Science.gov

Sample records for iron core nanoparticle

  1. Synthesis of monodisperse iron oxide and iron/iron oxide core/shell nanoparticles via iron-oleylamine complex.

    PubMed

    Yu, S; Chow, G M

    2006-07-01

    Monodisperse magnetic nanoparticles are of great scientific and technical interests. This paper reports a single-step synthesis of monodisperse magnetite nanoparticles with particle size of 8 nm. Iron/maghaemite core/shell nanoparticles with particle size of 11 nm were obtained by reducing the concentration of oleylamine. TEM and in-situ FTIR results suggested that iron-oleylamine intermediate was generated in-situ and decomposed at higher temperature. Oleylamine was also found on the surface of nanoparticles, indicating its role as capping agent which provided steric protection of as-synthesized nanoparticles from agglomeration. Both magnetite and iron/maghaemite core/shell nanoparticles were superparamagnetic at room temperature with a blocking temperature at 80 K and 67 K, respectively.

  2. Application of novel iron core/iron oxide shell nanoparticles to sentinel lymph node identification

    NASA Astrophysics Data System (ADS)

    Cousins, Aidan; Howard, Douglas; Henning, Anna M.; Nelson, Melanie R. M.; Tilley, Richard D.; Thierry, Benjamin

    2015-12-01

    Current `gold standard' staging of breast cancer and melanoma relies on accurate in vivo identification of the sentinel lymph node. By replacing conventional tracers (dyes and radiocolloids) with magnetic nanoparticles and using a handheld magnetometer probe for in vivo identification, it is believed the accuracy of sentinel node identification in nonsuperficial cancers can be improved due to increased spatial resolution of magnetometer probes and additional anatomical information afforded by MRI road-mapping. By using novel iron core/iron oxide shell nanoparticles, the sensitivity of sentinel node mapping via MRI can be increased due to an increased magnetic saturation compared to traditional iron oxide nanoparticles. A series of in vitro magnetic phantoms (iron core vs. iron oxide nanoparticles) were prepared to simulate magnetic particle accumulation in the sentinel lymph node. A novel handheld magnetometer probe was used to measure the relative signals of each phantom, and determine if clinical application of iron core particles can improve in vivo detection of the sentinel node compared to traditional iron oxide nanoparticles. The findings indicate that novel iron core nanoparticles above a certain size possess high magnetic saturation, but can also be produced with low coercivity and high susceptibility. While some modification to the design of handheld magnetometer probes may be required for particles with large coercivity, use of iron core particles could improve MRI and magnetometer probe detection sensitivity by up to 330 %.

  3. High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles.

    PubMed

    Krajewski, M; Brzozka, K; Lin, W S; Lin, H M; Tokarczyk, M; Borysiuk, J; Kowalski, G; Wasik, D

    2016-02-07

    This work describes an oxidation process of iron-iron oxide core-shell nanowires at temperatures between 100 °C and 800 °C. The studied nanomaterial was synthesized through a simple chemical reduction of iron trichloride in an external magnetic field under a constant flow of argon. The electron microscopy investigations allowed determining that the as-prepared nanowires were composed of self-assembled iron nanoparticles which were covered by a 3 nm thick oxide shell and separated from each other by a thin interface layer. Both these layers exhibited an amorphous or highly-disordered character which was traced by means of transmission electron microscopy and Mössbauer spectroscopy. The thermal oxidation was carried out under a constant flow of argon which contained the traces of oxygen. The first stage of process was related to slow transformations of amorphous Fe and amorphous iron oxides into crystalline phases and disappearance of interfaces between iron nanoparticles forming the studied nanomaterial (range: 25-300 °C). After that, the crystalline iron core and iron oxide shell became oxidized and signals for different compositions of iron oxide sheath were observed (range: 300-800 °C) using X-ray diffraction, Raman spectroscopy and Mössbauer spectroscopy. According to the thermal gravimetric analysis, the nanowires heated up to 800 °C under argon atmosphere gained 37% of mass with respect to their initial weight. The structure of the studied nanomaterial oxidized at 800 °C was mainly composed of α-Fe2O3 (∼ 93%). Moreover, iron nanowires treated above 600 °C lost their wire-like shape due to their shrinkage and collapse caused by the void coalescence.

  4. Synthesis of core-shell iron nanoparticles via a new (novel) approach

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Koymen, Ali R.

    2014-03-01

    Carbon-encapsulated iron (Fe) nanoparticles were synthesized by a newly developed method in toluene. Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM) of the as prepared sample reveal that core-shell nanostructures have been formed with Fe as core and graphitic carbon as shell. Fe nanoparticles with diameter 11nm to 102 nm are encapsulated by 6-8 nm thick graphitic carbon layers. There was no iron carbide formation observed between the Fe core and the graphitic shell. The Fe nanoparticles have body centered cubic (bcc) crystal structure. The magnetic hysteresis loop of the as synthesized powder at room temperature showed a saturation magnetization of 9 Am2 kg-1. After thermal treatment crystalline order of the samples improved and hence saturation magnetization increased to 24 Am2kg-1. We foresee that the carbon-encapsulated Fe nanoparticles are biologically friendly and could have potential applications in Magnetic Resonance Imaging (MRI) and Photothermal cancer therapy.

  5. Bubble nucleation and migration in a lead-iron hydr(oxide) core-shell nanoparticle

    DOE PAGES

    Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; ...

    2015-10-05

    Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O2 gas and H2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometric phase analysismore » of the shell lattice shows an inhomogeneous stain field at the bubbles. In conclusion, our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration.« less

  6. Bubble nucleation and migration in a lead-iron hydr(oxide) core-shell nanoparticle

    SciTech Connect

    Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; Wang, Junling; Asta, Mark; Zheng, Haimei

    2015-10-05

    Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O2 gas and H2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometric phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. In conclusion, our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration.

  7. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core-PNIPAM Shell Nanoparticles.

    PubMed

    Kurzhals, Steffen; Zirbs, Ronald; Reimhult, Erik

    2015-09-02

    Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. "Grafting-to" and "grafting-from" methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction.

  8. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    NASA Astrophysics Data System (ADS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-03-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe3+/Fe2+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe3+ ions in a nitrate complex with urea ([Fe((CO(NH2)2)6](NO3)3) and by using solid Mg(OH)2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe3+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe3+ ions prior to the addition of Mg(OH)2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)2, the pH increases and at pH 5.7 the Fe2+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.

  9. Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol.

    PubMed

    Jafari, T; Simchi, A; Khakpash, N

    2010-05-01

    Core-shell iron-gold (Fe@Au) nanoparticles were synthesized by a facile reverse micelle procedure and the effect of water to surfactant molar ratio (w) on the size, size distribution and magnetic properties of the nanoparticles was studied. MTT assay was utilized to evaluate the cell toxicity of the nanoparticles. To functionalize the particles for MRI imaging and targeted drug delivery, the particles were coated by polyglycerol through capping with thiol followed by polymerization of glycidol. The characteristics of the particles were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). It was found that the size and size distribution of the nanoparticles increase by increasing the water to surfactant molar ratio (w). The particles were spherical in shape with a thin layer of gold. Complementary growth of the gold shell on the iron core was noticed. Meanwhile, two types of agglomeration including magnetic beads and magnetic colloidal nanocrystals clusters were observed dependent on the w-value. The magnetic measurement studies revealed the superparamagnetic behavior of the nanoparticles. MTT assay result indicated the synthesized nanoparticles are nontoxic that will be useful for biomedical applications. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Porphyrin-Cored Polymer Nanoparticles: Macromolecular Models for Heme Iron Coordination.

    PubMed

    Rodriguez, Kyle J; Hanlon, Ashley M; Lyon, Christopher K; Cole, Justin P; Tuten, Bryan T; Tooley, Christian A; Berda, Erik B; Pazicni, Samuel

    2016-10-03

    Porphyrin-cored polymer nanoparticles (PCPNs) were synthesized and characterized to investigate their utility as heme protein models. Created using collapsible heme-centered star polymers containing photodimerizable anthracene units, these systems afford model heme cofactors buried within hydrophobic, macromolecular environments. Spectroscopic interrogations demonstrate that PCPNs display redox and ligand-binding reactivity similar to that of native systems and thus are potential candidates for modeling biological heme iron coordination.

  11. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia

    PubMed Central

    Liao, Shih-Hsiang; Liu, Chia-Hung; Bastakoti, Bishnu Prasad; Suzuki, Norihiro; Chang, Yung; Yamauchi, Yusuke; Lin, Feng-Huei; Wu, Kevin C-W

    2015-01-01

    Hyperthermia is one of the promising treatments for cancer therapy. However, the development of a magnetic fluid agent that can selectively target a tumor and efficiently elevate temperature while exhibiting excellent biocompatibility still remains challenging. Here a new core-shell nanostructure consisting of inorganic iron oxide (Fe3O4) nanoparticles as the core, organic alginate as the shell, and cell-targeting ligands (ie, D-galactosamine) decorated on the outer surface (denoted as Fe3O4@Alg-GA nanoparticles) was prepared using a combination of a pre-gel method and coprecipitation in aqueous solution. After treatment with an AC magnetic field, the results indicate that Fe3O4@Alg-GA nanoparticles had excellent hyperthermic efficacy in a human hepatocellular carcinoma cell line (HepG2) owing to enhanced cellular uptake, and show great potential as therapeutic agents for future in vivo drug delivery systems. PMID:26005343

  12. Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications.

    PubMed

    Sood, Ankur; Arora, Varun; Shah, Jyoti; Kotnala, R K; Jain, Tapan K

    2017-11-01

    In this paper we report synthesis of aqueous based gold coated iron oxide nanoparticles to integrate the localized surface plasma resonance (SPR) properties of gold and magnetic properties of iron oxide in a single system. Iron oxide-gold core shell nanoparticles were stabilized by attachment of thiolated sodium alginate to the surface of nanoparticles. Transmission electron microscope (TEM) micrograph presents an average elementary particle size of 8.1±2.1nm. High resolution TEM (HR-TEM) and X-ray photon spectroscopy further confirms the presence of gold shell around iron oxide core. Gold coating is responsible for reducing saturation magnetization (Ms) value from ~41emu/g to ~24emu/g - in thiolated sodium alginate stabilized gold coated iron oxide core-shell nanoparticles. The drug (curcumin) loading efficiency for the prepared nanocomposites was estimated to be around 7.2wt% (72μgdrug/mg nanoparticles) with encapsulation efficiency of 72.8%. Gold-coated iron oxide core-shell nanoparticles could be of immense importance in the field of targeted drug delivery along with capability to be used as contrast agent for MRI & CT. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles.

    PubMed

    Martin, John E; Herzing, Andrew A; Yan, Weile; Li, Xiao-qin; Koel, Bruce E; Kiely, Christopher J; Zhang, Wei-xian

    2008-04-15

    Zerovalent iron (nZVI) nanoparticles have long been used in the electronic and chemical industries due to their magnetic and catalytic properties. Increasingly, applications of nZVI have also been reported in environmental engineering because of their ability to degrade a wide variety of toxic pollutants in soil and water. It is generally assumed that nZVI has a core-shell morphology with zerovalent iron as the core and iron oxide/hydroxide in the shell. This study presents a detailed characterization of the nZVI shell thickness using three independent methods. High-resolution transmission electron microscopy analysis provides direct evidence of the core-shell structure and indicates that the shell thickness of fresh nZVI was predominantly in the range of 2-4 nm. The shell thickness was also determined from high-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis through comparison of the relative integrated intensities of metallic and oxidized iron with a geometric correction applied to account for the curved overlayer. The XPS analysis yielded an average shell thickness in the range of 2.3-2.8 nm. Finally, complete oxidation reaction of the nZVI particles by Cu(II) was used as an indication of the zerovalent iron content of the particles, and these observations further correlate the chemical reactivity of the particles and their shell thicknesses. The three methods yielded remarkably similar results, providing a reliable determination of the shell thickness, which fills an essential gap in our knowledge about the nZVI structure. The methods presented in this work can also be applied to the study of the aging process of nZVI and may also prove useful for the measurement and characterization of other metallic nanoparticles.

  14. SAXS analysis of single- and multi-core iron oxide magnetic nanoparticles

    PubMed Central

    Szczerba, Wojciech; Costo, Rocio; Morales, Maria del Puerto; Thünemann, Andreas F.

    2017-01-01

    This article reports on the characterization of four superparamagnetic iron oxide nanoparticles stabilized with dimercaptosuccinic acid, which are suitable candidates for reference materials for magnetic properties. Particles p1 and p2 are single-core particles, while p3 and p4 are multi-core particles. Small-angle X-ray scattering analysis reveals a lognormal type of size distribution for the iron oxide cores of the particles. Their mean radii are 6.9 nm (p1), 10.6 nm (p2), 5.5 nm (p3) and 4.1 nm (p4), with narrow relative distribution widths of 0.08, 0.13, 0.08 and 0.12. The cores are arranged as a clustered network in the form of dense mass fractals with a fractal dimension of 2.9 in the multi-core particles p3 and p4, but the cores are well separated from each other by a protecting organic shell. The radii of gyration of the mass fractals are 48 and 44 nm, and each network contains 117 and 186 primary particles, respectively. The radius distributions of the primary particle were confirmed with transmission electron microscopy. All particles contain purely maghemite, as shown by X-ray absorption fine structure spectroscopy. PMID:28381973

  15. SAXS analysis of single- and multi-core iron oxide magnetic nanoparticles.

    PubMed

    Szczerba, Wojciech; Costo, Rocio; Veintemillas-Verdaguer, Sabino; Morales, Maria Del Puerto; Thünemann, Andreas F

    2017-04-01

    This article reports on the characterization of four superparamagnetic iron oxide nanoparticles stabilized with dimercaptosuccinic acid, which are suitable candidates for reference materials for magnetic properties. Particles p1 and p2 are single-core particles, while p3 and p4 are multi-core particles. Small-angle X-ray scattering analysis reveals a lognormal type of size distribution for the iron oxide cores of the particles. Their mean radii are 6.9 nm (p1), 10.6 nm (p2), 5.5 nm (p3) and 4.1 nm (p4), with narrow relative distribution widths of 0.08, 0.13, 0.08 and 0.12. The cores are arranged as a clustered network in the form of dense mass fractals with a fractal dimension of 2.9 in the multi-core particles p3 and p4, but the cores are well separated from each other by a protecting organic shell. The radii of gyration of the mass fractals are 48 and 44 nm, and each network contains 117 and 186 primary particles, respectively. The radius distributions of the primary particle were confirmed with transmission electron microscopy. All particles contain purely maghemite, as shown by X-ray absorption fine structure spectroscopy.

  16. High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions

    NASA Astrophysics Data System (ADS)

    Blanco-Andujar, C.; Ortega, D.; Southern, P.; PankhurstJoint Last Authors., Q. A.; Thanh, N. T. K.

    2015-01-01

    The adoption of magnetic hyperthermia as either a stand-alone or adjunct therapy for cancer is still far from being optimised due to the variable performance found in many iron oxide nanoparticle systems, including commercially available formulations. Herein, we present a reproducible and potentially scalable microwave-based method to make stable citric acid coated multi-core iron oxide nanoparticles, with exceptional magnetic heating parameters, viz. intrinsic loss parameters (ILPs) of up to 4.1 nH m2 kg-1, 35% better than the best commercial equivalents. We also probe the core-to-core magnetic interactions in the particles via remanence-derived Henkel and ΔM plots. These reveal a monotonic dependence of the ILP on the magnetic interaction field Hint, and show that the interactions are demagnetising in nature, and act to hinder the magnetic heating mechanism.The adoption of magnetic hyperthermia as either a stand-alone or adjunct therapy for cancer is still far from being optimised due to the variable performance found in many iron oxide nanoparticle systems, including commercially available formulations. Herein, we present a reproducible and potentially scalable microwave-based method to make stable citric acid coated multi-core iron oxide nanoparticles, with exceptional magnetic heating parameters, viz. intrinsic loss parameters (ILPs) of up to 4.1 nH m2 kg-1, 35% better than the best commercial equivalents. We also probe the core-to-core magnetic interactions in the particles via remanence-derived Henkel and ΔM plots. These reveal a monotonic dependence of the ILP on the magnetic interaction field Hint, and show that the interactions are demagnetising in nature, and act to hinder the magnetic heating mechanism. Electronic supplementary information (ESI) available: Reproducibility studies and additional characterisation data including SQUID Magnetometry, TEM, ATR-FTIR, XRD and Mossbauer spectroscopy. See DOI: 10.1039/c4nr06239f

  17. Preparation of iron boride-silica core-shell nanoparticles with soft ferromagnetic properties.

    PubMed

    Saiyasombat, C; Petchsang, N; Tang, I M; Hodak, J H

    2008-02-27

    A one-pot aqueous chemical synthesis for silica-passivated ferromagnetic nanoparticles is presented. The average size of these particles is 84 ± 20 nm. The x-ray and electron diffraction experiments revealed that the nanoparticles are mainly composed of polycrystalline iron boride. The broad x-ray diffraction peak leads to an average crystallite size of 1.8 nm, which is much smaller than the overall size of the particles, and is consistent with the polycrystalline nature of the samples. Mössbauer spectroscopy and magnetization experiments were used to establish the room temperature magnetic properties as well as the chemical nature of the particles. Fe(2)B dominates the composition of the nanoparticles, having a hyperfine field broadly distributed in the 10-33 T range. Alpha iron, the second ferromagnetic material identified in the particles, amounts to 4.6% of the composition. Finally, a paramagnetic phase accounting for approximately 14.6% of the material of the particles was also detected. These nanoparticles contain a core with soft ferromagnetic properties surrounded by a passivating silica layer, and are suitable for magnetically targeted drug delivery and electromagnetic induction heating applications.

  18. Iron-iron oxide core-shell nanoparticles are active and magnetically recyclable olefin and alkyne hydrogenation catalysts in protic and aqueous media.

    PubMed

    Hudson, Reuben; Rivière, Antoine; Cirtiu, Ciprian M; Luska, Kylie L; Moores, Audrey

    2012-04-04

    We report for the first time the use of iron-iron oxide core-shell nanoparticles for the hydrogenation of olefins and alkynes under mild conditions in ethanol and in an aqueous medium. This catalyst proves robust towards the presence of oxidants, such as oxygen and water, is magnetically recoverable and shows selectivity towards the less activated double bonds.

  19. Core-shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-05-01

    Core-shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core-shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body.

  20. Size-dependent structural evolution of the biomineralized iron-core nanoparticles in ferritins

    NASA Astrophysics Data System (ADS)

    Lee, Eunsook; Kim, D. H.; Hwang, Jihoon; Lee, Kiho; Yoon, Sungwon; Suh, B. J.; Hyun Kim, Kyung; Kim, J.-Y.; Jang, Z. H.; Kim, Bongjae; Min, B. I.; Kang, J.-S.

    2013-04-01

    The structural identity of the biomineralized iron core nanoparticles in Helicobacter pylori ferritins (Hpf's) has been determined by employing soft x-ray absorption spectroscopy and soft x-ray magnetic circular dichroism. Valence states of Fe ions are nearly trivalent in all Hpf's, indicating that the amount of magnetite (Fe3O4) is negligible. With increasing filling of Fe ions, the local configurations of Fe3+ ions change from the mixture of the tetrahedral and octahedral symmetries to the octahedral symmetry. These results demonstrate that the biomineralization of the ferritin core changes from maghemite-like (γ-Fe2O3) formation to hematite-like (α-Fe2O3) formation with increasing Fe content.

  1. Surface design of core-shell superparamagnetic iron oxide nanoparticles drives record relaxivity values in functional MRI contrast agents.

    PubMed

    Maity, Dipak; Zoppellaro, Giorgio; Sedenkova, Veronika; Tucek, Jiri; Safarova, Klara; Polakova, Katerina; Tomankova, Katerina; Diwoky, Clemens; Stollberger, Rudolf; Machala, Libor; Zboril, Radek

    2012-12-04

    Core-shell hydrophilic superparamagnetic iron oxide (SPIO) nanoparticles, surface functionalized with either terephthalic acid or 2-amino terephthalic acid, showed large negative MRI contrast ability, validating the advantage of using low molecular weight and π-conjugated canopies for engineering functional nanostructures with superior performances.

  2. Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment.

    PubMed

    Arias, José L; López-Viota, Margarita; López-Viota, Julián; Delgado, Angel V

    2009-12-01

    Diclofenac sodium is a non-steroidal anti-inflammatory drug of choice to treat arthritis because of its potential anti-inflammatory and analgesic activity. Because of its shorter biological half-life, it is needed to be given frequently and at high doses to elicit the required therapeutic activity, simultaneously leading to severe side effects. We hypothesized that the efficient delivery of diclofenac sodium to inflammation using a magnetic colloid could reduce the dose required to bring out sufficient therapeutic response. Hence, we have developed a diclofenac sodium-loaded magnetic nanomedicine, consisting of a magnetic core (iron) and a biocompatible polymeric shell (ethylcellulose) for parenteral administration. These core/shell nanoparticles were synthesized by an emulsion solvent evaporation process. Two drug loading methods were analyzed: the first one being drug addition prior to the emulsion solvent evaporation process (leading to drug entrapment into the polymeric network), and the second method based on diclofenac sodium surface adsorption onto the preformed nanoparticles. Compared to drug adsorption, the entrapment of this active agent into the polymeric matrix yielded a higher drug loading and a slower drug release profile. Such nanocomposites possessed very important characteristics such as unusually high drug loading, enhanced magnetic susceptibility and prolonged drug release, indicating their potential use as nanocarriers for efficient delivery of diclofenac sodium to inflammation sites.

  3. Biocompatibility of Polymer Grafted Core/Shell Iron/Carbon Nanoparticles

    PubMed Central

    Mu, Qingxin; Yang, Lei; Davis, James C.; Vankayala, Raviraj; Hwang, Kuo Chu; Zhao, Jincai; Yan, Bing

    2010-01-01

    For biomedical applications, emerging nanostructures requires stringent evaluations for their biocompatibility. Core/shell iron/carbon nanoparticles (Fe@CNPs) are nanomaterials that have potential applications in magnetic resonance imaging (MRI), magnetic hyperthermia and drug delivery. However, their interactions with biological systems are totally unknown. To evaluate their potential cellular perturbations and explore the relationships between their biocompatibility and surface chemistry, we synthesized polymer grafted Fe@CNPs with diverse chemistry modifications on surface and investigated their dynamic cellular responses, cell uptake, oxidative stress and their effects on cell apoptosis and cell cycle. The results show that biocompatibility of Fe@CNPs is both surface chemistry dependent and cell type specific. Except for the carboxyl modified Fe@CNPs, all other Fe@CNPs present low toxicity and can be used for further functionalization and in a wide range of biomedical applications. PMID:20378165

  4. The anticancer properties of iron core-gold shell nanoparticles in colorectal cancer cells.

    PubMed

    Wu, Ya-Na; Wu, Ping-Ching; Yang, Li-Xing; Ratinac, Kyle R; Thordarson, Pall; Jahn, Kristina A; Chen, Dong-Hwang; Shieh, Dar-Bin; Braet, Filip

    2013-01-01

    Previously, iron core-gold shell nanoparticles (Fe@Au) have been shown to possess cancer-preferential cytotoxicity in oral and colorectal cancer (CRC) cells. However, CRC cell lines are less sensitive to Fe@Au treatment when compared with oral cancer cell lines. In this research, Fe@Au are found to decrease the cell viability of CRC cell lines, including Caco-2, HT-29, and SW480, through growth inhibition rather than the induction of cell death. The cytotoxicity induced by Fe@Au in CRC cells uses different subcellular pathways to the mitochondria-mediated autophagy found in Fe@Au-treated oral cancer cells, OECM1. Interestingly, the Caco-2 cell line shows a similar response to OECM1 cells and is thus more sensitive to Fe@Au treatment than the other CRC cell lines studied. We have investigated the underlying cell resistance mechanisms of Fe@Au-treated CRC cells. The resistance of CRC cells to Fe@Au does not result from the total amount of Fe@Au internalized. Instead, the different amounts of Fe and Au internalized appear to determine the different response to treatment with Fe-only nanoparticles in Fe@Au-resistant CRC cells compared with the Fe@Au-sensitive OECM1 cells. The only moderately cytotoxic effect of Fe@Au nanoparticles on CRC cells, when compared to the highly sensitive OECM1 cells, appears to arise from the CRC cells' relative insensitivity to Fe, as is demonstrated by our Fe-only treatments. This is a surprising outcome, given that Fe has thus far been considered to be the "active" component of Fe@Au nanoparticles. Instead, we have found that the Au coatings, previously considered only as a passivating coating to protect the Fe cores from oxidation, significantly enhance the cytotoxicity of Fe@Au in certain CRC cells. Therefore, we conclude that both the Fe and Au in these core-shell nanoparticles are essential for the anticancer properties observed in CRC cells.

  5. Substitution of manganese and iron into hydroxyapatite: Core/shell nanoparticles

    SciTech Connect

    Pon-On, Weeraphat; Meejoo, Siwaporn; Tang, I.-Ming

    2008-08-04

    The bioceramics, hydroxyapatite (HAP), is a material which is biocompatible to the human body and is well suited to be used in hyperthermia applications for the treatment of bone cancer. We investigate the substitution of iron and manganese into the hydroxyapatite to yield ceramics having the empirical formula Ca{sub 9.4}Fe{sub 0.4}Mn{sub 0.2}(PO{sub 4}){sub 6}(OH){sub 2}. The samples were prepared by the co-precipitation method. The formation of the nanocrystallites in the HAP structure as the heating temperatures were raised to obtain a glass-ceramic system are confirmed by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and electron spin resonance (ESR). TEM images show the core/shell structure of the nanoparticles, with the core being formed by the ferrites and the shell by the hydroxyapatite. The ED patterns indicate the nanoparticles formed at 500 deg. C have an amorphous structure while the nanoparticles formed at 1000 deg. C are crystalline. ESR spectroscopy indicated that the Fe{sup 3+} ions have a g-factor of 4.23 and the Mn{sup 2+} ions have a g-factor of 2.01. The values of the parameters in the spin Hamiltonian which describes the interaction between the transition metal ions and the Ca{sup 2+} ions, indicate that the Mn{sup 2+} ion substitute into the Ca{sup 2+} sites which are ninefold coordinated, i.e., the Ca(1) sites.

  6. Development of carbonyl iron/ethylcellulose core/shell nanoparticles for biomedical applications.

    PubMed

    Arias, J L; López-Viota, M; Ruiz, M A; López-Viota, J; Delgado, A V

    2007-07-18

    A reproducible method for the preparation of mixed colloidal nanoparticles, consisting of a magnetic carbonyl iron nucleus and a biocompatible ethylcellulose latex shell, is described in this article. The heterogeneous structure of the particles can confer them both the possibility of being used as drug delivery systems and the responsiveness to external magnetic fields, allowing a selective guidance of drug molecules to specific target tissues without a concurrent increase in its level in healthy tissues. The preparation method is based on an emulsion solvent evaporation process. A complete physicochemical characterization of the composite particles was carried out, and this preliminary investigation showed that the surface behavior of the core/shell particles is similar to that of bare ethylcellulose particles. This was confirmed, in particular, by zeta potential determinations as a function of pH and ionic strength. This fact points to the ethylcellulose shell efficiently coating carbonyl iron, and leading to composite particles which, from the electrokinetic point of view, are almost indistinguishable from latex. The thermodynamic analysis agrees with the electrokinetic one in suggesting that the coverage has been complete, since the components of the surface free energy of mixed particles coincide almost exactly with those corresponding to the cellulose-based pseudolatex. Moreover, the hydrophilic nature of carbonyl iron is modified and the particles become hydrophobic, just like the latex, when they are covered by ethylcellulose. The magnetic behaviors of the carbonyl iron and composite particles were also checked, and the similarities between both types of particles were demonstrated, except that the polymeric shell reduces the magnetization of the sample.

  7. Fast synthesis and bioconjugation of (68) Ga core-doped extremely small iron oxide nanoparticles for PET/MR imaging.

    PubMed

    Pellico, Juan; Ruiz-Cabello, Jesús; Saiz-Alía, Marina; Del Rosario, Gilberto; Caja, Sergio; Montoya, María; Fernández de Manuel, Laura; Morales, M Puerto; Gutiérrez, Lucia; Galiana, Beatriz; Enríquez, Jose A; Herranz, Fernando

    2016-05-01

    Combination of complementary imaging techniques, like hybrid PET/MRI, allows protocols to be developed that exploit the best features of both. In order to get the best of these combinations the use of dual probes is highly desirable. On this sense the combination of biocompatible iron oxide nanoparticles and 68Ga isotope is a powerful development for the new generation of hybrid systems and multimodality approaches. Our objective was the synthesis and application of a chelator-free 68Ga-iron oxide nanotracer with improved stability, radiolabeling yield and in vivo performance in dual PET/MRI. We carried out the core doping of iron oxide nanoparticles, without the use of any chelator, by a microwave-driven protocol. The synthesis allowed the production of extremely small (2.5 nm) 68Ga core-doped iron oxide nanoparticles. The microwave approach allowed an extremely fast synthesis with a 90% radiolabeling yield and T1 contrast in MRI. With the same microwave approach the nano-radiotracer was functionalized in a fast and efficient way. We finally evaluated these dual targeting nanoparticles in an angiogenesis murine model by PET/MR imaging. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems

    NASA Astrophysics Data System (ADS)

    Jarzębski, Maciej; Kościński, Mikołaj; Białopiotrowicz, Tomasz

    2017-08-01

    The size of nanoparticles is one of the most important factors for their possible applications. Various techniques for the nanoparticle size characterization are available. In this paper selected techniques will be considered base on the prepared core-shell magnetite nanoparticles. Magnetite is one of the most investigated and developed magnetic material. It shows interesting magnetic properties which can be used for biomedical applications, such as drug delivery, hypothermia and also as a contrast agent. To reduce the toxic effects of Fe3O4, magnetic core was covered by dextran and gelatin. Moreover, the shell was doped by fluorescent dye for confocal microscopy investigation. The main investigation focused on the methods for particles size determination of modified magnetite nanoparticles prepared with different techniques. The size distribution were obtained by nanoparticle tracking analysis, dynamic light scattering and transmission electron microscopy. Furthermore, fluorescent correlation spectroscopy (FCS) and confocal microscopy were used to compare the results for particle size determination of core-shell systems.

  9. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wagener, Philipp; Jakobi, Jurij; Rehbock, Christoph; Chakravadhanula, Venkata Sai Kiran; Thede, Claas; Wiedwald, Ulf; Bartsch, Mathias; Kienle, Lorenz; Barcikowski, Stephan

    2016-03-01

    This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications.

  10. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles.

    PubMed

    Wagener, Philipp; Jakobi, Jurij; Rehbock, Christoph; Chakravadhanula, Venkata Sai Kiran; Thede, Claas; Wiedwald, Ulf; Bartsch, Mathias; Kienle, Lorenz; Barcikowski, Stephan

    2016-03-23

    This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications.

  11. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles

    PubMed Central

    Wagener, Philipp; Jakobi, Jurij; Rehbock, Christoph; Chakravadhanula, Venkata Sai Kiran; Thede, Claas; Wiedwald, Ulf; Bartsch, Mathias; Kienle, Lorenz; Barcikowski, Stephan

    2016-01-01

    This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications. PMID:27004738

  12. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles.

    PubMed

    Narayanan, T N; Mary, A P Reena; Swalih, P K Anas; Kumar, D Sakthi; Makarov, D; Albrecht, M; Puthumana, Jayesh; Anas, Abdulaziz; Anantharaman, M R

    2011-03-01

    Self-assembled magnetic colloidal suspensions are sought after by material scientists owing to its huge application potential. The biomedical applications of colloidal nanoparticles necessitate that they are biocompatible, non-interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a controlled co-precipitation technique followed by a modified sol-gel synthesis. A plausible mechanism for the formation of stable suspension of SiO2-coated Iron Oxide nanoparticles with a size of about 9 nm dispersed in polyethylene glycol (PEG) is proposed. Core-shell nature of the resultant SiO2-Iron Oxide nanocomposite was verified using transmission electron microscopy. Fourier transform-infrared spectroscopy studies were carried out to understand the structure and nature of chemical bonds. The result suggests that Iron Oxide exist in an isolated state inside silica matrix. Moreover, the presence of silanol bonds establishes the hydrophilic nature of silica shell confirming the formation of stable ferrofluid with PEG as carrier fluid. The magnetic characterization reveals the superparamagnetic behavior of the nanoparticles with a rather narrow distribution of blocking temperatures. These properties are not seen in ferrofluids prepared from Iron Oxide nanoparticles without SiO2 coating. The latter suggests the successful tuning of the inter-particle interactions preventing agglomeration of nanoparticles. Cytotoxicity studies on citric acid coated water based ferrofluid and silica-coated PEG-based ferrofluid were evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium chloride assay and it shows an enhanced compatibility for silica modified nanoparticles.

  13. Effects of pore topology and iron oxide core on doxorubicin loading and release from mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Ronhovde, Cicily J.; Baer, John; Larsen, Sarah C.

    2017-06-01

    Mesoporous silica nanoparticles (MSNs) have a network of pores that give rise to extremely high specific surface areas, making them attractive materials for applications such as adsorption and drug delivery. The pore topology can be readily tuned to achieve a variety of structures such as the hexagonally ordered Mobil Crystalline Material 41 (MCM-41) and the disordered "wormhole" (WO) mesoporous silica (MS) structure. In this work, the effects of pore topology and iron oxide core on doxorubicin loading and release were investigated using MSNs with pore diameters of approximately 3 nm and sub-100 nm particle diameters. The nanoparticles were loaded with doxorubicin, and the drug release into phosphate-buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The release profiles were fit using the Peppas model. The results indicated diffusion-controlled release for all samples. Statistically significant differences were observed in the kinetic host-guest parameters for each sample due to the different pore topologies and the inclusion of an iron oxide core. Applying a static magnetic field to the iron oxide core WO-MS shell materials did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials.

  14. Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles.

    PubMed

    Guo, Yang; Zhang, Zhuoli; Kim, Dong-Hyun; Li, Weiguo; Nicolai, Jodi; Procissi, Daniel; Huan, Yi; Han, Guohong; Omary, Reed A; Larson, Andrew C

    2013-01-01

    Photothermal ablation is a minimally invasive approach, which typically involves delivery of photothermal sensitizers to targeted tissues. The purpose of our study was to demonstrate that gold nanoparticles are phagocytosed by pancreatic cancer cells, thus permitting magnetic resonance imaging (MRI) of sensitizer delivery and photothermal ablation. Iron-oxide core/gold-shell nanoparticles (GoldMag®, 30 nm diameter; Xi'an GoldMag Biotechnology Co, Xi'an, People's Republic of China) were used. In a 96-well plate, 3 × 10⁴ PANC-1 (human pancreatic cancer cell line) cells were placed. GoldMag (0, 25, or 50 μg/mL) was added to each well and 24 hours allowed for cellular uptake. Samples were then divided into two groups: one treated with photothermal ablation (7.9 W/cm²) for 5 minutes, the other not treated. Photothermal ablation was performed using laser system (BWF5; B&W Tek, Inc, Newark, DE, USA). Intraprocedural temperature changes were measured using a fiber optic temperature probe (FTP-LN2; Photon Control Inc, Burnaby, BC, Canada). After 24 hours, the remaining number of viable cells was counted using trypan blue staining; cell proliferation percentage was calculated based on the total number of viable cells after treatment compared with control. MRI of GoldMag uptake was performed using a 7.0T ClinScan system (Bruker BioSpin, Ettlingen, Germany). Temperature curves demonstrated that with increased GoldMag uptake, laser irradiation produced higher temperature elevations in the corresponding samples; temperature elevations of 12.89°C, 35.16°C, and 79.51°C were achieved for 0, 25, and 50 μg/mL GoldMag. Without photothermal ablation, the cell proliferation percentage changed from 100% to 71.3% and 47.0% for cells treated with 25 and 50 μg/mL GoldMag. Photothermal ablation of PANC-1 cells demonstrated an effective treatment response, specifically a reduction to only 61%, 21.9%, and 2.3% cell proliferation for cells treated with 0, 25, and 50 μg/mL Gold

  15. Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles

    PubMed Central

    Guo, Yang; Zhang, Zhuoli; Kim, Dong-Hyun; Li, Weiguo; Nicolai, Jodi; Procissi, Daniel; Huan, Yi; Han, Guohong; Omary, Reed A; Larson, Andrew C

    2013-01-01

    Purpose Photothermal ablation is a minimally invasive approach, which typically involves delivery of photothermal sensitizers to targeted tissues. The purpose of our study was to demonstrate that gold nanoparticles are phagocytosed by pancreatic cancer cells, thus permitting magnetic resonance imaging (MRI) of sensitizer delivery and photothermal ablation. Patients and methods Iron-oxide core/gold-shell nanoparticles (GoldMag®, 30 nm diameter; Xi’an GoldMag Biotechnology Co, Xi’an, People’s Republic of China) were used. In a 96-well plate, 3 × 104 PANC-1 (human pancreatic cancer cell line) cells were placed. GoldMag (0, 25, or 50 μg/mL) was added to each well and 24 hours allowed for cellular uptake. Samples were then divided into two groups: one treated with photothermal ablation (7.9 W/cm2) for 5 minutes, the other not treated. Photothermal ablation was performed using laser system (BWF5; B&W Tek, Inc, Newark, DE, USA). Intraprocedural temperature changes were measured using a fiber optic temperature probe (FTP-LN2; Photon Control Inc, Burnaby, BC, Canada). After 24 hours, the remaining number of viable cells was counted using trypan blue staining; cell proliferation percentage was calculated based on the total number of viable cells after treatment compared with control. MRI of GoldMag uptake was performed using a 7.0T ClinScan system (Bruker BioSpin, Ettlingen, Germany). Results Temperature curves demonstrated that with increased GoldMag uptake, laser irradiation produced higher temperature elevations in the corresponding samples; temperature elevations of 12.89°C, 35.16°C, and 79.51°C were achieved for 0, 25, and 50 μg/mL GoldMag. Without photothermal ablation, the cell proliferation percentage changed from 100% to 71.3% and 47.0% for cells treated with 25 and 50 μg/mL GoldMag. Photothermal ablation of PANC-1 cells demonstrated an effective treatment response, specifically a reduction to only 61%, 21.9%, and 2.3% cell proliferation for cells

  16. Preparation, characterization and dielectric studies on carbonyl iron/cellulose acetate hydrogen phthalate core/shell nanoparticles for drug delivery applications.

    PubMed

    Reshmi, G; Mohan Kumar, P; Malathi, M

    2009-01-05

    A method to prepare composite colloidal nanoparticles, consisting of a magnetic core (carbonyl iron) and a biodegradable polymeric shell (cellulose acetate hydrogen phthalate) was described and also particle size was characterized by Optical Microscope and Scanning Electron Microscopy. Dielectric properties of Cellulose Acetate Hydrogen Phthalate (CAP) and carbonyl iron/CAP (core/shell) tablets were studied in the frequency range of 70 Hz-400 kHz at 300 K using LCR meter and compared the dielectric parameters of core/shell and ordinary phase of CAP tablets. From the dielectric results, the importance of core/shell nanoparticles in controlled drug delivery was discussed.

  17. Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge

    NASA Astrophysics Data System (ADS)

    Stević, Dragana; Mihajlović, Dijana; Kukobat, Radovan; Hattori, Yoshiyuki; Sagisaka, Kento; Kaneko, Katsumi; Atlagić, Suzana Gotovac

    2016-08-01

    Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.

  18. Chemical reduction synthesis and ac field effect of iron based core-shell magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Srinivasan; Bonder, Michael J.; Hadjipanayis, George C.

    2009-12-01

    High magnetization nanoparticles coated with a biocompatible polymer have attracted considerable interest in recent times as potential materials for biomedical applications associated with targeted drug delivery, detection and the treatment of cancer. This paper considers the use of sodium borohydride reduction of metal salts to form Fe based nanoparticles coated with carboxyl terminated polyethylene glycol (cPEG). By mixing the reactants in a Y-junction, the synthesis produces uniform nanoparticles in the size range 10-20 nm with a core-shell structure. The particles are subsequently coated with a 1-3 nm thick layer of cPEG. These nanoparticles are soft ferromagnets with Hc = 400 Oe. Exciting these nanoparticles with a 4 Oe, 500 kHz alternating magnetic field leads to particle heating with a maximal increase in the saturation temperature as the particle size is decreased. For the largest particles considered here, the temperature reaches 35 °C with a 10 mg sample mass whilst for the smallest nanoparticles considered the temperature exceeds 40 °C.

  19. Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent

    PubMed Central

    Lee, Ha-Young; Lee, Sang-Hoon; Xu, Chenjie; Xie, Jin; Lee, Jin-Hyung; Wu, Bing; Koh, Ai Leen; Wang, Xiaoying; Sinclair, Robert; Wang, Shan X; Nishimura, Dwight G; Biswal, Sandip; Sun, Shouheng; Cho, Sun Hang; Chen, Xiaoyuan

    2010-01-01

    The purpose of this study was to synthesize biocompatible polyvinylpyrrolidone (PVP)-coated iron oxide (PVP-IO) nanoparticles and to evaluate their efficacy as a magnetic resonance imaging (MRI) contrast agent. The PVP-IO nanoparticles were synthesized by a thermal decomposition method and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and a superconducting quantum interface device (SQUID). The core size of the particles is about 8–10 nm and the overall size is around 20–30 nm. The measured r2 (reciprocal of T2 relaxation time) and r2∗ (reciprocal of T2∗ relaxation time) are 141.2 and 338.1 (s mM)−1, respectively. The particles are highly soluble and stable in various buffers and in serum. The macrophage uptake of PVP-IO is comparable to that of Feridex as measured by a Prussian blue iron stain and phantom study. The signal intensity of a rabbit liver was effectively reduced after intravenous administration of PVP-IO. Therefore PVP-IO nanoparticles are potentially useful for T2-weighted MR imaging. PMID:21394237

  20. Poly(D,L-lactide-co-glycolide) microcomposite containing magnetic iron core nanoparticles as a drug carrier

    NASA Astrophysics Data System (ADS)

    Naik, Sweta; Carpenter, Everett E.

    2008-04-01

    Today many potent anticancer drugs like cisplatin are available which carry a number of side effects. A promising way of reducing the side effects is to target the drug to tissue sites by coating it with biocompatible materials like Poly (dl-lactide-co-glycolide) (PLGA) polymer where controlled drug release is achieved during the biodegradation of the polymer. Also the efficacy of anticancer drugs like cisplatin increases at elevated temperatures, so if local heating can be achieved where the drug is targeted. Local heating can be achieved by introducing iron core nanoparticles in the composites along with the drug, which can be heated by the 2.4 GHz microwaves. Local heating of the nanocomposites also helps to swell the polymer shell and enhance the drug release. The magnetic nanocomposites were synthesized using iron nanoparticles, PLGA and a fluorescent dye, tris-(2,2'bipyridyl) dichlororuthenium (II) using an oil-in-emulsion technique. The emulsion contains PLGA, dye, and iron nanoparticles dissolved in the oil phase and polyvinyl alcohol (PVA) as a stabilizer. As the sample is homogenized, and dried, uniform 100 nm composites are formed where the dye and iron nanoparticles are encapsulated in a PLGA shell. Control of the thickness and loading efficiency of the nanocomposite can be controlled by varying the ratio of PLGA, iron, and dye. The amount of loading was determined using TGA confirming from 20-50% (w/w) loading. As the dye is released from the composite the fluorescence intensity decreases due to self-quenching. This self-quenching allows for the determination of the release kinetics as a function of temperature using fluorescence spectroscopy. Initial results suggest that there is a release of 5-10% of the dye from the composite at 25°C and complete release after the nanocomposite reaches 90°C. Using local microwave heating the complete release of the dye can be accomplished with three two second pulses of 2.4 GHz microwaves. This allows for the

  1. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation

    NASA Astrophysics Data System (ADS)

    Xing, Lijuan; ten Brink, Gert H.; Chen, Bin; Schmidt, Franz P.; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J.; Palasantzas, George

    2016-05-01

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction analysis. The core-shell structure, which is composed of an Fe core surrounded by a maghemite (γ-Fe2O3) and/or magnetite (Fe3O4) shell, was confirmed by fast Fourier transform (FFT) analysis combined with EELS. It was found that the particle size and shape strongly depend on the gas environment. Moreover, extensive analysis showed that NPs with a size between 10-20 nm possess a truncated cubic morphology, which is confined by the 6 {100} planes that are truncated by the 12 {110} planes at different degrees. For NPs larger than 20 nm, the rhombic dodecahedron defined by the 12 {110} planes is the predominant crystal shape, while truncated rhombic dodecahedrons, as well as non-truncated and truncated cubic NPs, were also observed. The NPs without truncation showed a characteristic inward relaxation indicating that besides thermodynamics kinetics also plays a crucial role during particle growth.

  2. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation.

    PubMed

    Xing, Lijuan; Ten Brink, Gert H; Chen, Bin; Schmidt, Franz P; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J; Palasantzas, George

    2016-05-27

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction analysis. The core-shell structure, which is composed of an Fe core surrounded by a maghemite (γ-Fe2O3) and/or magnetite (Fe3O4) shell, was confirmed by fast Fourier transform (FFT) analysis combined with EELS. It was found that the particle size and shape strongly depend on the gas environment. Moreover, extensive analysis showed that NPs with a size between 10-20 nm possess a truncated cubic morphology, which is confined by the 6 {100} planes that are truncated by the 12 {110} planes at different degrees. For NPs larger than 20 nm, the rhombic dodecahedron defined by the 12 {110} planes is the predominant crystal shape, while truncated rhombic dodecahedrons, as well as non-truncated and truncated cubic NPs, were also observed. The NPs without truncation showed a characteristic inward relaxation indicating that besides thermodynamics kinetics also plays a crucial role during particle growth.

  3. Earth's core iron

    NASA Astrophysics Data System (ADS)

    Geophysicist J. Michael Brown of Texas A & M University noted recently at the Spring AGU Meeting in Baltimore that the structure and phase of metallic iron at pressures of the earth's inner core (approximately 3.3 Mbar) could have great significance in defining geometrical aspects of the core itself. Brown worked at the Los Alamos Scientific Laboratory with R.B. McQueen to redetermine the phase relations of metallic iron in a series of new shock-wave experiments. They found the melting point of iron at conditions equal to those at the boundary of the earth's outer (liquid) and inner (solid) cores to be 6000°±500°C (Geophysical Research Letters, 7, 533-536, 1980).

  4. Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold.

    PubMed

    Sabale, Sandip; Kandesar, Priyanka; Jadhav, Vidhya; Komorek, Rachel; Motkuri, Radha Kishan; Yu, Xiao-Ying

    2017-09-13

    In the last decade, magnetic nanoparticles (MNPs), especially superparamagnetic iron oxide nanoparticles (SPIONs), have immensely promoted the advancement of diagnostics and theranostics in the biomedical field. The unique properties of the SPIONs-core and the functional gold (Au)-shell together (SPIONS/Au core/shell or CS) have a wide range of biomedical applications including, but not limited to, magnetic resonance imaging (MRI), dual modality MRI/computed tomography (CT), photo-induced and magnetic fluid hyperthermia (MFH), drug delivery, biosensors, and bio-separation. Researchers have made much effort to develop synthesis strategies for size control and surface modifications to achieve the desired properties of these CSs for applications in in vitro and in vivo studies. This review highlights recent developments in the synthesis and biomedical applications of SPIONs/Au CSs, including γ-Fe2O3/Au (maghemite), Fe3O4/Au (magnetite), and MFe2O4/Au (M = divalent metal ions) in the past seven years. More importantly, current trends of SPIONs/Au in relation to the biochemical industry are surveyed. Finally, we outline the developmental needs of SPIONs/Au from the perspective of material synthesis and their novel applications in disease diagnosis and treatment in the near future.

  5. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona.

    PubMed

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Coullerez, Geraldine; Hofmann-Amtenbrink, Margarethe; Vries, Marcel; Motazacker, Mahdi; Rezaee, Farhad; Hofmann, Heinrich

    2015-02-01

    As nanoparticles (NPs) are increasingly used in many applications their safety and efficient applications in nanomedicine have become concerns. Protein coronas on nanomaterials' surfaces can influence how the cell "recognizes" nanoparticles, as well as the in vitro and in vivo NPs' behaviors. The SuperParamagnetic Iron Oxide Nanoparticle (SPION) is one of the most prominent agents because of its superparamagnetic properties, which is useful for separation applications. To mimic surface properties of different types of NPs, a core-shell SPION library was prepared by coating with different surfaces: polyvinyl alcohol polymer (PVA) (positive, neutral and negative), SiO2 (positive and negative), titanium dioxide and metal gold. The SPIONs with different surfaces were incubated at a fixed serum : nanoparticle surface ratio, magnetically trapped and washed. The tightly bound proteins were quantified and identified. The surface charge has a great impact on protein adsorption, especially on PVA and silica where proteins preferred binding to the neutral and positively charged surfaces. The importance of surface material on protein adsorption was also revealed by preferential binding on TiO2 and gold coated SPION, even negatively charged. There is no correlation between the protein net charge and the nanoparticle surface charge on protein binding, nor direct correlation between the serum proteins' concentration and the proteins detected in the coronas.

  6. Magnetorotational iron core collapse

    NASA Technical Reports Server (NTRS)

    Symbalisty, E. M. D.

    1984-01-01

    During its final evolutionary stages, a massive star, as considered in current astrophysical theory, undergoes rapid collapse, thereby triggering a sequence of a catastrophic event which results in a Type II supernova explosion. A remnant neutron star or a black hole is left after the explosion. Stellar collapse occurs, when thermonuclear fusion has consumed the lighter elements present. At this stage, the core consists of iron. Difficulties arise regarding an appropriate model with respect to the core collapse. The present investigation is concerned with the evolution of a Type II supernova core including the effects of rotation and magnetic fields. A simple neutrino model is developed which reproduced the spherically symmetric results of Bowers and Wilson (1982). Several two-dimensional computational models of stellar collapse are studied, taking into account a case in which a 15 solar masses iron core was artificially given rotational and magnetic energy.

  7. Iron Oxide Nanoparticles: Tunable Size Synthesis and Analysis in Terms of the Core-Shell Structure and Mixed Coercive Model

    NASA Astrophysics Data System (ADS)

    Phong, P. T.; Oanh, V. T. K.; Lam, T. D.; Phuc, N. X.; Tung, L. D.; Thanh, Nguyen T. K.; Manh, D. H.

    2017-04-01

    Iron oxide nanoparticles (NPs) are currently a very active research field. To date, a comprehensive study of iron oxide NPs is still lacking not only on the size dependence of structural phases but also in the use of an appropriate model. Herein, we report on a systematic study of the structural and magnetic properties of iron oxide NPs prepared by a co-precipitation method followed by hydrothermal treatment. X-ray diffraction and transmission electron microscopy reveal that the NPs have an inverse spinel structure of iron oxide phase (Fe3O4) with average crystallite sizes ( D XRD) of 6-19 nm, while grain sizes ( D TEM) are of 7-23 nm. In addition, the larger the particle size, the closer the experimental lattice constant value is to that of the magnetite structure. Magnetic field-dependent magnetization data and analysis show that the effective anisotropy constants of the Fe3O4 NPs are about five times larger than that of their bulk counterpart. Particle size ( D) dependence of the magnetization and the non-saturating behavior observed in applied fields up to 50 kOe are discussed using the core-shell structure model. We find that with decreasing D, while the calculated thickness of the shell of disordered spins ( t ˜ 0.3 nm) remains almost unchanged, the specific surface areas S a increases significantly, thus reducing the magnetization of the NPs. We also probe the coercivity of the NPs by using the mixed coercive Kneller and Luborsky model. The calculated results indicate that the coercivity rises monotonously with the particle size, and are well matched with the experimental ones.

  8. A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study

    PubMed Central

    2010-01-01

    Background There is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy. Methods The influence of bimagnetic nanoparticles (MNPs) combined with short external alternating magnetic field (AMF) exposure on the growth of subcutaneous mouse melanomas (B16-F10) was evaluated. Bimagnetic Fe/Fe3O4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin) units were attached to the dopamine-oligoethylene glycol ligands. Results The magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe3O4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. We also observed a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure 24 hrs after the MNPs injection. Conclusions These results indicate that intratumoral administration of surface modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, we have found that after intravenous administration of micromolar concentrations, these MNPs are capable of causing an anti-tumor effect in a mouse melanoma model after only a short AMF exposure time. This is a clear improvement to state of the art. PMID:20350328

  9. New Approach to Selective Stem Cell Sorting: Separation of Undifferentiated Stem Cells from Differentiated Stem Cells by Using Iron Oxide Core Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kisa, Fikrullah

    An alternative approach to stem cell enrichment in another words sorting methods without changing the microenvironment of the cells to avoid the detrimental effects of present cell sorting methods by adopting iron-oxide gold (cFeAu) core-shell nanoparticles (NPs) is the focus of this thesis. Each chapter of this thesis focuses on different preliminary research in order to engender the adoption of cFeAu NPs for the selective killing of the mouse embryonic stem cells that are immunolabeled with the nanoparticles. The first part of the research focuses on the synthesis of superparamagnetic iron-oxide nanoparticles with the co-precipitation method and coating the nanoparticles with colloidal gold (cAu) to stabilize the characteristics of the nanoparticles. Detailed information regarding the chemistry of iron-oxide nanoparticles, common synthesis methods, and some of the factors that affect nanoparticle growth and synthesis have been investigated. The heating ability of the nanoparticles under an oscillating magnetic field (OMF) and the size distribution of the particles under a transmission electron microscope (TEM) are shown. The second part of the research focuses on selectively killing the RAW 264.7 macrophages which have internalized the synthesized nanoparticles in order to prove the biocompatibility and effectiveness of the nanoparticles. The particles' effect on the cells, the mechanism of killing, and the effectiveness of nanoparticles coated with colloidal gold and bovine serum albumin are investigated. The last part of the research focuses on effectively labeling the mESCs with a specific antibody conjugated to cFeAu nanoparticles that has an affinity to stage specific embryonic antigen 1 (SSEA-1). The influence of the OMF and the effects of immunolabeling on cell growth were investigated. The successful conjugation of the nanoparticles onto the cell surface is shown under scanning electron microscope. The damage inflicted by the nanoparticles on the cells

  10. Transport and Retention Modelling of Iron Oxide Nanoparticles in Core Scale Porous Media for Electromagnetic Heating Well-Stimulation Optimization

    NASA Astrophysics Data System (ADS)

    Santoso, R. K.; Rachmat, S.; Putra, W. D. K.; Resha, A. H.; Hartowo, H.

    2017-07-01

    Understanding the transport and retention of iron oxide nanoparticles is critical in optimizing electromagnetic heating well stimulation. If the injected concentration or injection rate is too big, nanoparticles can build-up inside the pore throat, which can reduce the permeability of the reservoir. A numerical model has been created to describe the behavior of iron oxide nanoparticles in porous media. The model is coupling material balance equation and fluid flow in porous media equations. There are six parameters to be estimated through matching with experimental data: irreversible attachment rate, reversible attachment rate, irreversible attachment capacity, reversible attachment capacity, reversible detachment rate and permeability. All parameters were obtained directly through coreflooding result in previous study. We add Langmuir static isotherm test to limit the maximum adsorption capacity to provide a better estimation of concentration distribution. We use 1% NaCl solution as the base fluid and 45-50 mesh sand as the porous media. From the Langmuir static isotherm test, the maximum adsorption concentration is determined. Then, coreflooding is conducted using 10 ppm nanofluid and 12 cc/min injection rate. The proposed model is matched with the experimental data and its parameters are consistent with the maximum adsorption capacity provided from the test.

  11. Dual mode nanoparticles: CdS coated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Radwan, F. N.; Carroll, K. J.; Carpenter, E. E.

    2010-05-01

    Reverse micelles can be used in a sequential fashion to make core-shell nanoparticles. Using this technique it is possible to make a magnetic quantum dot, by coating an iron core with a cadmium sulfide shell. Transmission electron microscopy indicated core-shell morphology and narrow size distribution of the obtained particles. Collectively, x-ray powder diffraction and x-ray photoelectron spectroscopy verified the presence of cadmium sulfide on the surface of the nanoparticles. Optical properties of the coated particles were demonstrated using fluorescence spectroscopy. A vibrating sample magnetometer was used to determine magnetic properties. Dual mode cadmium sulfide coated iron core-shell nanoparticles make unique candidates for the use in biomedical applications.

  12. 34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  13. Study of iron nanoparticle melting

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Shulgin, A. V.; Lavruk, S. A.

    2016-10-01

    In paper melting process of iron nanoparticles was investigated with molecular dynamics method. Melting temperatures was found for particles with radius from 1.5 to 4 nm. Results match with data of other authors. Heat capacity was calculated based on investigation of caloric curves. Dependence between heat capacity and temperature for different size of nanoparticles was approximated. Heat conductivity of iron nanoparticles was calculated.

  14. Distribution of Iron Oxide Core-Titanium Dioxide Shell Nanoparticles in VX2 Tumor Bearing Rabbits Introduced by Two Different Delivery Modalities

    SciTech Connect

    Refaat, Tamer; West, Derek; El Achy, Samar; Parimi, Vamsi; May, Jasmine; Xin, Lun; Harris, Kathleen; Liu, William; Wanzer, Michael; Finney, Lydia; Maxey, Evan; Vogt, Stefan; Omary, Reed; Procissi, Daniele; Larson, Andrew; Paunesku, Tatjana; Woloschak, Gayle

    2016-08-03

    This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Both IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. This difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.

  15. Distribution of Iron Oxide Core-Titanium Dioxide Shell Nanoparticles in VX2 Tumor Bearing Rabbits Introduced by Two Different Delivery Modalities

    PubMed Central

    Refaat, Tamer; West, Derek; El Achy, Samar; Parimi, Vamsi; May, Jasmine; Xin, Lun; Harris, Kathleen R.; Liu, William; Wanzer, Michael Beau; Finney, Lydia; Maxey, Evan; Vogt, Stefan; Omary, Reed A.; Procissi, Daniele; Larson, Andrew C.; Paunesku, Tatjana; Woloschak, Gayle E.

    2016-01-01

    This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Both IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. This difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future. PMID:28335271

  16. Distribution of iron oxide core-titanium dioxide shell nanoparticles in VX2 tumor bearing rabbits introduced by two different delivery modalities

    DOE PAGES

    Refaat, Tamer; West, Derek; El Achy, Samar; ...

    2016-08-03

    This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Bothmore » IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. Furthermore, this difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.« less

  17. Distribution of iron oxide core-titanium dioxide shell nanoparticles in VX2 tumor bearing rabbits introduced by two different delivery modalities

    SciTech Connect

    Refaat, Tamer; West, Derek; El Achy, Samar; Parimi, Vamsi; May, Jasmine; Xin, Lun; Harris, Kathleen R.; Liu, William; Wanzer, Michael Beau; Finney, Lydia; Maxey, Evan; Vogt, Stefan; Omary, Reed A.; Procissi, Daniele; Larson, Andrew C.; Paunesku, Tatjana; Woloschak, Gayle E.

    2016-08-03

    This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Both IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. Furthermore, this difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.

  18. Method of determining nanoparticle core weight.

    PubMed

    Reynolds, Fred; O'loughlin, Terry; Weissleder, Ralph; Josephson, Lee

    2005-02-01

    Polymer-coated metal or metal oxide nanoparticles have a variety of uses in industry, biological research, and medicine. Characterization of nanoparticles often includes determination of the dimensions of the electron-dense core by transmission electron microscopy (TEM), with the weight of the core determined from core volume and core density. However, TEM is labor intensive, has a long turnaround time, and uses equipment that is sometimes not readily available. Here we present an alternative method for determining the weight of nanoparticle cores termed the viscosity/light scattering method, which uses (i) measurements of viscosity over a wide concentration range to obtain the partial specific volume, (ii) measurements of particle diameter by light scattering, to obtain the volume of an individual particle, and (iii) the concentration of nanoparticles (w/v). We have applied this method to determine the weights of nanoparticle cores (iron of amino-CLIO and ferritin), the weights of globular proteins (molecular weight of IgG and albumin), and the weight of polystyrene microspheres. The viscosity/light scattering method is nondestructive of the sample and can be performed with a variety of materials on a routine basis.

  19. Missing Fe: hydrogenated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.; Maksimović, A.; Mohaček-Grošev, V.

    2017-03-01

    Although it was found that the FeH lines exist in the spectra of some stars, none of the spectral features in the interstellar medium (ISM) have been assigned to this molecule. We suggest that iron atoms interact with hydrogen and produce Fe-H nanoparticles which sometimes contain many H atoms. We calculate infrared spectra of hydrogenated iron nanoparticles using density functional theory methods and find broad, overlapping bands. Desorption of H2 could induce spinning of these small Fe-H dust grains. Some of hydrogenated iron nanoparticles possess magnetic and electric moments and should interact with electromagnetic fields in the ISM. FenHm nanoparticles could contribute to the polarization of the ISM and the anomalous microwave emission. We discuss the conditions required to form FeH and FenHm in the ISM.

  20. Self-assembly of iron oxide-poly(ethylene glycol) core-shell nanoparticles at liquid-liquid interfaces.

    PubMed

    Isa, Lucio; Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2010-01-01

    Nanoparticles (NPs) play an increasingly important role in the fabrication of functional advanced materials. Two major steps need to be carried out in order to achieve control of the material properties. First of all, the properties of the single NPs have to be under control, especially in relation to colloidal stability; aggregation and corrosion negate all the benefits associated to the nanoscopic dimensions. Secondly, the assembly process has to be controlled to achieve a material with the desired properties. We propose here to use stabilized ceramic NPs consisting of a magnetite core, coated by a poly(ethylene glycol) (PEG) shell and study their assembly at polar/ non-polar liquid interfaces, en route to fabricating functional NP membranes. These NPs show extraordinary stability in aqueous solutions achieved by anchoring linear PEG chains through an end-terminating nitroDOPA group to their surface. Furthermore, the core and shell sizes of these NPs can be independently varied with ease. We first describe the details of the NP synthesis and stabilization in bulk solutions, discussing the PEG molecular weight needed to achieve bulk stability. Subsequently, we demonstrate self-assembly of these particles at liquid-liquid interfaces (SALI) into monolayers of stable properties. SALI has been chosen as path for the assembly given its suitability for fabricating two-dimensional materials. We report here results from pendant drop tensiometry which illustrate the kinetics of NP adsorption at the liquid-liquid interface and highlight the role played by the molecular weight of the PEG shell in the interfacial assembly. In particular we show that the requisites to ensure particle stability at a liquid interface are more stringent compared to the bulk case.

  1. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  2. Morphology of the ferritin iron core by aberration corrected scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Jian, Nan; Dowle, Miriam; Horniblow, Richard D.; Tselepis, Chris; Palmer, Richard E.

    2016-11-01

    As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.

  3. Morphology of the ferritin iron core by aberration corrected scanning transmission electron microscopy.

    PubMed

    Jian, Nan; Dowle, Miriam; Horniblow, Richard D; Tselepis, Chris; Palmer, Richard E

    2016-11-18

    As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.

  4. Effects of Size and Size Distribution on the Magnetic Properties of Maghemite Nanoparticles and Iron-Platinum Core-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Pisane, Kelly

    Magnetic nanoparticles with large magnetic moments that can be manipulated with an external magnetic field, have potential uses in medicine because their sizes are comparable to biological scales. For such applications it is important to understand how their magnetic properties are affected by their size and size distribution inherently present in magnetic nanoparticles. For this purpose, maghemite (gamma-Fe2O3) nanoparticles with average diameters of 7.0+/-0.8 nm, 6.3+/-0.6 nm, 3.4+/-0.8 nm and 2.5+/-0.7 nm and Fe-Pt core-shell nanoparticles with an approximate core diameter of 2.2 nm were synthesized and investigated. To aid in the interpretation of the magnetic properties, the structural properties of these nanoparticles were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). For investigations of the magnetic properties, detailed ac and dc magnetic characterization is presented and discussed in terms of a distribution of particle sizes and magnetic moments. The dc magnetization measurements cover the temperature range from 2 K to 350 K and magnetic fields up to 90 kOe. The temperature dependence of the ac susceptibilities, χ' and χ'', was measured at various frequencies from 10 Hz to 5 kHz. From the zero field-cooled dc magnetization, the values of blocking temperature TB have been determined and the ac magnetic data was used to determine the contribution of interparticle interactions to the observed blocking temperature for different sized nanoparticles. The measured blocking temperatures of the maghemite nanoparticles are TB=35 K, 42 K, 21 K, and 29 K with contributions from interparticle interactions given in terms of To=0 K, 11 K, 2.5 K, and 12.5 K for the 7.0 nm, 6.3 nm, 3.4 nm, and 2.5 nm samples respectively. From the variation of TB with ac measurement frequency, the anisotropy constants Ka determined for the maghemite nanoparticles are: Ka=5.57, 7

  5. Dissolution of iron oxide nanoparticles inside polymer nanocapsules.

    PubMed

    Möller, Johannes; Cebi, Melek; Schroer, Martin A; Paulus, Michael; Degen, Patrick; Sahle, Christoph J; Wieland, D C Florian; Leick, Sabine; Nyrow, Alexander; Rehage, Heinz; Tolan, Metin

    2011-12-07

    The structure of poly(organosiloxane) nanocapsules partially filled with iron oxide cores of different sizes was revealed by small angle X-ray scattering and X-ray diffraction. The nanocapsules are synthesized by the formation of a poly(organosiloxane) shell around iron oxide nanoparticles and the simultaneous partial dissolution of these cores. Due to the high scattering contrast of the iron oxide cores compared to the polymer shell, the particle size distribution of the cores inside the capsules can be measured by small angle X-ray scattering. Additional information can be revealed by X-ray diffraction, which gives insights into the formation of the polymer network and the structure of the iron oxide cores. The study shows how the crystallinity and size of the nanoparticles as well as the shape and width of the size distribution can be altered by the synthesis parameters.

  6. 33. BENCH CORE STATION, GREY IRON FOUNDRY CORE ROOM WHERE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BENCH CORE STATION, GREY IRON FOUNDRY CORE ROOM WHERE CORE MOLDS WERE HAND FILLED AND OFTEN PNEUMATICALLY COMPRESSED WITH A HAND-HELD RAMMER BEFORE THEY WERE BAKED. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  7. The use of the core-shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion.

    PubMed

    Su, Lianghu; Zhen, Guangyin; Zhang, Longjiang; Zhao, Youcai; Niu, Dongjie; Chai, Xiaoli

    2015-12-01

    A core-shell structure results in zero-valent iron nanoparticles (NZVI) with manifold functional properties. In this study, the long-term effects of NZVI on hydrogen sulphide removal in an anaerobic sludge digester were investigated. Within 20 days, the average hydrogen sulphide content in the biogas was successfully reduced from 300 (or 3620 of sulphate-rich sludge) mg Nm(-3) to 6.1 (121), 0.9 (3.3) and 0.5 (1.3) mg Nm(-3) in the presence of 0.05, 0.10 and 0.20% (wt) NZVI, respectively. Methane yield was enhanced at the low NZVI dose (0.05-0.10%) but decreased at the elevated dose (0.20%). Methane production and volatile solid degradation analyses implied that doses of 0.5-0.10% NZVI could accelerate sludge stabilization during anaerobic digestion. The phosphorus fractionation profile suggested that methane production could be inhibited at the elevated NZVI dose, partly due to the limited availability of soluble phosphorus due to the immobilization of bioavailable-P through the formation of vivianite. An analysis of the reducible inorganic sulphur species revealed that the elimination of hydrogen sulphide occurred via the reaction between hydrogen sulphide and the oxide shell of NZVI, which mainly formed FeS and some FeS2 and S(0).

  8. Formation of water-soluble iron oxide nanoparticles derived from iron storage protein.

    PubMed

    Tominaga, Masato; Han, Li; Wang, Lingyan; Maye, Mathew M; Luo, Jin; Kariuki, Nancy; Zhong, Chuan-Jian

    2004-09-01

    This paper reports novel findings of an investigation of the formation of water-soluble iron oxide nanoparticles from iron-storage protein ferritin. The strategy couples thermal removal of the protein shell on a planar substrate and subsequent sonication in aqueous solution under controlled temperature. Advantages of using ferritin as a precursor include well-defined core size, core composition, water-solubility and processibility. The formation of the nanoparticles was characterized using TEM, UV-Vis and FTIR techniques. Iron oxide nanoparticles in the size range of 5-20 nm diameters were produced. In addition to thermal treatment conditions, the sonication temperature of the nanoparticles in water was found to play an important role in determining the resulting particle size. This simple and effective route has important implications to the design of composite nanoparticles for potential magnetic, catalytic, biomedical sensing and other nanotechnological applications.

  9. Multifunctional iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bloemen, M.; Denis, C.; Van Stappen, T.; De Meester, L.; Geukens, N.; Gils, A.; Verbiest, T.

    2015-03-01

    Multifunctional nanoparticles have attracted a lot of attention since they can combine interesting properties like magnetism, fluorescence or plasmonic effects. As a core material, iron oxide nanoparticles have been the subject of intensive research. These cost-effective and non-toxic particles are used nowadays in many applications. We developed a heterobifunctional PEG ligand that can be used to introduce functional groups (carboxylic acids) onto the surface of the NP. Via click chemistry, a siloxane functionality was added to this ligand, for a subsequent covalent ligand exchange reaction. The functionalized nanoparticles have an excellent colloidal stability in complex environments like buffers and serum or plasma. Antibodies were coupled to the introduced carboxylic acids and these NP-antibody bioconjugates were brought into contact with Legionella bacteria for magnetic separation experiments.

  10. High-yield aqueous synthesis of multi-branched iron oxide core-gold shell nanoparticles: SERS substrate for immobilization and magnetic separation of bacteria

    NASA Astrophysics Data System (ADS)

    Tamer, Ugur; Onay, Aykut; Ciftci, Hakan; Bozkurt, Akif Göktuğ; Cetin, Demet; Suludere, Zekiye; Hakkı Boyacı, İsmail; Daniel, Philippe; Lagarde, Fabienne; Yaacoub, Nader; Greneche, Jean-Marc

    2014-10-01

    The high product yield of multi-branched core-shell Fe3- x O4@Au magnetic nanoparticles was synthesized used as magnetic separation platform and surface-enhanced Raman scattering (SERS) substrates. The multi-branched magnetic nanoparticles were prepared by a seed-mediated growth approach using magnetic gold nanospheres as the seeds and subsequent reduction of metal salt with ascorbic acid in the presence of a stabilizing agent chitosan biopolymer and silver ions. The anisotropic growth of nanoparticles was observed in the presence of chitosan polymer matrix resulting in multi-branched nanoparticles with a diameter over 100 nm, and silver ions also play a crucial role on the growth of multi-branched nanoparticles. We propose the mechanism of the formation of multi-branched nanoparticles while the properties of nanoparticles embedded in chitosan matrix are discussed. The surface morphology of nanoparticles was characterized with transmission electron microscopy, scanning electron microscopy, ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction, and fourier transform infrared spectroscopy and 57Fe Mössbauer spectrometry. Additionally, the magnetic properties of the nanoparticles were also examined. We also demonstrated that the synthesized Fe3- x O4@Au multi-branched nanoparticle is capable of targeted separation of pathogens from matrix and sensing as SERS substrates.

  11. Tannin biosynthesis of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Herrera-Becerra, R.; Rius, J. L.; Zorrilla, C.

    2010-08-01

    In this work, iron oxide nanoparticles synthesized with gallic acid and tannic acid are characterized using High-Resolution Transmission Electron Microscopy (HRTEM). Its size, form, and structure are compared with nanoparticles obtained previously using alfalfa biomass in order to find a simpler, consistent, and environmentally friendly method in the production of iron oxide nanoparticles.

  12. Biocompatible core-shell magnetic nanoparticles for cancer treatment

    SciTech Connect

    Sharma, Amit M.; Qiang, You; Meyer, Daniel R.; Souza, Ryan; Mcconnaughoy, Alan; Muldoon, Leslie; Baer, Donald R.

    2008-04-01

    Non-toxic magnetic nanoparticles (MNPs) have expanded the treatment delivery options in the medical world. With a size range from 2 to 200 nm MNPs can be compiled with most of the small cells and tissues in living body. Monodispersive iron-iron oxide core shell nanoparticles were prepared in our novel cluster deposition system. This unique method of preparing the core shell MNPs gives nanoparticles very high magnetic moment. We tested the nontoxicity and uptake of MNPs coated with/without dextrin by incubating them with rat LX-1 small cell lung cancer cells (SCLC). Since core iron enhances the heating effect [7] the rate of oxidation of iron nanoparticles was tested in deionized water at certain time interval. Both coated and noncoated MNPs were successfully uptaken by the cells, indicating that the nanoparticles were not toxic. The stability of MNPs was verified by X-ray diffraction (XRD) scan after 0, 24, 48, 96, 204 hours. Due to the high magnetic moment offered by MNPs produced in our lab, we predict that even in low applied external alternating field desired temperature can be reached in cancer cells in comparison to the commercially available nanoparticles. Moreover, our MNPs do not require additional anti-coagulating agents and provide a cost effective means of treatment with significantly lower dosage in the body in comparison to commercially available nanoparticles.

  13. Magnetic properties of iron nanoparticles prepared by exploding wire technique.

    PubMed

    Alqudami, Abdullah; Annapoorni, S; Lamba, Subhalakshmi; Kothari, P C; Kotnala, R K

    2007-06-01

    Nanoparticles of iron were prepared in distilled water using very thin iron wires and sheets, by the electro-exploding wire technique. Transmission electron microscopy reveals the size of the nanoparticles to be in the range 10 to 50 nm. However, particles of different sizes can be segregated by using ultrahigh centrifuge. X-ray diffraction studies confirm the presence of the cubic phase of iron. These iron nanoparticles were found to exhibit fluorescence in the visible region in contrast to the normal bulk material. The room temperature hysteresis measurements upto a field of 1.0 tesla were performed on a suspension of iron particles in the solution as well as in the powders obtained by filtration. The hysteresis loops indicate that the particles are superparamagnetic in nature. The saturation magnetizations was approximately 60 emu/gm. As these iron particles are very sensitive to oxygen a coating of non-magnetic iron oxide tends to form around the particles giving it a core-shell structure. The core particle size is estimated theoretically from the magnetization measurements. Suspensions of iron nanoparticles in water have been proposed to be used as an effective decontaminant for ground water.

  14. Biocompatible multishell architecture for iron oxide nanoparticles.

    PubMed

    Wotschadlo, Jana; Liebert, Tim; Clement, Joachim H; Anspach, Nils; Höppener, Stephanie; Rudolph, Tobias; Müller, Robert; Schacher, Felix H; Schubert, Ulrich S; Heinze, Thomas

    2013-01-01

    The coating of super-paramagnetic iron oxide nanoparticles (SPIONs) with multiple shells is demonstrated by building a layer assembled from carboxymethyldextran and poly(diallydimethylammonium chloride). Three shells are produced stepwise around aggregates of SPIONs by the formation of a polyelectrolyte complex. A growing particle size from 96 to 327 nm and a zeta potential in the range of +39 to -51 mV are measured. Microscopic techniques such as TEM, SEM, and AFM exemplify the core-shell structures. Magnetic force microscopy and vibrating sample magnetometer measurements confirm the architecture of the multishell particles. Cell culture experiments show that even nanoparticles with three shells are still taken up by cells.

  15. Thermodynamics and Charging of Interstellar Iron Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hensley, Brandon S.; Draine, B. T.

    2017-01-01

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of ≃4.5 Å, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges, particularly in regions with high gas temperatures and ionization fractions. If ≳10% of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.

  16. Platinum Attachments on Iron Oxide Nanoparticle Surfaces

    SciTech Connect

    Palchoudhury, Soubantika; Xu, Yaolin; An, Wei; Turner, C. H.; Bao, Yuping

    2010-04-30

    Platinum nanoparticles supported on metal oxide surfaces have shown great potential as heterogeneous catalysts to accelerate electrochemical processes, such as the oxygen reduction reaction in fuel cells. Recently, the use of magnetic supports has become a promising research topic for easy separation and recovery of catalysts using magnets, such as Pt nanoparticles supported on iron oxide nanoparticles. The attachment of Pt on iron oxide nanoparticles is limited by the wetting ability of the Pt (metal) on ceramic surfaces. A study of Pt nanoparticle attachment on iron oxide nanoparticle surfaces in an organic solvent is reported, which addresses the factors that promote or inhibit such attachment. It was discovered that the Pt attachment strongly depends on the capping molecules of the iron oxide seeds and the reaction temperature. For example, the attachment of Pt nanoparticles on oleic acid coated iron oxide nanoparticles was very challenging, because of the strong binding between the carboxylic groups and iron oxide surfaces. In contrast, when nanoparticles are coated with oleic acid/tri-n-octylphosphine oxide or oleic acid/oleylamine, a significant increase in Pt attachment was observed. Electronic structure calculations were then applied to estimate the binding energies between the capping molecules and iron ions, and the modeling results strongly support the experimental observations.

  17. ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Greenlee, Lauren F.; Rentz, Nikki S.

    2014-11-01

    In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and -40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2-12 and varied from -2 to -55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

  18. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores.

    PubMed

    Chekli, L; Brunetti, G; Marzouk, E R; Maoz-Shen, A; Smith, E; Naidu, R; Shon, H K; Lombi, E; Donner, E

    2016-09-01

    The use of zero-valent iron nanoparticles (nZVI) has been advocated for the remediation of both soils and groundwater. A key parameter affecting nZVI remediation efficacy is the mobility of the particles as this influences the reaction zone where remediation can occur. However, by engineering nZVI particles with increased stability and mobility we may also inadvertently facilitate nZVI-mediated contaminant transport away from the zone of treatment. Previous nZVI mobility studies have often been limited to model systems as the presence of background Fe makes detection and tracking of nZVI in real systems difficult. We overcame this problem by synthesising Fe-59 radiolabelled nZVI. This enabled us to detect and quantify the leaching of nZVI-derived Fe-59 in intact soil cores, including a soil contaminated by Chromated-Copper-Arsenate. Mobility of a commercially available nZVI was also tested. The results showed limited mobility of both nanomaterials; <1% of the injected mass was eluted from the columns and most of the radiolabelled nZVI remained in the surface soil layers (the primary treatment zone in this contaminated soil). Nevertheless, the observed breakthrough of contaminants and nZVI occurred simultaneously, indicating that although the quantity transported was low in this case, nZVI does have the potential to co-transport contaminants. These results show that direct injection of nZVI into the surface layers of contaminated soils may be a viable remediation option for soils such as this one, in which the mobility of nZVI below the injection/remediation zone was very limited. This Fe-59 experimental approach can be further extended to test nZVI transport in a wider range of contaminated soil types and textures and using different application methods and rates. The resulting database could then be used to develop and validate modelling of nZVI-facilitated contaminant transport on an individual soil basis suitable for site specific risk assessment prior to n

  19. Improved Thermoplastic/Iron-Particle Transformer Cores

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min

    2004-01-01

    A method of fabricating improved transformer cores from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer cores, the cores fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer cores, the cores fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior cores have exhibited significant eddy-current losses, the cores fabricated by this method exhibit very small eddy-current losses. The cores made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated cores. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of core material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as core specimens in mechanical and electromagnetic tests. Some of the core specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel core was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to

  20. Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction

    PubMed Central

    Lin, Wei Syuan; Lin, Hong Ming; Brzozka, Katarzyna; Lewinska, Sabina; Nedelko, Natalia; Slawska-Waniewska, Anna; Borysiuk, Jolanta; Wasik, Dariusz

    2015-01-01

    Summary The main goal of this work is to study the structural and magnetic properties of iron nanowires and iron nanoparticles, which have been fabricated in almost the same processes. The only difference in the synthesis is an application of an external magnetic field in order to form the iron nanowires. Both nanomaterials have been examined by means of transmission electron microscopy, energy dispersive X-ray spectrometry, X-ray diffractometry and Mössbauer spectrometry to determine their structures. Structural investigations confirm that obtained iron nanowires as well as nanoparticles reveal core–shell structures and they are composed of crystalline iron cores that are covered by amorphous or highly defected phases of iron and iron oxides. Magnetic properties have been measured using a vibrating sample magnetometer. The obtained values of coercivity, remanent magnetization, saturation magnetization as well as Curie temperature differ for both studied nanostructures. Higher values of magnetizations are observed for iron nanowires. At the same time, coercivity and Curie temperature are higher for iron nanoparticles. PMID:26425415

  1. Iron Isotope Constraints on Planetesimal Core Formation

    NASA Astrophysics Data System (ADS)

    Jordan, M.; Young, E. D.

    2016-12-01

    The prevalence of iron in both planetary cores and silicate mantles renders the element a valuable tool for understanding core formation. Magmatic iron meteorites exhibit an enrichment in 57Fe/54Fe relative to chondrites and HED meteorites. This is suggestive of heavy Fe partitioning into the cores of differentiated bodies. If iron isotope fractionation accompanies core formation, we can elucidate details about the history of accretion for planetary bodies as well as their compositions and relative core sizes. The equilibrium 57Fe/54Fe between metal and silicate is necessary for understanding observed iron isotope compositions and placing constraints on core formation. We measure this fractionation in two Aubrite meteorites, Norton County and Mount Egerton, which have known temperatures of equilibration and equilibrated silicon isotopes. Iron was purified using ion-exchange chromatography. Data were collected on a ThermoFinnigan NeptuneTM multiple-collector inductively coupled plasma-source mass spectrometer (MC-ICP-MS) run in wet plasma mode. The measured fractionation Δ57Femetal-silicate is 0.08‰ ± 0.039 (2 SE) for Norton County and 0.09‰ ± 0.019 (2 SE) for Mount Egerton, indicating that the heavy isotopes of Fe partition into the metallic phase. These rocks are in isotopic equilibrium at a temperature of 1130 K and 1200 K ± 80 K, respectively. The concentration of the heavy isotopes of iron in the metallic phase is consistent with recent experimental studies. Using our measured metal-silicate Fe isotope fractionation and the resulting temperature calibration, while taking into account impurities in the metallic phase and temperatures of equilibration, determine that core formation could explain the observed difference between magmatic iron meteorites and chondrites if parent bodies have small cores. In order to verify that Rayleigh distillation during fractional crystallization was not a cause of iron isotope fractionation in iron meteorites, we measured

  2. Synthesis and characterization of iron based nanoparticles for novel applications

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa

    The work in this thesis has been focused on the fabrication and characterization of iron based nanoparticles with controlled size and morphology with the aim: (i) to investigate their properties for potential applications in MICR toners and biomedical field and (ii) to study finite size effects on the magnetic properties of the nanoparticles. For the biomedical applications, core/shell structured iron/iron-oxide and hollow shell nanoparticles were synthesized by thermal decomposition of iron organometallic compounds [Fe(CO)5] at high temperature. Core/shell structured iron/iron-oxide nanoparticles have been prepared in the presence of oleic acid and oleylamine. Particle size and composition was controlled by varying the reaction parameters during synthesis. The as-made particles are hydrophobic and not dispersible in water. Water dispersibility was achieved by ligand exchange a with double hydrophilic diblock copolymer. Relaxometery measurements of the transverse relaxation time T2 of the nanoparticles solution at 3 Tesla confirm that the core/shell nanoparticles are an excellent MRI contrast agent using T2 weighted imaging sequences. In comparison to conventionally used iron oxide nanoparticles, iron/iron-oxide core/shell nanoparticles offer four times stronger T2 shortening effect at comparable core size due to their higher magnetization. The magnetic properties were studied as a function of particle size, composition and morphology. Hollow nanostructures are composed of randomly oriented grains arranged together to make a shell layer and make an interesting class of materials. The hollow morphology can be used as an extra degree of freedom to control the magnetic properties. Owing to their hollow morphology, they can be used for the targeted drug delivery applications by filling the drug inside their cavity. For the magnetic toners applications, particles were synthesized by chemically reducing iron salt using sodium borohydride and then coated with polyethylene

  3. Properties of iron under core conditions

    NASA Astrophysics Data System (ADS)

    Brown, J. M.

    2003-04-01

    Underlying an understanding of the geodynamo and evolution of the core is knowledge of the physical and chemical properties of iron and iron mixtures under high pressure and temperature conditions. Key properties include the viscosity of the fluid outer core, thermal diffusivity, equations-of-state, elastic properties of solid phases, and phase equilibria for iron and iron-dominated mixtures. As is expected for work that continues to tax technological and intellectual limits, controversy has followed both experimental and theoretical progress in this field. However, estimates for the melting temperature of the inner core show convergence and the equation-of-state for iron as determined in independent experiments and theories are in remarkable accord. Furthermore, although the structure and elastic properties of the solid inner-core phase remains uncertain, theoretical and experimental underpinnings are better understood and substantial progress is likely in the near future. This talk will focus on an identification of properties that are reasonably well known and those that merit further detailed study. In particular, both theoretical and experimental (static and shock wave) determinations of the density of iron under extreme conditions are in agreement at the 1% or better level. The behavior of the Gruneisen parameter (which determines the geothermal gradient and controls much of the outer core heat flux) is constrained by experiment and theory under core conditions for both solid and liquid phases. Recent experiments and theory are suggestive of structure or structures other than the high-pressure hexagonal close-packed (HCP) phase. Various theories and experiments for the elasticity of HCP iron remain in poor accord. Uncontroversial constraints on core chemistry will likely never be possible. However, reasonable bounds are possible on the basis of seismic profiles, geochemical arguments, and determinations of sound velocities and densities at high pressure and

  4. Core/shell nanoparticles in biomedical applications.

    PubMed

    Chatterjee, Krishnendu; Sarkar, Sreerupa; Jagajjanani Rao, K; Paria, Santanu

    2014-07-01

    Nanoparticles have several exciting applications in different areas and biomedial field is not an exception of that because of their exciting performance in bioimaging, targeted drug and gene delivery, sensors, and so on. It has been found that among several classes of nanoparticles core/shell is most promising for different biomedical applications because of several advantages over simple nanoparticles. This review highlights the development of core/shell nanoparticles-based biomedical research during approximately past two decades. Applications of different types of core/shell nanoparticles are classified in terms of five major aspects such as bioimaging, biosensor, targeted drug delivery, DNA/RNA interaction, and targeted gene delivery.

  5. Synthesis of carbon-coated iron nanoparticles by detonation technique

    SciTech Connect

    Sun, Guilei; Li, Xiaojie; Wang, Qiquan; Yan, Honghao

    2010-05-15

    Carbon-coated iron nanoparticles were synthesized by detonating a mixture of ferrocene, naphthalene and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in an explosion vessel under low vacuum conditions (8.1 kPa). The RDX functioned as an energy source for the decomposition of ferrocene and naphthalene. The carbon-coated iron nanoparticles were formed as soot-like deposits on the inner surface of the reactor, which were characterized by XRD, TEM, HRTEM, Raman spectroscopy and vibrating sample magnetometer. And a portion of the detonation soot was treated with hydrochloric acid. The product was carbon-coated nanoparticles in perfect core-shell structures with graphitic shells and bcc-Fe cores. The detonation technique offers an energy-saving route to the synthesis of carbon-coated nanomaterials.

  6. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    SciTech Connect

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan

    2016-11-23

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.

  7. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    DOE PAGES

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; ...

    2016-11-23

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and relatedmore » phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.« less

  8. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    PubMed Central

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan

    2016-01-01

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications. PMID:28335349

  9. Photo-Switching of Magnetization in Iron Nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Aqtash, Nabil; Hostetter, Alexander; Sabirianov, Renat

    2012-02-01

    We report the theoretical studies of light induced switching in core-shell nanoparticles. The core of the nanoparticle is made of Fe coated with the shell of azobenzene. The latter is a photochromic material with the reversible trans-cis photoisomerization upon irradiation by UV and visible light. The magnetization of nanoparticles can be reversibly switched by using specific wavelengths of light. trans-cis photoisomerization of azobenzene induces both the change in surface local magnetic moments and alters the exchange interactions on the surfaces of the nanoparticles. These two mechanisms can lead to induced magnetization switchable by light pulse. We study the effects of photoisomerization of azobenzene on iron (Fe) nanoparticle. Ab initio calculations using SIESTA code show that the ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction in Fe dimer increase by 40% due to photoisomerization of azobenzene. While an infinite flat Fe monolayer shows variation on the exchange interactions on the surfaces as result of photoisomerization. The local magnetic moments of Fe sheet increase by 6% due to photoisomerization. Using an ab initio parameterization of magnetic interactions, we propose statistical model based on competing exchange interactions for the investigation of Fe nanoparticle magnetization. We performed Monte Carlo simulations of magnetization of the core-shell nanoparticle as a function of temperature. The results show that Fe nanoparticles magnetization at room temperature can change by at least 40% due to photoisomerization of azobenzene.

  10. Ultrasound assisted phytosynthesis of iron oxide nanoparticle.

    PubMed

    Sathya, K; Saravanathamizhan, R; Baskar, G

    2017-11-01

    The present work deals with the ultrasound assisted green synthesis of iron oxide nano particle using Coriandrum sativum leaf extract as a reducing agent. The synthesized iron oxide nanoparticle was confirmed by UV spectra. The characterization was done to know more about morphology and size of the particle by SEM analysis which shows spherical particles with size ranging from 20 to 90nm. The antimicrobial activity of the leaf extract and the synthesized nanoparticles was studied against the pathogens Micrococcus luteus, Staphylococcus aureus and Aspergillus niger. The ultrasound assisted iron oxide nanoparticle shows higher scavenging activity and antimicrobial activity compared with iron oxide nanoparticle synthesized by magnetic stirrer and Coriandrum sativum leaf extract. Copyright © 2017. Published by Elsevier B.V.

  11. The synthesis and characterization of iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  12. Zero-valent iron nanoparticles preparation

    SciTech Connect

    Oropeza, S.; Corea, M.; Gómez-Yáñez, C.; Cruz-Rivera, J.J.; Navarro-Clemente, M.E.

    2012-06-15

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  13. Iron oxide magnetic nanoparticles: A short review

    NASA Astrophysics Data System (ADS)

    Hasany, S. F.; Rehman, A.; Jose, R.; Ahmed, I.

    2012-11-01

    Magnetic nanoparticles have been enjoying great importance and wide scale applications during the last two decades due to their specific characteristics and applications. Iron oxide magnetic nanoparticles with appropriate surface chemistry have been implied in numerous applications such as biomedicine and cancer therapy, catalysis and in magnetic separation techniques. This review summarizes recent commercial, industrial and bio-engineering applications and brief study of the methods for the preparation of iron oxide magnetic nanoparticles with a control over the size, morphology and the magnetic properties. Some future applications of microwave irradiation for magnetic particle synthesis are also addressed.

  14. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Radu, T.; Iacovita, C.; Benea, D.; Turcu, R.

    2017-05-01

    We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe3O4) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe2O3 (by oxygen dissociation) which in turn was transformed into α-Fe2O3. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  15. Enrichment and encapsulation of uranium with iron nanoparticle.

    PubMed

    Ling, Lan; Zhang, Wei-Xian

    2015-03-04

    The ability to recover uranium from water is significant because of its potential applications on nuclear fuel capture and mitigation of nuclear wastes. In this work, a unique nanostructure is presented by which trace level (2.32-882.68 μg/L) uranium can be quickly separated from water and encapsulated at the center of zero-valent iron nanoparticles. Over 90% of the uranium is recovered with 1 g/L nanoparticles in less than 2 min. Near atomic-resolution elemental mapping on the U(VI) intraparticle reactions in a single iron nanoparticle is obtained with aberration corrected scanning transmission electron microscopy, which provides direct evidence on U(VI) diffusion, reduction to U(IV), and deposition in the core area.

  16. Fe/Au Core-Shell Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sra, Amandeep; Leslie-Pelecky, Diandra

    2009-10-01

    The physical properties of nanoparticles, including size, composition and surface chemistry, greatly influence biological and pharmacological properties and, ultimately, their clinical applications. Superparamagnetic iron oxide nanoparticles are widely used for applications such as MRI contrast agents, drug delivery via magnetic targeting and hyperthermia due to their chemical stability and biocompatibility; however, enhancing the saturation magnetization (Ms) of nanoparticles would produce greater sensitivity. Our design strategy involves a bottom-up wet chemistry approach to the synthesis of Fe nanoparticles. Specific advantages of Fe are the high value of Ms (210 emu/g in bulk) coupled with low toxicity; however, Fe nanoparticles must be protected from oxidation, which causes a dramatic reduction in Ms. To circumvent oxidation, Fe nanoparticles are coated with a Au shell that prevents the oxidation of the magnetic core and also provides the nanoparticles with plasmonic properties for optical stimulation. Ligands of various functionalities can be introduced through the well established Au-thiol surface chemistry for different biomedical applications while maintaining the magnetic functionality of the Fe core. In this presentation, we will discuss the physical, chemical and magnetic properties of our Fe/Au nanoparticles and their resistance to oxidation.

  17. Water soluble dendronized iron oxide nanoparticles.

    PubMed

    Daou, T J; Pourroy, G; Greneche, J M; Bertin, A; Felder-Flesch, D; Begin-Colin, S

    2009-06-21

    The grafting of pegylated dendrons on 9(2) nm and 39(5) nm iron oxide nanoparticles in water, through a phosphonate group as coupling agent has been successfully achieved and its mechanism investigated, with a view to produce biocompatible magnetic nano-objects for biomedical applications. Grafting has been demonstrated to occur by interaction of negatively charged phosphonate groups with positively charged groups and hydroxyl at the iron oxide surface. The isoelectric point of the suspension of dendronized iron oxide nanoparticles is shifted towards lower pH as the amount of dendron increases. It reaches 4.7 for the higher grafting rate and for both particle size. Thus, the grafting of molecules using a phosphonate group allows stabilizing electrostatically the suspensions at physiological pH, a prerequisite for biomedical applications. Moreover the grafting step has been shown to preserve the magnetic properties of iron oxide nanoparticles due to super-super exchange interactions through the phosphonate group.

  18. Synthesis, Characterization, and Properties of Zero-Valent Iron Nanoparticles

    SciTech Connect

    Baer, Donald R.; Tratnyek, P. G.; Qiang, You; Amonette, James E.; Linehan, John C.; Sarathy, Vaishnavi; Nurmi, J. T.; Wang, Chong M.; Antony, Jiji

    2007-04-04

    This chapter provides an overview of synthesis, characterization and property measurements techniques important for making understanding the nature of zero valent iron nanoparticles. The chemical reactivity of nanometer-sized materials can be quite different from that of either bulk forms of a material or the individual atoms and molecules that comprise it. Advances in our ability to synthesize, visualize, characterize and model these materials have created new opportunities to control the rates and products of chemical reactions in ways not previously possible. Zero valent iron (ZVI), including non-nanoparticle forms for iron, is one of the most promising remediation technologies for the removal of mobile chlorinated hydrocarbons and reducible inorganic anions for ground water. ZVI nanoparticles may have great potential to assist environmental remediation, but there are significant scientific and technological questions that remain to be answered. Understanding of ZVI reactive metal core-shell nanoparticles requires use of particles that are as well characterized and understood as possible. In this chapter we describe the issues and provide examples that include synthesis of nanoparticles, analytical characterization of the particles and finally measurements of their chemical properties.

  19. A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration.

    PubMed

    Zhang, Yalei; Su, Yiming; Zhou, Xuefei; Dai, Chaomeng; Keller, Arturo A

    2013-12-15

    Nanoscale zerovalent iron (nZVI) has shown a high efficacy for removing heavy metals from liquid solution. However, its removal capacity has not been fully explored due to its common shell composition (FeOOH). In this study, a much higher removal capacity of Pb(II) is observed (1667 mg Pb(II)/gFe), which is over 100% higher than the highest removal capacity of nZVI reported before. High-resolution X-ray photoelectron spectroscopy (HR-XPS) reveals that through restricting the dehydration process of Fe(OH)3, nZVI can acquire a unique shell, which is composed of 45.5% Fe(OH)3 and 54.5% FeOOH. The presence of Fe(OH)3 suppresses the reduction of Pb(II), but greatly promotes the co-precipitation and adsorption of Pb(II). Combining the ratio of Fe-released to Pb-immobilized and the result of HR-XPS, a reaction between Fe(0) core, Fe(OH)3, and Pb(II) is proposed. The Fe released from the Fe(0) core leads to the core depletion, observed by transmission electron microscopy (TEM) under high Pb(II) loading. While temperature has little influence on the removal capacity, pH affects the removal capacity greatly. pH<4.5 favors Fe dissolution, while pH>4.5 promotes Pb(II) adsorption. Given the high Pb removal capacity via the Fe(OH)3 shell, nZVI can be used to remedy Pb(II) contamination.

  20. Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis.

    PubMed

    Lin, Hong-Yi; Chen, Wei-Yu; Chen, Yu-Chie

    2009-08-01

    A new type of metal-oxide-coated magnetic nanoparticles (NPs)--tantalum-oxide-coated magnetic iron oxide (Fe3O4@Ta2O5) NPs--which are used as affinity probes for selectively trapping phosphopeptides from complex samples, is demonstrated in this study. In this approach, phosphopeptide enrichment was achieved by incubating the NPs with sample solutions under microwave heating within 1 min. The NP-target species conjugates were readily isolated from samples by magnetic separation followed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometric analysis. When using human serum as the sample, phosphorylated fibrinopeptide-A-derived ions are the only ions observed in the MALDI mass spectra after enrichment by the Fe3O4@Ta2O5 NPs. Furthermore, only phosphopeptides appear in the MALDI mass spectra after using the affinity probes to selectively trap target species from the tryptic digest of a cell lysate and milk sample. The results demonstrated that the Fe3O4@Ta2O5 NPs have the capability of selectively trapping phosphorylated peptides from complex samples. The detection limit of this approach for a phosphopeptide (FQpSEEQQQTEDELQDK) was approximately 10 fmol.

  1. Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Strawbridge, R. R.; Gibson, U. J.; Zeng, Q.; Pierce, Z. E.; Savellano, M.; Tate, J. A.; Ogden, J. A.; Baker, I.; Ivkov, R.; Foreman, A. R.

    2007-02-01

    The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. Methods: MTG-B murine breast cancer cells (1 x 106) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm3 +/- 50 mm3. Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle

  2. Spectroscopic characterization of magnetic Fe3O4@Au core shell nanoparticles.

    PubMed

    Fouad, Dina M; El-Said, Waleed A; Mohamed, Mona B

    2015-04-05

    The magnetic nanoparticles iron oxide (Fe3O4) nanoparticles and iron oxide/gold core-shell (Fe3O4/Au) nanoparticles were synthesized and their catalytic photo-degradation activity towards malathion as example of organophosphorus pesticides were reported. Iron oxide (Fe3O4) magnetic nanoparticle was successfully prepared through co-precipitation method by the reduction of ferric chloride (FeCl3) using ascorbic acid. The morphology of the prepared nanoparticles was characterized by the TEM and XRD (X-ray diffraction) techniques. Degradation of 10 ppm of malathion in the presence of these nanoparticles under UV radiation was monitored using (HPLC) and UV-visible spectra. Fe3O4/Au nanoparticles showed higher efficiency in photo-degradation of malathion than Fe3O4 ones. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Spectroscopic characterization of magnetic Fe3O4@Au core shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Fouad, Dina M.; El-Said, Waleed A.; Mohamed, Mona B.

    2015-04-01

    The magnetic nanoparticles iron oxide (Fe3O4) nanoparticles and iron oxide/gold core-shell (Fe3O4/Au) nanoparticles were synthesized and their catalytic photo-degradation activity towards malathion as example of organophosphorus pesticides were reported. Iron oxide (Fe3O4) magnetic nanoparticle was successfully prepared through co-precipitation method by the reduction of ferric chloride (FeCl3) using ascorbic acid. The morphology of the prepared nanoparticles was characterized by the TEM and XRD (X-ray diffraction) techniques. Degradation of 10 ppm of malathion in the presence of these nanoparticles under UV radiation was monitored using (HPLC) and UV-visible spectra. Fe3O4/Au nanoparticles showed higher efficiency in photo-degradation of malathion than Fe3O4 ones.

  4. Chemical design of biocompatible iron oxide nanoparticles for medical applications.

    PubMed

    Ling, Daishun; Hyeon, Taeghwan

    2013-05-27

    Iron oxide nanoparticles are one of the most versatile and safe nanomaterials used in medicine. Recent progress in nanochemistry enables fine control of the size, crystallinity, uniformity, and surface properties of iron oxide nanoparticles. In this review, the synthesis of chemically designed biocompatible iron oxide nanoparticles with improved quality and reduced toxicity is discussed for use in diverse biomedical applications.

  5. Chemical Synthesis of Iron-Nickel Nanoparticles

    NASA Astrophysics Data System (ADS)

    Abel, Frank; Tzitzios, Vasilias; Hadjipanayis, George

    2015-03-01

    Equiatomic FeNi alloys undergo a phase transformation, like FePt, from a disordered fcc structure to an ordered fct structure. However, unlike FePt in Fe-Ni this transformation is very sluggish and has been only observed in heavily irradiated thin films and in meteorite samples as was recently reported.1,2 In this study, we used a high temperature chemical synthesis route to investigate the possibility of fabricating fct FeNi nanoparticles. The Iron Nickel Boron nanoparticles were made using anhydrous Iron (II) Chloride and Nickel (II) Chloride using Sodium borohydrite as a reducing agent in tetraglyme under a nitrogen hydrogen atmosphere. The high temperature of the reaction allowed for the formation of as made crystalline Iron Nickel nanoparticles without additional annealing. By changing the concentration of sodium borohydrite we were able to prepare nanoparticles either in the pure fcc phase, or in a new mixed phase. The magnetic properties were improved by increasing the concentration of Iron precursor. We obtained FeNi nanoparticles with saturation magnetization of (56 emu/g) and coercivity of (190 Oe). The particle size distribution of the FeNi particles ranged from several hundred nanometers to a half micron. Work Supported by DOE-BES-DMSE (Grants No. DE-FG02-04ER4612).

  6. Iron Nanoparticles in Reactive Environmental Barriers

    SciTech Connect

    Nuxoll, Eric E.; Shimotori, Tsutomu; Arnold, William A.; Cussler, Edward L.

    2003-09-23

    Zero-valent iron is cheap, environmentally innocuous, and effective at reducing chlorinated organics. It has, as a result, become a popular candidate for remediating aquifers contaminated with trichloroethylene and other halogenated pollutants. In this paper, we discuss one such system, where iron nanoparticles are synthesized and incorporated into polyvinyl alcohol membranes, forming water-permeable barriers to these pollutants. These barriers are tested against a variety of contaminants, including carbon tetrachloride, copper, and chromate.

  7. Process to Produce Iron Nanoparticle Lunar Dust Simulant Composite

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; McNatt, Jeremiah

    2010-01-01

    A document discusses a method for producing nanophase iron lunar dust composite simulant by heating a mixture of carbon black and current lunar simulant types (mixed oxide including iron oxide) at a high temperature to reduce ionic iron into elemental iron. The product is a chemically modified lunar simulant that can be attracted by a magnet, and has a surface layer with an iron concentration that is increased during the reaction. The iron was found to be -iron and Fe3O4 nanoparticles. The simulant produced with this method contains iron nanoparticles not available previously, and they are stable in ambient air. These nanoparticles can be mass-produced simply.

  8. Structure and magnetic properties of iron nanoparticles synthesized by chemical vapor condensation

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Jang, T. S.; Lee, D. W.; Kim, B. K.

    2004-06-01

    Iron nanoparticles were synthesized by chemical vapor condensation (CVC) without the aid of LN2 chiller. The powder synthesized at 400 °C was a mixture of amorphous and crystalline -Fe. Fully crystallized iron particles were then obtained at and above 600 °C. When the reactor temperature was 1000 °C, however, nonmagnetic -Fe was stabilized together with -Fe. The synthesized particles, mostly possessing the core-shell type structure, were all nearly spherical, but the average particle size rapidly increased as the temperature increased. The surface layer that enclosed the iron core and became thicker in smaller particles was Fe3O4 or Fe3O4-related amorphous. Except for the one synthesized at 1000 °C, the iron nanoparticles were not fully saturated. The iron nanoparticles (20 nm) synthesized at 600 °C exhibited iHc 1.0 kOe and Ms 170 emu/g.

  9. Degradation characteristics of humic acid over iron oxides/Fe 0 core-shell nanoparticles with UVA/H2O2.

    PubMed

    Nie, Yulun; Hu, Chun; Zhou, Lei; Qu, Jiuhui; Wei, Qunshan; Wang, Dongsheng

    2010-01-15

    Iron oxides coated on Fe(0) core-shell nanospheres (nIOCI) were synthesized through the reduction of ferrous sulfate aqueous solution by sodium borohydride at ambient atmosphere. The catalyst was highly effective for the degradation of humic acid (HA) in the presence of H(2)O(2) and UVA at neutral pH. Under deoxygenated conditions in the dark, the generation of hydroxyl radicals in aqueous nIOCI dispersion verified its galvanic cell-like performance, which enhanced the interfacial electron transfer and led to its higher reactivity. By the total organic carbon, the absorbance of UV(254), FTIR, the molecular weight distribution and the chemical fractional character analysis, the degradation process of HA was shown to proceed by the disappearance of aromaticity, the increase of hydrophilic fraction and aromatic ring openings into CO(2) and small organic acid. The treated HA showed much lower reactivity toward chlorine and the disinfection byproduct (DBP) formation potential was also greatly reduced. Moreover, it was found that the DBP formation potential more depended on the structure of the intermediates of HA degradation than TOC removal.

  10. Intratumoral Iron Oxide Nanoparticle Hyperthermia and Radiation Cancer Treatment.

    PubMed

    Hoopes, Pj; Strawbridge, Rr; Gibson, Uj; Zeng, Q; Pierce, Ze; Savellano, M; Tate, Ja; Ogden, Ja; Baker, I; Ivkov, R; Foreman, Ar

    2007-02-13

    The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. MTG-B murine breast cancer cells (1 × 10(6)) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm(3) +/- 50 mm(3). Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle hyperthermia

  11. Core size determination and structural characterization of intravenous iron complexes by cryogenic transmission electron microscopy.

    PubMed

    Wu, Yong; Petrochenko, Peter; Chen, Lynn; Wong, Sook Yee; Absar, Mohammad; Choi, Stephanie; Zheng, Jiwen

    2016-05-30

    Understanding physicochemical properties of intravenous (IV) iron drug products is essential to ensure the manufacturing process is consistent and streamlined. The history of physicochemical characterization of IV iron complex formulations stretches over several decades, with disparities in iron core size and particle morphology as the major source of debate. One of the main reasons for this controversy is room temperature sample preparation artifacts, which affect accurate determination of size, shape and agglomeration/aggregation of nanoscale iron particles. The present study is first to report the ultra-fine iron core structures of four IV iron complex formulations, sodium ferric gluconate, iron sucrose, low molecular weight iron dextran and ferumoxytol, using a cryogenic transmission electron microscopy (cryo-TEM) preservation technique, as opposed to the conventional room temperature (RT-TEM) technique. Our results show that room temperature preparation causes nanoparticle aggregation and deformation, while cryo-TEM preserves IV iron colloidal suspension in their native frozen-hydrated and undiluted state. In contrast to the current consensus in literature, all four IV iron colloids exhibit a similar morphology of their iron oxide cores with a spherical shape, narrow size distribution and an average size of 2nm. Moreover, out of the four tested formulations, ferumoxytol exhibits a cluster-like community of several iron carbohydrate particles which likely accounts for its large hydrodynamic size of 25nm, measured with dynamic light scattering. Our findings outline a suitable method for identifying colloidal nanoparticle core size in the native state, which is increasingly important for manufacturing and design control of complex drug formulations, such as IV iron drug products.

  12. 29. DEPENDABLE FORDATHSHELL CORE MACHINES IN THE GREY IRON FOUNDRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. DEPENDABLE FORDATH-SHELL CORE MACHINES IN THE GREY IRON FOUNDRY INJECTS SAND INTO A CLOSED CORE BOX. SOME OF THE UNITS HEAT THE CORE BOX TO FIX THE RESINS AS THE CORE REMAINS IN THE BOX, OTHERS MERELY SHAPED THE CORE SAND REQUIRING BAKING OF THE CORES TO HARDEN THEM. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  13. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    PubMed

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  14. 30. NATIONAL SHELL CORE MACHINE IN THE GREY IRON FOUNDRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. NATIONAL SHELL CORE MACHINE IN THE GREY IRON FOUNDRY AUTOMATICALLY INJECTS SAND INTO CLOSED, HEATED CORE BOXES THAT SET THE RESINS AND PERMIT A HARDENED CORE TO BE REMOVED BY THE OPERATOR. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  15. The effect of vacuum annealing on the remediation abilities of iron and iron-nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Dickinson, Michelle; Scott, Thomas B.

    2011-09-01

    Zero-valent iron nanoparticles are effective remediators of uranium from solution. It is postulated that the improved core crystallinity and the migration of impurity phases to the nanoparticle surfaces induced by annealing may improve their corrosion resistance and reactive lifespan. The ability of annealed and non-annealed Fe and FeNi nanoparticles to remediate a U-contaminated effluent from AWE, Aldermaston was investigated. Nanoparticles (of diameter typically between 0 and 100 nm) were introduced to the effluent and allowed to react for 7 days during which the liquid and nanoparticulate solids were periodically sampled. In all the systems, the maximum U-uptake occurred within 1 h of introduction, with variable efficiency. The Fe nanoparticles removed 98% of the total U from solution, resulting in a final U-concentration of <4 μg/L. A rapid release of Fe into solution was recorded early in the reaction period: attributed to limited partial dissolution of the nanoparticles. Annealing the Fe nanoparticles did not affect their efficiency but the dissolution of Fe was significantly reduced and X-ray Photoelectron Spectroscopy indicated slower progressive oxidation. The performance of the FeNi nanoparticles was significantly improved by annealing, with U-uptake increasing from 50 to 94%. Although the dissolution of Ni was completely inhibited by annealing, the Fe dissolution increased compared to that observed for the non-annealed FeNi nanoparticles, in contrast to behaviour exhibited by Fe-annealed nanoparticles. In all the systems, U was reduced to U(IV) and retained on the surfaces of the nanoparticulate solids for up to 48 h; the U-stability was not affected by annealing the Fe or the FeNi nanoparticles before use.

  16. Oral exposure to polystyrene nanoparticles effects iron absorption

    USDA-ARS?s Scientific Manuscript database

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron trans...

  17. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface

  18. Hybrid response surface methodology-genetic algorithm optimization of ultrasound-assisted transesterification of waste oil catalysed by immobilized lipase on mesoporous silica/iron oxide magnetic core-shell nanoparticles.

    PubMed

    Karimi, Mahmoud; Keyhani, Alireza; Akram, Asadolah; Rahman, Masoud; Jenkins, Bryan; Stroeve, Pieter

    2013-01-01

    The production ofbiodiesel by transesterification of waste cooking oil (WCO) to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy demand. An environmentally benign process for the enzymatic transesterification using immobilized lipase has attracted considerable attention for biodiesel production. Here, a superparamagnetic, high surface area substrate for lipase immobilization is evaluated. These immobilization substrates are composed of mesoporous silica/superparamagnetic iron oxide core-shell nanoparticles. The effects of methanol ratio to WCO, lipase concentration, water content and reaction time on the synthesis of biodiesel were analysed by utilizing the response surface methodology (RSM). A quadratic response surface equation for calculating fatty acid methyl ester (FAME) content as the objective function was established based on experimental data obtained in accordance with the central composite design. The RSM-based model was then used as the fitness function for genetic algorithm (GA) to optimize its input space. Hybrid RSM-GA predicted the maximum FAME content (91%) at the optimum level of medium variables: methanol ratio to WCO, 4.34; lipase content, 43.6%; water content, 10.22%; and reaction time, 6h. Moreover, the immobilized lipase could be used for four times without considerable loss of the activity.

  19. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    DOE PAGES

    Antony, Jiji; Nutting, Joseph; Baer, Donald R.; ...

    2006-01-01

    Nmore » anoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7 ∘ C . Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM). The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET) process are size-dependent and compared with the calculated data.« less

  20. 28. CORE STORAGE AREA OF THE GREY IRON FOUNDRY SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. CORE STORAGE AREA OF THE GREY IRON FOUNDRY SHOWING CORES THAT WILL BE USED TO CREATE INTERIOR WALLS OF SMALL BALL VALVES, FOREGROUND, AND LARGE GATE VALVES, BACKGROUND. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  1. Iron Oxide Nanoparticles: An Insight into their Biomedical Applications

    PubMed

    Couto, Diana; Freitas, Marisa; Carvalho, Félix; Fernandes, Eduarda

    2015-05-15

    Iron oxide nanoparticles (IONs) are among the most common types of nanoparticles (NPs) used in biomedical applications. IONs can be presented in different forms [e.g. magnetite (Fe3O4), hematite (α-Fe2O3) and maghemite (γ- Fe2O3)], and are usually coated with substances and/or polymers according to the purpose for which they are intended to be used. In recent years, IONs use has been increasing exponentially in many fields of biomedicine, namely in magnetic resonance imaging, cell sorting, tissue repair, induction of hyperthermia and drug delivery, among others. This review aims to provide an update on the different IONs and the substances and/or polymers that can be used to coat the IONs core as well as their applications and biological properties, namely their biodistribution in the human body and their cellular internalization pathways.

  2. Polymer/Iron Oxide Nanoparticle Composites--A Straight Forward and Scalable Synthesis Approach.

    PubMed

    Sommertune, Jens; Sugunan, Abhilash; Ahniyaz, Anwar; Bejhed, Rebecca Stjernberg; Sarwe, Anna; Johansson, Christer; Balceris, Christoph; Ludwig, Frank; Posth, Oliver; Fornara, Andrea

    2015-08-20

    Magnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle) and magnetic multi-core nanoparticles (with several magnetic cores per particle). Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION) in a range of polymer matrices of choice, such as poly(styrene), poly(lactid acid), poly(methyl methacrylate), and poly(caprolactone). Multi-core particles were obtained within the Z-average size range of 130 to 340 nm. With the aim to combine the fast room temperature magnetic relaxation of small individual cores with high magnetization of the ensemble of SPIONs, we used small (<10 nm) core nanoparticles. The performed synthesis is highly flexible with respect to the choice of polymer and SPION loading and gives rise to multi-core particles with interesting magnetic properties and magnetic resonance imaging (MRI) contrast efficacy.

  3. Polymer/Iron Oxide Nanoparticle Composites—A Straight Forward and Scalable Synthesis Approach

    PubMed Central

    Sommertune, Jens; Sugunan, Abhilash; Ahniyaz, Anwar; Stjernberg Bejhed, Rebecca; Sarwe, Anna; Johansson, Christer; Balceris, Christoph; Ludwig, Frank; Posth, Oliver; Fornara, Andrea

    2015-01-01

    Magnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle) and magnetic multi-core nanoparticles (with several magnetic cores per particle). Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION) in a range of polymer matrices of choice, such as poly(styrene), poly(lactid acid), poly(methyl methacrylate), and poly(caprolactone). Multi-core particles were obtained within the Z-average size range of 130 to 340 nm. With the aim to combine the fast room temperature magnetic relaxation of small individual cores with high magnetization of the ensemble of SPIONs, we used small (<10 nm) core nanoparticles. The performed synthesis is highly flexible with respect to the choice of polymer and SPION loading and gives rise to multi-core particles with interesting magnetic properties and magnetic resonance imaging (MRI) contrast efficacy. PMID:26307966

  4. Synthesis and Properties of Magnetic-Optical Core-Shell Nanoparticles.

    PubMed

    Kwizera, Elyahb Allie; Chaffin, Elise; Wang, Yongmei; Huang, Xiaohua

    2017-03-19

    Due to their high integrity, facile surface chemistry, excellent stability, and dual properties from the core and shell materials, magnetic-plasmonic core-shell nanoparticles are of great interest across a number of science, engineering and biomedical disciplines. They are promising for applications in a broad range of areas including catalysis, energy conversion, biological separation, medical imaging, disease detection and treatment. The technological applications have driven the need for high quality nanoparticles with well controlled magnetic and optical properties. Tremendous progress has been made during past few decades in synthesizing and characterizing magnetic-plasmonic core-shell nanoparticles, mainly iron oxide-gold core-shell nanoparticles. This review introduces various approaches for the synthesis of spherical and anisotropic magnetic-plasmonic core-shell nanoparticles focusing on iron oxide-gold core-shell nanoparticles. Growth mechanisms are discussed to provide understanding of the key factors controlling shape-controlled synthesis. Magnetic and optical properties are summarized from both computational and experimental studies.

  5. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  6. The convenient preparation of stable aryl-coated zerovalent iron nanoparticles

    PubMed Central

    Guselnikova, Olga A; Galanov, Andrey I; Gutakovskii, Anton K

    2015-01-01

    Summary A novel approach for the in situ synthesis of zerovalent aryl-coated iron nanoparticles (NPs) based on diazonium salt chemistry is proposed. Surface-modified zerovalent iron NPs (ZVI NPs) were prepared by simple chemical reduction of iron(III) chloride aqueous solution followed by in situ modification using water soluble arenediazonium tosylate. The resulting NPs, with average iron core diameter of 21 nm, were coated with a 10 nm thick organic layer to provide long-term protection in air for the highly reactive zerovalent iron core up to 180 °C. The surface-modified iron NPs possess a high grafting density of the aryl group on the NPs surface of 1.23 mmol/g. FTIR spectroscopy, XRD, HRTEM, TGA/DTA, and elemental analysis were performed in order to characterize the resulting material. PMID:26171295

  7. Iron oxide/niobium oxide core-shell magnetic nanoparticle-based phosphopeptide enrichment from biological samples for MALDI MS analysis.

    PubMed

    Lin, Hong-Yi; Chen, Wei-Yu; Chen, Yu-Chie

    2009-04-01

    The feasibility of using niobium oxide-coated magnetic nanoparticles (NPs) as affinity probes for selectively trapping phosphopeptides from peptide mixtures including tryptic digest of caseins, serum, and cell lysate was demonstrated in this study. Phosphopeptide enrichment was rapid when subjecting these systems to microwave heating for 1 min; the probe-target species, which were readily isolated through magnetic separation, were then analyzed using matrix-assisted laser desorption/ ionization mass spectrometry (MALDI MS). Only signals for phosphopeptides were present in the resulting mass spectra. The detection limit for monophosphopeptide was as low as 5 fmol.

  8. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    PubMed Central

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  9. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    NASA Astrophysics Data System (ADS)

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-02-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures.

  10. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves.

    PubMed

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-02-23

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5-20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures.

  11. Preparation and characterization of thermosensitive PNIPAA-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Shengmao; Zhang, Linna; He, Benfang; Wu, Zhishen

    2008-08-01

    A new and facile approach was established to fabricate thermoresponsive poly(N-isopropylacrylamide) (PNIPAA) coated iron oxide nanoparticles in a non-aqueous medium. The morphology and structure of the nanoparticle-doped composite were analyzed by means of transmission electron microscopy (TEM), x-ray powder diffraction (XRD), and Fourier transformation infrared spectrometry (FTIR). The thermosensitivity of the composite was also investigated. Results indicated that the oil-soluble iron oxide nanoparticles encapsulated with PNIPAA, composed of an inorganic iron oxide core and biocompatible PNIPAA shell, were dispersed well in water and had a sphere-like shape. The PNIPAA-coated iron oxide nanoparticles with such a kind of core-shell structure showed excellent thermosensitivity. Namely, the aqueous suspension of PNIPAA-coated iron oxide nanoparticles dramatically changed from transparent to opaque as the temperature increased from room temperature to 38 °C, showing potential as optical transmittance switch materials and their significance in the fields of protein adsorption and purification controlled release, and drug delivery.

  12. Long term in vivo biotransformation of iron oxide nanoparticles.

    PubMed

    Levy, Michael; Luciani, Nathalie; Alloyeau, Damien; Elgrabli, Dan; Deveaux, Vanessa; Pechoux, Christine; Chat, Sophie; Wang, Guillaume; Vats, Nidhi; Gendron, François; Factor, Cécile; Lotersztajn, Sophie; Luciani, Alain; Wilhelm, Claire; Gazeau, Florence

    2011-06-01

    The long term outcome of nanoparticles in the organism is one of the most important concerns raised by the development of nanotechnology and nanomedicine. Little is known on the way taken by cells to process and degrade nanoparticles over time. In this context, iron oxide superparamagnetic nanoparticles benefit from a privileged status, because they show a very good tolerance profile, allowing their clinical use for MRI diagnosis. It is generally assumed that the specialized metabolism which regulates iron in the organism can also handle iron oxide nanoparticles. However the biotransformation of iron oxide nanoparticles is still not elucidated. Here we propose a multiscale approach to study the fate of nanomagnets in the organism. Ferromagnetic resonance and SQUID magnetization measurements are used to quantify iron oxide nanoparticles and follow the evolution of their magnetic properties. A nanoscale structural analysis by electron microscopy complements the magnetic follow-up of nanoparticles injected to mice. We evidence the biotransformation of superparamagnetic maghemite nanoparticles into poorly-magnetic iron species probably stored into ferritin proteins over a period of three months. A putative mechanism is proposed for the biotransformation of iron-oxide nanoparticles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Effects of coating spherical iron oxide nanoparticles

    SciTech Connect

    Milosevic, Irena; Motte, Laurence; Aoun, Bachir; Li, Tao; Ren, Yang; Sun, Chengjun; Saboungi, Marie-Louise

    2017-01-01

    We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazu and Dr. Federica Migliardo.

  14. Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.

    2017-10-01

    Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte (;Fe-PolyM3;) assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.

  15. Characterization of the oleic acid/iron oxide nanoparticle interface by magnetic resonance

    NASA Astrophysics Data System (ADS)

    Masur, S.; Zingsem, B.; Marzi, T.; Meckenstock, R.; Farle, M.

    2016-10-01

    The synthesis of colloidal nanoparticles involves surfactant molecules, which bind to the particle surface and stabilize nanoparticles against aggregation. In many cases these protecting shells also can be used for further functionalization. In this study, we investigated monodisperse single crystalline iron oxide core/shell nanoparticles (FexOy-NPs) in situ covered with an oleic acid layer which showed two electron spin resonance (ESR) signals. The nanoparticles with the ligands attached were characterized by transmission electron microscopy (TEM) and ferro- and paramagnetic resonance (FMR, EPR). Infrared spectroscopy confirmed the presence of the functional groups and revealed that the oleic acid (OA) is chemisorbed as a carboxylate on the iron oxide and is coordinated symmetrically to the oxide atoms. We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle.

  16. Oral exposure to polystyrene nanoparticles affects iron absorption

    NASA Astrophysics Data System (ADS)

    Mahler, Gretchen J.; Esch, Mandy B.; Tako, Elad; Southard, Teresa L.; Archer, Shivaun D.; Glahn, Raymond P.; Shuler, Michael L.

    2012-04-01

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron transport in an in vitro model of the intestinal epithelium and an in vivo chicken intestinal loop model. Intestinal cells that are exposed to high doses of nanoparticles showed increased iron transport due to nanoparticle disruption of the cell membrane. Chickens acutely exposed to carboxylated particles (50 nm in diameter) had a lower iron absorption than unexposed or chronically exposed birds. Chronic exposure caused remodelling of the intestinal villi, which increased the surface area available for iron absorption. The agreement between the in vitro and in vivo results suggests that our in vitro intestinal epithelium model is potentially useful for toxicology studies.

  17. Oral exposure to polystyrene nanoparticles affects iron absorption.

    PubMed

    Mahler, Gretchen J; Esch, Mandy B; Tako, Elad; Southard, Teresa L; Archer, Shivaun D; Glahn, Raymond P; Shuler, Michael L

    2012-02-12

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron transport in an in vitro model of the intestinal epithelium and an in vivo chicken intestinal loop model. Intestinal cells that are exposed to high doses of nanoparticles showed increased iron transport due to nanoparticle disruption of the cell membrane. Chickens acutely exposed to carboxylated particles (50 nm in diameter) had a lower iron absorption than unexposed or chronically exposed birds. Chronic exposure caused remodelling of the intestinal villi, which increased the surface area available for iron absorption. The agreement between the in vitro and in vivo results suggests that our in vitro intestinal epithelium model is potentially useful for toxicology studies.

  18. Application of iron magnetic nanoparticles in protein immobilization.

    PubMed

    Xu, Jiakun; Sun, Jingjing; Wang, Yuejun; Sheng, Jun; Wang, Fang; Sun, Mi

    2014-08-04

    Due to their properties such as superparamagnetism, high surface area, large surface-to-volume ratio, easy separation under external magnetic fields, iron magnetic nanoparticles have attracted much attention in the past few decades. Various modification methods have been developed to produce biocompatible magnetic nanoparticles for protein immobilization. This review provides an updated and integrated focus on the fabrication and characterization of suitable magnetic iron nanoparticle-based nano-active materials for protein immobilization.

  19. Structure of carbohydrate-bound polynuclear iron oxyhydroxide nanoparticles in parenteral formulations.

    PubMed

    Kudasheva, Dina S; Lai, Jriuan; Ulman, Abraham; Cowman, Mary K

    2004-11-01

    Intravenous iron therapy is used to treat anemia associated with chronic kidney disease. The chemical structures of parenteral iron agents have not been characterized in detail, and correlations between structure, efficiency of iron delivery, and toxicity via catalysis of oxygen-derived free radical creation remain to be established. In this study, two formulations of parenteral iron have been characterized by absorption spectroscopy, X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis. The samples studied were Venofer (Iron Sucrose Injection, USP) and Ferrlecit (Sodium Ferric Gluconate in Sucrose Injection). The 250-800-nm absorption spectra and the XRD patterns showed that both formulations contain a mineral core composed of iron oxyhydroxide in the beta-FeOOH mineral polymorph known as akaganeite. This was further confirmed for each formulation by imaging using TEM and AFM. The average core size for the nanoparticles, after dialysis to remove unbound or loosely bound carbohydrate, was approximately 3+/-2 nm for the iron-sucrose, and approximately 2+/-1 nm for the iron-gluconate. Each of the nanoparticles consists of a mineral core, surrounded by a layer of bound carbohydrate. The overall diameter of the average bead in the dialyzed preparations was approximately 7+/-4 nm for the iron-sucrose, and 3+/-1 nm for the iron-gluconate. Undialyzed preparations have particles with larger average sizes, depending on the extent of dilution of unbound and loosely bound carbohydrate. At a dilution corresponding to a final Fe concentration of 5 mg/mL, the average particle diameter in the iron-sucrose formulation was approximately 22+/-9 nm, whereas that of the iron-gluconate formulation was approximately 12+/-5 nm.

  20. Size analysis of single-core magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ludwig, Frank; Balceris, Christoph; Viereck, Thilo; Posth, Oliver; Steinhoff, Uwe; Gavilan, Helena; Costo, Rocio; Zeng, Lunjie; Olsson, Eva; Jonasson, Christian; Johansson, Christer

    2017-04-01

    Single-core iron-oxide nanoparticles with nominal core diameters of 14 nm and 19 nm were analyzed with a variety of non-magnetic and magnetic analysis techniques, including transmission electron microscopy (TEM), dynamic light scattering (DLS), static magnetization vs. magnetic field (M-H) measurements, ac susceptibility (ACS) and magnetorelaxometry (MRX). From the experimental data, distributions of core and hydrodynamic sizes are derived. Except for TEM where a number-weighted distribution is directly obtained, models have to be applied in order to determine size distributions from the measurand. It was found that the mean core diameters determined from TEM, M-H, ACS and MRX measurements agree well although they are based on different models (Langevin function, Brownian and Néel relaxation times). Especially for the sample with large cores, particle interaction effects come into play, causing agglomerates which were detected in DLS, ACS and MRX measurements. We observed that the number and size of agglomerates can be minimized by sufficiently strong diluting the suspension.

  1. Iron oxide nanoparticle enhancement of radiation cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mazur, Courtney M.; Tate, Jennifer A.; Strawbridge, Rendall R.; Gladstone, David J.; Hoopes, P. Jack

    2013-02-01

    Iron oxide nanoparticles (IONPs) have been investigated as a promising means for inducing tumor cell-specific hyperthermia. Although the ability to generate and use nanoparticles that are biocompatible, tumor specific, and have the ability to produce adequate cytotoxic heat is very promising, significant preclinical and clinical development will be required for clinical efficacy. At this time it appears using IONP-induced hyperthermia as an adjunct to conventional cancer therapeutics, rather than as an independent treatment, will provide the initial IONP clinical treatment. Due to their high-Z characteristics, another option is to use intracellular IONPs to enhance radiation therapy without excitation with AMF (production of heat). To test this concept IONPs were added to cell culture media at a concentration of 0.2 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for either 48 or 72 hours. Extracellular iron was then removed and all cells were irradiated at 4 Gy. Although samples incubated with IONPs for 48 hrs did not demonstrate enhanced post-irradiation cytotoxicity as compared to the non-IONP-containing cells, cells incubated with IONPs for 72 hours, which contained 40% more Fe than 48 hr incubated cells, showed a 25% decrease in clonogenic survival compared to their non-IONP-containing counterparts. These results suggest that a critical concentration of intracellular IONPs is necessary for enhancing radiation cytotoxicity.

  2. Two-component magnetic structure of iron oxide nanoparticles mineralized in Listeria innocua protein cages

    NASA Astrophysics Data System (ADS)

    Usselman, Robert J.; Klem, Michael T.; Russek, Stephen E.; Young, Mark; Douglas, Trevor; Goldfarb, Ron B.

    2010-06-01

    Magnetometry was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within Listeria innocua protein cage. The electron magnetic resonance spectrum shows the presence of at least two magnetization components. The magnetization curves are explained by a sum of two Langevin functions in which each filled protein cage contains both a large magnetic iron oxide core plus an amorphous surface consisting of small noncoupled iron oxide spin clusters. This model qualitatively explains the observed decrease in the temperature dependent saturation moment and removes an unrealistic temperature dependent increase in the particle moment often observed in nanoparticle magnetization measurements.

  3. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    PubMed

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles.

  4. The Earth's Core and the Phase Diagram of Iron

    NASA Astrophysics Data System (ADS)

    Anderson, O. L.

    1982-08-01

    The phase diagram of iron is presented for P <= 330 GPa. The melting curve is derived from Stevenson's generalized form of Lindemann's law, successfully connecting the low-pressure (5-20 GPa) measurements to the new shock-wave measurements of 250 GPa. The isothermal equation of state of ɛ -iron (h.c.p.) and γ -iron (f.c.c.), indicate that the inner core density is that of pure solid iron. The present experiments cannot distinguish between the ɛ or γ phase for the inner core, but preference is given to γ -iron. From these constructions, it is concluded that the melting temperature of iron at the inner core - outer core boundary pressure, Tmi (i.c.b.), is 5200-6600 K. A likely model of the outer core temperature is presented by taking 5800 K as the probable value of Tmi (i.c.b.), and assuming a temperature drop of 1000 K due to chemically induced melting point depression. This yields 3620 K for the T of the core side of the core-mantle boundary (c.m.b.). This model results in a large Δ T (D' '), (700 K), at the c.m.b., but the shock-wave data also allow other models where Δ T (D' ') is less. A numerical experiment reveals that the value for Δ T (D' ') of 700 K does not lead to distortion of the density profile. The (γ -ɛ -liquid) triple point is beyond the i.c.b. Thus, diluted γ -iron in the liquid phase constitutes the outer core. The experiments support a thermally driven model of the geomagnetic dynamo, and further support a model of a slowly freezing inner core for the energy source.

  5. Design of Fucoidan Functionalized - Iron Oxide Nanoparticles for Biomedical Applications.

    PubMed

    Tran, Khanh Nghia; Tran, Phuong Ha-Lien; Vo, Toi Van; Tran, Thao Truong-Dinh

    2016-01-01

    This research aims to develop an iron oxide nanoparticle drug delivery system utilizing a recent material discovered from ocean, fucoidan. The material has drawn much interest due to many biomedical functions that have been proven for human health. One interesting point herein is that fucoidan is not only a sulfated polysaccharide, a polymer for stabilization of iron oxide nanoparticles, but plays a role of an anticancer agent also. Various approaches were investigated to optimize the high loading efficiency and explain the mechanism of nanoparticle formations. Fucoidan was functionalized on iron oxide nanoparticles by a direct coating or via amine groups. Also, a hydrophobic part of oleic acid was conjugated to the amine groups for a more favorable loading of poorly water-soluble anticancer drugs. This study proposed a novel system and an efficient method to functionalize fucoidan on iron oxide nanoparticle systems which will lead to a facilitation of a double strength treatment of cancer.

  6. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chamorro, Susana; Gutiérrez, Lucía; Vaquero, María Pilar; Verdoy, Dolores; Salas, Gorka; Luengo, Yurena; Brenes, Agustín; José Teran, Francisco

    2015-05-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.

  7. Safety assessment of chronic oral exposure to iron oxide nanoparticles.

    PubMed

    Chamorro, Susana; Gutiérrez, Lucía; Vaquero, María Pilar; Verdoy, Dolores; Salas, Gorka; Luengo, Yurena; Brenes, Agustín; José Teran, Francisco

    2015-05-22

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.

  8. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  9. Morphology of Iron-Oxide Nanoparticle-Dispersed Glass Composites

    NASA Astrophysics Data System (ADS)

    Taketomi, Susamu

    2004-10-01

    We obtained dispersed-nanocrystal/glass composites by impregnating amorphous yttrium iron garnet (YIG) nanoparticles (produced by an alkoxide method) into the 49 nm diameter pores in the spongelike structure of porous silica glass (controlled pore glass or CPG) followed by heat treatment at 1000°C for 0.1 h. We observed the surface and cross section of the sample by field emission scanning electron microscopy (FE-SEM). The backscattered electron image (BSEI) of the sample surface clearly showed the nanoparticles while the secondary electron image (SEI) showed them obscurely. A similar observation of the sample cross section revealed that the CPG fused together ˜2 μm in depth from the surface while its inner core preserved the spongelike network structure. The particles were independently dispersed with sizes ranging from 20 nm to 40 nm in this fused shell with an average particle density of approximately 100 μm-2. No particles were found in the inner core. Even in the fused shell, no particles were found in those areas in which the spongelike structure was preserved. It is concluded that the particles act as seeds for triggering the fusion of the spongelike glass.

  10. Bubble nucleation and migration in a lead–iron hydr(oxide) core–shell nanoparticle

    PubMed Central

    Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; Wang, Junling; Asta, Mark; Zheng, Haimei

    2015-01-01

    Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O2 gas and H2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometric phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. Our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration. PMID:26438864

  11. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gabbasov, Raul; Polikarpov, Michael; Cherepanov, Valery; Chuev, Michael; Mischenko, Iliya; Lomov, Andrey; Wang, Andrew; Panchenko, Vladislav

    2015-04-01

    Water soluble magnetite iron oxide nanoparticles with oleic polymer coating and average diameters in the range of 5-25 nm, previously determined by TEM, were characterized using Mössbauer, magnetization and X-ray diffraction measurements. Comparative analysis of the results demonstrated a large diversity of magnetic relaxation regimes. Analysis showed the presence of an additional impurity component in the 25 nm nanoparticles, with principally different magnetic nature at the magnetite core. In some cases, X-ray diffraction measurements were unable to estimate the size of the magnetic core and Mössbauer data were necessary for the correct interpretation of the experimental results.

  12. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core–PNIPAM Shell Nanoparticles

    PubMed Central

    2015-01-01

    Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. “Grafting-to” and “grafting-from” methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction. PMID:26270412

  13. Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina

    2014-07-01

    Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a

  14. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers

    PubMed Central

    Wahajuddin; Arora, Sumit

    2012-01-01

    A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite) or Fe3O4 (magnetite) particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to be resolved before they can be moved from bench top to bedside. PMID:22848170

  15. Synthesis of amino-group functionalized superparamagnetic iron oxide nanoparticles and applications as biomedical labeling probes

    NASA Astrophysics Data System (ADS)

    Ma, Ming; Zhan, Yanqiang; Shen, Yaqi; Xia, Xing; Zhang, Suming; Liu, Zuli

    2011-08-01

    Superparamagnetic iron oxide (SPIO) nanoparticles were synthesized by coprecipitation technique and further functionalized with amino-group to obtain amino-group functionalized (amino-SPIO) nanoparticles. The X-ray diffraction results reveal the structure of amino-SPIO nanoparticles, from which the average iron core diameter is approximately 10 nm by calculation; while Zetasizer reveals their hydrodynamic diameter are mainly distributed in the range of 40-60 nm. These nanoparticles can be taken up by liver tissue, resulting in dramatically darkening of liver tissue under T2-magnetic resonance imaging (MRI). The spin-spin relaxivity coefficient of these nanoparticles is 179.20 mM-1 s-1 in a 1.5 T magnetic resonance system. In addition, amino-SPIO nanoparticles were conjugated to Tat (FITC) peptide and incubated with neural stem cells in vitro, the authors can detect the positive-labeling (labeled) neural stem cells showing green fluorescence, which indicates Tat (FITC) peptide-derivated amino-SPIO nanoparticles are able to enter cells. Furthermore, it was also find significant negative T2 contrast enhancement when compared with the non-nanoparticles-labeled neural stem cells in T2-weighted MRI. The amino-SPIO nanoparticles show promising potential as a new type of labeling probes, which can be used in magnetic resonance-enhanced imaging and fluorescence diagnosis.

  16. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    NASA Astrophysics Data System (ADS)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  17. Iron oxide nanoparticles: the Influence of synthesis method and size on composition and magnetic properties

    SciTech Connect

    Carvalho, M.D.; Godinho, M.; Cruz, M.M.

    2013-05-01

    Iron oxide nanoparticles with mean diameter ranging from 7 to 20 nm were synthesized using two routes: the precipitation method in controlled atmosphere and a reduction–precipitation method under air, in some cases followed by a hydrothermal treatment. The smallest nanoparticles were obtained by the reduction–precipitation method. In order to establish the composition of the iron oxide nanoparticles and its relation with size, the morphological, structural and magnetic properties of the prepared samples were investigated using X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and SQUID magnetometry. The results allow to conclude that the nanoparticles can be essentially described as Fe3–xO₄, x decreasing with the particle size increase. The composition and magnetic behavior of the synthesized iron oxide nanoparticles are directly related with their size. The overall results are compatible with a core@shell structure model, where a magnetite core is surrounded by an oxidized magnetite layer (labeled as maghemite), the magnetite core dimension depending on the average particle size. - Graphical abstract: TEM images and Mössbauer spectroscopy spectra of Fe3–xO₄ samples with different sizes. Highlights: • Fe3–xO₄ nanoparticles with a mean size between 7 and 20 nm were synthesized. • The smallest nanoparticles were obtained by a reduction precipitation method, under air. • The increase of particles size was succeeded using a hydrothermal treatment at 150 °C. • The magnetic properties of the nanoparticles are directly related with their size.

  18. The structure of iron in Earth's inner core.

    PubMed

    Tateno, Shigehiko; Hirose, Kei; Ohishi, Yasuo; Tatsumi, Yoshiyuki

    2010-10-15

    Earth's solid inner core is mainly composed of iron (Fe). Because the relevant ultrahigh pressure and temperature conditions are difficult to produce experimentally, the preferred crystal structure of Fe at the inner core remains uncertain. Static compression experiments showed that the hexagonal close-packed (hcp) structure of Fe is stable up to 377 gigapascals and 5700 kelvin, corresponding to inner core conditions. The observed weak temperature dependence of the c/a axial ratio suggests that hcp Fe is elastically anisotropic at core temperatures. Preferred orientation of the hcp phase may explain previously observed inner core seismic anisotropy.

  19. Iron snow in the cores of Ganymede and the Moon

    NASA Astrophysics Data System (ADS)

    Ruckriemen-Bez, T.; Breuer, D.; Spohn, T.

    2016-12-01

    Crystallization in low-pressure Fe-FeS cores of small planetary bodies likely starts at the top of the core instead of at the bottom (e.g. Williams, 2009). A potential consequence is the emergence of a snow zone with settling iron crystals on top of a deeper liquid core that convects due to the remelting of those iron crystals (Hauck et al., 2006). In the iron snow regime, the lifetime of a compositionally driven dynamo is determined by the time period that it takes for the snow zone to grow across the entire core. Those lifetimes are found to be in the order of 100 Myr to 1 Gyr for Ganymede depending on the core cooling rate and the initial amount of sulfur (Rückriemen et al., 2015). In the present study we are focusing on Ganymede and the Moon. Ganymede has a present-day intrinsic magnetic field and the Moon had a considerable magnetic field between at least 4.2 and 3.6 Ga before present. Both magnetic fields are likely not generated by thermal convection, because the core heat flux becomes subadiabatic within the first few hundred million years of the evolution (e.g. Breuer et al., 2006). We present 1D thermo-chemical evolution models considering core crystallization and show that the iron snow regime occurs for a broad range of sulfur concentrations in the cores of both bodies. While Ganymede's field can be explained by compositional convection in the iron snow regime, the Moon's field is unlikely to have been generated in the context of iron snow. In the latter case the dynamo lifetime is too short (< 100 Myr) to explain the observations. This suggests that explaining the Moon's past magnetic field with compositional convection in a Fe-FeS core turns out to be difficult. If Ganymede's magnetic field is generated by compositional convection in the iron snow regime, Ganymede's core should not have a solid inner iron core at the present day.

  20. Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2016-11-01

    Enshrined in this review are the biogenic fabrication and applications of coated and uncoated iron and iron oxide nanoparticles. Depending on their magnetic properties, they have been used in the treatment of cancer, drug delivery system, MRI, and catalysis and removal of pesticides from potable water. The polymer-coated iron and iron oxide nanoparticles are made biocompatible, and their slow release makes them more effective and lasting. Their cytotoxicity against microbes under aerobic/anaerobic conditions has also been discussed. The magnetic moment of superparamagnetic iron oxide nanoparticles changes with their interaction with biomolecules as a consequence of which their size decreases. Their biological efficacy has been found to be dependent on the shape, size, and concentration of these nanoparticles.

  1. In Situ Study of Fe3Pt-Fe2O3 Core-Shell Nanoparticle Formation.

    PubMed

    Liang, Wen-I; Zhang, Xiaowei; Zan, Yunlong; Pan, Ming; Czarnik, Cory; Bustillo, Karen; Xu, Jun; Chu, Ying-Hao; Zheng, Haimei

    2015-12-02

    We report an in situ study of Fe3Pt-Fe2O3 core-shell nanoparticle growth using liquid cell transmission electron microscopy. By controlling the Fe-to-Pt ratio in the precursor solution, we achieved the growth of nanoparticles with the formation of an iron-platinum alloy core followed by an iron oxide shell in the electron beam-induced reactions. There was no substantial change in the growth kinetics of the iron oxide shell after the Fe-Pt alloy core stopped growing. The core growth was arrested by depletion of the Pt precursor. Heteroepitaxy of Fe3Pt [101] (core)||α-Fe2O3 [111] (shell) was observed in most of the nanoparticles, while a polycrystalline iron oxide shell is developed eventually for strain relaxation. Our studies suggest that Pt atoms catalyze the reduction of Fe ions to form the Fe3Pt alloy core, and when Pt is depleted, a direct precipitation of iron oxide results in the core-shell nanostructure formation.

  2. Thermal and electrical conductivity of iron at Earth's core conditions.

    PubMed

    Pozzo, Monica; Davies, Chris; Gubbins, David; Alfè, Dario

    2012-04-11

    The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles--unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work and fit the seismologically determined core density and inner-core boundary density jump. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core.

  3. The biological properties of iron oxide core high-density lipoprotein in experimental atherosclerosis

    PubMed Central

    Skajaa, Torjus; Cormode, David P.; Jarzyna, Peter A.; Delshad, Amanda; Blachford, Courtney; Barazza, Alessandra; Fisher, Edward A.; Gordon, Ronald E.; Fayad, Zahi A.; Mulder, Willem J.M.

    2013-01-01

    Lipoproteins are a family of plasma nanoparticles responsible for the transportation of lipids throughout the body. High-density lipoprotein (HDL), the smallest of the lipoprotein family, measures 7–13 nm in diameter and consists of a cholesteryl ester and triglyceride core that is covered with a monolayer of phospholipids and apolipoproteins. We have developed an iron oxide core HDL nanoparticle (FeO-HDL), which has a lipid based fluorophore incorporated in the phospholipid layer. This nanoparticle provides contrast for optical imaging, magnetic resonance imaging (MRI) and transmission electron microscopy (TEM). Consequently, FeO-HDL can be visualized on the anatomical, cellular and sub-cellular level. In the current study we show that the biophysical features of FeO-HDL closely resemble those of native HDL and that FeO-HDL possess the ability to mimic HDL characteristics both in vitro as well as in vivo. We demonstrate that FeO-HDL can be applied to image HDL interactions and to investigate disease settings where HDL plays a key function. More generally, we have demonstrated a multimodal approach to study the behavior of biomaterials in vitro as well as in vivo. The approach allowed us to study nanoparticle dynamics in circulation, as well as nanoparticle targeting and uptake by tissues and cells of interest. Moreover, we were able to qualitatively assess nanoparticle excretion, critical for translating nanotechnologies to the clinic. PMID:20926130

  4. Effects of iron chelators, iron salts, and iron oxide nanoparticles on the proliferation and the iron content of oligodendroglial OLN-93 cells.

    PubMed

    Hohnholt, Michaela; Geppert, Mark; Dringen, Ralf

    2010-08-01

    The oligodendroglial cell line OLN-93 was used as model system to investigate the consequences of iron deprivation or iron excess on cell proliferation. Presence of ferric or ferrous iron chelators inhibited the proliferation of OLN-93 cells in a time and concentration dependent manner, while the application of a molar excess of ferric ammonium citrate (FAC) prevented the inhibition of proliferation by the chelator deferoxamine. Proliferation of OLN-93 cells was not affected by incubation with 300 microM iron that was applied in the form of FAC, FeCl(2), ferrous ammonium sulfate or iron oxide nanoparticles, although the cells efficiently accumulated iron during exposure to each of these iron sources. The highest specific iron content was observed for cells that were exposed to the nanoparticles. These data demonstrate that the proliferation of OLN-93 cells depends strongly on the availability of iron and that these cells efficiently accumulate iron from various extracellular iron sources.

  5. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml‑1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  6. Iron oxide and gold nanoparticles in cancer therapy

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  7. Iron oxide and gold nanoparticles in cancer therapy

    SciTech Connect

    Gotman, Irena Gutmanas, Elazar Y.; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.

    2016-08-02

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  8. A novel structural Fenton-like nanocatalyst with highly improved catalytic performance for generalized preparation of iron oxide@organic dye polymer core-shell nanospheres.

    PubMed

    Zhao, Guanghui; Peng, Xiaomen; Li, Hongping; Wang, Jianzhi; Zhou, Lincheng; Zhao, Tianqi; Huang, Zhihao; Jiang, Haifei

    2015-05-01

    FexOy@FexOy/C nanoparticles with a soap-bubble-like shell have been synthesized, and the materials exhibit excellent Fenton catalytic performance. More importantly, FexOy@FexOy/C nanoparticles as catalysts and precursors could catalyze organic dye molecules to form iron oxide@organic dye polymer core-shell nanospheres.

  9. Gold-Coated Cementite Nanoparticles: An Oxidation-Resistant Alternative to -Iron

    SciTech Connect

    Shultz, M.; Calvin, S; Gonzalez-Jimenez, F; Mujica, V; Alleluia, B; Carpenter, E

    2009-01-01

    Iron-based nanoparticles are desirable for many applications because of their magnetic properties and inherent biocompatibility. Metallic iron, or {alpha}-Fe, is the most sought after because of its high saturation magnetization (up to 220 emu/g). This magnetization in iron nanoparticles is difficult to reach or maintain because of the ease of oxidation, which greatly reduces the magnetization values (90 emu/g or less). Here, we report the synthesis of an iron-based nanoparticle comprising a magnetic cementite core (Fe{sub 3}C) that is more oxidation-resistant than {alpha}-Fe, an oxide layer, and a gold coating for passivation and easy functionalization. The nanoparticle structure was confirmed via X-ray absorption fine structure and Moessbauer experiments, and morphology was confirmed using transmission electron microscopy. Magnetic characterization yielded a saturation magnetization of 110 emu/g, thus demonstrating cementite as more stable alternative to {alpha}-Fe with higher magnetic moments than the iron oxides.

  10. Effect of substrate interface on the magnetism of supported iron nanoparticles.

    PubMed

    Balan, A; Fraile Rodríguez, A; Vaz, C A F; Kleibert, A; Nolting, F

    2015-12-01

    In situ X-ray photo-emission electron microscopy is used to investigate the magnetic properties of iron nanoparticles deposited on different single crystalline substrates, including Si(001), Cu(001), W(110), and NiO(001). We find that, in our room temperature experiments, Fe nanoparticles deposited on Si(001) and Cu(001) show both superparamagnetic and magnetically stable (blocked) ferromagnetic states, while Fe nanoparticles deposited on W(110) and NiO(001) show only superparamagnetic behaviour. The dependence of the magnetic behaviour of the Fe nanoparticles on the contact surface is ascribed to the different interfacial bonding energies, higher for W and NiO, and to a possible relaxation of point defects within the core of the nanoparticles on these substrates, that have been suggested to stabilise the ferromagnetic state at room temperature when deposited on more inert surfaces such as Si and Cu.

  11. Pulsed Plasma Synthesis of Iron and Nickel Nanoparticles Coated by Carbon for Medical Applications

    NASA Astrophysics Data System (ADS)

    Abdullaeva, Zhypargul; Omurzak, Emil; Iwamoto, Chihiro; Ihara, Hirotaka; Subban Ganapathy, Hullathy; Sulaimankulova, Saadat; Koinuma, Michio; Mashimo, Tsutomu

    2013-01-01

    Fe and Ni magnetic nanoparticles coated by carbon were synthesized between the Fe-Fe and Ni-Ni metal electrodes, submerged in ethanol using pulsed plasma in a liquid method. Iron coated carbon (Fe@C) nanoparticles have an average size of 32 nm, and Ni@C nanoparticles are 40 nm. Obtained samples exhibit a well-defined crystalline structure of the inner Fe and Ni cores, encapsulated in the graphitic carbon coatings. Cytotoxicity studies performed on the MCF-7 (breast cancer) cell line showed small toxicity about 88-74% at 50 µg/mL of Fe@C and Ni@C nanoparticles, which can be significant criteria for use them in medical cancer treatment. In addition, appropriate sizes, good magnetic properties and well-organized graphitic carbon coatings are highlight merits of Fe@C and Ni@C nanoparticles synthesized by pulsed plasma.

  12. Synthesis of binary iron-carbon nanoparticles by UV laser photolysis of Fe(CO)5 with various hydrocarbons

    NASA Astrophysics Data System (ADS)

    Eremin, A. V.; Gurentsov, E. V.; Musikhin, S. A.

    2016-10-01

    In this study the laser photolysis of the mixtures containing vapors of various hydrocarbons and iron pentacarbonyl was implemented to nanoparticle formation. The radiation source used for photo-dissociation of precursors was a pulsed Nd:Yag laser operated at a wavelength of 266 nm. Under UV radiation the molecules of Fe(CO)5 decomposed, forming atomic iron vapor and unsaturated carbonyls at well-known and readily controllable parameters. The subsequent condensation of supersaturated metal vapor resulted in small iron clusters and nanoparticles formation. The growth process of the nanoparticles was observed by a method of laser light extinction. Laser induced incandescence technique was applied for particle sizing during the process of their formation. Additionally nanoparticle samples were investigated by a transmission electron microscope. The particle size distribution was measured by statistical treatment of microphotographs. The elemental analysis by energy-dispersive x-ray spectroscopy and electron diffraction pattern gave the composition and structure of nanoparticles. The core-shell iron-carbon nanoparticles were synthesized by joint laser photolysis of iron pentacarbonyl with benzene and acetylene. The photolysis of the mixtures of toluene, butanol and methane with iron pentacarbonyl revealed in a pure iron particles formation which fast oxidized in air when were extracted out of the reactor.

  13. Uptake And Intracellular Distribution Of Functionalized Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Panariti, A.; Lettiero, B.; Morjan, I.; Alexandreascu, R.; Wang, D.; Bucci, C.; Miserocchi, G.; Rivolta, I.

    2010-10-01

    Iron oxide Nanoparticles represents promising nanocarrier for magnetic resonance imaging (MRI), targeted drug and gene delivery. In our study we investigated the interaction between lung alveolar epithelial cells and iron oxide NPs coated with L-Dihydroxyphenylalanina (L-Dopa)-TRITC. Our data suggest that particles crossed the plasma membrane with an energy-dependent process.

  14. Binary iron-carbon nanoparticle synthesis in photolysis of Fe(CO)5 with methane and acetylene

    NASA Astrophysics Data System (ADS)

    Eremin, A. V.; Gurentsov, E. V.; Mikheyeva, E. Yu; Musikhin, S. A.

    2016-11-01

    The experimental investigation of iron-carbon nanoparticles synthesis by joint laser photolysis of iron pentacarbonyl in the mixture with methane or acetylene has been carried out. The radiation source used for photo-dissociation of precursors was a pulsed Nd:Yag laser operated at a wavelength of 266 nm. Under uv radiation the molecules of Fe(CO)5 decomposed, forming atomic iron vapor and unsaturated carbonyls at well-known and readily controllable parameters. The subsequent condensation of supersaturated metal vapor resulted in small iron clusters and nanoparticles formation. It was assumed that the active catalytic surface of metal nanoparticles could activate the hydrocarbon molecules up to carbon layer formation on their surface. The growth process of the nanoparticles was observed by a method of laser light extinction. Additionally nanoparticle samples were investigated by a transmission electron microscope. The particle sizes were measured by microphotographs treatment. The sizes of synthesized particles from methane-iron-pentacarbonyl mixture were found to be in a range of 4-16 nm with a count median diameter of 8.9 nm and standard deviation of 1.13. These particles consisted of iron oxide without any carbon content. The particles formed in photolysis of acetylene-iron-pentacarbonyl mixture had the sizes of 3-7 nm with count median diameter of 4 nm and standard deviation of 1.28 and contained the essential amount of carbon. The iron cores were surrounded with a carbon shell.

  15. Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents.

    PubMed

    Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina

    2014-08-21

    Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 ± 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.

  16. Properties of iron alloys under the Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Morard, Guillaume; Andrault, Denis; Antonangeli, Daniele; Bouchet, Johann

    2014-05-01

    The Earth's core is constituted of iron and nickel alloyed with lighter elements. In view of their affinity with the metallic phase, their relative high abundance in the solar system and their moderate volatility, a list of potential light elements have been established, including sulfur, silicon and oxygen. We will review the effects of these elements on different aspects of Fe-X high pressure phase diagrams under Earth's core conditions, such as melting temperature depression, solid-liquid partitioning during crystallization, and crystalline structure of the solid phases. Once extrapolated to the inner-outer core boundary, these petrological properties can be used to constrain the Earth's core properties.

  17. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    PubMed Central

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-01-01

    Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200

  18. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles.

    PubMed

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-04-14

    Bimagnetic monodisperse CoFe₂O₄/Fe₃O₄ core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe₂O₄/Fe₃O₄ core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite.

  19. Probing iron at Super-Earth core conditions

    SciTech Connect

    Amadou, N.; Brambrink, E.; Vinci, T.; Benuzzi-Mounaix, A.; Huser, G.; Brygoo, S.; Morard, G.; Guyot, F.; Resseguier, T. de; Mazevet, S.; Miyanishi, K.; Ozaki, N.; Kodama, R.; Henry, O.; Raffestin, D.; Boehly, T.; and others

    2015-02-15

    In this paper, we report on the quasi-isentropic compression of an iron sample using ramp shaped laser irradiation. This technique allows us to quasi-isentropically compress iron up to 700 GPa and 8500 K. To our knowledge, these data are the highest pressures reached on iron in off-Hugoniot conditions and the closest to the thermodynamic states thought to exist in Earth-like planetary cores. The experiment was performed on the Ligne d'Intégration laser facility at CESTA, Bordeaux, France.

  20. High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles.

    PubMed

    Dung, Ngo T; Long, Nguyen Viet; Tam, Le T T; Nam, Pham H; Tung, Le D; Phuc, Nguyen X; Lu, Le T; Kim Thanh, Nguyen Th

    2017-03-07

    High magnetisation and monodisperse CoFe alloy nanoparticles are desired for a wide range of biomedical applications. However, these CoFe nanoparticles are prone to oxidation, resulting in the deterioration of their magnetic properties. In the current work, CoFe alloy nanoparticles were prepared by thermal decomposition of cobalt and iron carbonyls in organic solvents at high temperatures. Using a seeded growth method, we successfully synthesised chemically stable CoFe@Pt core/shell nanostructures. The obtained core/shell nanoparticles have high saturation magnetisation up to 135 emu g(-1). The magnetisation value of the core/shell nanoparticles remains 93 emu g(-1) after being exposed to air for 12 weeks. Hydrophobic CoFe@Pt nanoparticles were rendered water-dispersible by encapsulating with poly(maleic anhydride-alt-1-octadecene) (PMAO). These nanoparticles were stable in water for at least 3 months and in a wide range of pH from 2 to 11.

  1. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Tefft, Brandon J.; Uthamaraj, Susheil; Harburn, J. Jonathan; Klabusay, Martin; Dragomir-Daescu, Dan; Sandhu, Gurpreet S.

    2015-01-01

    Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering. PMID:26554870

  2. Strength of iron at core pressures and evidence for a weak Earth’s inner core

    SciTech Connect

    Gleason, A. E.; Mao, W. L.

    2013-05-12

    The strength of iron at extreme conditions is crucial information for interpreting geophysical observations of the Earth’s core and understanding how the solid inner core deforms. However, the strength of iron, on which deformation depends, is challenging to measure and accurately predict at high pressure. Here we present shear strength measurements of iron up to pressures experienced in the Earth’s core. Hydrostatic X-ray spectroscopy and non-hydrostatic radial X-ray diffraction measurements of the deviatoric strain in hexagonally close-packed iron uniquely determine its shear strength to pressures above 200 GPa at room temperature. Applying numerical modelling of the rheologic behaviour of iron under pressure, we extrapolate our experimental results to inner-core pressures and temperatures, and find that the bulk shear strength of hexagonally close-packed iron is only ~ 1 GPa at the conditions of the Earth’s centre, 364 GPa and 5,500 K. This suggests that the inner core is rheologically weak, which supports dislocation creep as the dominant creep mechanism influencing deformation.

  3. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  4. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles.

    PubMed

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-12-28

    The effect of nanoparticle size (30-120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T(2) relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics.

  5. Stem cell tracking using iron oxide nanoparticles.

    PubMed

    Bull, Elizabeth; Madani, Seyed Yazdan; Sheth, Roosey; Seifalian, Amelia; Green, Mark; Seifalian, Alexander M

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI) and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.

  6. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  7. Core-Shell Composite Nanoparticles: Synthesis, Characterization, and Applications

    NASA Astrophysics Data System (ADS)

    Sanyal, Sriya

    Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.

  8. Iron oxide magnetic nanoparticles synthesized by atmospheric microplasmas

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Kaur, Parvin; Tan, Augustine Tuck Lee; Singh, Rajveer; Lee, Paul Choon Keat; Springham, Stuart Victor; Ramanujan, Raju V.; Rawat, R. S.

    2014-08-01

    This paper presents the synthesis of iron oxide nanoparticles using the atmospheric microplasma (AMP). The properties of iron oxide nanoparticles synthesized using AMP are compared with particles (i) formed in as-prepared solution and (ii) prepared using thermal decomposition method. Iron oxide nanoparticles prepared by all the 3 treatment methods exhibit quite soft ferromagnetic properties with coercivities less than 10 G. The AMP synthesis technique was found to be more efficient and better than thermal decomposition method due to ultra-shorter experiment time (around 2.5 min) as compared to 90 min required for thermal decomposition method. Moreover, AMP synthesized nanoparticles are better isolated and of smaller size than thermal decomposition ones. The effect of plasma discharge timings on synthesized nanoparticles has also been studied in this work. Coercivity of synthesized nanoparticles decreases with the increasing plasma discharge timings from 3 to 10 min. The nanoparticles synthesized using plasma discharge timing of 10 min exhibit the smallest coercivity of around 3 G. This suggests a high possibility of achieving super-paramagnetic nanoparticles by optimizing the plasma discharge timings of AMP.

  9. The crystal structure of iron at the inner core

    NASA Astrophysics Data System (ADS)

    Tateno, S.; Hirose, K.; Ohishi, Y.; Tatsumi, Y.

    2010-12-01

    The Earth’s solid inner core is mainly composed of iron. Thus the crystal structure of iron is of prime importance for understanding the nature of solid inner core. Despite many efforts to investigate phase relations of iron have by dynamic and static compression, and theoretical calculation, consensus on the stable phase at the inner core condition has never been achieved. While hcp-Fe can persist to core pressures at 300 K, a phase transition at elevated temperature is a possibility. Both theory and experiments proposed different forms of iron at simultaneously high P-T conditions, which include bcc, face-centered-cubic (fcc), and hcp structures. The structure of iron has never been examined experimentally at the inner core P-T conditions (>330 GPa and ≥5000 K), because such extreme conditions could only be achieved by shock-wave compression experiments. Based on static compression experiments in a laser-heated diamond-anvil cell (DAC), we determined the structure of iron up to 377 GPa and 5700 K. Iron powder and thermal insulation layers of SiO2 glass were loaded into a hole of a pre-indented rhenium gasket placed in the For experiments beyond 300 GPa, the double-beveled diamond anvils with 40-μm culets were used, and accordingly the sample size was limited to about 20 μm. Heating was performed from both sides of the sample by employing two single mode, Yb fiber lasers with output power up to 100 W each with flat-top beam shaping optics to minimize temperature gradient across the sample. Angle-dispersive x-ray diffraction measurements were conducted at BL10XU of SPring-8. Six separate sets of experiments were conducted in a wide P-T range from 135 GPa and 2690 K to 377 GPa and 5700 K. We observed crystal growth and hence the stability of hcp-Fe at these P-T conditions with no evidence for a phase transition to bcc nor fcc iron phases. The c/a axial ratio of hcp-Fe at high temperature was also studied, which has significant effect on the nature of the

  10. Magnetic and optical properties of multifunctional core-shell radioluminescence nanoparticles

    PubMed Central

    Chen, Hongyu; Colvin, Daniel C.; Qi, Bin; Moore, Thomas; He, Jian; Mefford, O. Thompson; Alexis, Frank; Gore, John C.; Anker, Jeffrey N.

    2014-01-01

    When X-rays irradiate radioluminescence nanoparticles, they generate visible and near infrared light that can penetrate through centimeters of tissue. X-ray luminescence tomography (XLT) maps the location of these radioluminescent contrast agents at high resolution by scanning a narrow X-ray beam through the tissue sample and collecting the luminescence at every position. Adding magnetic functionality to these radioluminescent particles would enable them to be guided, oriented, and heated using external magnetic fields, while their location and spectrum could be imaged with XLT and complementary magnetic resonance imaging. In this work, multifunctional monodispersed magnetic radioluminescent nanoparticles were developed as potential drug delivery carriers and radioluminescence imaging agents. The particles consisted of a spindle-shaped magnetic γ-Fe2O3 core and a radioluminescent europium-doped gadolinium oxide shell. Particles with solid iron oxide cores displayed saturation magnetizations consistent with their ~13% core volume, however, the iron oxide quenched their luminescence. In order to increase the luminescence, we partially etched the iron oxide core in oxalic acid while preserving the radioluminescent shell. The core size was controlled by the etching time which in turn affected the particles’ luminescence and magnetic properties. Particles with intermediate core sizes displayed both strong magnetophoresis and luminescence properties. They also served as MRI contrast agents with relaxivities of up to 58 mM−1s−1 (r2) and 120 mM−1s−1 (r2*). These particles offer promising multimodal MRI/fluorescence/X-ray luminescence contrast agents. Our core-shell synthesis technique offers a flexible method to control particle size, shape, and composition for a wide range of biological applications of magnetic/luminescent nanoparticles. PMID:24520183

  11. Melting of Iron Close to the Inner Core Boundary Pressure

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Coppari, F.; Fratanduono, D. E.; Eggert, J.; Collins, G. W.

    2014-12-01

    The melting curve of iron at the pressure of the inner core boundary places a strong constraint on the thermal profile within the Earth, the heat flux to the mantle, and also the power to drive the geodynamo. Recent static diamond anvil cell measurements by Anzellini et al. 2013 have accurately measured the melting curve of iron to 200 GPa, which is a tremendous improvement in the available data but is still only 60% of the pressure at the inner core boundary, and thus requires significant extrapolation. Nguyen and Holmes, 2004, have used the sound velocity technique to measure the melting transition on the principal Hugoniot, up to 270 GPa, but some still believe that sound velocity is not an accurate diagnostic of melting as it detects a loss of strength and also that kinetics can mitigate the utility of dynamic melting techniques. Here we use in-situ x-ray diffraction to unambiguously measure the melting transition on the principal Hugoniot of iron to 270 GPa. We also show that iron melts from the hcp phase at pressures up to 270 GPa, which is significantly closer to the inner core boundary than any previous melting curve measurement capable of phase discrimination. From comparison of our measurements to those of Nguyen and Holmes, we show that sound velocity measurements can accurately constrain the melting curve and that the kinetics of melting iron are faster than both laser shock and gas gun experimental timescales. Thereby, dynamic techniques should be trusted for probing the melting curve of metals and they also offer the greatest opportunity to probe the melting curve of iron at the pressure of the inner core boundary and also the higher pressures achieved within the interiors of super-Earths. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles.

    PubMed

    Estrader, M; López-Ortega, A; Estradé, S; Golosovsky, I V; Salazar-Alvarez, G; Vasilakaki, M; Trohidou, K N; Varela, M; Stanley, D C; Sinko, M; Pechan, M J; Keavney, D J; Peiró, F; Suriñach, S; Baró, M D; Nogués, J

    2013-01-01

    The growing miniaturization demand of magnetic devices is fuelling the recent interest in bi-magnetic nanoparticles as ultimate small components. One of the main goals has been to reproduce practical magnetic properties observed so far in layered systems. In this context, although useful effects such as exchange bias or spring magnets have been demonstrated in core/shell nanoparticles, other interesting key properties for devices remain elusive. Here we show a robust antiferromagnetic (AFM) coupling in core/shell nanoparticles which, in turn, leads to the foremost elucidation of positive exchange bias in bi-magnetic hard-soft systems and the remarkable regulation of the resonance field and amplitude. The AFM coupling in iron oxide-manganese oxide based, soft/hard and hard/soft, core/shell nanoparticles is demonstrated by magnetometry, ferromagnetic resonance and X-ray magnetic circular dichroism. Monte Carlo simulations prove the consistency of the AFM coupling. This unique coupling could give rise to more advanced applications of bi-magnetic core/shell nanoparticles.

  13. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.

    PubMed

    Li, Jian-Feng; Zhang, Yue-Jiao; Ding, Song-Yuan; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2017-03-08

    Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.

  14. Gas phase synthesis of core-shell Fe@FeO x magnetic nanoparticles into fluids

    NASA Astrophysics Data System (ADS)

    Aktas, Sitki; Thornton, Stuart C.; Binns, Chris; Denby, Phil

    2016-12-01

    Sorbitol, short chain molecules, have been used to stabilise of Fe@FeO x nanoparticles produced in the gas phase under the ultra-high vacuum (UHV) conditions. The sorbitol coated Fe@FeO x nanoparticles produced by our method have a narrow size distribution with a hydrodynamic diameter of 35 nm after NaOH is added to the solution. Magnetisation measurement shows that the magnetic nanoparticles are superparamagnetic at 100 K and demonstrate hysteresis at 5 K with an anisotropy constant of 5.31 × 104 J/m3 (similar to bulk iron). Also, it is shown that sorbitol is only suitable for stabilising the Fe@FeO x suspensions, and it does not prevent further oxidation of the metallic Fe core. According to MRI measurement, the nanoparticles have a high transverse relaxation rate of 425 mM-1 s-1.

  15. Magnesium and iron nanoparticles production using microorganisms and various salts

    NASA Astrophysics Data System (ADS)

    Kaul, R. K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J. C.

    2012-09-01

    Response of five fungi and two bacteria to different salts of magnesium and iron for production of nanoparticles was studied. Pochonia chlamydosporium, and Aspergillus fumigatus were exposed to three salts of magnesium while Curvularia lunata, Chaetomium globosum, A. fumigatus, A. wentii and the bacteria Alcaligenes faecalis and Bacillus coagulans were exposed to two salts of iron for nanoparticle production. The results revealed that P. chlamydosporium induces development of extracellular nanoparticles in MgCl2 solution while A. fumigatus produces also intracellular nanoparticles when exposed to MgSO4 solution. C. globosum was found as the most effective in producing nanoparticles when exposed to Fe2O3 solution. The FTIR analysis of the nanoparticles obtained from Fe2O3 solution showed the peaks similar to iron (Fe). In general, the species of the tested microbes were selective to different chemicals in their response for synthesis of nanoparticles. Further studies on their characterization and improving the efficiency of promising species of fungi need to be undertaken before tapping their potential as nanonutrients for plants.

  16. Current directions in core-shell nanoparticle design

    NASA Astrophysics Data System (ADS)

    Schärtl, Wolfgang

    2010-06-01

    Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems.Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems

  17. Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems.

    PubMed

    Tombácz, Etelka; Turcu, Rodica; Socoliuc, Vlad; Vékás, Ladislau

    2015-12-18

    Recent developments in nanotechnology and application of magnetic nanoparticles, in particular in magnetic iron oxide nanosystems, offer exciting possibilities for nanomedicine. Facile and precise synthesis procedures, high magnetic response, tunable morphologies and multiple bio-functionalities of single- and multi-core magnetic particles designed for nanomedicine applications are thoroughly appraised. This review focuses on the structural and magnetic characterization of the cores, the synthesis of single- and multicore iron oxide NPs, especially the design of the latter, as well as their protection, stabilization and functionalization by desired coating in order to protect against the corrosion of core, to prevent non-specific protein adsorption and particle aggregation in biological media, and to provide binding sites for targeting and therapeutic agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Enhanced Magnetic Properties in Antiferromagnetic-Core/Ferrimagnetic-Shell Nanoparticles

    PubMed Central

    Vasilakaki, Marianna; Trohidou, Kalliopi N.; Nogués, Josep

    2015-01-01

    Bi-magnetic core/shell nanoparticles are gaining increasing interest due to their foreseen applications. Inverse antiferromagnetic(AFM)/ferrimagnetic(FiM) core/shell nanoparticles are particularly appealing since they may overcome some of the limitations of conventional FiM/AFM systems. However, virtually no simulations exist on this type of morphology. Here we present systematic Metropolis Monte Carlo simulations of the exchange bias properties of such nanoparticles. The coercivity, HC, and loop shift, Hex, present a non-monotonic dependence with the core diameter and the shell thickness, in excellent agreement with the available experimental data. Additionally, we demonstrate novel unconventional behavior in FiM/AFM particles. Namely, while HC and Hex decrease upon increasing FiM thickness for small AFM cores (as expected), they show the opposite trend for large cores. This presents a counterintuitive FiM size dependence for large AFM cores that is attributed to the competition between core and shell contributions, which expands over a wider range of core diameters leading to non-vanishing Hex even for very large cores. Moreover, the results also hint different possible ways to enhance the experimental performance of inverse core/shell nanoparticles for diverse applications. PMID:25872473

  19. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.

    PubMed

    Wang, Chongmin; Baer, Donald R; Amonette, James E; Engelhard, Mark H; Antony, Jiji; Qiang, You

    2009-07-01

    An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in

  20. Molecular Imprinting of Polymeric Core-Shell Nanoparticles

    DTIC Science & Technology

    2002-04-05

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013604 TITLE: Molecular Imprinting of Polymeric Core-Shell Nanoparticles...Soc. Symp. Proc. Vol. 723 © 2002 Materials Research Society M3.2 MOLECULAR IMPRINTING OF POLYMERIC CORE-SHELL NANOPARTICLES Natalia P~rez Moral and...rebinding was performed in an organic solvent. INTRODUCTION Molecularly imprinted polymers ( MIPs ) address the need for robust, simple, fast and efficient

  1. Multifunctional magnetic and fluorescent core-shell nanoparticles for bioimaging.

    PubMed

    Lu, Yanjiao; He, Bicheng; Shen, Jie; Li, Jie; Yang, Wantai; Yin, Meizhen

    2015-02-07

    Novel magnetic and fluorescent core-shell nanoparticles have been fabricated, which exhibit superparamagnetic behavior and emit strong near-infrared fluorescence. The nanoparticles are highly biocompatible and can be internalized into cells with nucleic accumulation via strong interaction with nucleic acids, implying potential applications in the biomedical field.

  2. Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI

    NASA Astrophysics Data System (ADS)

    Ali, Ahmed Atef Ahmed; Hsu, Fei-Ting; Hsieh, Chia-Ling; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Wei, Zung-Hang; Chen, Cheng-Yu; Huang, Hsu-Shan

    2016-11-01

    We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR-ERK-NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T2-weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles.

  3. Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI

    PubMed Central

    Ali, Ahmed Atef Ahmed; Hsu, Fei-Ting; Hsieh, Chia-Ling; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Wei, Zung-Hang; Chen, Cheng-Yu; Huang, Hsu-Shan

    2016-01-01

    We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR–ERK–NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T2-weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles. PMID:27833124

  4. Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines

    PubMed Central

    Zhu, Xiao-Ming; Wang, Yi-Xiang J; Leung, Ken Cham-Fai; Lee, Siu-Fung; Zhao, Feng; Wang, Da-Wei; Lai, Josie MY; Wan, Chao; Cheng, Christopher HK; Ahuja, Anil T

    2012-01-01

    Purpose To compare the cellular uptake efficiency and cytotoxicity of aminosilane (SiO2-NH2)-coated superparamagnetic iron oxide (SPIO@SiO2-NH2) nanoparticles with three other types of SPIO nanoparticles coated with SiO2 (SPIO@SiO2), dextran (SPIO@dextran), or bare SPIO in mammalian cell lines. Materials and methods Four types of monodispersed SPIO nanoparticles with a SPIO core size of 7 nm and an overall size in a range of 7–15 nm were synthesized. The mammalian cell lines of MCF-7, MDA-MB-231, HT-29, RAW264.7, L929, HepG2, PC-3, U-87 MG, and mouse mesenchymal stem cells (MSCs) were incubated with four types of SPIO nanoparticles for 24 hours in the serum-free culture medium Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 μg/mL iron concentration. The cellular uptake efficiencies of SPIO nanoparticles were compared by Prussian blue staining and intracellular iron quantification. In vitro magnetic resonance imaging of MSC pellets after SPIO labeling was performed at 3 T. The effect of each SPIO nanoparticle on the cell viability of RAW 264.7 (mouse monocyte/macrophage) cells was also evaluated. Results Transmission electron microscopy demonstrated surface coating with SiO2-NH2, SiO2, and dextran prevented SPIO nanoparticle aggregation in DMEM culture medium. MCF-7, MDA-MB-231, and HT-29 cells failed to show notable iron uptake. For all the remaining six cell lines, Prussian blue staining and intracellular iron quantification demonstrated that SPIO@ SiO2-NH2 nanoparticles had the highest cellular uptake efficiency. SPIO@SiO2-NH2, bare SPIO, and SPIO@dextran nanoparticles did not affect RAW 264.7 cell viability up to 200 μg Fe/mL, while SPIO@SiO2 reduced RAW 264.7 cell viability from 10 to 200 μg Fe/mL in a dose-dependent manner. Conclusion Cellular uptake efficiency of SPIO nanoparticles depends on both the cell type and SPIO surface characteristics. Aminosilane surface coating enhanced the cellular uptake efficiency without inducing cytotoxicity in a

  5. Synthesis of pure iron magnetic nanoparticles in large quantity

    NASA Astrophysics Data System (ADS)

    Tiwary, C. S.; Kashyap, S.; Biswas, K.; Chattopadhyay, K.

    2013-09-01

    Free nanoparticles of iron (Fe) and their colloids with high saturation magnetization are in demand for medical and microfluidic applications. However, the oxide layer that forms during processing has made such synthesis a formidable challenge. Lowering the synthesis temperature decreases rate of oxidation and hence provides a new way of producing pure metallic nanoparticles prone to oxidation in bulk amount (large quantity). In this paper we have proposed a methodology that is designed with the knowledge of thermodynamic imperatives of oxidation to obtain almost oxygen-free iron nanoparticles, with or without any organic capping by controlled milling at low temperatures in a specially designed high-energy ball mill with the possibility of bulk production. The particles can be ultrasonicated to produce colloids and can be bio-capped to produce transparent solution. The magnetic properties of these nanoparticles confirm their superiority for possible biomedical and other applications.

  6. Linear-chain assemblies of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhak, Prasanta; Kim, Min-Kwan; Lee, Jae Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2017-07-01

    We synthesized iron oxide nanoparticles using a simple hydrothermal approach and found several types of segments of their linear-chain self-assemblies as observed by field emission scanning electron microscopy. X-ray diffraction and transmission electron microscopy measurements confirm a well-defined single-phase FCC structure. Vibrating sample magnetometry measurements exhibit a ferromagnetic behavior. Micromagnetic numerical simulations show magnetic vortex states in the nanosphere model. Also, calculations of binding energies for different numbers of particles in the linear-chain assemblies explain a possible mechanism responsible for the self-assemblies of segments of the linear chains of nanoparticles. This work offers a step towards linear-chain self-assemblies of iron oxide nanoparticles and the effect of magnetic vortex states in individual nanoparticles on their binding energy.

  7. Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics.

    PubMed

    Santhosh, Poornima Budime; Ulrih, Nataša Poklar

    2013-08-09

    Iron-oxide nanoparticles of small dimensions that have superparamagnetic properties show immense potential to revolutionize the future of cancer theranostics, the combinatorial diagnosis and therapeutic approach towards cancer. Superparamagnetic iron-oxide nanoparticles (SPIONs) have unique magnetic properties, due to which they show excellent tumor-targeting efficiency, and this paves the way for effective personalized cancer treatment. The aim of this review is to focus on the ability of SPIONs to perform multiple roles in the field of cancer biology, such as in diagnosis, monitoring, targeting and therapy. Also, other topics are discussed, including the synthesis of SPIONs, the challenges and recent advances.

  8. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles.

    PubMed

    Laurent, Sophie; Dutz, Silvio; Häfeli, Urs O; Mahmoudi, Morteza

    2011-08-10

    Due to their unique magnetic properties, excellent biocompatibility as well as multi-purpose biomedical potential (e.g., applications in cancer therapy and general drug delivery), superparamagnetic iron oxide nanoparticles (SPIONs) are attracting increasing attention in both pharmaceutical and industrial communities. The precise control of the physiochemical properties of these magnetic systems is crucial for hyperthermia applications, as the induced heat is highly dependent on these properties. In this review, the limitations and recent advances in the development of superparamagnetic iron oxide nanoparticles for hyperthermia are presented.

  9. Tailoring magnetic properties of core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Sun, Shouheng; Li, J.; Wang, Z. L.; Liu, J. P.

    2004-08-01

    Bimagnetic FePt /MFe2O4(M =Fe,Co) core/shell nanoparticles are synthesized via high-temperature solution phase coating of 3.5nm FePt core with MFe2O4 shell. The thickness of the shell is controlled from 0.5 to 3nm. An assembly of the core/shell nanoparticles shows a smooth magnetization transition under an external field, indicating effective exchange coupling between the FePt core and the oxide shell. The coercivity of the FePt /Fe3O4 particles depends on the volume ratio of the hard and soft phases, consistent with previous theoretical predictions. These bimagnetic core/shell nanoparticles represent a class of nanostructured magnetic materials with their properties tunable by varying the chemical composition and thickness of the coating materials.

  10. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization

    SciTech Connect

    Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.; Anantharaman, M. R.; Sajeev, U. S.; Nair, Swapna S.; Narayanan, T. N.; Ajayan, P. M.

    2014-03-24

    Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.

  11. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Baker, I.; Loudis, J. A.; Liao, Y. F.; Hoopes, P. J.

    2007-02-01

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl 3 within a NaBH 4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe 3O 4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe 3O 4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization (MS) of Fe/Fe 3O 4 particles (100-190 emu/g) can be twice as high, and the coercivity (H C) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe 3O 4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles.

  12. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles

    PubMed Central

    Zeng, Q.; Baker, I.; Loudis, J. A.; Liao, Y.F.; Hoopes, P.J.

    2014-01-01

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl3 within a NaBH4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe3O4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe3O4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization (MS) of Fe/Fe3O4 particles (100–190 emu/g) can be twice as high, and the coercivity (HC) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe3O4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles. PMID:25301983

  13. Water oxidation catalysis by birnessite@iron oxide core-shell nanocomposites.

    PubMed

    Elmaci, Gökhan; Frey, Carolin E; Kurz, Philipp; Zümreoğlu-Karan, Birgül

    2015-03-16

    In this work, magnetic nanocomposite particles were prepared for water oxidation reactions. The studied catalysts consist of maghemite (γ-Fe2O3), magnetite (Fe3O4), and manganese ferrite (MnFe2O4) nanoparticles as cores coated in situ with birnessite-type manganese oxide shells and were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal, chemical, and surface analyses, and magnetic measurements. The particles were found to be of nearly spherical core-shell architectures with average diameter of 150 nm. Water oxidation catalysis was examined using Ce(4+) as the sacrificial oxidant. All core-shell particles were found to be active water oxidation catalysts. However, the activity was found to depend on a variety of factors like the type of iron oxide core, the structure and composition of the shell, the coating characteristics, and the surface properties. Catalysts containing magnetite and manganese ferrite as core materials displayed higher catalytic activities per manganese ion (2650 or 3150 mmolO2 molMn(-1) h(-1)) or per mass than nanoiron oxides (no activity) or birnessite alone (1850 mmolO2 molMn(-1) h(-1)). This indicates synergistic effects between the MnOx shell and the FeOx core of the composites and proves the potential of the presented core-shell approach for further catalyst optimization. Additionally, the FeOx cores of the particles allow magnetic recovery of the catalyst and might also be beneficial for applications in water-oxidizing anodes because the incorporation of iron might enhance the overall conductivity of the material.

  14. The responses of immune cells to iron oxide nanoparticles.

    PubMed

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping

    2016-04-01

    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications.

  15. Light element controlled iron isotope fractionation in planetary cores

    NASA Astrophysics Data System (ADS)

    Shahar, A.; Hillgren, V. J.; Horan, M. F.; Duke, L.; Mock, T. D.

    2013-12-01

    Using iron isotope fractionations measured in planetary and meteorite samples to trace planetary differentiation or formation has yielded contradictory results. Iron from high-Ti lunar basalts is more enriched in 57Fe/54Fe than mantle-derived terrestrial samples, in contrast to the isotopic similarity for almost every other element between the Earth and Moon. SNC (Shergottite, Nakhlite, Chassigny) and HED (Howardite, Eucrite, Diogenite) meteorites, which are thought to be derived from the mantles of Mars and Vesta, respectively, show no isotopic fractionation relative to chondrites. While the Bulk Silicate Earth (BSE) value is debated, recent work has shown effectively that basalts (mid-ocean ridge basalts, terrestrial basalts, and ocean island basalts) are enriched in 57Fe/54Fe relative to chondrites, but the causes of that fractionation are unclear (Craddock et al. 2013). Angrites, basaltic achondrite meteorites, also show enrichment in δ57Fe (Wang et al. 2012). Possible mechanisms include high-pressure core formation, oxidation during perovskite disproportionation, evaporation during the giant impact, and mantle melting. It is important to reconcile why the Earth's basalts are enriched in 57Fe/54Fe but the meteorites from Mars and Vesta are not. One possible explanation is that Mars and Vesta are smaller and the lower pressure attenuated the potential Fe fractionation during core formation. A second possibility is that the intrinsic oxidation states of the planets are causing the differences. However, another option is that the light elements (e.g. S, C, O, H, Si) in the cores of differentiated bodies control the iron isotope fractionation during differentiation. We have conducted experiments at 1 GPa and 1650-1800°C in a piston cylinder apparatus to address how sulfur, carbon and silicon alloyed with iron affect the iron isotopic fractionation between metallic alloy and silicate melt. We find that sulfur has the greatest effect on the iron isotopic

  16. Is iron at the Earth's core conditions hcp-structured?

    SciTech Connect

    Dubrovinsky, L; Dubrovinskaia, N; Prakapenka, V

    2012-02-07

    Iron is the main component of the Earth's core and its structure and properties are important for interpretation of geophysical observations and modeling dynamics of the core. We argue that the diffraction lines in the high temperature high pressure X-ray diffraction pattern, presented by Tateno et al., 2010 and interpreted as those of solely hot hcp-Fe, correspond indeed to the insufficiently heated part of the sample. We show that observed diffraction spots are either due to bcc-Fe or carbides.

  17. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents.

    PubMed

    Wei, He; Bruns, Oliver T; Kaul, Michael G; Hansen, Eric C; Barch, Mariya; Wiśniowska, Agata; Chen, Ou; Chen, Yue; Li, Nan; Okada, Satoshi; Cordero, Jose M; Heine, Markus; Farrar, Christian T; Montana, Daniel M; Adam, Gerhard; Ittrich, Harald; Jasanoff, Alan; Nielsen, Peter; Bawendi, Moungi G

    2017-02-28

    Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI contrast agents used in the clinic. GBCAs have shown efficacy and are safe to use with most patients; however, some GBCAs have a small risk of adverse effects, including nephrogenic systemic fibrosis (NSF), the untreatable condition recently linked to gadolinium (Gd) exposure during MRI with contrast. In addition, Gd deposition in the human brain has been reported following contrast, and this is now under investigation by the US Food and Drug Administration (FDA). To address a perceived need for a Gd-free contrast agent with pharmacokinetic and imaging properties comparable to GBCAs, we have designed and developed zwitterion-coated exceedingly small superparamagnetic iron oxide nanoparticles (ZES-SPIONs) consisting of ∼3-nm inorganic cores and ∼1-nm ultrathin hydrophilic shell. These ZES-SPIONs are free of Gd and show a high T1 contrast power. We demonstrate the potential of ZES-SPIONs in preclinical MRI and magnetic resonance angiography.

  18. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents

    PubMed Central

    Wei, He; Bruns, Oliver T.; Kaul, Michael G.; Hansen, Eric C.; Barch, Mariya; Wiśniowska, Agata; Chen, Ou; Chen, Yue; Li, Nan; Okada, Satoshi; Cordero, Jose M.; Heine, Markus; Farrar, Christian T.; Montana, Daniel M.; Adam, Gerhard; Ittrich, Harald; Jasanoff, Alan; Nielsen, Peter; Bawendi, Moungi G.

    2017-01-01

    Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI contrast agents used in the clinic. GBCAs have shown efficacy and are safe to use with most patients; however, some GBCAs have a small risk of adverse effects, including nephrogenic systemic fibrosis (NSF), the untreatable condition recently linked to gadolinium (Gd) exposure during MRI with contrast. In addition, Gd deposition in the human brain has been reported following contrast, and this is now under investigation by the US Food and Drug Administration (FDA). To address a perceived need for a Gd-free contrast agent with pharmacokinetic and imaging properties comparable to GBCAs, we have designed and developed zwitterion-coated exceedingly small superparamagnetic iron oxide nanoparticles (ZES-SPIONs) consisting of ∼3-nm inorganic cores and ∼1-nm ultrathin hydrophilic shell. These ZES-SPIONs are free of Gd and show a high T1 contrast power. We demonstrate the potential of ZES-SPIONs in preclinical MRI and magnetic resonance angiography. PMID:28193901

  19. Local Structure, Electronic Behavior, and Electrocatalytic Reactivity of CO-Reduced Platinum-Iron Oxide Nanoparticles

    SciTech Connect

    Duchesne, Paul N.; Chen, Guangxu; Zheng, Nanfeng; Zhang, Peng

    2014-02-18

    A series of platinum–iron oxide nanoparticles was synthesized using a “clean” CO-reduction method that employed different ratios of Pt-Fe precursor salts in oleylamine at elevated temperatures. High-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDS) studies revealed that nearly monodisperse (i.e., with relative standard deviations of less than 15%) nanoparticles with mean diameters of 3.5–4.4 nm and varied elemental compositions (Pt54Fe46 Pt70Fe30, and Pt87Fe13) were obtained. X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements at the Pt L3- and Fe K-edges revealed that these nanoparticles all consisted of a Pt core with amorphous iron oxide on the surface. Furthermore, it was observed that the local structure (e.g., Pt–Pt bond distance and coordination number) and electronic behavior of the Pt–FeO nanoparticles (e.g., Pt d electron density and Fe valence state) are dependent on the Pt-Fe precursor ratios used in their synthesis. Quantum mechanical ab initio calculations were employed to interpret the results from X-ray spectroscopy and help elucidate the relationships between local structure and electronic properties in the nanoparticle samples. Finally, the surface reactivity of these nanoparticles in the oxygen reduction reaction (ORR) was explored, demonstrating higher electrocatalytic activity for all three platinum–iron oxide samples in comparison with a commercial Pt catalyst. The surface reactivity was also found to be sensitive to the Pt-Fe ratios of the nanoparticles and could be correlated with their local structure and electronic behavior.

  20. Effects of Mesoporous Silica Coating and Post-Synthetic Treatment on the Transverse Relaxivity of Iron Oxide Nanoparticles

    PubMed Central

    Hurley, Katie R.; Lin, Yu-Shen; Zhang, Jinjin; Egger, Sam M.; Haynes, Christy L.

    2013-01-01

    Mesoporous silica nanoparticles have the capacity to load and deliver therapeutic cargo and incorporate imaging modalities, making them prominent candidates for theranostic devices. One of the most widespread imaging agents utilized in this and other theranostic platforms is nanoscale superparamagnetic iron oxide. Although several core-shell magnetic mesoporous silica nanoparticles presented in the literature have provided high T2 contrast in vitro and in vivo, there is ambiguity surrounding which parameters lead to enhanced contrast. Additionally, there is a need to understand the behavior of these imaging agents over time in biologically relevant environments. Herein, we present a systematic analysis of how the transverse relaxivity (r2) of magnetic mesoporous silica nanoparticles is influenced by nanoparticle diameter, iron oxide nanoparticle core synthesis, and the use of a hydrothermal treatment. This work demonstrates that samples which did not undergo a hydrothermal treatment experienced a drop in r2 (75% of original r2 within 8 days of water storage), while samples with hydrothermal treatment maintained roughly the same r2 for over 30 days in water. Our results suggest that iron oxide oxidation is the cause of the r2 loss, and this oxidation can be prevented both during synthesis and storage by the use of deoxygenated conditions during nanoparticle synthesis. The hydrothermal treatment also provides colloidal stability, even in acidic and highly salted solutions, and a resistance against acid degradation of the iron oxide nanoparticle core. The results of this study show the promise of multifunctional mesoporous silica nanoparticles but will also likely inspire further investigation into multiples types of theranostic devices, taking into consideration their behavior over time and in relevant biological environments. PMID:23814377

  1. From iron coordination compounds to metal oxide nanoparticles.

    PubMed

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2(III)Fe(II)O(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  2. From iron coordination compounds to metal oxide nanoparticles

    PubMed Central

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2 IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles. PMID:28144555

  3. Synthesis and Stability of Iron Nanoparticles for Lunar Environment Studies

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; McNatt, Jeremiah

    2009-01-01

    Simulant of lunar dust is needed when researching the lunar environment. However, unlike the true lunar dust, today s simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of the lunar dust simulant: (1) Sequentially treating a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 C in nitrogen, at room temperature in air, and then at 1050 C in nitrogen. The product includes glass beads that are grey in color, can be attracted by a magnet, and contain alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy regolith that contains Fe(sup 0). (2) Heating a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 C in nitrogen. This process simulates lunar dust reaction to the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process, but stabilizes after 6 months of ambient air storage.

  4. Synthesis and stability of iron nanoparticles for lunar environment studies

    NASA Astrophysics Data System (ADS)

    Hung, Ching-Cheh; McNatt, Jeremiah

    2010-06-01

    Simulants of lunar dust are needed when researching the lunar environment. However, unlike the true lunar dust, today's simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of a lunar dust simulant. (1) The first is to sequentially treat a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300°C in nitrogen, at room temperature in air, and then at 1050°C in nitrogen. The product includes glass beads that are gray in color, can be attracted by a magnet, and contains α-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12months). This product may have some similarity to the lunar glassy agglutinate, which contains FeO. (2) The second is to heat a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050°C in nitrogen. This process simulates lunar dust reactions with the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be α-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process. This growth became undetectable after 6months of ambient air storage, but may last for several years or longer.

  5. Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size

    PubMed Central

    Cai, Yao; Cao, Changqian; He, Xiaoqing; Yang, Caiyun; Tian, Lanxiang; Zhu, Rixiang; Pan, Yongxin

    2015-01-01

    Purpose This study is to demonstrate the nanoscale size effect of ferrimagnetic H-ferritin (M-HFn) nanoparticles on magnetic properties, relaxivity, enzyme mimetic activities, and application in magnetic resonance imaging (MRI) and immunohistochemical staining of cancer cells. Materials and methods M-HFn nanoparticles with different sizes of magnetite cores in the range of 2.7–5.3 nm were synthesized through loading different amounts of iron into recombinant human H chain ferritin (HFn) shells. Core size, crystallinity, and magnetic properties of those M-HFn nanoparticles were analyzed by transmission electron microscope and low-temperature magnetic measurements. The MDA-MB-231 cancer cells were incubated with synthesized M-HFn nanoparticles for 24 hours in Dulbecco’s Modified Eagle’s Medium. In vitro MRI of cell pellets after M-HFn labeling was performed at 7 T. Iron uptake of cells was analyzed by Prussian blue staining and inductively coupled plasma mass spectrometry. Immunohistochemical staining by using the peroxidase-like activity of M-HFn nanoparticles was carried out on MDA-MB-231 tumor tissue paraffin sections. Results The saturation magnetization (Ms), relaxivity, and peroxidase-like activity of synthesized M-HFn nanoparticles were monotonously increased with the size of ferrimagnetic cores. The M-HFn nanoparticles with the largest core size of 5.3 nm exhibit the strongest saturation magnetization, the highest peroxidase activity in immunohistochemical staining, and the highest r2 of 321 mM−1 s−1, allowing to detect MDA-MB-231 breast cancer cells as low as 104 cells mL−1. Conclusion The magnetic properties, relaxivity, and peroxidase-like activity of M-HFn nanoparticles are size dependent, which indicates that M-HFn nanoparticles with larger magnetite core can significantly enhance performance in MRI and staining of cancer cells. PMID:25878496

  6. Core-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Chen, An-Yu; Liao, Hung-Liang; Yang, Ming-Chien; Liu, Ting-Yu; Chan, Tzu-Yi; Tsou, Hui-Ming; Kuo, Chih-Yu; Wang, Juen-Kai; Wang, Yuh-Lin

    2015-10-01

    In this study, multifunctional hybrid nanoparticles composed of iron platinum (FePt), silica (SiO2), and gold nanoparticles (AuNPs) had been developed for surface-enhanced Raman scattering (SERS) application. Core-shell structure of SiO2 and FePt nanoparticles (FePt@SiO2) was fabricated through sol-gel process and then immobilized gold nanoparticles onto the surface of FePt@SiO2, which displays huge Raman enhancement effect and magnetic separation capability. The resulting core-shell nanoparticles were subject to evaluation by transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX), zeta potential measurement, and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that the particle size of resultant nanoparticles displayed spherical structure with the size ~30 nm and further proved the successful immobilization of Au onto the surface of FePt@SiO2. Zeta potential measurement exhibited the successful reaction between FePt@SiO2 and AuNPs. The rapid SERS detection and identification of small biomolecules (adenine) and microorganisms (gram-positive bacteria, Staphylococcus aureus) was conducted through Raman spectroscopy. In summary, the novel core-shell magnetic nanoparticles could be anticipated to apply in the rapid magnetic separation under the external magnetic field due to the core of the FePt superparamagnetic nanoparticles and label-free SERS bio-sensing of biomolecules and bacteria.

  7. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation

    NASA Astrophysics Data System (ADS)

    Skaat, Hadas; Belfort, Georges; Margel, Shlomo

    2009-06-01

    Maghemite (γ-Fe2O3) magnetic nanoparticles of 15.0 ± 2.1 nm are formed by nucleation followed by controlled growth of maghemite thin films on gelatin-iron oxide nuclei. Uniform magnetic γ-Fe2O3/poly (2,2,3,3,4,4,4-heptafluorobutyl acrylate) (γ-Fe2O3/PHFBA) core-shell nanoparticles are prepared by emulsion polymerization of the fluorinated monomer 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) in the presence of the maghemite nanoparticles. The kinetics of the insulin fibrillation process in the absence and in the presence of the γ-Fe2O3/PHFBA core-shell nanoparticles are elucidated. A significant direct slow transition from α-helix to β-sheets during insulin fibril formation is observed in the presence of the γ-Fe2O3/PHFBA nanoparticles. This is in contradiction to our previous manuscript, which illustrated that the γ-Fe2O3 core nanoparticles do not affect the kinetics of the formation of the insulin fibrils, and to other previous publications that describe acceleration of the fibrillation process by using various types of nanoparticles. These core-shell nanoparticles may therefore be also useful for the inhibition of conformational changes of other amyloidogenic proteins that lead to neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, mad cow and prion diseases.

  8. Continuous flow analysis of labile iron in ice-cores.

    PubMed

    Hiscock, William T; Fischer, Hubertus; Bigler, Matthias; Gfeller, Gideon; Leuenberger, Daiana; Mini, Olivia

    2013-05-07

    The important active and passive role of mineral dust aerosol in the climate and the global carbon cycle over the last glacial/interglacial cycles has been recognized. However, little data on the most important aeolian dust-derived biological micronutrient, iron (Fe), has so far been available from ice-cores from Greenland or Antarctica. Furthermore, Fe deposition reconstructions derived from the palaeoproxies particulate dust and calcium differ significantly from the Fe flux data available. The ability to measure high temporal resolution Fe data in polar ice-cores is crucial for the study of the timing and magnitude of relationships between geochemical events and biological responses in the open ocean. This work adapts an existing flow injection analysis (FIA) methodology for low-level trace Fe determinations with an existing glaciochemical analysis system, continuous flow analysis (CFA) of ice-cores. Fe-induced oxidation of N,N'-dimethyl-p-pheylenediamine (DPD) is used to quantify the biologically more important and easily leachable Fe fraction released in a controlled digestion step at pH ~1.0. The developed method was successfully applied to the determination of labile Fe in ice-core samples collected from the Antarctic Byrd ice-core and the Greenland Ice-Core Project (GRIP) ice-core.

  9. Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging.

    PubMed

    Shanavas, Asifkhan; Sasidharan, Sisini; Bahadur, Dhirendra; Srivastava, Rohit

    2017-01-15

    Hybrid nanoparticles with magnetic poly (lactide-co-glycolide) (PLGA) nanoparticle 'core', surface modified with folate-chitosan (fol-cht) conjugate 'shell' are evaluated as simultaneous anti-cancer therapeutic and MRI contrast agent. The fol-cht conjugate is prepared using carbodiimide crosslinking chemistry at an optimized folate to amine (chitosan) molar ratio for further coating on PLGA nanoparticles loaded with docetaxel and well packed super paramagnetic iron oxide nanoparticles (SPIONs). Apart from possessing a targeting moiety, the coating provides a physical barrier to avoid undesired burst release of drug and also imparts sensitivity to acidic pH, due to protonated amine group dependent decondensation of the coating and subsequent drug release. The biocompatible hybrid nanoparticles provide receptor targeted docetaxel and SPION delivery for anti-cancer therapy and magnetic resonance (MR) imaging respectively, as tested in both folate receptor positive and negative cancer cells. Enhancement in nanoparticle uptake by folate receptor positive oral cancer cells caused significant increase in docetaxel mediated cytotoxicity. While polymeric encapsulation and fol-cht coating negatively affects the magnetic property of iron oxide nanoparticles, their aggregation in the core, shortened the overall T2 relaxation time thereby enhancing the nanoparticle relaxivity to provide better in vitro MR imaging.

  10. Synthesis, structure, and magnetic properties of iron and nickel nanoparticles encapsulated into carbon

    NASA Astrophysics Data System (ADS)

    Tsurin, V. A.; Yermakov, A. Ye.; Uimin, M. A.; Mysik, A. A.; Shchegoleva, N. N.; Gaviko, V. S.; Maikov, V. V.

    2014-02-01

    Nanocomposites based on iron and nickel particles encapsulated into carbon (Fe@C and Ni@C), with an average size of the metal core in the range from 5 to 20 nm and a carbon shell thickness of approximately 2 nm, have been prepared by the gas-phase synthesis method in a mixture of argon and butane. It has been found using X-ray diffraction, transmission electron microscopy, and Mössbauer spectroscopy that iron nanocomposites prepared in butane, apart from the carbon shell, contain the following phases: iron carbide (cementite), α-Fe, and γ-Fe. The phase composition of the Fe@C nanocomposite correlates with the magnetization of approximately 100 emu/g at room temperature. The replacement of butane by methane as a carbon source leads to another state of nanoparticles: no carbon coating is formed, and upon subsequent contact with air, the Fe3O4 oxide shell is formed on the surface of nanoparticles. Nickel-based nanocomposites prepared in butane, apart from pure nickel in the metal core, contain the supersaturated metastable solid solution Ni(C) and carbon coating. The Ni(C) solid solution can decompose both during the synthesis and upon the subsequent annealing. The completeness and degree of decomposition depend on the synthesis regime and the size of nickel nanoparticles: the smaller is the size of nanoparticles, the higher is the degree of decomposition into pure nickel and carbon. The magnetization of the Ni@C nanocomposites is determined by several contributions, for example, the contribution of the magnetic solid solution Ni(C) and the contribution of the nonmagnetic carbon coating; moreover, some contribution to the magnetization can be caused by the superparamagnetic behavior of nanoparticles.

  11. Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system.

    PubMed

    Katuwavila, Nuwanthi P; Perera, A D L C; Dahanayake, Damayanthi; Karunaratne, V; Amaratunga, Gehan A J; Karunaratne, D Nedra

    2016-11-20

    A novel, efficient delivery system for iron (Fe(2+)) was developed using the alginate biopolymer. Iron loaded alginate nanoparticles were synthesized by a controlled ionic gelation method and was characterized with respect to particle size, zeta potential, morphology and encapsulation efficiency. Successful loading was confirmed with Fourier Transform Infrared spectroscopy and Thermogravimetric Analysis. Electron energy loss spectroscopy study corroborated the loading of ferrous into the alginate nanoparticles. Iron encapsulation (70%) was optimized at 0.06% Fe (w/v) leading to the formation of iron loaded alginate nanoparticles with a size range of 15-30nm and with a negative zeta potential (-38mV). The in vitro release studies showed a prolonged release profile for 96h. Release of iron was around 65-70% at pH of 6 and 7.4 whereas it was less than 20% at pH 2.The initial burst release upto 8h followed zero order kinetics at all three pH values. All the release profiles beyond 8h best fitted the Korsmeyer-Peppas model of diffusion. Non Fickian diffusion was observed at pH 6 and 7.4 while at pH 2 Fickian diffusion was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Controlled oxidation of iron nanoparticles in chemical vapour synthesis

    NASA Astrophysics Data System (ADS)

    Ruusunen, Jarno; Ihalainen, Mika; Koponen, Tarmo; Torvela, Tiina; Tenho, Mikko; Salonen, Jarno; Sippula, Olli; Joutsensaari, Jorma; Jokiniemi, Jorma; Lähde, Anna

    2014-02-01

    In the present study, iron oxide nanoparticles (primary particle size of 80-90 nm) with controlled oxidation state were prepared via an atmospheric pressure chemical vapour synthesis (APCVS) method. Iron pentacarbonyl [Fe(CO)5], a precursor material, was thermally decomposed to iron in the APCVS reactor. Subsequently, the iron was oxidized with controlled amount of oxygen in the reactor to produce nearly pure magnetite or haematite particles depending on the oxygen concentration. Size, morphology and crystal structure of the synthesized nanoparticles were studied with scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). In addition, thermodynamic equilibrium calculations and computational fluid dynamics model were used to predict the oxidation state of the iron oxides and the reaction conditions during mixing. Aggregates of crystalline particles were formed, determined as magnetite at the oxygen volumetric fraction of 0.1 % and haematite at volumetric fraction of 0.5 %, according to the XRD. The geometric mean electrical mobility diameter of the aggregates increased from 110 to 155 nm when the volumetric fraction of oxygen increased from 0.1 to 0.5 %, determined using the SMPS. The aggregates were highly sintered based on TEM analyses. As a conclusion, APCVS method can be used to produce nearly pure crystalline magnetite or haematite nanoparticles with controlled oxidation in a continuous one-stage gas-phase process.

  13. Removal of hexavalent chromium from aqueous solution by iron nanoparticles.

    PubMed

    Niu, Shao-Feng; Liu, Yong; Xu, Xin-Hua; Lou, Zhang-Hua

    2005-10-01

    Groundwater remediation by nanoparticles has received increasing interest in recent years. This report presents a thorough evaluation of hexavalent chromium removal in aqueous solutions using iron (Fe(0)) nanoparticles. Cr(VI) is a major pollutant of groundwater. Zero-valent iron, an important natural reductant of Cr(VI), is an option in the remediation of contaminated sites, transforming Cr(VI) to essentially nontoxic Cr(III). At a dose of 0.4 g/L, 100% of Cr(VI) (20 mg/L) was degraded. The Cr(VI) removal efficiency decreased significantly with increasing initial pH. Different Fe(0) type was compared in the same conditions. The reactivity was in the order starch-stabilized Fe(0) nanoparticles>Fe(0) nanoparticles>Fe(0) powder>Fe(0) filings. Electrochemical analysis of the reaction process led to the conclusion that Cr(OH)(3) should be the final product of Cr(VI). Iron nanoparticles are good choice for the remediation of heavy metals in groundwater.

  14. Removal of hexavalent chromium from aqueous solution by iron nanoparticles*

    PubMed Central

    Niu, Shao-feng; Liu, Yong; Xu, Xin-hua; Lou, Zhang-hua

    2005-01-01

    Groundwater remediation by nanoparticles has received increasing interest in recent years. This report presents a thorough evaluation of hexavalent chromium removal in aqueous solutions using iron (Fe0) nanoparticles. Cr(VI) is a major pollutant of groundwater. Zero-valent iron, an important natural reductant of Cr(VI), is an option in the remediation of contaminated sites, transforming Cr(VI) to essentially nontoxic Cr(III). At a dose of 0.4 g/L, 100% of Cr(VI) (20 mg/L) was degraded. The Cr(VI) removal efficiency decreased significantly with increasing initial pH. Different Fe0 type was compared in the same conditions. The reactivity was in the order starch-stabilized Fe0 nanoparticles>Fe0 nanoparticles>Fe0 powder>Fe0 filings. Electrochemical analysis of the reaction process led to the conclusion that Cr(OH)3 should be the final product of Cr(VI). Iron nanoparticles are good choice for the remediation of heavy metals in groundwater. PMID:16187417

  15. Mercury removal in wastewater by iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vélez, E.; Campillo, G. E.; Morales, G.; Hincapié, C.; Osorio, J.; Arnache, O.; Uribe, J. I.; Jaramillo, F.

    2016-02-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe3O4 and γ-Fe2O3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λmax∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements.

  16. Direct synthesis of magnetite nanoparticles from iron(II) carboxymethylcellulose and their performance as NMR contrast agents

    NASA Astrophysics Data System (ADS)

    da Silva, Delmarcio Gomes; Hiroshi Toma, Sergio; de Melo, Fernando Menegatti; Carvalho, Larissa Vieira C.; Magalhães, Alvicler; Sabadini, Edvaldo; dos Santos, Antônio Domingues; Araki, Koiti; Toma, e. Henrique E.

    2016-01-01

    Iron(II) carboxymethylcellulose (CMC) has been successfully employed in the synthesis of hydrophylic magnetite nanoparticles stabilized with a biopolymer coating, aiming applications in NMR imaging. The new method encompasses a convenient one-step synthetic procedure, allowing a good size control and yielding particles of about 10 nm (core size). In addition to the biocompatibility, the nanoparticles have promoted a drastic reduction in the transverse relaxation time (T2) of the water protons. The relaxivity rates have been investigated as a function of the nanoparticles concentration, showing a better performance in relation to the common NMR contrast agents available in the market.

  17. The Structure and Properties of Iron in the Core

    NASA Astrophysics Data System (ADS)

    Price, G. D.; Vocadlo, L.; Alfe, D.; Wood, I. G.; Gillan, M. J.

    2002-12-01

    In his 1952 paper, Birch observed that the interior of the Earth is a problem at once fascinating and baffling. This is especially true of the Earth's inner core, and in the fifty years since Birch's work, many subsequent papers have been published with the aim of constraining its nature and composition. Birch concluded the inner core is most simply interpreted as crystalline iron, perhaps alloyed with a small fraction of lighter elements. This inference has stood the test of time, but the exact nature of the stable phase of iron in the Earth's solid inner core is still highly controversial. Recent research has indicated that the hexagonal-close-packed (hcp) phase of Fe exists at Earth's core conditions. This is supported by theoretical studies suggesting that the body-centred-cubic (bcc) phase is unlikely to be found in the core since it becomes unstable at high pressures. Yet in other hcp metals (e.g. Ti, Zr..) a high-pressure bcc form is stabilized at high temperatures. We recently reported the results of the first ab initio, finite-temperature, molecular dynamics free-energy calculations on the bcc phase of Fe at core conditions. We found that this phase becomes entropically stabilised at core temperatures, with a transition on cooling to a low temperature omega phase occurring at ~3000-4000K. Although we find that in all cases along the melting curve the free energy of the hcp phase is thermodynamically more favourable, the free energy difference between the two phases is very small. The inner core is not, however, pure Fe. Our calculations also show that if S and/or Si are the light elements in the core, then they may stabilize the bcc phase of Fe at the expense of the hcp form. This will have profound implications for the interpretation of the origin of the seismic anisotropy of the inner core. We will review our current understanding of the high P and T stabilities and elastic properties of Fe polymorphs and their alloys, and will conclude that after fifty

  18. Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content

    PubMed Central

    Wabler, Michele; Zhu, Wenlian; Hedayati, Mohammad; Attaluri, Anilchandra; Zhou, Haoming; Mihalic, Jana; Geyh, Alison; DeWeese, Theodore L.; Ivkov, Robert; Artemov, Dmitri

    2015-01-01

    Purpose Magnetic iron oxide nanoparticles (MNPs) are used as contrast agents for magnetic resonance imaging (MRI) and hyperthermia for cancer treatment. The relationship between MRI signal intensity and cellular iron concentration for many new formulations, particularly MNPs having magnetic properties designed for heating in hyperthermia, is lacking. In this study, we examine the correlation between MRI T2 relaxation time and iron content in cancer cells loaded with various MNP formulations. Materials and methods Human prostate carcinoma DU-145 cells were loaded with starch-coated bionised nanoferrite (BNF), iron oxide (Nanomag® D-SPIO), Feridex™, and dextran-coated Johns Hopkins University (JHU) particles at a target concentration of 50 pg Fe/cell using poly-D-lysine transfection reagent. T2-weighted MRI of serial dilutions of these labelled cells was performed at 9.4 T and iron content quantification was performed using inductively coupled plasma mass spectrometry (ICP-MS). Clonogenic assay was used to characterise cytotoxicity. Results No cytotoxicity was observed at twice the target intracellular iron concentration (~100 pg Fe/cell). ICP-MS revealed highest iron uptake efficiency with BNF and JHU particles, followed by Feridex and Nanomag-D-SPIO, respectively. Imaging data showed a linear correlation between increased intracellular iron concentration and decreased T2 times, with no apparent correlation among MNP magnetic properties. Conclusions This study demonstrates that for the range of nanoparticle concentrations internalised by cancer cells the signal intensity of T2-weighted MRI correlates closely with absolute iron concentration associated with the cells. This correlation may benefit applications for cell-based cancer imaging and therapy including nanoparticle-mediated drug delivery and hyperthermia. PMID:24773041

  19. Homogeneous Iron Phosphate Nanoparticles by Combustion of Sprays

    PubMed Central

    Rudin, Thomas; Pratsinis, Sotiris E.

    2013-01-01

    Low-cost synthesis of iron phosphate nanostructured particles is attractive for large scale fortification of basic foods (rice, bread, etc.) as well as for Li-battery materials. This is achieved here by flame-assisted and flame spray pyrolysis (FASP and FSP) of inexpensive precursors (iron nitrate, phosphate), solvents (ethanol), and support gases (acetylene and methane). The iron phosphate powders produced here were mostly amorphous and exhibited excellent solubility in dilute acid, an indicator of relative iron bioavailability. The amorphous and crystalline fractions of such powders were determined by X-ray diffraction (XRD) and their cumulative size distribution by X-ray disk centrifuge. Fine and coarse size fractions were obtained also by sedimentation and characterized by microscopy and XRD. The coarse size fraction contained maghemite Fe2O3 while the fine was amorphous iron phosphate. Furthermore, the effect of increased production rate (up to 11 g/h) on product morphology and solubility was explored. Using increased methane flow rates through the ignition/pilot flame of the FSP-burner and inexpensive powder precursors resulted in also homogeneous iron phosphate nanoparticles essentially converting the FSP to a FASP process. The powders produced by FSP at increased methane flow had excellent solubility in dilute acid as well. Such use of methane or even natural gas might be economically attractive for large scale flame-synthesis of nanoparticles. PMID:23407874

  20. Homogeneous Iron Phosphate Nanoparticles by Combustion of Sprays.

    PubMed

    Rudin, Thomas; Pratsinis, Sotiris E

    2012-06-13

    Low-cost synthesis of iron phosphate nanostructured particles is attractive for large scale fortification of basic foods (rice, bread, etc.) as well as for Li-battery materials. This is achieved here by flame-assisted and flame spray pyrolysis (FASP and FSP) of inexpensive precursors (iron nitrate, phosphate), solvents (ethanol), and support gases (acetylene and methane). The iron phosphate powders produced here were mostly amorphous and exhibited excellent solubility in dilute acid, an indicator of relative iron bioavailability. The amorphous and crystalline fractions of such powders were determined by X-ray diffraction (XRD) and their cumulative size distribution by X-ray disk centrifuge. Fine and coarse size fractions were obtained also by sedimentation and characterized by microscopy and XRD. The coarse size fraction contained maghemite Fe(2)O(3) while the fine was amorphous iron phosphate. Furthermore, the effect of increased production rate (up to 11 g/h) on product morphology and solubility was explored. Using increased methane flow rates through the ignition/pilot flame of the FSP-burner and inexpensive powder precursors resulted in also homogeneous iron phosphate nanoparticles essentially converting the FSP to a FASP process. The powders produced by FSP at increased methane flow had excellent solubility in dilute acid as well. Such use of methane or even natural gas might be economically attractive for large scale flame-synthesis of nanoparticles.

  1. Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core-shell nanoparticles.

    PubMed

    Chaffin, Elise Anne; Bhana, Saheel; O'Connor, Ryan Timothy; Huang, Xiaohua; Wang, Yongmei

    2014-12-11

    Gold-coated iron oxide core-shell nanoparticles (IO-Au NPs) are of interest for use in numerous biomedical applications because of their unique combined magnetic-plasmonic properties. Although the effects of the core-dielectric constant on the localized surface plasmon resonance (LSPR) peak position of Au-shell particles have been previously investigated, the impact that light-absorbing core materials with complex dielectric functions have on the LSPR peak is not well established. In this study, we use extended Mie theory for multilayer particles to examine the individual effects of the real and imaginary components of core refractive indices on Au-shell NP plasmonic peaks. We find that the imaginary component dampens the intensity of the cavity plasmon and results in a decrease of surface plasmon coupling. For core materials with large imaginary refractive indices, the coupled mode LSPR peak disappears, and only the anticoupled mode remains. Our findings show that the addition of a nonabsorbing polymer layer to the core surface decreases the dampening of the cavity plasmon and increases LSPR spectral intensity. Additionally, we address apparent discrepancies in the literature regarding the effects of Au-shell thickness on LSPR peak shifts.

  2. Synthesis of nanoparticle-cored dendrimers by convergent dendritic functionalization of monolayer-protected nanoparticles.

    PubMed

    Shon, Young-Seok; Choi, Daeock; Dare, Jonathan; Dinh, Tuong

    2008-06-01

    This article presents a synthesis method for nanoparticle-cored dendrimers (NCDs), which have dendritic architectures around a monolayer-protected gold nanoparticle. The synthesis method is based on a strategy in which the synthesis of monolayer-protected nanoparticles is followed by adding dendrons on functionalized nanoparticles by a single coupling reaction. NMR spectroscopy, IR spectroscopy, and thermogravimetric analysis (TGA) characterizations confirmed the successful coupling reaction between dendrons with different generations ([G1], [G2], and [G3]) and COOH-functionalized nanoparticles ( approximately Au201L71). The dendrimer wedge density also could be controlled by reacting nanoparticles having different loading of COOH groups ( approximately 60 and approximately 10% COOH of the 71 ligands per gold nanoparticle) with functionalized dendrons. Transmission electron microscope results showed that this synthesis strategy maintains the average size of the nanoparticle core during dendron coupling reactions. This control over the composition and core size makes the systematic study of NCDs with different generations possible. The chemical stability of NCDs was found to be affected by dendron generation around the nanoparticle core. The current-potential response of NCD films on microelectrode arrays exhibited better electrical conductivity for NCDs with lower dendron generation.

  3. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI

    PubMed Central

    Lodhia, J; Mandarano, G; Ferris, NJ; Eu, P; Cowell, SF

    2010-01-01

    Contrast agents, such as iron oxide, enhance MR images by altering the relaxation times of tissues in which the agent is present. They can also be used to label targeted molecular imaging probes. Unfortunately, no molecular imaging probe is currently available on the clinical MRI market. A promising platform for MRI contrast agent development is nanotechnology, where superparamagnetic iron oxide nanoparticles (SPIONS) are tailored for MR contrast enhancement, and/or for molecular imaging. SPIONs can be produced using a range of methods and the choice of method will be influenced by the characteristics most important for a particular application. In addition, the ability to attach molecular markers to SPIONS heralds their application in molecular imaging. There are many reviews on SPION synthesis for MRI; however, these tend to be targeted to a chemistry audience. The development of MRI contrast agents attracts experienced researchers from many fields including some researchers with little knowledge of medical imaging or MRI. This situation presents medical radiation practitioners with opportunities for involvement, collaboration or leadership in research depending on their level of commitment and their ability to learn. Medical radiation practitioners already possess a large portion of the understanding, knowledge and skills necessary for involvement in MRI development and molecular imaging. Their expertise in imaging technology, patient care and radiation safety provides them with skills that are directly applicable to research on the development and application of SPIONs and MRI. In this paper we argue that MRI SPIONs, currently limited to major research centres, will have widespread clinical use in the future. We believe that knowledge about this growing area of research provides an opportunity for medical radiation practitioners to enhance their specialised expertise to ensure best practice in a truly multi-disciplinary environment. This review outlines how and

  4. Process to make core-shell structured nanoparticles

    SciTech Connect

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  5. Facile preparation of surface-exchangeable core@shell iron oxide@gold nanoparticles for magnetic solid-phase extraction: use of gold shell as the intermediate platform for versatile adsorbents with varying self-assembled monolayers.

    PubMed

    Li, Yaping; Qi, Li; Shen, Ying; Ma, Huimin

    2014-02-06

    The core@shell Fe3O4@Au nanoparticles (NPs) functionalized with exchangeable self-assembled monolayers have been developed for mode switching magnetic solid-phase extraction (MSPE) using high performance liquid chromatography with ultraviolet detection. The adsorbents were synthesized by chemical coprecipitation to prepare magnetic cores followed by sonolysis to produce gold shells. Functionalization of Fe3O4@Au NPs surface was realized through self-assembly of commercially available low molecular weight thiol-containing ligands using gold shells as intermediate platform and the dynamic nature of Au-S chemistry allowed substituent of one thiol-containing ligand with another simply by thiol exchange process. The resultant adsorbents were characterized by transmission electronic microscopy, Fourier transform infrared spectroscopy, elemental analysis, contact angle measurement, and vibrating sample magnetometry. To evaluate the versatile performance of the developed MSPE adsorbents, they were applied for normal-phase SPE followed by reversed-phase SPE. A few kinds of diphenols and polycyclic aromatic hydrocarbons (PAHs) were employed as model analytes, respectively. The predominant parameters affecting extraction efficiency were investigated and optimized. Under the optimum experimental conditions, wide dynamic linear range (6.25-1600 μg L(-1) for diphenols and 1.56-100 μg L(-1) for PAHs) with good linearity (r(2)≥0.989) and low detection limits (0.34-16.67 μg L(-1) for diphenols and 0.26-0.52 μg L(-1) for PAHs) were achieved. The advantage of the developed method is that the Fe3O4@Au NPs could be reutilized for preconcentrating diverse target analytes in different SPE modes sequentially simply through treatment with desired thiol-containing ligands. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Characterization and Reactivity of Iron Nanoparticles Prepared with Added Cu, Pd, and Ni

    SciTech Connect

    Chun, Chan Lan; Baer, Donald R.; Matson, Dean W.; Amonette, James E.; Penn, Ryland L.

    2010-07-01

    The presence of a secondary metal on iron particles affects redox reactivity in engineered remediation systems. However, the structural characteristics of the metal additives and mechanism responsible for changes in reactivity have not been fully elucidated. Here, we synthesized iron nanoparticles with Cu, Pd, and Ni content ranging from 0-2 mol% via a solution deposition process (SDP), hydrogen reduction process (HRP), or hydrogen reduction of ferrihydrite coprecipitated with the metal cations (HRCO). Results from solid-state characterization show that the synthetic methods produced similar iron core/magnetite shell particles but produced substantial differences in terms of the distribution of the metal additive. In SDP, the metal additives were heterogeneous distributed on the surface of the particles. The metal additives were clearly discernable in TEM images as spherical nanoparticles (2-4 nm) on the HRP and HRCO particles. In addition, we hypothesize that the metal additive is also present as solute within the iron core of the HRCO particles. Kinetic batch experiments of carbon tetrachloride (CT) degradation were performed to quantitatively compare the redox reactivity of the particles. Overall, metal additives resulted in enhanced overall pseudo-first order rate constants of CT degradation (kO,CT) compared to that of the iron nanoparticles. For the bimetallic iron nanoparticles prepared by SDP and HRP, kO,CT increased with the concentration of metal additives. The values of chloroform yield (YCF) were independent of the identity and amount of metal additives. However, both kO,CT and YCF of the HRCO iron particles were significantly greater. Results suggest that it is the distribution of the metal additives that most strongly impacts reactivity and product distribution. For example, for materials with ca. 0.9 50 mol% Ni, reactivity and YCF varied substantially (HRCO>SDP>HRP), and HRCO-NiFe resulted in the lowest final chloroform concentration because the

  7. Dual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation.

    PubMed

    Majewski, Alexander P; Schallon, Anja; Jérôme, Valérie; Freitag, Ruth; Müller, Axel H E; Schmalz, Holger

    2012-03-12

    We present the synthesis of dual-responsive (pH and temperature) magnetic core-shell nanoparticles utilizing the grafting-from approach. First, oleic acid stabilized superparamagnetic maghemite (γ-Fe(2)O(3)) nanoparticles (NPs), prepared by thermal decomposition of iron pentacarbonyl, were surface-functionalized with ATRP initiating sites bearing a dopamine anchor group via ligand exchange. Subsequently, 2-(dimethylamino)ethyl methacrylate (DMAEMA) was polymerized from the surface by ATRP, yielding dual-responsive magnetic core-shell NPs (γ-Fe(2)O(3)@PDMAEMA). The attachment of the dopamine anchor group on the nanoparticle's surface is shown to be reversible to a certain extent, resulting in a grafting density of 0.15 chains per nm(2) after purification. Nevertheless, the grafted NPs show excellent long-term stability in water over a wide pH range and exhibit a pH- and temperature-dependent reversible agglomeration, as revealed by turbidimetry. The efficiency of γ-Fe(2)O(3)@PDMAEMA hybrid nanoparticles as a potential transfection agent was explored under standard conditions in CHO-K1 cells. Remarkably, γ-Fe(2)O(3)@PDMAEMA led to a 2-fold increase in the transfection efficiency without increasing the cytotoxicity, as compared to polyethyleneimine (PEI), and yielded on average more than 50% transfected cells. Moreover, after transfection with the hybrid nanoparticles, the cells acquired magnetic properties that could be used for selective isolation of transfected cells.

  8. Pressure effects in hollow and solid iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Silva, N. J. O.; Saisho, S.; Mito, M.; Millán, A.; Palacio, F.; Cabot, A.; Iglesias, Ò.; Labarta, A.

    2013-06-01

    We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core.

  9. (⁹⁹m)Tc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging.

    PubMed

    Torres Martin de Rosales, Rafael; Tavaré, Richard; Glaria, Arnaud; Varma, Gopal; Protti, Andrea; Blower, Philip J

    2011-03-16

    The combination of radionuclide-based imaging modalities such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) with magnetic resonance imaging (MRI) is likely to become the next generation of clinical scanners. Hence, there is a growing interest in the development of SPECT- and PET-MRI agents. To this end, we report a new class of dual-modality imaging agents based on the conjugation of radiolabeled bisphosphonates (BP) directly to the surface of superparamagnetic iron oxide (SPIO) nanoparticles. We demonstrate the high potential of BP-iron oxide conjugation using (⁹⁹m)Tc-dipicolylamine(DPA)-alendronate, a BP-SPECT agent, and Endorem/Feridex, a liver MRI contrast agent based on SPIO. The labeling of SPIOs with (⁹⁹m)Tc-DPA-alendronate can be performed in one step at room temperature if the SPIO is not coated with an organic polymer. Heating is needed if the nanoparticles are coated, as long as the coating is weakly bound as in the case of dextran in Endorem. The size of the radiolabeled Endorem (⁹⁹m)Tc-DPA-ale-Endorem) was characterized by TEM (5 nm, Fe₃O₄ core) and DLS (106 ± 60 nm, Fe₃O₄ core + dextran). EDX, Dittmer-Lester, and radiolabeling studies demonstrate that the BP is bound to the nanoparticles and that it binds to the Fe₃O₄ cores of Endorem, and not its dextran coating. The bimodal imaging capabilities and excellent stability of these nanoparticles were confirmed using MRI and nanoSPECT-CT imaging, showing that (⁹⁹m)Tc and Endorem co-localize in the liver and spleen In Vivo, as expected for particles of the composition and size of (⁹⁹m)Tc-DPA-ale-Endorem. To the best of our knowledge, this is the first example of radiolabeling SPIOs with BP conjugates and the first example of radiolabeling SPIO nanoparticles directly onto the surface of the iron oxide core, and not its coating. This work lays down the basis for a new generation of SPECT/PET-MR imaging agents in which the BP

  10. Measurements of Electrical and Thermal Conductivity of Iron Under Earth's Core Conditions

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Kuwayama, Y.; Shimizu, K.; Yagi, T.; Hirose, K.; Ohishi, Y.

    2014-12-01

    Secular cooling of the Earth's core induces the convection of the conductive liquid outer core, which generates the geomagnetic field, and the growth of the solid inner core. Since iron is the primary component of the Earth's core, the electrical and thermal conductivity of iron in both solid and liquid states are key pieces of information for estimating the transport properties of the core. We performed electrical and thermal conductivity measurements on iron under core conditions in a laser-heated diamond anvil cell. Our electrical conductivity measurements on iron clearly show resistivity saturation phenomena in iron under high pressure and high temperature conditions as predicted in a recent laboratory-based model for the core conductivity (Gomi et al., 2013). Direct measurements of thermal diffusivity of iron have been also preformed at high pressures by using the pulsed light heating thermoreflectance technique, which enable us to confirm the validity of the Wiedemann-Franz law toward transition metal under high pressure.

  11. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    PubMed Central

    2008-01-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed. PMID:21749733

  12. The end of the iron-core age.

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1973-01-01

    The terrestrial planets aggregated essentially from small particles, to begin as solid cool bodies with the same general compositions, and there is no possibility of an iron-core developing within any of them at any stage. Their differing internal and surface properties receive ready explanation from their different masses which determine whether the pressures within are sufficient to bring about phase-changes. The claim that the terrestrial core can be identified by means of shock-wave data as nickel-iron is based on theoretical misconception, whereas the actual seismic data establish an uncompressed-density value much lower than any such mixture could have. The onset of the Ramsey phase-change in the earth takes the form of a rapid initial collapse to produce a large core in metallic state which thereafter continues to grow secularly as a result of radioactive heating and leads to reduction of surface-area at long last adequate to account for folded and thrusted mountain-building.

  13. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    PubMed Central

    Pöttler, Marina; Staicu, Andreas; Zaloga, Jan; Unterweger, Harald; Weigel, Bianca; Schreiber, Eveline; Hofmann, Simone; Wiest, Irmi; Jeschke, Udo; Alexiou, Christoph; Janko, Christina

    2015-01-01

    Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA), or with dextran (SEONDEX). Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system. PMID:26540051

  14. Iron oxide nanoparticles in different modifications for antimicrobial phototherapy

    NASA Astrophysics Data System (ADS)

    Tuchina, Elena S.; Kozina, Kristina V.; Shelest, Nikita A.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2014-03-01

    The main goal of this study was to investigate the sensitivity of microorganisms to combined action of blue light and iron oxide nanoparticles. Two strains of Staphylococcus aureus - methicillin-sensitive and meticillin-resistant were used. As a blue light source LED with spectral maximum at 405 nm was taken. The light exposure was ranged from 5 to 30 min. The Fe2O3 (diameter ˜27 nm), Fe3O4 nanoparticles (diameter ˜19 nm), and composite Fe2O3/TiO2 nanoparticles (diameter ˜100 nm) were synthesized. It was shown that irradiation by blue light caused from 20% to 88% decrease in the number of microorganisms treated with nanoparticles. Morphological changes in bacterial cells after phototreatment were analyzed using scanning electron microscope.

  15. Evaluation of iron oxide nanoparticle biocompatibility.

    PubMed

    Hanini, Amel; Schmitt, Alain; Kacem, Kamel; Chau, François; Ammar, Souad; Gavard, Julie

    2011-01-01

    Nanotechnology is an exciting field of investigation for the development of new treatments for many human diseases. However, it is necessary to assess the biocompatibility of nanoparticles in vitro and in vivo before considering clinical applications. Our characterization of polyol-produced maghemite γ-Fe(2)O(3) nanoparticles showed high structural quality. The particles showed a homogeneous spherical size around 10 nm and could form aggregates depending on the dispersion conditions. Such nanoparticles were efficiently taken up in vitro by human endothelial cells, which represent the first biological barrier to nanoparticles in vivo. However, γ-Fe(2)O(3) can cause cell death within 24 hours of exposure, most likely through oxidative stress. Further in vivo exploration suggests that although γ-Fe(2)O(3) nanoparticles are rapidly cleared through the urine, they can lead to toxicity in the liver, kidneys and lungs, while the brain and heart remain unaffected. In conclusion, γ-Fe(2)O(3) could exhibit harmful properties and therefore surface coating, cellular targeting, and local exposure should be considered before developing clinical applications.

  16. Size-dependent magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  17. Tactic response of bacteria to zero-valent iron nanoparticles.

    PubMed

    Ortega-Calvo, José-Julio; Jimenez-Sanchez, Celia; Pratarolo, Paolo; Pullin, Huw; Scott, Thomas B; Thompson, Ian P

    2016-06-01

    The microbial assessment of pollutant toxicity rarely includes behavioral responses. In this study, we investigated the tactic response of Pseudomonas putida G7, a representative of soil bacterium, towards engineered zero-valent iron nanoparticles (nZVIs), as a new end-point assessment of toxicity. The study integrated the characterization of size distribution and charge of nZVIs and tactic reaction response by means of inverted capillary assay and computer-assisted motion analysis of motility behavior. Iron nanoparticles (diameter ≤ 100 nm) were prepared in the absence of oxygen to prevent aggregation, and then exposed in aerobic conditions. We first demonstrate that iron nanoparticles can elicit a negative tactic response in bacteria at low but environmentally-relevant, sub-lethal concentrations (1-10 μg/L). Cells were repelled by nZVIs in the concentration gradients created inside the capillaries, and a significant increase in turning events, characteristic of negative taxis, was detected under exposure to nZVIs. These tactic responses were not detectable after sustained exposure of the nanoparticles to oxygen. This new behavioral assessment may be prospected for the design of sensitive bioassays for nanomaterial toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation.

    PubMed

    Park, Hye-Young; Schadt, Mark J; Wang, Lingyan; Lim, I-Im Stephanie; Njoki, Peter N; Kim, Soo Hong; Jang, Min-Young; Luo, Jin; Zhong, Chuan-Jian

    2007-08-14

    The immobilization of proteins on gold-coated magnetic nanoparticles and the subsequent recognition of the targeted proteins provide an effective means for the separation of proteins via application of a magnetic filed. A key challenge is the ability to fabricate such nanoparticles with the desired core-shell nanostructure. In this article, we report findings of the fabrication and characterization of gold-coated iron oxide (Fe2O3 and Fe3O4) core@shell nanoparticles (Fe oxide@Au) toward novel functional biomaterials. A hetero-interparticle coalescence strategy has been demonstrated for fabricating Fe oxide@Au nanoparticles that exhibit controllable sizes ranging from 5 to 100 nm and high monodispersity. Composition and surface analyses have proven that the resulting nanoparticles consist of the Fe2O3 core and the Au shell. The magnetically active Fe oxide core and thiolate-active Au shell were shown to be viable for exploiting the Au surface protein-binding reactivity for bioassay and the Fe oxide core magnetism for magnetic bioseparation. These findings are entirely new and could form the basis for fabricating magnetic nanoparticles as biomaterials with tunable size, magnetism, and surface binding properties.

  19. Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion.

    PubMed

    Rojas, José M; Sanz-Ortega, Laura; Mulens-Arias, Vladimir; Gutiérrez, Lucía; Pérez-Yagüe, Sonia; Barber, Domingo F

    2016-05-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have shown promise as contrast agents and nanocarriers for drug delivery. Their impact on M2-polarised macrophages has nonetheless not been well studied. Here we explored the effects of SPIONs coated with dimercaptosuccinic acid, aminopropyl silane or aminodextran in two M2 macrophage models (murine primary IL-4-activated bone marrow-derived macrophages and human M2-like differentiated THP-1 cells). All SPIONs were internalised and no cell toxicity was observed. SPION treatment produced reactive oxygen species and activated the extracellular signal-regulated kinase and AKT pathways. After 24-h SPION incubation, M2 macrophages switched their iron metabolism towards an iron-replete state. SPION treatment in both M2 macrophage models altered their M2 activation profiles, promoted IL-10 production, and stimulated protease-dependent invasion. These results highlight the need to evaluate the interactions between SPIONs and cells to take full advantage of the intrinsic properties of these nanoparticles in biological systems. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used as an MRI contrast agent in many experimental studies. The authors here investigated the effects of these nanoparticles on M2 macrophages after cellular uptake. The findings of cell activation further enhanced our current knowledge on the interaction of SPIONS with macrophages. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Core-shell nanoparticle arrays double the strength of steel

    PubMed Central

    Seol, J.-B.; Na, S.-H.; Gault, B.; Kim, J.-E.; Han, J.-C.; Park, C.-G.; Raabe, D.

    2017-01-01

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material’s strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties. PMID:28225022

  1. Core-shell nanoparticle arrays double the strength of steel

    NASA Astrophysics Data System (ADS)

    Seol, J.-B.; Na, S.-H.; Gault, B.; Kim, J.-E.; Han, J.-C.; Park, C.-G.; Raabe, D.

    2017-02-01

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material’s strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties.

  2. Core-shell nanoparticle arrays double the strength of steel.

    PubMed

    Seol, J-B; Na, S-H; Gault, B; Kim, J-E; Han, J-C; Park, C-G; Raabe, D

    2017-02-22

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material's strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties.

  3. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    SciTech Connect

    Vernieres, Jerome Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  4. Nanodisco Balls: Control over Surface versus Core Loading of Diagnostically Active Nanocrystals into Polymer Nanoparticles

    PubMed Central

    2015-01-01

    Nanoparticles of complex architectures can have unique properties. Self-assembly of spherical nanocrystals is a high yielding route to such systems. In this study, we report the self-assembly of a polymer and nanocrystals into aggregates, where the location of the nanocrystals can be controlled to be either at the surface or in the core. These nanospheres, when surface decorated with nanocrystals, resemble disco balls, thus the term nanodisco balls. We studied the mechanism of this surface loading phenomenon and found it to be Ca2+ dependent. We also investigated whether excess phospholipids could prevent nanocrystal adherence. We found surface loading to occur with a variety of nanocrystal types including iron oxide nanoparticles, quantum dots, and nanophosphors, as well as sizes (10–30 nm) and shapes. Additionally, surface loading occurred over a range of polymer molecular weights (∼30–3000 kDa) and phospholipid carbon tail length. We also show that nanocrystals remain diagnostically active after loading onto the polymer nanospheres, i.e., providing contrast in the case of magnetic resonance imaging for iron oxide nanoparticles and fluorescence for quantum dots. Last, we demonstrated that a fluorescently labeled protein model drug can be delivered by surface loaded nanospheres. We present a platform for contrast media delivery, with the unusual feature that the payload can be controllably localized to the core or the surface. PMID:25188401

  5. Reductive degradation of tetrabromobisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation.

    PubMed

    Luo, Si; Yang, Shaogui; Wang, Xiaodong; Sun, Cheng

    2010-04-01

    The present study described the degradation behavior of tetrabromobisphenol A (TBBPA) in Fe-Ag suspension solutions under ultrasonic radiation (US). The Fe-Ag bimetallic nanoparticles with core-shell structure were successfully synthesized by reduction and deposition of Ag on nanoscale Fe surface, and were further characterized by BET, XRD, TEM, SEM, X-ray fluorescence and X-ray photo-electron spectroscopy. The results revealed that the displacement plating produced a non-uniform overlayer of Ag additive on iron; the as-synthesized bimetallic nanoparticles were spherical with diameters of 20-100 nm aggregated in the form of chains. Batch studies demonstrated that the TBBPA (2 mg L(-1)) was completely degraded in 20 min over Fe-Ag nanoparticles, which has higher degradation efficiency than Fe(0) nanoparticles under US. The effects of Fe-Ag bimetallic nanoparticles loading, initial TBBPA concentration, pH of the solution, Ag loading and temperature on the reduction efficiency of TBBPA under US were investigated. The complete reduction of TBBPA in 20 min was determined selectively under the conditions of pH (pH=6.0+/-0.5), Ag loading(1 wt.%) at 30 degrees C over the fabricated Fe-Ag nanoparticles. Additionally, the major intermediates identified by LC-MS technique were tri-BBPA, di-BBPA, mono-BBPA and BPA and the degradation mechanism was also proposed.

  6. Soft template strategy to synthesize iron oxide-titania yolk-shell nanoparticles as high-performance anode materials for lithium-ion battery applications.

    PubMed

    Lim, Joohyun; Um, Ji Hyun; Ahn, Jihoon; Yu, Seung-Ho; Sung, Yung-Eun; Lee, Jin-Kyu

    2015-05-18

    Yolk-shell-structured nanoparticles with iron oxide core, void, and a titania shell configuration are prepared by a simple soft template method and used as the anode material for lithium ion batteries. The iron oxide-titania yolk-shell nanoparticles (IO@void@TNPs) exhibit a higher and more stable capacity than simply mixed nanoparticles of iron oxide and hollow titania because of the unique structure obtained by the perfect separation between iron oxide nanoparticles, in combination with the adequate internal void space provided by stable titania shells. Moreover, the structural effect of IO@void@TNPs clearly demonstrates that the capacity retention value after 50 cycles is approximately 4 times that for IONPs under harsh operating conditions, that is, when the temperature is increased to 80 °C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    PubMed Central

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  8. Direct observation of magnetic metastability in individual iron nanoparticles.

    PubMed

    Balan, Ana; Derlet, Peter M; Rodríguez, Arantxa Fraile; Bansmann, Joachim; Yanes, Rocio; Nowak, Ulrich; Kleibert, Armin; Nolting, Frithjof

    2014-03-14

    X-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism is used to study the magnetic properties of individual iron nanoparticles with sizes ranging from 20 down to 8 nm. While the magnetocrystalline anisotropy of bulk iron suggests superparamagnetic behavior in this size range, ferromagnetically blocked particles are also found at all sizes. Spontaneous transitions from the blocked state to the superparamagnetic state are observed in single particles and suggest that the enhanced magnetic energy barriers in the ferromagnetic particles are due to metastable, structurally excited states with unexpected life times.

  9. Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery

    PubMed Central

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics, an area used to combine therapeutics and diagnostics. The recent applications of NPs in miRNA delivery are also reviewed. PMID:24396508

  10. Water-soluble iron oxide nanoparticles with high stability and selective surface functionality.

    PubMed

    Xu, Yaolin; Qin, Ying; Palchoudhury, Soubantika; Bao, Yuping

    2011-07-19

    The water dispensability and stability of high quality iron oxide nanoparticles synthesized in organic solvents are major issues for biomedical and biological applications. In this paper, a versatile approach for preparing water-soluble iron oxide nanoparticles with great stability and selective surface functionality (-COOH, -NH(2), or -SH) was demonstrated. The hydrophobic nanoparticles were first synthesized by the thermal decomposition of an iron oleate complex in organic solvent. Subsequently, the hydrophobic coatings of nanoparticles were replaced with poly(acrylic acid) , polyethylenimine, or glutathione, yielding charged nanoparticles in aqueous solution. Two parameters were found to be critical for obtaining highly stable nanoparticle dispersions: the original coating and the surfactant-to-nanoparticle ratio. These charged nanoparticles exhibited different stabilities in biological buffers, which were directly influenced by the surface coatings. This report will provide significant practical value in exploring the biological or biomedical applications of iron oxide nanoparticles.

  11. All Metal Iron Core For A Low Aspect Ratio Tokamak

    SciTech Connect

    D.A. Gates, C. Jun, I. Zatz, A. Zolfaghari

    2010-06-02

    A novel concept for incorporating a iron core transformer within a axisymmetric toroidal plasma containment device with a high neutron flux is described. This design enables conceptual design of low aspect ratio devices which employ standard transformer-driven plasma startup by using all-metal high resistance separators between the toroidal field windings. This design avoids the inherent problems of a multiturn air core transformer which will inevitably suffer from strong neutron bombardment and hence lose the integrity of its insulation, both through long term material degradation and short term neutron- induced conductivity.. A full 3-dimensional model of the concept has been developed within the MAXWELL program and the resultant loop voltage calculated. The utility of the result is found to be dependent on the resistivity of the high resistance separators. Useful loop voltage time histories have been obtained using achievable resistivities.

  12. Magnetic properties of self-assembled iron nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Farrell, Dorothy

    Nanoparticles of Fe were synthesized via thermal decomposition of iron pentacarbonyl, Fe(CO)5, in the presence of surfactants. Heterogeneously nucleating particles from Pt seeds led to high moment, minimally oxidized Fe particles 4.5--9 nm in diameter. Homogeneous nucleation of particles in the presence of an excess of oleic acid led to formation of partially oxidized particles, consisting of an Fe core and an oxide shell, 9--19 nm in diameter. Once synthesized, the particles were dispersed in hexane, and the hexane evaporated from the dispersion. During the evaporation, the particles self-assembled to form particle superlattices. The size and quality of the particle arrays depended on particle and surfactant concentration and drying conditions. Transmission electron microscopy (TEM) was used to characterize the size and structure of both particles and particle superlattices. Structural evidence for magnetic interactions between particles in the arrays was observed. Samples of hcp superlattices of 6.6 nm, high moment Fe particles displayed a preference for odd numbers of layers. This was not observed in arrays of low moment particles, and has not been reported for non-magnetic particles. The magnetic properties of dilute particle suspensions and dried particle arrays were measured using a Quantum Design MPMS magnetometer. The hysteretic and remanent behavior of both the dispersions and dried assemblies were indicative of the existence of dipole interactions between particles. Differences in the magnetic behavior of dispersions and arrays indicated that dipole interaction effects depend on the size and structure of particle assemblies. Magnetizing interactions play a larger role in the large, close-packed arrays than in the smaller, loosely-associated clusters contained in the dispersions. The magnetizing effects in the arrays can be enhanced by decreasing the interparticle spacing. The arrays were also magnetically anisotropic, with magnetic properties depending on

  13. Polymer-assisted self-assembly of superparamagnetic iron oxide nanoparticles into well-defined clusters: controlling the collective magnetic properties.

    PubMed

    Schmidtke, Christian; Eggers, Robin; Zierold, Robert; Feld, Artur; Kloust, Hauke; Wolter, Christopher; Ostermann, Johannes; Merkl, Jan-Philip; Schotten, Theo; Nielsch, Kornelius; Weller, Horst

    2014-09-23

    The combination of superstructure-forming amphiphilic block copolymers and superparamagnetic iron oxide nanoparticles produces new nano/microcomposites with unique size-dependent properties. Herein, we demonstrate the controlled clustering of superparamagnetic iron oxide nanoparticles (SPIOs) ranging from discretely encapsulated SPIOs to giant clusters, containing hundreds or even more particles, using an amphiphilic polyisoprene-block-poly(ethylene glycol) diblock copolymer. Within these clusters, the SPIOs interact with each other and show new collective properties, neither obtainable with singly encapsulated nor with the bulk material. We observed cluster-size-dependent magnetic properties, influencing the blocking temperature, the magnetoviscosity of the liquid suspension, and the r2 relaxivity for magnetic iron oxide nanoparticles. The clustering methodology can be expanded also to other nanoparticle materials [CdSe/CdS/ZnS core/shell/shell quantum dots (QDs), CdSe/CdS quantum dots/quantum rods (QDQRs), gold nanoparticles, and mixtures thereof].

  14. The effect of coating on heat generation properties of Iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan

    Magnetic nanoparticles have attracted more and more attention for their potential application as heating agents in cancer hyperthermia. The effectiveness of cancer hyperthermia can be increased by using particles that have a higher heat generation rate, quantified by specific absorption rate (SAR), at a smaller applied field. In order to optimize the functionality of nanoparticles as heating agents, it is essential to have a comprehensive understanding of factors that may influence SAR including coating and aggregation. In all biomedical applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration and add functionality. Coatings may profoundly influence particles' clustering behavior and magnetic properties. Yet its effect on the heat generation rate of the nanoparticles has been scarcely investigated. In this context, a systematic investigation was carried out in this dissertation in order to understand the impact of the surface coating of magnetic nanoparticles on their heat generation rate. The study also includes investigation of normal nerve cell viability in presence of biofunctionalized magnetic nanoparticles with and without exposure to magnetic heating. Commercially available suspensions of iron oxide nanoparticles with a diameter of approximately 10 nm and different coatings relevant to biomedical applications such as aminosilane, carboxymethyl-dextran, protein A, biotin were extensively characterized. First of all, magnetic phase reduction of magnetite nanoparticles was examined by studying the discrepancy between the volume fraction of magnetic phase calculated from magnetization curve and the magnetic core concentration obtained from Tiron chelation test. The findings indicated that coatings might interact with the surface atoms of the magnetic core and form a magnetically disordered layer reducing the total amount of the magnetic phase. Secondly, the impact of coating and aggregation

  15. Nanomagnetism of Core-Shell Magnetic Nanoparticles and Application in Spent Nuclear Fuel Separation

    NASA Astrophysics Data System (ADS)

    Tarsem Singh, Maninder Kaur

    This dissertation presents the study on novel core-shell magnetic nanoparticles (NPs) with unique magnetic properties. Understanding the fundamental physics of antiferromagnetic - ferromagnetic interactions is essential to apply in different applications. Chromium (Cr) doped and undoped core-shell iron/iron-oxide NPs have been synthesized using cluster deposition system and studied with respect to their nanostructures, morphologies, sizes, chemical composition and magnetic properties. The room-temperature magnetic properties of Fe based NPs shows the strong dependence of intra/inter-particle interaction on NP size. The Cr-doped Fe NP shows the origin of sigma-FeCr phase at very low Cr concentration (2 at.%) unlike others reported at high Cr content and interaction reversal from dipolar to exchange interaction. A theoretical model of watermelon is constructed based on the experimental results and core-shell NP system in order to explain the physics of exchange interaction in Cr-doped Fe particles. The magnetic nanoparticle---chelator separation nanotechnology is investigated for spent nuclear fuel recycling and is reported 97% and 80% of extraction for Am(III) and Pu(IV) actinides respectively. If the long-term heat generating actinides such as Am(III) can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. As it is a simple, versatile, compact, and cost efficient process that minimizes secondary waste and improves storage performance.

  16. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)

    PubMed Central

    Singh, Neenu; Jenkins, Gareth J.S.; Asadi, Romisa; Doak, Shareen H.

    2010-01-01

    Superparamagnetic iron oxide nanoparticles (SPION) are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein-SPION interaction and various safety considerations relating to SPION exposure are also addressed. PMID:22110864

  17. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Douziech-Eyrolles, Laurence; Marchais, Hervé; Hervé, Katel; Munnier, Emilie; Soucé, Martin; Linassier, Claude; Dubois, Pierre; Chourpa, Igor

    2007-01-01

    During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug. PMID:18203422

  18. Dopamine Serves as a Stable Surface Modifier for Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chi, Xiaoqin; Wang, Xiaomin; Hu, Juan; Wang, Lirong; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang

    2013-03-01

    Iron oxide nanoparticles are an important class of nanomaterials in a broad range of biomedical applications because of their superparamagnetism and biocompatibility. The success of biomedical applications of iron oxide nanoparticles relies on the particles' surface functionalization, which requires robust and versatile surface anchors. Here, we report on a detailed examination of the dopamine-based surface modification of iron oxide nanoparticles. We used dopamine (2-(3,4-dihydroxyphenyl)ethylamine) and L-dopa (3,4-dihydroxy-L-phenylalanine) as two surface modifiers and chose Fe2O3 hollow nanoparticles and Fe3O4 nanoparticles as two representative substrates. Optical and TEM images showed that iron oxide nanoparticles dispersed very well in water after surface modification. The analysis of the UV-Vis spectra indicated that dopamine and L-dopa are stable after being immobilized on the surface of iron oxide nanoparticles when the pH value of the environment is about 7. The magnetic properties analysis further showed that the blocking temperature of the dopamine- or L-dopa-decorated iron oxide nanoparticles hardly changed over 20 days, confirming long-term stability of these surface modified nanoparticles. Cell assay indicated that these dopamine- or L-dopa-modified iron oxide nanoparticles were biocompatible. These results confirm that dopamine serves as a stable modifier and a robust anchor to functionalize iron oxide nanoparticles in biomedical applications.

  19. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    SciTech Connect

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  20. Iron nitride nanoparticles by nanocluster deposition

    SciTech Connect

    Xu Yunhao; Hosein, Sean; Judy, Jack H.; Wang Jianping

    2005-05-15

    Fe{sub 16}N{sub 2} has been reported to have a saturation magnetization as high as 2.8-3.0 T based on molecular beam epitaxy deposited single crystal film. We report on Fe nitride nanoparticles prepared with a gas-aggregation nanocluster deposition technique, which could potentially generate pure metastable Fe{sub 16}N{sub 2} phase nanoparticles. Nitrogen gas has been used to nitride the particles after they have been formed in the cluster source. X-ray diffraction patterns show a peak split of {alpha}-Fe (110) at 52.4 deg. (2{theta}), which indicates the formation of Fe{sub 3}N phase.

  1. Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells

    PubMed Central

    Kasten, Annika; Grüttner, Cordula; Kühn, Jens-Peter; Bader, Rainer; Pasold, Juliane; Frerich, Bernhard

    2014-01-01

    Magnetic resonance imaging (MRI) using measurement of the transverse relaxation time (R2*) is to be considered as a promising approach for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. While the relationship between core composition of nanoparticles and their MRI properties is well studied, little is known about possible effects on progenitor cells. This in vitro study aims at comparing two magnetic iron oxide nanoparticle types, single vs. multi-core nanoparticles, regarding their physico-chemical characteristics, effects on cellular behavior of adipose tissue-derived stem cells (ASC) like differentiation and proliferation as well as their detection and quantification by means of MRI. Quantification of both nanoparticle types revealed a linear correlation between labeling concentration and R2* values. However, according to core composition, different levels of labeling concentrations were needed to achieve comparable R2* values. Cell viability was not altered for all labeling concentrations, whereas the proliferation rate increased with increasing labeling concentrations. Likewise, deposition of lipid droplets as well as matrix calcification revealed to be highly dose-dependent particularly regarding multi-core nanoparticle-labeled cells. Synthesis of cartilage matrix proteins and mRNA expression of collagen type II was also highly dependent on nanoparticle labeling. In general, the differentiation potential was decreased with increasing labeling concentrations. This in vitro study provides the proof of principle for further in vivo tracking experiments of progenitor cells using nanoparticles with different core compositions but also provides striking evidence that combined testing of biological and MRI properties is advisable as improved MRI properties of multi-core nanoparticles may result in altered cell functions. PMID:25244560

  2. Toxicity assessment of zero valent iron nanoparticles on Artemia salina.

    PubMed

    Kumar, Deepak; Roy, Rajdeep; Parashar, Abhinav; Raichur, Ashok M; Chandrasekaran, Natarajan; Mukherjee, Anita; Mukherjee, Amitava

    2017-05-01

    The present study deals with the toxicity assessment of two differently synthesized zero valent iron nanoparticles (nZVI, chemical and biological) as well as Fe(2+) ions on Artemia salina at three different initial concentrations of 1, 10, and 100 mg/L of these particles. The assessment was done till 96 h at time intervals of 24 h. EC50 value was calculated to evaluate the 50% mortality of Artemia salina at all exposure time durations. Between chemically and biologically synthesized nZVI nanoparticles, insignificant differences in the level of mortality were demonstrated. At even 24 h, Fe(2+) ion imparted complete lethality at the highest exposure concentration (100 mg/L). To understand intracellular oxidative stress because of zero valent iron nanoparticles, ROS estimation, SOD activity, GSH activity, and catalase activity was performed which demonstrated that ionic form of iron is quite lethal at high concentrations as compared with the same concentration of nZVI exposure. Lower concentrations of nZVI were more toxic as compared with the ionic form and was in order of CS-nZVI > BS-nZVI > Fe(2+) . Cell membrane damage and bio-uptake of nanoparticles were also evaluated for all three concentrations of BS-nZVI, CS-nZVI, and Fe(2+) using adult Artemia salina in marine water; both of which supported the observations made in toxicity assessment. This study can be further explored to exploit Artemia salina as a model organism and a biomarker in an nZVI prone aquatic system to detect toxic levels of these nanoparticles. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1617-1627, 2017. © 2017 Wiley Periodicals, Inc.

  3. Electrochemical preparation and delivery of melanin-iron covered gold nanoparticles.

    PubMed

    Grumelli, Doris; Vericat, Carolina; Benítez, Guillermo; Ramallo-López, José M; Giovanetti, Lisandro; Requejo, Félix; Moreno, M Sergio; Orive, Alejandro González; Creus, Alberto Hernández; Salvarezza, Roberto C

    2009-02-02

    Attractive combination: Biopolymer-modified nanoparticles which combine magnetic properties with biocompatibility are prepared and delivered following a three-step strategy (see figure): i) Adsorption of thiol-capped metal nanoparticles on graphite, ii) electrochemical modification, iii) potential-induced delivery of the modified nanoparticles to the electrolyte. Thiol-capped gold nanoparticles modified with iron-melanin are attractive because they combine magnetic properties and biocompatibility. The biopolymer modified nanoparticles are prepared and delivered following a three step strategy: i) adsorption of thiol-capped metal nanoparticles on graphite, ii) electrochemical deposition of melanin-iron, iii) potential-induced delivery of the modified nanoparticles to the electrolyte.

  4. Super-iron Nanoparticles with Facile Cathodic Charge Transfer

    SciTech Connect

    M Farmand; D Jiang; B Wang; S Ghosh; D Ramaker; S Licht

    2011-12-31

    Super-irons contain the + 6 valence state of iron. One advantage of this is that it provides a multiple electron opportunity to store additional battery charge. A decrease of particle size from the micrometer to the nanometer domain provides a higher surface area to volume ratio, and opportunity to facilitate charge transfer, and improve the power, voltage and depth of discharge of cathodes made from such salts. However, super-iron salts are fragile, readily reduced to the ferric state, with both heat and contact with water, and little is known of the resultant passivating and non-passivating ferric oxide products. A pathway to decrease the super-iron particle size to the nano-domain is introduced, which overcomes this fragility, and retains the battery capacity advantage of their Fe(VI) valence state. Time and power controlled mechanosynthesis, through less aggressive, dry ball milling, leads to facile charge transfer of super-iron nanoparticles. Ex-situ X-ray Absorption Spectroscopy is used to explore the oxidation state and structure of these iron oxides during discharge and shows the significant change in stability of the ferrate structure to lower oxidation state when the particle size is in the nano-domain.

  5. Design of Super-Paramagnetic Core-Shell Nanoparticles for Enhanced Performance of Inverted Polymer Solar Cells.

    PubMed

    Jaramillo, Johny; Boudouris, Bryan W; Barrero, César A; Jaramillo, Franklin

    2015-11-18

    Controlling the nature and transfer of excited states in organic photovoltaic (OPV) devices is of critical concern due to the fact that exciton transport and separation can dictate the final performance of the system. One effective method to accomplish improved charge separation in organic electronic materials is to control the spin state of the photogenerated charge-carrying species. To this end, nanoparticles with unique iron oxide (Fe3O4) cores and zinc oxide (ZnO) shells were synthesized in a controlled manner. Then, the structural and magnetic properties of these core-shell nanoparticles (Fe3O4@ZnO) were tuned to ensure superior performance when they were incorporated into the active layers of OPV devices. Specifically, small loadings of the core-shell nanoparticles were blended with the previously well-characterized OPV active layer of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Upon addition of the core-shell nanoparticles, the performance of the OPV devices was increased up to 25% relative to P3HT-PCBM active layer devices that contained no nanoparticles; this increase was a direct result of an increase in the short-circuit current densities of the devices. Furthermore, it was demonstrated that the increase in photocurrent was not due to enhanced absorption of the active layer due to the presence of the Fe3O4@ZnO core-shell nanoparticles. In fact, this increase in device performance occurred because of the presence of the superparamagnetic Fe3O4 in the core of the nanoparticles as incorporation of ZnO only nanoparticles did not alter the device performance. Importantly, however, the ZnO shell of the nanoparticles mitigated the negative optical effect of Fe3O4, which have been observed previously. This allowed the core-shell nanoparticles to outperform bare Fe3O4 nanoparticles when the single-layer nanoparticles were incorporated into the active layer of OPV devices. As such, the new materials described here present a

  6. Solution voltammetry of 4 nm magnetite iron oxide nanoparticles.

    PubMed

    Roberts, Joseph J P; Westgard, John A; Cooper, Laura M; Murray, Royce W

    2014-07-30

    The voltammetry of solution-dispersed magnetite iron oxide Fe3O4 nanoparticles is described. Their currents are controlled by nanoparticle transport rates, as shown with potential step chronoamperometry and rotated disk voltammetry. In pH 2 citrate buffer with added NaClO4 electrolyte, solution cyclic voltammetry of these nanoparticles (average diameter 4.4 ± 0.9 nm, each containing ca. 30 Fe sites) displays an electrochemically irreversible oxidation with E(PEAK) at ca. +0.52 V and an irreversible reduction with E(PEAK) at ca. +0.2 V vs Ag/AgCl reference electrode. These processes are presumed to correspond to the formal potentials for one-electron oxidation of Fe(II) and reduction of Fe(III) at their different sites in the magnetite nanoparticle structure. The heterogeneous electrode reaction rates of the nanoparticles are very slow, in the 10(-5) cm/s range. The nanoparticles are additionally characterized by a variety of tools, e.g., TEM, UV/vis, and XPS spectroscopies.

  7. Synthesis and characterization of platinum decorated iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Palchoudhury, Soubantika

    This dissertation focuses on the development of a bifunctional nanoparticle system that can potentially offer simultaneous imaging and therapy in the future. Recently, small platinum (Pt) nanoparticles (< 5 nm) have shown great potential in therapeutic applications, such as DNA dissociation, radiation therapy, and oxidative stress treatment. Therefore, the small Pt nanoparticles of size comparable to DNA grooves are chosen as potential therapeutic components in this research. However, such small sized Pt nanoparticles tends to aggregate, and are difficult to target. Therefore, this research reports the synthesis, characterization, and DNA interaction of small Pt decorated iron oxide nanoparticles. The iron oxide carriers provide stability to the small Pt nanoparticles, and can potentially serve as MRI contrast agents. The hypothesis of this research is that the Pt nanoparticles supported on iron oxide nanoparticle surfaces can effectively interact with DNA molecules similar to the free Pt nanoparticles. A reproducible synthetic technique was first developed to prepare iron oxide nanoparticles with excellent size control and narrow size distribution. Subsequently, two different approaches were utilized to produce multiple small Pt nanoparticle attached iron oxide nanoparticles. The first route involved attachment of Pt nanoparticles onto iron oxide seeds of various shapes in an organic solvent, followed by an aqueous phase transfer. Here, the shape of the nanoparticles was controlled to facilitate heterogeneous nucleation of Pt nanoparticles. The protective biocompatible polymer coating (polyacrylic acid) in this method could prevent interaction of the Pt nanoparticles with undesirable biomolecules. Several non-spherical iron oxide nanoparticles were explored, including whiskers, worms, plates, and flowers. In the second method, an aqueous phase ligand exchange process was performed first, prior to the deposition of multiple Pt nanoparticles. This facile method

  8. Uptake and metabolism of iron oxide nanoparticles in brain cells.

    PubMed

    Petters, Charlotte; Irrsack, Ellen; Koch, Michael; Dringen, Ralf

    2014-09-01

    Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.

  9. New Perspectives on Biomedical Applications of Iron Oxide Nanoparticles.

    PubMed

    Magro, Massimiliano; Baratella, Davide; Bonaiuto, Emanuela; de Almeida Roger, Jessica; Vianello, Fabio

    2017-06-16

    Iron oxide nanomaterials are considered promising tools for improved therapeutic efficacy and diagnostic applications in biomedicine. Accordingly, engineered iron oxide nanomaterials are increasingly proposed in biomedicine, and the interdisciplinary researches involving physics, chemistry, biology (nanotechnology) and medicine have led to exciting developments in the last decades. The progresses of the development of magnetic nanoparticles with tailored physico-chemical and surface properties produced a variety of clinically relevant applications, spanning from magnetic resonance imaging (MRI), drug delivery, magnetic hyperthermia, to in vitro diagnostics. Notwithstanding the well-known conventional synthetic procedures and their wide use, recent advances in the synthetic methods open the door to new generations of naked iron oxide nanoparticles possessing peculiar surface chemistries, suitable for other competitive biomedical applications. New abilities to rationally manipulate iron oxides and their physical, chemical, and biological properties, allow the emersion of additional possibilities for designing novel nanomaterials for theranostic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Iron isotopic fractionation between silicate mantle and metallic core at high pressure

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Dauphas, Nicolas; Roskosz, Mathieu; Hu, Michael Y.; Yang, Hong; Bi, Wenli; Zhao, Jiyong; Alp, Esen E.; Hu, Justin Y.; Lin, Jung-Fu

    2017-02-01

    The +0.1‰ elevated 56Fe/54Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure-temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, even at high pressure. From the measured mean force constants of iron bonds, we calculate an equilibrium iron isotope fractionation between silicate and iron under core formation conditions in Earth of ~0-0.02‰, which is small relative to the +0.1‰ shift of terrestrial basalts. This result is unaffected by small amounts of nickel and candidate core-forming light elements, as the isotopic shifts associated with such alloying are small. This study suggests that the variability in iron isotopic composition in planetary objects cannot be due to core formation.

  11. Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers.

    PubMed

    Tamburro, Davide; Fredolini, Claudia; Espina, Virginia; Douglas, Temple A; Ranganathan, Adarsh; Ilag, Leopold; Zhou, Weidong; Russo, Paul; Espina, Benjamin H; Muto, Giovanni; Petricoin, Emanuel F; Liotta, Lance A; Luchini, Alessandra

    2011-11-30

    Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core-shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (K(D) < 10(-11) M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.

  12. Accumulation of iron oxide nanoparticles by cultured primary neurons.

    PubMed

    Petters, Charlotte; Dringen, Ralf

    2015-02-01

    Magnetic iron oxide nanoparticles (IONPs) are frequently used for biomedical applications. Although nanoparticles can enter the brain, little is known so far on the uptake of IONPs in neurons and on their neurotoxic potential. Hence, we applied dimercaptosuccinate (DMSA)-coated IONPs to cultured primary rat cerebellar granule neurons. These IONPs had average hydrodynamic diameters of around 80 nm and 120 nm when dispersed in incubation medium in the absence and the presence of 10% fetal calf serum, respectively. Acute exposure of neurons with IONPs for up to 6 h did neither alter the cell morphology nor compromise cell viability, although neurons accumulated large amounts of IONPs in a time- and concentration-dependent manner which caused delayed toxicity. For the first 30 min of incubation of neurons at 37 °C with IONPs the cellular iron content increased proportionally to the concentration of IONPs applied irrespective of the absence and the presence of serum. IONP-exposure in the absence of serum generated maximal cellular iron contents of around 3000 nmol iron/mg protein after 4 h of incubation, while the accumulation in the presence of 10% serum was slower and reached already within 1 h maximal values of around 450 nmol iron/mg protein. For both incubation conditions was the increase in cellular iron contents significantly lowered by reducing the incubation temperature to 4 °C. Application of inhibitors of endocytotic pathways did not affect neuronal IONP accumulation in the absence of serum, while inhibitors of clathrin-mediated endocytosis lowered significantly the IONP accumulation in the presence of serum. These data demonstrate that DMSA-coated IONPs are not acutely toxic to cultured neurons and that a protein corona around the particles strongly affects their interaction with neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Magnesium solubility in metallic iron during core formation

    NASA Astrophysics Data System (ADS)

    Badro, J.; Siebert, J.; Nimmo, F.

    2015-12-01

    Terrestrial core formation occurred by gravitational segregation of immiscible metal and silicate melts in an extensively molten proto-Earth. This stripped the bulk silicate Earth of most of its siderophile elements, which were concentrated in the core. The process occurs by virtue of partitioning through a redox reaction (e.g. [1]) whereby iron in the metal exchanges for a bonded siderophile element in the mantle. By performing metal-silicate equilibration experiments at extreme pressures and temperatures using the laser-heated diamond anvil cell, we find that the major lithophile component of the silicate Earth, namely MgO, can also become soluble in the metal. At close to 5000 K, our experiments show that up to 1.2 % MgO can be incorporated in the metal. We show that Mg incorporation in the metal isn't a redox reaction as with siderophile element partitioning, but rather a direct solubility of the MgO component as temperatures approach the metal-silicate solvus; in that respect, our results are fully consistent with the recently calculated Fe-MgO solvus [2]. This confirms that significant amounts of magnesium could have been added to the early core, provided that a giant impact had generated the necessary temperature increase. The subsequent exsolution of MgO driven by core cooling would have provided a significant buoyancy source, likely sufficient to drive core convection and producing an ancient magnetic field [3]. [1] J. Wade and B. J. Wood, Earth Planet. Sci. Lett., 236, 78-95 (2005) [2] S. M. Wahl and B. Militzer, Earth Planet. Sci. Lett. 410, 25-33 (2015) [3] D. J. Stevenson, DI11C-03, Fall AGU 2012.

  14. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia

    PubMed Central

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world’s children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability. PMID:25609917

  15. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia.

    PubMed

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world's children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability.

  16. Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles.

    PubMed

    Cochran, David B; Wattamwar, Paritosh P; Wydra, Robert; Hilt, J Zach; Anderson, Kimberly W; Eitel, Richard E; Dziubla, Thomas D

    2013-12-01

    The biomedical use of superparamagnetic iron oxide nanoparticles has been of continued interest in the literature and clinic. Their ability to be used as contrast agents for imaging and/or responsive agents for remote actuation makes them exciting materials for a wide range of clinical applications. Recently, however, concern has arisen regarding the potential health effects of these particles. Iron oxide toxicity has been demonstrated in in vivo and in vitro models, with oxidative stress being implicated as playing a key role in this pathology. One of the key cell types implicated in this injury is the vascular endothelial cells. Here, we report on the development of a targeted polymeric antioxidant, poly(trolox ester), nanoparticle that can suppress oxidative damage. As the polymer undergoes enzymatic hydrolysis, active trolox is locally released, providing a long term protection against pro-oxidant agents. In this work, poly(trolox) nanoparticles are targeted to platelet endothelial cell adhesion molecules (PECAM-1), which are able to bind to and internalize in endothelial cells and provide localized protection against the cytotoxicity caused by iron oxide nanoparticles. These results indicate the potential of using poly(trolox ester) as a means of mitigating iron oxide toxicity, potentially expanding the clinical use and relevance of these exciting systems.

  17. Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds.

    PubMed

    Huang, Kuo-Cheng; Ehrman, Sheryl H

    2007-01-30

    We report on the synthesis of highly monodisperse iron nanoparticles, using a chemical reduction method. Iron nanoparticles with an average diameter of 6 nm and a geometric standard deviation of 1.3 were synthesized at a pH of 9.50 from ferric chloride precursor with sodium borohydride as the reducing agent, polyacrylic acid as the dispersing agent, and palladium ions as seeds for iron nanoparticle nucleation. The resulting nanoparticles were ferromagnetic at 5 K and superparamagnetic at 350 K. The dispersing agent polyacrylic acid (PAA) was shown to prevent iron nanoparticles and possibly palladium clusters from aggregating; in the absence of PAA, only aggregated iron nanoparticles were obtained. The addition of palladium ions decreased the diameter of iron nanoparticles presumably by providing sites for heterogeneous nucleation onto palladium clusters. In the absence of palladium ions, the mean diameter of iron nanoparticles was approximately 110 nm and the standard deviation increased to 2.0. The pH of the solution also was found to have a significant effect on the particle diameter, likely by affecting PAA ionization and altering the conformation of the polymer chains. At lower pH (8.75), the PAA is less ionized and its ability to disperse palladium clusters is reduced, so the number of palladium seeds decreases. Therefore, the resulting iron nanoparticles were larger, 59 nm in diameter, versus 6 nm for nanoparticles formed at a pH of 9.50.

  18. Synthesis of Organic Dye-Impregnated Silica Shell-Coated Iron Oxide Nanoparticles by a New Method

    NASA Astrophysics Data System (ADS)

    Ren, Cuiling; Li, Jinhua; Liu, Qian; Ren, Juan; Chen, Xingguo; Hu, Zhide; Xue, Desheng

    2008-12-01

    A new method for preparing magnetic iron oxide nanoparticles coated by organic dye-doped silica shell was developed in this article. Iron oxide nanoparticles were first coated with dye-impregnated silica shell by the hydrolysis of hexadecyltrimethoxysilane (HTMOS) which produced a hydrophobic core for the entrapment of organic dye molecules. Then, the particles were coated with a hydrophilic shell by the hydrolysis of tetraethylorthosilicate (TEOS), which enabled water dispersal of the resulting nanoparticles. The final product was characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and vibration sample magnetometer. All the characterization results proved the final samples possessed magnetic and fluorescent properties simultaneously. And this new multifunctional nanomaterial possessed high photostability and minimal dye leakage.

  19. Synthesis of Organic Dye-Impregnated Silica Shell-Coated Iron Oxide Nanoparticles by a New Method

    PubMed Central

    2008-01-01

    A new method for preparing magnetic iron oxide nanoparticles coated by organic dye-doped silica shell was developed in this article. Iron oxide nanoparticles were first coated with dye-impregnated silica shell by the hydrolysis of hexadecyltrimethoxysilane (HTMOS) which produced a hydrophobic core for the entrapment of organic dye molecules. Then, the particles were coated with a hydrophilic shell by the hydrolysis of tetraethylorthosilicate (TEOS), which enabled water dispersal of the resulting nanoparticles. The final product was characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and vibration sample magnetometer. All the characterization results proved the final samples possessed magnetic and fluorescent properties simultaneously. And this new multifunctional nanomaterial possessed high photostability and minimal dye leakage. PMID:20596479

  20. Highly Stable Amine Functionalized Iron Oxide Nanoparticles Designed for Magnetic Particle Imaging (MPI)

    PubMed Central

    Arami, Hamed; Krishnan, Kannan M.

    2014-01-01

    Magnetic particle imaging (MPI) is a promising medical imaging technology that uses iron oxide nanoparticles (NPs) as clinically safe tracers. The core and hydrodynamic size of these NPs determine the signal intensity and spatial resolution in MPI, whilst their monodispersity when preserved during the biomedical applications, generates a consistently high quality MPI image. Using an effective process to coat the synthesized NPs with amine terminated PEG molecules, we show by dynamic light scattering (DLS) that they are water-soluble with long-term stability in biological media such as phosphate buffered saline (PBS) and sodium bicarbonate buffers and Dulbecco’s modified Eagle medium (DMEM) enriched with 10% fetal bovine serum (FBS). Further, using magnetic particle spectroscopy (MPS), to measure the particle response function (PRF), defined as the derivative of the magnetization of the nanoparticles, we predict the MPI performance of these nanoparticles at a driving field frequency of 25 kHz. The MPS efficacy of the functionalized nanoparticles was also monitored over time, and both signal intensity and resolution remained unchanged even after seven days of incubation. This is attributed to the dominant contribution of the Néel relaxation mechanism of the monodisperse and highly stable nanoparticles, which was preserved through the incubation period. PMID:25554710

  1. Synthesis of Core-Shell Nanoparticle Composites

    DTIC Science & Technology

    2010-08-17

    XPS . 2.7 Results and discussion The particle size was determined by TEM. TEM images show that both Gd2O3 and Gd2O3 and Eu inclusion nanoparticles...O (1s) spectrum of PEGylated Gd2O3 NP XPS analysis, indicating the success coating of PEG on the particles. Similarly, the presence of carboxyl (C=O...Australia 6 (a) Gd2O3 NPs in DEG spectrum (b) C (1s) and O (1s) spectrum (c) 1,000-1,400 eV spectrum Figure 1 XPS spectra of Gd2O3 NPs

  2. Environment friendly route of iron oxide nanoparticles from Zingiber officinale (ginger) root extract

    NASA Astrophysics Data System (ADS)

    Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew

    2016-11-01

    Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.

  3. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    NASA Astrophysics Data System (ADS)

    Soares, Paula I. P.; Laia, César A. T.; Carvalho, Alexandra; Pereira, Laura C. J.; Coutinho, Joana T.; Ferreira, Isabel M. M.; Novo, Carlos M. M.; Borges, João Paulo

    2016-10-01

    Iron oxide nanoparticles (Fe3O4, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of -120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  4. Functionalization of iron oxide magnetic nanoparticles with targeting ligands: their physicochemical properties and in vivo behavior.

    PubMed

    Fang, Chen; Veiseh, Omid; Kievit, Forrest; Bhattarai, Narayan; Wang, Freddy; Stephen, Zach; Li, Chun; Lee, Donghoon; Ellenbogen, Richard G; Zhang, Miqin

    2010-11-01

    To develop and evaluate two tumor-specific nanoprobes by functionalization of a polyethylene glycol-immobilized nanoparticle with arginine-glycine-aspartic acid (RGD) or chlorotoxin ligand that targets α(v)β(3) integrin and matrix metalloproteinase-2 receptors, respectively. The nanoprobes were made of iron oxide cores, biocompatible polymer coating, and surface-conjugated RGD or chlorotoxin peptide. The tumor-targeting specificity of the nanoprobes was evaluated both in vitro and in vivo. Both nanoprobes were highly dispersive and exhibited excellent long-term stability in cell culture media. The RGD-conjugated nanoprobe displayed a strong initial accumulation near neovasculatures in tumors followed by quick clearance. Conversely, the chlorotoxin-enabled nanoprobe exhibited sustained accumulation throughout the tumor. These findings revealed the influence of the targeting ligands on the intratumoral distribution of the ligand-enabled nanoprobes. With flexible surface chemistry, our nanoparticle platform can be used in a modular fashion to conjugate biomolecules for intended applications.

  5. Preparation and biodistribution of 59Fe-radiolabelled iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pospisilova, Martina; Zapotocky, Vojtech; Nesporova, Kristina; Laznicek, Milan; Laznickova, Alice; Zidek, Ondrej; Cepa, Martin; Vagnerova, Hana; Velebny, Vladimir

    2017-02-01

    We report on the 59Fe radiolabelling of iron oxide nanoparticle cores through post-synthetic isotope exchange (59Fe-IONPex) and precursor labelling (59Fe-IONPpre). Scanning electron microscopy and dynamic light scattering measurements showed no impact of radiolabelling on nanoparticle size or morphology. While incorporation efficiencies of these methods are comparable—83 and 90% for precursor labelling and post-synthetic isotope exchange, respectively—59Fe-IONPpre exhibited much higher radiochemical stability in citrated human plasma. Quantitative ex vivo biodistribution study of 59Fe-IONPpre coated with triethylene glycol was performed in Wistar rats. Following the intravenous administration, high 59Fe concentration was observed in the lung and the organs of the reticuloendothelial system such as the liver, the spleen and the femur.

  6. GoldMag nanoparticles with core/shell structure: characterization and application in MR molecular imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Zou, Liguang; Zhang, Dong; Pang, Xin; Yang, Hua; Xu, Ying

    2011-09-01

    GoldMag is a kind of bi-functional nanoparticle, composed of a gold nanoshell and an iron oxide core. GoldMag combines the antibody immobilization property of gold nanoshell with the superparamagnetic feature of the iron oxide core. Rabbit anti-mouse IgG was immobilized on the surface of GoldMag to synthesize GoldMag-IgG in a single-step process. Transmission electron microscopy, UV/Vis spectrophotometry, zeta potential analysis, dynamic light scattering, enzyme-linked immunosorbent assay, and magnetic resonance imaging (MRI) were employed to characterize the nanostructures and the spectroscopic and magnetic properties of GoldMag and GoldMag-IgG. The antibody encapsulation efficiency of GoldMag was measured as 58.7%, and the antibody loading capacity was 88 μg IgG per milligram of GoldMag. The immunoactivity of GoldMag-IgG was estimated to be 43.3% of that of the original IgG. The cytotoxicity of GoldMag was assessed by MTT assay, which showed that it has only little influence on human dermal lymphatic endothelial cells. MR imaging of different concentrations of ultrasmall superparamagnetic iron oxide, GoldMag, and GoldMag-IgG showed that 3 μg/mL of nanoparticles could significantly affect the MRI signal intensity of GRE T2*WI. The results demonstrate that GoldMag nanoparticles can be effectively conjugated with biomacromolecules and possess great potential for MR molecular imaging.

  7. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    PubMed Central

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  8. Synthesis of Iron Nanoparticles Using Azadirachta indica Extract and Its Catalytic Activity Toward Nitrophenol Reduction.

    PubMed

    Karthikeyan, C; Ranjani, M; Kim, Ae Rhan; Yoo, Dong Jin; Kumar, G Gnana

    2016-03-01

    A simple, hasty and eco-friendly approach for the synthesis of iron nanoparticles has been developed using the medicinally important Azadirachta indica extract, which act as both reducing and stabilizing agent. The formation and morphological properties of iron nanoparticles as a function of metallic precursor and Azadirachta indica extract concentration have been investigated. The influence of solvent over the size and texture of iron nanoparticles has also been evaluated in detail. The thermal behavior of prepared nanoparticles was identified from thermogravimetric analysis. Furthermore, the catalytic activity of prepared iron nanoparticles toward the reduction of p-nitrophenol was analyzed and the reduction process was occurred within 30 sec. The cost and time efficient biosynthesis process and excellent catalytic activity of the prepared iron nanoparticles construct this protocol attractive.

  9. Experimental determination of the electrical resistivity of iron at Earth’s core conditions

    NASA Astrophysics Data System (ADS)

    Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei; Shimizu, Katsuya; Ohishi, Yasuo

    2016-06-01

    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth’s core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth’s core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth’s core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core.

  10. Experimental determination of the electrical resistivity of iron at Earth's core conditions.

    PubMed

    Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei; Shimizu, Katsuya; Ohishi, Yasuo

    2016-06-02

    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth's core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth's core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth's core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core.

  11. Intra-particle chemical homogeneity determining the exchange coupling in palladium-iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Castellanos-Rubio, Idoia; Insausti, Maite; de Muro, Izaskun Gil; Arias-Duque, D. Carolina; Hernández-Garrido, Juan Carlos; Lezama, Luis

    2017-02-01

    The interplay between chemical inhomogeneities and magnetic properties in iron alloys is a subtle question that affects several nanoalloys with potential technological and biomedical applications. Herein below, we focus on the FCC palladium rich-iron nanoparticle system, specifically in three samples that reflect the key influence of synthesis conditions. Magnetic measurements as a function of field and temperature have allowed detecting the onset of anomalous relaxation phenomena of the magnetization due to the strong weakening of the exchange coupling in nanoparticles prepared at low temperatures. Such effects are triggered by the lack of a good inter-diffusion of atomic species during core growth and directly affect the magnetic anisotropy. Electron Magnetic Resonance spectroscopy has confirmed that iron clustering leads to a gradual transition from a superparamagnetic state at low temperatures to a nearly paramagnetic behaviour at high temperatures. The measurements of the g-factor and the average magnetic moment per Fe atom do not account for a significant polarization in Pd atoms.

  12. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    PubMed

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively).

  13. Effective delivery of immunosuppressive drug molecules by silica coated iron oxide nanoparticles.

    PubMed

    Hwang, Jangsun; Lee, Eunwon; Kim, Jieun; Seo, Youngmin; Lee, Kwan Hong; Hong, Jong Wook; Gilad, Assaf A; Park, Hansoo; Choi, Jonghoon

    2016-06-01

    Iron oxide nanoparticles have been used in a wide range of biomedical applications, including drug delivery, molecular imaging, and cellular imaging. Various surface modifications have been applied to the particles to stabilize their surface and to give them a moiety for anchoring tags and/or drug molecules. Conventional methods of delivering immunosuppressant drugs often require a high dose of drugs to ensure therapeutic effects, but this can lead to toxic side effects. In this study, we used silica-coated iron oxide nanoparticles (IOSs) for a drug delivery application in which the nanoparticles carry the minimum amount of drug required to be effective to the target cells. IOSs could be loaded with water-insoluble immunosuppressive drug molecules (MPA: mycophenolic acid) and be used as a contrast agent for MRI. We characterized the IOSs for their physicochemical properties and found their average hydrodynamic diameter and core size to be 40.5nm and 5nm, respectively. Following the introduction of MPA-loaded IOSs (IOS/M), we evaluated the secretion dynamics of cytokines from peripheral blood mononuclear cells stimulated with phytohemagglutinin (PHA). The results showed that IOS/M effectively inhibited the secretion of the cytokines interleukin-2 and tumor necrosis factor α, with a minimal concentration of MPA. In conclusion, IOS/M may have potential applications in both efficient drug delivery and MRI. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Surfactant templating effects on the encapsulation of iron oxide nanoparticles within silica microspheres.

    PubMed

    Zheng, Tonghua; Pang, Jiebin; Tan, Grace; He, Jibao; McPherson, Gary L; Lu, Yunfeng; John, Vijay T; Zhan, Jingjing

    2007-04-24

    Hollow silica microspheres encapsulating ferromagnetic iron oxide nanoparticles were synthesized by a surfactant-aided aerosol process and subsequent treatment. The cationic surfactant cetyltrimethyl ammonium bromide (CTAB) played an essential role in directing the structure of the composite. Translation from mesoporous silica particles to hollow particles was a consequence of increased loading of ferric species in the precursor solution and the competitive partitioning of CTAB between silicate and ferric colloids. The hypothesis was that CTAB preferentially adsorbed onto more positively charged ferric colloids under acidic conditions. At a critical Fe/Si ratio, most of the CTAB was adsorbed onto ferric colloids and coagulated the colloids to form larger clusters. During the aerosol process, a silica shell was first formed due to the preferred silicate condensation on the gas-liquid interface of the aerosol droplet. Subsequent drying concentrated the ferric clusters inside the silica shell and resulted in a silica shell/ferric core particle. Thermal treatment of the core shell particle led to encapsulation of a single iron oxide nanoparticle inside each silica hollow microsphere.

  15. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility.

    PubMed

    Zaloga, Jan; Janko, Christina; Nowak, Johannes; Matuszak, Jasmin; Knaup, Sabine; Eberbeck, Dietmar; Tietze, Rainer; Unterweger, Harald; Friedrich, Ralf P; Duerr, Stephan; Heimke-Brinck, Ralph; Baum, Eva; Cicha, Iwona; Dörje, Frank; Odenbach, Stefan; Lyer, Stefan; Lee, Geoffrey; Alexiou, Christoph

    2014-01-01

    The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical

  16. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility

    PubMed Central

    Zaloga, Jan; Janko, Christina; Nowak, Johannes; Matuszak, Jasmin; Knaup, Sabine; Eberbeck, Dietmar; Tietze, Rainer; Unterweger, Harald; Friedrich, Ralf P; Duerr, Stephan; Heimke-Brinck, Ralph; Baum, Eva; Cicha, Iwona; Dörje, Frank; Odenbach, Stefan; Lyer, Stefan; Lee, Geoffrey; Alexiou, Christoph

    2014-01-01

    The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical

  17. Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications.

    PubMed

    Szekeres, Márta; Tóth, Ildikó Y; Illés, Erzsébet; Hajdú, Angéla; Zupkó, István; Farkas, Katalin; Oszlánczi, Gábor; Tiszlavicz, László; Tombácz, Etelka

    2013-07-12

    Despite the large efforts to prepare super paramagnetic iron oxide nanoparticles (MNPs) for biomedical applications, the number of FDA or EMA approved formulations is few. It is not known commonly that the approved formulations in many instances have already been withdrawn or discontinued by the producers; at present, hardly any approved formulations are produced and marketed. Literature survey reveals that there is a lack for a commonly accepted physicochemical practice in designing and qualifying formulations before they enter in vitro and in vivo biological testing. Such a standard procedure would exclude inadequate formulations from clinical trials thus improving their outcome. Here we present a straightforward route to assess eligibility of carboxylated MNPs for biomedical tests applied for a series of our core-shell products, i.e., citric acid, gallic acid, poly(acrylic acid) and poly(acrylic acid-co-maleic acid) coated MNPs. The discussion is based on physicochemical studies (carboxylate adsorption/desorption, FTIR-ATR, iron dissolution, zeta potential, particle size, coagulation kinetics and magnetization measurements) and involves in vitro and in vivo tests. Our procedure can serve as an example to construct adequate physico-chemical selection strategies for preparation of other types of core-shell nanoparticles as well.

  18. Influence of different synthesis approach on doping behavior of silver nanoparticles onto the iron oxide-silica coreshell surfaces

    NASA Astrophysics Data System (ADS)

    Mahmed, Norsuria; Jiang, Hua; Heczko, Oleg; Söderberg, Outi; Hannula, Simo-Pekka

    2012-08-01

    Silver (Ag) nanoparticles with the crystallite size ranging from 13-24 nm were successfully doped onto the surface of iron oxide-silica coreshell particles. In the process, iron oxide particles having a size distribution within 8-19 nm were prepared by using a reverse co-precipitation method followed by the formation of iron oxide-core with silica shell (with 50-150 nm diameter of silica spheres) by using a modified Stöber method. The reduction of Ag ions was done at room temperature in a solution containing polyvinylpyrrolidone and ethanol by using mechanical and ultrasonic mixing. Four different synthesis approaches were used in doping of Ag nanoparticles. The phase, morphology, optical and magnetic properties of the synthesized powders were characterized by using X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope, UV-visible spectrometer (UV-Vis) and vibrating sample magnetometer. Spherical morphology of the Ag nanoparticles was found to deposit on the iron oxide-silica surfaces. The particle size distribution is depending on the synthesis approach used. The UV-Vis absorption peak at 404-410 nm of wavelength confirmed the existence of the Ag nanoparticles.

  19. Field-induced self-assembly of iron oxide nanoparticles investigated using small-angle neutron scattering.

    PubMed

    Fu, Zhendong; Xiao, Yinguo; Feoktystov, Artem; Pipich, Vitaliy; Appavou, Marie-Sousai; Su, Yixi; Feng, Erxi; Jin, Wentao; Brückel, Thomas

    2016-11-03

    The magnetic-field-induced assembly of magnetic nanoparticles (NPs) provides a unique and flexible strategy in the design and fabrication of functional nanostructures and devices. We have investigated the field-induced self-assembly of core-shell iron oxide NPs dispersed in toluene by means of small-angle neutron scattering (SANS). The form factor of the core-shell NPs was characterized and analyzed using SANS with polarized neutrons. Large-scale aggregates of iron oxide NPs formed above 0.02 T as indicated by very-small-angle neutron scattering measurements. A three-dimensional long-range ordered superlattice of iron oxide NPs was revealed under the application of a moderate magnetic field. The crystal structure of the superlattice has been identified to be face-centred cubic.

  20. State of the art of the bi- and trimetallic nanoparticles on the basis of gold and iron.

    PubMed

    Kharisov, Boris I; Kharissova, Oxana V; Yacamán, Miguel J; Ortiz M, Ubaldo

    2009-01-01

    Recently reported patents and experimental articles on the synthesis, properties, and main applications of core-shell nanoparticles, containing iron or its oxides and gold, as well as trimetallic systems on their basis, are reviewed. These nanostructures were obtained by a series of methods, including reduction in reverse micelles, decomposition of organometallic compounds, electron-beam, laser and gamma-irradiation, sonolysis and electrochemical methods. (Fe or Fe(X)O(y))/Au nanoparticles are subject to be functionalized with organic moieties, may expand their main applications, which consist of catalysis, biological and biomedical uses.

  1. Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging.

    PubMed

    Li, Dan; Tang, Xin; Pulli, Benjamin; Lin, Chao; Zhao, Peng; Cheng, Jian; Lv, Zhongwei; Yuan, Xueyu; Luo, Qiong; Cai, Haidong; Ye, Meng

    2014-01-01

    Theranostic nanoparticles based on superparamagnetic iron oxide (SPIO) have a great promise for tumor diagnosis and gene therapy. However, the availability of theranostic nanoparticles with efficient gene transfection and minimal toxicity remains a big challenge. In this study, we construct an intelligent SPIO-based nanoparticle comprising a SPIO inner core and a disulfide-containing polyethylenimine (SSPEI) outer layer, which is referred to as a SSPEI-SPIO nanoparticle, for redox-triggered gene release in response to an intracellular reducing environment. We reveal that SSPEI-SPIO nanoparticles are capable of binding genes to form nano-complexes and mediating a facilitated gene release in the presence of dithiothreitol (5-20 mM), thereby leading to high transfection efficiency against different cancer cells. The SSPEI-SPIO nanoparticles are also able to deliver small interfering RNA (siRNA) for the silencing of human telomerase reverse transcriptase genes in HepG2 cells, causing their apoptosis and growth inhibition. Further, the nanoparticles are applicable as T2-negative contrast agents for magnetic resonance (MR) imaging of a tumor xenografted in a nude mouse. Importantly, SSPEI-SPIO nanoparticles have relatively low cytotoxicity in vitro at a high concentration of 100 μg/mL. The results of this study demonstrate the utility of a disulfide-containing cationic polymer-decorated SPIO nanoparticle as highly potent and low-toxic theranostic nano-system for specific nucleic acid delivery inside cancer cells.

  2. Crystal structure of iron-oxide nanoparticles synthesized from ferritin

    NASA Astrophysics Data System (ADS)

    Krispin, Michael; Ullrich, Aladin; Horn, Siegfried

    2012-02-01

    We have investigated the crystal structure of nanosized iron-oxide by X-ray diffraction (XRD), extended X-ray absorption fine structure measurements at the iron K-edge as well as by transmission electron microscopy (TEM). Iron-oxide nanoparticles were produced by thermal treatment of horse spleen ferritin molecules. The structure of these particles was compared to α-Fe2O3 and γ-Fe2O3 nanopowder references. The thermal treatment of a submonolayer film of ferritin molecules results in pure γ-Fe2O3 nanoparticles, while for films above a certain thickness α-Fe2O3 and γ-Fe2O3 coexist, exhibiting two different crystallite sizes. TEM shows a characteristic particle diameter of 7 nm for γ-Fe2O3 resulting from thermal treatment of monolayers, consistent with the crystallite size of the γ-phase as obtained from XRD measurements on multi-layered samples. XRD shows the α-Fe2O3 phase to be characterized by a crystallite size of 34 nm.

  3. Iron and iron oxide nanoparticles obtained by ultra-short laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    De Bonis, A.; Lovaglio, T.; Galasso, A.; Santagata, A.; Teghil, R.

    2015-10-01

    Laser ablation of an iron target in water and acetone has been carried out using a frequency doubled Nd:glass laser source (pulse duration of 250 fs and frequency repetition rate of 10 Hz). The observation of the nanostructures formed in the laser irradiated region of the metallic target and fast shadowgraphic analysis of the laser induced cavitation bubble have been performed in order to correlate the size distribution of the obtained nanoparticles to the dynamics of the ablation process. The composition, morphology and oxidation state of the synthesized nanoproducts have been investigated by XPS (X-ray Photoelectron Spectroscopy), TEM (Transmission Electron Microscopy) and microRaman spectroscopy. The experimental data support a relationship between the nanoparticles size distribution and the femtosecond laser ablation mechanism, while the chemical and structural characteristics of the nanoparticles can be tuned by varying the liquid medium.

  4. Iron-rich Oxides at the Core-mantle Boundary

    NASA Astrophysics Data System (ADS)

    Wicks, J. K.; Jackson, J. M.; Sturhahn, W.; Bower, D. J.; Zhuravlev, K. K.; Prakapenka, V.

    2013-12-01

    Seismic observations near the base of the core-mantle boundary (CMB) have detected 5-20 km thick patches in which the seismic wave velocities are reduced by up to 30%. These ultra-low velocity zones (ULVZs) have been interpreted as aggregates of partially molten material (e.g. Williams and Garnero 1996, Hernlund and Jellinek, 2010) or as solid, iron-enriched residues (e.g. Knittle and Jeanloz, 1991; Mao et al., 2006; Wicks et al., 2010), typically based on proposed sources of velocity reduction. The stabilities of these structure types have been explored through dynamic models that have assembled a relationship between ULVZ stability and density (Hernlund and Tackley, 2007; Bower et al., 2010). Now, to constrain the chemistry and mineralogy of ULVZs, more information is needed on the relationship between density and sound velocity of candidate phases. We present the pressure-volume-temperature equation of state of (Mg0.06 57Fe0.94)O determined up to pressures of 120 GPa and temperatures of 2000 K. Volume was measured with X-ray diffraction at beamline 13-ID-D of the Advanced Photon Source (APS), where high pressures and temperatures are achieved in a diamond anvil cell with in-situ laser heating. Sample assemblies were prepared using dehydrated NaCl as an insulator and neon as a pressure transmitting medium. We present results with and without iron as a buffer and thermal pressure gauge. We have also determined the room temperature Debye velocity (VD) of (Mg0.06 57Fe0.94)O using nuclear resonant inelastic x-ray scattering and in-situ X-ray diffraction, up to 80 GPa at 3-ID-B of the APS. The effect of the electronic environment of the iron sites on the velocities was tracked in-situ using synchrotron Moessbauer spectroscopy. Using our measured equation of state, the seismically relevant compressional (VP) and shear (VS) wave velocities were calculated from the Debye velocities. We combine these studies with a simple mixing model to predict the properties of a solid

  5. Phase relations in iron-rich systems and implications for the earth's core

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Svendsen, Bob; Ahrens, Thomas J.

    1987-01-01

    Recent experimental data concerning the properties of iron, iron sulfide, and iron oxide at high pressures are combined with theoretical arguments to constrain the probable behavior of the Fe-rich portions of the Fe-O and Fe-S phase diagrams. Phase diagrams are constructed for the Fe-S-O system at core pressures and temperatures. These properties are used to evaluate the current temperature distribution and composition of the core.

  6. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  7. Nanoparticle functionalised small-core suspended-core fibre – a novel platform for efficient sensing

    PubMed Central

    Doherty, Brenda; Csáki, Andrea; Thiele, Matthias; Zeisberger, Matthias; Schwuchow, Anka; Kobelke, Jens; Fritzsche, Wolfgang; Schmidt, Markus A.

    2017-01-01

    Detecting small quantities of specific target molecules is of major importance within bioanalytics for efficient disease diagnostics. One promising sensing approach relies on combining plasmonically-active waveguides with microfluidics yielding an easy-to-use sensing platform. Here we introduce suspended-core fibres containing immobilised plasmonic nanoparticles surrounding the guiding core as a concept for an entirely integrated optofluidic platform for efficient refractive index sensing. Due to the extremely small optical core and the large adjacent microfluidic channels, over two orders of magnitude of nanoparticle coverage densities have been accessed with millimetre-long sample lengths showing refractive index sensitivities of 170 nm/RIU for aqueous analytes where the fibre interior is functionalised by gold nanospheres. Our concept represents a fully integrated optofluidic sensing system demanding small sample volumes and allowing for real-time analyte monitoring, both of which are highly relevant within invasive bioanalytics, particularly within molecular disease diagnostics and environmental science. PMID:28270985

  8. Core-shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy.

    PubMed

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-05

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  9. Core loss and magnetic susceptibility of superparamagnetic Fe nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Kin, Masane; Kura, Hiroaki; Ogawa, Tomoyuki

    2016-12-01

    Toroidal-shaped high-density Fe nanoparticle assemblies (FNAs) were fabricated by molding different sized Fe nanoparticles (NPs), and the effect of the magnetic behavior of the FNAs on the core loss and the magnetic susceptibility was investigated. An FNA with 4.3 nm diameter Fe NPs exhibits superparamagnetism at room temperature while an FNA with 6.4 nm diameter Fe NPs doesn't exhibit superparamagnetism at room temperature. AC magnetization curves at 1, 10 and 100 kHz were measured to evaluate the core loss of the toroidal-shaped FNAs. Both FNAs exhibited no significant eddy current loss, which suggests that surfactants on the NP surface effectively act to electrically insulate the NPs, and the NPs are not sintered together when the FNAs are molded. The AC magnetization curves had no hysteresis for the FNA with 4.3 nm diameter Fe NPs, i.e., the core loss was minimal for the superparamagnetic FNA. The magnetic susceptibility of the superparamagnetic FNA with 4.3 nm Fe NPs was 12 times higher than that estimated from Langevin theory due to the effect of strong magnetic dipole interaction. These results suggest that the superparamagnetic FNA has potential as a magnetic core material that exhibits low core loss and high magnetic susceptibility, even at high frequency.

  10. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  11. Hydride formation in core-shell alloyed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2016-07-01

    The model and analysis presented are focused on hydride formation in nanoparticles with a Pd shell and a core formed by another metal. The arrangement of metal atoms is assumed to be coherent (no dislocations). The lattice strain distribution, elastic energy, and chemical potential of hydrogen atoms are scrutinized. The slope of the chemical potential (as a function of hydrogen uptake) is demonstrated to decrease with increasing the core volume, and accordingly the critical temperature for hydride formation and the corresponding hysteresis loops are predicted to decrease as well.

  12. The 57Fe hyperfine interactions in human liver ferritin and its iron-polymaltose analogues: the heterogeneous iron core model

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Alenkina, I. V.; Semionkin, V. A.

    2016-12-01

    Human liver ferritin and its iron-polymaltose pharmaceutical analogues Ferrum Lek, Maltofer® and Ferrifol® were studied using Mössbauer spectroscopy at 295 and 90 K. The Mössbauer spectra were fitted on the basis of a new model of heterogeneous iron core structure using five quadrupole doublets. These components were related to the corresponding more or less close-packed iron core layers/regions demonstrating some variations in the 57Fe hyperfine parameters for the studied samples.

  13. Dietary Iron Oxide Nanoparticles Delay Aging and Ameliorate Neurodegeneration in Drosophila.

    PubMed

    Zhang, Yi; Wang, Zhuyao; Li, Xiaojiao; Wang, Lu; Yin, Min; Wang, Lihua; Chen, Nan; Fan, Chunhai; Song, Haiyun

    2016-02-17

    Dietary iron oxide nanoparticles are shown to ameliorate neurodegeneration in a Drosophelia Alzheimer's disease model. Iron oxide nanoparticles can mimic catalase and can decompose reactive oxygen species (ROS). This has potential therapeutic uses for aging, metabolic disorders, and neurodegenerative diseases, in which increased production of ROS is closely implicated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Conquering the Dark Side: Colloidal Iron Oxide Nanoparticles

    PubMed Central

    Senpan, Angana; Caruthers, Shelton D.; Rhee, Ilsu; Mauro, Nicholas A.; Pan, Dipanjan; Hu, Grace; Scott, Michael J.; Fuhrhop, Ralph W.; Gaffney, Patrick J.; Wickline, Samuel A.; Lanza, Gregory M.

    2009-01-01

    Nanomedicine approaches to atherosclerotic disease will have significant impact on the practice and outcomes of cardiovascular medicine. Iron oxide nanoparticles have been extensively used for nontargeted and targeted imaging applications based upon highly sensitive T2* imaging properties, which typically result in negative contrast effects that can only be imaged 24 or more hours after systemic administration due to persistent blood pool interference. Although recent advances involving MR pulse sequences have converted these dark contrast voxels into bright ones, the marked delays in imaging from persistent magnetic background interference and prominent dipole blooming effects of the magnetic susceptibility remain barriers to overcome. We report a T1-weighted (T1w) theranostic colloidal iron oxide nanoparticle platform, CION, which is achieved by entrapping oleate-coated magnetite particles within a cross-linked phospholipid nanoemulsion. Contrary to expectations, this formulation decreased T2 effects thus allowing positive T1w contrast detection down to low nanomolar concentrations. CION, a vascular constrained nanoplatform administered in vivo permitted T1w molecular imaging 1 hour after treatment without blood pool interference, although some T2 shortening effects on blood, induced by the superparamagnetic particles persisted. Moreover, CION was shown to encapsulate antiangiogenic drugs, like fumagillin, and retained them under prolonged dissolution, suggesting significant theranostic functionality. Overall, CION is a platform technology, developed with generally recognized as safe components, that overcomes the temporal and spatial imaging challenges associated with current iron oxide nanoparticle T2 imaging agents, and which has theranostic potential in vascular diseases for detecting unstable ruptured plaque or treating atherosclerotic angiogenesis. PMID:19908850

  15. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants.

    PubMed

    Makarov, Valentin V; Makarova, Svetlana S; Love, Andrew J; Sinitsyna, Olga V; Dudnik, Anna O; Yaminsky, Igor V; Taliansky, Michael E; Kalinina, Natalia O

    2014-05-27

    We report the synthesis and characterization of amorphous iron oxide nanoparticles from iron salts in aqueous extracts of monocotyledonous (Hordeum vulgare) and dicotyledonous (Rumex acetosa) plants. The nanoparticles were characterized by TEM, absorbance spectroscopy, SAED, EELS, XPS, and DLS methods and were shown to contain mainly iron oxide and iron oxohydroxide. H. vulgare extracts produced amorphous iron oxide nanoparticles with diameters of up to 30 nm. These iron nanoparticles are intrinsically unstable and prone to aggregation; however, we rendered them stable in the long term by addition of 40 mM citrate buffer pH 3.0. In contrast, amorphous iron oxide nanoparticles (diameters of 10-40 nm) produced using R. acetosa extracts are highly stable. The total protein content and antioxidant capacity are similar for both extracts, but pH values differ (H. vulgare pH 5.8 vs R. acetosa pH 3.7). We suggest that the presence of organic acids (such oxalic or citric acids) plays an important role in the stabilization of iron nanoparticles, and that plants containing such constituents may be more efficacious for the green synthesis of iron nanoparticles.

  16. Preparation and magnetic properties of spindle porous iron nanoparticles

    SciTech Connect

    Lv Baoliang; Xu Yao Wu Dong; Sun Yuhan

    2009-05-06

    Spindle porous iron nanoparticles were firstly synthesized by reducing the pre-synthesized hematite ({alpha}-Fe{sub 2}O{sub 3}) spindle particles with hydrogen gas. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms and vibrating sample magnetometry (VSM). A lattice shrinkage mechanism was employed to explain the formation process of the porous structure, and the adsorbed phosphate was proposed as a protective shell in the reduction process. N{sub 2} adsorption/desorption result showed a Brunauer-Emmett-Teller (BET) surface area of 29.7 m{sup 2}/g and a continuous pore size distribution from 2 nm to 100 nm. The magnetic hysteresis loop of the synthesized iron particles showed a saturation magnetization of 84.65 emu/g and a coercivity of 442.36 Oe at room temperature.

  17. Multidomain iron nanoparticles for the preparation of polyacrylamide ferrogels

    NASA Astrophysics Data System (ADS)

    Shankar, Ajay; Safronov, Alexander P.; Mikhnevich, Ekaterina A.; Beketov, Igor V.

    2017-06-01

    Ferrogels (FG) based on poly(acrylamide) (PAAm) with embedded multidomain iron magnetic nanoparticles (MNPs) were synthesized by radical polymerization in water. Iron MNPs prepared by the electrical explosion of wire were spherical in shape and have an average diameter around 100 nm. MNPs were modified by a surfactant - oleic acid to improve their dispersion in water. DLVO theoretical consideration was done to understand the stability of dispersions. By microcalorimetry it was shown that the oleic layer on the surface of MNPs prevents their interaction with PAAm network of FG. Mechanical testing of the compression modulus and the deformation of FGs in magnetic field show up their prospectiveness as a material for magnetically sensitive MEMS and actuators.

  18. Binding studies of creatinine and urea on iron-nanoparticle.

    PubMed

    Banerji, Biswadip; Pramanik, Sumit Kumar

    2015-01-01

    Kidney diseases are complicated and can be fatal. Dialysis and transplantation are the only survival solutions to the patients suffering from kidney failures. Both hemodialysis and peritoneal dialysis are risky, due to the possibility of infection and these are expensive and time consuming. The development of simple and reliable technique for the clearance of creatinine and urea from the body is an important part of biotechnology. We have synthesized an iron nanoparticle (INP) and studied its binding with creatinine and urea. The DLS, TEM, AFM, FT-IR and Powder-XRD studies demonstrate strong binding of creatinine and urea to the nanoparticles. This finding may be helpful if it is used in the dialysis technologies. The proposed method may substantially decrease dialysis time and improve its quality in terms of urea and creatinine clearances.

  19. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction.

    PubMed

    Anzellini, S; Dewaele, A; Mezouar, M; Loubeyre, P; Morard, G

    2013-04-26

    Earth's core is structured in a solid inner core, mainly composed of iron, and a liquid outer core. The temperature at the inner core boundary is expected to be close to the melting point of iron at 330 gigapascal (GPa). Despite intensive experimental and theoretical efforts, there is little consensus on the melting behavior of iron at these extreme pressures and temperatures. We present static laser-heated diamond anvil cell experiments up to 200 GPa using synchrotron-based fast x-ray diffraction as a primary melting diagnostic. When extrapolating to higher pressures, we conclude that the melting temperature of iron at the inner core boundary is 6230 ± 500 kelvin. This estimation favors a high heat flux at the core-mantle boundary with a possible partial melting of the mantle.

  20. Recovery of Iron/Iron Oxide Nanoparticles from Solution: Comparison of Methods and their Effects

    SciTech Connect

    Nurmi, James; Sarathy, Vaishnavi; Tratnyek, P. G.; Baer, Donald R.; Amonette, James E.; Karkamkar, Abhijeet J.

    2011-05-15

    Most methods currently being used to recover Fe0-core/oxide-shell nanoparticles from solutions (including the solvents they are synthesized or stored in) are potentially problematic because they may alter the particle composition (e.g., depositing salts formed from solutes) or leave the particles prone to transformations during subsequent storage and handling (e.g., due to residual moisture). In this study, several methods for recovery of nanoparticles from aqueous solution were studied to determine how they affect the structure and reactivity of the recovered materials. Simple washing of the nanoparticles during vacuum filtration (i.e., “flash drying”) can leave up to ~17 weight percent residual moisture. Modeling calculations suggest this moisture is mostly capillary or matric water held between particles and particle aggregates, which can be removed by drying for short periods at relative vapor pressures below 0.9. Flash drying followed by vacuum drying, all under N2, leaves no detectable residue from precipitation of solutes (detectable by X-ray photoelectron spectroscopy, XPS), no significant changes in overall particle composition or structure (determined by transmission electron microscopy, TEM), and negligible residual moisture (by thermogravimetric analysis, TGA). While this improved flash-drying protocol may be the preferred method for recovering nanoparticles for many purposes, we found that Fe0-core/oxide-shell nanoparticles still exhibit gradual aging during storage when characterized electrochemically with voltammetry.

  1. Synchrotron speciation data for zero-valent iron nanoparticles

    EPA Pesticide Factsheets

    This data set encompasses a complete analysis of synchrotron speciation data for 5 iron nanoparticle samples (P1, P2, P3, S1, S2, and metallic iron) to include linear combination fitting results (Table 6 and Figure 9) and ab-initio extended x-ray absorption fine structure spectroscopy fitting (Figure 10 and Table 7).Table 6: Linear combination fitting of the XAS data for the 5 commercial nZVI/ZVI products tested. Species proportions are presented as percentages. Goodness of fit is indicated by the chi^2 value.Figure 9: Normalised Fe K-edge k3-weighted EXAFS of the 5 commercial nZVI/ZVIproducts tested. Dotted lines show the best 4-component linear combination fit ofreference spectra.Figure 10: Fourier transformed radial distribution functions (RDFs) of the five samplesand an iron metal foil. The black lines in Fig. 10 represent the sample data and the reddotted curves represent the non-linear fitting results of the EXAFS data.Table 7: Coordination parameters of Fe in the samples.This dataset is associated with the following publication:Chekli, L., B. Bayatsarmadi, R. Sekine, B. Sarkar, A. Maoz Shen, K. Scheckel , W. Skinner, R. Naidu, H. Shon, E. Lombi, and E. Donner. Analytical Characterisation of Nanoscale Zero-Valent Iron: A Methodological Review. Richard P. Baldwin ANALYTICA CHIMICA ACTA. Elsevier Science Ltd, New York, NY, USA, 903: 13-35, (2016).

  2. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies

    NASA Astrophysics Data System (ADS)

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.

    2015-04-01

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 +/- 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described

  3. A 'degradable' poly(vinyl alcohol) iron oxide nanoparticle hydrogel.

    PubMed

    Bannerman, A Dawn; Li, Xinyi; Wan, Wankei

    2017-08-01

    Polymeric materials that contain magnetic nanoparticles are extremely useful in many applications including as multifunctional drug carriers, imaging contrast agents, or scaffold material. There is a need for biomaterials with appropriate chemical, mechanical, and magnetic properties that also have the ability to degrade or dissolve over time so they can be eliminated from the body following use. In this work, we explore the use of iron oxide nanoparticle (IONP) formation in poly(vinyl alcohol) (PVA) as a crosslinking method in conjunction with physical crosslinking achieved using low temperature thermal cycling (LTTC). PVA-IONP hydrogels were fabricated and characterized. IONPs contribute to the crosslinking of the PVA-IONP material, and their subsequent removal reduces crosslinking, and therefore stability, of the material, allowing dissolution to occur. Dissolution studies were performed on PVA-IONP hydrogels and dissolution was compared for films in solutions of varying pH, in the presence of iron chelating agents, and in simulated physiological and tumor conditions in cell culture media. Iron release, mass loss, and mechanical testing data was collected. This work demonstrates the ability of this biomaterial to 'degrade' over time, which may be very advantageous for applications such as drug delivery. This importance of this work extends to other areas such as the use of stimuli-responsive hydrogels. This manuscript explores the stability of an iron oxide nanoparticle (IONP)-containing, physically crosslinked poly(vinyl alcohol) (PVA) hydrogel. The PVA-IONP hydrogel's stability is imparted through crosslinks created through a low temperature thermal cycling process and through the IONPs. Subsequent IONP removal reduces crosslinks so material dissolution can occur, resulting in a 'degradable' and multifunctional biomaterial. PVA-IONP films were fabricated, characterized and evaluated in terms of dissolution in solutions of varying pH and in the presence of

  4. Iron oxide nanoparticles for plant nutrition? A preliminary Mössbauer study

    NASA Astrophysics Data System (ADS)

    Homonnay, Z.; Tolnai, Gy.; Fodor, F.; Solti, Á.; Kovács, K.; Kuzmann, E.; Ábrahám, A.; Szabó, E. Gy.; Németh, P.; Szabó, L.; Klencsár, Z.

    2016-12-01

    One of the most important micronutrients for plants is iron. We have prepared iron(III) oxyhydroxide and magnetite nanoparticles with the aim to use them as possible nutrition source for plants. The iron(III)-oxide/oxyhydroxide nanoparticles prepared under our experimental conditions as colloidal suspensions proved to be 6-line ferrihydrite nanoparticles as verified by XRD, TEM/SAED and Mössbauer spectroscopy measurements. 57Fe Mössbauer spectra of magnetite nanoparticles prepared under different preparation conditions could be analyzed on the basis of a common model based on the superposition of four sextet components displaying Gaussian-shaped hyperfine magnetic field distributions.

  5. Iron core formation in horse spleen ferritin: magnetic susceptibility, pH, and compositional studies.

    PubMed

    Hilty, S; Webb, B; Frankel, R B; Watt, G D

    1994-11-15

    Horse spleen ferritin (HoSF) reconstituted with small iron cores ranging in size from 8 to 500 iron atoms was studied by magnetic susceptibility and pH measurements to determine when the added Fe3+ begins to aggregate and form antiferromagnetically coupled clusters and also to determine the hydrolytic state of the iron at low iron loading. The Evans NMR magnetic susceptibility measurements showed that at iron loadings as low as 8 Fe3+/HoSF, at least half of the added iron atoms were involved in antiferromagnetic exchange interactions and the other half were present as isolated iron atoms with S = 5/2. As the core size increased to about 24 iron atoms, the antiferromagnetic exchange interactions among the iron atoms increased until reaching the limiting value of 3.8 Bohr magnetons per iron atom, the value present in holo HoSF. HoSF containing eight or more Fe3+ to which eight Fe2+ were added showed that the Fe2+ ions were at sites remote from the Fe3+ and that the resulting HoSF consisted of individual, noninteracting Fe2+ and the partially aggregated Fe3+. pH measurements for core reduction showed that Fe(OH)3 was initially present at all iron loadings but that in the absence of iron chelators the reduced iron core is partially hydrolyzed. Proton induced x-ray emission spectroscopy showed that Cl- is transported into the iron core during reduction, forming a stable chlorohydroxy Fe(II) mineral phase.

  6. Synthesis, purification and assembly of gold and iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Penghe

    , 6 & 7), nanoparticles were assembled into three different hierachical structures through both template-assisted and template-free approaches. In the template-assisted assembly, gold nanorods were aligned into ordered 1D linear pattern by using soft biological filamentous, namely bacteria flagella, as templates. Two different ways of assembling nanorods onto flagella were investigated. In another study, a highly commercialized polymer, polyvinylpyrrolidone (PVP), was discovered for the first time to be able to self-assemble into branched hollow fibers. Based on this discovery, two approaches (one through direct deposition of silica onto the PVP aggregate and the other through co-assembly of PVP covered gold nanoparticles with free PVP molecules) by which the self-assembly behavior of PVP could be exploited to template the formation of branched hollow inorganic fibers were demonstrated. In the template-free assembly, a general method for assembling nanoparticle into clusters (NPCs) in an oil-in-water emulsion system was investigated. Detailed studies on the mechanism of formation of NPCs structure, optimized conditions, scalable production and surface chemistry manipulation were carried out. Besides, comparison of the properties of individual and clustered iron oxide nanoparticles was conducted. It was discovered that due to their collective properties, NPCs are more responsive to an external magnetic field and can potentially serve as better contrast enhancement agents than individually dispersed magnetic NPs in Magnetic Resonance Imaging (MRI).

  7. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    SciTech Connect

    Ngoi, Kuan Hoon; Chia, Chin-Hua Zakaria, Sarani; Chiu, Wee Siong

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  8. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    PubMed Central

    Saif, Sadia; Tahir, Arifa; Chen, Yongsheng

    2016-01-01

    Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe2O3/Fe3O4) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles. PMID:28335338

  9. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications.

    PubMed

    Saif, Sadia; Tahir, Arifa; Chen, Yongsheng

    2016-11-12

    Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe₂O₃/Fe₃O₄) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles.

  10. On the mechanism of nanoparticle formation in a flame doped by iron pentacarbonyl.

    PubMed

    Poliak, Marina; Fomin, Alexey; Tsionsky, Vladimir; Cheskis, Sergey; Wlokas, Irenaeus; Rahinov, Igor

    2015-01-07

    In this work we have investigated the mechanism of nanoparticle synthesis in a low pressure, premixed, laminar flat flame of CH4-O2, doped with iron pentacarbonyl using a combined quartz-crystal-microbalance-particle-mass-spectrometry apparatus. We have unambiguously demonstrated that the formation of nanoparticles in iron pentacarbonyl-doped flames occurs very early, in close proximity to the burner surface, prior to the flame front. This early rise of nanoparticle mass concentration is followed by a sharp drop in nanoparticle concentration at the high temperature flame front. This "prompt" nanoparticle generation is consistent with kinetic models describing iron cluster formation. The observation of this phenomenon in a quasi-one-dimensional premixed flat flame strengthens our previous findings and points out that the "prompt" nanoparticle formation is a general phenomenon, not limited to diffusion flames. It presents a challenge and a trigger for further development of the existing mechanisms for gas phase synthesis of iron oxide particles in flames.

  11. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-02-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core-shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals ( 11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core-shell nanoparticles ( 54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core-shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  12. Differentiated planetesimal impacts into a terrestrial magma ocean: Fate of the iron core

    NASA Astrophysics Data System (ADS)

    Kendall, Jordan D.; Melosh, H. J.

    2016-08-01

    The abundance of moderately siderophile elements (;iron-loving;; e.g. Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. We have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments rain through the magma ocean and settle deeper into the planet. Our results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean.

  13. Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting.

    PubMed

    Huang, Jing; Wang, Liya; Lin, Run; Wang, Andrew Y; Yang, Lily; Kuang, Min; Qian, Weiping; Mao, Hui

    2013-06-12

    Surface properties, as well as inherent physicochemical properties, of the engineered nanomaterials play important roles in their interactions with the biological systems, which eventually affect their efficiency in diagnostic and therapeutic applications. Here we report a new class of MRI contrast agent based on milk casein protein-coated iron oxide nanoparticles (CNIOs) with a core size of 15 nm and hydrodynamic diameter ~30 nm. These CNIOs exhibited excellent water-solubility, colloidal stability, and biocompatibility. Importantly, CNIOs exhibited prominent T2 enhancing capability with a transverse relaxivity r2 of 273 mM(-1) s(-1) at 3 tesla. The transverse relaxivity is ~2.5-fold higher than that of iron oxide nanoparticles with the same core but an amphiphilic polymer coating. CNIOs showed pH-responsive properties, formed loose and soluble aggregates near the pI (pH ~4.0). The aggregates could be dissociated reversibly when the solution pH was adjusted away from the pI. The transverse relaxation property and MRI contrast enhancing effect of CNIOs remained unchanged in the pH range of 2.0-8.0. Further functionalization of CNIOs can be achieved via surface modification of the protein coating. Bioaffinitive ligands, such as a single chain fragment from the antibody of epidermal growth factor receptor (ScFvEGFR), could be readily conjugated onto the protein coating, enabling specific targeting to MDA-MB-231 breast cancer cells overexpressing EGFR. T2-weighted MRI of mice intravenously administered with CNIOs demonstrated strong contrast enhancement in the liver and spleen. These favorable properties suggest CNIOs as a class of biomarker targeted magnetic nanoparticles for MRI contrast enhancement and related biomedical applications.

  14. Synthesis of highly magnetic iron nanoparticles suitable for field structuring using a β-diketone surfactant

    NASA Astrophysics Data System (ADS)

    Huber, Dale L.; Venturini, Eugene L.; Martin, James E.; Provencio, Paula P.; Patel, Rina J.

    2004-07-01

    We describe the synthesis of highly magnetic iron nanoparticles using a novel surfactant, a β-diketone. We have produced 6 nm iron nanoparticles with an unusually high saturation magnetization of more than 80% the value of bulk iron. Additionally, we measured a particle susceptibility of 14 (MKS units), which is far above the value possible for micron-scale spherical particles. These properties will allow for formation of composites that can be highly structured by magnetic fields.

  15. Superparamagnetic Iron Oxide Nanoparticles with Variable Size and an Iron Oxidation State as Prospective Imaging Agents

    PubMed Central

    Kucheryavy, Pavel; He, Jibao; John, Vijay T.; Maharjan, Pawan; Spinu, Leonard; Goloverda, Galina Z.; Kolesnichenko, Vladimir L.

    2013-01-01

    Magnetite nanoparticles in the size range of 3.2-7.5 nm were synthesized in high yields under variable reaction conditions using high-temperature hydrolysis of the precursor iron(II) and iron(III) alkoxides in diethylene glycol solution. The average sizes of the particles were adjusted by changing the reaction temperature and time and by using a sequential growth technique. To obtain γ-iron(III) oxide particles in the same range of sizes, magnetite particles were oxidized with dry oxygen in diethylene glycol at room temperature. The products were characterized by DLS, TEM, X-ray powder diffractometry, TGA, chemical analysis, and magnetic measurements. NMR r1 and r2 relaxivity measurements in water and diethylene glycol (for OH and CH2 protons) have shown a decrease in the r2/r1 ratio with the particle size reduction, which correlates with the results of magnetic measurements on magnetite nanoparticles. Saturation magnetization of the oxidized particles was found to be 20% lower than that for Fe3O4 with the same particle size, but their r1 relaxivities are similar. Because the oxidation of magnetite is spontaneous under ambient conditions, it was important to learn that the oxidation product has no disadvantages as compared to its precursor and therefore may be a better prospective imaging agent because of its chemical stability. PMID:23249219

  16. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method

    NASA Astrophysics Data System (ADS)

    Bender, P.; Bogart, L. K.; Posth, O.; Szczerba, W.; Rogers, S. E.; Castro, A.; Nilsson, L.; Zeng, L. J.; Sugunan, A.; Sommertune, J.; Fornara, A.; González-Alonso, D.; Barquín, L. Fernández; Johansson, C.

    2017-04-01

    The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions.

  17. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method

    PubMed Central

    Bender, P.; Bogart, L. K.; Posth, O.; Szczerba, W.; Rogers, S. E.; Castro, A.; Nilsson, L.; Zeng, L. J.; Sugunan, A.; Sommertune, J.; Fornara, A.; González-Alonso, D.; Barquín, L. Fernández; Johansson, C.

    2017-01-01

    The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions. PMID:28397851

  18. Electrical Properties of Reacted Iron Cores Extracted From a Permeable Reactive Barrier Installation

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Slater, L.; Korte, N.

    2005-12-01

    We conducted experiments to investigate the application of non-invasive electrical method for monitoring iron corrosion and mineral precipitation processes on angle cores recovered from the Kansas City Plant reactive iron barrier. Electrical measurements showed continuous changes from the soil/iron interface into the barrier for all three cores. Scanning electron microscopy (SEM) identified iron surface alteration with thickest corrosion rind, indicating most severe corrosion, occurred close to upgradient soil/iron interface relative to locations further into the cores. Nitrogen adsorption measurements showed decreases in specific surface area of iron minerals from upgradient soil/iron interface into the barrier. X-ray diffractometry (XRD) identified precipitation of iron oxide/hydroxide, carbonate minerals, iron sulfide as well as green rusts in all three cores, and magnetite was identified as the dominant phase. Electrical measurements correlated well with solid phase analysis and illustrated the sensitivity of low frequency electrical method to iron corrosion and mineral precipitation processes. Electrical signature changes are attributed to (1) higher complex interfacial conductivity due to increased surface area and mineralogical alteration, and (2) increased electronic conduction due to enhanced electron transfer across the iron-fluid interface facilitated by mineralogical alternation and increased specific surface area during iron corrosion and mineral precipitation. Electrical measurements along with solid phase analysis also revealed more severe corrosion occurred at north end relative to south end of the barrier correlated with more groundwater flow through north end of the barrier. Our results on field cores are consistent with laboratory studies on synthetic iron columns presented previously and demonstrate that electrical measurements are a proxy indicator of Fe0 surface alteration and could be implemented for field barrier corrosion process monitoring.

  19. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Llamosa, D.; Ruano, M.; Martínez, L.; Mayoral, A.; Roman, E.; García-Hernández, M.; Huttel, Y.

    2014-10-01

    Complex core@shell and core@shell@shell nanoparticles are systems that combine the functionalities of the inner core and outer shell materials together with new physico-chemical properties originated by their low (nano) dimensionality. Such nanoparticles are of prime importance in the fast growing field of nanotechnology as building blocks for more sophisticated systems and a plethora of applications. Here, it is shown that although conceptually simple a modified gas aggregation approach allows the one-step generation of well-controlled complex nanoparticles. In particular, it is demonstrated that the atoms of the core and the shell of the nanoparticles can be easily inverted, avoiding intrinsic constraints of chemical methods.Complex core@shell and core@shell@shell nanoparticles are systems that combine the functionalities of the inner core and outer shell materials together with new physico-chemical properties originated by their low (nano) dimensionality. Such nanoparticles are of prime importance in the fast growing field of nanotechnology as building blocks for more sophisticated systems and a plethora of applications. Here, it is shown that although conceptually simple a modified gas aggregation approach allows the one-step generation of well-controlled complex nanoparticles. In particular, it is demonstrated that the atoms of the core and the shell of the nanoparticles can be easily inverted, avoiding intrinsic constraints of chemical methods. Electronic supplementary information (ESI) available: 1: Scheme illustrating the different strategies to grow nanoparticles with controlled chemical composition and structure. 2: Examples of TEM results on Ag@Au nanoparticles. 3: Magnetic measurements results on Co@Au and Au@Co nanoparticles. See DOI: 10.1039/c4nr02913e

  20. Nanoparticle and Iron Chelators as a Potential Novel Alzheimer Therapy

    PubMed Central

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A.

    2010-01-01

    Current therapies for Alzheimer disease (AD) such as the acetylcholinesterase inhibitors and the latest NMDA receptor inhibitor, Namenda, provide moderate symptomatic delay at various stages of the disease, but do not arrest the disease progression or bring in meaningful remission. New approaches to the disease management are urgently needed. Although the etiology of AD is largely unknown, oxidative damage mediated by metals is likely a significant contributor since metals such as iron, aluminum, zinc, and copper are dysregulated and/or increased in AD brain tissue and create a pro-oxidative environment. This role of metal ion-induced free radical formation in AD makes chelation therapy an attractive means of dampening the oxidative stress burden in neurons. The chelator desferrioxamine, FDA approved for iron overload, has shown some benefit in AD, but like many chelators, it has a host of adverse effects and substantial obstacles for tissue-specific targeting. Other chelators are under development and have shown various strengths and weaknesses. Here, we propose a novel system of chelation therapy through the use of nanoparticles. Nanoparticles conjugated to chelators show unique ability to cross the blood–brain barrier (BBB), chelate metals, and exit through the BBB with their corresponding complexed metal ions. This method may provide a safer and more effective means of reducing the metal load in neural tissue, thus attenuating the harmful effects of oxidative damage and its sequelae. Experimental procedures are presented in this chapter. PMID:20013176

  1. Cerebral Blood Volume MRI with Intravascular Superparamagentic Iron Oxide Nanoparticles

    PubMed Central

    Kim, Seong-Gi; Harel, Noam; Jin, Tao; Kim, Tae; Lee, Phil; Zhao, Fuqiang

    2013-01-01

    Cerebral blood volume (CBV) is a crucial physiological indicator of tissue viability and vascular reactivity. Thus, non-invasive CBV mapping has been of great interest. For this, ultrasmall superparamagnetic iron oxide nanoparticles (USPIO) including monocrystalline iron oxide nanoparticles (MION) can be used as long half-life, intravascular susceptibility agents of CBV MRI measurements. Also, CBV-weighted fMRI with USPIO provides enhanced sensitivity, reduced large vessel contribution, and improved spatial specificity compared to conventional blood oxygenation-level dependent (BOLD) fMRI, and measures a single physiological parameter that is easily interpretable. We review physiochemical and magnetic properties as well as pharmacokinetics of USPIO in brief. We then extensively discuss quantifications of baseline CBV, vessel size index, and functional CBV change. We also provide reviews of dose-dependent sensitivity, vascular filter function, specificity, characteristics, and impulse response function of CBV fMRI. Examples of CBV fMRI specificity at the laminar and columnar resolution are provided. Finally, we briefly review application of CBV measurements to functional and pharmacological studies in animals. Overall, the use of USPIO can determine baseline CBV and its changes induced by functional activity and pharmacological interventions. PMID:23208650

  2. Nanoparticle and iron chelators as a potential novel Alzheimer therapy.

    PubMed

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A

    2010-01-01

    Current therapies for Alzheimer disease (AD) such as the acetylcholinesterase inhibitors and the latest NMDA receptor inhibitor, Namenda, provide moderate symptomatic delay at various stages of the disease, but do not arrest the disease progression or bring in meaningful remission. New approaches to the disease management are urgently needed. Although the etiology of AD is largely unknown, oxidative damage mediated by metals is likely a significant contributor since metals such as iron, aluminum, zinc, and copper are dysregulated and/or increased in AD brain tissue and create a pro-oxidative environment. This role of metal ion-induced free radical formation in AD makes chelation therapy an attractive means of dampening the oxidative stress burden in neurons. The chelator desferrioxamine, FDA approved for iron overload, has shown some benefit in AD, but like many chelators, it has a host of adverse effects and substantial obstacles for tissue-specific targeting. Other chelators are under development and have shown various strengths and weaknesses. Here, we propose a novel system of chelation therapy through the use of nanoparticles. Nanoparticles conjugated to chelators show unique ability to cross the blood-brain barrier (BBB), chelate metals, and exit through the BBB with their corresponding complexed metal ions. This method may provide a safer and more effective means of reducing the metal load in neural tissue, thus attenuating the harmful effects of oxidative damage and its sequelae. Experimental procedures are presented in this chapter.

  3. Neurobehavioural Toxicity of Iron Oxide Nanoparticles in Mice.

    PubMed

    Dhakshinamoorthy, Vasanth; Manickam, Vijayprakash; Perumal, Ekambaram

    2017-08-01

    Iron oxide nanoparticles (Fe2O3-NPs) are widely used in various biomedical applications, extremely in neurotheranostics. Simultaneously, Fe2O3-NP usage is of alarming concern, as its exposure to living systems causes deleterious effects due to its redox potential. However, study on the neurobehavioural impacts of Fe2O3-NPs is very limited. In this regard, adult male mice were intraperitoneally administered with Fe2O3-NPs (25 and 50 mg/kg body weight) once a week for 4 weeks. A significant change in locomotor behaviour and spatial memory was observed in Fe2O3-NP-treated animals. Damages to blood-brain barrier permeability by Fe2O3-NPs and their accumulation in brain regions were evidenced by Evan's blue staining, iron estimation and Prussian blue staining. Elevated nitric oxide, acetylcholinesterase, lactate dehydrogenase leakage and demyelination were observed in the Fe2O3-NP-exposed brain tissues. Imbalanced levels of ROS generation and antioxidant defence mechanism (superoxide dismutase and catalase) cause damages to lipids, proteins and DNA. PARP and cleaved caspase 3 expression levels were found to be increased in the Fe2O3-NP-exposed brain regions which confirms DNA damage and apoptosis. Thus, repeated Fe2O3-NP exposure causes neurobehavioural impairments by nanoparticle accumulation, oxidative stress and apoptosis in the mouse brain.

  4. Properties and suspension stability of dendronized iron oxide nanoparticles for MRI applications.

    PubMed

    Basly, B; Felder-Flesch, D; Perriat, P; Pourroy, G; Bégin-Colin, S

    2011-01-01

    Functionalized iron oxide nanoparticles have attracted an increasing interest in the last 10 years as contrast agents for MRI. One challenge is to obtain homogeneous and stable aqueous suspensions of iron oxide nanoparticles without aggregates. Iron oxide nanoparticles with sizes around 10 nm were synthesized by two methods: the particle size distribution in water suspension of iron oxide nanoparticles synthesized by the co-precipitation method was improved by a process involving two steps of ligand exchange and phase transfer and was compared with that of iron oxide nanoparticles synthesized by thermal decomposition and functionalized by the same dendritic molecule. The saturation magnetization of dendronized nanoparticles synthesized by thermal decomposition was lower than that of nanoparticles synthesized by co-precipitation. The r(2) relaxivity values were shown to decrease with the agglomeration state in suspension and high r(2) values and r(2) /r(1) ratios were obtained with nanoparticles synthesized by co-precipitation by comparison with those of commercial products. Dendronized iron oxide nanoparticles thus have potential properties as contrast agent.

  5. Physiological effects of magnetic iron oxide nanoparticles towards watermelon.

    PubMed

    Li, Junli; Chang, Peter R; Huang, Jin; Wang, Yunqiang; Yuan, Hong; Ren, Hongxuan

    2013-08-01

    Nanoparticles (NPs) have been exploited in a diverse range of products in the past decade or so. However, the biosafety/environmental impact or legislation pertaining to this newly created, highly functional composites containing NPs (otherwise called nanomaterials) is generally lagging behind their technological innovation. To advance the agenda in this area, our current primary interest is focused on using crops as model systems as they have very close relationship with us. Thus, the objective of the present study was to evaluate the biological effects of magnetic iron oxide nanoparticles towards watermelon seedlings. We have systematically studied the physiological effects of Fe2O3 nanoparticles (nano-Fe2O3) on watermelon, and present the first evidence that a significant amount of Fe2O3 nanoparticles suspended in a liquid medium can be taken up by watermelon plants and translocated throughout the plant tissues. Changes in important physiological indicators, such as root activity, activity of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), chlorophyll and malondialdehyde (MDA) contents, ferric reductase activity, root apoplastic iron content were clearly presented. Different concentrations of nano-Fe2O3 all increased seed germination, seedling growth, and enhanced physiological function to some degree; and the positive effects increased quickly and then slowed with an increase in the treatment concentrations. Changes in CAT, SOD and POD activities due to nano-Fe2O3 were significantly larger than that of the control. The 20 mg/L treatment had the most obvious effect on the increase of root activity. Ferric reductase activity, root apoplastic iron content, and watermelon biomass were significantly affected by exposure to nano-Fe2O3. Results of statistical analysis showed that there were significant differences in all the above indexes between the treatment at optimal concentration and the control. This proved that the proper concentration of nano

  6. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance.

    PubMed

    Simberg, Dmitri; Park, Ji-Ho; Karmali, Priya P; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Bhatia, Sangeeta N; Sailor, Michael; Ruoslahti, Erkki

    2009-08-01

    In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles.

  7. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance

    PubMed Central

    Simberg, Dmitri; Park, Ji-Ho; Karmali, Priya P.; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Bhatia, Sangeeta; Sailor, Michael; Ruoslahti, Erkki

    2009-01-01

    In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles. PMID:19394687

  8. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  9. Supramolecular core-shell nanoparticles for photoconductive device applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  10. Barium titanate core--gold shell nanoparticles for hyperthermia treatments.

    PubMed

    FarrokhTakin, Elmira; Ciofani, Gianni; Puleo, Gian Luigi; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Mattoli, Virgilio

    2013-01-01

    The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia) to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core-gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0-100 μg/mL) on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR) laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 μg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core-gold shell nanoparticles resulted in being suitable for hyperthermia treatment, and our results represent a promising first step for subsequent investigations on their applicability in clinical practice.

  11. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications.

    PubMed

    Figuerola, Albert; Di Corato, Riccardo; Manna, Liberato; Pellegrino, Teresa

    2010-08-01

    In the last decade the progress achieved on the synthesis of inorganic nanostructures has been accompanied by the parallel exploitation of these systems in various fields, among them are biology and medicine. We provide here an overview of the iron-based inorganic nanostructured materials that have been developed and tested in these fields. We will highlight the major concepts on the preparation, physical properties and applications of such nanostructures, starting from the most investigated iron oxide nanoparticles. We will describe then the new generation of inorganic hybrid nanostructures, which are structures that integrate in each nano-object multiple inorganic nanocrystals of different materials. In our discussion we will focus on those works that have provided a sound proof of concept on the potential of the various systems as diagnostic and therapeutic agents. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application.

    PubMed

    Hoskins, Clare; Min, Yue; Gueorguieva, Mariana; McDougall, Craig; Volovick, Alexander; Prentice, Paul; Wang, Zhigang; Melzer, Andreas; Cuschieri, Alfred; Wang, Lijun

    2012-06-25

    Iron oxide nanoparticles (IONPs) have increasing applications in biomedicine, however fears over long term stability of polymer coated particles have arisen. Gold coating IONPs results in particles of increased stability and robustness. The unique properties of both the iron oxide (magnetic) and gold (surface plasmon resonance) result in a multimodal platform for use as MRI contrast agents and as a nano-heater. Here we synthesize IONPs of core diameter 30 nm and gold coat using the seeding method with a poly(ethylenimine) intermediate layer. The final particles were coated in poly(ethylene glycol) to ensure biocompatibility and increase retention times in vivo. The particle coating was monitored using FTIR, PCS, UV-vis absorption, TEM, and EDX. The particles appeared to have little cytotoxic effect when incubated with A375M cells. The resultant hybrid nanoparticles (HNPs) possessed a maximal absorbance at 600 nm. After laser irradiation in agar phantom a ΔT of 32°C was achieved after only 90 s exposure (50 μg mL-1). The HNPs appeared to decrease T2 values in line with previously clinically used MRI contrast agent Feridex(®). The data highlights the potential of these HNPs as dual function MRI contrast agents and nano-heaters for therapies such as cellular hyperthermia or thermo-responsive drug delivery.

  13. Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application

    PubMed Central

    2012-01-01

    Background Iron oxide nanoparticles (IONPs) have increasing applications in biomedicine, however fears over long term stability of polymer coated particles have arisen. Gold coating IONPs results in particles of increased stability and robustness. The unique properties of both the iron oxide (magnetic) and gold (surface plasmon resonance) result in a multimodal platform for use as MRI contrast agents and as a nano-heater. Results Here we synthesize IONPs of core diameter 30 nm and gold coat using the seeding method with a poly(ethylenimine) intermediate layer. The final particles were coated in poly(ethylene glycol) to ensure biocompatibility and increase retention times in vivo. The particle coating was monitored using FTIR, PCS, UV–vis absorption, TEM, and EDX. The particles appeared to have little cytotoxic effect when incubated with A375M cells. The resultant hybrid nanoparticles (HNPs) possessed a maximal absorbance at 600 nm. After laser irradiation in agar phantom a ΔT of 32°C was achieved after only 90 s exposure (50 μgmL-1). The HNPs appeared to decrease T2 values in line with previously clinically used MRI contrast agent Feridex®. Conclusions The data highlights the potential of these HNPs as dual function MRI contrast agents and nano-heaters for therapies such as cellular hyperthermia or thermo-responsive drug delivery. PMID:22731703

  14. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, Jefferson F. D. F.; Costa, Mateus C.; Louro, Sonia R. W.; Bruno, Antonio C.

    2017-03-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10-7 Am2. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am2/kg (i.e 0.4%) at saturation and below 0.5 Am2/kg (i.e. 10%) at remanence.

  15. Morphology and phase control of iron oxide polymorph nanoparticles

    NASA Astrophysics Data System (ADS)

    Cui, Hongtao; Wang, Li; Shi, Min; Li, Yanhong

    2017-04-01

    In this work, lepidocrocite (γ-FeOOH) nanobundles were prepared by a facile NH4F assisted epoxide precipitation route. The reactions between epoxide and [Fe(H2O)6]2+ promoted the hydrolysis and condensation of [Fe(H2O)6]2+, resulting in the formation of iron oxyhydroxide. After calcination of γ-FeOOH nanobundles at 400 °C, the produced α-Fe2O3 still kept the bundle morphology. Due to the unique chemistry of epoxide, the morphology and phase of iron oxide polymorph nanoparticles (goethite, akaganeite, lepidocrocite, magnetite) were well-controlled through controlling reaction conditions such as Fe2+ concentration, NH4F additive and reaction temperature. It is particularly interesting that NH4F working as phase controlling agent is able to control the phase development of iron oxyhydroxides. This phase control effect of NH4F is attributed to the promoted reaction rate of epoxide originating from the higher electronegativity of fluoride ions than chloride ions. Based on the results in this work and our other preliminary works, it is considered that this route can be used as a general strategy for controlling the morphology and phase of transition element compounds.

  16. Macroscopic and microscopic biodistribution of intravenously administered iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Misra, Adwiteeya; Petryk, Alicia A.; Strawbridge, Rendall R.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONP) are being developed for use as a cancer treatment. They have demonstrated efficacy when used either as a monotherapy or in conjunction with conventional chemotherapy and radiation. The success of IONP as a therapeutic tool depends on the delivery of a safe and controlled cytotoxic thermal dose to tumor tissue following activation with an alternating magnetic field (AMF). Prior to clinical approval, knowledge of IONP toxicity, biodistribution and physiological clearance is essential. This preliminary time-course study determines the acute toxicity and biodistribution of 110 nm dextran-coated IONP (iron) in mice, 7 days post systemic, at doses of 0.4, 0.6, and 1.0 mg Fe/ g mouse bodyweight. Acute toxicity, manifested as changes in the behavior of mice, was only observed temporarily at 1.0 mg Fe/ g mouse bodyweight, the highest dose administered. Regardless of dose, mass spectrometry and histological analysis demonstrated over 3 mg Fe/g tissue in organs within the reticuloendotheilial system (i.e. liver, spleen, and lymph nodes). Other organs (brain, heart, lungs, and kidney) had less than 0.5 mg Fe/g tissue with iron predominantly confined to the organ vasculature.

  17. Iron oxide nanoparticles for magnetically assisted patterned coatings

    NASA Astrophysics Data System (ADS)

    Dodi, Gianina; Hritcu, Doina; Draganescu, Dan; Popa, Marcel I.

    2015-08-01

    Iron oxide nanoparticles able to magnetically assemble during the curing stage of a polymeric support to create micro-scale surface protuberances in a controlled manner were prepared and characterized. The bare Fe3O4 particles were obtained by two methods: co-precipitation from an aqueous solution containing Fe3+/Fe2+ ions with a molar ratio of 2:1 and partial oxidation of ferrous ions in alkaline conditions. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetization measurement. They were subsequently functionalized using oleic acid, sodium oleate, or non-ionic surfactant mixtures with various hydrophilic to lipophilic balance (HLB) values. Composite nanoparticle-polymer films prepared by spraying were deposited and cured by drying on glass slides under a static magnetic field in the range of 1.5-5.5 mT. Magnetic field generated surface roughness was evidenced by optical and scanning electron microscopy. The optimum hierarchical patterning was obtained with the nanoparticles produced by partial oxidation and functionalized with hydrophobic surfactants. Possible applications may include ice-phobic composite coatings.

  18. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection.

    PubMed

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe(3)O(4))) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe(3)O(4) and CA-Fe(3)O(4)/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe(3)O(4), CA-Fe(3)O(4) nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe(3)O(4)) and 189.51 nm (CA-Fe(3)O(4)) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe(2)O(3)/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL(-1) with a low detection limit of 0.32 ng mL(-1), sensitivity 0.03 Ω/ng ml(-1) cm(-2), and reproducibility more than 11 times.

  19. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    NASA Astrophysics Data System (ADS)

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R.; Bohidar, H. B.

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe3O4)) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe3O4 and CA-Fe3O4/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, CA-Fe3O4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe3O4) and 189.51 nm (CA-Fe3O4) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe2O3/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL-1 with a low detection limit of 0.32 ng mL-1, sensitivity 0.03 Ω/ng ml-1 cm-2, and reproducibility more than 11 times.

  20. Iron oxide nanoparticles in modern microbiology and biotechnology.

    PubMed

    Dinali, Ranmadugala; Ebrahiminezhad, Alireza; Manley-Harris, Merilyn; Ghasemi, Younes; Berenjian, Aydin

    2017-01-10

    Iron oxide nanoparticles (IONs) are one of the most developed and used nanomaterials in biotechnology and microbiology. These particles have unique physicochemical properties, which make them unique among nanomaterials. Therefore, many experiments have been conducted to develop facile synthesis methods for these particles and to make them biocompatible. Various effects of IONs on microorganisms have been reported. Depending on the microbial strain and nanoparticle (NP) concentration, IONs can stimulate or inhibit microbial growth. Due to the superparamagnetic properties of IONs, these NPs have used as nano sources of heat for hyperthermia in infected tissues. Antibiotic-loaded IONs are used for targeted delivery of chemical therapy direct to the infected organ and IONs have been used as a dirigible carrier for more potent antimicrobial nanomaterials such as silver nanoparticles. Magnetic NPs have been used for specific separation of pathogen and non-pathogen bacterial strains. Very recently, IONs were used as a novel tool for magnetic immobilization of microbial cells and process intensification in a biotechnological process. This review provides an overview of application of IONs in different microbial processes. Recommendations are also given for areas of future research.

  1. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    PubMed

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products.

  2. Exchange bias phenomenology and models of core/shell nanoparticles.

    PubMed

    Iglesias, Oscar; Labarta, Amílcar; Batlle, Xavier

    2008-06-01

    Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin film bilayers. The main open questions posed by the experimental observations are presented and contrasted to existing theories and models for exchange bias formulated up to date. We also present results of simulations based on a simple model of a core/shell nanoparticle in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and at the interfacial regions, offering new insight on the microscopic origin of the experimental phenomenology. A detailed study of the magnetic order of the interfacial spins shows compelling evidence that most of the experimentally observed effects can be qualitatively accounted within the context of this model and allows also to quantify the magnitude of the loop shifts in striking agreement with the macroscopic observed values.

  3. Toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community.

    PubMed

    Zabetakis, Kara M; Niño de Guzmán, Gabriela T; Torrents, Alba; Yarwood, Stephanie

    2015-01-01

    The microbiological impact of zero-valent iron used in the remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to two types of iron nanoparticles. Changes in total bacterial and archaeal population numbers were analyzed using qPCR and were compared to results from a blank and negative control to assess for microbial toxicity. Additionally, the results were compared to those of samples exposed to silver nanoparticles and iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three different iron treatments were equally toxic to the total bacteria and archaea populations, as compared with the controls. Conversely, the silver nanoparticles had a limited statistical impact when compared to the controls and increased the microbial populations in some instances. Therefore, the findings suggest that zero-valent iron toxicity does not result from a unique nanoparticle-based effect.

  4. Effects of engineered iron nanoparticles on the bryophyte, Physcomitrella patens (Hedw.) Bruch & Schimp, after foliar exposure.

    PubMed

    Canivet, L; Dubot, P; Garçon, G; Denayer, F-O

    2015-03-01

    The effects of iron nanoparticles on bryophytes (Physcomitrella patens) were studied following foliar exposure. We used iron nanoparticles (Fe-NP) representative of industrial emissions from the metallurgical industries. After a characterization of iron nanoparticles and the validation of nanoparticle internalization in cells, the effects (cytotoxicity, oxidative stress, lipid peroxidation of membrane) of iron nanoparticles were determined through the axenic culturing of Physcomitrella patens exposed at five different concentrations (5 ng, 50 ng, 500 ng, 5 µg and 50 µg per plant). Following exposure, the plant health, measured as ATP concentrations, was not impacted. Moreover, we studied oxidative stress in three ways: through the measure of reactive oxygen species (ROS) production, through malondialdehyde (MDA) production and also through glutathione regulation. At concentrations tested over a short period, the level of ROS, MDA and glutathione were not significantly disturbed.

  5. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles.

    PubMed

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures.

  6. Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function.

    PubMed

    Borcherding, Jennifer; Baltrusaitis, Jonas; Chen, Haihan; Stebounova, Larissa; Wu, Chia-Ming; Rubasinghege, Gayan; Mudunkotuwa, Imali A; Caraballo, Juan Carlos; Zabner, Joseph; Grassian, Vicki H; Comellas, Alejandro P

    2014-04-01

    Given the increased use of iron-containing nanoparticles in a number of applications, it is important to understand any effects that iron-containing nanoparticles can have on the environment and human health. Since iron concentrations are extremely low in body fluids, there is potential that iron-containing nanoparticles may influence the ability of bacteria to scavenge iron for growth, affect virulence and inhibit antimicrobial peptide (AMP) function. In this study, Pseudomonas aeruginosa (PA01) and AMPs were exposed to iron oxide nanoparticles, hematite (α-Fe2O3), of different sizes ranging from 2 to 540 nm (2 ± 1, 43 ± 6, 85 ± 25 and 540 ± 90 nm) in diameter. Here we show that the greatest effect on bacterial growth, biofilm formation, and AMP function impairment is found when exposed to the smallest particles. These results are attributed in large part to enhanced dissolution observed for the smallest particles and an increase in the amount of bioavailable iron. Furthermore, AMP function can be additionally impaired by adsorption onto nanoparticle surfaces. In particular, lysozyme readily adsorbs onto the nanoparticle surface which can lead to loss of peptide activity. Thus, this current study shows that co-exposure of nanoparticles and known pathogens can impact host innate immunity. Therefore, it is important that future studies be designed to further understand these types of impacts.

  7. Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function†

    PubMed Central

    Borcherding, Jennifer; Baltrusaitis, Jonas; Chen, Haihan; Stebounova, Larissa; Wu, Chia-Ming; Rubasinghege, Gayan; Mudunkotuwa, Imali A.; Caraballo, Juan Carlos; Zabner, Joseph

    2014-01-01

    Given the increased use of iron-containing nanoparticles in a number of applications, it is important to understand any effects that iron-containing nanoparticles can have on the environment and human health. Since iron concentrations are extremely low in body fluids, there is potential that iron-containing nanoparticles may influence the ability of bacteria to scavenge iron for growth, affect virulence and inhibit antimicrobial peptide (AMP) function. In this study, Pseudomonas aeruginosa (PA01) and AMPs were exposed to iron oxide nanoparticles, hematite (α-Fe2O3), of different sizes ranging from 2 to 540 nm (2 ± 1, 43 ± 6, 85 ± 25 and 540 ± 90 nm) in diameter. Here we show that the greatest effect on bacterial growth, biofilm formation, and AMP function impairment is found when exposed to the smallest particles. These results are attributed in large part to enhanced dissolution observed for the smallest particles and an increase in the amount of bioavailable iron. Furthermore, AMP function can be additionally impaired by adsorption onto nanoparticle surfaces. In particular, lysozyme readily adsorbs onto the nanoparticle surface which can lead to loss of peptide activity. Thus, this current study shows that co-exposure of nanoparticles and known pathogens can impact host innate immunity. Therefore, it is important that future studies be designed to further understand these types of impacts. PMID:25221673

  8. Influence of carbon chain length on the synthesis and yield of fatty amine-coated iron-platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Taylor, Robert M.; Monson, Todd C.; Gullapalli, Rama R.

    2014-06-01

    Iron oxide nanoparticles are among the most widely used and characterized magnetic nanoparticles. However, metal alloys such as superparamagnetic iron-platinum particles (SIPPs), which have better magnetic properties, are receiving increased attention. Scalable techniques to routinely synthesize SIPPs in bulk need further study. Here, we focus on the role played by the fatty amine ligand in the formation of the bimetallic FePt nanocrystal. More specifically, we compare the effect of varying lengths of fatty amine ligands on the shape, structure, uniformity, composition, and magnetic properties of the SIPPs. We synthesized SIPPs by employing a `green' thermal decomposition reaction using fatty amine ligands containing 12 to 18 carbons in length. Greater fatty amine chain length increased the polydispersity, particle concentration, iron concentration, and the stability of the SIPPs. Additionally, longer reflux times increased the diameter of the particles, but decreased the iron concentration, suggesting that shorter reaction times are preferable. Fourier transform infrared spectroscopy of the SIPPs indicates that the ligands are successfully bound to the FePt cores through the amine group. Superconducting quantum interference device magnetometry measurements suggest that all of the SIPPs were superparamagnetic at room temperature and that SIPPs synthesized using tetradecylamine had the highest saturation magnetization. Our findings indicate that the octadecylamine ligand, which is currently used for the routine synthesis of SIPPs, may not be optimal. Overall, we found that using tetradecylamine and a 30-min reflux reaction resulted in optimal particles with the highest degree of monodispersity, iron content, stability, and saturation magnetization.

  9. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    NASA Astrophysics Data System (ADS)

    Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin

    2008-03-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.

  10. Introduction of biotin or folic acid into polypyrrole magnetite core-shell nanoparticles

    SciTech Connect

    Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-11-13

    In order to contribute to the trend in contemporary research to develop magnetic core shell nanoparticles with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) in straightforward and reproducible methods new core shell magnetic nanoparticles were developed based on polypyrrole shells functionalized with biotin and folic acid. Magnetite nanoparticles stabilized by sebacic acid were used as magnetic cores. The morphology of magnetite was determined by transmission electron microscopy TEM, while the chemical structure investigated by FT-IR.

  11. The role of interfacial metal silicates on the magnetism in FeCo/SiO2 and Fe49%Co49%V2%/SiO2 core/shell nanoparticles

    SciTech Connect

    Desautels, R. D.; Freeland, J. W.; Rowe, M. P.; van Lierop, J.

    2015-05-07

    We have investigated the role of spontaneously formed interfacial metal silicates on the magnetism of FeCo/SiO2 and Fe49%Co49%V2%/SiO2 core/shell nanoparticles. Element specific x-ray absorption and photoelectron spectroscopy experiments have identified the characteristic spectral features of metallic iron and cobalt from within the nanoparticle core. In addition, metal silicates of iron, cobalt, and vanadium were found to have formed spontaneously at the interface between the nanoparticle core and silica shell. X-ray magnetic circular dichroism experiments indicated that the elemental magnetism was a result of metallic iron and cobalt with small components from the iron, cobalt, and vanadium silicates. Magnetometry experiments have shown that there was no exchange bias loop shift in the FeCo nanoparticles; however, exchange bias from antiferromagnetic vanadium oxide was measured in the V-doped nanoparticles. These results showed clearly that the interfacial metal silicates played a significant role in the magnetism of these core/shell nanoparticles, and that the vanadium percolated from the FeCo-cores into the SiO2-based interfacial shell.

  12. The role of interfacial metal silicates on the magnetism in FeCo/SiO{sub 2} and Fe{sub 49%}Co{sub 49%}V{sub 2%}/SiO{sub 2} core/shell nanoparticles

    SciTech Connect

    Desautels, R. D.; Freeland, J. W.; Rowe, M. P.; Lierop, J. van

    2015-05-07

    We have investigated the role of spontaneously formed interfacial metal silicates on the magnetism of FeCo/SiO{sub 2} and Fe{sub 49%}Co{sub 49%}V{sub 2%}/SiO{sub 2} core/shell nanoparticles. Element specific x-ray absorption and photoelectron spectroscopy experiments have identified the characteristic spectral features of metallic iron and cobalt from within the nanoparticle core. In addition, metal silicates of iron, cobalt, and vanadium were found to have formed spontaneously at the interface between the nanoparticle core and silica shell. X-ray magnetic circular dichroism experiments indicated that the elemental magnetism was a result of metallic iron and cobalt with small components from the iron, cobalt, and vanadium silicates. Magnetometry experiments have shown that there was no exchange bias loop shift in the FeCo nanoparticles; however, exchange bias from antiferromagnetic vanadium oxide was measured in the V-doped nanoparticles. These results showed clearly that the interfacial metal silicates played a significant role in the magnetism of these core/shell nanoparticles, and that the vanadium percolated from the FeCo-cores into the SiO{sub 2}-based interfacial shell.

  13. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer

    NASA Astrophysics Data System (ADS)

    Marcu, A.; Pop, S.; Dumitrache, F.; Mocanu, M.; Niculite, C. M.; Gherghiceanu, M.; Lungu, C. P.; Fleaca, C.; Ianchis, R.; Barbut, A.; Grigoriu, C.; Morjan, I.

    2013-09-01

    Present work was focused on producing improved iron oxide nanoparticles for targeted drug delivery in breast cancer. Nanometric-sized iron oxide particles were synthesized by laser pyrolysis and were morphologically/structurally characterized. These new nanoparticles were compared with some commercial, chemically prepared iron oxide ones. Cytotoxicity and the anti-proliferation effects of nanoparticles were tested in vitro on the breast adenocarcinoma cell line MCF-7. Nanoparticles were further coated with the antracyclinic antibiotic Violamycine B1 and tested for the anti-tumor effect on MCF-7 cells. The nanoparticles produced by us seem more effective in vitro than the commercial ones, with respect to cellular uptake and VB1 delivery. Violamycine B1 bound on nanoparticles is as efficient as the free form, but is better delivered into tumor cells.

  14. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid.

    PubMed

    Ismail, Raid A; Sulaiman, Ghassan M; Abdulrahman, Safa A; Marzoog, Thorria R

    2015-08-01

    In this study, (50-110 nm) magnetic iron oxide (α-Fe2O3) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV-VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Characterization of the magnetic moment distribution in low-concentration solutions of iron oxide nanoparticles by a high-T{sub c} superconducting quantum interference device magnetometer

    SciTech Connect

    Saari, M. M. Sakai, K.; Kiwa, T.; Tsukada, K.; Sasayama, T.; Yoshida, T.

    2015-05-07

    We developed a highly sensitive AC/DC magnetometer using a high-temperature superconductor superconducting quantum interference device for the evaluation of magnetic nanoparticles in solutions. Using the developed system, we investigated the distribution of magnetic moments of iron oxide multi-core particles of 100 nm at various iron concentrations that are lower than 96 μg/ml by analyzing the measured magnetization curves. Singular value decomposition and non-regularized non-negative least-squares methods were used during the reconstruction of the distribution. Similar distributions were obtained for all concentrations, and the iron concentration could be determined from the measured magnetization curves. The measured harmonics upon the excitation of AC and DC magnetic fields curves agreed well with the harmonics simulated based on the reconstructed magnetization curves, implying that the magnetization curves of magnetic nanoparticles were successfully obtained as we will show in the article. We compared the magnetization curves between multi-core particles of 100 nm and 130 nm, composed of 12-nm iron oxide nanoparticles. A distinctive magnetic property between the 100 nm and 130 nm particles in low-concentration solutions was successfully characterized. The distribution characteristic of magnetic moments suggests that the net magnetic moment in a multi-core particle is affected by the size of the magnetic cores and their degree of aggregation. Exploration of magnetic properties with high sensitivity can be expected using the developed system.

  16. [Influence of iron nanoparticles on cardiac performance and hemodynamics in rabbits after intravenous administration in acute experiment].

    PubMed

    Doroshenko, A M

    2014-01-01

    Iron nanoparticles are possessed by high potential in the creation of effective and safe antianemic drugs due to the enhanced biological activity of metal nanoparticles. As a step of intravenous dosage form development the study of short-term effects of iron nanoparticles on the cardiovascular system is important. Dose-dependent changes of systemic hemodynamics' parameters were established in acute experiment on rabbits after several intravenous injections of zero-valent iron nanoparticles solution.

  17. Ion Structure Near a Core-Shell Dielectric Nanoparticle

    NASA Astrophysics Data System (ADS)

    Ma, Manman; Gan, Zecheng; Xu, Zhenli

    2017-02-01

    A generalized image charge formulation is proposed for the Green's function of a core-shell dielectric nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of resolving the dielectric heterogeneity. Based on the formulation, an efficient and accurate algorithm is developed for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems using the Monte Carlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the ion-interface correlation strength can greatly alter electric double-layer structures and capacitances, owing to the complicated interplay between dielectric boundary effects and ion-interface correlations.

  18. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation.

    PubMed

    Calderon, Blanca; Fullana, Andres

    2015-10-15

    Zero valent iron nanoparticles (nZVI) represent a promising agent for environmental remediation. Nevertheless, their application presents some limitations regarding their rapid oxidation and aggregation in the media. The aim of this study was to determine the effect that nZVI aging has in heavy metal remediation in water. Contaminants studied were Zn, Cd, Ni, Cu and Cr, which are typical elements found in ground and wastewater. Results show a high contaminant removal capacity by the nZVI in the first 2 h of reaction. Nevertheless, for longer reaction times, some of the metal ions that had already been adsorbed in the nZVI were delivered to the water. Cd and Ni show the maximum delivery percentages (65 and 27% respectively after 21 days of contact time). The starting delivery time was shortened when applying lower nZVI amounts. No re-dissolution of Cr was observed in any circumstance because it was the only element incorporated into the nanoparticles core, as TEM images showed. Contaminant release from nZVI is probably due to nanoparticles oxidation caused by aging, which produced a pH decrease and nZVI surface crystallization.

  19. Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin: effect of ultrasonic frequency.

    PubMed

    Dolores, Reyman; Raquel, Serrano; Adianez, Garcia-Leis

    2015-03-01

    Simple preparative methods were used to sonosynthesize different magnetic iron oxide nanoparticles (FeNPs) via co-precipitation of aqueous solutions of ferrous salts in a basic aqueous solution of ethylene glycol (EG). Sonosynthesis was achieved using different frequencies of ultrasound: 581, 861, and 1141 kHz under the same acoustic power. The hydroxyl radicals generated by cavitational collapse, induced by the ultrasonic field, led to the oxidation of Fe(2+) to Fe(3+). The rate of sonochemical Fe(3+) production decreased linearly with the frequency. Three different systems of FeNPs were synthesized, all with the same core but a different shell: FeNPs capped with EG (EG/FeNPs), FeNPs capped with EG and folate (Fol/EG/FeNPs), and FeNPs capped with EG, folate and cisplatin (Pt/EG/FeNPs). The nanoparticles were characterized by transmission electron microscopy, fluorescence and Raman microspectroscopy, total-reflection X-ray fluorescence, and elemental analysis (C, N, and H). The magnetization hysteresis loops of these samples were also measured. The obtained values of saturation magnetization were within the interval between 60 and 93 Am(2)kg(-1). From the analysis of these results, it was found that the ultrasonic frequency did not affect the nanoparticle size (diameter of 21-31 nm). In contrast, the frequency affected the amount of drug loaded, as cisplatin loading increased proportionately with ultrasound frequency. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives

    NASA Astrophysics Data System (ADS)

    Szpak, Agnieszka; Kania, Gabriela; Skórka, Tomasz; Tokarz, Waldemar; Zapotoczny, Szczepan; Nowakowska, Maria

    2013-01-01

    This article presents the synthesis and characterization of biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) coated with ultrathin layer of anionic derivative of chitosan. The water-based fabrication involved a two-step procedure. In the first step, the nanoparticles were obtained by co-precipitation of ferrous and ferric aqueous salt solutions with ammonia in the presence of cationic derivative of chitosan. In the second step, such prepared materials were subjected to adsorption of oppositely charged chitosan derivative which resulted in the preparation of negatively charged SPIONs. They were found to develop highly stable dispersion in water. The core size of the nanocoated SPIONs, determined using transmission electron microscopy, was measured to be slightly above 10 nm. The coated nanoparticles form aggregates with majority of them having hydrodynamic diameter below 100 nm, as measured by dynamic light scattering. Their composition and properties were studied using FTIR and thermogravimetric analyses. They exhibit magnetic properties typical for superparamagnetic material with a high saturation magnetization value of 123 ± 12 emu g-1 Fe. Very high value of the measured r 2 relaxivity, 369 ± 3 mM-1 s-1, is conducive for the potential application of the obtained SPIONs as promising contrast agents in magnetic resonance imaging.

  1. Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations.

    PubMed

    Marcus, Michal; Karni, Moshe; Baranes, Koby; Levy, Itay; Alon, Noa; Margel, Shlomo; Shefi, Orit

    2016-05-14

    The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells. We found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration. Applying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations.

  2. Relaxometric property of organosilica nanoparticles internally functionalized with iron oxide and fluorescent dye for multimodal imaging.

    PubMed

    Nakamura, Michihiro; Hayashi, Koichiro; Kubo, Hitoshi; Kanadani, Takafumi; Harada, Masafumi; Yogo, Toshinobu

    2017-04-15

    Multimodal imaging using novel multifunctional nanoparticles provides a new approach for the biomedical field. Thiol-organosilica nanoparticles containing iron oxide magnetic nanoparticles (MNPs) as the core and rhodamine B in the thiol-organosilica layer (thiol OS-MNP/Rho) were synthesized in a one-pot process. The thiol OS-MNP/Rho showed enhanced magnetic resonance imaging (MRI) contrast and high fluorescence intensity. The relaxometry of thiol OS-MNP/Rho revealed a novel coating effect of the organosilica layer to the MNPs. The organosilica layer shortened the T2 relaxation time but not the T1 relaxation time of the MNPs. We injected thiol-OS-MNP/Rho into normal mice intravenously. Injected mice revealed an alteration of the liver contrast in the MRI and a fluorescent pattern based on the liver histological structure at the level between macroscopic and microscopic fluorescent imaging (mesoscopic FI). In addition, the labeled macrophages were observed at the single cell level histologically. We demonstrated a new approach to evaluate the liver at the macroscopic, microscopic level as well as the mesoscopic level using multimodal imaging.

  3. Preparation of tunable-sized iron nanoparticles based on magnetic manipulation in inert gas condensation (IGC)

    NASA Astrophysics Data System (ADS)

    Xing, Lijuan; ten Brink, Gert H.; Kooi, Bart J.; Palasantzas, George

    2017-01-01

    Iron nanoparticles (NPs) prepared by inert gas condensation were studied using high resolution transmission electron microscopy and Wulff construction shape analysis. The NP size and shape show strong dependence on the magnetic field above the target surface. The effect of the magnetic field could be tuned by adjusting the thickness of the protective backing plate positioned in-between the target and the magnetron head. With increasing backing plate thickness, the particle size decreases and the NP morphologies evolve from faceted to close-to-spherical polyhedral shapes. Moreover, with changes in size and shape, the particle structure also varies so that the NPs exhibit: (i) a core-shell structure for the faceted NPs with size ˜15-24 nm; (ii) a core-shell structure for the close-to-spherical NPs with size ˜8-15 nm; and (iii) a fully oxidized uniform structure for NPs with sizes less than ˜8 nm having a void in the center due to the Kirkendall effect. The decrease of NP size with the increasing backing plate thickness can be attributed to a reduced magnetic field strength above the iron target surface combined with a reduced magnetic field confinement. These results pave the way to drastically control the NP size and shape in a simple manner without any other adjustment of the aggregation volume within the deposition system.

  4. Enhanced MRI T 2 Relaxivity in Contrast-Probed Anchor-Free PEGylated Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Thapa, Bibek; Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Weiner, Brad R.; Morell, Gerardo

    2017-04-01

    Superparamagnetic iron oxide nanoparticles (SPIONs, 11-nm cores) were PEGylated without anchoring groups and studied as efficient MRI T 2 contrast agents (CAs). The ether group of PEG is efficiently and directly linked to the positively charged surface of SPIONs, and mediated through a dipole-cation covalent interaction. Anchor-free PEG-SPIONs exhibit a spin-spin relaxivity of 123 ± 6 mM-1s-1, which is higher than those of PEG-SPIONs anchored with intermediate biomolecules, iron oxide nanoworms, or Feridex. They do not induce a toxic response for Fe concentrations below 2.5 mM, as tested on four different cell lines with and without an external magnetic field. Magnetic resonance phantom imaging studies show that anchor-free PEG-SPIONs produce a significant contrast in the range of 0.1-0.4 [Fe] mM. Our findings reveal that the PEG molecules attached to the cores immobilize water molecules in large regions of 85 nm, which would lead to blood half-life of a few tens of minutes. This piece of research represents a step forward in the development of next-generation CAs for nascent-stage cancer detection.

  5. Magnetic and fluorescent core-shell nanoparticles for ratiometric pH sensing.

    PubMed

    Lapresta-Fernández, Alejandro; Doussineau, Tristan; Dutz, Silvio; Steiniger, Frank; Moro, Artur J; Mohr, Gerhard J

    2011-10-14

    This paper describes the preparation of nanoparticles composed of a magnetic core surrounded by two successive silica shells embedding two fluorophores, showing uniform nanoparticle size (50-60 nm in diameter) and shape, which allow ratiometric pH measurements in the pH range 5-8. Uncoated iron oxide magnetic nanoparticles (∼10 nm in diameter) were formed by the coprecipitation reaction of ferrous and ferric salts. Then, they were added to a water-in-oil microemulsion where the hydrophilic silica shells were obtained through hydrolysis and condensation of tetraethoxyorthosilicate together with the corresponding silylated dye derivatives-a sulforhodamine was embedded in the inner silica shell and used as the reference dye while a pH-sensitive fluorescein was incorporated in the outer shell as the pH indicator. The magnetic nanoparticles were characterized using vibrating sample magnetometry, dynamic light scattering, transmission electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The relationship between the analytical parameter, that is, the ratio of fluorescence between the sensing and reference dyes versus the pH was adjusted to a sigmoidal fit using a Boltzmann type equation giving an apparent pK(a) value of 6.8. The fluorescence intensity of the reference dye did not change significantly (∼3.0%) on modifying the pH of the nanoparticle dispersion. Finally, the proposed method was statistically validated against a reference procedure using samples of water and physiological buffer with 2% of horse serum, indicating that there are no significant statistical differences at a 95% confidence level.

  6. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.

    PubMed

    Boguslavsky, Yonit; Margel, Shlomo

    2008-01-01

    Maghemite (gamma-Fe2O3) nanoparticles of 15 +/- 3 nm diameter were prepared by nucleation of gelatin/iron oxide followed by growth of gamma-Fe2O3 films onto these nuclei. The gamma-Fe2O3 nanoparticles were coated with polydivinylbenzene (PDVB) by emulsion polymerization of divinylbenzene (DVB) in an aqueous continuous phase containing the gamma-Fe2O3 nanoparticles. The PDVB-coated gamma-Fe2O3 nanoparticles, dispersed in water, were separated from homo-PDVB nanoparticles using the high gradient magnetic field (HGMF) technique. The influence of DVB concentration on the amount of PDVB coating, on the size and size distribution of the coated gamma-Fe2O3 nanoparticles and on their magnetic properties, has been investigated. Air-stable carbon-coated iron (alpha-Fe/C) crystalline nanoparticles of 41 +/- 12 nm diameter have been prepared by annealing the PDVB-coated gamma-Fe2O3 nanoparticles at 1050 degrees C in an inert atmosphere. These nanoparticles exhibit high saturation magnetization value (83 emu g(-1)) and excellent resistance to oxidation. Characterization of the PDVB-coated gamma-Fe2O3 and of the alpha-Fe/C nanoparticles has been accomplished by TEM, HRTEM, DLS, FTIR, XRD, thermal analysis, zeta-potential, and magnetic measurements.

  7. Inner Core Anisotropy Due to the Magnetic Field--induced Preferred Orientation of Iron.

    PubMed

    Karato, S

    1993-12-10

    Anisotropy of the inner core of the Earth is proposed to result from the lattice preferred orientation of anisotropic iron crystals during their solidification in the presence of a magnetic field. The resultant seismic anisotropy is related to the geometry of the magnetic field in the core. This hypothesis implies that the observed anisotropy (fast velocity along the rotation axis) indicates a strong toroidal field in the core, which supports a strong field model for the geodynamo if the inner core is made of hexagonal close-packed iron.

  8. Biomolecular crystals for material applications and a mechanistic study of an iron oxide nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Falkner, Joshua Charles

    The three projects within this work address the difficulties of controlling biomolecular crystal formats (i.e. size and shape), producing 3-D ordered composite materials from biomolecular crystal templates, and understanding the mechanism of a practical iron oxide synthesis. The unifying thread consistent throughout these three topics is the development of methods to manipulate nanomaterials using a bottom-up approach. Biomolecular crystals are nanometer to millimeter sized crystals that have well ordered mesoporous solvent channels. The overall physical dimensions of these crystals are highly dependent on crystallization conditions. The controlled growth of micro- and nanoprotein crystals was studied to provide new pathways for creating smaller crystalline protein materials. This method produced tetragonal hen egg-white lysozyme crystals (250--100,000 nm) with near monodisperse size distributions (<15%). With this degree of control, existing protein crystal applications such as drug delivery and analytical sensors can reach their full potential. Applications for larger crystals with inherently ubiquitous pore structures could extend to materials used for membranes or templates. In this work, the porous structure of larger cowpea mosaic virus crystals was used to template metal nanoparticle growth within the body centered cubic crystalline network. The final composite material was found to have long range ordering of palladium and platinum nonocrystal aggregates (10nm) with symmetry consistent to the virus template. Nanoparticle synthesis itself is an immense field of study with an array of diverse applications. The final piece of this work investigates the mechanism behind a previously developed iron oxide synthesis to gain more understanding and direction to future synthesis strategies. The particle growth mechanism was found to proceed by the formation of a solvated iron(III)oleate complex followed by a reduction of iron (III) to iron (II). This unstable iron

  9. Impact of Superparamagnetic Iron Oxide Nanoparticles on Vocal Fold Fibroblasts: Cell Behavior and Cellular Iron Kinetics.

    PubMed

    Pöttler, Marina; Fliedner, Anna; Schreiber, Eveline; Janko, Christina; Friedrich, Ralf Philipp; Bohr, Christopher; Döllinger, Michael; Alexiou, Christoph; Dürr, Stephan

    2017-12-01

    The voice is the most important instrument of communication. Tissue defects in the vocal fold (VF) area lead to serious reduction in quality of life, but thus far, no satisfactory VF implant exists. Therefore, we aim to establish a functional VF implant in a rabbit model by magnetic tissue engineering (MTE) using superparamagnetic iron oxide nanoparticles (SPION). Hence, iron quantification over time as well as cell behavior studies upon SPION treatment are of great importance. Rabbit VF fibroblasts (VFF) were treated with different concentrations of SPIONs (20, 40, and 80 μg/cm(2)), and iron content was examined for up to 40 days using microwave plasma-atom emission spectroscopy. The effects of SPION treatment on VFF (adhesion, spreading, and migration), which are important for the formation of 3D structures, were tested. Cellular SPION quantification revealed that there was no residual iron remaining in VFFs after 40 days. SPIONs had a dose-dependent effect on cell adhesion, with good tolerability observed up to 20 μg/cm(2). Migration and spreading were not significantly influenced by SPION treatment up to 80 μg/cm(2). To develop 3D structures, cell behavior should not be affected by SPION uptake. After 40 days, cells were free of iron as a result of metabolism or rarefication during cell division. Cell functions including adhesion, spreading, and migration were proven to be intact in a dose-dependent manner after SPION treatment, suggesting a safe usage of MTE for voice rehabilitation. Our results thus constitute a solid basis for a successful transfer of this technique into 3D constructs, in order to provide an individual and personalized human VF implant in the future.

  10. Modelling exchange bias in core/shell nanoparticles.

    PubMed

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amílcar

    2007-10-10

    We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice structure and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and interfacial regions. By means of Monte Carlo simulations of the hysteresis loops based on this model, we have determined the range of microscopic parameters for which loop shifts after field cooling can be observed. The study of the magnetic order of the interfacial spins for different particle sizes and values of the interfacial exchange coupling have allowed us to correlate the appearance of loop asymmetries and vertical displacements to the existence of a fraction of uncompensated spins at the shell interface that remain pinned during field cycling, offering new insight on the microscopic origin of the experimental phenomenology.

  11. Characterization, Quantification, and Determination of the Toxicity of Iron Oxide Nanoparticles to the Bone Marrow Cells

    PubMed Central

    Paik, Sae-Yeol-Rim; Kim, Jong-Seok; Shin, Sung Jae; Ko, Sanghoon

    2015-01-01

    Iron oxide nanoparticles (IONPs) have been used to develop iron supplements for improving the bioavailability of iron in patients with iron deficiency, which is one of the most serious nutritional deficiencies in the world. Accurate information about the characteristics, concentration, and cytotoxicity of IONPs to the developmental and reproductive cells enables safe use of IONPs in the supplement industry. The objective of this study was to analyze the physicochemical properties and cytotoxicity of IONPs in bone marrow cells. We prepared three different types of iron samples (surface-modified iron oxide nanoparticles (SMNPs), IONPs, and iron citrate) and analyzed their physicochemical properties such as particle size distribution, zeta potential, and morphology. In addition, we examined the cytotoxicity of the IONPs in various kinds of bone marrow cells. We analyzed particle size distribution, zeta potential, iron levels, and subcellular localization of the iron samples in bone marrow cells. Our results showed that the iron samples were not cytotoxic to the bone marrow cells and did not affect the expression of cell surface markers and lipopolysaccharide (LPS)-induced the secretion of cytokines by murine bone marrow-derived dendritic cells (BMDCs). Our results may be used to investigate the interactions between nanoparticles and cells and tissues and the developmental toxicity of nanoparticles. PMID:26389886

  12. Experimental determination of the electrical and thermal conductivity of iron at Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Kuwayama, Y.; Hirose, K.; Shimizu, K.; Ohishi, Y.; Yagi, T.; Suehiro, S.

    2016-12-01

    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth's core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial (Konôpková et al., 2016; Ohta et al., 2016). We measured the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth's core in a laser-heated diamond-anvil cell (Ohta et al., 2016). The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. Combination of the low electrical resistivity of iron and Wiedemann-Franz law indicates the high thermal conductivity of Earth's core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. We recently performed direct measurements of thermal conductivity of iron at high pressures by using the pulsed light heating thermoreflectance technique, which enable us to confirm the validity of the Wiedemann-Franz law under high-pressure conditions. Preliminary results show pressure dependent Lorenz number for hcp iron at 300 K, which infers lower thermal conductivity value than the value predicted from the electrical resistivity and Wiedemann-Franz law with constant Lorenz number.

  13. Citric Acid Capped Iron Oxide Nanoparticles as an Effective MALDI Matrix for Polymers

    NASA Astrophysics Data System (ADS)

    Liang, Qiaoli; Sherwood, Jennifer; Macher, Thomas; Wilson, Joseph M.; Bao, Yuping; Cassady, Carolyn J.

    2016-12-01

    A new matrix-assisted laser desorption ionization (MALDI) mass spectrometry matrix is proposed for molecular mass determination of polymers. This matrix contains an iron oxide nanoparticle (NP) core with citric acid (CA) molecules covalently bound to the surface. With the assistance of additives, the particulate nature of NPs allows the matrix to mix uniformly with polar or nonpolar polymer layers and promotes ionization, which may simplify matrix selection and sample preparation procedures. Several distinctively different polymer classes (polyethyleneglycol (PEG), polywax/polyethylene, perfluoropolyether, and polydimethylsiloxane) are effectively detected by the water or methanol dispersed NPCA matrix with NaCl, NaOH, LiOH, or AgNO3 as additives. Furtheremore, successful quantitative measurements of PEG1000 using polypropylene glycol 1000 as an internal standard are demonstrated.

  14. Pharmaceutical formulation of HSA hybrid coated iron oxide nanoparticles for magnetic drug targeting.

    PubMed

    Zaloga, Jan; Pöttler, Marina; Leitinger, Gerd; Friedrich, Ralf P; Almer, Gunter; Lyer, Stefan; Baum, Eva; Tietze, Rainer; Heimke-Brinck, Ralph; Mangge, Harald; Dörje, Frank; Lee, Geoffrey; Alexiou, Christoph

    2016-04-01

    In this work we present a new formulation of superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic drug targeting. The particles were reproducibly synthesized from current good manufacturing practice (cGMP) - grade substances. They were surface coated using fatty acids as anchoring molecules for human serum albumin. We comprehensively characterized the physicochemical core-shell structure of the particles using sophisticated methods. We investigated biocompatibility and cellular uptake of the particles using an established flow cytometric method in combination with microwave-plasma assisted atomic emission spectroscopy (MP-AES). The cytotoxic drug mitoxantrone was adsorbed on the protein shell and we showed that even in complex media it is slowly released with a close to zero order kinetics. We also describe an in vitro proof-of-concept assay in which we clearly showed that local enrichment of this SPION-drug conjugate with a magnet allows site-specific therapeutic effects.

  15. Citric Acid Capped Iron Oxide Nanoparticles as an Effective MALDI Matrix for Polymers

    NASA Astrophysics Data System (ADS)

    Liang, Qiaoli; Sherwood, Jennifer; Macher, Thomas; Wilson, Joseph M.; Bao, Yuping; Cassady, Carolyn J.

    2017-03-01

    A new matrix-assisted laser desorption ionization (MALDI) mass spectrometry matrix is proposed for molecular mass determination of polymers. This matrix contains an iron oxide nanoparticle (NP) core with citric acid (CA) molecules covalently bound to the surface. With the assistance of additives, the particulate nature of NPs allows the matrix to mix uniformly with polar or nonpolar polymer layers and promotes ionization, which may simplify matrix selection and sample preparation procedures. Several distinctively different polymer classes (polyethyleneglycol (PEG), polywax/polyethylene, perfluoropolyether, and polydimethylsiloxane) are effectively detected by the water or methanol dispersed NPCA matrix with NaCl, NaOH, LiOH, or AgNO3 as additives. Furtheremore, successful quantitative measurements of PEG1000 using polypropylene glycol 1000 as an internal standard are demonstrated.

  16. Resolving the two-dimensional self-assembly of iron oxide nanoparticles on a liquid surface

    NASA Astrophysics Data System (ADS)

    Hu, Jiayang; Zhang, Datong; Lu, Chenguang; Lee, Seung Whan; Ye, Fan; Herman, Irving P.

    2015-03-01

    In situ small-angle X-ray scattering (SAXS) is used to monitor the self-assembly of iron oxide nanoparticles (NPs) dispersed in alkanes that are drop-cast on a diethylene glycol liquid surface. We found that the surface separations of NP cores in 2D superlattices (SLs) are generally farther apart than in 3D SLs with corresponding NPs. At these separations, the van der Waals (vdW) energy is smaller than the Brownian motion energy and so the previous 3D vdW force driven self-assembly models fail to explain the stable closed-packed structure. Strong ligand-ligand interactions likely bind the structure after the upper solvent dries. Entropy effects are found not to be the likely driving force for the observed close packing structures.

  17. Water-soluble core/shell nanoparticles for proton therapy through particle-induced radiation

    NASA Astrophysics Data System (ADS)

    Park, Jeong Chan; Jung, Myung-Hwan; Kim, Maeng Jun; Kim, Kye-Ryung

    2015-02-01

    Metallic nanoparticles have been used in biomedical applications such as magnetic resonance imaging (MRI), therapy, and drug delivery systems. Metallic nanoparticles as therapeutic tools have been demonstrated using radio-frequency magnetic fields or near-infrared light. Recently, therapeutic applications of metallic nanomaterials combined with proton beams have been reported. Particle-induced radiation from metallic nanoparticles, which can enhance the therapeutic effects of proton therapy, was released when the nanoparticles were bombarded by a high-energy proton beam. Core/shell nanoparticles, especially Au-coated magnetic nanoparticles, have drawn attention in biological applications due to their attractive characteristics. However, studies on the phase transfer of organic-ligand-based core/shell nanoparticles into water are limited. Herein, we demonstrated that hydrophobic core/shell structured nanomaterials could be successfully dispersed in water through chloroform/surfactant mixtures. The effects of the core/shell nanomaterials and the proton irradiation on Escherichia coli (E. coli) were also explored.

  18. Excellent improvement in the static and dynamic magnetic properties of carbon coated iron nanoparticles for microwave absorption

    NASA Astrophysics Data System (ADS)

    Khani, Omid; Shoushtari, Morteza Zargar; Farbod, Mansoor

    2015-11-01

    Carbon coated iron nanoparticles were synthesized, using a simple arc-discharge method. The morphology and the internal structure of the core/shell nanoparticles were studied, using field emission scanning electron microscopy and transmission electron microscopy. X-ray diffraction analysis showed that both magnetic α-Fe and nonmagnetic γ-Fe phases existed in the as-prepared particles. In order to improve the static and dynamic magnetic properties of the core/shell nanoparticles, the produced nanocapsules were annealed in argon atmosphere at two different temperatures. Hysteresis loops revealed that the value of the saturation magnetization (MS) increased more than 4.1 times of its original value by annealing and this led to 70% increase in the imaginary part of the permeability. Phase analysis showed that heat treatment eliminated the nonmagnetic γ-Fe phase completely. The reflection loss plots were studied for composite layers containing 20 vol% of the annealed and not annealed nanocapsules. One of the absorber layers which contained annealed nanocapsules showed at least -10 dB loss in the whole G, C, X and Ku frequency bands and the optimal absorption exceeded -37 dB at 5.8 GHz for the as-prepared sample with a thickness of 3.2 mm. The results revealed that the magnetic properties of the arc-made Fe/C core/shell nanoparticle can be improved significantly by annealing in argon.

  19. Super paramagnetic iron oxide nanoparticle modified mancozeb imprinted polymer

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    An electrochemical sensor for detection of mancozeb from soil and vegetable sample using molecularly imprinted star polymer modified with iron oxide nanoparticles (SPIONs) is described in this work. We have prepared SPIONS by hydrothermal method and modified with vinyl silane to introduce double bond at their surface. The vinyl group modified SPIONs were used to form mancozeb imprinted star polymer (ISP). The ISPs have specific recognition ability high adsorption capacity towards their template molecule and could be easily extracted from complex matrices using a simple magnet. The prepared polymer was well characterized by field emissive scanning electron microscopy (FE-SEM). Under the optimum condition, the prepared sensor shows good response for mancozeb in the range of 5.96 to 222.39 µg L-1 (detection limit=0.98 µg L-1). The proposed sensors have highly selective for detection of mancozeb in soil and vegetable samples also.

  20. Superparamagnetic iron oxide nanoparticles (SPIONs) for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Garg, Vijayendra K.; Kuzmann, Erno; Sharma, Virender K.; Kumar, Arun; Oliveira, Aderbal C.

    2016-10-01

    Studies of superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively carried out. Since the earlier work on Mössbauer studies on SPIONs in 1970s, many biomedical applications and their uses in innovative methods to produce new materials with improved performance have appeared. Applications of SPIONs in environmental remediation are also forthcoming. Several different methods of synthesis and coating of the magnetic particles have been described in the literature, and Mössbauer spectroscopy has been an important tool in the characterization of these materials. It is quite possible that the interpretation of the Mössbauer spectra might not be entirely correct because the possible presence of maghemite in the end product of SPIONs might not have been taken into consideration. Nanotechnology is an emerging field that covers a wide range of new technologies under development in nanoscale (1 to 100 nano meters) to produce new products and methodology.

  1. Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging.

    PubMed

    Shen, Zheyu; Wu, Aiguo; Chen, Xiaoyuan

    2017-05-01

    Magnetic iron oxide nanoparticles (MIONs) have attracted enormous attention due to their wide applications, including for magnetic separation, for magnetic hyperthermia, and as contrast agents for magnetic resonance imaging (MRI). This review article introduces the methods of synthesizing MIONs, and their application as MRI contrast agents. Currently, many methods have been reported for the synthesis of MIONs. Herein, we only focus on the liquid-based synthesis methods including aqueous phase methods and organic phase methods. In addition, the MIONs larger than 10 nm can be used as negative contrast agents and the recently emerged extremely small MIONs (ES-MIONs) smaller than 5 nm are potential positive contrast agents. In this review, we focus on the ES-MIONs because ES-MIONs avoid the disadvantages of MION-based T2- and gadolinium chelate-based T1-weighted contrast agents.

  2. Strong exchange coupling in conventional and inverse ferrimagnetic hard/soft and soft/hard core/shell heterostructured nanoparticles

    NASA Astrophysics Data System (ADS)

    Nogues, Josep

    2013-03-01

    Bi-magnetic core/shell nanoparticles are becoming increasingly appealing for diverse fields such as for permanent magnets, microawave absortion, biomedical applications, sensing applications, or future magnetic recording media. Ferrromagnetic (FM)/ antiferromagnetic (AFM) core/shell nanoparticles (or inverted AFM/FM) have been extensively studied. However, exchange coupled hard/soft, or inverse soft/hard, core/shell nanoparticles have been far less investigated. Interestingly, most bi-magnetic core/shell systems are derived by simple partial oxidation of the core, e.g., Co/CoO (FM/AFM) or FePt/Fe3O4 (hard/soft) and only few studies of heterostructured (where core and shell are formed by different magnetic ions) can be found in the literature. We have investigated conventional hard/soft and inverted soft/hard core/shell hetroestructured nanoparticles based on magnetically soft iron oxide (Fe3O4) and magnetically hard manganese oxide (Mn3O4) . The core/shell samples were synthesized by seeded growth using either Fe3O4 or Mn3O4 nanoparticles as seeds. Subsequently, thin layers of the complementary material were grown by thermal decomposition of the corresponding metallorganic precursors. The structure characterization (X-ray diffraction and electron diffraction) confirms the presence of cubic (Fe3O4) and tetragonal (Mn3O4) phases both at the bulk and local levels. In addition, high resolution transmission electron microscopy (HR-TEM) with electron energy loss spectroscopy (EELS) mapping confirms the core/shell structure of the nanopartciles. Magnetic characterization and element-selective hysteresis loops obtained by x-ray magnetic circular dichroism (XMCD) reveal a strong exchange coupling between the core and the shell which results in homogeneous loops with moderate coercivity. Moreover, the magnetic properties can be tuned by controlling the core diameter or shell thickness. However, the results depend only weakly on the hard/soft or inverse soft/hard morphology

  3. Mutagenic Effects of Iron Oxide Nanoparticles on Biological Cells.

    PubMed

    Dissanayake, Niluka M; Current, Kelley M; Obare, Sherine O

    2015-09-30

    In recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts. This review article describes the impact of IONPs on cellular genetic components. The mutagenic impact of IONPs may damage an organism's ability to develop or reproduce. To date, there has been experimental evidence of IONPs having mutagenic interactions on human cell lines including lymphoblastoids, fibroblasts, microvascular endothelial cells, bone marrow cells, lung epithelial cells, alveolar type II like epithelial cells, bronchial fibroblasts, skin epithelial cells, hepatocytes, cerebral endothelial cells, fibrosarcoma cells, breast carcinoma cells, lung carcinoma cells, and cervix carcinoma cells. Other cell lines including the Chinese hamster ovary cells, mouse fibroblast cells, murine fibroblast cells, Mytilus galloprovincialis sperm cells, mice lung cells, murine alveolar macrophages, mice hepatic and renal tissue cells, and vero cells have also shown mutagenic effects upon exposure to IONPs. We further show the influence of IONPs on microorganisms in the presence and absence of dissolved organic carbon. The results shed light on the OPEN ACCESS Int. J. Mol. Sci. 2015, 16 23483 transformations IONPs undergo in the environment and the nature of the potential mutagenic impact on biological cells.

  4. Mutagenic Effects of Iron Oxide Nanoparticles on Biological Cells

    PubMed Central

    Dissanayake, Niluka M.; Current, Kelley M.; Obare, Sherine O.

    2015-01-01

    In recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts. This review article describes the impact of IONPs on cellular genetic components. The mutagenic impact of IONPs may damage an organism’s ability to develop or reproduce. To date, there has been experimental evidence of IONPs having mutagenic interactions on human cell lines including lymphoblastoids, fibroblasts, microvascular endothelial cells, bone marrow cells, lung epithelial cells, alveolar type II like epithelial cells, bronchial fibroblasts, skin epithelial cells, hepatocytes, cerebral endothelial cells, fibrosarcoma cells, breast carcinoma cells, lung carcinoma cells, and cervix carcinoma cells. Other cell lines including the Chinese hamster ovary cells, mouse fibroblast cells, murine fibroblast cells, Mytilus galloprovincialis sperm cells, mice lung cells, murine alveolar macrophages, mice hepatic and renal tissue cells, and vero cells have also shown mutagenic effects upon exposure to IONPs. We further show the influence of IONPs on microorganisms in the presence and absence of dissolved organic carbon. The results shed light on the transformations IONPs undergo in the environment and the nature of the potential mutagenic impact on biological cells. PMID:26437397

  5. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles.

    PubMed

    Wu, Pingxiao; Li, Shuzhen; Ju, Liting; Zhu, Nengwu; Wu, Jinhua; Li, Ping; Dang, Zhi

    2012-06-15

    Iron nanoparticles exhibit greater reactivity than micro-sized Fe(0), and they impart advantages for groundwater remediation. In this paper, supported iron nanoparticles were synthesized to further enhance the speed and efficiency of remediation. Natural montmorillonite and organo-montmorillonite were chosen as supporting materials. The capacity of supported iron nanoparticles was evaluated, compared to unsupported iron nanoparticles, for the reduction of aqueous Cr(VI). The reduction of Cr(VI) was much greater with organo-montmorillonite supported iron nanoparticles and fitted the pseudo-second order equation better. With a dose at 0.47 g/L, a total removal capacity of 106 mg Cr/g Fe(0) was obtained. Other factors that affect the efficiency of Cr(VI) removal, such as pH values, the initial Cr(VI) concentration and storage time of nanoparticles were investigated. X-ray photoelectron spectrometry (XPS) and X-ray absorption near edge structure (XANES) were used to figure out the mechanism of the removal of Cr(VI). XPS indicated that the Cr(VI) bound to the particle surface was completely reduced to Cr(III) under a range of conditions. XANES confirmed that the Cr(VI) reacted with iron nanoparticles was completely reduced to Cr(III).

  6. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sun, Sheng-Nan; Wei, Chao; Zhu, Zan-Zan; Hou, Yang-Long; Subbu, S. Venkatraman; Xu, Zhi-Chuan

    2014-03-01

    Iron oxide nanoparticles are the most popular magnetic nanoparticles used in biomedical applications due to their low cost, low toxicity, and unique magnetic property. Magnetic iron oxide nanoparticles, including magnetite (Fe3O4) and maghemite (γ-Fe2O3), usually exhibit a superparamagnetic property as their size goes smaller than 20 nm, which are often denoted as superparamagnetic iron oxide nanoparticles (SPIONs) and utilized for drug delivery, diagnosis, therapy, and etc. This review article gives a brief introduction on magnetic iron oxide nanoparticles in terms of their fundamentals of magnetism, magnetic resonance imaging (MRI), and drug delivery, as well as the synthesis approaches, surface coating, and application examples from recent key literatures. Because the quality and surface chemistry play important roles in biomedical applications, our review focuses on the synthesis approaches and surface modifications of iron oxide nanoparticles. We aim to provide a detailed introduction to readers who are new to this field, helping them to choose suitable synthesis methods and to optimize the surface chemistry of iron oxide nanoparticles for their interests.

  7. Formulation design for target delivery of iron nanoparticles to TCE zones

    NASA Astrophysics Data System (ADS)

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy.

  8. Formulation design for target delivery of iron nanoparticles to TCE zones.

    PubMed

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. © 2013.

  9. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    NASA Astrophysics Data System (ADS)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold

  10. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles.

    PubMed

    Llamosa, D; Ruano, M; Martínez, L; Mayoral, A; Roman, E; García-Hernández, M; Huttel, Y

    2014-11-21

    Complex core@shell and core@shell@shell nanoparticles are systems that combine the functionalities of the inner core and outer shell materials together with new physico-chemical properties originated by their low (nano) dimensionality. Such nanoparticles are of prime importance in the fast growing field of nanotechnology as building blocks for more sophisticated systems and a plethora of applications. Here, it is shown that although conceptually simple a modified gas aggregation approach allows the one-step generation of well-controlled complex nanoparticles. In particular, it is demonstrated that the atoms of the core and the shell of the nanoparticles can be easily inverted, avoiding intrinsic constraints of chemical methods.

  11. Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres.

    PubMed

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2004-11-09

    A one-step sequential method for preparing AgCl@polypyrrole-chitosan core-shell nanoparticles and subsequently the formation of polypyrrole-chitosan hollow nanospheres is reported. The formation of the core and the shell is performed in one reaction medium almost simultaneously. Transmission electron microscopy (TEM) images show the presence of core-shell nanoparticles and hollow nanospheres. Ultraviolet-visible (UV-vis) studies reveal that AgCl was formed first followed by polypyrrole. X-ray diffration (XRD) and UV-vis studies show that AgCl was present in the core-shell nanoparticles and could be removed completely from the core.

  12. Magnetic Core-Shell Morphology of Structurally Uniform Magnetite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Krycka, Kathryn

    2011-03-01

    Magnetic nanoscale structures are intriguing, in part, because of the exotic properties that emerge compared with bulk. The reduction of magnetic moment per atom in magnetite with decreasing nanoparticle size, for example, has been hypothesized to originate from surface disordering to anisotropy-induced radial canting, which are difficult to distinguish using conventional magnetometry. Small-angle neutron scattering (SANS) is ideal for probing structure, both chemical and magnetic, from nm to microns across an ensemble of particles. Adding polarization analysis (PASANS) of the neutron spin orientation before and after interaction with the scattering particles allows the magnetic structure to be separated into its vector components. Application of this novel technique to 9 nm magnetite nanoparticles closed-packed into face-centered crystallites with order of a micron revealed that at nominal saturation the missing magnetic moments unexpectedly interacted to form well-ordered shells 1.0 to 1.5 nm thick canted perpendicular to their ferrimagnetic cores between 160 to 320 K. These shells additionally displayed intra-particle ``cross-talk'', selecting a common orientation over clusters of tens of nanoparticles. However, the shells disappeared when the external field was removed and interparticle magnetic interactions were negligible (300 K), confirming their magnetic origin. This work has been carried out in collaboration with Ryan Booth, Julie Borchers, Wangchun Chen, Liv Dedon, Thomas Gentile, Charles Hogg, Yumi Ijiri, Mark Laver, Sara Majetich, James Rhyne, and Shannon Watson.

  13. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    NASA Astrophysics Data System (ADS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  14. Zero Valent Iron: Impact of Anions Present during Synthesis on Subsequent Nanoparticle Reactivity

    SciTech Connect

    Moore, Kirsten; Forsberg, Brady; Baer, Donald R.; Arnold, William A.; Penn, R. Lee

    2011-10-01

    Zero-valent iron particles are an effective remediation technology for groundwater contaminated with halogenated organic compounds. In particular, nano-scale zero-valent iron is a promising material for remediation due to its high specific surface area, which results in faster rate constants and more effective use of the iron. An aspect of iron nanoparticle reactivity that has not been explored is the impact of anions present during iron metal nanoparticle synthesis. Solutions containing chloride, phosphate, sulfate, and nitrate anions and ferric ions were used to generate iron oxide nanoparticles. The resulting materials were dialyzed to remove dissolved byproducts and then dried and reduced by hydrogen gas at high temperature. The reactivity of the resulting zero valent iron nanoparticles was quantified by monitoring the kinetics as well as products of carbon tetrachloride reduction, and significant differences in reactivity and chloroform yield were observed. The reactivity of nanoparticles prepared in the presence of sulfate and phosphate demonstrated the highest reactivity and chloroform yield. Furthermore, substantial variations in the solid-state products of oxidation (magnetite, iron sulfide, and goethite, among others) were also observed.

  15. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract.

    PubMed

    Ehrampoush, Mohammad Hassan; Miria, Mohammad; Salmani, Mohammad Hossien; Mahvi, Amir Hossein

    2015-01-01

    The adsorption process by metal oxide nanoparticles has been investigated an effective agent for removing organic and inorganic contaminants from water and wastewater. In this study, iron oxide nanoparticles were synthesized in the presence of tangerine peel extract as adsorbent for cadmium ions removal from contaminated solution. Iron oxide nanoparticles prepared by co-precipitation method and tangerine peel extract was used to prevent accumulation and reduce the diameter of the particles. Effect of various parameters such as contact time, pH, metal concentration and adsorbent dosage was determined on the removal efficiency. The different concentrations of tangerine peel had an impact on the size of nanoparticles. As, increasing the concentration of tangerine peel extract from 2 to 6 % the average size of synthesized iron oxide nanoparticles decreased 200 nm to 50 nm. The maximum removal of cadmium ions (90 %) occurred at pH of 4 and adsorbent dose of 0.4 g/100 ml. Adsorption of cadmium ions by synthesized iron oxide nanoparticles followed Freundlich adsorption model and pseudo-second-order equation. The cadmium ions are usually soluble in acidic pH and the maximum removal of cadmium by green synthesis iron oxide nanoparticles was obtained in the pH of 4, so these nanoparticles can be a good adsorbent for the removal of cadmium from wastewater.

  16. Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system.

    PubMed

    Lee, Wen-Bin; Weng, Chen-Hsun; Cheng, Fong-Yu; Yeh, Chen-Sheng; Lei, Huan-Yao; Lee, Gwo-Bin

    2009-02-01

    The preparation of nanoparticles is essential in the application of many nanotechnologies and various preparation methods have been explored in the previous decades. Among them, iron oxide nanoparticles have been widely investigated in applications ranging from bio-imaging to bio-sensing due to their unique magnetic properties. Recently, microfluidic systems have been utilized for synthesis of nanoparticles, which have the advantages of automation, well-controlled reactions, and a high particle uniformity. In this study, a new microfluidic system capable of mixing, transporting and reacting was developed for the synthesis of iron oxide nanoparticles. It allowed for a rapid and efficient approach to accelerate and automate the synthesis of the iron oxide nanoparticles as compared with traditional methods. The microfluidic system uses micro-electro-mechanical-system technologies to integrate a new double-loop micromixer, two micropumps, and a microvalve on a single chip. When compared with large-scale synthesis systems with commonly-observed particle aggregation issues, successful synthesis of dispersed and uniform iron oxide nanoparticles has been observed within a shorter period of time (15 min). It was found that the size distribution of these iron oxide nanoparticles is superior to that of the large-scale systems without requiring any extra additives or heating. The size distribution had a variation of 16%. This is much lower than a comparable large-scale system (34%). The development of this microfluidic system is promising for the synthesis of nanoparticles for many future biomedical applications.

  17. Iron nanoparticles embedded in carbon films: structural and optical properties

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, Seyed Ali

    2016-06-01

    In the present work amorphous hydrogenated carbon films with sputtered iron nanoparticles (Fe NPs @ a-C:H) were deposited by co-deposition of RF-sputtering and RF-plasma enhanced chemical vapor deposition methods using acetylene gas and iron target on quartz and silicon substrates. Samples were prepared in different initial pressures and during constant deposition time. The crystalline structure of Fe NPs @ a-C:H was studied using X-ray diffraction and selected area electron diffraction patterns. The X-ray photoelectron spectroscopy analysis presents that increasing the initial pressure decreases the atomic ratio of Fe/C and the sp3-hybridized carbon content in prepared samples. The transmission electron microscope image shows the encapsulated Fe NPs in carbon films. The optical properties and localized surface plasmon resonance (LSPR) of samples were studied using UV-visible spectrophotometry, which is shown that increasing of Fe content decreases the intensity of LSPR peak and increases the optical band gap.

  18. Are iron oxide nanoparticles safe? Current knowledge and future perspectives.

    PubMed

    Valdiglesias, Vanessa; Fernández-Bertólez, Natalia; Kiliç, Gözde; Costa, Carla; Costa, Solange; Fraga, Sonia; Bessa, Maria Joao; Pásaro, Eduardo; Teixeira, João Paulo; Laffon, Blanca

    2016-12-01

    Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure.

  19. Superparamagnetic Iron Oxide Nanoparticle-Based Delivery Systems for Biotherapeutics

    PubMed Central

    Mok, Hyejung; Zhang, Miqin

    2014-01-01

    Introduction Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable, and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically-driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. Area covered This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. We examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes, and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. Expert opinion Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared to chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely-tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation. PMID:23199200

  20. Lead coprecipitation with iron oxyhydroxide nano-particles

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Nuhfer, Noel T.; Kelly, Shelly; Li, Qin; Konishi, Hiromi; Elswick, Erika; Zhu, Chen

    2011-08-01

    Pb 2+ and Fe 3+ coprecipitation was studied with sorption edge measurements, desorption experiments, sorbent aging, High Resolution Transmission and Analytical Electron Microscopy (HR TEM-AEM), and geochemical modeling. Companion adsorption experiments were also conducted for comparison. The macroscopic chemical and near atomic scale HRTEM data supplemented our molecule scale analysis with EXAFS ( Kelly et al., 2008). Coprecipitation of Pb 2+ with ferric oxyhydroxides occurred at ˜pH 4 and is more efficient than adsorption in removing Pb 2+ from aqueous solutions at similar sorbate/sorbent ratios and pH. X-ray Diffraction (XRD) shows peaks of lepidocrocite and two additional broad peaks similar to fine particles of 2-line ferrihydrite (2LFh). HRTEM of the Pb-Fe coprecipitates shows a mixture of 2-6 nm diameter spheres and 8-20 by 200-300 nm needles, both uniformly distributed with Pb 2+. Geochemical modeling shows that surface complexation models fit the experimental data of low Pb:Fe ratios when a high site density is used. Desorption experiments show that more Pb 2+ was released from loaded sorbents collected from adsorption experiments than from Pb to Fe coprecipitates at dilute EDTA concentrations. Desorbed Pb 2+ versus dissolved Fe 3+ data show a linear relationship for coprecipitation (CPT) desorption experiments but a parabolic relationship for adsorption (ADS) experiments. Based on these results, we hypothesize that Pb 2+ was first adsorbed onto the nanometer-sized, metastable, iron oxyhydroxide polymers of 2LFh with domain size of 2-3 nm. As these nano-particles assembled into larger particles, some Pb 2+ was trapped in the iron oxyhydroxide structure and re-arranged to form solid solutions. Therefore, the CPT contact method produced more efficient removal of Pb 2+ than the adsorption contact method, and Pb 2+ bound in CPT solids represent a more stable sequestration of Pb 2+ in the environment than Pb 2+ adsorbed on iron oxyhydroxide surfaces.

  1. Physicochemical Characterization of Nebulized Superparamagnetic Iron Oxide Nanoparticles (SPIONs)

    PubMed Central

    Graczyk, Halshka; Bryan, Louise C.; Lewinski, Nastassja; Suarez, Guillaume; Coullerez, Geraldine; Bowen, Paul

    2015-01-01

    Abstract Background: Aerosol-mediated delivery of nano-based therapeutics to the lung has emerged as a promising alternative for treatment and prevention of lung diseases. Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention for such applications due to their biocompatibility and magnetic properties. However, information is lacking about the characteristics of nebulized SPIONs for use as a therapeutic aerosol. To address this need, we conducted a physicochemical characterization of nebulized Rienso, a SPION-based formulation for intravenous treatment of anemia. Methods: Four different concentrations of SPION suspensions were nebulized with a one-jet nebulizer. Particle size was measured in suspension by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and nanoparticle tracking analysis (NTA), and in the aerosol by a scanning mobility particle sizer (SMPS). Results: The average particle size in suspension as measured by TEM, PCS, and NTA was 9±2 nm, 27±7 nm, and 56±10 nm, respectively. The particle size in suspension remained the same before and after the nebulization process. However, after aerosol collection in an impinger, the suspended particle size increased to 159±46 nm as measured by NTA. The aerosol particle concentration increased linearly with increasing suspension concentration, and the aerodynamic diameter remained relatively stable at around 75 nm as measured by SMPS. Conclusions: We demonstrated that the total number and particle size in the aerosol were modulated as a function of the initial concentration in the nebulizer. The data obtained mark the first known independent characterization of nebulized Rienso and, as such, provide critical information on the behavior of Rienso nanoparticles in an aerosol. The data obtained in this study add new knowledge to the existing body of literature on potential applications of SPION suspensions as inhaled aerosol therapeutics. PMID

  2. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment.

    PubMed

    Gutierrez, Angela M; Dziubla, Thomas D; Hilt, J Zach

    2017-02-23

    The constant growth in population worldwide over the past decades continues to put forward the need to provide access to safe, clean water to meet human needs. There is a need for cost-effective technologies for water and wastewater treatment that can meet the global demands and the rigorous water quality standards and at the same maximizing pollutant efficiency removal. Current remediation technologies have failed in keeping up with these factors without becoming cost-prohibitive. Most recently, nanotechnology has been sought as the best alternative to increase access to water supplies by remediating those already contaminated and offering ways to access unconventional sources. The use of iron oxide magnetic nanoparticles as nanoadsorbents has led way to a new class of magnetic separation strategies for water treatment. This review focuses on highlighting some of the most recent advances in core-shell iron oxide magnetic nanoparticles and nanocomposites containing iron oxide nanoparticles currently being developed for water and wastewater treatment of organic pollutants. We discuss the novelty of these novel materials and the insight gained from their advances that can help develop cost-effective reusable technologies for scale-up and commercial use.

  3. Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles.

    PubMed

    Mahmoudi, Morteza; Shokrgozar, Mohammad A; Sardari, Soroush; Moghadam, Mojgan K; Vali, Hojatollah; Laurent, Sophie; Stroeve, Pieter

    2011-03-01

    The understanding of the interactions between nanomaterials and proteins is of extreme importance in medicine. In a biological fluid, proteins can adsorb and associate with nanoparticles, which can have significant impact on the biological behavior of the proteins and the nanoparticles. We report here on the interactions of iron saturated human transferrin protein with both bare and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles (SPIONs). The exposure of human transferrin to SPIONs results in the release of iron, which changes the main function of the protein, which is the transport of iron among cells. After removal of the magnetic nanoparticles, the original protein conformation is not recovered, indicating irreversible changes in transferrin conformation: from a compact to an open structure.

  4. Iron isotopic fractionation between silicate mantle and metallic core at high pressure

    PubMed Central

    Liu, Jin; Dauphas, Nicolas; Roskosz, Mathieu; Hu, Michael Y.; Yang, Hong; Bi, Wenli; Zhao, Jiyong; Alp, Esen E.; Hu, Justin Y.; Lin, Jung-Fu

    2017-01-01

    The +0.1‰ elevated 56Fe/54Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure–temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, even at high pressure. From the measured mean force constants of iron bonds, we calculate an equilibrium iron isotope fractionation between silicate and iron under core formation conditions in Earth of ∼0–0.02‰, which is small relative to the +0.1‰ shift of terrestrial basalts. This result is unaffected by small amounts of nickel and candidate core-forming light elements, as the isotopic shifts associated with such alloying are small. This study suggests that the variability in iron isotopic composition in planetary objects cannot be due to core formation. PMID:28216664

  5. Iron isotopic fractionation between silicate mantle and metallic core at high pressure.

    PubMed

    Liu, Jin; Dauphas, Nicolas; Roskosz, Mathieu; Hu, Michael Y; Yang, Hong; Bi, Wenli; Zhao, Jiyong; Alp, Esen E; Hu, Justin Y; Lin, Jung-Fu

    2017-02-20

    The +0.1‰ elevated (56)Fe/(54)Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure-temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, even at high pressure. From the measured mean force constants of iron bonds, we calculate an equilibrium iron isotope fractionation between silicate and iron under core formation conditions in Earth of ∼0-0.02‰, which is small relative to the +0.1‰ shift of terrestrial basalts. This result is unaffected by small amounts of nickel and candidate core-forming light elements, as the isotopic shifts associated with such alloying are small. This study suggests that the variability in iron isotopic composition in planetary objects cannot be due to core formation.

  6. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires.

    PubMed

    Londoño-Calderón, César Leandro; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-16

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  7. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  8. A new approach to the ferritin iron core growth: influence of the H/L ratio on the core shape.

    PubMed

    López-Castro, J D; Delgado, J J; Perez-Omil, J A; Gálvez, Natividad; Cuesta, Rafael; Watt, Richard K; Domínguez-Vera, José M

    2012-01-28

    An electron microscopy study, in combination with modeling and image simulation, of four different reconstituted ferritin samples: recombinant human H and L homopolymers, and H and L heteropolymers of native L-subunit-rich horse spleen and H-subunit-rich human heart ferritins, points out the existence of a correlation between iron core shape and protein shell.

  9. Properties of liquid iron along the melting line up to Earth-core pressures.

    PubMed

    Fomin, Yu D; Ryzhov, V N; Brazhkin, V V

    2013-07-17

    We report a molecular dynamics study of the transport coefficients and the infinite frequency shear modulus of liquid iron at high temperatures and high pressures. We observe a simultaneous rise of both the shear viscosity and the diffusion coefficient along the melting line and estimate whether liquid iron can vitrify under Earth-core conditions. We show that in the conditions of the model studied in our work iron demonstrates a moderate increase of viscosity along the melting line. It is also demonstrated that at the limit of high temperatures and high pressures the liquid iron behaves similarly to the soft sphere system with exponent n ≈ 4.6.

  10. Phase Diagram of Iron, Revised-Core Temperatures

    SciTech Connect

    Ahrens, T.J.; Chen, G.Q.; Holland, K.G.

    1999-01-27

    Shock-wave experiments on iron preheated to 1,573 K conducted from 14 to 73 GPa, yield new data for sound velocities of the {gamma}- and liquid-phases. Melting was observed in the highest pressure ({approximately} 71 {+-} 2 GPa) experiments at calculated shock temperatures of 2,775 {+-} 160 K. This single crossing of the {gamma}-liquid boundary measured here agrees closely with the {gamma}-iron melting line determined by Boehler [1993], Saxena et al. [1993], and Jephcoat and Besedin [1997]. This {gamma}-iron melting curve is {approximately} 300 C lower than that of Shen et al. [1998b] at 80 GPa.

  11. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.

    PubMed

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Lee, Yung Jong; Lee, Hyuck Mo

    2015-11-13

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  12. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics

    NASA Astrophysics Data System (ADS)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Jong Lee, Yung; Lee, Hyuck Mo

    2015-11-01

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  13. High-P,T Elasticity of Hcp Iron: Reinvestigation of the Applicability of Hcp Iron to the Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Tsuchiya, T.; Kawai, K.; Kuwayama, Y.; Ohsumi, M.; Ishii, M.

    2015-12-01

    Earth's inner core (329~364 GPa and 5000~6000 K) is thought to be composed of hexagonal closed pack (hcp) structured solid Fe-Ni alloy (e.g., Mao et al., 1998; Kuwayama et al., 2008; Sha & Cohen, 2010). Thermoelasticity of hcp (ɛ) iron is therefore a key to interpreting seismological information of the inner core: density, seismic wave velocities, and their anisotropy. However, several studies reported that hcp iron has a shear modulus distinctly larger than that of the inner core (e.g., Mao et al., 1998; Vocadlo et al., 2009). This large Poisson ratio of the inner core is one of the remaining inexplicable features of the deep Earth, and it suggests the presence of mechanisms to lower the S-wave velocity in the inner core, such as a low-velocity component (Prescher et al., 2015), pre-melting effect (Martorell et al., 2013), anelasticity, and so on. In this study, we perform ab initio molecular dynamics simulations employing a supercell larger than in previous calculations (Vocadlo et al., 2009; Martorell et al., 2013). Also computations are conducted in a wide P,T range including, but not limited to, the inner core conditions to clarify the P,T effects on the elasticity of the hcp iron more comprehensively, and to provide an internally-consistent thermoelastic model. In addition to checking the validity of the Birch's law, the obtained Poisson ratio and aggregate anisotropy, with and without the pre-melting effect, are compared against seismological constraints to reinvestigate the viability of hcp iron in the inner core. Research supported by KAKENHI (JSPS) and the X-ray Free Electron Laser Priority Strategy Program (MEXT).

  14. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts.

    PubMed

    Njagi, Eric C; Huang, Hui; Stafford, Lisa; Genuino, Homer; Galindo, Hugo M; Collins, John B; Hoag, George E; Suib, Steven L

    2011-01-04

    Iron and silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous sorghum extracts as both the reducing and capping agent. Silver ions were rapidly reduced by the aqueous sorghum bran extracts, leading to the formation of highly crystalline silver nanoparticles with an average diameter of 10 nm. The diffraction peaks were indexed to the face-centered cubic (fcc) phase of silver. The absorption spectra of colloidal silver nanoparticles showed a surface plasmon resonance (SPR) peak centered at a wavelength of 390 nm. Amorphous iron nanoparticles with an average diameter of 50 nm were formed instantaneously under ambient conditions. The reactivity of iron nanoparticles was tested by the H(2)O(2)-catalyzed degradation of bromothymol blue as a model organic contaminant.

  15. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.

    PubMed

    Ling, Daishun; Lee, Nohyun; Hyeon, Taeghwan

    2015-05-19

    Magnetic iron oxide nanoparticles have been extensively investigated for their various biomedical applications including diagnostic imaging, biological sensing, drug, cell, and gene delivery, and cell tracking. Recent advances in the designed synthesis and assembly of uniformly sized iron oxide nanoparticles have brought innovation in the field of nanomedicine. This Account provides a review on the recent progresses in the controlled synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. In particular, it focuses on three topics: stringent control of particle size during synthesis via the "heat-up" process, surface modification for the high stability and biocompatibility of the nanoparticles for diagnostic purposes, and assembly of the nanoparticles within polymers or mesoporous silica matrices for theranostic applications. Using extremely small 3 nm sized iron oxide nanoparticles (ESION), a new nontoxic T1 MRI contrast agent was realized for high-resolution MRI of blood vessels down to 0.2 mm. Ferrimagnetic iron oxide nanoparticles (FION) that are larger than 20 nm exhibit extremely large magnetization and coercivity values. The cells labeled with FIONs showed very high T2 contrast effect so that even a single cell can be readily imaged. Designed assembly of iron oxide nanoparticles with mesoporous silica and polymers was conducted to fabricate multifunctional nanoparticles for theranostic applications. Mesoporous silica nanoparticles are excellent scaffolds for iron oxide nanoparticles, providing magnetic resonance and fluorescence imaging modalities as well as the functionality of the drug delivery vehicle. Polymeric ligands could be designed to respond to various biological stimuli such as pH, temperature, and enzymatic activity. For example, we fabricated tumor pH-sensitive magnetic nanogrenades (termed PMNs) composed of self-assembled iron oxide nanoparticles and pH-responsive ligands. They were utilized to visualize

  16. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling.

    PubMed

    Babic, Michal; Horák, Daniel; Trchová, Miroslava; Jendelová, Pavla; Glogarová, Katerina; Lesný, Petr; Herynek, Vít; Hájek, Milan; Syková, Eva

    2008-03-01

    New surface-modified iron oxide nanoparticles were developed by precipitation of Fe(II) and Fe(III) salts with ammonium hydroxide and oxidation of the resulting magnetite with sodium hypochlorite, followed by the addition of poly( L-lysine) (PLL) solution. PLL of several molecular weights ranging from 146 ( L-lysine) to 579 000 was tested as a coating to boost the intracellular uptake of the nanoparticles. The nanoparticles were characterized by TEM, dynamic light scattering, FTIR, and ultrasonic spectrometry. TEM revealed that the particles were ca. 6 nm in diameter, while FTIR showed that their surfaces were well-coated with PLL. The interaction of PLL-modified iron oxide nanoparticles with DMEM culture medium was verified by UV-vis spectroscopy. Rat bone marrow stromal cells (rMSCs) and human mesenchymal stem cells (hMSC) were labeled with PLL-modified iron oxide nanoparticles or with Endorem (control). Optical microscopy and TEM confirmed the presence of PLL-modified iron oxide nanoparticles inside the cells. Cellular uptake was very high (more than 92%) for PLL-modified nanoparticles that were coated with PLL (molecular weight 388 00) at a concentration of 0.02 mg PLL per milliliter of colloid. The cellular uptake of PLL-modified iron oxide was facilitated by its interaction with the negatively charged cell surface and subsequent endosomolytic uptake. The relaxivity of rMSCs labeled with PLL-modified iron oxide and the amount of iron in the cells were determined. PLL-modified iron oxide-labeled rMSCs were imaged in vitro and in vivo after intracerebral grafting into the contralateral hemisphere of the adult rat brain. The implanted cells were visible on magnetic resonance (MR) images as a hypointense area at the injection site and in the lesion. In comparison with Endorem, nanoparticles modified with PLL of an optimum molecular weight demonstrated a higher efficiency of intracellular uptake by MSC cells.

  17. Hf-W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites

    NASA Astrophysics Data System (ADS)

    Kruijer, Thomas S.; Sprung, Peter; Kleine, Thorsten; Leya, Ingo; Burkhardt, Christoph; Wieler, Rainer

    2012-12-01

    The application of Hf-W chronometry to determine the timescales of core formation in the parent bodies of magmatic iron meteorites is severely hampered by 182W burnout during cosmic ray exposure of the parent meteoroids. Currently, no direct method exists to correct for the effects of 182W burnout, making the Hf-W ages for iron meteorites uncertain. Here we present noble gas and Hf-W isotope systematics of iron meteorite samples whose W isotopic compositions remained essentially unaffected by cosmic ray interactions. Most selected samples have concentrations of cosmogenic noble gases at or near the lowermost level observed in iron meteorites and, for iron meteorite standards, have very low noble gas and radionuclide based cosmic ray exposure ages (<60 Ma). In contrast to previous studies, no corrections of measured W isotope compositions are required for these iron meteorite samples. Their ɛ182W values (parts per 104 deviations from the terrestrial value) are higher than those measured for most other iron meteorites and range from -3.42 to -3.31, slightly elevated compared to the initial 182W/184W of Ca-Al-rich Inclusions (CAI; ɛ182W = -3.51 ± 0.10). The new W isotopic data indicate that core formation in the parent bodies of the IIAB, IIIAB, and IVA iron meteorites occurred ˜1-1.5 Myr after CAI formation (with an uncertainty of ˜1 Myr), consistent with earlier conclusions that the accretion and differentiation of iron meteorite parent bodies predated the accretion of most chondrite parent bodies. One ungrouped iron meteorite (Chinga) exhibits small nucleosynthetic W isotope anomalies, but after correction for these anomalies its ɛ182W value agrees with those of the other samples. Another ungrouped iron (Mbosi), however, has elevated ɛ182W relative to the other investigated irons, indicating metal-silicate separation ˜2-3 Myr later than in the parent bodies of the three major iron meteorite groups studied here.

  18. Magnetic self-assembly of gold nanoparticle chains using dipolar core-shell colloids.

    PubMed

    Kim, Bo Yun; Shim, In-Bo; Monti, Oliver L A; Pyun, Jeffrey

    2011-01-21

    The preparation of gold nanoparticle (AuNP) assemblies was conducted by the synthesis and dipolar assembly of ferromagnetic core-shell nanoparticles composed of AuNP cores and cobalt NP shells. Dissolution of metallic Co phases with mineral acids afforded self-assembled AuNP chains and bracelets.

  19. Effect of radiation energy and intracellular iron dose on iron oxide nanoparticle enhancement of radiation cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mazur, Courtney M.; Strawbridge, Rendall R.; Thompson, Ella S.; Petryk, Alicia A.; Gladstone, David J.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONPs) are one of several high-Z materials currently being investigated for their ability to enhance the cytotoxic effects of therapeutic ionizing radiation. Studies with iron oxide, silver, gold, and hafnium oxide suggest radiation dose, radiation energy, cell type, and the type and level of metallic nanoparticle are all critical factors in achieving radiation enhancement in tumor cells. Using a single 4 Gy radiation dose, we compared the level of tumor cell cytotoxicity at two different intracellular iron concentrations and two different radiation energies in vitro. IONPs were added to cell c