J; Perez-Omil, J A; Gálvez, Natividad; Cuesta, Rafael; Watt, Richard K; Domínguez-Vera, José M

    2012-01-28

    An electron microscopy study, in combination with modeling and image simulation, of four different reconstituted ferritin samples: recombinant human H and L homopolymers, and H and L heteropolymers of native L-subunit-rich horse spleen and H-subunit-rich human heart ferritins, points out the existence of a correlation between iron core shape and protein shell.

  20. Iron isotopic fractionation between silicate mantle and metallic core at high pressure

    PubMed Central

    Liu, Jin; Dauphas, Nicolas; Roskosz, Mathieu; Hu, Michael Y.; Yang, Hong; Bi, Wenli; Zhao, Jiyong; Alp, Esen E.; Hu, Justin Y.; Lin, Jung-Fu

    2017-01-01

    The +0.1‰ elevated 56Fe/54Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure–temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, even at high pressure. From the measured mean force constants of iron bonds, we calculate an equilibrium iron isotope fractionation between silicate and iron under core formation conditions in Earth of ∼0–0.02‰, which is small relative to the +0.1‰ shift of terrestrial basalts. This result is unaffected by small amounts of nickel and candidate core-forming light elements, as the isotopic shifts associated with such alloying are small. This study suggests that the variability in iron isotopic composition in planetary objects cannot be due to core formation. PMID:28216664

  1. Iron isotopic fractionation between silicate mantle and metallic core at high pressure.

    PubMed

    Liu, Jin; Dauphas, Nicolas; Roskosz, Mathieu; Hu, Michael Y; Yang, Hong; Bi, Wenli; Zhao, Jiyong; Alp, Esen E; Hu, Justin Y; Lin, Jung-Fu

    2017-02-20

    The +0.1‰ elevated (56)Fe/(54)Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure-temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, even at high pressure. From the measured mean force constants of iron bonds, we calculate an equilibrium iron isotope fractionation between silicate and iron under core formation conditions in Earth of ∼0-0.02‰, which is small relative to the +0.1‰ shift of terrestrial basalts. This result is unaffected by small amounts of nickel and candidate core-forming light elements, as the isotopic shifts associated with such alloying are small. This study suggests that the variability in iron isotopic composition in planetary objects cannot be due to core formation.

  2. Mutagenic Effects of Iron Oxide Nanoparticles on Biological Cells.

    PubMed

    Dissanayake, Niluka M; Current, Kelley M; Obare, Sherine O

    2015-09-30

    In recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts. This review article describes the impact of IONPs on cellular genetic components. The mutagenic impact of IONPs may damage an organism's ability to develop or reproduce. To date, there has been experimental evidence of IONPs having mutagenic interactions on human cell lines including lymphoblastoids, fibroblasts, microvascular endothelial cells, bone marrow cells, lung epithelial cells, alveolar type II like epithelial cells, bronchial fibroblasts, skin epithelial cells, hepatocytes, cerebral endothelial cells, fibrosarcoma cells, breast carcinoma cells, lung carcinoma cells, and cervix carcinoma cells. Other cell lines including the Chinese hamster ovary cells, mouse fibroblast cells, murine fibroblast cells, Mytilus galloprovincialis sperm cells, mice lung cells, murine alveolar macrophages, mice hepatic and renal tissue cells, and vero cells have also shown mutagenic effects upon exposure to IONPs. We further show the influence of IONPs on microorganisms in the presence and absence of dissolved organic carbon. The results shed light on the OPEN ACCESS Int. J. Mol. Sci. 2015, 16 23483 transformations IONPs undergo in the environment and the nature of the potential mutagenic impact on biological cells.

  3. Mutagenic Effects of Iron Oxide Nanoparticles on Biological Cells

    PubMed Central

    Dissanayake, Niluka M.; Current, Kelley M.; Obare, Sherine O.

    2015-01-01

    In recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts. This review article describes the impact of IONPs on cellular genetic components. The mutagenic impact of IONPs may damage an organism’s ability to develop or reproduce. To date, there has been experimental evidence of IONPs having mutagenic interactions on human cell lines including lymphoblastoids, fibroblasts, microvascular endothelial cells, bone marrow cells, lung epithelial cells, alveolar type II like epithelial cells, bronchial fibroblasts, skin epithelial cells, hepatocytes, cerebral endothelial cells, fibrosarcoma cells, breast carcinoma cells, lung carcinoma cells, and cervix carcinoma cells. Other cell lines including the Chinese hamster ovary cells, mouse fibroblast cells, murine fibroblast cells, Mytilus galloprovincialis sperm cells, mice lung cells, murine alveolar macrophages, mice hepatic and renal tissue cells, and vero cells have also shown mutagenic effects upon exposure to IONPs. We further show the influence of IONPs on microorganisms in the presence and absence of dissolved organic carbon. The results shed light on the transformations IONPs undergo in the environment and the nature of the potential mutagenic impact on biological cells. PMID:26437397

  4. Formulation design for target delivery of iron nanoparticles to TCE zones

    NASA Astrophysics Data System (ADS)

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy.

  5. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sun, Sheng-Nan; Wei, Chao; Zhu, Zan-Zan; Hou, Yang-Long; Subbu, S. Venkatraman; Xu, Zhi-Chuan

    2014-03-01

    Iron oxide nanoparticles are the most popular magnetic nanoparticles used in biomedical applications due to their low cost, low toxicity, and unique magnetic property. Magnetic iron oxide nanoparticles, including magnetite (Fe3O4) and maghemite (γ-Fe2O3), usually exhibit a superparamagnetic property as their size goes smaller than 20 nm, which are often denoted as superparamagnetic iron oxide nanoparticles (SPIONs) and utilized for drug delivery, diagnosis, therapy, and etc. This review article gives a brief introduction on magnetic iron oxide nanoparticles in terms of their fundamentals of magnetism, magnetic resonance imaging (MRI), and drug delivery, as well as the synthesis approaches, surface coating, and application examples from recent key literatures. Because the quality and surface chemistry play important roles in biomedical applications, our review focuses on the synthesis approaches and surface modifications of iron oxide nanoparticles. We aim to provide a detailed introduction to readers who are new to this field, helping them to choose suitable synthesis methods and to optimize the surface chemistry of iron oxide nanoparticles for their interests.

  6. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles.

    PubMed

    Wu, Pingxiao; Li, Shuzhen; Ju, Liting; Zhu, Nengwu; Wu, Jinhua; Li, Ping; Dang, Zhi

    2012-06-15

    Iron nanoparticles exhibit greater reactivity than micro-sized Fe(0), and they impart advantages for groundwater remediation. In this paper, supported iron nanoparticles were synthesized to further enhance the speed and efficiency of remediation. Natural montmorillonite and organo-montmorillonite were chosen as supporting materials. The capacity of supported iron nanoparticles was evaluated, compared to unsupported iron nanoparticles, for the reduction of aqueous Cr(VI). The reduction of Cr(VI) was much greater with organo-montmorillonite supported iron nanoparticles and fitted the pseudo-second order equation better. With a dose at 0.47 g/L, a total removal capacity of 106 mg Cr/g Fe(0) was obtained. Other factors that affect the efficiency of Cr(VI) removal, such as pH values, the initial Cr(VI) concentration and storage time of nanoparticles were investigated. X-ray photoelectron spectrometry (XPS) and X-ray absorption near edge structure (XANES) were used to figure out the mechanism of the removal of Cr(VI). XPS indicated that the Cr(VI) bound to the particle surface was completely reduced to Cr(III) under a range of conditions. XANES confirmed that the Cr(VI) reacted with iron nanoparticles was completely reduced to Cr(III).

  7. Zero Valent Iron: Impact of Anions Present during Synthesis on Subsequent Nanoparticle Reactivity

    SciTech Connect

    Moore, Kirsten; Forsberg, Brady; Baer, Donald R.; Arnold, William A.; Penn, R. Lee

    2011-10-01

    Zero-valent iron particles are an effective remediation technology for groundwater contaminated with halogenated organic compounds. In particular, nano-scale zero-valent iron is a promising material for remediation due to its high specific surface area, which results in faster rate constants and more effective use of the iron. An aspect of iron nanoparticle reactivity that has not been explored is the impact of anions present during iron metal nanoparticle synthesis. Solutions containing chloride, phosphate, sulfate, and nitrate anions and ferric ions were used to generate iron oxide nanoparticles. The resulting materials were dialyzed to remove dissolved byproducts and then dried and reduced by hydrogen gas at high temperature. The reactivity of the resulting zero valent iron nanoparticles was quantified by monitoring the kinetics as well as products of carbon tetrachloride reduction, and significant differences in reactivity and chloroform yield were observed. The reactivity of nanoparticles prepared in the presence of sulfate and phosphate demonstrated the highest reactivity and chloroform yield. Furthermore, substantial variations in the solid-state products of oxidation (magnetite, iron sulfide, and goethite, among others) were also observed.

  8. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    NASA Astrophysics Data System (ADS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  9. Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system.

    PubMed

    Lee, Wen-Bin; Weng, Chen-Hsun; Cheng, Fong-Yu; Yeh, Chen-Sheng; Lei, Huan-Yao; Lee, Gwo-Bin

    2009-02-01

    The preparation of nanoparticles is essential in the application of many nanotechnologies and various preparation methods have been explored in the previous decades. Among them, iron oxide nanoparticles have been widely investigated in applications ranging from bio-imaging to bio-sensing due to their unique magnetic properties. Recently, microfluidic systems have been utilized for synthesis of nanoparticles, which have the advantages of automation, well-controlled reactions, and a high particle uniformity. In this study, a new microfluidic system capable of mixing, transporting and reacting was developed for the synthesis of iron oxide nanoparticles. It allowed for a rapid and efficient approach to accelerate and automate the synthesis of the iron oxide nanoparticles as compared with traditional methods. The microfluidic system uses micro-electro-mechanical-system technologies to integrate a new double-loop micromixer, two micropumps, and a microvalve on a single chip. When compared with large-scale synthesis systems with commonly-observed particle aggregation issues, successful synthesis of dispersed and uniform iron oxide nanoparticles has been observed within a shorter period of time (15 min). It was found that the size distribution of these iron oxide nanoparticles is superior to that of the large-scale systems without requiring any extra additives or heating. The size distribution had a variation of 16%. This is much lower than a comparable large-scale system (34%). The development of this microfluidic system is promising for the synthesis of nanoparticles for many future biomedical applications.

  10. Hf-W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites

    NASA Astrophysics Data System (ADS)

    Kruijer, Thomas S.; Sprung, Peter; Kleine, Thorsten; Leya, Ingo; Burkhardt, Christoph; Wieler, Rainer

    2012-12-01

    The application of Hf-W chronometry to determine the timescales of core formation in the parent bodies of magmatic iron meteorites is severely hampered by 182W burnout during cosmic ray exposure of the parent meteoroids. Currently, no direct method exists to correct for the effects of 182W burnout, making the Hf-W ages for iron meteorites uncertain. Here we present noble gas and Hf-W isotope systematics of iron meteorite samples whose W isotopic compositions remained essentially unaffected by cosmic ray interactions. Most selected samples have concentrations of cosmogenic noble gases at or near the lowermost level observed in iron meteorites and, for iron meteorite standards, have very low noble gas and radionuclide based cosmic ray exposure ages (<60 Ma). In contrast to previous studies, no corrections of measured W isotope compositions are required for these iron meteorite samples. Their ɛ182W values (parts per 104 deviations from the terrestrial value) are higher than those measured for most other iron meteorites and range from -3.42 to -3.31, slightly elevated compared to the initial 182W/184W of Ca-Al-rich Inclusions (CAI; ɛ182W = -3.51 ± 0.10). The new W isotopic data indicate that core formation in the parent bodies of the IIAB, IIIAB, and IVA iron meteorites occurred ˜1-1.5 Myr after CAI formation (with an uncertainty of ˜1 Myr), consistent with earlier conclusions that the accretion and differentiation of iron meteorite parent bodies predated the accretion of most chondrite parent bodies. One ungrouped iron meteorite (Chinga) exhibits small nucleosynthetic W isotope anomalies, but after correction for these anomalies its ɛ182W value agrees with those of the other samples. Another ungrouped iron (Mbosi), however, has elevated ɛ182W relative to the other investigated irons, indicating metal-silicate separation ˜2-3 Myr later than in the parent bodies of the three major iron meteorite groups studied here.

  11. Iron nanoparticles embedded in carbon films: structural and optical properties

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, Seyed Ali

    2016-06-01

    In the present work amorphous hydrogenated carbon films with sputtered iron nanoparticles (Fe NPs @ a-C:H) were deposited by co-deposition of RF-sputtering and RF-plasma enhanced chemical vapor deposition methods using acetylene gas and iron target on quartz and silicon substrates. Samples were prepared in different initial pressures and during constant deposition time. The crystalline structure of Fe NPs @ a-C:H was studied using X-ray diffraction and selected area electron diffraction patterns. The X-ray photoelectron spectroscopy analysis presents that increasing the initial pressure decreases the atomic ratio of Fe/C and the sp3-hybridized carbon content in prepared samples. The transmission electron microscope image shows the encapsulated Fe NPs in carbon films. The optical properties and localized surface plasmon resonance (LSPR) of samples were studied using UV-visible spectrophotometry, which is shown that increasing of Fe content decreases the intensity of LSPR peak and increases the optical band gap.

  12. Superparamagnetic Iron Oxide Nanoparticle-Based Delivery Systems for Biotherapeutics

    PubMed Central

    Mok, Hyejung; Zhang, Miqin

    2014-01-01

    Introduction Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable, and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically-driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. Area covered This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. We examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes, and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. Expert opinion Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared to chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely-tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation. PMID:23199200

  13. Are iron oxide nanoparticles safe? Current knowledge and future perspectives.

    PubMed

    Valdiglesias, Vanessa; Fernández-Bertólez, Natalia; Kiliç, Gözde; Costa, Carla; Costa, Solange; Fraga, Sonia; Bessa, Maria Joao; Pásaro, Eduardo; Teixeira, João Paulo; Laffon, Blanca

    2016-12-01

    Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure.

  14. Lead coprecipitation with iron oxyhydroxide nano-particles

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Nuhfer, Noel T.; Kelly, Shelly; Li, Qin; Konishi, Hiromi; Elswick, Erika; Zhu, Chen

    2011-08-01

    Pb 2+ and Fe 3+ coprecipitation was studied with sorption edge measurements, desorption experiments, sorbent aging, High Resolution Transmission and Analytical Electron Microscopy (HR TEM-AEM), and geochemical modeling. Companion adsorption experiments were also conducted for comparison. The macroscopic chemical and near atomic scale HRTEM data supplemented our molecule scale analysis with EXAFS ( Kelly et al., 2008). Coprecipitation of Pb 2+ with ferric oxyhydroxides occurred at ˜pH 4 and is more efficient than adsorption in removing Pb 2+ from aqueous solutions at similar sorbate/sorbent ratios and pH. X-ray Diffraction (XRD) shows peaks of lepidocrocite and two additional broad peaks similar to fine particles of 2-line ferrihydrite (2LFh). HRTEM of the Pb-Fe coprecipitates shows a mixture of 2-6 nm diameter spheres and 8-20 by 200-300 nm needles, both uniformly distributed with Pb 2+. Geochemical modeling shows that surface complexation models fit the experimental data of low Pb:Fe ratios when a high site density is used. Desorption experiments show that more Pb 2+ was released from loaded sorbents collected from adsorption experiments than from Pb to Fe coprecipitates at dilute EDTA concentrations. Desorbed Pb 2+ versus dissolved Fe 3+ data show a linear relationship for coprecipitation (CPT) desorption experiments but a parabolic relationship for adsorption (ADS) experiments. Based on these results, we hypothesize that Pb 2+ was first adsorbed onto the nanometer-sized, metastable, iron oxyhydroxide polymers of 2LFh with domain size of 2-3 nm. As these nano-particles assembled into larger particles, some Pb 2+ was trapped in the iron oxyhydroxide structure and re-arranged to form solid solutions. Therefore, the CPT contact method produced more efficient removal of Pb 2+ than the adsorption contact method, and Pb 2+ bound in CPT solids represent a more stable sequestration of Pb 2+ in the environment than Pb 2+ adsorbed on iron oxyhydroxide surfaces.

  15. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics

    NASA Astrophysics Data System (ADS)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Jong Lee, Yung; Lee, Hyuck Mo

    2015-11-01

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  16. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.

    PubMed

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Lee, Yung Jong; Lee, Hyuck Mo

    2015-11-13

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  17. Physicochemical Characterization of Nebulized Superparamagnetic Iron Oxide Nanoparticles (SPIONs)

    PubMed Central

    Graczyk, Halshka; Bryan, Louise C.; Lewinski, Nastassja; Suarez, Guillaume; Coullerez, Geraldine; Bowen, Paul

    2015-01-01

    Abstract Background: Aerosol-mediated delivery of nano-based therapeutics to the lung has emerged as a promising alternative for treatment and prevention of lung diseases. Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention for such applications due to their biocompatibility and magnetic properties. However, information is lacking about the characteristics of nebulized SPIONs for use as a therapeutic aerosol. To address this need, we conducted a physicochemical characterization of nebulized Rienso, a SPION-based formulation for intravenous treatment of anemia. Methods: Four different concentrations of SPION suspensions were nebulized with a one-jet nebulizer. Particle size was measured in suspension by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and nanoparticle tracking analysis (NTA), and in the aerosol by a scanning mobility particle sizer (SMPS). Results: The average particle size in suspension as measured by TEM, PCS, and NTA was 9±2 nm, 27±7 nm, and 56±10 nm, respectively. The particle size in suspension remained the same before and after the nebulization process. However, after aerosol collection in an impinger, the suspended particle size increased to 159±46 nm as measured by NTA. The aerosol particle concentration increased linearly with increasing suspension concentration, and the aerodynamic diameter remained relatively stable at around 75 nm as measured by SMPS. Conclusions: We demonstrated that the total number and particle size in the aerosol were modulated as a function of the initial concentration in the nebulizer. The data obtained mark the first known independent characterization of nebulized Rienso and, as such, provide critical information on the behavior of Rienso nanoparticles in an aerosol. The data obtained in this study add new knowledge to the existing body of literature on potential applications of SPION suspensions as inhaled aerosol therapeutics. PMID

  18. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment.

    PubMed

    Gutierrez, Angela M; Dziubla, Thomas D; Hilt, J Zach

    2017-02-23

    The constant growth in population worldwide over the past decades continues to put forward the need to provide access to safe, clean water to meet human needs. There is a need for cost-effective technologies for water and wastewater treatment that can meet the global demands and the rigorous water quality standards and at the same maximizing pollutant efficiency removal. Current remediation technologies have failed in keeping up with these factors without becoming cost-prohibitive. Most recently, nanotechnology has been sought as the best alternative to increase access to water supplies by remediating those already contaminated and offering ways to access unconventional sources. The use of iron oxide magnetic nanoparticles as nanoadsorbents has led way to a new class of magnetic separation strategies for water treatment. This review focuses on highlighting some of the most recent advances in core-shell iron oxide magnetic nanoparticles and nanocomposites containing iron oxide nanoparticles currently being developed for water and wastewater treatment of organic pollutants. We discuss the novelty of these novel materials and the insight gained from their advances that can help develop cost-effective reusable technologies for scale-up and commercial use.

  19. Mesoscale modeling of functional properties in core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Mangeri, John; Heinonen, Olle; Karpeev, Dmitry; Nakhmanson, Serge

    2015-03-01

    Core-shell nanoparticle systems of Zn-ZnO and ZnO-TiO2 are studied computationally using the highly scalable MOOSE finite-element framework, developed at Idaho National Lab. The elastic anisotropic mismatch of the core and shell create an imprinting effect within the shell that produces a wide variation of strains. Due to this diversity of strains, the sharp band gap edges of the bulk semiconductor are observed to be ``thinned-out'' much like amorphous silicon. We show that a variety of factors, such as particle size, core-to-shell volume ratio, applied hydrostatic pressure, shell microstructure, as well as the effect of surface elasticity, can influence the distribution of optical band-gap values within the particle, which may prove useful within the field of photovoltaics. Part of the work by O.H. was supported by Award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Material Design.

  20. Dislocation core reconstruction induced by carbon segregation in bcc iron

    NASA Astrophysics Data System (ADS)

    Ventelon, Lisa; Lüthi, B.; Clouet, E.; Proville, L.; Legrand, B.; Rodney, D.; Willaime, F.

    2015-06-01

    The relative stability of dislocation core configurations in body-centered-cubic metals is profoundly modified by the presence of solutes. Considering the Fe(C) system, we demonstrate by using density functional theory that carbon atoms destabilize the usual easy core to the benefit of the hard core configuration of the screw dislocation, which is unstable in pure metals. The carbon atom is at the center of a regular prism in a cementitelike local environment. The same dislocation core reconstruction is also found with other solutes (B, N, O) and in W(C). This unexpected low-energy configuration induces a strong solute-dislocation attraction, leading to dislocation core saturation by solute atoms, even for very low bulk solute concentrations. This core reconstruction will constitute an essential factor to account for in solute-segregation related phenomena, such as strain aging.

  1. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-22

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  2. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    NASA Astrophysics Data System (ADS)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  3. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.

    PubMed

    Ling, Daishun; Lee, Nohyun; Hyeon, Taeghwan

    2015-05-19

    Magnetic iron oxide nanoparticles have been extensively investigated for their various biomedical applications including diagnostic imaging, biological sensing, drug, cell, and gene delivery, and cell tracking. Recent advances in the designed synthesis and assembly of uniformly sized iron oxide nanoparticles have brought innovation in the field of nanomedicine. This Account provides a review on the recent progresses in the controlled synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. In particular, it focuses on three topics: stringent control of particle size during synthesis via the "heat-up" process, surface modification for the high stability and biocompatibility of the nanoparticles for diagnostic purposes, and assembly of the nanoparticles within polymers or mesoporous silica matrices for theranostic applications. Using extremely small 3 nm sized iron oxide nanoparticles (ESION), a new nontoxic T1 MRI contrast agent was realized for high-resolution MRI of blood vessels down to 0.2 mm. Ferrimagnetic iron oxide nanoparticles (FION) that are larger than 20 nm exhibit extremely large magnetization and coercivity values. The cells labeled with FIONs showed very high T2 contrast effect so that even a single cell can be readily imaged. Designed assembly of iron oxide nanoparticles with mesoporous silica and polymers was conducted to fabricate multifunctional nanoparticles for theranostic applications. Mesoporous silica nanoparticles are excellent scaffolds for iron oxide nanoparticles, providing magnetic resonance and fluorescence imaging modalities as well as the functionality of the drug delivery vehicle. Polymeric ligands could be designed to respond to various biological stimuli such as pH, temperature, and enzymatic activity. For example, we fabricated tumor pH-sensitive magnetic nanogrenades (termed PMNs) composed of self-assembled iron oxide nanoparticles and pH-responsive ligands. They were utilized to visualize

  4. Stability of body-centered cubic iron-magnesium alloys in the Earth's inner core.

    PubMed

    Kádas, Krisztina; Vitos, Levente; Johansson, Börje; Ahuja, Rajeev

    2009-09-15

    The composition and the structure of the Earth's solid inner core are still unknown. Iron is accepted to be the main component of the core. Lately, the body-centered cubic (bcc) phase of iron was suggested to be present in the inner core, although its stability at core conditions is still in discussion. The higher density of pure iron compared with that of the Earth's core indicates the presence of light element(s) in this region, which could be responsible for the stability of the bcc phase. However, so far, none of the proposed composition models were in full agreement with seismic observations. The solubility of magnesium in hexagonal Fe has been found to increase significantly with increasing pressure, suggesting that Mg can also be an important element in the core. Here, we report a first-principles density functional study of bcc Fe-Mg alloys at core pressures and temperatures. We show that at core conditions, 5-10 atomic percent Mg stabilizes the bcc Fe both dynamically and thermodynamically. Our calculated density, elastic moduli, and sound velocities of bcc Fe-Mg alloys are consistent with those obtained from seismology, indicating that the bcc-structured Fe-Mg alloy is a possible model for the Earth's inner core.

  5. Novel method for the preparation of core-shell nanoparticles with movable Ag core and polystyrene loop shell

    SciTech Connect

    Liu Weijun; Zhang Zhicheng . E-mail: lwj3600@ustc.edu; He Weidong; Zheng Cheng; Ge Xuewu; Li, Jian; Liu Huarong; Jiang Hao

    2006-04-15

    Core/shell nanoparticles with movable silver (Ag) core and polystyrene (PSt) shell (Ag at PSt nanoparticle) were successfully synthesized at room temperature and under ambient pressure via two steps: {gamma}-irradiation and interfacial-initiated polymerization. Firstly, mono-dispersed Ag nanoparticles with diameters 20 nm were synthesized in inversed microemulsion by reducing silver nitrate under {gamma}-irradiation. Then, Ag nanoparticles were coated with PSt via interfacial-initiated polymerization with cumene hydroperoxide/ferrous sulfate/disodium ethylenediaminetetraacetate/sodium formaldehyde sulfoxylate (CHPO-Fe {sup 2+}-EDTA-SFS) as the redox initiation pair. The resulted Ag at PSt nanoparticles were identified by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS)

  6. Novel method for the preparation of core shell nanoparticles with movable Ag core and polystyrene loop shell

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Jun; Zhang, Zhi-Cheng; He, Wei-Dong; Zheng, Cheng; Ge, Xue-Wu; Li, Jian; Liu, Hua-Rong; Jiang, Hao

    2006-04-01

    Core/shell nanoparticles with movable silver (Ag) core and polystyrene (PSt) shell (Ag@PSt nanoparticle) were successfully synthesized at room temperature and under ambient pressure via two steps: γ-irradiation and interfacial-initiated polymerization. Firstly, mono-dispersed Ag nanoparticles with diameters 20 nm were synthesized in inversed microemulsion by reducing silver nitrate under γ-irradiation. Then, Ag nanoparticles were coated with PSt via interfacial-initiated polymerization with cumene hydroperoxide/ferrous sulfate/disodium ethylenediaminetetraacetate/sodium formaldehyde sulfoxylate (CHPO-Fe 2+-EDTA-SFS) as the redox initiation pair. The resulted Ag@PSt nanoparticles were identified by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

  7. Effect of iron oxide nanoparticles on the permeability properties of Sf21 cells.

    PubMed

    Wang, Jianye; Zhao, Gang; Shu, Zhiquan; Zhou, Ping; Cao, Yunxia; Gao, Dayong

    2016-02-01

    It was recently reported that nanoparticles could significantly modulate the thermal properties of solutions at subzero temperatures, and as a result, nanoparticles have been widely used in both cryopreservation and cryosurgery. In cryopreservation, the water permeability coefficient of cell membrane is an essential parameter for quantitative investigation of cell dehydration and intracellular ice formation. However, few studies were focused on the effects of nanoparticles on the permeability properties of cell membrane. In order to optimize the processes of cryopreservation with nanoparticles, we measured the permeability properties of Sf21 cells in the presence of iron oxide nanoparticles in this study. The responses of Sf21 cells with iron oxide nanoparticles were obtained by the microperfusion system at -2, 5, 15 and 25 °C, respectively. The osmotically inactive cell volume (Vb), the cell membrane hydraulic conductivity (Lp) and it's activation energy (ELp), and the reference value of Lp at the reference temperature (Lpg) with 0.02%, 0.1% and 0.5% (w/w) iron oxide nanoparticles were determined by 2-parameter (2-p) model at -2, 5, 15 and 25 °C. We analyzed the effects of iron oxide nanoparticles on the permeability properties of the Sf21 cells. The results indicated that iron oxide nanoparticles have a significant influence on membrane permeability properties (Lpg and ELp) of Sf21 cells. The introduction of iron oxide nanoparticles tends to increase the values of Vb and Lpg, while decrease the value of ELp. These findings may provide a new route to optimize the biomaterial cryopreservation.

  8. Metadynamics study of iron phases at the Earth's inner core conditions

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Oganov, A. R.

    2007-12-01

    Iron is the main element in the Earth core and the stable phase of iron in the Earth's solid inner core is still highly controversial (Sambridge, 2003). In order to predict the properties of iron at high pressures and temperatures, here, we use a novel simulation technique, first-principles metadynamics (Martonak et al., 2003, see also Oganov et al., 2005 ), to unveil the stepwise mechanism of the pressure-induced (350 GPa) transformations between bcc, fcc and hcp iron at the temperatures of 2000 K and 6000 K respectively. We predicted the bcc \\{110\\}, fcc \\{111\\} and hcp \\{111\\} slip planes at the Earth inner core conditions. We also predicted some metastable iron phases (e.g. R-3M and P-6M2 structures) on the pathway of the phase transition. The c/a ratios of the iron structures are also calculated at the simulated conditions. Implications of these results for seismic anisotropy in the Earth inner core will be discussed (Zhang, 2007). References: [1] Sambridge M., (2003) An Ensemble View of Earth's Inner Core. Science, 299, 529-530; [2] Martonak R., Laio A., and Parrinello M., (2003). Predicting crystal structures: The Parrinello-Rahman method revisited. Phys. Rev. Lett. 90, 075503; [3] Oganov A.R., Martonak R., Laio A., Raiteri P., Parrinello M. (2005). Anisotropy of Earth's D" layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142-1144; [4] Zhang F. & Oganov A.R., (2007) Metadynamics study of iron phases at the Earth's inner core conditions. (in prep.)

  9. Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction.

    PubMed

    Zhang, Liang; Iyyamperumal, Ravikumar; Yancey, David F; Crooks, Richard M; Henkelman, Graeme

    2013-10-22

    We report that the oxygen binding energy of alloy-core@Pt nanoparticles can be linearly tuned by varying the alloy-core composition. Using this tuning mechanism, we are able to predict optimal compositions for different alloy-core@Pt nanoparticles. Subsequent electrochemical measurements of ORR activities of AuPd@Pt dendrimer-encapsulated nanoparticles (DENs) are in a good agreement with the theoretical prediction that the peak of activity is achieved for a 28% Au/72% Pd alloy core supporting a Pt shell. Importantly, these findings represent an unusual case of first-principles theory leading to nearly perfect agreement with experimental results.

  10. Flame synthesis and in vitro biocompatibility assessment of superparamagnetic iron oxide nanoparticles: cellular uptake, toxicity and proliferation studies.

    PubMed

    Buyukhatipoglu, K; Miller, T A; Clyne, A Morss

    2009-12-01

    Superparamagnetic iron oxide nanoparticles are used in diverse applications, such as targeted drug delivery, magnetic resonance imaging and hyperthermic malignant cell therapy. In the current work, superparamagnetic iron oxide nanoparticles were produced by flame synthesis, which has improved nanoparticle property control and is capable of commercial production rates with minimal post-processing. The iron oxide nanoparticle material characteristics were analyzed by electron microscopy and Raman spectroscopy. Finally, flame synthesized iron oxide nanoparticle interaction with endothelial cells was compared to commercially available iron oxide nanoparticles. Flame synthesis produced a heterogeneous mixture of 6-12 nm diameter hematite and magnetite nanoparticles with superparamagnetic properties. Endothelial cell scanning electron microscopy, confirmed by energy dispersive spectroscopy, demonstrated that flame synthesized nanoparticles are ingested into cells in a similar manner to commercially available nanoparticles. The flame synthesized particles showed no statistically significant toxicity difference from commercially available nanoparticles, as measured by Live/Dead assay, Alamar blue, and lactase dehydrogenase release. Neither type of nanoparticle affected cell proliferation induced by fibroblast growth factor-2. These data suggest that combustion synthesized iron oxide nanoparticles are comparable to commercially available nanoparticles for biological applications, yet flame synthesis is a simpler process with higher purity products and lower manufacturing costs. Future work will include functionalizing nanoparticles for specific cell targeting and bioactive factor delivery.

  11. Melting behavior of the iron-sulfur system and chemical convection in iron-rich planetary cores

    SciTech Connect

    Li, J.; Chen, B.

    2009-03-26

    We present experimental data on the high-pressure melting behavior of the Fe-S system from a synchrotron x-ray radiography study using the large volume press, with implications for the role of chemical convection in sulfur-bearing planetary cores. At present, Earth, Mercury and Ganymede are the only three solid bodies in the Solar System that possess intrinsic global magnetic fields. Dynamo simulation reveal that chemical buoyancy force associated with the formation of a solid inner core is critical for sustaining the Earth's magnetic field. Fluid motions in Mercury and Ganymede may be partially driven by chemical buoyancy force as well. The style of chemical convection and its influence on the thermal and chemical state and evolution of iron-rich cores are determined in part by the melting behavior of potential core-forming materials. Sulfur is widely accepted as a candidate light element in iron-rich planetary cores. In order to understand the role of chemical convection in sulfur-bearing cores, we studied the high-pressure melting behavior of Fe-S mixtures containing 9 wt% sulfur using the synchrotron x-ray radiographic method in a large volume press.

  12. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    PubMed

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  13. Plasmonics Resonance Enhanced Active Photothermal Effects of Aluminum and Iron Nanoparticles.

    PubMed

    Chong, Xinyuan; Abboud, Jacques; Zhang, Zhili

    2015-03-01

    Localized Surface Plasmonics Resonance (LSPR) enhanced active photothermal effects of both aluminum nanoparticles (Al NPs) and iron nanoparticles (Fe NPs) are experimentally observed. Photothermally activated motion and ignition by low-energy xenon flash are quantitatively measured. For nanoparticles of comparable sizes, photothermally activated motion height of Fe NPs is about 60% lower than that of Al NPs, while photothermal Minimum Ignition Energy (MIE) of Fe NPs is about 50% lower than that of Al NPs. Joule heating by LSPR enhanced photothermal effects among nanoparticles and subsequently triggered oxidation reactions are found responsible for the motion and ignition of the nanoparticles.

  14. Mössbauer study of iron carbide nanoparticles produced by laser ablation in alcohols

    NASA Astrophysics Data System (ADS)

    Amagasa, S.; Nishida, N.; Kobayashi, Y.; Yamada, Y.

    2016-12-01

    Iron carbide nanoparticles were synthesized by laser ablation of iron in alcohols (methanol and ethanol). A new cell, designed to allow the ablation to be conducted in a flowing solvent, enabled separation and collection of the nanoparticles immediately after production, thus preventing further photochemical reactions of the colloids. The nanoparticles were investigated using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. In methanol, they consisted of α-iron, γ-iron, iron carbide, and amorphous paramagnetic iron carbides, whereas in ethanol they consisted of iron carbides and amorphous paramagnetic iron carbides. The difference in products depending on the alcohol was attributed to the different carbon supplies for methanol and ethanol. For both solvents, the average particle size was found to be 16 nm, and the nanoparticles were dispersed in amorphous carbon. We also examined the effect of further laser irradiation of the colloids using stagnant solvent, and the particle size was found to increase and a very small amount of carbonization was observed.

  15. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy

    NASA Astrophysics Data System (ADS)

    Wang, Zidong; Wang, Xuewen; Wang, Qiangsong; Shih, I.; Xu, J. J.

    2009-02-01

    In situ iron nanoparticle reinforced Cu-3Sn-8Zn-6Pb alloy has been fabricated by centrifugal casting in a vacuum chamber with a medium frequency electrical furnace. The microstructure of this alloy was analyzed with a scanning electron microscope (SEM) and a high-resolution transmission electron microscope (HRTEM), and the results show that the grains of Cu-3Sn-8Zn-6Pb alloy without iron have a typical dendrite structure with dimensions from 500 to 1500 µm, and the grains of the alloy with the addition of 1% iron are small and equiaxed, with dimensions from 20 to 60 µm. Then, the relatively uniform dispersed particles in the copper matrix were identified with the HRTEM to be pure iron with dimensions in the order of 2-20 nm. The mechanical properties of the alloys were measured and the results show a significant increase in the tensile strength of the alloy with iron nanoparticles and a slight increase of the elongation compared to that without iron. The mechanism of formation of the iron nanoparticles was analyzed by thermodynamic and dynamic theories, and the results indicate that the in situ iron nanoparticles of Cu-3Sn-8Zn-6Pb alloy can reasonably form during solidification in the centrifugal casting technique.

  16. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy.

    PubMed

    Wang, Zidong; Wang, Xuewen; Wang, Qiangsong; Shih, I; Xu, J J

    2009-02-18

    In situ iron nanoparticle reinforced Cu-3Sn-8Zn-6Pb alloy has been fabricated by centrifugal casting in a vacuum chamber with a medium frequency electrical furnace. The microstructure of this alloy was analyzed with a scanning electron microscope (SEM) and a high-resolution transmission electron microscope (HRTEM), and the results show that the grains of Cu-3Sn-8Zn-6Pb alloy without iron have a typical dendrite structure with dimensions from 500 to 1500 microm, and the grains of the alloy with the addition of 1% iron are small and equiaxed, with dimensions from 20 to 60 microm. Then, the relatively uniform dispersed particles in the copper matrix were identified with the HRTEM to be pure iron with dimensions in the order of 2-20 nm. The mechanical properties of the alloys were measured and the results show a significant increase in the tensile strength of the alloy with iron nanoparticles and a slight increase of the elongation compared to that without iron. The mechanism of formation of the iron nanoparticles was analyzed by thermodynamic and dynamic theories, and the results indicate that the in situ iron nanoparticles of Cu-3Sn-8Zn-6Pb alloy can reasonably form during solidification in the centrifugal casting technique.

  17. VAPOR PHASE MERCURY SORPTION BY ORGANIC-SULFIDE COATED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Tetra sulfide silane coated iron-copper nano-particle aggregates are found to be potentially very high capacity sorbents for vapor phase mercury capture. High equilibrium capacities were obtained for the silane coated iron copper nano-aggregate sorbent at 70 oC and 120 oC. Even a...

  18. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery.

    PubMed

    Jiang, Shan; Eltoukhy, Ahmed A; Love, Kevin T; Langer, Robert; Anderson, Daniel G

    2013-03-13

    The safe, targeted and effective delivery of gene therapeutics remains a significant barrier to their broad clinical application. Here we develop a magnetic nucleic acid delivery system composed of iron oxide nanoparticles and cationic lipid-like materials termed lipidoids. Coated nanoparticles are capable of delivering DNA and siRNA to cells in culture. The mean hydrodynamic size of these nanoparticles was systematically varied and optimized for delivery. While nanoparticles of different sizes showed similar siRNA delivery efficiency, nanoparticles of 50-100 nm displayed optimal DNA delivery activity. The application of an external magnetic field significantly enhanced the efficiency of nucleic acid delivery, with performance exceeding that of the commercially available lipid-based reagent, Lipofectamine 2000. The iron oxide nanoparticle delivery platform developed here offers the potential for magnetically guided targeting, as well as an opportunity to combine gene therapy with MRI imaging and magnetic hyperthermia.

  19. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora

    NASA Astrophysics Data System (ADS)

    Groiss, Silvia; Selvaraj, Raja; Varadavenkatesan, Thivaharan; Vinayagam, Ramesh

    2017-01-01

    In the present investigation, the leaf extract of Cynometra ramiflora was used to synthesize iron oxide nanoparticles. Within minutes of adding iron sulphate to the leaf extract, iron oxide nanoparticles were formed and thus, the method is very simple and fast. UV-VIS spectra showed the strong absorption band in the visible region. SEM images showed discrete spherical shaped particles and EDS spectra confirmed the iron and oxygen presence. The XRD results depicted the crystalline structure of iron oxide nanoparticles. FT-IR spectra portrayed the existence of functional groups of phytochemicals which are probably involved in the formation and stabilization of nanoparticles. The iron oxide nanoparticles exhibited effective inhibition against E. coli and S. epidermidis which may find its applications in the antibacterial drug development. Furthermore, the catalytic activity of the nanoparticles as Fenton-like catalyst was successfully investigated for the degradation of Rhodamine-B dye. This outcome could play a prominent role in the wastewater treatment.

  20. Mitochondrial iron accumulation exacerbates hepatic toxicity caused by hepatitis C virus core protein

    SciTech Connect

    Sekine, Shuichi; Ito, Konomi; Watanabe, Haruna; Nakano, Takafumi; Moriya, Kyoji; Shintani, Yoshizumi; Fujie, Hajime; Tsutsumi, Takeya; Miyoshi, Hideyuki; Fujinaga, Hidetake; Shinzawa, Seiko; Koike, Kazuhiko; Horie, Toshiharu

    2015-02-01

    Patients with long-lasting hepatitis C virus (HCV) infection are at major risk of hepatocellular carcinoma (HCC). Iron accumulation in the livers of these patients is thought to exacerbate conditions of oxidative stress. Transgenic mice that express the HCV core protein develop HCC after the steatosis stage and produce an excess of hepatic reactive oxygen species (ROS). The overproduction of ROS in the liver is the net result of HCV core protein-induced dysfunction of the mitochondrial respiratory chain. This study examined the impact of ferric nitrilacetic acid (Fe-NTA)-mediated iron overload on mitochondrial damage and ROS production in HCV core protein-expressing HepG2 (human HCC) cells (Hep39b cells). A decrease in mitochondrial membrane potential and ROS production were observed following Fe-NTA treatment. After continuous exposure to Fe-NTA for six days, cell toxicity was observed in Hep39b cells, but not in mock (vector-transfected) HepG2 cells. Moreover, mitochondrial iron ({sup 59}Fe) uptake was increased in the livers of HCV core protein-expressing transgenic mice. This increase in mitochondrial iron uptake was inhibited by Ru360, a mitochondrial Ca{sup 2+} uniporter inhibitor. Furthermore, the Fe-NTA-induced augmentation of mitochondrial dysfunction, ROS production, and cell toxicity were also inhibited by Ru360 in Hep39b cells. Taken together, these results indicate that Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates hepatocyte toxicity caused by the HCV core protein. - Highlights: • Iron accumulation in the livers of patients with hepatitis C virus (HCV) infection is thought to exacerbate oxidative stress. • The impact of iron overload on mitochondrial damage and ROS production in HCV core protein-expressing cells were examined. • Mitochondrial iron uptake was increased in the livers of HCV core protein-expressing transgenic mice. • Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates

  1. Body-centered cubic iron-nickel alloy in Earth's core.

    PubMed

    Dubrovinsky, L; Dubrovinskaia, N; Narygina, O; Kantor, I; Kuznetzov, A; Prakapenka, V B; Vitos, L; Johansson, B; Mikhaylushkin, A S; Simak, S I; Abrikosov, I A

    2007-06-29

    Cosmochemical, geochemical, and geophysical studies provide evidence that Earth's core contains iron with substantial (5 to 15%) amounts of nickel. The iron-nickel alloy Fe(0.9)Ni(0.1) has been studied in situ by means of angle-dispersive x-ray diffraction in internally heated diamond anvil cells (DACs), and its resistance has been measured as a function of pressure and temperature. At pressures above 225 gigapascals and temperatures over 3400 kelvin, Fe(0.9)Ni(0.1) adopts a body-centered cubic structure. Our experimental and theoretical results not only support the interpretation of shockwave data on pure iron as showing a solid-solid phase transition above about 200 gigapascals, but also suggest that iron alloys with geochemically reasonable compositions (that is, with substantial nickel, sulfur, or silicon content) adopt the bcc structure in Earth's inner core.

  2. MR Imaging of Tumor Associated Macrophages with Clinically-Applicable Iron Oxide Nanoparticles

    PubMed Central

    Daldrup-Link, Heike E.; Golovko, Daniel; Ruffell, Brian; DeNardo, David G.; Castaneda, Rosalinda; Ansari, Celina; Rao, Jianghong; Tikhomirov, Grigory A.; Wendland, Mike; Corot, Claire; Coussens, Lisa M.

    2011-01-01

    Purpose The presence of tumor-associated macrophages (TAMs) in breast cancer correlates strongly with poor outcome. The purpose of this study was to develop a clinically applicable, non-invasive diagnostic assay for selective targeting and visualization of TAMs in breast cancer, based on magnetic resonance (MR) imaging and clinically applicable iron oxide nanoparticles. Experimental Design F4/80-negative mammary carcinoma cells and F4/80-positive TAMs were incubated with iron oxide nanoparticles and were compared regarding MR signal changes and iron uptake. MMTV-PyMT transgenic mice harboring mammary carcinomas underwent nanoparticle-enhanced MR up to 1 hour (h) and at 24 h post injection (p.i.). The tumor enhancement on MR images was correlated with the presence and location of TAMs and nanoparticles on confocal microscopy. Results In vitro studies revealed that iron oxide nanoparticles are preferentially phagocytosed by TAMs, but not by malignant tumor cells. In vivo, all tumors demonstrated an initial contrast agent perfusion on immediate postcontrast MR images with gradual transendothelial leakage into the tumor interstitium. At 24 h p.i., all tumors demonstrated a persistent signal decline on MR scans. TAM-depletion via αCSF1 mAb lead to significant inhibition of tumor nanoparticle enhancement. Detection of iron using DAB-enhanced Prussian Blue staining, and immunodetection of CD68 localized iron oxide nanoparticles to TAMs, indicating that the MR signal effects on delayed MR images were largely due to TAM-mediated uptake of contrast agent. Conclusion These data indicate that tumor-enhancement with clinically applicable iron oxide nanoparticles may serve as a new biomarker for long-term prognosis, related treatment decisions and the evaluation of new immune-targeted therapies. PMID:21791632

  3. Peptide-functionalized iron oxide magnetic nanoparticle for gold mining

    NASA Astrophysics Data System (ADS)

    Shen, Wei-Zheng; Cetinel, Sibel; Sharma, Kumakshi; Borujeny, Elham Rafie; Montemagno, Carlo

    2017-02-01

    Here, we present our work on preparing a novel nanomaterial composed of inorganic binding peptides and magnetic nanoparticles for inorganic mining. Two previously selected and well-characterized gold-binding peptides from cell surface display, AuBP1 and AuBP2, were exploited. This nanomaterial (AuBP-MNP) was designed to fulfill the following two significant functions: the surface conjugated gold-binding peptide will recognize and selectively bind to gold, while the magnetic nano-sized core will respond and migrate according to the applied external magnetic field. This will allow the smart nanomaterial to mine an individual material (gold) from a pool of mixture, without excessive solvent extraction, filtration, and concentration steps. The working efficiency of AuBP-MNP was determined by showing a dramatic reduction of gold nanoparticle colloid concentration, monitored by spectroscopy. The binding kinetics of AuBP-MNP onto the gold surface was determined using surface plasmon resonance (SPR) spectroscopy, which exhibits around 100 times higher binding kinetics than peptides alone. The binding capacity of AuBP-MNP was demonstrated by a bench-top mining test with gold microparticles.

  4. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea).

    PubMed

    Rui, Mengmeng; Ma, Chuanxin; Hao, Yi; Guo, Jing; Rui, Yukui; Tang, Xinlian; Zhao, Qi; Fan, Xing; Zhang, Zetian; Hou, Tianqi; Zhu, Siyuan

    2016-01-01

    Nanomaterials are used in practically every aspect of modern life, including agriculture. The aim of this study was to evaluate the effectiveness of iron oxide nanoparticles (Fe2O3 NPs) as a fertilizer to replace traditional Fe fertilizers, which have various shortcomings. The effects of the Fe2O3 NPs and a chelated-Fe fertilizer (ethylenediaminetetraacetic acid-Fe; EDTA-Fe) fertilizer on the growth and development of peanut (Arachis hypogaea), a crop that is very sensitive to Fe deficiency, were studied in a pot experiment. The results showed that Fe2O3 NPs increased root length, plant height, biomass, and SPAD values of peanut plants. The Fe2O3 NPs promoted the growth of peanut by regulating phytohormone contents and antioxidant enzyme activity. The Fe contents in peanut plants with Fe2O3 NPs and EDTA-Fe treatments were higher than the control group. We used energy dispersive X-ray spectroscopy (EDS) to quantitatively analyze Fe in the soil. Peanut is usually cultivated in sandy soil, which is readily leached of fertilizers. However, the Fe2O3 NPs adsorbed onto sandy soil and improved the availability of Fe to the plants. Together, these results show that Fe2O3 NPs can replace traditional Fe fertilizers in the cultivation of peanut plants. To the best of our knowledge, this is the first research on the Fe2O3 NPs as the iron fertilizer.

  5. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea)

    PubMed Central

    Rui, Mengmeng; Ma, Chuanxin; Hao, Yi; Guo, Jing; Rui, Yukui; Tang, Xinlian; Zhao, Qi; Fan, Xing; Zhang, Zetian; Hou, Tianqi; Zhu, Siyuan

    2016-01-01

    Nanomaterials are used in practically every aspect of modern life, including agriculture. The aim of this study was to evaluate the effectiveness of iron oxide nanoparticles (Fe2O3 NPs) as a fertilizer to replace traditional Fe fertilizers, which have various shortcomings. The effects of the Fe2O3 NPs and a chelated-Fe fertilizer (ethylenediaminetetraacetic acid-Fe; EDTA-Fe) fertilizer on the growth and development of peanut (Arachis hypogaea), a crop that is very sensitive to Fe deficiency, were studied in a pot experiment. The results showed that Fe2O3 NPs increased root length, plant height, biomass, and SPAD values of peanut plants. The Fe2O3 NPs promoted the growth of peanut by regulating phytohormone contents and antioxidant enzyme activity. The Fe contents in peanut plants with Fe2O3 NPs and EDTA-Fe treatments were higher than the control group. We used energy dispersive X-ray spectroscopy (EDS) to quantitatively analyze Fe in the soil. Peanut is usually cultivated in sandy soil, which is readily leached of fertilizers. However, the Fe2O3 NPs adsorbed onto sandy soil and improved the availability of Fe to the plants. Together, these results show that Fe2O3 NPs can replace traditional Fe fertilizers in the cultivation of peanut plants. To the best of our knowledge, this is the first research on the Fe2O3 NPs as the iron fertilizer. PMID:27375665

  6. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA.

    PubMed

    Robinson, Ian; Tung, Le D; Maenosono, Shinya; Wälti, Christoph; Thanh, Nguyen T K

    2010-12-01

    Core-shell magnetic nanoparticles have received significant attention recently and are actively investigated owing to their large potential for a variety of applications. Here, the synthesis and characterization of bimetallic nanoparticles containing a magnetic core and a gold shell are discussed. The gold shell facilitates, for example, the conjugation of thiolated biological molecules to the surface of the nanoparticles. The composite nanoparticles were produced by the reduction of a gold salt on the surface of pre-formed cobalt or magnetite nanoparticles. The synthesized nanoparticles were characterized using ultraviolet-visible absorption spectroscopy, transmission electron microscopy, energy dispersion X-ray spectroscopy, X-ray diffraction and super-conducting quantum interference device magnetometry. The spectrographic data revealed the simultaneous presence of cobalt and gold in 5.6±0.8 nm alloy nanoparticles, and demonstrated the presence of distinct magnetite and gold phases in 9.2±1.3 nm core-shell magnetic nanoparticles. The cobalt-gold nanoparticles were of similar size to the cobalt seed, while the magnetite-gold nanoparticles were significantly larger than the magnetic seeds, indicating that different processes are responsible for the addition of the gold shell. The effect on the magnetic properties by adding a layer of gold to the cobalt and magnetite nanoparticles was studied. The functionalization of the magnetic nanoparticles is demonstrated through the conjugation of thiolated DNA to the gold shell.

  7. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    PubMed

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  8. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles.

    PubMed

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line.

  9. Synthesis and Electrochemical Lithium Storage Behavior of Carbon Nanotubes Filled with Iron Sulfide Nanoparticles

    PubMed Central

    Yu, Wan‐Jing; Zhang, Lili; Hou, Peng‐Xiang; Li, Feng; Cheng, Hui‐Ming

    2016-01-01

    Carbon nanotubes (CNTs) filled with iron sulfide nanoparticles (NPs) are prepared by inserting sulfur and ferrocene into the hollow core of CNTs followed by heat treatment. It is found that pyrrhotite‐11T iron sulfide (Fe‐S) NPs with an average size of ≈15 nm are encapsulated in the tubular cavity of the CNTs (Fe‐S@CNTs), and each particle is a single crystal. When used as the anode material of lithium‐ion batteries, the Fe‐S@CNT material exhibits excellent electrochemical lithium storage performance in terms of high reversible capacity, good cyclic stability, and desirable rate capability. In situ transmission electron microscopy studies show that the CNTs not only play an essential role in accommodating the volume expansion of the Fe‐S NPs but also provide a fast transport path for Li ions. The results demonstrate that CNTs act as a unique nanocontainer and reactor that permit the loading and formation of electrochemically active materials with desirable electrochemical lithium storage performance. CNTs with their superior structural stability and Li‐ion transfer kinetics are responsible for the improved rate capability and cycling performance of Fe‐S NPs in CNTs. PMID:27840800

  10. Rheological characterization of a magnetorheological ferrofluid using iron nitride nanoparticles

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Ahuré-Powell, Louise A.; Wereley, Norman M.

    2015-05-01

    Magnetorheology of a magnetorheological ferrofluid (MRFF) was investigated to study the role of a ferromagnetic nanoparticle (NP) additive in magnetorheological fluids (MRFs). Iron nitride (Fe16N2) NPs, nominally within the diameter range of ˜16-45 nm (spherical NPs) and ˜30-66 nm (cubic NPs), were coated with carboxy-polyethylene glycol (carboxy-PEG) and dispersed in silicone oil in order to produce a magnetic carrier fluid or ferrofluid for two solids loadings: 2 vol. % and 5 vol. %. Conventional spherical carbonyl iron (CI) particles, varying in diameter from 6 to 10 μm, were suspended in the ferrofluid at 25 vol. % solids loading. Rheological properties of the MRFF synthesized with the carboxy-PEG-based ferromagnetic carrier fluid were compared to the MRF synthesized with silicone oil to determine how ferrofluid can influence dynamic viscosity and yield stress. Rheological measurements of both MRF and MRFF samples were carried out using a Paar Physica 300 rheometer to estimate the field-off viscosity and to measure flow curves (i.e., shear stress vs. shear rate) as a function of magnetic field. A Bingham-plastic model was used to characterize the flow curves, and results show that there is an increase in the dynamic viscosity of the MRFF over the MRF. The ferromagnetic carrier fluid greatly increases yield stress as only 2 vol. % of added carboxy-PEG NPs improves the yield stress performance by almost 5%. A second MRFF sample synthesized with 5 vol. % of added carboxy-PEG NPs contained in the ferrofluid significantly enhanced the yield stress performance by 13% over the MRF at the same CI solids loading (25 vol. %).

  11. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.

    PubMed

    Dilnawaz, Fahima; Singh, Abhalaxmi; Mohanty, Chandana; Sahoo, Sanjeeb K

    2010-05-01

    The primary inadequacy of chemotherapeutic drugs is their relative non-specificity and potential side effects to the healthy tissues. To overcome this, drug loaded multifunctional magnetic nanoparticles are conceptualized. We report here an aqueous based formulation of glycerol monooleate coated magnetic nanoparticles (GMO-MNPs) devoid of any surfactant capable of carrying high payload hydrophobic anticancer drugs. The biocompatibility was confirmed by tumor necrosis factor alpha assay, confocal microscopy. High entrapment efficiency approximately 95% and sustained release of encapsulated drugs for more than two weeks under in vitro conditions was achieved for different anticancer drugs (paclitaxel, rapamycin, alone or combination). Drug loaded GMO-MNPs did not affect the magnetization properties of the iron oxide core as confirmed by magnetization study. Additionally the MNPs were functionalized with carboxylic groups by coating with DMSA (Dimercaptosuccinic acid) for the supplementary conjugation of amines. For targeted therapy, HER2 antibody was conjugated to GMO-MNPs and showed enhanced uptake in human breast carcinoma cell line (MCF-7). The IC(50) doses revealed potential antiproliferative effect in MCF-7. Therefore, antibody conjugated GMO-MNPs could be used as potential drug carrier for the active therapeutic aspects in cancer therapy.

  12. Iron oxide nanoparticles modified with oleic acid: Vibrational and phase determination

    NASA Astrophysics Data System (ADS)

    Soares, Paula P.; Barcellos, Geórgia S.; Petzhold, Cesar L.; Lavayen, Vladimir

    2016-12-01

    A simple path methodology to detect the phase composition of iron oxide nanoparticles modified with oleic acid based on vibrational spectroscopy is present here and applied on three different nanoparticles prepared by co-precipitation method. Firstly, the phase composition, magnetite, maghemite, and hematite, is determined using a reference intensity ratio methodology on X-ray diffraction pattern. Also, the size of each sample was calculated by Scherrer equation. Scanning, transmission electron microscopy, microanalysis and electron diffraction show a core magnetite particles size of around 10 nm for all particles. Based on lattice vibrations, we find a concentration of around 80% of magnetite and a hematite phase lower than 5%. Whereas, the magnetite composition from X-ray diffraction shows 76%. We also investigate the metal-organic interaction and disorder degree of organic molecule conformation by infrared and Raman spectroscopy analysis. Hematite lattice vibrations show more alterations as it interacts with the organic acid. Finally, magnetic measurements at room temperature of the modified particles, suggest a superparamagnetic behavior and high saturation magnetization.

  13. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    SciTech Connect

    Hufschmid, Ryan D.; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric M.; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-03

    We present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting properties. Monodisperse superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of three different iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) in organic solvents under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution. In particular, large quantities of excess surfactant (up to 25:1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase is also critical for establishing magnetic properties. As an example, we show the importance of obtaining the required iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled.

  14. Magnetic field calculations for iron oxide nanoparticles for MRI

    NASA Astrophysics Data System (ADS)

    Hernandez, Ricardo; Mendez Rojas, Miguel; Dies Suarez, Pilar; Hidalgo Tobón, Silvia

    2014-11-01

    The susceptibility effects of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with triethylenglycol (TREG) and Polyethylen Glycol (PEG) has been studied, those nanoparticles have the necessary properties to be used in the clinic as contrast media in imaging by MRI[1-3]. We are considering the behavior of the magnetic field as plane wave to explain the electrical and magnetic field produced by SPIONs. Images were acquired on a 1.5T imager Philips, using mFFE Sequence. Three glass capillary tubes with a) TREG (10nm) concentration of 300 μg/ml, and PEGCOOH 6000(10nm) with 300 μg/ml, and 2% agarosa. Magnetic field simulations were calculated in Matlab. The plane wave that comes in contact with a sphere of radius a, an propagation constant k1, and it is in an homogeneous space k2. We consider that the electric field is linearly polarized on x-direction, with a propagation on z-positive-axis. The secondary induced field can be explained from the interior of the sphere and valid exterior points. The referred waves are transmitted and reflected, this is valid only when the wavelength is smaller than the radius of the sphere. The obtained vibrational mode is an answer of the electrical oscillation and this is projection of the disturbed magnetic field. TREG-SPIONs produce more serious susceptibility artefacts compared to PEG-SPIONs. This study is promissory due to the concordance of the results of the simulations and the inhomogeneities showed in the MR images.

  15. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C).

  16. Self-assembled patterns of iron oxide nanoparticles by hydrothermal chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengjun; Wei, B. Q.; Ajayan, P. M.

    2001-12-01

    Here, we report a hydrothermal chemical-vapor deposition process, which produces self-assembled patterns of iron oxide nanoparticles. By exposing a planar silica substrate to a prevaporized mixture of water, ferrocene [Fe(C5H5)2] and xylene (C8H10), at temperatures of ˜1000 °C, Fe2O3 nanoparticles are deposited on the substrate surface, in regular circular patterns. The particle sizes are less than 100 nm, and are organized into submicron-size patterns. The same process without water produces arrays of carbon nanotubes catalyzed by iron nanoparticles that are formed by the decomposition of ferrocene molecules.

  17. Magnetic susceptibility of hcp iron and the seismic anisotropy of Earth's inner core

    NASA Astrophysics Data System (ADS)

    Grechnev, G. E.; Ahuja, R.; Eriksson, O.

    2003-08-01

    The seismic anisotropy of the Earth’s core is believed to be due to a preferred orientation of hexagonal close packed (hcp) iron crystals that constitute the dominating element in the inner core. In this connection, the magnetic properties of the hcp iron in an external magnetic field are very interesting and are studied here by employing an ab initio full-potential linear muffin tin orbital method. By this means the magnetic susceptibility χ of hcp iron and its anisotropy energy for pressures and temperatures corresponding to the Earth’s inner core conditions have been evaluated in the framework of the local spin density approximation. The accuracy of this method has been validated by calculating the anisotropic susceptibility of paramagnetic transition metals that form in the hcp crystal structure at ambient conditions. Our calculations demonstrate that for hcp iron the anisotropy of χ is dependent on the c/a ratio. In conjunction with recent data on the c/a ratio and elastic constants of hcp iron, the magnetic anisotropy can explain the seismic anisotropy of the Earth’s inner core.

  18. Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes.

    PubMed

    Chen, Bing; Peng, Dengfeng; Chen, Xian; Qiao, Xvsheng; Fan, Xianping; Wang, Feng

    2015-10-19

    Core-shell structured nanoparticles are increasingly used to host luminescent lanthanide ions but the structural integrity of these nanoparticles still lacks sufficient understanding. Herein, we present a new approach to detect the diffusion of dopant ions in core-shell nanostructures using luminescent lanthanide probes whose emission profile and luminescence lifetime are sensitive to the chemical environment. We show that dopant ions in solution-synthesized core-shell nanoparticles are firmly confined in the designed locations. However, annealing at certain temperatures (greater than circa 350 °C) promotes diffusion of the dopant ions and leads to degradation of the integrity of the nanoparticles. These insights into core-shell nanostructures should enhance our ability to understand and use lanthanide-doped luminescent nanoparticles.

  19. Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent

    NASA Astrophysics Data System (ADS)

    Dadfarnia, S.; Haji Shabani, A. M.; Moradi, S. E.; Emami, S.

    2015-03-01

    The objective followed by this research is the synthesis of iron based metal organic framework loaded on iron oxide nanoparticles (Fe3O4@MIL-100(Fe)) and the study of its capability for the removal of methyl red. Effective parameters in the selection of a new adsorbent, i.e. adsorption capacity, thermodynamics, and kinetics were investigated. All the studies were carried out in batch experiments. Removal of methyl red from aqueous solutions varied with the amount of adsorbent, methyl red contact time, initial concentration of dye, adsorbent dosage, and solution pH. The capability of the synthesized adsorbent in the removal of methyl red was compared with the metal organic framework (MIL-100(Fe)) and iron oxide nanoparticles. The results show that Fe3O4@MIL-100(Fe) nanocomposite exhibits an enhanced adsorption capacity.

  20. Liquid Iron Alloys with Hydrogen at Outer Core Conditions by First Principles

    NASA Astrophysics Data System (ADS)

    Umemoto, K.; Hirose, K.

    2015-12-01

    Since the density of the outer core deduced from seismic data is about 10% lower than that of pure iron at core pressures and temperatures (P-T), it is widely believed that the outer core includes one or more light elements. Although intensive experimental and theoretical studies have been performed so far, the light element in the core has not yet been identified. Comparison of the density and sound velocity of liquid iron alloys with observations, such as the PREM, is a promising way to determine the species and quantity of light alloying component(s) in the outer core. Here we report the results of a first-principles molecular dynamics study on liquid iron alloyed with hydrogen, one of candidates of the light elements. Hydrogen had been much less studied than other candidates. However, hydrogen has been known to reduce the melting temperature of Fe-H solid [1]. Furthermore, very recently, Nomura et al. argued that the outer core may include 24 at.% H in order to be molten under relatively low temperature (< 3600 K) [2]. Since then hydrogen has attracted strong interests. We clarify the effects of hydrogen on density and sound velocity of liquid iron alloys under outer core P-T conditions. It is shown that ~1 wt% hydrogen can reproduce PREM density and sound velocity simultaneously very well. In addition, we show the presence of hydrogen rather reduces Gruneisen parameters. It indicates that, if hydrogen exists in the outer core, temperature profile of the outer core could be changed considerably from one estimated so far. [1] Sakamaki, K., E. Takahashi, Y. Nakajima, Y. Nishihara, K. Funakoshi, T. Suzuki, and Y. Fukai, Phys. Earth Planet. Inter., 174, 192-201 (2009). [2] Nomura, R., K. Hirose, K. Uesugi, Y. Ohishi, A. Tsuchiyama, A. Miyake, and Y. Ueno, Science 31, 522-525 (2014).

  1. Gold-Pluronic core-shell nanoparticles: synthesis, characterization and biological evaluation

    NASA Astrophysics Data System (ADS)

    Simon, Timea; Boca, Sanda; Biro, Dominic; Baldeck, Patrice; Astilean, Simion

    2013-04-01

    This study presents the synthesis of gold-Pluronic core-shell nanoparticles by a two-step method and investigates their biological impact on cancer cells, specifically nanoparticle internalization and cytotoxicity. Uniform, 9-10-nm-sized, hydrophobic gold nanoparticles were synthesized in organic phase by reducing gold salt with oleylamine, after which oleylamine-protected gold nanoparticles were phase-transferred into aqueous medium using Pluronic F127 block copolymer, resulting in gold-Pluronic core-shell nanoparticles with a mean hydrodynamic diameter of 35 nm. The formation and phase-transfer of gold nanoparticles were analyzed by UV-Vis absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. The obtained gold-Pluronic core-shell nanoparticles proved to be highly stable in salted solution. Cytotoxicity tests showed no modification of cellular viability in the presence of properly purified particles. Furthermore, dark-field cellular imaging demonstrated that gold-Pluronic nanoparticles were able to be efficiently uptaken by cells, being internalized through nonspecific endocytosis. The high stability, proven biocompatibility, and imaging properties of gold-Pluronic core-shell nanoparticles hold promise for relevant intracellular applications, with such a design providing the feasibility to combine all multiple functionalities in one nanoparticle for simultaneous detection and imaging.

  2. Bifunctional nanoparticles with fluorescence and magnetism via surface-initiated AGET ATRP mediated by an iron catalyst.

    PubMed

    Liu, Jiliang; He, Weiwei; Zhang, Lifen; Zhang, Zhengbiao; Zhu, Jian; Yuan, Lin; Chen, Hong; Cheng, Zhenping; Zhu, Xiulin

    2011-10-18

    Fluorescent/magnetic nanoparticles are of interest in many applications in biotechnology and nanomedicine for its living detection. In this study, a novel method of surface modification of nanoparticles was first used to modify a fluorescent monomer on the surfaces of magnetic nanoparticles directly. This was achieved via iron(III)-mediated atom-transfer radical polymerization with activators generated by electron transfer (AGET ATRP). Fluorescent monomer 9-(4-vinylbenzyl)-9H-carbazole (VBK) was synthesized and was grafted from magnetic nanoparticles (ferroferric oxide) via AGET ATRP using FeCl(3)·6H(2)O as the catalyst, tris(3,6-dioxaheptyl)amine (TDA-1) as the ligand, and ascorbic acid (AsAc) as the reducing agent. The initiator for ATRP was modified on magnetic nanoparticles with the reported method: ligand exchange with 3-aminopropyltriethoxysilane (APTES) and then esterification with 2-bromoisobutyryl bromide. After polymerization, a well-defined nanocomposite (Fe(3)O(4)@PVBK) was yielded with a magnetic core and a fluorescent shell (PVBK). Subsequently, well-dispersed bifunctional nanoparticles (Fe(3)O(4)@PVBK-b-P(PEGMA)) in water were obtained via consecutive AGET ATRP of hydrophilic monomer poly(ethylene glycol) methyl ether methacrylate (PEGMA). The chemical composition of the magnetic nanoparticles' surface at different surface modification stages was investigated with Fourier transform infrared (FT-IR) spectra. The magnetic and fluorescent properties were validated with a vibrating sample magnetometer (VSM) and a fluorophotometer. The Fe(3)O(4)@PVBK-b-P(PEGMA) nanoparticles showed an effective imaging ability in enhancing the negative contrast in magnetic resonance imaging (MRI).

  3. Large enhancements of magnetic anisotropy in oxide-free iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Monson, Todd C.; Venturini, Eugene L.; Petkov, Valeri; Ren, Yang; Lavin, Judith M.; Huber, Dale L.

    2013-04-01

    Magnetic characterization of spherical, oxide-free, bcc iron nanoparticles synthesized with β-diketone surfactants has been performed. The results of this characterization, which included particles with diameters ranging between 2 and 5 nm show that the nanoparticles have an average anisotropy of 1.9×106±0.3×106 J/m3, which is more than an order of magnitude greater than the magnetocrystalline anisotropy of bulk iron. Despite their unusually large anisotropy, these particles can have saturation magnetizations of up to 210 A m2/kg (slightly lower than bulk iron). High-energy X-ray diffraction data indicates that the Fe particles have a distorted bcc lattice, which could, at least in part, explain the magnetic behavior of these nanoparticles. Dipolar coupling between particles, while present, is weak and cannot account for the high anisotropy of these nanoparticles.

  4. Defective iron-oxide nanoparticles synthesised by high temperature plasma processing: a magnetic characterisation versus temperature

    NASA Astrophysics Data System (ADS)

    Balasubramanian, C.; Joseph, B.; Orpe, PB; Saini, NL; Mukherjee, S.; Dziedzic-Kocurek, K.; Stanek, J.; Di Gioacchino, D.; Marcelli, A.

    2016-11-01

    Magnetic properties and phase compositions of iron-oxide nanoparticles synthesised by a high temperature arc plasma route have been investigated by Mössbauer spectroscopy and high harmonic magnetic AC susceptibility measurements, and correlated with morphological and structural properties for different synthesis conditions. The Mössbauer spectra precisely determined the presence of different iron-oxide fractions in the investigated nanoparticles, while the high harmonic magnetic susceptibility measurements revealed the occurrence of metastable magnetic phases evolving in temperature and time. This study illustrates magnetic properties and dynamics of the magnetic configurations of iron-oxide nanoparticles grown by high temperature plasma, a process less explored so far but extremely useful for synthesising large numbers of nanoparticles for industrial applications.

  5. Microwave Absorption Properties of Iron Nanoparticles Prepared by Ball-Milling

    NASA Astrophysics Data System (ADS)

    Chu, Xuan T. A.; Ta, Bach N.; Ngo, Le T. H.; Do, Manh H.; Nguyen, Phuc X.; Nam, Dao N. H.

    2016-05-01

    A nanopowder of iron was prepared using a high-energy ball milling method, which is capable of producing nanoparticles at a reasonably larger scale compared to conventional chemical methods. Analyses using x-ray diffraction and magnetic measurements indicate that the iron nanoparticles are a single phase of a body-centered cubic structure and have quite stable magnetic characteristics in the air. The iron nanoparticles were then mixed with paraffin and pressed into flat square plates for free-space microwave transmission and reflection measurements in the 4-8 GHz range. Without an Al backing plate, the Fe nanoparticles seem to only weakly absorb microwave radiation. The reflected signal S 11 drops to zero and a very large negative value of reflection loss ( RL) are observed for Al-backed samples, suggesting the existence of a phase matching resonance near frequency f ˜ 6 GHz.

  6. Size-Controlled Pd Nanoparticle Catalysts Prepared by Galvanic Displacement into a Porous Si-Iron Oxide Nanoparticle Host.

    PubMed

    Kim, Taeho; Fu, Xin; Warther, David; Sailor, Michael J

    2017-02-21

    Porous silicon nanoparticles containing both Pd and iron oxide nanoparticles are prepared and studied as magnetically recoverable catalysts for organic reductions. The Pd nanoparticles are generated in situ by electroless deposition of Pd(NH3)4(2+), where the porous Si skeleton acts as both a template and as a reducing agent and the released ammonia ligands raise the local pH to exert control over the size of the Pd nanoparticles. The nanocomposites are characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, nitrogen adsorption, X-ray diffraction, superconducting quantum interference device magnetization, and dynamic light scattering. The nanocomposite consists of a porous Si nanoparticle (150 nm mean diameter) containing ∼20 nm pores, uniformly decorated with a high loading of surfactant-free Pd nanoparticles (12 nm mean diameter) and superparamagnetic γ-Fe2O3 nanoparticles (∼7 nm mean diameter). The reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride is catalyzed by the nanocomposite, which is stable through the course of the reaction. Catalytic reduction of the organic dyes methylene blue and rhodamine B is also demonstrated. The conversion efficiency and catalytic activity are found to be superior to a commercial Pd/C catalyst compared under comparable reaction conditions. The composite catalyst can be recovered from the reaction mixture by applying an external magnetic field due to the existence of the superparamagnetic iron oxide nanoparticles in the construct. The recovered particles retain their catalytic activity.

  7. Compact Ag@Fe3O4 Core-shell Nanoparticles by Means of Single-step Thermal Decomposition Reaction

    NASA Astrophysics Data System (ADS)

    Brollo, Maria Eugênia F.; López-Ruiz, Román; Muraca, Diego; Figueroa, Santiago J. A.; Pirota, Kleber R.; Knobel, Marcelo

    2014-10-01

    A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.

  8. Compact Ag@Fe3O4 core-shell nanoparticles by means of single-step thermal decomposition reaction.

    PubMed

    Brollo, Maria Eugênia F; López-Ruiz, Román; Muraca, Diego; Figueroa, Santiago J A; Pirota, Kleber R; Knobel, Marcelo

    2014-10-30

    A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.

  9. Compact Ag@Fe3O4 Core-shell Nanoparticles by Means of Single-step Thermal Decomposition Reaction

    PubMed Central

    Brollo, Maria Eugênia F.; López-Ruiz, Román; Muraca, Diego; Figueroa, Santiago J. A.; Pirota, Kleber R.; Knobel, Marcelo

    2014-01-01

    A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine. PMID:25354532

  10. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.

    PubMed

    Choi, Inhee; Song, Hyeon Don; Lee, Suseung; Yang, Young In; Kang, Taewook; Yi, Jongheop

    2012-07-25

    We report core-satellites (Au-Ag) coupled plasmonic nanoassemblies based on bottom-up, high-density assembly of molecular-scale silver nanoparticles on a single gold nanoparticle surface, and demonstrate direct observation and quantification of enhanced plasmon coupling (i.e., intensity amplification and apparent spectra shift) in a single particle level. We also explore metal ion sensing capability based on our coupled plasmonic core-satellites, which enabled at least 1000 times better detection limit as compared to that of a single plasmonic nanoparticle. Our results demonstrate and suggest substantial promise for the development of coupled plasmonic nanostructures for ultrasensitive detection of various biological and chemical analytes.

  11. Magnetic resonance imaging of microvessels using iron-oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Olamaei, N.; Cheriet, F.; Martel, S.

    2013-03-01

    The visualization of microstructures including blood vessels with an inner overall cross-sectional area below approximately 200 μm remains beyond the capabilities of current clinical imaging modalities. But with magnetic resonance (MR) imaging, magnetic entities cause susceptibility artifacts in the images by disrupting the homogeneous magnetic field in a much larger scale than their actual size. As validated in this paper through simulation and in-vitro experiments, these artifacts can serve as a source of contrast, enabling microvessels with an inner diameter below the spatial resolution of any medical imaging modalities to be visualized using a clinical MR scanner. For such experiments, micron-sized agglomerations of iron-oxide (Fe3O4) nanoparticles were injected in microchannels with internal diameters of 200 and 50 μm equivalent to a narrower artery or a larger arteriole, and down to a smaller arteriole, respectively. The results show the feasibility of the proposed method for micro-particle detection and the visualization of microvessels using a 1.5 T clinical MR scanner. It was confirmed that the method is reproducible and accurate at the sub-pixel level.

  12. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle.

    PubMed

    Sakai, Hideki; Kanda, Takashi; Shibata, Hirobumi; Ohkubo, Takahiro; Abe, Masahiko

    2006-04-19

    Core/shell-type titania nanocapsules containing a single Ag nanoparticle were prepared. Ag nanoparticles were prepared using the reduction of silver nitrate with hydrazine in the presence of cetyltrimethylammonium bromide (CTAB) as protective agent. The sol-gel reaction of titanium tetraisopropoxide (TTIP) was used to prepare core/shell-type titania nanocapsules with CTAB-coated Ag nanoparticles as the core. TEM observations revealed that the size of the core (Ag particle) and the thickness of the shell (titania) of the core/shell particles obtained are about 10 nm and 5-10 nm, respectively. In addition, the nanocapsules were found to be dispersed in the medium as individual particles without aggregation. Moreover, titania coating caused the surface plasmon absorption of Ag nanoparticles to shift toward the longer wavelength side.

  13. Chemically synthesized Iron-Platinum binary alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Colak, Levent

    In this dissertation, we explored the fabrication of FePt nanoparticles prepared by a solution-phase synthesis route and characterized their structural/ microstructural and magnetic properties both to gain a fundamental understanding and to check their compatibility for technological applications in ultra high density magnetic storage media. Monodispersed Fe-Pt alloy NPs (nanoparticles) have been prepared by thermal decomposition of iron pentacarbonyl [Fe(CO)5] and reduction of platinum acetylacetonate [Pt(acac)2] with dibenzyl ether in the presence of oleic acid (OA) and oleyl amine (OAm) as surfactants. The composition of the nanoparticles was adjusted by changing the Fe(CO)5/Pt(acac) 2 molar ratio while fixing the Pt(acac)2 amount. Two phases of Fe-Pt binary alloy, FePt3 and FePt, were obtained successfully with the molar ratios of 1.5 and 2.1, respectively. The size of FePt NPs was tuned in the range of 3-6 nm by controlling the injection temperature of the iron precursor. It was found that, low injection temperature of precursors and the usage of surfactants as a reaction solvent, together with a slow heating to a low refluxing temperature were the key parameters for the formation of cubic nanoparticles. Spherical, cubic (with rounded edges) and octapod shapes were successfully produced by changing the OAm/OA molar ratio. Nanorods were formed by simply adjusting the injection time of the surfactants. Although it was reported in the literature that the dominant mechanism of formation of NPs involves the initial formation of platinum rich clusters followed by the gradual diffusion of iron atoms into these clusters during the synthesis, in this work it is clearly shown that Fe rich seeds do form in the early stages of the reaction. And it was these competitive nucleation sites that cause a compositional distribution between individual FePt particles in the final sample, although a narrow distribution is measured for the overall composition. As-synthesized NPs

  14. Relaxation behavior study of ultrasmall superparamagnetic iron oxide nanoparticles at ultralow and ultrahigh magnetic fields.

    PubMed

    Wang, Wei; Dong, Hui; Pacheco, Victor; Willbold, Dieter; Zhang, Yi; Offenhaeusser, Andreas; Hartmann, Rudolf; Weirich, Thomas E; Ma, Peixiang; Krause, Hans-Joachim; Gu, Zhongwei

    2011-12-15

    Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) have attracted attention because of their current and potential usefulness as contrast agents for magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR). USPIOs are usually used for their significant capacity to produce predominant proton relaxation effects, which result in signal reduction. However, most previous studies that utilized USPIOs have been focused on the relaxation behavior at commonly used magnetic fields of clinical MRI systems (typically 1-3 T). In this paper, magnetic relaxation processes of protons in water surrounding the USPIOs are studied at ultralow (≤10 mT) and ultrahigh magnetic fields (14.1 T). USPIOs used in our experiments were synthesized with a core size of 6 nm, and transferred from organic to water by ligand exchange. The proton spin-lattice relaxation time (T(1)) and spin-spin relaxation time (T(2)) were investigated at ultralow (212 μT for T(2) and 10 mT for T(1)) and at 14.1 T with different iron concentrations. At all of the fields, there is a linear relationship between the inverse of relaxation times and the iron concentration. The spin-spin relaxivity (r(2)) at 14.1 T is much larger than that value of the ultralow field. At ultralow field, however, the spin-lattice relaxivity (r(1)) is larger than the r(1) at ultrahigh field. The results provide a perspective on potential in vivo and in vitro applications of USPIOs in ultralow and ultrahigh field NMR and MRI.

  15. Inner core dynamics inferred from grain growth of ɛ-iron

    NASA Astrophysics Data System (ADS)

    Yamazaki, D.; Tsujino, N.; Yoshino, T.; Ito, E.; Higo, Y.; Tange, Y.

    2015-12-01

    The inner core is thought to be composed of Fe-Ni alloy with hcp structure based on the high pressure experiments (Tateno et al., 2012) and hence the physical properties of hcp iron (ɛ-iron) are keys for understanding the dynamics of the inner core. Recent seismic observations suggest the variation in grain size in the inner core (Monnereau et al., 2010). It is important to understand the variation in grain size for constraints of the dynamics of the inner core because grain size is controlled by the growth rate and growth rate gives us information on time scale of the inner core growth and/or translation (Alboussiere et al., 2010). In this study, we experimentally determine the grain growth rate of ɛ-iron to understand the dynamics of inner core. ɛ-iron is only stable at high pressure and it is unquenchable to an ambient condition. Therefore, in this study, we conduct in situ high pressure experiments to determine the grain growth rate of ɛ-iron. In the high pressure experiment, the starting materials was compressed in a Kawai-type high pressure apparatus equipped with sintered diamond anvils with 1.0 truncated edge length at BL04B1, SPring-8. At the pressure of ~55 GPa, sample was heated for several hours to determine the grain growth rates. Grain growth can be detected by the reduction of number of diffraction spots on the two-dimensional detector with monochromatic X-ray (Offerman et al., 2002) with annealing time. In the experiments, we observed the reduction of the number of diffracted spots, meaning that grain growth occurs during annealing experiments. From the reduction rates of spots at temperatures ranged from 1200 to 1500 K, we determined the growth constant for grain growth at each temperature and then temperature dependency at ~55 GPa was obtained. By using the homologous temperature scaling to extrapolate the experimental to the inner core condition, we estimated the grain growth rate of ɛ-iron at the inner core condition. Our results suggests

  16. Block Copolymer Cross-linked Nanoassemblies Improve Particle Stability and Biocompatibility of Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Dan, Mo; Scott, Daniel F.; Hardy, Peter A.; Wydra, Robert J.; Hilt, J. Zach; Yokel, Robert A.; Bae, Younsoo

    2014-01-01

    Purpose To develop cross-linked nanoassemblies (CNAs) as carriers for superparamagnetic iron oxide nanoparticles (IONPs). Methods Ferric and ferrous ions were co-precipitated inside core-shell type nanoparticles prepared by cross-linking poly(ethylene glycol)-poly(aspartate) block copolymers to prepare CNAs entrapping Fe3O4 IONPs (CNA-IONPs). Particle stability and biocompatibility of CNA-IONPs were characterized in comparison to citrate-coated Fe3O4 IONPs (Citrate-IONPs). Results CNA-IONPs, approximately 30 nm in diameter, showed no precipitation in water, PBS, or a cell culture medium after 3 or 30 h, at 22, 37, and 43 °C, and 1, 2.5, and 5 mg/mL, whereas Citrate-IONPs agglomerated rapidly (> 400 nm) in all aqueous media tested. No cytotoxicity was observed in a mouse brain endothelial-derived cell line (bEnd.3) exposed to CNA-IONPs up to 10 mg/mL for 30 h. Citrate-IONPs (> 0.05 mg/mL) reduced cell viability after 3 h. CNA-IONPs retained the superparamagnetic properties of entrapped IONPs, enhancing T2-weighted magnetic resonance images (MRI) at 0.02 mg/mL, and generating heat at a mild hyperthermic level (40 ~ 42 °C) with an alternating magnetic field (AMF). Conclusion Compared to citric acid coating, CNAs with a cross-linked anionic core improved particle stability and biocompatibility of IONPs, which would be beneficial for future MRI and AMF-induced remote hyperthermia applications. PMID:23080062

  17. Highly magnetic iron carbide nanoparticles as effective T2 contrast agents

    NASA Astrophysics Data System (ADS)

    Huang, Guoming; Hu, Juan; Zhang, Hui; Zhou, Zijian; Chi, Xiaoqin; Gao, Jinhao

    2013-12-01

    This paper reports that iron carbide nanoparticles with high air-stability and strong saturation magnetization can serve as effective T2 contrast agents for magnetic resonance imaging. Fe5C2 nanoparticles (~20 nm in diameter) exhibit strong contrast enhancement with an r2 value of 283.2 mM-1 S-1, which is about twice as high as that of spherical Fe3O4 nanoparticles (~140.9 mM-1 S-1). In vivo experiments demonstrate that Fe5C2 nanoparticles are able to produce much more significant MRI contrast enhancement than conventional Fe3O4 nanoparticles in living subjects, which holds great promise in biomedical applications.This paper reports that iron carbide nanoparticles with high air-stability and strong saturation magnetization can serve as effective T2 contrast agents for magnetic resonance imaging. Fe5C2 nanoparticles (~20 nm in diameter) exhibit strong contrast enhancement with an r2 value of 283.2 mM-1 S-1, which is about twice as high as that of spherical Fe3O4 nanoparticles (~140.9 mM-1 S-1). In vivo experiments demonstrate that Fe5C2 nanoparticles are able to produce much more significant MRI contrast enhancement than conventional Fe3O4 nanoparticles in living subjects, which holds great promise in biomedical applications. Electronic supplementary information (ESI) available: Supplementary figures and experimental details. See DOI: 10.1039/c3nr04691e

  18. One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal.

    PubMed

    Zhu, Jiahua; Wei, Suying; Gu, Hongbo; Rapole, Sowjanya B; Wang, Qiang; Luo, Zhiping; Haldolaarachchige, Neel; Young, David P; Guo, Zhanhu

    2012-01-17

    A facile thermodecomposition process to synthesize magnetic graphene nanocomposites (MGNCs) is reported. High-resolution transmission electron microscopy and energy filtered elemental mapping revealed a core@double-shell structure of the nanoparticles with crystalline iron as the core, iron oxide as the inner shell and amorphous Si-S-O compound as the outer shell. The MGNCs demonstrate an extremely fast Cr(VI) removal from the wastewater with a high removal efficiency and with an almost complete removal of Cr(VI) within 5 min. The adsorption kinetics follows the pseudo-second-order model and the novel MGNC adsorbent exhibits better Cr(VI) removal efficiency in solutions with low pH. The large saturation magnetization (96.3 emu/g) of the synthesized nanoparticles allows fast separation of the MGNCs from liquid suspension. By using a permanent magnet, the recycling process of both the MGNC adsorbents and the adsorbed Cr(VI) is more energetically and economically sustainable. The significantly reduced treatment time required to remove the Cr(VI) and the applicability in treating the solutions with low pH make MGNCs promising for the efficient removal of heavy metals from the wastewater.

  19. Nanobarcoded superparamagnetic iron oxide nanoparticles for nanomedicine: Quantitative studies of cell-nanoparticle interactions by scanning image cytometry.

    PubMed

    Eustaquio, Trisha; Leary, James F

    2016-02-01

    Oligonucleotide-functionalized nanoparticles (NPs) are promising agents for nanomedicine, but the potential in vitro nanotoxicity that may arise from such conjugates has yet to be evaluated in a dose response manner. Since nanomedicine functions on the single-cell level, measurements of nanotoxicity should also be performed as such. In vitro single-cell nanotoxicity assays based on scanning image cytometry are used to study a specific type of oligo-functionalized NP, "nanobarcoded" superparamagnetic iron oxide NPs (NB-SPIONs). The selected panel of single-cell assays measures well-known modes of nanotoxicity--apoptosis, necrosis, generation of reactive oxygen species (ROS), and cell number. Using these assays, the cytotoxicity of two sizes of NB-SPIONs (10 nm and 30 nm core size) was compared to the parent NP, carboxylated SPIONs (COOH-SPIONs). The results suggest that the conjugated NB confers a biocompatible coating that protects against cytotoxicity at very high SPION doses, but both NB- and COOH-SPIONs of either size generally have low in vitro cytotoxicity at physiologically relevant doses.

  20. Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles.

    PubMed

    Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Filip, Jan; Marušák, Zdeněk; Sharma, Virender K; Zbořil, Radek

    2013-04-02

    We report the first example of arsenite and arsenate removal from water by incorporation of arsenic into the structure of nanocrystalline iron(III) oxide. Specifically, we show the capability to trap arsenic into the crystal structure of γ-Fe2O3 nanoparticles that are in situ formed during treatment of arsenic-bearing water with ferrate(VI). In water, decomposition of potassium ferrate(VI) yields nanoparticles having core-shell nanoarchitecture with a γ-Fe2O3 core and a γ-FeOOH shell. High-resolution X-ray photoelectron spectroscopy and in-field (57)Fe Mössbauer spectroscopy give unambiguous evidence that a significant portion of arsenic is embedded in the tetrahedral sites of the γ-Fe2O3 spinel structure. Microscopic observations also demonstrate the principal effect of As doping on crystal growth as reflected by considerably reduced average particle size and narrower size distribution of the "in-situ" sample with the embedded arsenic compared to the "ex-situ" sample with arsenic exclusively sorbed on the iron oxide nanoparticle surface. Generally, presented results highlight ferrate(VI) as one of the most promising candidates for advanced technologies of arsenic treatment mainly due to its environmentally friendly character, in situ applicability for treatment of both arsenites and arsenates, and contrary to all known competitive technologies, firmly bound part of arsenic preventing its leaching back to the environment. Moreover, As-containing γ-Fe2O3 nanoparticles are strongly magnetic allowing their separation from the environment by application of an external magnet.

  1. Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power.

    PubMed

    Bordet, Alexis; Lacroix, Lise-Marie; Fazzini, Pier-Francesco; Carrey, Julian; Soulantica, Katerina; Chaudret, Bruno

    2016-12-19

    The use of magnetic nanoparticles to convert electromagnetic energy into heat is known to be a key strategy for numerous biomedical applications but is also an approach of growing interest in the field of catalysis. The heating efficiency of magnetic nanoparticles is limited by the poor magnetic properties of most of them. Here we show that the new generation of iron carbide nanoparticles of controlled size and with over 80 % crystalline Fe2.2 C leads to exceptional heating properties, which are much better than the heating properties of currently available nanoparticles. Associated to catalytic metals (Ni, Ru), iron carbide nanoparticles submitted to magnetic excitation very efficiently catalyze CO2 hydrogenation in a dedicated continuous-flow reactor. Hence, we demonstrate that the concept of magnetically induced heterogeneous catalysis can be successfully applied to methanation of CO2 and represents an approach of strategic interest in the context of intermittent energy storage and CO2 recovery.

  2. Super-paramagnetic iron oxide nanoparticles for use in extrapulmonary tuberculosis diagnosis.

    PubMed

    Lee, C-N; Wang, Y-M; Lai, W-F; Chen, T-J; Yu, M-C; Fang, C-L; Yu, F-L; Tsai, Y-H; Chang, W H-S; Zuo, C S; Renshaw, P F

    2012-06-01

    The limited sensitivity of serological tests for mycobacterial antigens has encouraged the development of a nanoparticle probe specific for the extrapulmonary form of Mycobacterium tuberculosis (Mtb). We developed an innovative probe comprised of super-paramagnetic iron oxide (SPIO) nanoparticles conjugated with Mtb surface antibody (MtbsAb-nanoparticles) to provide ultrasensitive imaging of biomarkers involved in extrapulmonary Mtb infection. MtbsAb-nanoparticles were significantly conjugated with Mtb bacilli. The extent of contrast enhancement reduction on magnetic resonance imaging (MRI) for Mtb and human monocytic THP1 cells was proportional to the concentration of MtbsAb-nanoparticles. When MtbsAb-nanoparticles were intravenously injected into mice bearing Mtb granulomas, the granulomatous site showed a 14-fold greater reduction in signal intensity enhancement on T(2) -weighted MR images compared with an opposing site that received PBS injection. Mtb sAb-nanoparticles represent a new non-invasive technology for the diagnosis of extrapulmonary Mtb.

  3. Strongly magnetic iron nanoparticles improve the diagnosis of small tumours in the reticuloendothelial system by magnetic resonance imaging.

    PubMed

    Ferguson, Peter M; Feindel, Kirk W; Slocombe, Angela; MacKay, Matthew; Wignall, Trudy; Delahunt, Brett; Tilley, Richard D; Hermans, Ian F

    2013-01-01

    Despite advances in non-invasive medical imaging, accurate nodal staging of malignancy continues to rely on surgery. Superparamagnetic iron oxide nanoparticles (IONP) with lymphotropic qualities have shown some promise as contrast agents for MRI of the lymph nodes, but recent large-scale studies failed to show consistent detection of tumours below 5 mm. Herein we compare imaging of splenic and lymph node tissue using iron/iron oxide core/shell nanoparticles (Fe NP) that have superior magnetic qualities to IONP, to determine whether improved negative contrast in T(2)-weighted MRI can enhance the diagnosis of small tumours in the reticuloendothelial system. To provide an in vivo pre-clinical model of human lymph node micrometastases, breast cancer cells were injected into the spleens of mice, providing localised areas of tumour growth. MR images of groups of tumour-bearing and sham-treated animals were generated using a 1.5 T imaging system and analysed by two independent, blinded radiologists. Fe NP improved the sensitivity and specificity of MRI when compared to IONP, enabling accurate detection of tumours as small as 1-3 mm. The use of Fe NP as contrast agents have the potential to improve the diagnostic accuracy of MRI in cancer patients, leading to more rapid and effective treatment.

  4. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI.

    PubMed

    Barrow, Michael; Taylor, Arthur; Murray, Patricia; Rosseinsky, Matthew J; Adams, Dave J

    2015-10-07

    Iron oxide nanoparticles (IONPs, sometimes called superparamagnetic iron oxide nanoparticles or SPIONs) have already shown promising results for in vivo cell tracking using magnetic resonance imaging (MRI). To fully exploit the potential of these materials as contrast agents, there is still a need for a greater understanding of how they react to physiological conditions. A key aspect is the specific nature of the surface coating, which can affect important properties of the IONPs such as colloidal stability, toxicity, magnetism and labelling efficiency. Polymers are widely used as coatings for IONPs as they can increase colloidal stability in hydrophilic conditions, as well as protect the iron oxide core from degradation. In this tutorial review, we will examine the design and synthesis approaches currently being employed to produce polymer coated IONPs as cell tracking agents, and what considerations must be made. We will also give some perspective on the challenges and limitations that remain for polymer coated IONPs as MRI contrast agents for stem cell tracking.

  5. Carbon-depleted outer core revealed by sound velocity measurements of liquid iron-carbon alloy

    NASA Astrophysics Data System (ADS)

    Nakajima, Yoichi; Imada, Saori; Hirose, Kei; Komabayashi, Tetsuya; Ozawa, Haruka; Tateno, Shigehiko; Tsutsui, Satoshi; Kuwayama, Yasuhiro; Baron, Alfred Q. R.

    2015-11-01

    The relative abundance of light elements in the Earth's core has long been controversial. Recently, the presence of carbon in the core has been emphasized, because the density and sound velocities of the inner core may be consistent with solid Fe7C3. Here we report the longitudinal wave velocity of liquid Fe84C16 up to 70 GPa based on inelastic X-ray scattering measurements. We find the velocity to be substantially slower than that of solid iron and Fe3C and to be faster than that of liquid iron. The thermodynamic equation of state for liquid Fe84C16 is also obtained from the velocity data combined with previous density measurements at 1 bar. The longitudinal velocity of the outer core, about 4% faster than that of liquid iron, is consistent with the presence of 4-5 at.% carbon. However, that amount of carbon is too small to account for the outer core density deficit, suggesting that carbon cannot be a predominant light element in the core.

  6. Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study.

    PubMed

    Boutry, Sébastien; Brunin, Stéphanie; Mahieu, Isabelle; Laurent, Sophie; Vander Elst, Luce; Muller, Robert N

    2008-01-01

    Small particles of iron oxide (SPIO) and ultrasmall particles of iron oxide (USPIO), inducing a strong negative contrast on T(2) and T(2)*-weighted MR images, are the most commonly used systems for the magnetic labeling of cultured cells and their subsequent detection by magnetic resonance imaging (MRI). The purpose of this work is to study the influence of iron incubation concentration, nanoparticle size and nanoparticle coating on the magnetic labeling and the viability of non-phagocytic adherent cells in culture. The magnetic labeling of 3T6 fibroblasts was studied by T(2)-weighted MRI at 4.7 T and by dosing-or cytochemical revealing-of iron through methods based on Perl's Prussian blue staining. Cells were incubated for 48 h with increasing iron concentrations of SPIO (25-1000 microg Fe/ml Endorem. Sinerem, a USPIO (20-40 nm) coated with neutral dextran, and Resovist (65 nm), a SPIO bearing an anionic carboxydextran coating, were compared with Endorem (dextran-coated, 80-150 nm) as magnetic tags. The iron loading of marrow stromal cell primary cultures (MSCs) isolated from rat femurs was compared with that of 3T6 fibroblasts. The SPIO-labeling of cells with Endorem was found to be dependent on the iron incubation concentration. MSCs, more sparsely distributed in the culture, exhibited higher iron contents than more densely populated 3T6 fibroblast cultures. A larger iron loading was achieved with Resovist than with Endorem, which in turn was more efficient than Sinerem as a magnetic tag. The magnetic labeling of cultured non-phagocytic adherent cells with iron oxide nanoparticles was thus found to be dependent on the relative concentration of the magnetic tag and of the cells in culture, on the nanoparticle size, and on the coating type. The viability of cells, estimated by methods assessing cell membrane permeability, was not affected by magnetic labeling in the conditions used in this work.

  7. Fabrication of core-shell micro/nanoparticles for programmable dual drug release by emulsion electrospraying

    NASA Astrophysics Data System (ADS)

    Wang, Yazhou; Zhang, Yiqiong; Wang, Bochu; Cao, Yang; Yu, Qingsong; Yin, Tieying

    2013-06-01

    The study aimed at constructing a novel drug delivery system for programmable multiple drug release controlled with core-shell structure. The core-shell structure consisted of chitosan nanoparticles as core and polyvinylpyrrolidone micro/nanocoating as shell to form core-shell micro/nanoparticles, which was fabricated by ionic gelation and emulsion electrospray methods. As model drug agents, Naproxen and rhodamine B were encapsulated in the core and shell regions, respectively. The core-shell micro/nanoparticles thus fabricated were characterized and confirmed by scanning electron microscope, transmission electron microscope, and fluorescence optical microscope. The core-shell micro/nanoparticles showed good release controllability through drug release experiment in vitro. It was noted that a programmable release pattern for dual drug agents was also achieved by adjusting their loading regions in the core-shell structures. The results indicate that emulsion electrospraying technology is a promising approach in fabrication of core-shell micro/nanoparticles for programmable dual drug release. Such a novel multi-drug delivery system has a potential application for the clinical treatment of cancer, tuberculosis, and tissue engineering.

  8. For Better or Worse, Iron Overload by Superparamagnetic Iron Oxide Nanoparticles as a MRI Contrast Agent for Chronic Liver Diseases.

    PubMed

    Zhou, Qibing; Wei, Yushuang

    2017-01-17

    Superparamagnetic iron oxide nanoparticles (SPIONs) have recently been used as an effective magnetic resonance imaging (MRI) contrast agent for the noninvasive diagnosis of chronic liver diseases including nonalcohol fatty liver diseases, nonalcohol steatohepatitis, and cirrhosis as well as liver tumors. However, the potential risk of the iron overload by SPIONs has been highly underestimated in chronic liver diseases. While most of SPIONs have been shown safe in the healthy group, significant toxicity potential by the iron overload has been revealed through immunotoxicity, lipid peroxidation, and fatty acid and cholesterol metabolism in cirrhosis as a high risk factor. As a result, the systems toxicology assessments of SPIONs are crucial in both healthy ones and chronic liver disease models to determine the margin of safety. In addition, the challenge of the iron overload by SPIONs requires better designed SPIONs as MRI contrast agents for chronic liver diseases such as the biodegradable nanocluster assembly with urine clearance.

  9. Transmission electron microscopy and ab initio calculations to relate interfacial intermixing and the magnetism of core/shell nanoparticles

    SciTech Connect

    Chi, C.-C.; Hsiao, C.-H.; Ouyang, Chuenhou; Skoropata, E.; Lierop, J. van

    2015-05-07

    Significant efforts towards understanding bi-magnetic core-shell nanoparticles are underway currently as they provide a pathway towards properties unavailable with single-phased systems. Recently, we have demonstrated that the magnetism of γ-Fe2O3/CoO core-shell nanoparticles, in particular, at high temperatures, originates essentially from an interfacial doped iron-oxide layer that is formed by the migration of Co{sup 2+} from the CoO shell into the surface layers of the γ-Fe2O3 core [Skoropata et al., Phys. Rev. B 89, 024410 (2014)]. To examine directly the nature of the intermixed layer, we have used high-resolution transmission electron microscopy (HRTEM) and first-principles calculations to examine the impact of the core-shell intermixing at the atomic level. By analyzing the HRTEM images and energy dispersive spectra, the level and nature of intermixing was confirmed, mainly as doping of Co into the octahedral site vacancies of γ-Fe2O3. The average Co doping depths for different processing temperatures (150 °C and 235 °C) were 0.56 nm and 0.78 nm (determined to within 5% through simulation), respectively, establishing that the amount of core-shell intermixing can be altered purposefully with an appropriate change in synthesis conditions. Through first-principles calculations, we find that the intermixing phase of γ-Fe2O3 with Co doping is ferromagnetic, with even higher magnetization as compared to that of pure γ-Fe2O3. In addition, we show that Co doping into different octahedral sites can cause different magnetizations. This was reflected in a change in overall nanoparticle magnetization, where we observed a 25% reduction in magnetization for the 235 °C versus the 150 °C sample, despite a thicker intermixed layer.

  10. Saturation of electrical resistivity of solid iron at Earth's core conditions.

    PubMed

    Pozzo, Monica; Alfè, Dario

    2016-01-01

    We report on the temperature dependence of the electrical resistivity of solid iron at high pressure, up to and including conditions likely to be found at the centre of the Earth. We have extended some of the calculations of the resistivities of pure solid iron we recently performed at Earth's core conditions (Pozzo et al. in Earth Planet Sci Lett 393:159-164, 2014) to lower temperature. We show that at low temperature the resistivity increases linearly with temperature, and saturates at high temperature. This saturation effect is well known as the Mott-Ioffe-Regel limit in metals, but has been largely ignored to estimate the resistivity of iron at Earth's core conditions. Recent experiments (Gomi et al. in Phys Earth Planet Int 224:88-103, 2013) coupled new high pressure data and saturation to predict the resitivity of iron and iron alloys at Earth's core conditions, and reported values up to three times lower than previous estimates, confirming recent first principles calculations (de Koker et al. in Proc Natl Acad Sci 109:4070-4073, 2012; Pozzo et al. in Nature 485:355-358, 2012, Phys Rev B 87:014110-10, 2013, Earth Planet Sci Lett 393:159-164, 2014; Davies et al. in Nat Geosci 8:678-685, 2015). The present results support the saturation effect idea.

  11. Igneous Evolution of the Core and Mantle in the Parent Body of Group IVA Iron and Stony-Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; McCoy, T. J.; Haack, H.; Taylor, G. J.

    1992-07-01

    peritectic liquids. Discussion: From the observed size and homogeneity of the Gibeon shower and our fractional crystallization modeling, we can infer that the parental liquid pool was at least many meters in size. Pools this big quickly sink through silicate (unless very reduced), so IVA metal very probably comes from a core. The wide range of metallographic cooling rates that is correlated with Ni concentration in IVA irons must therefore be an artefact. Liquids of pyroxene-silica compositions could be formed in the mantle (Prinz et al., 1984) but trapping them in the core at different stages of core crystallization seems very difficult. We prefer an origin for IVA stony irons by mixing olivine-pyroxene mantle material into the core during core solidification by processes like those that mixed olivine mantle into Fe,Ni cores to make pallasites, followed by addition of silica formed by oxidation of Si from the metal. Pieces of olivine-pyroxene, possibly in the form of a Brenham-like sponge, could be mixed into a crystallizing Fe,Ni core with about 2-4% S at temperatures around 1400 C. Pyroxene might be abundant in the mantle because small body size caused inefficient removal of trapped silicate liquid from an olivine cumulate. Alternatively, temperatures were never high enough to melt the mantle entirely. References: Haack H. and Scott E.R.D. (1992) Geochim. Cosmochim. Acta, submitted. Jones J.H. and Malvin (1990) Metall. Trans., 21B, 697-706. Prinz M., Nehru C.E., Delaney J.S., Fredriksson K., and Palme H. (1984) Meteoritics (abstract) 19, 291-292.

  12. Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles.

    PubMed

    Feng, Xiaohua; Gao, Fei; Zheng, Yuanjin

    2014-06-15

    Thermally modulated photoacoustic imaging (TMPI) is reported here for contrast enhancement when using nanoparticles as contrast agents. Exploiting the excellent sensitivity of the photoacoustic (PA) process on temperature and the highly selective heating capability of nanoparticles under electromagnetic field, the PA signals stemming from the nanoparticles labeled region can be efficiently modulated whereas those from highly light absorptive backgrounds are minimally affected. A coherent difference imaging procedure reduces the background signal and thus improves the imaging contrast. Phantom experiments with super-paramagnetic iron oxide nanoparticles (SPIONs) as contrast agents and alternating magnetic fields for heating are demonstrated. Further improvements toward clinical applications are also discussed.

  13. Use of silicate shells to prevent sintering during thermally induced chemical ordering of iron platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Reed, Dwayne Fitzgerald

    Its very high value of magnetocrystalline anisotropy makes the L1 0 phase of FePt a leading candidate for future high density magnetic recording systems. FePt nanoparticles can be prepared by a number of chemical methods. However, these particles have a face-centered cubic structure, with low anisotropy and are superparamagnetic. They must be heated to temperatures above 500 °C to obtain the chemically ordered L10 phase. However, during heating the particles coalesce to give twinned grains with large sizes (10-30 nm). Here we provide a solution to the sintering problem by developing a sol-gel procedure for coating the FePt particles with an amorphous silica shell. The silica shell prevents the FePt particles from agglomerating when heated to 700 °C to effect chemical ordering. FePt nanoparticles were prepared by the super-hydride reduction of platinum(II) acetylacetonate and iron(II) chloride in hot diphenyl ether in the presence of oleylamine and oleic acid capping ligands. The particles had an average diameter of 5-6 nm, a face-centered cubic structure and were superparamagnetic. The particles were coated using a microemulsion process producing a 6 nm silicon oxide shell with a single nanoparticle core-shell structure. The nanoparticles were heated to 700 °C for times of 30 min and 1hr to achieve L10 phase transformation. These samples were annealed in a tube furnace under 95% Ar/5% H2. Many procedures were found to be ineffective. They mostly consisted of biphasic reaction systems and several trials where reaction variables were altered in search of the appropriate conditions. This work has impacted the search for a higher density magnetic recording medium by allowing the study of FePt under a protected environment while achieving chemical ordering. If the L10 FePt nanoparticles will be used in magnetic recording, the particles will require a hard coating to prevent wear. In the course of the present work, it has been shown that the silicate shells

  14. Influence of carbon chain length on the synthesis and yield of fatty amine-coated iron-platinum nanoparticles

    PubMed Central

    2014-01-01

    Iron oxide nanoparticles are among the most widely used and characterized magnetic nanoparticles. However, metal alloys such as superparamagnetic iron-platinum particles (SIPPs), which have better magnetic properties, are receiving increased attention. Scalable techniques to routinely synthesize SIPPs in bulk need further study. Here, we focus on the role played by the fatty amine ligand in the formation of the bimetallic FePt nanocrystal. More specifically, we compare the effect of varying lengths of fatty amine ligands on the shape, structure, uniformity, composition, and magnetic properties of the SIPPs. We synthesized SIPPs by employing a ‘green’ thermal decomposition reaction using fatty amine ligands containing 12 to 18 carbons in length. Greater fatty amine chain length increased the polydispersity, particle concentration, iron concentration, and the stability of the SIPPs. Additionally, longer reflux times increased the diameter of the particles, but decreased the iron concentration, suggesting that shorter reaction times are preferable. Fourier transform infrared spectroscopy of the SIPPs indicates that the ligands are successfully bound to the FePt cores through the amine group. Superconducting quantum interference device magnetometry measurements suggest that all of the SIPPs were superparamagnetic at room temperature and that SIPPs synthesized using tetradecylamine had the highest saturation magnetization. Our findings indicate that the octadecylamine ligand, which is currently used for the routine synthesis of SIPPs, may not be optimal. Overall, we found that using tetradecylamine and a 30-min reflux reaction resulted in optimal particles with the highest degree of monodispersity, iron content, stability, and saturation magnetization. PACS 81.07.-b; 75.75.Fk; 61.46.Df PMID:25006334

  15. Systematic chemical variations in large 3AB iron meteorites: Clues to core crystallization

    NASA Technical Reports Server (NTRS)

    Haack, H.; Scott, E. R. D.; Rubio, G. S.; Gutierrez, D. F.; Lewis, C. F.; Wasson, J. T.; Brooks, R. R.; Guo, X.; Ryan, D. E.; Holzbecher, J.

    1993-01-01

    Analysis of numerous individual iron meteorites have shown that fractional crystallization of iron cores result in variations in chemical concentration of the solid core which span several orders of magnitude. The magnitude and direction of the resulting spatial gradients in the core can provide clues to the physical nature of the core crystallization process. We have analyzed suites of samples from three large 3AB irons (Cape York, 58t; Chupaderos, 24t; Morito, 10t) in order to estimate local chemical gradients. Initial results for the concentrations of Ge, Pd, Pt (Massey group), Ir, Au, As, Co, Os, and Rh (Dalhouse group), and P (Arizona group) show significant ranges among the Cape York and Chupaderos samples and marginally significant ranges among the Morito samples. Measurements of Au, Ir, Co, Ni, Cu, Ga, As, W, Re (from UCLA) and Ni and Co (Arizona group) are in progress. We find a spatial Ir gradient in Chupaderos with a magnitude similar to the one reported for Agpalilik (Cape York iron) by Esbensen et al.

  16. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    SciTech Connect

    Garza-Navarro, Marco; Gonzalez, Virgilio; Ortiz, Ubaldo; De la Rosa, Elder

    2010-01-15

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.

  17. Stabilization and cellular delivery of chitosan-polyphosphate nanoparticles by incorporation of iron.

    PubMed

    Giacalone, Giovanna; Hillaireau, Hervé; Capiau, Pauline; Chacun, Hélène; Reynaud, Franceline; Fattal, Elias

    2014-11-28

    Chitosan (CS) nanoparticles are typically obtained by complexation with tripolyphosphate (TPP) ions, or more recently using triphosphate group-containing drugs such as adenosine triphosphate (ATP). ATP is an active molecule we aim to deliver in order to restore its depletion in macrophages, when associated with their death leading to plaque rupture in atherosclerotic lesions. Despite high interest in CS nanoparticles for drug delivery, due to the biodegradability of CS and to the ease of the preparation process, these systems tend to readily disintegrate when diluted in physiological media. Some stabilization strategies have been proposed so far but they typically involve the addition of a coating agent or chemical cross-linkers. In this study, we propose the complexation of CS with iron ions prior to nanoparticle formation as a strategy to improve the carrier stability. This can be achieved thanks to the ability of iron to strongly bind both chitosan and phosphate groups. Nanoparticles were obtained from either TPP or ATP and chitosan-iron (CS-Fe) complexes containing 3 to 12% w/w iron. Isothermal titration calorimetry showed that the binding affinity of TPP and ATP to CS-Fe increased with the iron content of CS-Fe complexes. The stability of these nanoparticles in physiological conditions was evaluated by turbidity and by fluorescence fluctuation in real time upon dilution by electrolytes, and revealed an important stabilization effect of CS-Fe compared to CS, increasing with the iron content. Furthermore, in vitro studies on two macrophage cell lines (J774A.1 and THP-1) revealed that ATP uptake is improved consistently with the iron content of CS-Fe/ATP nanoparticles, and correlated to their lower dissociation in biological medium, allowing interesting perspectives for the intracellular delivery of ATP.

  18. Liquid iron-sulfur alloys at outer core conditions by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Umemoto, Koichiro; Hirose, Kei; Imada, Saori; Nakajima, Yoichi; Komabayashi, Tetsuya; Tsutsui, Satoshi; Baron, Alfred Q. R.

    2014-10-01

    We perform first-principles calculations to investigate liquid iron-sulfur alloys (Fe, Fe56S8, Fe52S12, and Fe48S16) under high-pressure and high-temperature (150-300 GPa and 4000-6000 K) conditions corresponding to the Earth's outer core. Considering only the density profile, the best match with the preliminary reference Earth model is by liquid Fe-14 wt % S (Fe50S14), assuming sulfur is the only light element. However, its bulk sound velocity is too high, in particular in the deep outer core, suggesting that another light component such as oxygen is required. An experimental check using inelastic X-ray scattering shows good agreement with the calculations. In addition, a present study demonstrates that the Birch's law does not hold for liquid iron-sulfur alloy, consistent with a previous report on pure liquid iron.

  19. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another

  20. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface

    PubMed Central

    Arakha, Manoranjan; Pal, Sweta; Samantarrai, Devyani; Panigrahi, Tapan K.; Mallick, Bairagi C.; Pramanik, Krishna; Mallick, Bibekanand; Jha, Suman

    2015-01-01

    Investigating the interaction patterns at nano-bio interface is a key challenge for safe use of nanoparticles (NPs) to any biological system. The study intends to explore the role of interaction pattern at the iron oxide nanoparticle (IONP)-bacteria interface affecting antimicrobial propensity of IONP. To this end, IONP with magnetite like atomic arrangement and negative surface potential (n-IONP) was synthesized by co-precipitation method. Positively charged chitosan molecule coating was used to reverse the surface potential of n-IONP, i.e. positive surface potential IONP (p-IONP). The comparative data from fourier transform infrared spectroscope, XRD, and zeta potential analyzer indicated the successful coating of IONP surface with chitosan molecule. Additionally, the nanocrystals obtained were found to have spherical size with 10–20 nm diameter. The BacLight fluorescence assay, bacterial growth kinetic and colony forming unit studies indicated that n-IONP (<50 μM) has insignificant antimicrobial activity against Bacillus subtilis and Escherichia coli. However, coating with chitosan molecule resulted significant increase in antimicrobial propensity of IONP. Additionally, the assay to study reactive oxygen species (ROS) indicated relatively higher ROS production upon p-IONP treatment of the bacteria. The data, altogether, indicated that the chitosan coating of IONP result in interface that enhances ROS production, hence the antimicrobial activity. PMID:26437582

  1. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface

    NASA Astrophysics Data System (ADS)

    Arakha, Manoranjan; Pal, Sweta; Samantarrai, Devyani; Panigrahi, Tapan K.; Mallick, Bairagi C.; Pramanik, Krishna; Mallick, Bibekanand; Jha, Suman

    2015-10-01

    Investigating the interaction patterns at nano-bio interface is a key challenge for safe use of nanoparticles (NPs) to any biological system. The study intends to explore the role of interaction pattern at the iron oxide nanoparticle (IONP)-bacteria interface affecting antimicrobial propensity of IONP. To this end, IONP with magnetite like atomic arrangement and negative surface potential (n-IONP) was synthesized by co-precipitation method. Positively charged chitosan molecule coating was used to reverse the surface potential of n-IONP, i.e. positive surface potential IONP (p-IONP). The comparative data from fourier transform infrared spectroscope, XRD, and zeta potential analyzer indicated the successful coating of IONP surface with chitosan molecule. Additionally, the nanocrystals obtained were found to have spherical size with 10-20 nm diameter. The BacLight fluorescence assay, bacterial growth kinetic and colony forming unit studies indicated that n-IONP (<50 μM) has insignificant antimicrobial activity against Bacillus subtilis and Escherichia coli. However, coating with chitosan molecule resulted significant increase in antimicrobial propensity of IONP. Additionally, the assay to study reactive oxygen species (ROS) indicated relatively higher ROS production upon p-IONP treatment of the bacteria. The data, altogether, indicated that the chitosan coating of IONP result in interface that enhances ROS production, hence the antimicrobial activity.

  2. A pathway for the growth of core-shell Pt-Pd nanoparticles

    SciTech Connect

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; Pennycook, Stephen J; Lupini, Andrew R

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joining together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.

  3. Synthesis of core-shell structured magnetic nanoparticles with a carbide shell

    NASA Astrophysics Data System (ADS)

    Hou, Shushan; Chi, Yue; Zhao, Zhankui

    2017-03-01

    Core-shell structured materials combining the functionalities of the core and shell have great application potential in many fields. In this work, by combining solvothermal, polymerization and the high temperature carbonization, we have successfully developed a facile method to generate core-shell structured nanoparticles which possess an internal magnetic nanoparticle with a carbide shell. The thickness of resorcinol formaldehyde resin as intermediate transition shell could be easily adjusted by changing the concentration of the RF precursor. The resulting nanoparticles possess well-defined structure, uniform size and high magnetization. The unique nanostructure of the magnetic core-shell structured nanoparticles could lead to many promising applications in areas ranging from drug delivery to the purifyication of sewage.

  4. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar.

    PubMed

    Li, Dalin; Koike, Mitsuru; Wang, Lei; Nakagawa, Yoshinao; Xu, Ya; Tomishige, Keiichi

    2014-02-01

    Nickel-iron/magnesium/aluminum bimetallic catalysts were prepared by the calcination and reduction of nickel-magnesium-iron-aluminum hydrotalcite-like compounds. Characterization suggests that, at iron/nickel≤0.5, both nickel and iron species are homogeneously distributed in the hydrotalcite precursor and incorporated into the Mg(Ni, Fe, Al)O periclase after calcination, giving rise to uniform nickel-iron alloy nanoparticles after reduction. Ni-Fe/Mg/Al (Fe/Ni=0.25) exhibits the best catalytic performance for the steam reforming of tar derived from the pyrolysis of biomass. It is suggested that the uniform nickel-iron alloy nanoparticles and the synergy between nickel and iron are responsible for the high catalytic performance. Moreover, the Ni-Fe/Mg/Al catalyst exhibits much better regenerability toward oxidation-reduction treatment for the removal of deposited coke than that of conventional Ni-Fe/α-Al2 O3 . This property can be attributed to the better regeneration of Ni-Fe alloy nanoparticles through the formation and reduction of Mg(Ni, Fe, Al)O.

  5. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.

    PubMed

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Reding, Nicholas A; Skomski, Ralph; Ducharme, Stephen; Sellmyer, David J

    2010-04-27

    Core-shell structures of oxide nanoparticles having a high dielectric constant, and organic shells with large breakdown field are attractive candidates for large electrical energy storage applications. A high growth temperature, however, is required to obtain the dielectric oxide nanoparticles, which affects the process of core-shell formation and also leads to poor control of size, shape, and size-distribution. In this communication, we report a new synthetic process to grow core-shell nanoparticles by means of an experimental method that can be easily adapted to synthesize core-shell structures from a variety of inorganic-organic or inorganic-inorganic materials. Monodisperse and spherical TiO2 nanoparticles were produced at room temperature as a collimated cluster beam in the gas phase using a cluster-deposition source and subsequently coated with uniform paraffin nanoshells using in situ thermal evaporation, prior to deposition on substrates for further characterization and device processing. The paraffin nanoshells prevent the TiO2 nanoparticles from contacting each other and also act as a matrix in which the volume fraction of TiO2 nanoparticles was varied by controlling the thickness of the nanoshells. Parallel-plate capacitors were fabricated using dielectric core-shell nanoparticles having different shell thicknesses. With respect to the bulk paraffin, the effective dielectric constant of TiO2-paraffin core-shell nanoparticles is greatly enhanced with a decrease in the shell thickness. The capacitors show a minimum dielectric dispersion and low dielectric losses in the frequency range of 100 Hz-1 MHz, which are highly desirable for exploiting these core-shell nanoparticles for potential applications.

  6. Biosynthesised magnetic iron nanoparticles for sludge dewatering via Fenton process.

    PubMed

    Ealias, Anu Mary; Jose, Jephin Varughese; Saravanakumar, M P

    2016-11-01

    The magnetic iron nanoparticles (MFeNp) were biosynthesised using the extract of Cinnamomum tamala (bay leaf) and examined for its efficacy on sludge dewatering. The characteristics of MFeNp were studied using scanning electron microscope (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectrometer (XPS) techniques. The presence of polyphenolic compounds were confirmed by FTIR and XPS analysis. The reduction in capillary suction time (CST) (71.36 to 16.5 s) and specific resistance to filtration (SRF) (53.71 × 10(11) to 1.47 × 10(11) m/kg) values have indicated that the use of Fenton nanocatalyst enhanced the sludge dewaterability. The differential scanning calorimetry (DSC) analysis has shown that the mass of bound water in the treated sludge was decreased significantly from 1.45 to 0.92 kg H2O/kg DS. The breakdown of extracellular polymeric substances (EPS) by the MFeNp leads to the significant reduction in proteins, polysaccharides, water content and heavy metals. The optimisation using response surface modelling (RSM) have shown that the maximum removal efficiency of water from the sludge was 85.9 % when the optimum pH (3) MFeNp dosage (50 mg/g DS) and H2O2 dosage (500 mg/g DS) were maintained. The experimental results and the statistical optimisation have suggested that MFeNp can be used as a potential nanocatalyst for the sludge dewaterability and hence it can be used for the agricultural purpose. Graphical abstract Schematic representation of sludge dewatering process.

  7. Ultrasonic computed tomography imaging of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Perlman, Or; Azhari, Haim

    2017-02-01

    Iron oxide nanoparticles (IONPs) are becoming increasingly used and intensively investigated in the field of medical imaging. They are currently FDA approved for magnetic resonance imaging (MRI), and it would be highly desirable to visualize them by ultrasound as well. Previous reports using the conventional ultrasound B-scan (pulse-echo) imaging technique have shown very limited detectability of these particles. The aim of this study is to explore the feasibility of imaging IONPs using the through-transmission ultrasound methodology and demonstrate their detectability using ultrasonic computed tomography (UCT). Commercially available IONPs were acoustically analysed to quantify their effect on the speed of sound (SOS) and acoustic attenuation as a function of concentration. Next, through-transmission projection and UCT imaging were performed on a breast mimicking phantom and on an ex vivo tissue model, to which IONPs were injected. Finally, an MRI scan was performed to verify that the same particles examined in the ultrasound experiment can be imaged by magnetic resonance, using the same clinically relevant concentrations. The results have shown a consistent concentration dependent speed of sound increase (1.86 \\text{m}{{\\text{s}}^{-1}} rise per 100 µg · ml-1 IONPs). Imaging based on this property has shown a substantial contrast-to-noise ratio improvement (up to 5 fold, p  <  0.01). The SOS-related effect generated a well discernible image contrast and allowed the detection of the particles existence and location, in both raster-scan projection and UCT imaging. Conversely, no significant change in the acoustic attenuation coefficient was noted. Based on these findings, it is concluded that IONPs can be used as an effective SOS-based contrast agent, potentially useful for ultrasonic breast imaging. Furthermore, the particle offers the capacity of significantly enhancing diagnosis accuracy using multimodal MRI-ultrasound imaging capabilities.

  8. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies.

    PubMed

    Nallathamby, Prakash D; Mortensen, Ninell P; Palko, Heather A; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J; Gu, Baohua; Roeder, Ryan K; Wang, Wei; Retterer, Scott T

    2015-04-21

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 ± 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with (14)C, with a final activity of 0.097 nCi mg(-1) of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach

  9. New Surface Radiolabeling Schemes of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) for Biodistribution Studies

    DOE PAGES

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; ...

    2015-01-01

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and 10 easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), wasmore » between 90 110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate 15 functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi/mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-20 radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and 25 detection techniques. The radiolabeling

  10. New Surface Radiolabeling Schemes of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) for Biodistribution Studies

    SciTech Connect

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, Jim; Doktycz, Mitchel John; Gu, Baohua; Roeder, Ryan; Wang, Wei; Retterer, Scott T.

    2015-01-01

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and 10 easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90 110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate 15 functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi/mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-20 radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and 25 detection techniques. The

  11. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies†

    PubMed Central

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.

    2016-01-01

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 ± 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90–110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of –35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg–1 of NPs. In chronic studies, the biodistribution profile is tracked using low-level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach

  12. Synthesis, characterization, and cytotoxicity of glutathione-PEG-iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Haddad, Paula S.; Santos, Marconi C.; de Guzzi Cassago, Carolina Aparecida; Bernardes, Juliana S.; de Jesus, Marcelo Bispo; Seabra, Amedea B.

    2016-12-01

    Recently, increasing interest is spent on the synthesis of superparamagnetic iron oxide nanoparticles, followed by their characterization and evaluation of cytotoxicity towards tumorigenic cell lines. In this work, magnetite (Fe3O4) nanoparticles were synthesized by the polyol method and coated with polyethylene glycol (PEG) and glutathione (GSH), leading to the formation of PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles. The nanoparticles were characterized by state-of-the-art techniques: dynamic light scattering (DLS), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and superconducting quantum interference device (SQUID) magnetic measurements. PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles have crystallite sizes of 10 and 5 nm, respectively, indicating compression in crystalline lattice upon addition of GSH on the nanoparticle surface. Both nanoparticles presented superparamagnetic behavior at room temperature, and AFM images revealed the regular spherical shape of the nanomaterials and the absence of particle aggregation. The average hydrodynamic sizes of PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles were 69 ± 37 and 124 nm ± 75 nm, respectively. The cytotoxicity of both nanoparticles was screened towards human prostatic carcinoma cells (PC-3). The results demonstrated a decrease in PC-3 viability upon treatment with PEG-Fe3O4 or GSH-PEG-Fe3O4 nanoparticles in a concentration-dependent manner. However, the cytotoxicity was not time-dependent. Due to the superparamagnetic behavior of PEG-Fe3O4 or GSH-PEG-Fe3O4 nanoparticles, upon the application of an external magnetic field, those nanoparticles can be guided to the target site yielding local toxic effects to tumor cells with minimal side effects to normal tissues, highlighting the promising uses of iron oxide nanoparticles in biomedical applications.

  13. Effect of size, composition, and morphology on magnetic performance: First-order reversal curves evaluation of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Hirt, Ann M.; Sotiriou, Georgios A.; Kidambi, Piran R.; Teleki, Alexandra

    2014-01-01

    Superparamagnetic nanoparticles are employed in a broad range of applications that demand detailed magnetic characterization for superior performance, e.g., in drug delivery or cancer treatment. Magnetic hysteresis measurements provide information on saturation magnetization and coercive force for bulk material but can be equivocal for particles having a broad size distribution. Here, first-order reversal curves (FORCs) are used to evaluate the effective magnetic particle size and interaction between equally sized magnetic iron oxide (Fe2O3) nanoparticles with three different morphologies: (i) pure Fe2O3, (ii) Janus-like, and (iii) core/shell Fe2O3/SiO2 synthesized using flame technology. By characterizing the distribution in coercive force and interaction field from the FORC diagrams, we find that the presence of SiO2 in the core/shell structures significantly reduces the average coercive force in comparison to the Janus-like Fe2O3/SiO2 and pure Fe2O3 particles. This is attributed to the reduction in the dipolar interaction between particles, which in turn reduces the effective magnetic particle size. Hence, FORC analysis allows for a finer distinction between equally sized Fe2O3 particles with similar magnetic hysteresis curves that can significantly influence the final nanoparticle performance.

  14. SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS

    SciTech Connect

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard

    2013-08-20

    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H{sub 2}O, MgO, and SiO{sub 2} dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures.

  15. Effect of superconducting solenoid model cores on spanwise iron magnet roll control

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1985-01-01

    Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.

  16. Sonochemical Synthesis and Magnetic Imaging of Hollow-Shell Iron-Platinum Nanoparticles

    NASA Astrophysics Data System (ADS)

    Baker, Remmi; Barnes, Paris; Martell, Eric

    2015-04-01

    As science has continued to evolve, scientists have been diving deeper and deeper, researching and analyzing the tiniest of objects. Interestingly, materials such as gold, silver, iron, and platinum behave differently on the nanoscale than the macroscale. Discrepancies between the behaviors of macro- and nanoparticles of the same substance are not well understood, which has led scientists to pursue the question as to why nanoparticles behave differently. Further research into the fabrication of hollow-shell iron-platinum nanoparticles and their unique properties may lead to real-world applications. Iron-platinum (FePt) nanoparticles are recognized for their unique magnetic properties; however, these properties have largely not been researched. FePt samples were prepared using sonochemical techniques. We report on the magnetic force microscopy imaging for self-assembled hollow-shell FePt nanoparticles, and relate our findings to the physical characteristics of the hollow-shell FePt nanoparticles. Additionally, we investigate the magnetic properties for FePt nanoparticles by analyzing the role of the electrons and their interactions occurring within the magnetic domain.

  17. Rh(0)/Rh(iii) core-shell nanoparticles as heterogeneous catalysts for cyclic carbonate synthesis.

    PubMed

    Jung, Younjae; Shin, Taeil; Kim, Kiseong; Byun, Hyeeun; Cho, Sung June; Kim, Hyunwoo; Song, Hyunjoon

    2016-12-22

    Rh(0)/Rh(iii) core-shell nanoparticles were prepared by surface oxidation of Rh nanoparticles with N-bromosuccinimide. They were employed as heterogeneous catalysts for cyclic carbonate synthesis from propylene oxide and CO2, and exhibited high activity and excellent recyclability due to Lewis acidic Rh(iii) species on the shells.

  18. Immobilization of Iron Nanoparticles on Multi Substrates and Its Reduction Removal of Chromium (VI) from Waste Streams

    EPA Science Inventory

    This article describes the in-situ synthesis and immobilization of iron nanoparticles on several substrates at room temperature using NaBH4 as a reducing agent and ascorbic acid as capping agent. The method is very effective in protecting iron nanoparticles from air oxidation for...

  19. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)

    NASA Astrophysics Data System (ADS)

    Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.

    2016-06-01

    Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal

  20. Preliminary evaluation of a 99mTc labeled hybrid nanoparticle bearing a cobalt ferrite core: in vivo biodistribution.

    PubMed

    Psimadas, Dimitrios; Baldi, Giovanni; Ravagli, Costanza; Bouziotis, Penelope; Xanthopoulos, Stavros; Franchini, Mauro Comes; Georgoulias, Panagiotis; Loudos, George

    2012-08-01

    Magnetic nanoparticles have become important tools for imaging a wide range of diseases, improving drug delivery and applying hyperthermic treatment. Iron oxide based nanoparticles have been widely examined, unlike cobalt ferrite based ones. Herein, monodisperse and stable CoFe2O4 nanoparticles have been produced, coated and further stabilized using ethyl 12-(hydroxyamino)-12-oxododecanoate, poly(lactic-co-glycolic acid) and bovine serum albumin. The final product, NBRh1, was fully characterized and has been directly radiolabeled with 99mTc using SnCl1 as the reducing agent in high yields. In vitro stability and hyperthermic properties of 99mTC-NBRh1 were encouraging for further application in low frequencies hyperthermia and biomagnetic applications. In vivo evaluation followed after injection in healthy mice. The planar and SPECT imaging data as well as the biodistribution results were in accordance, showing high liver and spleen uptake as expected starting almost immediately after administration. In conclusion the preliminary results for nanoparticles bearing a cobalt ferrite core justify further investigations towards potential hyperthermic applications, drug transportation and liver or spleen imaging.

  1. Reversible immobilization of invertase on Cu-chelated polyvinylimidazole-grafted iron oxide nanoparticles.

    PubMed

    Uzun, Kerem; Çevik, Emre; Şenel, Mehmet; Baykal, Abdülhadi

    2013-12-01

    Polyvinylimidazole (PVI)-grafted iron oxide nanoparticles (PVIgMNP) were prepared by grafting of telomere of PVI on the iron oxide nanoparticles. Different metal ions (Cu(2+), Zn(2+), Cr(2+), Ni(2+)) ions were chelated on polyvinylimidazole-grafted iron oxide nanoparticles, and then the metal-chelated magnetic particles were used in the adsorption of invertase. The maximum invertase immobilization capacity of the PVIgMNP-Cu(2+) beads was observed to be 142.856 mg/g (invertase/PVIgMNP) at pH 5.0. The values of the maximum reaction rate (V max) and Michaelis-Menten constant (Km) were determined for the free and immobilized enzymes. The enzyme adsorption-desorption studies, pH effect on the adsorption efficiency, affinity of different metal ions, the kinetic parameters and storage stability of free and immobilized enzymes were evaluated.

  2. Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein in Situ

    SciTech Connect

    Kashyap, Sanjay; Woehl, Taylor J; Liu, Xunpei; Mallapragada, Surya K; Prozorov, Tanya

    2014-09-23

    Biomineralization proteins are widely used as templating agents in biomimetic synthesis of a variety of organic–inorganic nanostructures. However, the role of the protein in controlling the nucleation and growth of biomimetic particles is not well understood, because the mechanism of the bioinspired reaction is often deduced from ex situ analysis of the resultant nanoscale mineral phase. Here we report the direct visualization of biomimetic iron oxide nanoparticle nucleation mediated by an acidic bacterial recombinant protein, Mms6, during an in situ reaction induced by the controlled addition of sodium hydroxide to solution-phase Mms6 protein micelles incubated with ferric chloride. Using in situ liquid cell scanning transmission electron microscopy we observe the liquid iron prenucleation phase and nascent amorphous nanoparticles forming preferentially on the surface of protein micelles. Our results provide insight into the early steps of protein-mediated biomimetic nucleation of iron oxide and point to the importance of an extended protein surface during nanoparticle formation.

  3. Preparation of iron oxide nanoparticles from FeCl3 solid powder using microemulsions

    NASA Astrophysics Data System (ADS)

    Nassar, Nashaat; Husein, Maen

    2006-05-01

    Nanoparticles of iron oxide were prepared by subjecting iron chloride powder to (w/o) microemulsions consisting of sodium bis(2-ethylhexyl) sulfosuccinate (AOT), isooctane and water. FeCl3 was first dissolved in the water pools of the microemulsion, and then reacted with NaOH added as an aqueous solution to form iron oxide. The amount of NaOH solution was limited so that single microemulsion phase is obtained. This technique serves as an in-situ nanoparticle preparation technique aimed at minimizing particle aggregation associated with particle transportation to required sites. In this study, the effects of AOT concentration and water to AOT mole ratio on the nanoparticle size were investigated. UV/Vis spectrophotometry and transmission electron microscopy (TEM) were used to measure the particle size distribution.

  4. Gold nanotriangles decorated with superparamagnetic iron oxide nanoparticles: a compositional and microstructural study

    DOE PAGES

    Hachtel, J. A.; Yu, S.; Lupini, A. R.; ...

    2016-03-11

    The combination of iron oxide and gold in a single nanoparticle results in both magnetic and plasmonic properties that can stimulate novel applications in bio-sensing, medical imaging, or therapeutics. Microwave assisted heating allows the fabrication of multi-component, multi-functional nanostructures by promoting selective heating at desired sites. Recently, we reported a microwave-assisted polyol route yielding gold nanotriangles decorated with iron oxide nanoparticles. Here, we present an in-depth microstructural and compositional characterization of the system by using scanning transmission electron microscopy (STEM) and electron energy loss (EELS) spectroscopy. A method to remove the iron oxide nanoparticles from the gold nanocrystals and somemore » insights on crystal nucleation and growth mechanisms are also provided.« less

  5. Gold nanotriangles decorated with superparamagnetic iron oxide nanoparticles: a compositional and microstructural study

    SciTech Connect

    Hachtel, J. A.; Yu, S.; Lupini, A. R.; Pantelides, S. T.; Gich, M.; Laromaine, A.; Roig, A.

    2016-03-11

    The combination of iron oxide and gold in a single nanoparticle results in both magnetic and plasmonic properties that can stimulate novel applications in bio-sensing, medical imaging, or therapeutics. Microwave assisted heating allows the fabrication of multi-component, multi-functional nanostructures by promoting selective heating at desired sites. Recently, we reported a microwave-assisted polyol route yielding gold nanotriangles decorated with iron oxide nanoparticles. Here, we present an in-depth microstructural and compositional characterization of the system by using scanning transmission electron microscopy (STEM) and electron energy loss (EELS) spectroscopy. A method to remove the iron oxide nanoparticles from the gold nanocrystals and some insights on crystal nucleation and growth mechanisms are also provided.

  6. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance

    PubMed Central

    Ma, L L; Borwankar, A U; Willsey, B W; Yoon, K Y; Tam, J O; Sokolov, K V; Feldman, M D; Milner, T E; Johnston, K P

    2013-01-01

    A homologous series of Au-coated iron oxide nanoparticles, with hydrodynamic diameters smaller than 60 nm was synthesized with very low Auto-iron mass ratios as low as 0.15. The hydrodynamic diameter was determined by dynamic light scattering and the composition by atomic absorption spectroscopy and energy dispersive x-ray spectroscopy (EDS). Unusually low Au precursor supersaturation levels were utilized to nucleate and grow Au coatings on iron oxide relative to formation of pure Au nanoparticles. This approach produced unusually thin coatings, by lowering autocatalytic growth of Au on Au, as shown by transmission electron microscopy (TEM). Nearly all of the nanoparticles were attracted by a magnet indicating a minimal amount of pure Au particles The coatings were sufficiently thin to shift the surface plasmon resonance (SPR) to the near infrared (NIR), with large extinction coefficients., despite the small particle hydrodynamic diameters, observed from dynamic light scattering to be less than 60 nm. PMID:23238021

  7. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    PubMed Central

    2013-01-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet–visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies. PMID:23452438

  8. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  9. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation.

    PubMed

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  10. Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Reddy, Ch. Venkata; Shim, Jaesool; Cho, Migyung

    2017-04-01

    CdS, ZnS and CdS/ZnS core/shell nanoparticles were successfully synthesized via two-step synthesis method. The as-prepared CdS, ZnS and CdS/ZnS core/shell nanoparticles were used to study the structural, morphological, and optical properties by PXRD, TEM, HRTEM, UV-vis spectroscopy, N2 adsorption-desorption, FT-IR, PL and Raman spectroscopy measurements. The XRD pattern confirms the crystal structure of the prepared ZnS, CdS, and CdS/ZnS core/shell nanoparticles. The crystallinity of the as-prepared samples is confirmed by PXRD, TEM and HRTEM analysis. The BET analysis showed that the CdS/ZnS core/shell nanoparticles had larger surface area and pore diameter than CdS and ZnS. The Raman and FT-IR spectra confirm the fundamental vibrational modes of CdS and ZnS respectively. Compared to pure CdS and ZnS, CdS/ZnS core/shell nanoparticles exhibited higher photocatalytic activity for the degradation of methyl orange (MO). The enhancement of photocatalytic activity in the CdS/ZnS core/shell nanoparticles is due to the interface actions between CdS and ZnS, which greatly reduces the recombination of photogenerated electrons-holes pair. The proposed mechanism for degradation of MO dye is discussed in detail.

  11. Studies on the effects of zerovalent iron nanoparticles on bacteria from the mangrove ecosystem.

    PubMed

    Kharangate-Lad, Amrita; Pereira, Flancy; Fernandes, Julio; Bhosle, Saroj

    2016-01-01

    Zerovalent iron (ZVI) nanoparticles are gaining popularity in bioremediation of contaminated ground water and antimicrobial studies. In this study, ZVI nanoparticles were synthesized by borohydride method. The effect of these nanoparticles to alter the cell surface hydrophobicity of mangrove bacteria was studied by bacterial adhesion to hydrocarbon assay. The effect of these nanoparticles on the growth and extracellular polymeric substances (EPS) of a novel bacterial strain Halobacillus trueperi MXM-16 from mangroves was evaluated by growing the culture in the presence of ZVI nanoparticles and SEM. The change in the emulsifying ability of the cell-free supernatant of Halobacillus trueperi MXM-16 when grown in media amended with ZVI nanoparticles was also investigated by spectrophotometric analysis.

  12. Iron nanoparticles produced by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Muñoz, Jorge E.; Cervantes, Janeth; Esparza, Rodrigo; Rosas, Gerardo

    2007-10-01

    In this investigation, the chemical and structural characteristics of Fe nanoparticles synthesized by high-energy ball milling have been explored. After the milling process the nanoparticles were collected using a magnetic field. The structure, morphology and composition of the powders were obtained using high-resolution electron microscopy. HREM images confirmed the nanoparticles' presence with approximately 2-4 nm in size. It was found that using this method allowed the formation of nanoparticles in a smaller size range than other synthesis methods. Also, it was confirmed by HREM images that the obtained nanoparticles were mainly of the fcc nature and some of them of the MTP type.

  13. Gold nanoparticle localization at the core surface by using thermosensitive core-shell particles as a template.

    PubMed

    Suzuki, Daisuke; Kawaguchi, Haruma

    2005-12-06

    We report novel thermosensitive hybrid core-shell particles via in situ gold nanoparticle formation using thermosensitive core-shell particles as a template. This method for the in situ synthesis of gold nanoparticles with microgel interiors offers the advantage of eliminating or significantly reducing particle aggregation. In addition, by using thermosensitive microgel structures in which the shell has thermosensitive and gel properties in water--whereas the core itself is a water-insoluble polymer--we were able to synthesize the gold nanoparticles only at the surface of the core, which had reactive sites to bind metal ions. After the gold nanoparticles were synthesized, electroless gold plating was carried out to control the thickness of the gold nanoshells. The dispersions of the obtained hybrid particles were characterized by dynamic light scattering and UV-vis absorption spectroscopy, and the dried particles were also observed by electron microscopy. Adaptation of the technique shown here will create a number of applications as optical, electronic, and biomedical functional materials.

  14. Different effect of hydrogelation on antifouling and circulation properties of dextran-iron oxide nanoparticles.

    PubMed

    Karmali, Priya Prakash; Chao, Ying; Park, Ji-Ho; Sailor, Michael J; Ruoslahti, Erkki; Esener, Sadik C; Simberg, Dmitri

    2012-03-05

    Premature recognition and clearance of nanoparticulate imaging and therapeutic agents by macrophages in the tissues can dramatically reduce both the nanoparticle half-life and delivery to the diseased tissue. Grafting nanoparticles with hydrogels prevents nanoparticulate recognition by liver and spleen macrophages and greatly prolongs circulation times in vivo. Understanding the mechanisms by which hydrogels achieve this "stealth" effect has implications for the design of long-circulating nanoparticles. Thus, the role of plasma protein absorption in the hydrogel effect is not yet understood. Short-circulating dextran-coated iron oxide nanoparticles could be converted into stealth hydrogel nanoparticles by cross-linking with 1-chloro-2,3-epoxypropane. We show that hydrogelation did not affect the size, shape and zeta potential, but completely prevented the recognition and clearance by liver macrophages in vivo. Hydrogelation decreased the number of hydroxyl groups on the nanoparticle surface and reduced the binding of the anti-dextran antibody. At the same time, hydrogelation did not reduce the absorption of cationic proteins on the nanoparticle surface. Specifically, there was no effect on the binding of kininogen, histidine-rich glycoprotein, and protamine sulfate to the anionic nanoparticle surface. In addition, hydrogelation did not prevent activation of plasma kallikrein on the metal oxide surface. These data suggest that (a) a stealth hydrogel coating does not mask charge interactions with iron oxide surface and (b) the total blockade of plasma protein absorption is not required for maintaining iron oxide nanoparticles' long-circulating stealth properties. These data illustrate a novel, clinically promising property of long-circulating stealth nanoparticles.

  15. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vengsarkar, Pranav S.; Roberts, Christopher B.

    2014-10-01

    Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic-lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20-40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.

  16. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application

    PubMed Central

    2011-01-01

    Background Nanoparticle-metal oxide and gold represents a new class of important materials that are increasingly being developed for use in research and health related activities. The biological system being extremely critical requires the fundamental understanding on the influence of inorganic nanoparticles on cellular growth and functions. Our study was aimed to find out the effect of iron oxide (Fe3O4), gold (Au) nanoparticles on cellular growth of Escherichia coli (E. coli) and also try to channelize the obtained result by functionalizing the Au nanoparticle for further biological applications. Result Fe3O4 and Au nanoparticles were prepared and characterized using Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). Preliminary growth analysis data suggest that the nanoparticles of iron oxide have an inhibitory effect on E. coli in a concentration dependant manner, whereas the gold nanoparticle directly showed no such activity. However the phase contrast microscopic study clearly demonstrated that the effect of both Fe3O4 and Au nanoparticle extended up to the level of cell division which was evident as the abrupt increase in bacterial cell length. The incorporation of gold nanoparticle by bacterial cell was also observed during microscopic analysis based on which glutathione functionalized gold nanoparticle was prepared and used as a vector for plasmid DNA transport within bacterial cell. Conclusion Altogether the study suggests that there is metal nanoparticle-bacteria interaction at the cellular level that can be utilized for beneficial biological application but significantly it also posses potential to produce ecotoxicity, challenging the ecofriendly nature of nanoparticles. PMID:21859494

  17. Colloidal Stability and Monodispersible Magnetic Iron Oxide Nanoparticles in Biotechnology Application

    NASA Astrophysics Data System (ADS)

    Shamili, K.; Rajesh, E. M.; Rajendran, R.; Madhan Shankar, S. R.; Elango, M.; Abitha Devi, N.

    2013-02-01

    Magnetic iron oxide nanoparticles are promising material for various biological applications. In the recent decades, magnetic iron oxide nanoparticles (MNPs) have great attention in biomedical applications such as drug delivery, magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH). This review focuses on the colloidal stability and monodispersity properties of MNPs, which pay more attention toward biomedical applications. The simplest and the most promising method for the synthesis of MNPs is co-precipitation. The biocompatible MNPs are more interested in MRI application. This review also apportions synthesis, characterization and applications of MNP in biological and biomedical as theranostics and imaging.

  18. Catechol versus bisphosphonate ligand exchange at the surface of iron oxide nanoparticles: towards multi-functionalization

    NASA Astrophysics Data System (ADS)

    Guénin, Erwann; Lalatonne, Yoann; Bolley, Julie; Milosevic, Irena; Platas-Iglesias, Carlos; Motte, Laurence

    2014-11-01

    We report an investigation of the ligand exchange at the surface of iron oxide nanoparticles in water. For this purpose we compared two strong chelating agents on the iron oxide surface containing catechol and bisphosphonate moieties. Interactions between the coating agents (catechol/bisphosphonate) and the nanoparticle's surface were studied by FTIR and DFT calculations. Ligand exchange experiments were performed using sonication and the exchange yield was characterized by FTIR and EDX. This methodology allowed introducing bisphosphonates with various functionalities (alkyne or biotin) permitting multi-functionalization.

  19. Mechanisms of enhanced osteoblast gene expression in the presence of hydroxyapatite coated iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tran, Nhiem; Hall, Douglas; Webster, Thomas J.

    2012-11-01

    Hydroxyapatite (HA) coated iron oxide (Fe3O4) magnetic nanoparticles have been shown to enhance osteoblast (bone forming cells) proliferation and osteoblast differentiation into calcium depositing cells (through increased secretion of alkaline phosphatase, collagen and calcium deposition) compared to control samples without nanoparticles. Such nanoparticles are, thus, very promising for numerous orthopedic applications including magnetically directed osteoporosis treatment. The objective of the current study was to elucidate the mechanisms of the aforementioned improved osteoblast responses in the presence of HA coated Fe3O4 nanoparticles. Results demonstrated large amounts of fibronectin (a protein known to increase osteoblast functions) adsorption on HA coated Fe3O4 nanoparticles. Specifically, fibronectin adsorption almost doubled when HA coated Fe3O4 nanoparticle concentrations increased from 12.5 to 100 μg ml-1, and from 12.5 to 200 μg ml-1, a four fold increase was observed. Results also showed greater osteoblast gene regulation (specifically, osteocalcin, type I collagen and cbfa-1) in the presence of HA coated Fe3O4 nanoparticles. Collectively, these results provide a mechanism for the observed enhanced osteoblast functions in the presence of HA coated iron oxide nanoparticles, allowing their further investigation for a number of orthopedic applications.

  20. How to assess cytotoxicity of (iron oxide-based) nanoparticles: a technical note using cationic magnetoliposomes.

    PubMed

    Soenen, Stefaan J H; De Cuyper, Marcel

    2011-01-01

    The range of different types of nanoparticles and their biomedical applications is rapidly growing, creating a need to thoroughly examine the effects these particles have on biological entities. One of the most commonly used nanoparticle types is iron oxide nanoparticles, which can be used as MRI contrast agents. The main research topic is the in vitro labeling of cells with iron oxide nanoparticles to render the cells detectable for MRI upon in vivo transplantation. For the correct evaluation of cell function and behavior in vivo, any effects of the nanoparticles on the cells must be completely ruled out. The present work provides a technical note where a detailed overview is given of several assays that could be useful to determine nanoparticle toxicity. The assays described focus on (i) nanoparticle internalization, (ii) immediate cell toxicity, (iii) cell proliferation, (iv) cell morphology, (v) cell functionality and (vi) cell physiology. Potential pitfalls, appropriate controls and advantages/disadvantages of the different assays are given. The main focus of this work is to provide a detailed guide to help other researchers in the field interested in setting up nanoparticle-toxicity studies.

  1. Earth's core formation aided by flow channelling instabilities induced by iron diapirs

    NASA Astrophysics Data System (ADS)

    Golabek, Gregor J.; Schmeling, Harro; Tackley, Paul J.

    2008-07-01

    The core formation mechanism remains poorly known. An unstable gravitational configuration of a dense molten metallic layer overlying a cold chondritic protocore is predicted by most studies, which leads to the formation of a Rayleigh-Taylor (RT) instability. Recent results [Dahl, T.W., 2005. Turbulent mixing during planet accretion and core formation: Interpretation of the Hf/W chronometer and implications for the age of the Moon. M. Sc. Thesis, University of Copenhagen.] indicate that additionally, iron cores of predifferentiated planetesimals are also able to plunge mostly intact into the cold protocore and create large iron diapirs. For both scenarios we propose the application of the stress-induced melt channelling mechanism [Stevenson, D.J., 1989. Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophys. Res. Lett. 16, 1,067-1,070] in the region surrounding an incipient iron diapir. We therefore perform numerical experiments solving the two-phase, two composition flow equations within a 2D rectangular box with symmetrical boundary conditions. We apply the Compaction Boussinesq Approximation (CBA) and include a depth-dependent gravity. For simplicity we use a constant viscosity for the solid phase and a melt fraction dependent rheology for the partially molten region around the diapir. We investigate the physical conditions under which the melt channels can form and whether they are applicable to the early Earth. As a result, for sufficiently small melt retention numbers iron-rich melt channels develop within a region of approximately twice the diapir's size. This could lead to effective draining of the surrounding region and might initiate cascading daughter diapirs. The region of the protocore drained by this cascading mechanism is expected to significantly increase with depth, and thus indicates an effective mechanism to also extract iron melt from deeper parts of the initially chondritic protocore. This mechanism could

  2. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects

    NASA Astrophysics Data System (ADS)

    Xu, He-Lin; Mao, Kai-Li; Huang, Yin-Ping; Yang, Jing-Jing; Xu, Jie; Chen, Pian-Pian; Fan, Zi-Liang; Zou, Shuang; Gao, Zheng-Zheng; Yin, Jia-Yu; Xiao, Jian; Lu, Cui-Tao; Zhang, Bao-Lin; Zhao, Ying-Zheng

    2016-07-01

    Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX. DOX-loaded multifunctional nanoparticles (DOX@Ps 80-SPIONs) with a Dh of 58.0 nm, a zeta potential of 28.0 mV, and a drug loading content of 29.3% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 24.1 emu g-1. The cellular uptake of DOX@Ps 80-SPIONs by C6 cells under a magnetic field was significantly enhanced over that of free DOX in solution, resulting in stronger in vitro cytotoxicity. The real-time therapeutic outcome of DOX@Ps 80-SPIONs was easily monitored by MRI. Furthermore, the negative contrast enhancement effect of the nanoparticles was confirmed in glioma-bearing rats. Prussian blue staining and ex vivo DOX fluorescence assays showed that the magnetic Ps 80-SPIONs and encapsulated DOX were delivered to gliomas by imposing external magnetic fields, indicating effective magnetic targeting. Due to magnetic targeting and Ps 80-mediated endocytosis, DOX@Ps 80-SPIONs in the presence of a magnetic field led to the complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism of DOX@Ps 80-SPIONs acted by inducing apoptosis through the caspase-3 pathway. Finally, DOX@Ps 80-SPIONs' safety at therapeutic dosage was verified using pathological HE assays of the heart, liver, spleen, lung and kidney. Multifunctional SPIONs could be used as potential carriers for the

  3. Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties.

    PubMed

    Costo, Rocio; Bello, Valentina; Robic, Caroline; Port, Marc; Marco, Jose F; Puerto Morales, M; Veintemillas-Verdaguer, Sabino

    2012-01-10

    A considerable increase in the saturation magnetization, M(s) (40%), and initial susceptibility of ultrasmall (<5 nm) iron oxide nanoparticles prepared by laser pyrolysis was obtained through an optimized acid treatment. Moreover, a significant enhancement in the colloidal properties, such as smaller aggregate sizes in aqueous media and increased surface charge densities, was found after this chemical protocol. The results are consistent with a reduction in nanoparticle surface disorder induced by a dissolution-recrystallization mechanism.

  4. Methods of preparation and modification of advanced zero-valent iron nanoparticles, their properties and application in water treatment technologies

    NASA Astrophysics Data System (ADS)

    Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika

    2014-05-01

    Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).

  5. Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment

    NASA Astrophysics Data System (ADS)

    Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions.

  6. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia

    PubMed Central

    Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.

    2015-01-01

    Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1 to 47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. PMID:25960599

  7. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water.

    PubMed

    Crane, R A; Dickinson, M; Popescu, I C; Scott, T B

    2011-04-01

    The current work presents a comparative and site specific study for the application of zero-valent iron nanoparticles (nano-Fe(0)) and magnetite nanoparticles (nano-Fe(3)O(4)) for the removal of U from carbonate-rich environmental water taken from the Lişava valley, Banat, Romania. Nanoparticles were introduced to the Lişava water under surface and deep aquifer oxygen conditions, with a U(VI)-only solution studied as a simple system comparator. Thebatch systems were analysed over an 84 day reaction period, during which the liquid and nanoparticulate solids were periodically sampled to determine chemical evolution of the solutions and particulates. Results indicated that U was removed by all nano-Fe(0) systems to <10 μg L(-1) (>98% removal) within 2 h of reaction, below EPA and WHO specified drinking water regulations. Similar U concentrations were maintained until approximately 48 h. X-ray photoelectron spectroscopy analysis of the nanoparticulate solids confirmed partial chemical reduction of U(VI) to U(IV) concurrent with Fe oxidation. In contrast, nano-Fe(3)O(4) failed to achieve >20% U removal from the Lişava water. Whilst the outer surface of both the nano-Fe(0) and nano-Fe(3)O(4) was initially near-stoichiometric magnetite, the greater performance exhibited by nano-Fe(0) is attributed to the presence of a Fe(0) core for enhanced aqueous reactivity, sufficient to achieve near-total removal of aqueous U despite any competing reactions within the carbonate-rich Lişava water. Over extended reaction periods (>1 week) the chemically simple U(VI)-only solution treated using nano-Fe(0) exhibited near-complete and maintained U removal. In contrast, appreciable U re-release was recorded for the Lişava water solutions treated using nano-Fe(0). This behaviour is attributed to the high stability of U in the presence of ligands (predominantly carbonate) within the Lişava water, inducing preferential re-release to the aqueous phase during nano-Fe(0) corrosion. The

  8. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles.

    PubMed

    Beltrán, J J; Barrero, C A; Punnoose, A

    2015-06-21

    The actual role of transition metals like iron in the room temperature ferromagnetism (RTFM) of Fe doped ZnO nanoparticles is still an unsolved problem. While some studies concluded that the Fe ions participate in the magnetic interaction, others in contrast do not believe Fe to play a direct role in the magnetic exchange interaction. To contribute to the understanding of this issue, we have carefully investigated the structural, optical, vibrational and magnetic properties of sol-gel synthesized Zn1-xFexO (0 < x < 0.10) nanoparticles. No Fe(2+) was detected in any sample. We found that high spin Fe(3+) ions are substitutionally incorporated at the Zn(2+) in the tetrahedral-core sites and in pseudo-octahedral surface sites in ZnO. Superficial OH(-) was observed in all samples. For x ≤ 0.03, an increment in Fe doping concentration decreased a and c lattice parameters, average Zn-O bond length, average crystallite size and band gap; while it increased the degree of distortion and quadrupole splitting. Undoped ZnO nanoparticles exhibited very weak RTFM with a saturation magnetization (Ms) of ∼0.47 memu g(-1) and this value increased to ∼2.1 memu g(-1) for Zn0.99Fe0.01O. Very interestingly, the Ms for Zn0.99Fe0.01O and Zn0.97Fe0.03O increased by a factor of about ∼2.3 by increasing annealing for 1 h to 3 h. For x ≥ 0.05, ferrimagnetic disordered spinel ZnFe2O4 was formed and this phase was found to become more ordered with increasing annealing time. Fe does not contribute directly to the RTFM, but its presence promoted the formation of additional single charged oxygen vacancies, zinc vacancies, and more oxygen-ended polar terminations at the nanoparticle surface. These defects, which are mainly superficial, altered the electronic structure and are considered as the main sources of the observed ferromagnetism.

  9. Direct measurement of thermal conductivity in solid iron at planetary core conditions

    NASA Astrophysics Data System (ADS)

    Konôpková, Zuzana; McWilliams, R. Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F.

    2016-06-01

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth’s core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth’s magnetic field via dynamo action. Attempts to describe thermal transport in Earth’s core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth’s core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth’s geodynamo has persisted since the beginning of Earth’s history, and allows for a solid inner core as old as the dynamo.

  10. Direct measurement of thermal conductivity in solid iron at planetary core conditions.

    PubMed

    Konôpková, Zuzana; McWilliams, R Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F

    2016-06-02

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth's core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth's magnetic field via dynamo action. Attempts to describe thermal transport in Earth's core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth's core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth's geodynamo has persisted since the beginning of Earth's history, and allows for a solid inner core as old as the dynamo.

  11. Highly stable monodisperse PEGylated iron oxide nanoparticle aqueous suspensions: a nontoxic tracer for homogeneous magnetic bioassays

    NASA Astrophysics Data System (ADS)

    Lak, Aidin; Dieckhoff, Jan; Ludwig, Frank; Scholtyssek, Jan M.; Goldmann, Oliver; Lünsdorf, Heinrich; Eberbeck, Dietmar; Kornowski, Andreas; Kraken, Mathias; Litterst, F. J.; Fiege, Kathrin; Mischnick, Petra; Schilling, Meinhard

    2013-11-01

    Uniformly sized and shaped iron oxide nanoparticles with a mean size of 25 nm were synthesized via decomposition of iron-oleate. High resolution transmission electron microscopy and Mössbauer spectroscopy investigations revealed that the particles are spheres primarily composed of Fe3O4 with a small fraction of FeO. From Mössbauer and static magnetization measurements, it was deduced that the particles are superparamagnetic at room temperature. The hydrophobic particles were successfully transferred into water via PEGylation using nitrodopamine as an anchoring group. IR spectroscopy and thermogravimetric analysis showed the success and efficiency of the phase transfer reaction. After PEGylation, the particles retained monodispersity and their magnetic core remained intact as proven by photon cross-correlation spectroscopy, ac susceptibility, and transmission electron microscopy. The particle aqueous suspensions revealed excellent water stability over a month of monitoring and also against temperature up to 40 °C. The particles exhibited a moderate cytotoxic effect on in vitro cultured bone marrow-derived macrophages and no release of inflammatory or anti-inflammatory cytokines. The PEGylated particles were functionalized with Herceptin antibodies via a conjugation chemistry, their response to a rotating magnetic field was studied using a fluxgate-based setup and was compared with the one recorded for hydrophobic and PEGylated particles. The particle phase lag rose after labeling with Herceptin, indicating the successful conjugation of Herceptin antibodies to the particles.Uniformly sized and shaped iron oxide nanoparticles with a mean size of 25 nm were synthesized via decomposition of iron-oleate. High resolution transmission electron microscopy and Mössbauer spectroscopy investigations revealed that the particles are spheres primarily composed of Fe3O4 with a small fraction of FeO. From Mössbauer and static magnetization measurements, it was deduced that the

  12. Gravitational collapse of a rotating iron stellar core: The limiting case of transparency to neutrino emission

    NASA Astrophysics Data System (ADS)

    Imshennik, V. S.; Molokanov, V. O.

    2010-10-01

    A quasi-one-dimensional hydrodynamic model for the collapse of a rotating iron stellar core is used to determine the neutrino spectra in the limiting case of total transparency to neutrino emission (without any deposition effect). The derived spectra allow the previously constructed spectra used to theoretically estimate the number of events in the LSD underground neutrino detector from SN 1987A to be refined. At typical iron stellar core parameters, including those that characterize the core rotation specified in the initial conditions of the model, this number has turned out to be 1.6, which is close in order of magnitude to its experimental value of 5. Here, we compare in detail these results by assuming that the transparency of the collapsing iron core itself could be attributable to the development of its three-dimensional dynamical instability—the subject of future theoretical studies. The physical formulation of the problem coincides closely with the collapse model proposed in our previous paper, where the above number of events turned out to be 0.5. We have confirmed the previously published results with regard to the neutrino spectra, including the significant superiority of electron neutrinos over electron antineutrinos in them. The hydrostatically equilibrium configuration (a rotating collapsar) obtained in our model calculation is discussed in comparison with self-similar solutions that are close in physical formulation of the problem. This result seems a nontrivial consequence of the included rotation effects that hinder nonstop collapse established in the mentioned self-similar solutions.

  13. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation

    SciTech Connect

    Klein, Stefanie; Sommer, Anja; Distel, Luitpold V.R.; Neuhuber, Winfried; Kryschi, Carola

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.

  14. Fluorophore Conjugated Iron Oxide Nanoparticle Labeling and Analysis of Engrafting Human Hematopoietic Stem Cells

    PubMed Central

    Maxwell, Dustin J.; Bonde, Jesper; Hess, David A.; Hohm, Sarah A.; Lahey, Ryan; Creer, Michael H.; Piwnica-Worms, David; Nolta, Jan A.

    2010-01-01

    The use of nanometer-sized iron oxide particles combined with molecular imaging techniques enable dynamic studies of homing and trafficking of human hematopoietic stem cells (HSC). Identifying clinically applicable strategies for loading nanoparticles into primitive HSC requires strictly defined culture conditions to maintain viability without inducing terminal differentiation. In the current study, fluorescent molecules were covalently linked to dextran-coated iron oxide nanoparticles (Feridex) to characterize human HSC labeling to monitor the engraftment process. Conjugating fluorophores to the dextran coat for FACS purification eliminated spurious signals from non-sequestered nanoparticle contaminants. A short-term defined incubation strategy was developed which allowed efficient labeling of both quiescent and cycling HSC, with no discernable toxicity in vitro or in vivo. Transplantation of purified primary human cord blood lineage-depleted and CD34+ cells into immunodeficient mice allowed detection of labeled human HSC in the recipient bones. Flow cytometry was used to precisely quantitate the cell populations that had sequestered the nanoparticles, and to follow their fate post-transplantation. Flow cytometry endpoint analysis confirmed the presence of nanoparticle-labeled human stem cells in the marrow. The use of fluorophore-labeled iron oxide nanoparticles for fluorescence imaging in combination with flow cytometry allows evaluation of labeling efficiencies and homing capabilities of defined human HSC subsets. PMID:18055451

  15. Controlled synthesis of metallic iron nanoparticles and their magnetic hyperthermia performance in polyaniline composite nanofibers

    NASA Astrophysics Data System (ADS)

    Yang, Ta-I.; Chang, Su-Hua

    2017-02-01

    Electrospun magnetic iron/polyaniline nanofibers with applicable heating performance in an AC magnetic field were developed. A new and low-cost method was introduced to synthesize metallic iron (Fe0) nanoparticles with uniform size distribution. The Fe0 nanoparticles were synthesized in an aqueous environment at room temperature with the assistance of polyvinylpyrrolidone and sodium citrate to tailor their particle sizes ranging from 10 to 20 nm. The experimental results showed that regulating the free iron ions present in the solution is critical for obtaining Fe0 nanoparticles with narrow size distribution. The Fe0 nanoparticles were subsequently incorporated with conductive polyaniline (PANI) to fabricate Fe0/PANI/polycaprolactone nanofibers using an electrospinning technique. The resultant composite nanofibers have controlled fiber diameters and also show electrochemical redox properties originating from the PANI polymer. The heating performance test concluded that both eddy current loss from PANI and Neel relaxation loss of magnetic Fe0 nanoparticles can contribute to the power dissipation of the prepared composite nanofibers. The optimal heating performance can be obtained by adjusting the composition of Fe0 nanoparticles and PANI in nanofibers.

  16. Controllable synthesis of iron oxide nanoparticles in porous NaCl matrix

    NASA Astrophysics Data System (ADS)

    Kurapov, Yury A.; Litvin, Stanislav E.; Romanenko, Sergey M.; Didikin, Gennadii G.; Oranskaya, Elena I.

    2017-03-01

    The paper gives the results of studying the structure of porous condensates of Fe + NaCl composition, chemical and phase compositions and dimensions of nanoparticles produced from the vapor phase by EB-PVD. Iron nanoparticles at fast removal from the vacuum oxidize in air and possess significant sorption capacity relative to oxygen and moisture. At heating in air, reduction of porous condensate weight occurs right to the temperature of 650 °C, primarily, due to desorption of physically sorbed moisture. Final oxidation of Fe3O4 to Fe2O3 proceeds in the range of 380 °C–650 °C, due to the remaining fraction of physically adsorbed oxygen. At iron concentrations of up to 10–15 at%, condensate sorption capacity is markedly increased with increase of iron concentration, i.e. of the quantity of fine particles. Increase of condensation temperature is accompanied by increase of nanoparticle size, resulting in a considerable reduction of the total area of nanoparticle surface, and, hence of their sorption capacity. In addition to condensation temperature, the size and phase composition of nanoparticles can also be controlled by heat treatment of initial condensate, produced at low condensation temperatures. Magnetite nanoparticles can be transferred into stable colloid systems.

  17. Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles

    PubMed Central

    Shi, Si-feng; Jia, Jing-fu; Guo, Xiao-kui; Zhao, Ya-ping; Chen, De-sheng; Guo, Yong-yuan; Zhang, Xian-long

    2016-01-01

    Staphylococcus aureus can adhere to most foreign materials and form biofilm on the surface of medical devices. Biofilm infections are difficult to resolve. The goal of this in vitro study was to explore the use of chitosan-coated nanoparticles to prevent biofilm formation. For this purpose, S. aureus was seeded in 96-well plates to incubate with chitosan-coated iron oxide nanoparticles in order to study the efficiency of biofilm formation inhibition. The biofilm bacteria count was determined using the spread plate method; biomass formation was measured using the crystal violet staining method. Confocal laser scanning microscopy and scanning electron microscopy were used to study the biofilm formation. The results showed decreased viable bacteria numbers and biomass formation when incubated with chitosan-coated iron oxide nanoparticles at all test concentrations. Confocal laser scanning microscopy showed increased dead bacteria and thinner biofilm when incubated with nanoparticles at a concentration of 500 µg/mL. Scanning electron microscopy revealed that chitosan-coated iron oxide nanoparticles inhibited biofilm formation in polystyrene plates. Future studies should be performed to study these nanoparticles for anti-infective use. PMID:27994455

  18. Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles.

    PubMed

    Shi, Si-Feng; Jia, Jing-Fu; Guo, Xiao-Kui; Zhao, Ya-Ping; Chen, De-Sheng; Guo, Yong-Yuan; Zhang, Xian-Long

    Staphylococcus aureus can adhere to most foreign materials and form biofilm on the surface of medical devices. Biofilm infections are difficult to resolve. The goal of this in vitro study was to explore the use of chitosan-coated nanoparticles to prevent biofilm formation. For this purpose, S. aureus was seeded in 96-well plates to incubate with chitosan-coated iron oxide nanoparticles in order to study the efficiency of biofilm formation inhibition. The biofilm bacteria count was determined using the spread plate method; biomass formation was measured using the crystal violet staining method. Confocal laser scanning microscopy and scanning electron microscopy were used to study the biofilm formation. The results showed decreased viable bacteria numbers and biomass formation when incubated with chitosan-coated iron oxide nanoparticles at all test concentrations. Confocal laser scanning microscopy showed increased dead bacteria and thinner biofilm when incubated with nanoparticles at a concentration of 500 µg/mL. Scanning electron microscopy revealed that chitosan-coated iron oxide nanoparticles inhibited biofilm formation in polystyrene plates. Future studies should be performed to study these nanoparticles for anti-infective use.

  19. Optimization of preparation of chitosan-coated iron oxide nanoparticles for biomedical applications by chemometrics approaches

    NASA Astrophysics Data System (ADS)

    Honary, Soheila; Ebrahimi, Pouneh; Rad, Hossein Asgari; Asgari, Mahsa

    2013-08-01

    Functionalized magnetic nanoparticles are used in several biomedical applications, such as drug delivery, magnetic cell separation, and magnetic resonance imaging. Size and surface properties of iron oxide nanoparticles are the two important factors which could dramatically affect the nanoparticle efficiency as well as their stability. In this study, the chemometrics approach was applied to optimize the coating process of iron oxide nanoparticles. To optimize the size of nanoparticles, the effect of two experimental parameters on size was investigated by means of multivariate analysis. The factors considered were chitosan molecular weight and chitosan-to-tripolyphosphate concentration ratio. The experiments were performed according to face-centered cube central composite response surface design. A second-order regression model was obtained which characterized by both descriptive and predictive abilities. The method was optimized with respect to the percent of Z average diameter's increasing after coating as response. It can be concluded that experimental design provides a suitable means of optimizing and testing the robustness of iron oxide nanoparticle coating method.

  20. Design and characterization of antimicrobial usnic acid loaded-core/shell magnetic nanoparticles.

    PubMed

    Taresco, Vincenzo; Francolini, Iolanda; Padella, Franco; Bellusci, Mariangela; Boni, Adriano; Innocenti, Claudia; Martinelli, Andrea; D'Ilario, Lucio; Piozzi, Antonella

    2015-01-01

    The application of magnetic nanoparticles (MNPs) in medicine is considered much promising especially because they can be handled and directed to specific body sites by external magnetic fields. MNPs have been investigated in magnetic resonance imaging, hyperthermia and drug targeting. In this study, properly functionalized core/shell MNPs with antimicrobial properties were developed to be used for the prevention and treatment of medical device-related infections. Particularly, surface-engineered manganese iron oxide MNPs, produced by a micro-emulsion method, were coated with two different polymers and loaded with usnic acid (UA), a dibenzofuran natural extract possessing antimicrobial activity. Between the two polymer coatings, the one based on an intrinsically antimicrobial cationic polyacrylamide (pAcDED) resulted to be able to provide MNPs with proper magnetic properties and basic groups for UA loading. Thanks to the establishment of acid-base interactions, pAcDED-coated MNPs were able to load and release significant drug amounts resulting in good antimicrobial properties versus Staphylococcus epidermidis (MIC = 0.1 mg/mL). The use of pAcDED having intrinsic antimicrobial activity as MNP coating in combination with UA likely contributed to obtain an enhanced antimicrobial effect. The developed drug-loaded MNPs could be injected in the patient soon after device implantation to prevent biofilm formation, or, later, in presence of signs of infection to treat the biofilm grown on the device surfaces.

  1. Sensitive magnetic biodetection using magnetic multi-core nanoparticles and RCA coils

    NASA Astrophysics Data System (ADS)

    Ahrentorp, Fredrik; Blomgren, Jakob; Jonasson, Christian; Sarwe, Anna; Sepehri, Sobhan; Eriksson, Emil; Kalaboukhov, Alexei; Jesorka, Aldo; Winkler, Dag; Schneiderman, Justin F.; Nilsson, Mats; Albert, Jan; de la Torre, Teresa Zardán Gómez; Strømme, Maria; Johansson, Christer

    2017-04-01

    We use functionalized iron oxide magnetic multi-core particles of 100 nm in size (hydrodynamic particle diameter) and AC susceptometry (ACS) methods to measure the binding reactions between the magnetic nanoparticles (MNPs) and bio-analyte products produced from DNA segments using the rolling circle amplification (RCA) method. We use sensitive induction detection techniques in order to measure the ACS response. The DNA is amplified via RCA to generate RCA coils with a specific size that is dependent on the amplification time. After about 75 min of amplification we obtain an average RCA coil diameter of about 1 μm. We determine a theoretical limit of detection (LOD) in the range of 11 attomole (corresponding to an analyte concentration of 55 fM for a sample volume of 200 μL) from the ACS dynamic response after the MNPs have bound to the RCA coils and the measured ACS readout noise. We also discuss further possible improvements of the LOD.

  2. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    SciTech Connect

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  3. Continuous flow analysis method for determination of soluble iron and aluminium in ice cores.

    PubMed

    Spolaor, A; Vallelonga, P; Gabrieli, J; Roman, M; Barbante, C

    2013-01-01

    Iron and aluminium are the two most abundant metals on the Earth's crust, but they display quite different biogeochemical properties. While iron is essential to many biological processes, aluminium has not been found to have any biological function at all. In environmental studies, iron has been studied in detail for its limiting role in the bioproductivity of high nutrient, low carbon oceanic zones, while aluminium is routinely used as a reference of crustal contributions to atmospheric deposition archives including peat bogs, lacustrine and marine sediments and ice sheets and glaciers. We report here the development of a flow injection analysis technique, which has been optimised for the simultaneous determination of soluble iron and aluminium in polar ice cores. Iron was determined by its catalytic role in the reduction of N,N-dimethyl-p-phenylenediamene (DPD) to a semiquinonic form (DPDQ) and subsequent absorption spectroscopy at 514 nm. Aluminium was determined by spectroscopic analysis of an aluminium-lumogallion complex that exhibits fluorescence at 560 nm. These techniques have been applied to a section of Greenland ice dated to 1729-1733 AD and indicate that volcanism is a source of highly soluble aluminium and iron.

  4. High interfacial activity of polymers "grafted through" functionalized iron oxide nanoparticle clusters.

    PubMed

    Foster, Lynn M; Worthen, Andrew J; Foster, Edward L; Dong, Jiannan; Roach, Clarissa M; Metaxas, Athena E; Hardy, Clifford D; Larsen, Eric S; Bollinger, Jonathan A; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-09-02

    The mechanism by which polymers, when grafted to inorganic nanoparticles, lower the interfacial tension at the oil-water interface is not well understood, despite the great interest in particle stabilized emulsions and foams. A simple and highly versatile free radical "grafting through" technique was used to bond high organic fractions (by weight) of poly(oligo(ethylene oxide) monomethyl ether methacrylate) onto iron oxide clusters, without the need for catalysts. In the resulting ∼1 μm hybrid particles, the inorganic cores and grafting architecture contribute to the high local concentration of grafted polymer chains to the dodecane/water interface to produce low interfacial tensions of only 0.003 w/v % (polymer and particle core). This "critical particle concentration" (CPC) for these hybrid inorganic/polymer amphiphilic particles to lower the interfacial tension by 36 mN/m was over 30-fold lower than the critical micelle concentration of the free polymer (without inorganic cores) to produce nearly the same interfacial tension. The low CPC is favored by the high adsorption energy (∼10(6) kBT) for the large ∼1 μm hybrid particles, the high local polymer concentration on the particles surfaces, and the ability of the deformable hybrid nanocluster cores as well as the polymer chains to conform to the interface. The nanocluster cores also increased the entanglement of the polymer chains in bulk DI water or synthetic seawater, producing a viscosity up to 35,000 cP at 0.01 s(-1), in contrast with only 600 cP for the free polymer. As a consequence of these interfacial and rheological properties, the hybrid particles stabilized oil-in-water emulsions at concentrations as low as 0.01 w/v %, with average drop sizes down to 30 μm. In contrast, the bulk viscosity was low for the free polymer, and it did not stabilize the emulsions. The ability to influence the interfacial activity and rheology of polymers upon grafting them to inorganic particles, including clusters

  5. Phenol adsorption on surface-functionalized iron oxide nanoparticles: modeling of the kinetics, isotherm, and mechanism

    NASA Astrophysics Data System (ADS)

    Yoon, Soon Uk; Mahanty, Biswanath; Ha, Hun Moon; Kim, Chang Gyun

    2016-06-01

    Phenol adsorption from aqueous solution was carried out using uncoated and methyl acrylic acid (MAA)-coated iron oxide nanoparticles (NPs), having size <10 nm, as adsorbents. Batch adsorption studies revealed that the phenol removal efficiency of MAA-coated NPs (950 mg g-1) is significantly higher than that of uncoated NPs (550 mg g-1) under neutral to acidic conditions. However, this improvement disappears above pH 9. The adsorption data under optimized conditions (pH 7) were modeled with pseudo-first- and pseudo-second-order kinetics and subjected to Freundlich and Langmuir isotherms. The analysis determined that pseudo-second-order kinetics and the Freundlich model are appropriate for both uncoated and MAA-coated NPs (all R 2 > 0.98). X-ray photoelectron spectroscopy analysis of pristine and phenol-adsorbed NPs revealed core-level binding energy and charge for Fe(2 s) and O(1 s) on the NP surfaces. The calculations suggest that phenol adsorption onto MAA-coated NPs is a charge transfer process, where the adsorbate (phenol) acts as an electron donor and the NP surface (Fe, O) as an electron acceptor. However, a physisorption process appears to be the relevant mechanism for uncoated NPs.

  6. Different Storage Conditions Influence Biocompatibility and Physicochemical Properties of Iron Oxide Nanoparticles

    PubMed Central

    Zaloga, Jan; Janko, Christina; Agarwal, Rohit; Nowak, Johannes; Müller, Robert; Boccaccini, Aldo R.; Lee, Geoffrey; Odenbach, Stefan; Lyer, Stefan; Alexiou, Christoph

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted increasing attention in many biomedical fields. In magnetic drug targeting SPIONs are injected into a tumour supplying artery and accumulated inside the tumour with a magnet. The effectiveness of this therapy is thus dependent on magnetic properties, stability and biocompatibility of the particles. A good knowledge of the effect of storage conditions on those parameters is of utmost importance for the translation of the therapy concept into the clinic and for reproducibility in preclinical studies. Here, core shell SPIONs with a hybrid coating consisting of lauric acid and albumin were stored at different temperatures from 4 to 45 °C over twelve weeks and periodically tested for their physicochemical properties over time. Surprisingly, even at the highest storage temperature we did not observe denaturation of the protein or colloidal instability. However, the saturation magnetisation decreased by maximally 28.8% with clear correlation to time and storage temperature. Furthermore, the biocompatibility was clearly affected, as cellular uptake of the SPIONs into human T-lymphoma cells was crucially dependent on the storage conditions. Taken together, the results show that the particle properties undergo significant changes over time depending on the way they are stored. PMID:25918940

  7. Aqueous stabilisation of carbon-encapsulated superparamagnetic α-iron nanoparticles for biomedical applications.

    PubMed

    Aguiló-Aguayo, Noemí; Maurizi, Lionel; Galmarini, Sandra; Ollivier-Beuzelin, Marie Gabrielle; Coullerez, Géraldine; Bertran, Enric; Hofmann, Heinrich

    2014-09-28

    Carbon-based nanomaterials, such as carbon-encapsulated magnetic nanoparticles (CEMNP, core@shell), show a wide range of desirable properties for applications in the biomedical field (clinical MRI, hyperthermia), for energy production and storage (hydrogen storage), for the improvement of electronic components and for environmental applications (water-treatment). However, this kind of nanoparticle tends to aggregate in water suspensions. This often hampers the processability of the suspensions and presents an obstacle to their application in many fields. Here the stabilisation of core-shell Fe-C nanoparticles by surface adsorbed polyvinyl-alcohol (PVA) is presented. Different PVA/CEMNP mass ratios (9, 36, 144 and 576 w/w) were studied. Several characterisation techniques were used in order to determine the size distribution of the particles and to optimize the PVA/CEMNP ratio. A good colloidal stability was obtained for spherical nanoparticles about 50 nm in diameter containing several superparamagnetic Fe cores. The nanoparticles were found to be isolated and well dispersed in solution. The use of PVA for coating carbon-encapsulated Fe nanoparticles does not only result in a good colloidal stability in aqueous suspensions, but the resulting particles also show low cytotoxicity and an interesting cell internalization behaviour. The simple stabilization method developed here can likely be extended to other core@shell nanoparticle systems as well as other carbon-based nanomaterials in the future.

  8. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

    PubMed Central

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-01-01

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd2+ precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal. PMID:26144550

  9. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    NASA Astrophysics Data System (ADS)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  10. Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics.

    PubMed

    Alwi, Rudolf; Telenkov, Sergey; Mandelis, Andreas; Leshuk, Timothy; Gu, Frank; Oladepo, Sulayman; Michaelian, Kirk

    2012-10-01

    In this study, we report for the first time the use of silica-coated superparamagnetic iron oxide nanoparticles (SPION) as contrast agents in biomedical photoacoustic imaging. Using frequency-domain photoacoustic correlation (the photoacoustic radar), we investigated the effects of nanoparticle size, concentration and biological media (e.g. serum, sheep blood) on the photoacoustic response in turbid media. Maximum detection depth and the minimum measurable SPION concentration were determined experimentally. The nanoparticle-induced optical contrast ex vivo in dense muscular tissues (avian pectus and murine quadricept) was evaluated and the strong potential of silica-coated SPION as a possible photoacoustic contrast agents was demonstrated.

  11. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    NASA Astrophysics Data System (ADS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-10-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION.

  12. Generation of drugs coated iron nanoparticles through high energy ball milling

    NASA Astrophysics Data System (ADS)

    Radhika Devi, A.; Chelvane, J. A.; Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh; Murty, B. S.

    2014-03-01

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  13. Generation of drugs coated iron nanoparticles through high energy ball milling

    SciTech Connect

    Radhika Devi, A.; Murty, B. S.; Chelvane, J. A.; Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  14. Core-shell nano-architectures: the incorporation mechanism of hydrophobic nanoparticles into the aqueous core of a microemulsion.

    PubMed

    Scorciapino, Mariano A; Sanna, Roberta; Ardu, Andrea; Orrù, Federica; Casu, Mariano; Musinu, Anna; Cannas, Carla

    2013-10-01

    This work presents an in-depth investigation of the molecular interactions in the incorporation mechanism of colloidal hydrophobic-capped nanoparticles into the hydrophilic core of reverse microemulsions. (1)H Nuclear Magnetic Resonance (NMR) was employed to obtain molecular level details of the interaction between the nanoparticles capping amphiphiles and the microemulsion surfactants. The model system of choice involved oleic acid (OAC) and oleylamine (OAM) as capping molecules, while igepal-CO520 was the surfactant. The former were studied both in their "free" state and "ligated" one, i.e., bound to nanoparticles. The latter was investigated either in cyclohexane (micellar solution) or in water/cyclohexane microemulsions. The approach was extremely useful to gain a deeper understanding of the equilibria involved in this complex system (oleic acid capped-Bi2S3 in igepal/water/cyclohexane microemulsions). In difference to previously proposed mechanisms, the experimental data showed that the high affinity of the capping ligands for the reverse micelle interior was the drivingforce for the incorporation of the nanoparticles. A simple ligand-exchange mechanism could be ruled out. The collected information about the nanoparticle incorporation mechanism is extremely useful to develop new synthetic routes with an improved/tuned coating efficiency, in order to tailor the core-shell structure preparation.

  15. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Fratoddi, Ilaria; Venditti, Iole; Battocchio, Chiara; Polzonetti, Giovanni; Cametti, Cesare; Russo, Maria Vittoria

    2011-12-01

    Noble metal nanoparticles of different sizes and shapes combined with conjugated functional polymers give rise to advanced core shell hybrids with interesting physical characteristics and potential applications in sensors or cancer therapy. In this paper, a versatile and facile synthesis of core shell systems based on noble metal nanoparticles (AuNPs, AgNPs, PtNPs), coated by copolymers belonging to the class of substituted polyacetylenes has been developed. The polymeric shells containing functionalities such as phenyl, ammonium, or thiol pending groups have been chosen in order to tune hydrophilic and hydrophobic properties and solubility of the target core shell hybrids. The Au, Ag, or Pt nanoparticles coated by poly(dimethylpropargylamonium chloride), or poly(phenylacetylene-co-allylmercaptan). The chemical structure of polymeric shell, size and size distribution and optical properties of hybrids have been assessed. The mean diameter of the metal core has been measured (about 10-30 nm) with polymeric shell of about 2 nm.

  16. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications.

    PubMed

    Wu, Wei; Jiang, Chang Zhong; Roy, Vellaisamy A L

    2016-12-01

    Iron oxide nanoparticles (NPs) hold great promise for future biomedical applications because of their magnetic properties as well as other intrinsic properties such as low toxicity, colloidal stability, and surface engineering capability. Numerous related studies on iron oxide NPs have been conducted. Recent progress in nanochemistry has enabled fine control over the size, crystallinity, uniformity, and surface properties of iron oxide NPs. This review examines various synthetic approaches and surface engineering strategies for preparing naked and functional iron oxide NPs with different physicochemical properties. Growing interest in designed and surface-engineered iron oxide NPs with multifunctionalities was explored in in vitro/in vivo biomedical applications, focusing on their combined roles in bioseparation, as a biosensor, targeted-drug delivery, MR contrast agents, and magnetic fluid hyperthermia. This review outlines the limitations of extant surface engineering strategies and several developing strategies that may overcome these limitations. This study also details the promising future directions of this active research field.

  17. Simultaneous in-situ synthesis and characterization of Co@Cu core-shell nanoparticle arrays

    DOE PAGES

    McKeown, Joseph T.; Wu, Yueying; Fowlkes, Jason D.; ...

    2014-12-23

    Core-shell nanostructures have attracted much attention due to their unique and tunable properties relative to bulk structures of the same materials, making core-shell nanoparticles candidates for a