Science.gov

Sample records for iron metabolism limits

  1. Bypasses in intracellular glucose metabolism in iron-limited Pseudomonas putida.

    PubMed

    Sasnow, Samantha S; Wei, Hua; Aristilde, Ludmilla

    2016-02-01

    Decreased biomass growth in iron (Fe)-limited Pseudomonas is generally attributed to downregulated expression of Fe-requiring proteins accompanied by an increase in siderophore biosynthesis. Here, we applied a stable isotope-assisted metabolomics approach to explore the underlying carbon metabolism in glucose-grown Pseudomonas putida KT2440. Compared to Fe-replete cells, Fe-limited cells exhibited a sixfold reduction in growth rate but the glucose uptake rate was only halved, implying an imbalance between glucose uptake and biomass growth. This imbalance could not be explained by carbon loss via siderophore production, which accounted for only 10% of the carbon-equivalent glucose uptake. In lieu of the classic glycolytic pathway, the Entner-Doudoroff (ED) pathway in Pseudomonas is the principal route for glucose catabolism following glucose oxidation to gluconate. Remarkably, gluconate secretion represented 44% of the glucose uptake in Fe-limited cells but only 2% in Fe-replete cells. Metabolic (13) C flux analysis and intracellular metabolite levels under Fe limitation indicated a decrease in carbon fluxes through the ED pathway and through Fe-containing metabolic enzymes. The secreted siderophore was found to promote dissolution of Fe-bearing minerals to a greater extent than the high extracellular gluconate. In sum, bypasses in the Fe-limited glucose metabolism were achieved to promote Fe availability via siderophore secretion and to reroute excess carbon influx via enhanced gluconate secretion.

  2. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  3. Knockdown of proteins involved in iron metabolism limits tick reproduction and development

    PubMed Central

    Hajdusek, Ondrej; Sojka, Daniel; Kopacek, Petr; Buresova, Veronika; Franta, Zdenek; Sauman, Ivo; Winzerling, Joy; Grubhoffer, Libor

    2009-01-01

    Ticks are among the most important vectors of a wide range of human and animal diseases. During blood feeding, ticks are exposed to an enormous amount of free iron that must be appropriately used and detoxified. However, the mechanism of iron metabolism in ticks is poorly understood. Here, we show that ticks possess a complex system that efficiently utilizes, stores and transports non-heme iron within the tick body. We have characterized a new secreted ferritin (FER2) and an iron regulatory protein (IRP1) from the sheep tick, Ixodes ricinus, and have demonstrated their relationship to a previously described tick intracellular ferritin (FER1). By using RNA interference-mediated gene silencing in the tick, we show that synthesis of FER1, but not of FER2, is subject to IRP1-mediated translational control. Further, we find that depletion of FER2 from the tick plasma leads to a loss of FER1 expression in the salivary glands and ovaries that normally follows blood ingestion. We therefore suggest that secreted FER2 functions as the primary transporter of non-heme iron between the tick gut and the peripheral tissues. Silencing of the fer1, fer2, and irp1 genes by RNAi has an adverse impact on hatching rate and decreases postbloodmeal weight in tick females. Importantly, knockdown of fer2 dramatically impairs the ability of ticks to feed, thus making FER2 a promising candidate for development of an efficient anti-tick vaccine. PMID:19171899

  4. Physiology of Iron Metabolism

    PubMed Central

    Waldvogel-Abramowski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M.; Favrat, Bernard; Tissot, Jean-Daniel

    2014-01-01

    Summary A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. ‘Ironomics’ certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism. PMID:25053935

  5. Iron metabolism and toxicity

    SciTech Connect

    Papanikolaou, G.; Pantopoulos, K. . E-mail: kostas.pantopoulos@mcgill.ca

    2005-01-15

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer.

  6. A Sinorhizobium meliloti RpoH-Regulated Gene Is Involved in Iron-Sulfur Protein Metabolism and Effective Plant Symbiosis under Intrinsic Iron Limitation

    PubMed Central

    Sasaki, Shohei; Minamisawa, Kiwamu

    2016-01-01

    /S protein metabolism and effective symbiosis under intrinsic iron limitation exerted by RirA, a global iron regulator. Our study provides insights into the RpoH regulon function in diverse proteobacteria adapted to particular ecological niches and into the mechanism of conserved Fe/S protein biogenesis. PMID:27297881

  7. Metabolic Remodeling in Iron-deficient Fungi

    PubMed Central

    Philpott, Caroline C.; Leidgens, Sebastien; Frey, Avery G.

    2012-01-01

    Eukaryotic cells contain dozens, perhaps hundreds, of iron-dependent proteins, which perform critical functions in nearly every major cellular process. Nutritional iron is frequently available to cells in only limited amounts; thus, unicellular and higher eukaryotes have evolved mechanisms to cope with iron scarcity. These mechanisms have been studied at the molecular level in the model eukaryotes Saccharomyces cerevisiae and Schizosaccharomyces pombe, as well as in some pathogenic fungi. Each of these fungal species exhibits metabolic adaptations to iron deficiency that serve to reduce the cell’s reliance on iron. However, the regulatory mechanisms that accomplish these adaptations differ greatly between fungal species. PMID:22306284

  8. Regulation of cellular iron metabolism

    PubMed Central

    Wang, Jian; Pantopoulos, Kostas

    2011-01-01

    Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance. PMID:21348856

  9. Iron metabolism: current facts and future directions.

    PubMed

    Tandara, Leida; Salamunic, Ilza

    2012-01-01

    Iron metabolism has been intensively examined over the last decade and there are many new players in this field which are worth to be introduced. Since its discovery many studies confirmed role of liver hormone hepcidin as key regulator of iron metabolism and pointed out liver as the central organ of system iron homeostasis. Liver cells receive multiple signals related to iron balance and respond by transcriptional regulation of hepcidin expression. This liver hormone is negative regulator of iron metabolism that represses iron efflux from macrophages, hepatocytes and enterocytes by its binding to iron export protein ferroportin. Ferroportin degradation leads to cellular iron retention and decreased iron availability. At level of a cell IRE/IRP (iron responsive elements/iron responsive proteins) system allows tight regulation of iron assimilation that prevents an excess of free intracellular iron which could lead to oxidative stress and damage of DNA, proteins and lipid membranes by ROS (reactive oxygen species). At the same time IRE/IRP system provides sufficient iron in order to meet the metabolic needs. Recently a significant progress in understanding of iron metabolism has been made and new molecular participants have been characterized. Article gives an overview of the current understanding of iron metabolism: absorption, distribution, cellular uptake, release, and storage. We also discuss mechanisms underlying systemic and cellular iron regulation with emphasis on central regulatory hormone hepcidin.

  10. Iron metabolism: current facts and future directions

    PubMed Central

    Tandara, Leida; Salamunic, Ilza

    2012-01-01

    Iron metabolism has been intensively examined over the last decade and there are many new players in this field which are worth to be introduced. Since its discovery many studies confirmed role of liver hormone hepcidin as key regulator of iron metabolism and pointed out liver as the central organ of system iron homeostasis. Liver cells receive multiple signals related to iron balance and respond by transcriptional regulation of hepcidin expression. This liver hormone is negative regulator of iron metabolism that represses iron efflux from macrophages, hepatocytes and enterocytes by its binding to iron export protein ferroportin. Ferroportin degradation leads to cellular iron retention and decreased iron availability. At level of a cell IRE/IRP (iron responsive elements/iron responsive proteins) system allows tight regulation of iron assimilation that prevents an excess of free intracellular iron which could lead to oxidative stress and damage of DNA, proteins and lipid membranes by ROS (reactive oxygen species). At the same time IRE/IRP system provides sufficient iron in order to meet the metabolic needs. Recently a significant progress in understanding of iron metabolism has been made and new molecular participants have been characterized. Article gives an overview of the current understanding of iron metabolism: absorption, distribution, cellular uptake, release, and storage. We also discuss mechanisms underlying systemic and cellular iron regulation with emphasis on central regulatory hormone hepcidin. PMID:23092063

  11. Ferritin couples iron and fatty acid metabolism.

    PubMed

    Bu, Weiming; Liu, Renyu; Cheung-Lau, Jasmina C; Dmochowski, Ivan J; Loll, Patrick J; Eckenhoff, Roderic G

    2012-06-01

    A physiological relationship between iron, oxidative injury, and fatty acid metabolism exists, but transduction mechanisms are unclear. We propose that the iron storage protein ferritin contains fatty acid binding sites whose occupancy modulates iron uptake and release. Using isothermal microcalorimetry, we found that arachidonic acid binds ferritin specifically and with 60 μM affinity. Arachidonate binding by ferritin enhanced iron mineralization, decreased iron release, and protected the fatty acid from oxidation. Cocrystals of arachidonic acid and horse spleen apoferritin diffracted to 2.18 Å and revealed specific binding to the 2-fold intersubunit pocket. This pocket shields most of the fatty acid and its double bonds from solvent but allows the arachidonate tail to project well into the ferrihydrite mineralization site on the ferritin L-subunit, a structural feature that we implicate in the effects on mineralization by demonstrating that the much shorter saturated fatty acid, caprylate, has no significant effects on mineralization. These combined effects of arachidonate binding by ferritin are expected to lower both intracellular free iron and free arachidonate, thereby providing a previously unrecognized mechanism for limiting lipid peroxidation, free radical damage, and proinflammatory cascades during times of cellular stress.

  12. A Systems Biology Approach to Iron Metabolism

    PubMed Central

    Chifman, J.; Laubenbacher, R.; Torti, S.V.

    2015-01-01

    Iron is critical to the survival of almost all living organisms. However, inappropriately low or high levels of iron are detrimental and contribute to a wide range of diseases. Recent advances in the study of iron metabolism have revealed multiple intricate pathways that are essential to the maintenance of iron homeostasis. Further, iron regulation involves processes at several scales, ranging from the subcellular to the organismal. This complexity makes a systems biology approach crucial, with its enabling technology of computational models based on a mathematical description of regulatory systems. Systems biology may represent a new strategy for understanding imbalances in iron metabolism and their underlying causes. PMID:25480643

  13. In vivo iron metabolism by IRMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron isotopes are used in both biological and geological investigations. Three low-abundance stable isotopes are available for human studies. They have been widely used to study iron metabolism. They have provided valuable insights into iron deficiency, one of the most common micronutrient deficienc...

  14. Regulation of Iron Metabolism by Pyrococcus furiosus

    PubMed Central

    Zhu, Yixuan; Kumar, Sunil; Menon, Angeli L.; Scott, Robert A.

    2013-01-01

    Iron is an essential element for the hyperthermophilic archaeon Pyrococcus furiosus, and many of its iron-containing enzymes have been characterized. How iron assimilation is regulated, however, is unknown. The genome sequence contains genes encoding two putative iron-responsive transcription factors, DtxR and Fur. Global transcriptional profiles of the dtxR deletion mutant (ΔDTXR) and the parent strain under iron-sufficient and iron-limited conditions indicated that DtxR represses the expression of the genes encoding two putative iron transporters, Ftr1 and FeoAB, under iron-sufficient conditions. Under iron limitation, DtxR represses expression of the gene encoding the iron-containing enzyme aldehyde ferredoxin oxidoreductase and a putative ABC-type transporter. Analysis of the dtxR gene sequence indicated an incorrectly predicted translation start site, and the corrected full-length DtxR protein, in contrast to the truncated version, specifically bound to the promoters of ftr1 and feoAB, confirming its role as a transcription regulator. Expression of the gene encoding Ftr1 was dramatically upregulated by iron limitation, but no phenotype was observed for the ΔFTR1 deletion mutant under iron-limited conditions. The intracellular iron concentrations of ΔFTR1 and the parent strain were similar, suggesting that under the conditions tested, Ftr1 is not an essential iron transporter despite its response to iron. In contrast to DtxR, the Fur protein appears not to be a functional regulator in P. furiosus, since it did not bind to the promoters of any of the iron-regulated genes and the deletion mutant (ΔFUR) revealed no transcriptional responses to iron availability. DtxR is therefore the key iron-responsive transcriptional regulator in P. furiosus. PMID:23504018

  15. Iron regulatory proteins and their role in controlling iron metabolism.

    PubMed

    Kühn, Lukas C

    2015-02-01

    Cellular iron homeostasis is regulated by post-transcriptional feedback mechanisms, which control the expression of proteins involved in iron uptake, release and storage. Two cytoplasmic proteins with mRNA-binding properties, iron regulatory proteins 1 and 2 (IRP1 and IRP2) play a central role in this regulation. Foremost, IRPs regulate ferritin H and ferritin L translation and thus iron storage, as well as transferrin receptor 1 (TfR1) mRNA stability, thereby adjusting receptor expression and iron uptake via receptor-mediated endocytosis of iron-loaded transferrin. In addition splice variants of iron transporters for import and export at the plasma-membrane, divalent metal transporter 1 (DMT1) and ferroportin are regulated by IRPs. These mechanisms have probably evolved to maintain the cytoplasmic labile iron pool (LIP) at an appropriate level. In certain tissues, the regulation exerted by IRPs influences iron homeostasis and utilization of the entire organism. In intestine, the control of ferritin expression limits intestinal iron absorption and, thus, whole body iron levels. In bone marrow, erythroid heme biosynthesis is coordinated with iron availability through IRP-mediated translational control of erythroid 5-aminolevulinate synthase mRNA. Moreover, the translational control of HIF2α mRNA in kidney by IRP1 coordinates erythropoietin synthesis with iron and oxygen supply. Besides IRPs, body iron absorption is negatively regulated by hepcidin. This peptide hormone, synthesized and secreted by the liver in response to high serum iron, downregulates ferroportin at the protein level and thereby limits iron absorption from the diet. Hepcidin will not be discussed in further detail here.

  16. Diversity and Evolutionary History of Iron Metabolism Genes in Diatoms

    PubMed Central

    Groussman, Ryan D.; Parker, Micaela S.; Armbrust, E. Virginia

    2015-01-01

    Ferroproteins arose early in Earth’s history, prior to the emergence of oxygenic photosynthesis and the subsequent reduction of bioavailable iron. Today, iron availability limits primary productivity in about 30% of the world’s oceans. Diatoms, responsible for nearly half of oceanic primary production, have evolved molecular strategies for coping with variable iron concentrations. Our understanding of the evolutionary breadth of these strategies has been restricted by the limited number of species for which molecular sequence data is available. To uncover the diversity of strategies marine diatoms employ to meet cellular iron demands, we analyzed 367 newly released marine microbial eukaryotic transcriptomes, which include 47 diatom species. We focused on genes encoding proteins previously identified as having a role in iron management: iron uptake (high-affinity ferric reductase, multi-copper oxidase, and Fe(III) permease); iron storage (ferritin); iron-induced protein substitutions (flavodoxin/ferredoxin, and plastocyanin/cytochrome c6) and defense against reactive oxygen species (superoxide dismutases). Homologs encoding the high-affinity iron uptake system components were detected across the four diatom Classes suggesting an ancient origin for this pathway. Ferritin transcripts were also detected in all Classes, revealing a more widespread utilization of ferritin throughout diatoms than previously recognized. Flavodoxin and plastocyanin transcripts indicate possible alternative redox metal strategies. Predicted localization signals for ferredoxin identify multiple examples of gene transfer from the plastid to the nuclear genome. Transcripts encoding four superoxide dismutase metalloforms were detected, including a putative nickel-coordinating isozyme. Taken together, our results suggest that the majority of iron metabolism genes in diatoms appear to be vertically inherited with functional diversity achieved via possible neofunctionalization of paralogs. This

  17. Diversity and Evolutionary History of Iron Metabolism Genes in Diatoms.

    PubMed

    Groussman, Ryan D; Parker, Micaela S; Armbrust, E Virginia

    2015-01-01

    Ferroproteins arose early in Earth's history, prior to the emergence of oxygenic photosynthesis and the subsequent reduction of bioavailable iron. Today, iron availability limits primary productivity in about 30% of the world's oceans. Diatoms, responsible for nearly half of oceanic primary production, have evolved molecular strategies for coping with variable iron concentrations. Our understanding of the evolutionary breadth of these strategies has been restricted by the limited number of species for which molecular sequence data is available. To uncover the diversity of strategies marine diatoms employ to meet cellular iron demands, we analyzed 367 newly released marine microbial eukaryotic transcriptomes, which include 47 diatom species. We focused on genes encoding proteins previously identified as having a role in iron management: iron uptake (high-affinity ferric reductase, multi-copper oxidase, and Fe(III) permease); iron storage (ferritin); iron-induced protein substitutions (flavodoxin/ferredoxin, and plastocyanin/cytochrome c6) and defense against reactive oxygen species (superoxide dismutases). Homologs encoding the high-affinity iron uptake system components were detected across the four diatom Classes suggesting an ancient origin for this pathway. Ferritin transcripts were also detected in all Classes, revealing a more widespread utilization of ferritin throughout diatoms than previously recognized. Flavodoxin and plastocyanin transcripts indicate possible alternative redox metal strategies. Predicted localization signals for ferredoxin identify multiple examples of gene transfer from the plastid to the nuclear genome. Transcripts encoding four superoxide dismutase metalloforms were detected, including a putative nickel-coordinating isozyme. Taken together, our results suggest that the majority of iron metabolism genes in diatoms appear to be vertically inherited with functional diversity achieved via possible neofunctionalization of paralogs. This

  18. Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation

    PubMed Central

    2010-01-01

    Background The Gram-negative bacterium Yersinia pestis is the causative agent of the bubonic plague. Efficient iron acquisition systems are critical to the ability of Y. pestis to infect, spread and grow in mammalian hosts, because iron is sequestered and is considered part of the innate host immune defence against invading pathogens. We used a proteomic approach to determine expression changes of iron uptake systems and intracellular consequences of iron deficiency in the Y. pestis strain KIM6+ at two physiologically relevant temperatures (26°C and 37°C). Results Differential protein display was performed for three Y. pestis subcellular fractions. Five characterized Y. pestis iron/siderophore acquisition systems (Ybt, Yfe, Yfu, Yiu and Hmu) and a putative iron/chelate outer membrane receptor (Y0850) were increased in abundance in iron-starved cells. The iron-sulfur (Fe-S) cluster assembly system Suf, adapted to oxidative stress and iron starvation in E. coli, was also more abundant, suggesting functional activity of Suf in Y. pestis under iron-limiting conditions. Metabolic and reactive oxygen-deactivating enzymes dependent on Fe-S clusters or other iron cofactors were decreased in abundance in iron-depleted cells. This data was consistent with lower activities of aconitase and catalase in iron-starved vs. iron-rich cells. In contrast, pyruvate oxidase B which metabolizes pyruvate via electron transfer to ubiquinone-8 for direct utilization in the respiratory chain was strongly increased in abundance and activity in iron-depleted cells. Conclusions Many protein abundance differences were indicative of the important regulatory role of the ferric uptake regulator Fur. Iron deficiency seems to result in a coordinated shift from iron-utilizing to iron-independent biochemical pathways in the cytoplasm of Y. pestis. With growth temperature as an additional variable in proteomic comparisons of the Y. pestis fractions (26°C and 37°C), there was little evidence for

  19. Influence of iron-limited continuous culture on physiology and virulence of Legionella pneumophila.

    PubMed Central

    James, B W; Mauchline, W S; Fitzgeorge, R B; Dennis, P J; Keevil, C W

    1995-01-01

    A virulent strain of Legionella pneumophila serogroup 1, subgroup Pontiac, was grown in continuous culture at a constant growth rate under iron-replete and iron-limited conditions. Iron limitation was achieved by the removal of ferrous sulfate and hemin from the chemically defined medium. Residual contaminating iron, 0.45 microM, was sufficient to support iron-limited growth. Typical iron-replete cultures metabolized 3.3 microM iron. Serine provided the principal source of carbon and energy for both cultures, although iron-replete cultures also depleted a number of other amino acids. There was a 40% decrease in culture biomass under iron-restricted conditions. Iron limitation did not significantly affect carbohydrate metabolism, with the molar growth yield for carbon (Ycarbon) comparable for both cultures. However, under iron-limited conditions a sixfold increase in Yiron correlated with a significant decrease in the iron content of the biomass, as the culture utilized the available iron more efficiently. Highly pleomorphic iron-replete cultures became uniform cultures of short fine rods when adapted to iron-deficient conditions. In addition to the morphological and physiological changes, iron limitation had a critical effect on culture virulence. The virulence of this strain was significantly (P < 0.05) reduced when the culture was subjected to iron-limited conditions. This phenomenon was reversible, with a significant increase in culture virulence upon reversion to iron-replete conditions. When compared in an in vitro macrophage assay, the number of culturable avirulent iron-limited cells located intracellularly after infection was significantly lower than for the virulent replete and control cultures. These results further support the role of environmental parameters in regulating the virulence of L. pneumophila. PMID:7591051

  20. Mitochondrial iron metabolism and sideroblastic anemia.

    PubMed

    Sheftel, Alex D; Richardson, Des R; Prchal, Josef; Ponka, Prem

    2009-01-01

    Sideroblastic anemias are a heterogeneous group of disorders, characterized by mitochondrial iron overload in developing red blood cells. The unifying characteristic of all sideroblastic anemias is the ring sideroblast, which is a pathological erythroid precursor containing excessive deposits of non-heme iron in mitochondria with perinuclear distribution creating a ring appearance. Sideroblastic anemias may be hereditary or acquired. Hereditary sideroblastic anemias are caused by defects in genes present on the X chromosome (mutations in the ALAS2, ABCB7, or GRLX5 gene), genes on autosomal chromosomes, or mitochondrial genes. Acquired sideroblastic anemias are either primary (refractory anemia with ring sideroblasts, RARS, representing one subtype of the myelodysplastic syndrome) or secondary due to some drugs, toxins, copper deficiency, or chronic neoplastic disease. The pathogenesis of mitochondrial iron loading in developing erythroblasts is diverse. Ring sideroblasts can develop as a result of a heme synthesis defect in erythroblasts (ALAS2 mutations), a defect in iron-sulfur cluster assembly, iron-sulfur protein precursor release from mitochondria (ABCB7 mutations), or by a defect in intracellular iron metabolism in erythroid cells (e.g. RARS).

  1. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas.

    PubMed

    Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep

    2016-11-01

    Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named Xanthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon's involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in

  2. Recent advances in iron metabolism and related disorders.

    PubMed

    Camaschella, Clara; Strati, Paolo

    2010-10-01

    Iron is essential for life, because it is indispensable for several biological reactions such as oxygen transport, DNA synthesis and cell proliferation, but is toxic if present in excess since it causes cellular damage through free radical formation. Either cellular or systemic iron regulation can be disrupted in disorders of iron metabolism. In the past few years, our understanding of iron metabolism and its regulation has dramatically changed. New disorders of iron metabolism have emerged and the role of iron has started to be recognized as a cofactor of other disorders. The study of genetic conditions such as hemochromatosis and iron-refractory-iron-deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited for a more effective treatment of both genetic and acquired iron disorders.

  3. Dietary Iron Controls Circadian Hepatic Glucose Metabolism Through Heme Synthesis

    PubMed Central

    Simcox, Judith A.; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F.; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-hyun; King, Daniel; Huang, Jingyu

    2015-01-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator–activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. PMID:25315005

  4. A delicate balance: Iron metabolism and diseases of the brain

    PubMed Central

    Hare, Dominic; Ayton, Scott; Bush, Ashley; Lei, Peng

    2013-01-01

    Iron is the most abundant transition metal within the brain, and is vital for a number of cellular processes including neurotransmitter synthesis, myelination of neurons, and mitochondrial function. Redox cycling between ferrous and ferric iron is utilized in biology for various electron transfer reactions essential to life, yet this same chemistry mediates deleterious reactions with oxygen that induce oxidative stress. Consequently, there is a precise and tightly controlled mechanism to regulate iron in the brain. When iron is dysregulated, both conditions of iron overload and iron deficiencies are harmful to the brain. This review focuses on how iron metabolism is maintained in the brain, and how an alteration to iron and iron metabolism adversely affects neurological function. PMID:23874300

  5. Iron metabolism and ineffective erythropoiesis in β-thalassemia mouse models

    PubMed Central

    Ramos, Pedro; Melchiori, Luca; Gardenghi, Sara; Van-Roijen, Nico; Grady, Robert W.; Ginzburg, Yelena; Rivella, Stefano

    2013-01-01

    β-thalassemia is a disease associated with decreased β-globin production leading to anemia, ineffective erythropoiesis, and iron overload. New mechanisms associated with modulation of erythropoiesis and iron metabolism have recently been discovered in thalassemic mice, improving our understanding of the pathophysiology of this disease. These discoveries have the potential to be translated into clinically-relevant therapeutic options to reduce ineffective erythropoiesis and iron overload. A new generation of therapies based on limiting ineffective erythropoiesis, iron absorption, and the correction of iron maldistribution could be on the way, possibly complementing and improving the current standard of patient care. PMID:20712768

  6. METABOLIC CAPACITY REGULATES IRON HOMEOSTATIS IN ENDOTHELIAL CELLS

    EPA Science Inventory

    The sensitivity of endothelial cells to oxidative stress and the high concentrations of iron in mitochondria led us to test the hypotheses that (1) changes in respiratory capacity alter iron homeostasis, and (2) lack of aerobic metabolism decreases labile iron stores and attenuat...

  7. Iron uptake and metabolism in the new millennium.

    PubMed

    Dunn, Louise L; Suryo Rahmanto, Yohan; Richardson, Des R

    2007-02-01

    Iron is an essential element for metabolic processes intrinsic to life, and yet the properties that make iron a necessity also make it potentially deleterious. To avoid harm, iron homeostasis is achieved through iron transport, storage and regulatory proteins. The functions of some of these molecules are well described, for example transferrin and transferrin receptor-1, whereas the roles of others, such as the transferrin homolog melanotransferrin, remain unclear. The past decade has seen the identification of new molecules involved in iron metabolism, such as divalent metal transporter-1, ferroportin-1, hepcidin, hemojuvelin and heme carrier protein-1. Here, we focus on these intriguing new molecules and the insights gained from them into cellular iron uptake and the regulation of iron metabolism.

  8. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism.

    PubMed

    Horniblow, Richard D; Dowle, Miriam; Iqbal, Tariq H; Latunde-Dada, Gladys O; Palmer, Richard E; Pikramenou, Zoe; Tselepis, Chris

    2015-01-01

    Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease.

  9. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism

    PubMed Central

    Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.

    2015-01-01

    Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798

  10. Oral iron treatment has a positive effect on iron metabolism in elite soccer players.

    PubMed

    Villanueva, Jesús; Soria, Marisol; González-Haro, Carlos; Ezquerra, Laura; Nieto, José L; Escanero, Jesús F

    2011-09-01

    The purpose of this study was to assess the effects of oral iron supplementation on hematological and iron metabolism in elite soccer players. Thirty-five members of the Real Zaragoza SAD soccer team took part in this study: group A (GA, n = 24; Spanish Premier League) took an oral iron supplement of 80 mg day(-1) for 3 weeks, and group B (GB, n = 11; Spanish Third Division League) did not receive any supplementation. In GA, the parameters were measured before and after giving the iron supplements, while in GB, measurements were only made at the time of collecting the second set of data from GA. After supplementation, GA showed an increase in serum iron (SI) (P < 0.05), serum ferritin (Ftn) (P < 0.01), and transferrin saturation (Sat) (P < 0.01) with respect to the basal values. In addition, GA showed higher values of hematocrit (P < 0.01), mean corpuscular volume (P < 0.01), Ftn (P < 0.01), and Sat (P < 0.01) than GB. No significant differences were found in any other parameters. More specifically, a higher percentage of players had Ftn levels above upper limits in GA vs. GB (P < 0.05), and GB had a higher incidence of Ftn below lower limits with respect to subjects in GA (P < 0.01). Further, after treatment, 58.3% of GA had >800 mg of SI, while all players in GB presented levels below the lower limits. In conclusion, iron supplementation with 80 mg·day(-1) for 3 weeks, before the start of the soccer season, can be recommended for elite soccer players.

  11. Recent Advances in Iron Metabolism: Relevance for Health, Exercise, and Performance.

    PubMed

    Buratti, Paolo; Gammella, Elena; Rybinska, Ilona; Cairo, Gaetano; Recalcati, Stefania

    2015-08-01

    Iron is necessary for physiological processes essential for athletic performance, such as oxygen transport, energy production, and cell division. However, an excess of "free" iron is toxic because it produces reactive hydroxyl radicals that damage biological molecules, thus leading to cell and tissue injury. Therefore, iron homeostasis is strictly regulated; and in recent years, there have been important advancements in our knowledge of the underlying processes. Hepcidin is the central regulator of systemic iron homeostasis and exerts its function by controlling the presence of the iron exporter ferroportin on the cell membrane. Hepcidin binding induces ferroportin degradation, thus leading to cellular iron retention and decreased levels of circulating iron. As iron is required for hemoglobin synthesis, the tight link between erythropoiesis and iron metabolism is particularly relevant to sports physiology. The iron needed for hemoglobin synthesis is ensured by inhibiting hepcidin to increase ferroportin activity and iron availability and hence to make certain that efficient blood oxygen transport occurs for aerobic exercise. However, hepcidin expression is also affected by exercise-associated conditions, such as iron deficiency, anemia or hypoxia, and, particularly, inflammation, which can play a role in the pathogenesis of sports anemia. Here, we review recent advances showing the relevance of iron for physical exercise and athletic performance. Low body iron levels can cause anemia and thus limit the delivery of oxygen to exercising muscle, but tissue iron deficiency may also affect performance by, for example, hampering muscle oxidative metabolism. Accordingly, a hemoglobin-independent effect of iron on exercise capacity has been demonstrated in animal models and humans. Here, we review recent advances showing the relevance of iron for physical exercise and athletic performance.

  12. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas

    PubMed Central

    Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep

    2016-01-01

    Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named Xanthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in

  13. Iron metabolism in athletes--achieving a gold standard.

    PubMed

    Latunde-Dada, Gladys O

    2013-01-01

    Iron is an important mineral element required for diverse life processes. Its metabolism is almost synonymous to erythrocyte maintenance, erythropoiesis and erythrophagocytosis. Consequently, exercise exertion impacts significantly on red cell haematology. Here, the interactions between exercise and erythropoiesis are explored. Hepcidin, the peptide hormone that regulates systemic iron metabolism, decreases in response to erythropoiesis by facilitating increased iron efflux from ferroportin into circulation. However, during exercise, there is an alarming increase in the expression of hepcidin resulting in a negative iron balance in athletes. In this review, the confounding cause and effect scenarios of exercise, athlete training and haematology and hepcidin interactions are discussed.

  14. Molecular and Cellular Bases of Iron Metabolism in Humans.

    PubMed

    Milto, I V; Suhodolo, I V; Prokopieva, V D; Klimenteva, T K

    2016-06-01

    Iron is a microelement with the most completely studied biological functions. Its wide dissemination in nature and involvement in key metabolic pathways determine the great importance of this metal for uni- and multicellular organisms. The biological role of iron is characterized by its indispensability in cell respiration and various biochemical processes providing normal functioning of cells and organs of the human body. Iron also plays an important role in the generation of free radicals, which under different conditions can be useful or damaging to biomolecules and cells. In the literature, there are many reviews devoted to iron metabolism and its regulation in pro- and eukaryotes. Significant progress has been achieved recently in understanding molecular bases of iron metabolism. The purpose of this review is to systematize available data on mechanisms of iron assimilation, distribution, and elimination from the human body, as well as on its biological importance and on the major iron-containing proteins. The review summarizes recent ideas about iron metabolism. Special attention is paid to mechanisms of iron absorption in the small intestine and to interrelationships of cellular and extracellular pools of this metal in the human body.

  15. Hepcidin induction limits mobilisation of splenic iron in a mouse model of secondary iron overload.

    PubMed

    Camberlein, Emilie; Abgueguen, Emmanuelle; Fatih, Nadia; Canonne-Hergaux, François; Leroyer, Patricia; Turlin, Bruno; Ropert, Martine; Brissot, Pierre; Loréal, Olivier

    2010-03-01

    Venesection has been proposed as a treatment for hepatic iron overload in a number of chronic liver disorders that are not primarily linked to mutations in iron metabolism genes. Our aim was to analyse the impact of venesection on iron mobilisation in a mouse model of secondary iron overload. C57Bl/6 mice were given oral iron supplementation with or without phlebotomy between day 0 (D0) and D22, and the results were compared to controls without iron overload. We studied serum and tissue iron parameters, mRNA levels of hepcidin1, ferroportin, and transferrin receptor 1, and protein levels of ferroportin in the liver and spleen. On D0, animals with iron overload displayed elevations in iron parameters and hepatic hepcidin1 mRNA. By D22, in the absence of phlebotomies, splenic iron had increased, but transferrin saturation had decreased. This was associated with high hepatic hepcidin1 mRNA, suggesting that iron bioavailability decreased due to splenic iron sequestration through ferroportin protein downregulation. After 22days with phlebotomy treatments, control mice displayed splenic iron mobilisation that compensated for the iron lost due to phlebotomy. In contrast, phlebotomy treatments in mice with iron overload caused anaemia due to inadequate iron mobilisation. In conclusion, our model of secondary iron overload led to decreased plasma iron associated with an increase in hepcidin expression and subsequent restriction of iron export from the spleen. Our data support the importance of managing hepcidin levels before starting venesection therapy in patients with secondary iron overload that are eligible for phlebotomy.

  16. Disorders of iron metabolism. Part 1: molecular basis of iron homoeostasis.

    PubMed

    Muñoz, Manuel; García-Erce, José Antonio; Remacha, Angel Francisco

    2011-04-01

    IRON FUNCTIONS: Iron is an essential micronutrient, as it is required for satisfactory erythropoietic function, oxidative metabolism and cellular immune response. IRON PHYSIOLOGY: Absorption of dietary iron (1-2 mg/day) is tightly regulated and just balanced against iron loss because there are no active iron excretory mechanisms. Dietary iron is found in haem (10%) and non-haem (ionic, 90%) forms, and their absorption occurs at the apical surface of duodenal enterocytes via different mechanisms. Iron is exported by ferroportin 1 (the only putative iron exporter) across the basolateral membrane of the enterocyte into the circulation (absorbed iron), where it binds to transferrin and is transported to sites of use and storage. Transferrin-bound iron enters target cells-mainly erythroid cells, but also immune and hepatic cells-via receptor-mediated endocytosis. Senescent erythrocytes are phagocytosed by reticuloendothelial system macrophages, haem is metabolised by haem oxygenase, and the released iron is stored as ferritin. Iron will be later exported from macrophages to transferrin. This internal turnover of iron is essential to meet the requirements of erythropoiesis (20-30 mg/day). As transferrin becomes saturated in iron-overload states, excess iron is transported to the liver, the other main storage organ for iron, carrying the risk of free radical formation and tissue damage. REGULATION OF IRON HOMOEOSTASIS: Hepcidin, synthesised by hepatocytes in response to iron concentrations, inflammation, hypoxia and erythropoiesis, is the main iron-regulatory hormone. It binds ferroportin on enterocytes, macrophages and hepatocytes triggering its internalisation and lysosomal degradation. Inappropriate hepcidin secretion may lead to either iron deficiency or iron overload.

  17. The Role of Hepcidin in Iron Metabolism

    PubMed Central

    Nemeth, Elizabeta; Ganz, Tomas

    2009-01-01

    Hepcidin is the central regulator of systemic iron homeostasis. Dysregulation of hepcidin production results in a variety of iron disorders. Hepcidin deficiency is the cause of iron overload in hereditary hemochromatosis, iron-loading anemias, and hepatitis C. Hepcidin excess is associated with anemia of inflammation, chronic kidney disease and iron-refractory iron deficiency anemia. Diagnostic and therapeutic applications of this new knowledge are beginning to emerge. Dr. Ernest Beutler played a significant role in advancing our understanding of the function of hepcidin. This review is dedicated to his memory. PMID:19907144

  18. Metabolic crossroads of iron and copper

    PubMed Central

    Collins, James F; Prohaska, Joseph R; Knutson, Mitchell D

    2013-01-01

    Interactions between the essential dietary metals, iron and copper, have been known for many years. This review highlights recent advances in iron-copper interactions with a focus on tissues and cell types important for regulating whole-body iron and copper homeostasis. Cells that mediate dietary assimilation (enterocytes) and storage and distribution (hepatocytes) of iron and copper are considered, along with the principal users (erythroid cells) and recyclers of red cell iron (reticuloendothelial macrophages). Interactions between iron and copper in the brain are also discussed. Many unanswered questions regarding the role of these metals and their interactions in health and disease emerge from this synopsis, highlighting extensive future research opportunities. PMID:20384844

  19. Current status of iron metabolism: Clinical and therapeutic implications.

    PubMed

    Conde Diez, Susana; de Las Cuevas Allende, Ricardo; Conde García, Eulogio

    2017-03-03

    Hepcidin is the main regulator of iron metabolism and a pathogenic factor in iron disorders. Hepcidin deficiency causes iron overload, whereas hepcidin excess causes or contributes to the development of iron-restricted anaemia in chronic inflammatory diseases. We know the mechanisms involved in the synthesis of hepcidin and, under physiological conditions, there is a balance between activating signals and inhibitory signals that regulate its synthesis. The former include those related to plasmatic iron level and also those related to chronic inflammatory diseases. The most important inhibitory signals are related to active erythropoiesis and to matriptase-2. Knowing how hepcidin is synthesised has helped design new pharmacological treatments whose main target is the hepcidin. In the near future, there will be effective treatments aimed at correcting the defect of many of these iron metabolism disorders.

  20. New developments and controversies in iron metabolism and iron chelation therapy.

    PubMed

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-03-26

    Iron is essential for all organisms including microbial, cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients' therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic

  1. New developments and controversies in iron metabolism and iron chelation therapy

    PubMed Central

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-01-01

    Iron is essential for all organisms including microbial, cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients’ therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic

  2. Oxidative Stress and the Homeodynamics of Iron Metabolism

    PubMed Central

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  3. Growth of Aerobic Ripening Bacteria at the Cheese Surface Is Limited by the Availability of Iron

    PubMed Central

    Back, Alexandre; Irlinger, Françoise

    2012-01-01

    The microflora on the surface of smear-ripened cheeses is composed of various species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. The objective of the present study was to show that iron availability is a limiting factor in the growth of typical aerobic ripening bacteria in cheese. For that purpose, we investigated the effect of iron or siderophore addition in model cheeses that were coinoculated with a yeast and a ripening bacterium. Both iron and the siderophore desferrioxamine B stimulated the growth of ripening bacteria belonging to the genera Arthrobacter, Corynebacterium, and Brevibacterium. The extent of stimulation was strain dependent, and generally, the effect of desferrioxamine B was greater than that of iron. Measurements of the expression of genes related to the metabolism of iron by Arthrobacter arilaitensis Re117 by real-time reverse transcription-PCR showed that these genes were transcribed during growth in cheese. The addition of desferrioxamine B increased the expression of two genes encoding iron-siderophore ABC transport binding proteins. The addition of iron decreased the expression of siderophore biosynthesis genes and of part of the genes encoding iron-siderophore ABC transport components. It was concluded that iron availability is a limiting factor in the growth of typical cheese surface bacteria. The selection of strains with efficient iron acquisition systems may be useful for the development of defined-strain surface cultures. Furthermore, the importance of iron metabolism in the microbial ecology of cheeses should be investigated since it may result in positive or negative microbial interactions. PMID:22367081

  4. Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron.

    PubMed

    Monnet, Christophe; Back, Alexandre; Irlinger, Françoise

    2012-05-01

    The microflora on the surface of smear-ripened cheeses is composed of various species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. The objective of the present study was to show that iron availability is a limiting factor in the growth of typical aerobic ripening bacteria in cheese. For that purpose, we investigated the effect of iron or siderophore addition in model cheeses that were coinoculated with a yeast and a ripening bacterium. Both iron and the siderophore desferrioxamine B stimulated the growth of ripening bacteria belonging to the genera Arthrobacter, Corynebacterium, and Brevibacterium. The extent of stimulation was strain dependent, and generally, the effect of desferrioxamine B was greater than that of iron. Measurements of the expression of genes related to the metabolism of iron by Arthrobacter arilaitensis Re117 by real-time reverse transcription-PCR showed that these genes were transcribed during growth in cheese. The addition of desferrioxamine B increased the expression of two genes encoding iron-siderophore ABC transport binding proteins. The addition of iron decreased the expression of siderophore biosynthesis genes and of part of the genes encoding iron-siderophore ABC transport components. It was concluded that iron availability is a limiting factor in the growth of typical cheese surface bacteria. The selection of strains with efficient iron acquisition systems may be useful for the development of defined-strain surface cultures. Furthermore, the importance of iron metabolism in the microbial ecology of cheeses should be investigated since it may result in positive or negative microbial interactions.

  5. Microcytic anemia with iron malabsorption: an inherited disorder of iron metabolism.

    PubMed

    Hartman, K R; Barker, J A

    1996-04-01

    Two siblings were identified with severe hypoproliferative microcytic anemia and iron malabsorption, in the absence of any gastrointestinal disorder or blood loss. These children had severe microcytosis (MCV 48 fl, hemoglobin 7.5 g/dl) with decreased serum iron, elevated serum TIBC, and decreased serum ferritin, despite prolonged treatment with oral iron. An iron challenge study with an oral dose of 2 mg/kg elemental iron as ferrous sulfate documented iron malabsorption. After treatment with intravenous iron dextran, there was an absence of the expected reticulocytosis and only a partial correction of the hemoglobin, hematocrit, and microcytosis. The bone marrow was hypocellular with abnormal iron incorporation into erythroid precursor cells. This appears to be a rare form of inherited anemia characterized by iron malabsorption and disordered iron metabolism that only partially corrects after the administration of parenteral iron. These features resemble those found in the microcytic mouse (mk/mk), which also has severe microcytic anemia and iron malabsorption that partially responds to parenteral iron.

  6. Effects of iron replenishment on iron, calcium, phosphorus and magnesium metabolism in iron-deficient rats.

    PubMed

    Pallarés, I; López-Aliaga, I; Lisbona, F; Moratalla, A; Gómez-Ayala, A E; Barrionuevo, M; Hartiti, S; Alférez, M J; Campos, M S

    1996-01-01

    We investigated the effect of Fe deficiency on the nutritive utilization of Fe, Ca, P and Mg in rats. Aside from the well known depletion of Fe in liver, femur and sternum with low values of Hb, Fe deficiency impaired Ca, P and Mg metabolism at different degrees. Iron deficiency altered Mg absorption, lowered the concentration of Ca in the liver, femur and sternum, raised the concentration of P and Mg in the liver, and decreased P in the femur. The altered status was not completely rectified by iron supplementation as the animals were still slightly anemic at the end of the study. The second purpose of the study was to evaluate the ability of three iron compounds (ferric citrate, ferrous sulfate and ferrous ascorbate) to correct the undesirable effects of Fe deficiency. Ten days after treatment with these diets, Fe-deficient rats still had reduced Mg absorption, especially those fed ferric citrate. The concentrations of hemoglobin approached normal values in all groups; however, serum Fe remained low, indicating that Fe reserves were still depleted. Hepatic and femoral Fe concentrations were also lower in all Fe-deficient groups regardless of the diet given, compared with their respective controls, whereas Fe concentrations in the sternum increased significantly with all three diets, suggesting an increase in erythropoiesis. The concentration of Ca, P and Mg in liver approached normal values, and appeared to normalize in the femur, except that Ca and P concentrations remained low with the citrate diet. In the sternum, a site assumed to have higher requirements for these minerals, the concentrations of Ca, P and Mg also increased. These findings indicate that Fe is involved in the bone mineralization, and that in physiological terms, Fe interacts favorably with Ca, P and Mg metabolism, since Fe deficiency altered the status of these metals. These findings also suggest that ferrous ascorbate and ferrous sulfate were more effectively absorbed than was ferric citrate.

  7. Vitamin A deficiency modulates iron metabolism via ineffective erythropoiesis.

    PubMed

    da Cunha, Marcela S B; Siqueira, Egle M A; Trindade, Luciano S; Arruda, Sandra F

    2014-10-01

    Vitamin A modulates inflammatory status, iron metabolism and erythropoiesis. Given that these factors modulate the expression of the hormone hepcidin (Hamp), we investigated the effect of vitamin A deficiency on molecular biomarkers of iron metabolism, the inflammatory response and the erythropoietic system. Five groups of male Wistar rats were treated: control (AIN-93G), the vitamin A-deficient (VAD) diet, the iron-deficient (FeD) diet, the vitamin A- and iron-deficient (VAFeD) diet or the diet with 12 mg atRA/kg diet replacing all-trans-retinyl palmitate by all-trans retinoic acid (atRA). Vitamin A deficiency reduced serum iron and transferrin saturation levels, increased spleen iron concentrations, reduced hepatic Hamp and kidney erythropoietin messenger RNA (mRNA) levels and up-regulated hepatic and spleen heme oxygenase-1 gene expression while reducing the liver HO-1 specific activity compared with the control. The FeD and VAFeD rats exhibited lower levels of serum iron and transferrin saturation, lower iron concentrations in tissues and lower hepatic Hamp mRNA levels compared with the control. The treatment with atRA resulted in lower serum iron and transferrin concentrations, an increased iron concentration in the liver, a decreased iron concentration in the spleen and in the gut, and decreased hepatic Hamp mRNA levels. In summary, these findings suggest that vitamin A deficiency leads to ineffective erythropoiesis by the down-regulation of renal erythropoietin expression in the kidney, resulting in erythrocyte malformation and the consequent accumulation of the heme group in the spleen. Vitamin A deficiency indirectly modulates systemic iron homeostasis by enhancing erythrophagocytosis of undifferentiated erythrocytes.

  8. Physiological, biomass elemental composition and proteomic analyses of Escherichia coli ammonium-limited chemostat growth, and comparison with iron- and glucose-limited chemostat growth

    PubMed Central

    Folsom, James Patrick

    2015-01-01

    Escherichia coli physiological, biomass elemental composition and proteome acclimations to ammonium-limited chemostat growth were measured at four levels of nutrient scarcity controlled via chemostat dilution rate. These data were compared with published iron- and glucose-limited growth data collected from the same strain and at the same dilution rates to quantify general and nutrient-specific responses. Severe nutrient scarcity resulted in an overflow metabolism with differing organic byproduct profiles based on limiting nutrient and dilution rate. Ammonium-limited cultures secreted up to 35  % of the metabolized glucose carbon as organic byproducts with acetate representing the largest fraction; in comparison, iron-limited cultures secreted up to 70  % of the metabolized glucose carbon as lactate, and glucose-limited cultures secreted up to 4  % of the metabolized glucose carbon as formate. Biomass elemental composition differed with nutrient limitation; biomass from ammonium-limited cultures had a lower nitrogen content than biomass from either iron- or glucose-limited cultures. Proteomic analysis of central metabolism enzymes revealed that ammonium- and iron-limited cultures had a lower abundance of key tricarboxylic acid (TCA) cycle enzymes and higher abundance of key glycolysis enzymes compared with glucose-limited cultures. The overall results are largely consistent with cellular economics concepts, including metabolic tradeoff theory where the limiting nutrient is invested into essential pathways such as glycolysis instead of higher ATP-yielding, but non-essential, pathways such as the TCA cycle. The data provide a detailed insight into ecologically competitive metabolic strategies selected by evolution, templates for controlling metabolism for bioprocesses and a comprehensive dataset for validating in silico representations of metabolism. PMID:26018546

  9. Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney

    PubMed Central

    Jiang, Bo; Liu, Guohao; Zheng, Jiashuo; Chen, Mengxia; Maimaitiming, Zaitunamu; Chen, Min; Liu, Shunli; Jiang, Ruiwei; Fuqua, Brie K.; Dunaief, Joshua L.; Vulpe, Chris D.; Anderson, Gregory J.; Wang, Hongwei; Chen, Huijun

    2016-01-01

    Multicopper ferroxidases (MCFs) play an important role in cellular iron homeostasis. However, the role of MCFs in renal metabolism remains unclear. We used Hephaestin (Heph) and Ceruloplasmin (Cp) single or double (Heph/Cp) knockout (KO) mice to study the roles of MCFs in the kidney. Renal iron levels and the expression of iron metabolism genes were examined. The non-heme iron content both in the renal cortex and medulla of Heph/Cp KO mice was significantly increased. Perls’ Prussian blue staining showed iron accumulation on the apical side of renal tubular cells in Heph/Cp KO mice. A significant increase in ferritin protein expression was also observed in the renal medulla and cortex of Heph/Cp KO mice. Both DMT1 and TfR1 protein expression were significantly decreased in the renal medulla of Heph/Cp KO mice, while the expression of DMT1 protein was significantly increased in the renal cortex of these animals. Significant increase in proteinuria and total urinary iron was observed in the double knockout mice, and this was associated with compromised structural integrity. These results suggest that KO of both the HEPH and CP genes leads to kidney iron deposition and toxicity, MCFs could protect kidney against a damage from iron excess. PMID:27991585

  10. Appraising the Role of Iron in Brain Aging and Cognition: Promises and Limitations of MRI Methods

    PubMed Central

    Daugherty, Ana M; Raz, Naftali

    2015-01-01

    Age-related increase in frailty is accompanied by a fundamental shift in cellular iron homeostasis. By promoting oxidative stress, the intracellular accumulation of non-heme iron outside of binding complexes contributes to chronic inflammation and interferes with normal brain metabolism. In the absence of direct non-invasive biomarkers of brain oxidative stress, iron accumulation estimated in vivo may serve as its proxy indicator. Hence, developing reliable in vivo measurements of brain iron content via magnetic resonance imaging (MRI) is of significant interest in human neuroscience. To date, by estimating brain iron content through various MRI methods, significant age differences and age-related increases in iron content of the basal ganglia have been revealed across multiple samples. Less consistent are the findings that pertain to the relationship between elevated brain iron content and systemic indices of vascular and metabolic dysfunction. Only a handful of cross-sectional investigations have linked high iron content in various brain regions and poor performance on assorted cognitive tests. The even fewer longitudinal studies indicate that iron accumulation may precede shrinkage of the basal ganglia and thus predict poor maintenance of cognitive functions. This rapidly developing field will benefit from introduction of higher-field MRI scanners, improvement in iron-sensitive and -specific acquisition sequences and post-processing analytic and computational methods, as well as accumulation of data from long-term longitudinal investigations. This review describes the potential advantages and promises of MRI-based assessment of brain iron, summarizes recent findings and highlights the limitations of the current methodology. PMID:26248580

  11. Phosphate Limitation Triggers the Dissolution of Precipitated Iron by the Marine Bacterium Pseudovibrio sp. FO-BEG1

    PubMed Central

    Romano, Stefano; Bondarev, Vladimir; Kölling, Martin; Dittmar, Thorsten; Schulz-Vogt, Heide N.

    2017-01-01

    Phosphorus is an essential nutrient for all living organisms. In bacteria, the preferential phosphorus source is phosphate, which is often a limiting macronutrient in many areas of the ocean. The geochemical cycle of phosphorus is strongly interconnected with the cycles of other elements and especially iron, because phosphate tends to adsorb onto iron minerals, such as iron oxide formed in oxic marine environments. Although the response to either iron or phosphate limitation has been investigated in several bacterial species, the metabolic interplay between these two nutrients has rarely been considered. In this study we evaluated the impact of phosphate limitation on the iron metabolism of the marine bacterium Pseudovibrio sp. FO-BEG1. We observed that phosphate limitation led to an initial decrease of soluble iron in the culture up to three times higher than under phosphate surplus conditions. Similarly, a decrease in soluble cobalt was more pronounced under phosphate limitation. These data point toward physiological changes induced by phosphate limitation that affect either the cellular surface and therefore the metal adsorption onto it or the cellular metal uptake. We discovered that under phosphate limitation strain FO-BEG1, as well as selected strains of the Roseobacter clade, secreted iron-chelating molecules. This leads to the hypothesis that these bacteria might release such molecules to dissolve iron minerals, such as iron-oxyhydroxide, in order to access the adsorbed phosphate. As the adsorption of phosphate onto iron minerals can significantly decrease phosphate concentrations in the environment, the observed release of iron-chelators might represent an as yet unrecognized link between the biogeochemical cycle of phosphorus and iron, and it suggests another biological function of iron-chelating molecules in addition to metal-scavenging. PMID:28352252

  12. Silica burial enhanced by iron limitation in oceanic upwelling margins

    NASA Astrophysics Data System (ADS)

    Pichevin, L. E.; Ganeshram, R. S.; Geibert, W.; Thunell, R.; Hinton, R.

    2014-07-01

    In large swaths of the ocean, primary production by diatoms may be limited by the availability of silica, which in turn limits the biological uptake of carbon dioxide. The burial of biogenic silica in the form of opal is the main sink of marine silicon. Opal burial occurs in equal parts in iron-limited open-ocean provinces and upwelling margins, especially the eastern Pacific upwelling zone. However, it is unclear why opal burial is so efficient in this margin. Here we measure fluxes of biogenic material, concentrations of diatom-bound iron and silicon isotope ratios using sediment traps and a sediment core from the Gulf of California upwelling margin. In the sediment trap material, we find that periods of intense upwelling are associated with transient iron limitation that results in a high export of silica relative to organic carbon. A similar correlation between enhanced silica burial and iron limitation is evident in the sediment core, which spans the past 26,000 years. A global compilation also indicates that hotspots of silicon burial in the ocean are all characterized by high silica to organic carbon export ratios, a diagnostic trait for diatoms growing under iron stress. We therefore propose that prevailing conditions of silica limitation in the ocean are largely caused by iron deficiency imposing an indirect constraint on oceanic carbon uptake.

  13. The Interface Between Iron Metabolism and Gene-Based Iron Contrast for MRI.

    PubMed

    Goldhawk, Donna E; Gelman, Neil; Sengupta, Anindita; Prato, Frank S

    2015-01-01

    Using a gene-based approach to track cellular and molecular activity with magnetic resonance imaging (MRI) has many advantages. The strong correlation between transverse relaxation rates and total cellular iron content provides a basis for developing sensitive and quantitative detection of MRI reporter gene expression. In addition to biophysical concepts, general features of mammalian iron regulation add valuable context for interpreting molecular MRI predicated on gene-based iron labeling. With particular reference to the potential of magnetotactic bacterial gene expression as a magnetic resonance (MR) contrast agent for mammalian cell tracking, studies in different cell culture models highlight the influence of intrinsic iron regulation on the MRI signal. The interplay between dynamic regulation of mammalian iron metabolism and expression systems designed to sequester iron biominerals for MRI is presented from the perspective of their potential influence on MR image interpretation.

  14. The Interface Between Iron Metabolism and Gene-Based Iron Contrast for MRI

    PubMed Central

    Goldhawk, Donna E.; Gelman, Neil; Sengupta, Anindita; Prato, Frank S.

    2015-01-01

    Using a gene-based approach to track cellular and molecular activity with magnetic resonance imaging (MRI) has many advantages. The strong correlation between transverse relaxation rates and total cellular iron content provides a basis for developing sensitive and quantitative detection of MRI reporter gene expression. In addition to biophysical concepts, general features of mammalian iron regulation add valuable context for interpreting molecular MRI predicated on gene-based iron labeling. With particular reference to the potential of magnetotactic bacterial gene expression as a magnetic resonance (MR) contrast agent for mammalian cell tracking, studies in different cell culture models highlight the influence of intrinsic iron regulation on the MRI signal. The interplay between dynamic regulation of mammalian iron metabolism and expression systems designed to sequester iron biominerals for MRI is presented from the perspective of their potential influence on MR image interpretation. PMID:26483608

  15. Iron-dependent remodeling of fungal metabolic pathways associated with ferrichrome biosynthesis.

    PubMed

    Mercier, Alexandre; Labbé, Simon

    2010-06-01

    The fission yeast Schizosaccharomyces pombe excretes and accumulates the hydroxamate-type siderophore ferrichrome. The sib1(+) and sib2(+) genes encode, respectively, a siderophore synthetase and an l-ornithine N(5)-oxygenase that participate in ferrichrome biosynthesis. In the present report, we demonstrate that sib1(+) and sib2(+) are repressed by the GATA-type transcriptional repressor Fep1 in response to high levels of iron. We further found that the loss of Fep1 results in increased ferrichrome production. We showed that a sib1Delta sib2Delta mutant strain exhibits a severe growth defect on iron-poor media. We determined that two metabolic pathways are involved in biosynthesis of ornithine, an obligatory precursor of ferrichrome. Ornithine is produced by hydrolysis of arginine by the Car1 and Car3 proteins. Although car3(+) was constitutively expressed, car1(+) transcription levels were repressed upon exposure to iron, with a concomitant decrease of Car1 arginase activity. Ornithine is also generated by transformation of glutamate, which itself is produced by two separate biosynthetic pathways which are transcriptionally regulated by iron in an opposite fashion. In one pathway, the glutamate dehydrogenase Gdh1, which produces glutamate from 2-ketoglutarate, was repressed under iron-replete conditions in a Fep1-dependent manner. The other pathway involves two coupled enzymes, glutamine synthetase Gln1 and Fe-S cluster-containing glutamate synthase Glt1, which were both repressed under iron-limiting conditions but were expressed under iron-replete conditions. Collectively, these results indicate that under conditions of iron deprivation, yeast remodels metabolic pathways linked to ferrichrome synthesis in order to limit iron utilization without compromising siderophore production and its ability to sequester iron from the environment.

  16. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  17. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation

    PubMed Central

    Martelli, Alain; Puccio, Hélène

    2014-01-01

    Friedreich ataxia (FRDA) is the most common recessive ataxia in the Caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia frequently associating cardiomyopathy. The disease results from decreased expression of the FXN gene coding for the mitochondrial protein frataxin. Early histological and biochemical study of the pathophysiology in patient's samples revealed that dysregulation of iron metabolism is a key feature of the disease, mainly characterized by mitochondrial iron accumulation and by decreased activity of iron-sulfur cluster enzymes. In the recent past years, considerable progress in understanding the function of frataxin has been provided through cellular and biochemical approaches, pointing to the primary role of frataxin in iron-sulfur cluster biogenesis. However, why and how the impact of frataxin deficiency on this essential biosynthetic pathway leads to mitochondrial iron accumulation is still poorly understood. Herein, we review data on both the primary function of frataxin and the nature of the iron metabolism dysregulation in FRDA. To date, the pathophysiological implication of the mitochondrial iron overload in FRDA remains to be clarified. PMID:24917819

  18. The effect of BCG on iron metabolism in the early neonatal period: A controlled trial in Gambian neonates.

    PubMed

    Prentice, Sarah; Jallow, Momodou W; Prentice, Andrew M

    2015-06-12

    Bacillus Calmette-Guerin (BCG) vaccination has been reported to protect neonates from non-tuberculous pathogens, but no biological mechanism to explain such effects is known. We hypothesised that BCG produces broad-spectrum anti-microbial protection via a hepcidin-mediated hypoferraemia, limiting iron availability for pathogens. To test this we conducted a trial in 120 Gambian neonates comparing iron status in the first 5-days of life after allocation to: (1) All routine vaccinations at birth (BCG/Oral Polio Vaccine (OPV)/Hepatitis B Vaccine (HBV)); (2) BCG delayed until after the study period (at day 5); and (3) All routine vaccinations delayed until after the study period. Vaccine regime at birth did not significantly impact on any measured parameter of iron metabolism. However, the ability to detect an effect of BCG on iron metabolism may have been limited by short follow-up time and high activation of the inflammatory-iron axis in the study population.

  19. Metabolic adaptation to tissue iron overload confers tolerance to malaria.

    PubMed

    Gozzelino, Raffaella; Andrade, Bruno Bezerril; Larsen, Rasmus; Luz, Nivea F; Vanoaica, Liviu; Seixas, Elsa; Coutinho, Antonio; Cardoso, Sílvia; Rebelo, Sofia; Poli, Maura; Barral-Netto, Manoel; Darshan, Deepak; Kühn, Lukas C; Soares, Miguel P

    2012-11-15

    Disease tolerance is a defense strategy that limits the fitness costs of infection irrespectively of pathogen burden. While restricting iron (Fe) availability to pathogens is perceived as a host defense strategy, the resulting tissue Fe overload can be cytotoxic and promote tissue damage to exacerbate disease severity. Examining this interplay during malaria, the disease caused by Plasmodium infection, we find that expression of the Fe sequestering protein ferritin H chain (FtH) in mice, and ferritin in humans, is associated with reduced tissue damage irrespectively of pathogen burden. FtH protection relies on its ferroxidase activity, which prevents labile Fe from sustaining proapoptotic c-Jun N-terminal kinase (JNK) activation. FtH expression is inhibited by JNK activation, promoting tissue Fe overload, tissue damage, and malaria severity. Mimicking FtH's antioxidant effect or inhibiting JNK activation pharmacologically confers therapeutic tolerance to malaria in mice. Thus, FtH provides metabolic adaptation to tissue Fe overload, conferring tolerance to malaria.

  20. [Iron metabolism in breast cancer: knowledge and future].

    PubMed

    Durigova, Anna; Jacot, William; Pouderoux, Stéphane; Roques, Sylvie; Montels, Frédéric; Lamy, Pierre-Jean

    2012-01-01

    Iron plays a fundamental role in biology and its concentration in living organisms is regulated very precisely. Many molecules of storage and transportation are used to maintain the intracellular homeostasis. Cancer cells have alterations in this balance. Recent studies have shown that breast cancer cells present abnormal expression of several proteins such as hepcidin and ferroportin. A prognostic impact of these alterations has been reported in patients with breast cancer. Regulatory molecules of iron metabolism could become therapeutic targets. This is an innovative approach that has emerged for treating a cancer which, despite advances in treatment and the emergence of targeted therapies, remains the leading cause of cancer death in women.

  1. Proteomic Analysis Reveals That Iron Availability Alters the Metabolic Status of the Pathogenic Fungus Paracoccidioides brasiliensis

    PubMed Central

    Parente, Ana F. A.; Bailão, Alexandre M.; Borges, Clayton L.; Parente, Juliana A.; Magalhães, Adriana D.; Ricart, Carlos A. O.; Soares, Célia M. A.

    2011-01-01

    Paracoccidioides brasiliensis is a thermodimorphic fungus and the causative agent of paracoccidioidomycosis (PCM). The ability of P. brasiliensis to uptake nutrients is fundamental for growth, but a reduction in the availability of iron and other nutrients is a host defense mechanism many pathogenic fungi must overcome. Thus, fungal mechanisms that scavenge iron from host may contribute to P. brasiliensis virulence. In order to better understand how P. brasiliensis adapts to iron starvation in the host we compared the two-dimensional (2D) gel protein profile of yeast cells during iron starvation to that of iron rich condition. Protein spots were selected for comparative analysis based on the protein staining intensity as determined by image analysis. A total of 1752 protein spots were selected for comparison, and a total of 274 out of the 1752 protein spots were determined to have changed significantly in abundance due to iron depletion. Ninety six of the 274 proteins were grouped into the following functional categories; energy, metabolism, cell rescue, virulence, cell cycle, protein synthesis, protein fate, transcription, cellular communication, and cell fate. A correlation between protein and transcript levels was also discovered using quantitative RT-PCR analysis from RNA obtained from P. brasiliensis under iron restricting conditions and from yeast cells isolated from infected mouse spleens. In addition, western blot analysis and enzyme activity assays validated the differential regulation of proteins identified by 2-D gel analysis. We observed an increase in glycolytic pathway protein regulation while tricarboxylic acid cycle, glyoxylate and methylcitrate cycles, and electron transport chain proteins decreased in abundance under iron limiting conditions. These data suggest a remodeling of P. brasiliensis metabolism by prioritizing iron independent pathways. PMID:21829521

  2. Metabolism of manganese, iron, copper, and selenium in calves

    SciTech Connect

    Ho, S.Y.

    1981-01-01

    Sixteen male Holstein calves were used to study manganese and iron metabolism. The calves were fed one of the following diets for 18 days: control, control + iron, control + manganese, and control + iron and manganese. All calves were dosed orally with manganese-54. Tissue concentrations of manganese, iron and manganese-54 were determined. Small intestinal iron was lower in calves fed the high manganese diet than in controls. Tissue manganese-54 was lower in calves fed a high manganese diet. Fecal manganese content increased in calves fed both high manganese and high manganese-high iron diets. Serum total iron was not affected by the dietary treatments. To study the effects of high dietary levels of copper and selenium on the intracellular distributions of these two elements in liver and kidney cytosol, calves were fed one of four diets for 15 days. These were 0 and 100 ppM supplemental copper and 0 and 1 ppM added selenium. The control diet containing 0.1 ppM of selenium and 15 ppM of copper. All calves were orally dosed 48 hrs prior to sacrifice with selenium-75. A high copper diet increased copper concentrations in all intracellular liver fractions and most kidney fractions. Only the effects in the liver were significant. Less copper was found in the mitochondria fractions in liver and kidney of calves fed a high selenium diet. Three major copper-binding protein peaks were separated from the soluble fractions of calf liver and kidney. Peak 1 appeared to be the major copper-binding protein in liver and kidney cytosol of copper-loaded animals. Added selenium alone or in combination with copper accentuated the copper accumulation in this peak. Most of selenium-75 was recovered in the same peak as the copper. The results of this experiment indicated that the large molecular proteins in liver and kidney cytosol of calves play an important role in copper and selenium-75 metabolism. (ERB)

  3. Iron retention in preterm infants fed low iron intakes: a metabolic balance study.

    PubMed

    Griffin, Ian; Cooke, Richard J

    2010-07-01

    There is little data on iron retention in healthy preterm infants. Twenty-four metabolic balance studies were carried out in 13 preterm infants between 17 and 63 days of age, in 11 cases 2 balance were carried out 7d apart. Iron intake was 1.11 mg/kg/day (SD 0.06), less than the 2 mg/kg/d typically recommended for preterm infants. Iron retention was positive in the majority (3/13) of the first balances, and in all 11 of the second balances. Iron retention increased significantly between the two balances (from 0.095 mg/kg/d (SD 0.178) to 0.270 (SD 0.209)). Iron retention was significantly related to the time that the infant had been on enteral feeds at the time the balance was carried out. Iron retention was significantly greater than the requirement estimated to be needed to meet the needs for growth and expansion of the circulating red cell mass. Iron intakes of about 1mg/kg/d seem to be adequate to support the requirements for growth in preterm infants during this time period, but are significantly less than the estimated in utero accretion rate of the fetus.

  4. Uptake and metabolism of iron oxide nanoparticles in brain cells.

    PubMed

    Petters, Charlotte; Irrsack, Ellen; Koch, Michael; Dringen, Ralf

    2014-09-01

    Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.

  5. Human macrophage hemoglobin-iron metabolism in vitro

    SciTech Connect

    Custer, G.; Balcerzak, S.; Rinehart, J.

    1982-01-01

    An entirely in vitro technique was employed to characterize hemoglobin-iron metabolism by human macrophages obtained by culture of blood monocytes and pulmonary alveolar macrophages. Macrophages phagocytized about three times as many erythrocytes as monocytes and six times as many erythrocytes as pulmonary alveolar macrophages. The rate of subsequent release of /sup 59/Fe to the extracellular transferrin pool was two- to fourfold greater for macrophages as compared to the other two cell types. The kinetics of /sup 59/Fe-transferrin release were characterized by a relatively rapid early phase (hours 1-4) followed by a slow phase (hours 4-72) for all three cell types. Intracellular movement of iron was characterized by a rapid shift from hemoglobin to ferritin that was complete with the onset of the slow phase of extracellular release. A transient increase in /sup 59/Fe associated with an intracellular protein eluting with transferrin was also observed within 1 hour after phagocytosis. The process of hemoglobin-iron release to extracellular transferrin was inhibited at 4 degrees C but was unaffected by inhibitory of protein synthesis, glycolysis, microtubule function, and microfilament function. These data emphasize the rapidity of macrophage hemoglobin iron metabolism, provide a model for characterization of this process in vitro, and in general confirm data obtained utilizing in vivo animal models.

  6. Altered erythropoiesis and iron metabolism in carriers of thalassemia

    PubMed Central

    Guimarães, Jacqueline S.; Cominal, Juçara G.; Silva-Pinto, Ana Cristina; Olbina, Gordana; Ginzburg, Yelena Z.; Nandi, Vijay; Westerman, Mark; Rivella, Stefano; de Souza, Ana Maria

    2014-01-01

    The thalassemia syndromes (α- and β-thalassemia) are the most common and frequent disorders associated with ineffective erythropoiesis. Imbalance of α- or β-globin chain production results in impaired red blood cell synthesis, anemia and more erythroid progenitors in the blood stream. While patients affected by these disorders show definitive altered parameters related to erythropoiesis, the relationship between the degree of anemia, altered erythropoiesis and dysfunctional iron metabolism have not been investigated in both α-thalassemia carriers (ATC) and β-thalassemia carriers (BTC). Here we demonstrate that ATC have a significantly reduced hepcidin and increased soluble transferrin receptor levels but relatively normal hematological findings. In contrast, BTC have several hematological parameters significantly different from controls, including increased soluble transferrin receptor and erythropoietin levels. These changings in both groups suggest an altered balance between erythropoiesis and iron metabolism. The index sTfR/log ferrin and (hepcidin/ferritin)/sTfR are respectively increased and reduced relative to controls, proportional to the severity of each thalassemia group. In conclusion, we showed in this study, for the first time in the literature, that thalassemia carriers have altered iron metabolism and erythropoiesis. PMID:25307880

  7. Copper's influence on iron metabolism in K562 cells

    SciTech Connect

    Percival, S.S.; Armstrong, E. )

    1991-03-15

    Copper deficiency is associated with a cellular defect in iron metabolism that results in poor hemoglobin synthesis. In order to determine this mechanisms, K562 cells, a human erythroleukemic cell line, were incubated with 1 mM bethocuproine disulfonic acid (BCS) to produce a copper deficiency or were supplemented with 8 {mu}M copper. Hemoglobin was simultaneously induced in some cells by the addition of 25 {mu}M hemin to the culture medium. Incubation with BCS resulted in a 30 to 40% reduction in intracellular Cu/Zn superoxide dismutase activity while supplementation resulted in a 20 to 50% increase in activity. The authors then examined the effect of these copper manipulations on {sup 59}Fe uptake from transferrin, on ferritin levels and on hemoglobin levels. Hemoglobin was only slightly affected by the copper treatments. In both noninduced cells and induced cells, copper supplementation resulted in a greater level of intracellular iron, a greater level of immunoreactive ferritin, and an enhanced uptake of {sup 59}Fe from transferrin. In BCS-incubated cells, intracellular iron, ferritin and {sup 59}Fe uptake from transferrin were reduced by at least 50%. Because the ferritin levels were reduced, intracellular iron mobilization did not appear to be impaired in copper deficiency. The results suggest that copper deficiency impairs the transport of iron by transferrin into the cell.

  8. Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease.

    PubMed

    Bogdan, Alexander R; Miyazawa, Masaki; Hashimoto, Kazunori; Tsuji, Yoshiaki

    2016-03-01

    Iron is necessary for life, but can also cause cell death. Accordingly, cells evolved a robust, tightly regulated suite of genes for maintaining iron homeostasis. Previous mechanistic studies on iron homeostasis have granted insight into the role of iron in human health and disease. We highlight new regulators of iron metabolism, including iron-trafficking proteins [solute carrier family 39, SLC39, also known as ZRT/IRT-like protein, ZIP; and poly-(rC)-binding protein, PCBP] and a cargo receptor (NCOA4) that is crucial for release of ferritin-bound iron. We also discuss emerging roles of iron in apoptosis and a novel iron-dependent cell death pathway termed 'ferroptosis', the dysregulation of iron metabolism in human pathologies, and the use of iron chelators in cancer therapy.

  9. Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice

    PubMed Central

    Gardenghi, Sara; Ramos, Pedro; Marongiu, Maria Franca; Melchiori, Luca; Breda, Laura; Guy, Ella; Muirhead, Kristen; Rao, Niva; Roy, Cindy N.; Andrews, Nancy C.; Nemeth, Elizabeta; Follenzi, Antonia; An, Xiuli; Mohandas, Narla; Ginzburg, Yelena; Rachmilewitz, Eliezer A.; Giardina, Patricia J.; Grady, Robert W.; Rivella, Stefano

    2010-01-01

    Excessive iron absorption is one of the main features of β-thalassemia and can lead to severe morbidity and mortality. Serial analyses of β-thalassemic mice indicate that while hemoglobin levels decrease over time, the concentration of iron in the liver, spleen, and kidneys markedly increases. Iron overload is associated with low levels of hepcidin, a peptide that regulates iron metabolism by triggering degradation of ferroportin, an iron-transport protein localized on absorptive enterocytes as well as hepatocytes and macrophages. Patients with β-thalassemia also have low hepcidin levels. These observations led us to hypothesize that more iron is absorbed in β-thalassemia than is required for erythropoiesis and that increasing the concentration of hepcidin in the body of such patients might be therapeutic, limiting iron overload. Here we demonstrate that a moderate increase in expression of hepcidin in β-thalassemic mice limits iron overload, decreases formation of insoluble membrane-bound globins and reactive oxygen species, and improves anemia. Mice with increased hepcidin expression also demonstrated an increase in the lifespan of their red cells, reversal of ineffective erythropoiesis and splenomegaly, and an increase in total hemoglobin levels. These data led us to suggest that therapeutics that could increase hepcidin levels or act as hepcidin agonists might help treat the abnormal iron absorption in individuals with β-thalassemia and related disorders. PMID:21099112

  10. Effects of Iron and Nitrogen Limitation on Sulfur Isotope Fractionation during Microbial Sulfate Reduction

    PubMed Central

    Ono, Shuhei; Bosak, Tanja

    2012-01-01

    Sulfate-reducing microbes utilize sulfate as an electron acceptor and produce sulfide that is depleted in heavy isotopes of sulfur relative to sulfate. Thus, the distribution of sulfur isotopes in sediments can trace microbial sulfate reduction (MSR), and it also has the potential to reflect the physiology of sulfate-reducing microbes. This study investigates the relationship between the availability of iron and reduced nitrogen and the magnitude of S-isotope fractionation during MSR by a marine sulfate-reducing bacterium, DMSS-1, a Desulfovibrio species, isolated from salt marsh in Cape Cod, MA. Submicromolar levels of iron increase sulfur isotope fractionation by about 50% relative to iron-replete cultures of DMSS-1. Iron-limited cultures also exhibit decreased cytochrome c-to-total protein ratios and cell-specific sulfate reduction rates (csSRR), implying changes in the electron transport chain that couples carbon and sulfur metabolisms. When DMSS-1 fixes nitrogen in ammonium-deficient medium, it also produces larger fractionation, but it occurs at faster csSRRs than in the ammonium-replete control cultures. The energy and reducing power required for nitrogen fixation may be responsible for the reverse trend between S-isotope fractionation and csSRR in this case. Iron deficiency and nitrogen fixation by sulfate-reducing microbes may lead to the large observed S-isotope effects in some euxinic basins and various anoxic sediments. PMID:23001667

  11. Effects of iron and nitrogen limitation on sulfur isotope fractionation during microbial sulfate reduction.

    PubMed

    Sim, Min Sub; Ono, Shuhei; Bosak, Tanja

    2012-12-01

    Sulfate-reducing microbes utilize sulfate as an electron acceptor and produce sulfide that is depleted in heavy isotopes of sulfur relative to sulfate. Thus, the distribution of sulfur isotopes in sediments can trace microbial sulfate reduction (MSR), and it also has the potential to reflect the physiology of sulfate-reducing microbes. This study investigates the relationship between the availability of iron and reduced nitrogen and the magnitude of S-isotope fractionation during MSR by a marine sulfate-reducing bacterium, DMSS-1, a Desulfovibrio species, isolated from salt marsh in Cape Cod, MA. Submicromolar levels of iron increase sulfur isotope fractionation by about 50% relative to iron-replete cultures of DMSS-1. Iron-limited cultures also exhibit decreased cytochrome c-to-total protein ratios and cell-specific sulfate reduction rates (csSRR), implying changes in the electron transport chain that couples carbon and sulfur metabolisms. When DMSS-1 fixes nitrogen in ammonium-deficient medium, it also produces larger fractionation, but it occurs at faster csSRRs than in the ammonium-replete control cultures. The energy and reducing power required for nitrogen fixation may be responsible for the reverse trend between S-isotope fractionation and csSRR in this case. Iron deficiency and nitrogen fixation by sulfate-reducing microbes may lead to the large observed S-isotope effects in some euxinic basins and various anoxic sediments.

  12. Different iron sources to study the physiology and biochemistry of iron metabolism in marine micro-algae.

    PubMed

    Botebol, Hugo; Sutak, Robert; Scheiber, Ivo F; Blaiseau, Pierre-Louis; Bouget, François-Yves; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2014-02-01

    We compared ferric EDTA, ferric citrate and ferrous ascorbate as iron sources to study iron metabolism in Ostreococcus tauri, Phaeodactlylum tricornutum and Emiliania huxleyi. Ferric EDTA was a better iron source than ferric citrate for growth and chlorophyll levels. Direct and indirect experiments showed that iron was much more available to the cells when provided as ferric citrate as compared to ferric EDTA. As a consequence, growth media with iron concentration in the range 1-100 nM were rapidly iron-depleted when ferric citrate-but not ferric EDTA was the iron source. When cultured together, P. tricornutum cells overgrew the two other species in iron-sufficient conditions, but E. huxleyi was able to compete other species in iron-deficient conditions, and when iron was provided as ferric citrate instead of ferric EDTA, which points out the critical influence of the chemical form of iron on the blooms of some phytoplankton species. The use of ferric citrate and ferrous ascorbate allowed us to unravel a kind of regulation of iron uptake that was dependent on the day/night cycles and to evidence independent uptake systems for ferrous and ferric iron, which can be regulated independently and be copper-dependent or independent. The same iron sources also allowed one to identify molecular components involved in iron uptake and storage in marine micro-algae. Characterizing the mechanisms of iron metabolism in the phytoplankton constitutes a big challenge; we show here that the use of iron sources more readily available to the cells than ferric EDTA is critical for this task.

  13. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings.

    PubMed

    Paolacci, Anna Rita; Celletti, Silvia; Catarcione, Giulio; Hawkesford, Malcolm J; Astolfi, Stefania; Ciaffi, Mario

    2014-01-01

    Characterization of the relationship between sulfur and iron in both Strategy I and Strategy II plants, has proven that low sulfur availability often limits plant capability to cope with iron shortage. Here it was investigated whether the adaptation to iron deficiency in tomato (Solanum lycopersicum L.) plants was associated with an increased root sulfate uptake and translocation capacity, and modified dynamics of total sulfur and thiols accumulation between roots and shoots. Most of the tomato sulfate transporter genes belonging to Groups 1, 2, and 4 were significantly upregulated in iron-deficient roots, as it commonly occurs under S-deficient conditions. The upregulation of the two high affinity sulfate transporter genes, SlST1.1 and SlST1.2, by iron deprivation clearly suggests an increased root capability to take up sulfate. Furthermore, the upregulation of the two low affinity sulfate transporter genes SlST2.1 and SlST4.1 in iron-deficient roots, accompanied by a substantial accumulation of total sulfur and thiols in shoots of iron-starved plants, likely supports an increased root-to-shoot translocation of sulfate. Results suggest that tomato plants exposed to iron-deficiency are able to change sulfur metabolic balance mimicking sulfur starvation responses to meet the increased demand for methionine and its derivatives, allowing them to cope with this stress.

  14. Catecholamines promote Actinobacillus pleuropneumoniae growth by regulating iron metabolism.

    PubMed

    Li, Lu; Chen, Zhaohui; Bei, Weicheng; Su, Zhipeng; Huang, Qi; Zhang, Liang; Chen, Huanchun; Zhou, Rui

    2015-01-01

    Catecholamines are host stress hormones that can induce the growth of many bacteria by facilitating iron utilization and/or regulate the expression of virulence genes through specific hormone receptors. Whether these two responsive pathways are interconnected is unknown. In our previous study, it was found that catecholamines can regulate the expression of a great number of genes of Actinobacillus pleuropneumoniae, an important swine respiratory pathogen. However, bacterial growth was not affected by catecholamines in rich medium. In this study, it was discovered that catecholamines affected A. pleuropneumoniae growth in chemically defined medium (CDM). We found that serum inhibited A. pleuropneumoniae growth in CDM, while epinephrine, norepinephrine and dopamine promoted A. pleuropneumoniae growth in the CDM containing serum. The known bacterial hormone receptor QseC didn't play roles in this process. Ion-supplementation and transcriptome analysis indicated that serum addition resulted in iron-restricted conditions which were alleviated by the addition of catecholamines. Transferrin, one of the components in serum, inhibited the growth of A. pleuropneumoniae in CDM, an effect reversed by addition of catecholamines in a TonB2-dependent manner. Our data demonstrate that catecholamines promote A. pleuropneumoniae growth by regulating iron-acquisition and metabolism, which is independent of the adrenergic receptor QseC.

  15. Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease.

    PubMed

    Huang, Michael Li-Hsuan; Lane, Darius J R; Richardson, Des R

    2011-12-15

    The mitochondrion plays vital roles in various aspects of cellular metabolism, ranging from energy transduction and apoptosis to the synthesis of important molecules such as heme. Mitochondria are also centrally involved in iron metabolism, as exemplified by disruptions in mitochondrial proteins that lead to perturbations in whole-cell iron processing. Recent investigations have identified a host of mitochondrial proteins (e.g., mitochondrial ferritin; mitoferrins 1 and 2; ABCBs 6, 7, and 10; and frataxin) that may play roles in the homeostasis of mitochondrial iron. These mitochondrial proteins appear to participate in one or more processes of iron storage, iron uptake, and heme and iron-sulfur cluster synthesis. In this review, we present and critically discuss the evidence suggesting that the mitochondrion may contribute to the regulation of whole-cell iron metabolism. Further, human diseases that arise from a dysregulation of these mitochondrial molecules reveal the ability of the mitochondrion to communicate with cytosolic iron metabolism to coordinate whole-cell iron processing and to fulfill the high demands of this organelle for iron. This review highlights new advances in understanding iron metabolism in terms of novel molecular players and diseases associated with its dysregulation.

  16. Effect of iron limitation and fur gene inactivation on the transcriptional profile of the strict anaerobe Clostridium acetobutylicum.

    PubMed

    Vasileva, Delyana; Janssen, Holger; Hönicke, Daniel; Ehrenreich, Armin; Bahl, Hubert

    2012-07-01

    Iron is a nutrient of critical importance for the strict anaerobe Clostridium acetobutylicum, as it is involved in numerous basic cellular functions and metabolic pathways. A gene encoding a putative ferric uptake regulator (Fur) has been identified in the genome of C. acetobutylicum. In this work, we inactivated the fur gene by using insertional mutagenesis. The resultant mutant showed a slow-growing phenotype and enhanced sensitivity to oxidative stress, but essentially no dramatic change in its fermentation pattern. A unique feature of its physiology was the overflowing production of riboflavin. To gain further insights into the role of the Fur protein and the mechanisms for establishment of iron balance in C. acetobutylicum, we characterized and compared the gene-expression profile of the fur mutant and the iron-limitation stimulon of the parental strain. Not surprisingly, a repertoire of iron-transport systems was upregulated in both microarray datasets, suggesting that they are regulated by Fur according to the availability of iron. In addition, iron limitation and inactivation of fur affected the expression of several genes involved in energy metabolism. Among them, two genes, encoding a lactate dehydrogenase and a flavodoxin, were highly induced. In order to support the function of the latter, the ribDBAH operon responsible for riboflavin biosynthesis was also upregulated significantly. Furthermore, the iron-starvation response of C. acetobutylicum involved transcriptional modifications that were not detected in the fur mutant, suggesting that there exist additional mechanisms for adaptation to low-iron environments. Collectively, these results demonstrate that the strict anaerobe C. acetobutylicum senses and responds to availability of iron on multiple levels using a sophisticated system, and that Fur plays an important role in this process.

  17. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates (“Iron Snow”)

    PubMed Central

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B.; Neu, Thomas R.; Hettich, Robert L.

    2013-01-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies. PMID:23645202

  18. Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates ("iron snow").

    PubMed

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B; Neu, Thomas R; Hettich, Robert L; Küsel, Kirsten

    2013-07-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates ("iron snow") at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 10(8) copies g (dry weight)(-1) in the acidic central lake basin (pH 3.3) to 4.0 × 10(10) copies g (dry weight)(-1) in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.

  19. Sleep disorders: A review of the interface between restless legs syndrome and iron metabolism

    PubMed Central

    Daubian-Nosé, Paulo; Frank, Miriam K.; Esteves, Andrea Maculano

    2014-01-01

    Restless legs syndrome (RLS) is characterized by unpleasant sensations mainly in the legs. 43% of RLS-associated conditions have also been associated with systemic iron deficiency. The objective of this study was to review in the literature the relationship between iron metabolism and RLS. With an initial search using the keywords combination “Iron Metabolism OR Iron Deficiency AND Restless Legs Syndrome,” 145 articles were screened, and 20 articles were selected. Few studies were found for this review in the period of 2001–2014, however, the correlation between RLS and iron was evident. PMID:26483934

  20. The influence of iron limitation on the growth and activity of Crocosphaera watsonii, an unicellular diazotrophic cyanobacterium

    NASA Astrophysics Data System (ADS)

    Jacq, V.; Ridame, C.

    2012-04-01

    Diazotrophic cyanobacteria are able to use atmospheric dinitrogen (N2) dissolved in seawater as source of nitrogen for primary production. This metabolic function confers an ecological advantage for such organisms in N-limited environments, such as tropical oligotrophic regions. There, N2 fixation represents a significant source of new nitrogen in the euphotic zone which is available for the non diazotrophic phytoplankton community. Thus, diazotrophic cyanobacteria contribute significantly to new production and play a key role in the global cycling of carbon and nitrogen. The filamentous diazotrophic cyanobacterium Trichodesmium is the best known and most studied marine diazotroph. However, recent research has highlighted the biogeochemical importance of unicellular diazotrophic cyanobacteria (UCYN), such as Crocosphaera watsonii. The factors that control N2 fixation have been intensively studied. Due to the high iron content of the nitrogenase enzyme complex, N2 fixation and growth of diazotrophic cyanobacteria can be controlled by iron bioavailability. Many studies have been conducted on the impact of iron limitation on Trichodesmium, but less is known for UCYN. Here, for the first time, we address the issue of iron limitation on the N2 fixation and growth of UCYN, namely Crocosphaera watsonii. We have designed a study on cultures of Crocosphaera watsonii strain WH8501 grown under a range of dissolved iron, from 2 nM to 400 nM, with a constant EDTA concentration of 2 µM. Our experiment encompasses low iron concentrations (2 nM), representative of those measured in the field. Preliminary findings demonstrate a major control of iron availability on the biomass and growth of Crocosphaera watsonii. These results, complemented with data on photosynthetic and diazotrophic activities, significantly contribute to our understanding of the dynamics of N2 fixation by unicellular diazotrophic cyanobacteria and of the role of iron in controlling this process. Keywords: N2

  1. Limits to Success. The Iron Law of Verhulst

    NASA Astrophysics Data System (ADS)

    Kunsch, P. L.

    In this chapter we develop the point of view that Verhulst is a major initiator of systems thinking. His logistic equation is a system archetype, i.e. a simple system built with few feedback loops. In the Fifth Discipline [19] Peter Senge calls this particular archetype "Limits to Success". It can also be called the "Iron law of Verhulst", expressing that trees can never grow to heaven. In a deeper analysis this equation illustrates the shifting loop dominance, one of the basic principles of system dynamics. The basic message is that the combination of some few archetypes, like the logistic growth, can afford valuable insight into many complex systems such as the economy, environment, organisations, etc. This fruitful concept is illustrated by a simple model in behavioural finance describing the equity price evolution, and based on the interplay of three main growth archetypes: "Limits to Success", "Tragedy of the Commons", and "Balancing Loop with Delay".

  2. Iron Speciation in the Trondheim Fjord from the Perspective of Iron Limitation for Phytoplankton

    NASA Astrophysics Data System (ADS)

    Öztürk, M.; Steinnes, E.; Sakshaug, E.

    2002-08-01

    Concentrations of different Fe species in the Trondheim fjord waters were determined in different seasons by serial columns. Colloidal Fe (ColFe), Anionic organic-Fe complexes (AnOFe), Hydrophobix-lyphophlic organic-Fe complexes (HphOFe) and Chelex labile iron (ClxLFe) were determined before, during and after large river discharges and phytoplankton blooms. Time series of Fe species were obtained at a single location accompanied by data for humic substances, major nutrients, and phytoplankton biomass. Marked seasonal changes in the concentration of iron in various species were evident, and were directly associated with river discharge, especially in the surface waters, but also due to phytoplankton blooms. ColFe dominated in surface waters when the river discharge was high, but decreased with increasing depth. ClxLFe concentrations were lower than that of ColFe formed during the blooms and high river discharge periods. A clear association between the concentration of ClxLFe and phytoplankton blooms implies that ClxLFe may constitute most of the easily available Fe forms. AnOFe was high only during periods of high river discharge. HphOFe increased with phytoplankton bloom. The close correspondence between the distribution of colloidal Fe and dissolved humic substances with fluorophores (fHS), and between Fe (II), particulate Fe (PFe), and fHS in surface waters, made apparent the role of HS on iron speciation, the formation of colloidal Fe and Fe removal. Iron removal seems to be more effective than the riverine inputs and replenishment of Fe to control the dissolved Fe distribution in the fjord. Therefore, phytoplankton growth rate can be sporadically limited by iron in the Trondheim fjord and adjacent coastal waters especially if there will be enhancement of major nutrients.

  3. Recent advances in disorders of iron metabolism: mutations, mechanisms and modifiers.

    PubMed

    Roy, C N; Andrews, N C

    2001-10-01

    The spectrum of known disorders of iron metabolism has expanded dramatically over the past few years. Identification of HFE, the gene most commonly mutated in patients with hereditary hemochromatosis, has allowed molecular diagnosis and paved the way for identification of other genes, such as TFR2, that are important in non-HFE-associated iron overload. There are clearly several other, unidentified, iron overload disease genes yet to be found. In parallel, our understanding of iron transport has expanded through identification of Fpn1/Ireg1/MTP1, Sfxn1 and DCYTB: Ongoing studies of Friedreich's ataxia, sideroblastic anemia, aceruloplasminemia and neurodegeneration with brain-iron accumulation are clarifying the role for iron in the nervous system. Finally, as the number of known iron metabolic genes increases and their respective functions are ascertained, new opportunities have arisen to identify genetic modifiers of iron homeostasis.

  4. Update on iron metabolism and molecular perspective of common genetic and acquired disorder, hemochromatosis.

    PubMed

    Yun, Seongseok; Vincelette, Nicole D

    2015-07-01

    Iron is an essential component of erythropoiesis and its metabolism is tightly regulated by a variety of internal and external cues including iron storage, tissue hypoxia, inflammation and degree of erythropoiesis. There has been remarkable improvement in our understanding of the molecular mechanisms of iron metabolism past decades. The classical model of iron metabolism with iron response element/iron response protein (IRE/IRP) is now extended to include hepcidin model. Endogenous and exogenous signals funnel down to hepcidin via wide range of signaling pathways including Janus Kinase/Signal Transducer and Activator of Transcription 3 (JAK/STAT3), Bone Morphogenetic Protein/Hemojuvelin/Mothers Against Decapentaplegic Homolog (BMP/HJV/SMAD), and Von Hippel Lindau/Hypoxia-inducible factor/Erythropoietin (VHL/HIF/EPO), then relay to ferroportin, which directly regulates intra- and extracellular iron levels. The successful molecular delineation of iron metabolism further enhanced our understanding of common genetic and acquired disorder, hemochromatosis. The majority of the hereditary hemochromatosis (HH) patients are now shown to have mutations in the genes coding either upstream or downstream proteins of hepcidin, resulting in iron overload. The update on hepcidin centered mechanisms of iron metabolism and their clinical perspective in hemochromatosis will be discussed in this review.

  5. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism

    PubMed Central

    Korolnek, Tamara; Hamza, Iqbal

    2014-01-01

    Heme is an iron-containing porphyrin ring that serves as a prosthetic group in proteins that function in diverse metabolic pathways. Heme is also a major source of bioavailable iron in the human diet. While the synthesis of heme has been well-characterized, the pathways for heme trafficking remain poorly understood. It is likely that heme transport across membranes is highly regulated, as free heme is toxic to cells. This review outlines the requirement for heme delivery to various subcellular compartments as well as possible mechanisms for the mobilization of heme to these compartments. We also discuss how these trafficking pathways might function during physiological events involving inter- and intra-cellular mobilization of heme, including erythropoiesis, erythrophagocytosis, heme absorption in the gut, as well as heme transport pathways supporting embryonic development. Lastly, we aim to question the current dogma that heme, in toto, is not mobilized from one cell or tissue to another, outlining the evidence for these pathways and drawing parallels to other well-accepted paradigms for copper, iron, and cholesterol homeostasis. PMID:24926267

  6. EXPLORING THE LIMITS TO LIGNINS' METABOLIC PLASTICITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Just how far can lignification be pushed with the aim of improving wood processing (and possibly solid wood properties)? We will explore the limits to which the 3 traditional monolignols can be manipulated, but also broaden our scope to begin thinking about how the entire monomer pool for lignificat...

  7. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem; O'Brien, Edward J; Szubin, Richard; Palsson, Bernhard O

    2014-09-15

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements. Integrative data analysis reveals that a total of 81 genes in 42 transcription units are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation and holo-Fur repression. We show that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism and biofilm development is found. These results show how Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate the overall response of E. coli to iron availability.

  8. Duodenal Cytochrome b (DCYTB) in Iron Metabolism: An Update on Function and Regulation

    PubMed Central

    Lane, Darius J. R.; Bae, Dong-Hun; Merlot, Angelica M.; Sahni, Sumit; Richardson, Des R.

    2015-01-01

    Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally, both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake, rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut, ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities, intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes, namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron) on the opposite side of the membrane. One member of this family, duodenal cytochrome b (DCYTB), may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis, the emergent “IRP1-HIF2α axis”, DCYTB and ascorbate in relation to iron metabolism. PMID:25835049

  9. Fixing frataxin: ‘ironing out’ the metabolic defect in Friedreich's ataxia

    PubMed Central

    Anzovino, A; Lane, D J R; Huang, M L-H; Richardson, D R

    2014-01-01

    The metabolically active and redox-active mitochondrion appears to play a major role in the cellular metabolism of the transition metal, iron. Frataxin, a mitochondrial matrix protein, has been identified as playing a key role in the iron metabolism of this organelle due to its iron-binding properties and is known to be essential for iron–sulphur cluster formation. However, the precise function of frataxin remains elusive. The decrease in frataxin expression, as seen in the inherited disorder Friedreich's ataxia, markedly alters cellular and mitochondrial iron metabolism in both the mitochondrion and the cell. The resulting dysregulation of iron trafficking damages affects tissues leading to neuro-and cardiodegeneration. This disease underscores the importance of iron homeostasis in the redox-active environment of the mitochondrion and the molecular players involved. Unravelling the mechanisms of altered iron metabolism in Friedreich's ataxia will help elucidate a biochemical function for frataxin. Consequently, this will enable the development of more effective and rationally designed treatments. This review will focus on the emerging function of frataxin in relation to the observed alterations in mitochondrial iron metabolism in Friedreich's ataxia. Tissue-specific alterations due to frataxin loss will also be discussed, as well as current and emerging therapeutic strategies. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24138602

  10. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation.

    PubMed

    Puig, Sergi; Askeland, Eric; Thiele, Dennis J

    2005-01-14

    Iron (Fe) is an essential micronutrient for virtually all organisms and serves as a cofactor for a wide variety of vital cellular processes. Although Fe deficiency is the primary nutritional disorder in the world, cellular responses to Fe deprivation are poorly understood. We have discovered a posttranscriptional regulatory process controlled by Fe deficiency, which coordinately drives widespread metabolic reprogramming. We demonstrate that, in response to Fe deficiency, the Saccharomyces cerevisiae Cth2 protein specifically downregulates mRNAs encoding proteins that participate in many Fe-dependent processes. mRNA turnover requires the binding of Cth2, an RNA binding protein conserved in plants and mammals, to specific AU-rich elements in the 3' untranslated region of mRNAs targeted for degradation. These studies elucidate coordinated global metabolic reprogramming in response to Fe deficiency and identify a mechanism for achieving this by targeting specific mRNA molecules for degradation, thereby facilitating the utilization of limited cellular Fe levels.

  11. The factors influencing urinary arsenic excretion and metabolism of workers in steel and iron smelting foundry.

    PubMed

    Shuhua, Xi; Qingshan, Sun; Fei, Wang; Shengnan, Liu; Ling, Yan; Lin, Zhang; Yingli, Song; Nan, Yan; Guifan, Sun

    2014-01-01

    In order to evaluate the degree of arsenic (As) exposure and the factors influencing urinary As excretion and metabolism, 192 workers from a steel and iron smelting plant, with different type of work in production such as roller, steel smelting, iron smelting and metallic charge preparation, were recruited. Information about characteristics of each subject was obtained by questionnaire and inorganic As (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine were determined. The results showed that steel smelters had significantly higher concentrations of DMA and total As (TAs) than rollers and metallic charge preparation workers, and iron and steel smelters had a higher value of primary methylation index and lower proportion of the iAs (iAs%) than rollers and metallic charge preparation workers. In steel smelters, urinary As level exceeded the biological exposure index (BEI) limit for urinary As of 35 μg/l by 65.52%, and higher than metallic charge preparation workers (35.14%). The individuals consumed seafood in recent 3 days had a higher TAs than the individuals without seafood consumption. Multivariate logistic regression analysis showed that different jobs, taken Chinese medicine of bezoar and seafood consumption in recent 3 days were significantly associated with urinary TAs exceeded BEI limit value 35 μg/l. Our results suggest that workers in steel and iron smelting plant had a lower level of As exposure, and seafood consumption and taking Chinese medicine of bezoar also could increase the risk of urinary TAs exceeded BEI limit value.

  12. Metabolic Factors Limiting Performance in Marathon Runners

    PubMed Central

    Rapoport, Benjamin I.

    2010-01-01

    Each year in the past three decades has seen hundreds of thousands of runners register to run a major marathon. Of those who attempt to race over the marathon distance of 26 miles and 385 yards (42.195 kilometers), more than two-fifths experience severe and performance-limiting depletion of physiologic carbohydrate reserves (a phenomenon known as ‘hitting the wall’), and thousands drop out before reaching the finish lines (approximately 1–2% of those who start). Analyses of endurance physiology have often either used coarse approximations to suggest that human glycogen reserves are insufficient to fuel a marathon (making ‘hitting the wall’ seem inevitable), or implied that maximal glycogen loading is required in order to complete a marathon without ‘hitting the wall.’ The present computational study demonstrates that the energetic constraints on endurance runners are more subtle, and depend on several physiologic variables including the muscle mass distribution, liver and muscle glycogen densities, and running speed (exercise intensity as a fraction of aerobic capacity) of individual runners, in personalized but nevertheless quantifiable and predictable ways. The analytic approach presented here is used to estimate the distance at which runners will exhaust their glycogen stores as a function of running intensity. In so doing it also provides a basis for guidelines ensuring the safety and optimizing the performance of endurance runners, both by setting personally appropriate paces and by prescribing midrace fueling requirements for avoiding ‘the wall.’ The present analysis also sheds physiologically principled light on important standards in marathon running that until now have remained empirically defined: The qualifying times for the Boston Marathon. PMID:20975938

  13. Model of reticuloendothelial iron metabolism in humans: Abnormal behavior in idiopathic hemochromatosis and in inflammation

    SciTech Connect

    Fillet, G.; Beguin, Y.; Baldelli, L. )

    1989-08-01

    Iron transport in the reticuloendothelial (RE) system plays a central role in iron metabolism, but its regulation has not been characterized physiologically in vivo in humans. In particular, why serum iron is elevated and RE cells are much less iron-loaded than parenchymal cells in idiopathic hemochromatosis is not known. The processing of erythrocyte iron by the RE system was studied after intravenous (IV) injection of 59Fe heat-damaged RBCs (HDRBCs) and 55Fe transferrin in normal subjects and in patients with iron deficiency, idiopathic hemochromatosis, inflammation, marrow aplasia, or hyperplastic erythropoiesis. Early release of 59Fe by the RE system was calculated from the plasma iron turnover and the 59Fe plasma reappearance curve. Late release was calculated from the ratio of 59Fe/55Fe RBC utilization in 2 weeks. The partitioning of iron between the early (release from heme catabolism) and late (release from RE stores) phases depended on the size of RE iron stores, as illustrated by the inverse relationship observed between early release and plasma ferritin (P less than .001). There was a strong correlation between early release and the rate of change of serum iron levels during the first three hours in normal subjects (r = .85, P less than .001). Inflammation produced a blockade of the early release phase, whereas in idiopathic hemochromatosis early release was considerably increased as compared with subjects with similar iron stores. Based on these results, we describe a model of RE iron metabolism in humans. We conclude that the RE system appears to determine the diurnal fluctuations in serum iron levels through variations in the immediate output of heme iron. In idiopathic hemochromatosis, a defect of the RE cell in withholding iron freed from hemoglobin could be responsible for the high serum iron levels and low RE iron stores.

  14. A General Map of Iron Metabolism and Tissue-specific Subnetworks

    PubMed Central

    Hower, Valerie; Mendes, Pedro; Torti, Frank M.; Laubenbacher, Reinhard; Akman, Steven; Shulaev, Vladmir; Torti, Suzy V.

    2009-01-01

    Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively; as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease. PMID:19381358

  15. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits

    PubMed Central

    Neves, Aitana; Busso, Coralie; Gönczy, Pierre

    2015-01-01

    All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism. DOI: http://dx.doi.org/10.7554/eLife.04810.001 PMID:25929283

  16. The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

    PubMed Central

    Lim, Chee Kent; Hassan, Karl A.; Tetu, Sasha G.; Loper, Joyce E.; Paulsen, Ian T.

    2012-01-01

    One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels. PMID:22723948

  17. The iron stimulon and fur regulon of Geobacter sulfurreducens and their role in energy metabolism.

    PubMed

    Embree, Mallory; Qiu, Yu; Shieu, Wendy; Nagarajan, Harish; O'Neil, Regina; Lovley, Derek; Zengler, Karsten

    2014-05-01

    Iron plays a critical role in the physiology of Geobacter species. It serves as both an essential component for proteins and cofactors and an electron acceptor during anaerobic respiration. Here, we investigated the iron stimulon and ferric uptake regulator (Fur) regulon of Geobacter sulfurreducens to examine the coordination between uptake of Fe(II) and the reduction of Fe(III) at the transcriptional level. Gene expression studies across a variety of different iron concentrations in both the wild type and a Δfur mutant strain were used to determine the iron stimulon. The stimulon consists of a broad range of gene products, ranging from iron-utilizing to central metabolism and iron reduction proteins. Integration of gene expression and chromatin immunoprecipitation (ChIP) data sets assisted in the identification of the Fur transcriptional regulatory network and Fur's role as a regulator of the iron stimulon. Additional physiological and transcriptional analyses of G. sulfurreducens grown with various Fe(II) concentrations revealed the depth of Fur's involvement in energy metabolism and the existence of redundancy within the iron-regulatory network represented by IdeR, an alternative iron transcriptional regulator. These characteristics enable G. sulfurreducens to thrive in environments with fluctuating iron concentrations by providing it with a robust mechanism to maintain tight and deliberate control over intracellular iron homeostasis.

  18. Advantages and disadvantages of the animal models v. in vitro studies in iron metabolism: a review.

    PubMed

    García, Y; Díaz-Castro, J

    2013-10-01

    Iron deficiency is the most common nutritional deficiency in the world. Special molecules have evolved for iron acquisition, transport and storage in soluble, nontoxic forms. Studies about the effects of iron on health are focused on iron metabolism or nutrition to prevent or treat iron deficiency and anemia. These studies are focused in two main aspects: (1) basic studies to elucidate iron metabolism and (2) nutritional studies to evaluate the efficacy of iron supplementation to prevent or treat iron deficiency and anemia. This paper reviews the advantages and disadvantages of the experimental models commonly used as well as the methods that are more used in studies related to iron. In vitro studies have used different parts of the gut. In vivo studies are done in humans and animals such as mice, rats, pigs and monkeys. Iron metabolism is a complex process that includes interactions at the systemic level. In vitro studies, despite physiological differences to humans, are useful to increase knowledge related to this essential micronutrient. Isotopic techniques are the most recommended in studies related to iron, but their high cost and required logistic, making them difficult to use. The depletion-repletion of hemoglobin is a method commonly used in animal studies. Three depletion-repletion techniques are mostly used: hemoglobin regeneration efficiency, relative biological values (RBV) and metabolic balance, which are official methods of the association of official analytical chemists. These techniques are well-validated to be used as studies related to iron and their results can be extrapolated to humans. Knowledge about the main advantages and disadvantages of the in vitro and animal models, and methods used in these studies, could increase confidence of researchers in the experimental results with less costs.

  19. Divergent Responses of Coastal and Oceanic Synechococcus to Iron Limitation

    NASA Astrophysics Data System (ADS)

    Mackey, K. R.; McIlvin, M.; Post, A.; Saito, M. A.

    2014-12-01

    Marine Synechococcus are some of the most diverse and ubiquitous phytoplankton in the ocean, and are major contributors to global primary productivity. Iron (Fe) is a micronutrient required for maintenance of the photosynthetic apparatus that limits productivity in many parts of the ocean. To investigate how marine Synechococcus strains adapt and acclimate to Fe availability, we compared the growth, photophysiology, and protein abundance in two Synechococcus strains over a range of Fe concentrations. Synechococcus strain WH8102, from the permanently stratified southern Sargasso Sea in a region that receives significant dust deposition, had few acclimation strategies under low Fe and showed impaired growth rates and photophysiology as Fe declined. Coastal isolate WH8020, from the dynamic, seasonally variable North Atlantic Ocean, displayed a range of acclimation responses, including changes in Fe acquisition, storage, and photosynthetic electron transport proteins, substitution of flavodoxin for ferredoxin, and modified photophysiology. Each of these acclimation responses occurred at different Fe threshold concentrations over which growth rate remained remarkably stable. This study demonstrates that genomic streamlining in waters with low nitrogen and phosphorus may favor the loss of Fe acclimation genes when the Fe supply is consistent over time, and expands the regions where Fe stress is thought to occur to most coastal environments.

  20. Surplus Photosynthetic Antennae Complexes Underlie Diagnostics of Iron Limitation in a Cyanobacterium

    PubMed Central

    Schrader, Paul S.; Milligan, Allen J.; Behrenfeld, Michael J.

    2011-01-01

    Chlorophyll fluorescence from phytoplankton provides a tool to assess iron limitation in the oceans, but the physiological mechanism underlying the fluorescence response is not understood. We examined fluorescence properties of the model cyanobacterium Synechocystis PCC6803 and a ΔisiA knock-out mutant of the same species grown under three culture conditions which simulate nutrient conditions found in the open ocean: (1) nitrate and iron replete, (2) limiting-iron and high-nitrate, representative of natural high-nitrate, low-chlorophyll regions, and (3) iron and nitrogen co-limiting. We show that low variable fluorescence, a key diagnostic of iron limitation, results from synthesis of antennae complexes far in excess of what can be accommodated by the iron-restricted pool of photosynthetic reaction centers. Under iron and nitrogen co-limiting conditions, there are no excess antennae complexes and variable fluorescence is high. These results help to explain the well-established fluorescence characteristics of phytoplankton in high-nutrient, low-chlorophyll ocean regions, while also accounting for the lack of these properties in low-iron, low-nitrogen regions. Importantly, our results complete the link between unique molecular consequences of iron stress in phytoplankton and global detection of iron stress in natural populations from space. PMID:21533084

  1. Multi-Copper Oxidases and Human Iron Metabolism

    PubMed Central

    Vashchenko, Ganna; MacGillivray, Ross T. A.

    2013-01-01

    Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis. PMID:23807651

  2. Hepcidin: an important iron metabolism regulator in chronic kidney disease.

    PubMed

    Antunes, Sandra Azevedo; Canziani, Maria Eugênia Fernandes

    2016-01-01

    Anemia is a common complication and its impact on morbimortality in patients with chronic kidney disease (CKD) is well known. The discovery of hepcidin and its functions has contributed to a better understanding of iron metabolism disorders in CKD anemia. Hepcidin is a peptide mainly produced by hepatocytes and, through a connection with ferroportin, it regulates iron absorption in the duodenum and its release of stock cells. High hepcidin concentrations described in patients with CKD, especially in more advanced stages are attributed to decreased renal excretion and increased production. The elevation of hepcidin has been associated with infection, inflammation, atherosclerosis, insulin resistance and oxidative stress. Some strategies were tested to reduce the effects of hepcidin in patients with CKD, however more studies are necessary to assess the impact of its modulation in the management of anemia in this population. Resumo Anemia é uma complicação frequente e seu impacto na morbimortalidade é bem conhecido em pacientes com doença renal crônica (DRC). A descoberta da hepcidina e de suas funções contribuíram para melhor compreensão dos distúrbios do metabolismo de ferro na anemia da DRC. Hepcidina é um peptídeo produzido principalmente pelos hepatócitos, e através de sua ligação com a ferroportina, regula a absorção de ferro no duodeno e sua liberação das células de estoque. Altas concentrações de hepcidina descritas em pacientes com DRC, principalmente em estádios mais avançados, são atribuídas à diminuição da excreção renal e ao aumento de sua produção. Elevação de hepcidina tem sido associada à ocorrência de infecção, inflamação, aterosclerose, resistência à insulina e estresse oxidativo. Algumas estratégias foram testadas para diminuir os efeitos da hepcidina em pacientes com DRC, entretanto, serão necessários mais estudos para avaliar o impacto de sua modulação no manejo da anemia nessa população.

  3. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    PubMed

    Hernández-Cuevas, Nora Adriana; Weber, Christian; Hon, Chung-Chau; Guillen, Nancy

    2014-01-01

    Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  4. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis

    PubMed Central

    Marty, Amber J.; Broman, Aimee T.; Zarnowski, Robert; Dwyer, Teigan G.; Bond, Laura M.; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Ntambi, James M.; Keleş, Sündüz; Kendziorski, Christina; Gauthier, Gregory M.

    2015-01-01

    In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. PMID:26114571

  5. Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis.

    PubMed

    Jiménez, Sergio; Ollat, Nathalie; Deborde, Catherine; Maucourt, Mickaël; Rellán-Álvarez, Rubén; Moreno, María Ángeles; Gogorcena, Yolanda

    2011-03-15

    Iron deficiency induces several responses to iron shortage in plants. Metabolic changes occur to sustain the increased iron uptake capacity of Fe-deficient plants. We evaluated the metabolic changes of three Prunus rootstocks submitted to iron chlorosis and their different responses for tolerance using measurements of metabolites and enzymatic activities. The more tolerant rootstocks Adesoto (Prunus insititia) and GF 677 (Prunus amygdalus×Prunus persica), and the more sensitive Barrier (P. persica×Prunus davidiana) were grown hydroponically in iron-sufficient and -deficient conditions over two weeks. Sugar, organic and amino acid concentrations of root tips were determined after two weeks of iron shortage by proton nuclear magnetic resonance spectroscopy of extracts. Complementary analyses of organic acids were performed by liquid chromatography coupled to mass spectrometry. The major soluble sugars found were glucose and sucrose. The major organic acids were malic and citric acids, and the major amino acid was asparagine. Iron deficiency increased root sucrose, total organic and amino acid concentrations and phosphoenolpyruvate carboxylase activity. After two weeks of iron deficiency, the malic, citric and succinic acid concentrations increased in the three rootstocks, although no significant differences were found among genotypes with different tolerance to iron chlorosis. The tolerant rootstock Adesoto showed higher total organic and amino acid concentrations. In contrast, the susceptible rootstock Barrier showed lower total amino acid concentration and phosphoenolpyruvate carboxylase activity values. These results suggest that the induction of this enzyme activity under iron deficiency, as previously shown in herbaceous plants, indicates the tolerance level of rootstocks to iron chlorosis. The analysis of other metabolic parameters, such as organic and amino acid concentrations, provides complementary information for selection of genotypes tolerant to iron

  6. Persistence of iron limitation in the western subarctic Pacific SEEDS II mesoscale fertilization experiment

    NASA Astrophysics Data System (ADS)

    Wells, Mark L.; Trick, Charles G.; Cochlan, William P.; Beall, Ben

    2009-12-01

    The cumulative evidence from more than a dozen mesoscale iron-enrichment studies in high nitrate low chlorophyll (HNLC) waters demonstrates that iron limitation is widespread and very likely affects atmospheric carbon dioxide and thus global climate. However, the responses of microphytoplankton (>20 μm), predominantly diatoms, vary greatly among these mesoscale experiments even though similar amounts of iron were added, making it difficult to quantitatively incorporate iron effects into global climate models. Nowhere is this difference more dramatic than between the massive bloom observed during Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS) I and the order of magnitude smaller ecosystem response in SEEDS II; two mesocale experiments performed in the same HNLC region of the western subarctic Pacific in different years. Deckboard incubation experiments initiated during the early, middle, and late stages of the 32-day SEEDS II experiment show that while the two iron infusions increased phytoplankton growth, diatoms remained significantly limited by iron availability, despite total dissolved Fe concentrations in the patch being well above the diffusion-limited threshold for rapid diatom growth. This iron limitation was apparent <6 days after the initial iron infusion and was not alleviated by the second, smaller iron infusion. In contrast, smaller phytoplankton (<20 μm) showed a more restricted response to further iron amendments, indicating that their iron nutrition was near optimal. Iron complexed to desferrioximine B, a commonly available siderophore produced by at least one marine bacterium, was poorly available to diatoms throughout the patch evolution, indicating that these diatoms lacked the ability to induce high-affinity iron uptake systems. These results suggest that the strong organic complexation of Fe(III) observed in the SEEDS II-fertilized patch was not compatible with rapid diatom growth. In contrast, iron associated with

  7. Compartmentalization and regulation of iron metabolism proteins protect male germ cells from iron overload.

    PubMed

    Leichtmann-Bardoogo, Yael; Cohen, Lyora A; Weiss, Avital; Marohn, Britta; Schubert, Stephanie; Meinhardt, Andreas; Meyron-Holtz, Esther G

    2012-06-15

    The universal importance of iron, its high toxicity, and complex chemistry present a challenge to biological systems in general and to protected compartments in particular. The high mitotic rate and avid mitochondriogenesis of developing male germ cells imply high iron requirements. Yet access to germ cells is tightly regulated by the blood-testis barrier that protects the meiotic and postmeiotic germ cells. To elucidate how iron is supplied to developing male germ cells, we analyzed iron deposition and iron transport proteins in testes of mice with iron overload and with genetic ablation of the iron regulators Hfe and iron regulatory protein 2. Iron accumulated mainly around seminiferous tubules, and only small amounts localized within the seminiferous tubules. The localization and regulation of proteins involved in iron import, storage, and export such as transferrin, transferrin receptor, the divalent metal transporter-1, cytosolic ferritin, and ferroportin strongly support a model of a largely autonomous iron cycle within seminiferous tubules. We show evidence that ferritin secretion from Sertoli cells may play an important role in iron acquisition of primary spermatocytes. During spermatogenic development iron is carried along from primary spermatocytes to spermatids, and from spermatids iron is recycled to the apical compartment of Sertoli cells, which traffic it back to a new generation of spermatocytes. Losses are replenished by the peripheral circulation. Such an internal iron cycle essentially detaches the iron homeostasis within the seminiferous tubule from the periphery and protects developing germ cells from iron fluctuations. This model explains how compartmentalization can optimize cellular and systemic nutrient homeostasis.

  8. IscR of Rhodobacter sphaeroides functions as repressor of genes for iron-sulfur metabolism and represents a new type of iron-sulfur-binding protein

    PubMed Central

    Remes, Bernhard; Eisenhardt, Benjamin D; Srinivasan, Vasundara; Klug, Gabriele

    2015-01-01

    IscR proteins are known as transcriptional regulators for Fe–S biogenesis. In the facultatively phototrophic bacterium, Rhodobacter sphaeroides IscR is the product of the first gene in the isc-suf operon. A major role of IscR in R. sphaeroides iron-dependent regulation was suggested in a bioinformatic study (Rodionov et al., PLoS Comput Biol 2:e163, 2006), which predicted a binding site in the upstream regions of several iron uptake genes, named Iron-Rhodo-box. Most known IscR proteins have Fe–S clusters featuring (Cys)3(His)1 ligation. However, IscR proteins from Rhodobacteraceae harbor only a single-Cys residue and it was considered unlikely that they can ligate an Fe–S cluster. In this study, the role of R. sphaeroides IscR as transcriptional regulator and sensor of the Fe–S cluster status of the cell was analyzed. A mutant lacking IscR is more impaired in growth under iron limitation than the wild-type and exhibits significantly increased ROS levels in iron-replete and iron-deplete conditions. Expression studies reveal that R. sphaeroides IscR in its cluster-bound form functions as transcriptional repressor of genes involved in iron metabolism by direct binding to the promoter region of genes preceded by the motif. A total of 110 genes are directly or indirectly affected by IscR. Furthermore, IscR possesses a unique Fe–S cluster ligation scheme with only a single cysteine involved. PMID:26235649

  9. Mild copper deficiency alters gene expression of proteins involved in iron metabolism.

    PubMed

    Auclair, Sylvain; Feillet-Coudray, Christine; Coudray, Charles; Schneider, Susanne; Muckenthaler, Martina U; Mazur, Andrzej

    2006-01-01

    Iron and copper homeostasis share common proteins and are therefore closely linked to each other. For example, copper-containing proteins like ceruloplasmin and hephaestin oxidize Fe(2+) during cellular export processes for transport in the circulation bound to transferrin. Indeed, copper deficiency provokes iron metabolism disorders leading to anemia and liver iron accumulation. The aim of the present work was to understand the cross-talk between copper status and iron metabolism. For this purpose we have established dietary copper deficiency in C57BL6 male mice during twelve weeks. Hematological parameters, copper and iron status were evaluated. cDNA microarray studies were performed to investigate gene expression profiles of proteins involved in iron metabolism in the liver, duodenum and spleen. Our results showed that copper deficiency induces microcytic and hypochromic anemia as well as liver iron overload. Gene expression profiles, however, indicate that hepatic and intestinal mRNA expression neither compensates for hepatic iron overload nor the anemia observed in this mouse model. Instead, major modifications of gene expression occurred in the spleen. We observed increased mRNA levels of the transferrin receptors 1 and 2 and of several proteins involved in the heme biosynthesis pathway (ferrochelatase, UroD, UroS,...). These results suggest that copper-deficient mice respond to the deficiency induced anemia by an adaptation leading to an increase in erythrocyte synthesis.

  10. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation.

    PubMed

    Oexle, H; Gnaiger, E; Weiss, G

    1999-11-10

    Iron modulates the expression of the critical citric acid cycle enzyme aconitase via a translational mechanism involving iron regulatory proteins. Thus, the present study was undertaken to investigate the consequences of iron perturbation on citric acid cycle activity, oxidative phosphorylation and mitochondrial respiration in the human cell line K-562. In agreement with previous data iron increases the activity of mitochondrial aconitase while it is reduced upon addition of the iron chelator desferrioxamine (DFO). Interestingly, iron also positively affects three other citric acid cycle enzymes, namely citrate synthase, isocitric dehydrogenase, and succinate dehydrogenase, while DFO decreases the activity of these enzymes. Consequently, iron supplementation results in increased formation of reducing equivalents (NADH) by the citric acid cycle, and thus in increased mitochondrial oxygen consumption and ATP formation via oxidative phosphorylation as shown herein. This in turn leads to downregulation of glucose utilization. In contrast, all these metabolic pathways are reduced upon iron depletion, and thus glycolysis and lactate formation are significantly increased in order to compensate for the decrease in ATP production via oxidative phosphorylation in the presence of DFO. Our results point to a complex interaction between iron homeostasis, oxygen supply and cellular energy metabolism in human cells.

  11. Modulation of iron metabolism by iron chelation regulates intracellular calcium and increases sensitivity to doxorubicin

    PubMed Central

    Yalcintepe, Leman; Halis, Emre

    2016-01-01

    Increased intracellular iron levels can both promote cell proliferation and death, as such; iron has a “two-sided effect” in the delicate balance of human health. Though the role of iron in the development of cancer remains unclear, investigations of iron chelators as anti-tumor agents have revealed promising results. Here, we investigated the influence of iron and desferrioxamine (DFO), the iron chelating agent on intracellular calcium in a human leukemia cell line, K562. Iron uptake is associated with increased reactive oxygen species (ROS) generation. Therefore, we showed that iron also caused dose-dependent ROS generation in K562 cells. The measurement of intracellular calcium was determined using Furo-2 with a fluorescence spectrophotometer. The iron delivery process to the cytoplasmic iron pool was examined by monitoring the fluorescence of cells loaded with calcein-acetoxymethyl. Our data showed that iron increased intracellular calcium, and this response was 8 times higher when cells were incubated with DFO. K562 cells with DFO caused a 3.5 times increase of intracellular calcium in the presence of doxorubicin (DOX). In conclusion, DFO induces intracellular calcium and increases their sensitivity to DOX, a chemotherapeutic agent. PMID:26773173

  12. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse

    PubMed Central

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  13. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ( Iron Snow )

    SciTech Connect

    Lu, S; Chourey, Karuna; REICHE, M; Nietzsche, S; Shah, Manesh B; Hettich, Robert {Bob} L; Kusel, K

    2013-01-01

    Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northern basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.

  14. Abnormal iron metabolism in fibroblasts from a patient with the neurodegenerative disease hereditary ferritinopathy

    PubMed Central

    2010-01-01

    Background Nucleotide duplications in exon 4 of the ferritin light polypeptide (FTL) gene cause the autosomal dominant neurodegenerative disease neuroferritinopathy or hereditary ferritinopathy (HF). Pathologic examination of patients with HF has shown abnormal ferritin and iron accumulation in neurons and glia in the central nervous system (CNS) as well as in cells of other organ systems, including skin fibroblasts. To gain some understanding on the molecular basis of HF, we characterized iron metabolism in primary cultures of human skin fibroblasts from an individual with the FTL c.497_498dupTC mutation. Results Compared to normal controls, HF fibroblasts showed abnormal iron metabolism consisting of increased levels of ferritin polypeptides, divalent metal transporter 1, basal iron content and reactive oxygen species, and decreased levels of transferrin receptor-1 and IRE-IRP binding activity. Conclusions Our data indicates that HF fibroblasts replicate the abnormal iron metabolism observed in the CNS of patients with HF. We propose that HF fibroblasts are a unique cellular model in which to study the role of abnormal iron metabolism in the pathogenesis of HF without artifacts derived from over-expression or lack of endogenous translational regulatory elements. PMID:21067605

  15. Haemolysis and Perturbations in the Systemic Iron Metabolism of Suckling, Copper-Deficient Mosaic Mutant Mice – An Animal Model of Menkes Disease

    PubMed Central

    Lenartowicz, Małgorzata; Starzyński, Rafał R.; Krzeptowski, Wojciech; Grzmil, Paweł; Bednarz, Aleksandra; Ogórek, Mateusz; Pierzchała, Olga; Staroń, Robert; Gajowiak, Anna; Lipiński, Paweł

    2014-01-01

    The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism. PMID:25247420

  16. Genetic modification of iron metabolism in mice affects the gut microbiota.

    PubMed

    Buhnik-Rosenblau, Keren; Moshe-Belizowski, Shirly; Danin-Poleg, Yael; Meyron-Holtz, Esther G

    2012-10-01

    The composition of the gut microbiota is affected by environmental factors as well as host genetics. Iron is one of the important elements essential for bacterial growth, thus we hypothesized that changes in host iron homeostasis, may affect the luminal iron content of the gut and thereby the composition of intestinal bacteria. The iron regulatory protein 2 (Irp2) and one of the genes mutated in hereditary hemochromatosis Hfe , are both proteins involved in the regulation of systemic iron homeostasis. To test our hypothesis, fecal metal content and a selected spectrum of the fecal microbiota were analyzed from Hfe-/-, Irp2-/- and their wild type control mice. Elevated levels of iron as well as other minerals in feces of Irp2-/- mice compared to wild type and Hfe-/- mice were observed. Interestingly significant variation in the general fecal-bacterial population-patterns was observed between Irp2-/- and Hfe-/- mice. Furthermore the relative abundance of five species, mainly lactic acid bacteria, was significantly different among the mouse lines. Lactobacillus (L.) murinus and L. intestinalis were highly abundant in Irp2-/- mice, Enterococcus faecium species cluster and a species most similar to Olsenella were highly abundant in Hfe-/- mice and L. johnsonii was highly abundant in the wild type mice. These results suggest that deletion of iron metabolism genes in the mouse host affects the composition of its intestinal bacteria. Further studying the relationship between gut microbiota and genetic mutations affecting systemic iron metabolism in human should lead to clinical implications.

  17. Effects of Iron Limitation on Photosystem II Composition and Light Utilization in Dunaliella tertiolecta.

    PubMed

    Vassiliev, I. R.; Kolber, Z.; Wyman, K. D.; Mauzerall, D.; Shukla, V. K.; Falkowski, P. G.

    1995-11-01

    The effects of iron limitation on photosystem II (PSII) composition and photochemical energy conversion efficiency were studied in the unicellular chlorophyte alga Dunaliella tertiolecta. The quantum yield of photochemistry in PSII, inferred from changes in variable fluorescence normalized to the maximum fluorescence yield, was markedly lower in iron-limited cells and increased 3-fold within 20 h following the addition of iron. The decrease in the quantum yield of photochemistry was correlated with increased fluorescence emission from the antenna. In iron-limited cells, flash intensity saturation profiles of variable fluorescence closely followed a cumulative one-hit Poisson model, suggesting that PSII reaction centers are energetically isolated, whereas in iron-replete cells, the slope of the profile was steeper and the calculated probability of energy transfer between reaction centers increased to >0.6. Immunoassays revealed that in iron-limited cells the reaction center proteins, D1, CP43, and CP47, were markedly reduced relative to the peripheral light-harvesting Chl-protein complex of PSII, whereas the [alpha] subunit of cytochrome b559 was about 10-fold higher. Spectroscopic analysis established that the cytochrome b559 peptide did not contain an associated functional heme. We conclude that the photochemical conversion of absorbed excitation energy in iron-limited cells is limited by the number of photochemical traps per unit antenna.

  18. Red blood cell and iron metabolism during space flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2002-01-01

    Space flight anemia is a widely recognized phenomenon in astronauts. Reduction in circulating red blood cells and plasma volume results in a 10% to 15% decrement in circulatory volume. This effect appears to be a normal physiologic adaptation to weightlessness and results from the removal of newly released blood cells from the circulation. Iron availability increases, and (in the few subjects studied) iron stores increase during long-duration space flight. The consequences of these changes are not fully understood.

  19. [Effect of hepcidin on iron metabolism in athletes].

    PubMed

    Domínguez, Raúl; Garnacho-Castaño, Manuel Vicente; Maté-Muñoz, José Luis

    2014-12-01

    The role of iron in the human body is essential, and athletes must always try to keep an adequate iron status. Hepcidin is proposed as the main hormone responsible for the control of iron reserves in the body, given its ability to induce degradation of ferroportin. The action of hepcidin on ferroportin leads to a decreased dietary iron absorption, as well as to a decrease in macrophages. Several factors such as the iron status, the amount of dietary iron, the inflammation, the hypoxia, the testosterone and the physical exercise have been pointed out as affecting the synthesis of hepcidin. This study has aimed at analysing the researches on hepcidin response to exercise, as well as designing a specific strategy to prevent a potential ferropenic status in athletes. The main findings are an association between exercise at an intensity over 65% VO2max and transient increases in the synthesis of hepcidin, and a possible regulatory effect of intermittent hypoxic stimuli in the early post-exercise recovery. Other factors such as the training volume, sex, kind of exercise or the type of surface where the training takes place do not seem to affect the response of hepcidin to exercise.

  20. Clinical Consequences of New Insights in the Pathophysiology of Disorders of Iron and Heme Metabolism.

    PubMed

    Brittenham, Gary M.; Weiss, Günter; Brissot, Pierre; Lainé, Fabrice; Guillygomarc'h, Anne; Guyader, Dominique; Moirand, Romain; Deugnier, Yves

    2000-01-01

    This review examines the clinical consequences for the practicing hematologist of remarkable new insights into the pathophysiology of disorders of iron and heme metabolism. The familiar proteins of iron transport and storage-transferrin, transferrin receptor, and ferritin-have recently been joined by a host of newly identified proteins that play critical roles in the molecular management of iron homeostasis. These include the iron-regulatory proteins (IRP-1 and -2), HFE (the product of the HFE gene that is mutated in most patients with hereditary hemochromatosis), the divalent metal transporter (DMT1), transferrin receptor 2, ceruloplasmin, hephaestin, the "Stimulator of Fe Transport" (SFT), frataxin, ferroportin 1 and others. The growing appreciation of the roles of these newly identified proteins has fundamental implications for the clinical understanding and laboratory evaluation of iron metabolism and its alterations with iron deficiency, iron overload, infection, and inflammation. In Section I, Dr. Brittenham summarizes current concepts of body and cellular iron supply and storage and reviews new means of evaluating the full range of body iron stores including genetic testing for mutations in the HFE gene, measurement of serum ferritin iron, transferrin receptor, reticulocyte hemoglobin content and measurement of tissue iron by computed tomography, magnetic resonance imaging and magnetic susceptometry using superconducting quantum interference device (SQUID) instrumentation. In Section II, Dr. Weiss discusses the improved understanding of the molecular mechanisms underlying alterations in iron metabolism due to chronic inflammatory disorders. The anemia of chronic disorders remains the most common form of anemia found in hospitalized patients. The network of interactions that link iron metabolism with cellular immune effector functions involving pro- and anti-inflammatory cytokines, acute phase proteins and oxidative stress is described, with an emphasis on

  1. [Influence of dinitrosyl iron complexes on blood metabolism in rats with thermal trauma].

    PubMed

    Martusevich, A K; Solov'eva, A G; Peteriagin, S P; Davydiuk, A V

    2014-01-01

    The dynamics in the oxidative and energy metabolism and enzyme systems of blood detoxification in animals with thermal trauma injected with dinitrosyl iron complexes was explored. The positive effect of dinitrosyl iron complexes on the state of blood pro- and antioxidant systems in animals with experimental thermal injury having profound oxidative stress is shown. This effect is observed as a considerable reduction of the intensity (normalization) of lipid peroxidation processes against significant elevation of antioxidant potential of blood plasma. This tendency was also fixed in erythrocyte membranes. It is also stated, that dinitrosyl iron complexes clearly normalized erythrocyte energy metabolism already by the 3rd day after trauma. In addition, infusions of dinitrosyl iron complexes caused marked stimulation of aldehyde dehydrogenase catalytic activity in burned rats via mechanism, associated with enzyme detoxification properties.

  2. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.

    PubMed

    Amoedo, N D; Obre, E; Rossignol, R

    2017-02-16

    The search for new drugs capable of blocking the metabolic vulnerabilities of human tumors has now entered the clinical evaluation stage, but several projects already failed in phase I or phase II. In particular, very promising in vitro studies could not be translated in vivo at preclinical stage and beyond. This was the case for most glycolysis inhibitors that demonstrated systemic toxicity. A more recent example is the inhibition of glutamine catabolism in lung adenocarcinoma that failed in vivo despite a strong addiction of several cancer cell lines to glutamine in vitro. Such contradictory findings raised several questions concerning the optimization of drug discovery strategies in the field of cancer metabolism. For instance, the cell culture models in 2D or 3D might already show strong limitations to mimic the tumor micro- and macro-environment. The microenvironment of tumors is composed of cancer cells of variegated metabolic profiles, supporting local metabolic exchanges and symbiosis, but also of immune cells and stroma that further interact with and reshape cancer cell metabolism. The macroenvironment includes the different tissues of the organism, capable of exchanging signals and fueling the tumor 'a distance'. Moreover, most metabolic targets were identified from their increased expression in tumor transcriptomic studies, or from targeted analyses looking at the metabolic impact of particular oncogenes or tumor suppressors on selected metabolic pathways. Still, very few targets were identified from in vivo analyses of tumor metabolism in patients because such studies are difficult and adequate imaging methods are only currently being developed for that purpose. For instance, perfusion of patients with [(13)C]-glucose allows deciphering the metabolomics of tumors and opens a new area in the search for effective targets. Metabolic imaging with positron emission tomography and other techniques that do not involve [(13)C] can also be used to evaluate tumor

  3. Effects of Iron on Vitamin D Metabolism: A Systematic Review

    PubMed Central

    Azizi-Soleiman, Fatemeh; Vafa, Mohammadreza; Abiri, Behnaz; Safavi, Morteza

    2016-01-01

    Vitamin D is a prohormone nutrient, which is involved in skeletal and extra-skeletal functions. Iron is another essential nutrient that is necessary for the production of red blood cells and oxygen transport. This element plays important roles in enzymatic systems including those required for Vitamin D activation. To the best of our knowledge, there is no exclusive review on the relationship between iron deficiency anemia (IDA), as the most prevalent type of anemia, and Vitamin D deficiency and the effect of recovery from iron deficiency on Vitamin D status. The aim of this study was to conduct a systematic search of observational and clinical trials in this field. The databases of PubMed, ProQuest, Cochrane Library, ISI Web of Knowledge, and SCOPUS were searched comprehensively. English-language human studies conducted on iron deficient patients or interventions on the effect of iron therapy on Vitamin D were extracted (n = 10). Our initial search yielded 938 articles. A total of 23 papers met the inclusion criteria. Thirteen studies were excluded because they were not relevant or not defining anemia types. The final analysis was performed on ten articles (3 cross-sectional and 7 interventional studies). Observational data indicated a positive relationship between iron status and Vitamin D, while trials did not support the effectiveness of iron supplementation on improving Vitamin D status. The mechanism underlying this association may involve the reduction of the activation of hydroxylases that yield calcitriol. Future randomized controlled trials with large sample sizes and proper designs are needed to highlight underlying mechanisms. PMID:28028427

  4. Iron Limitation and the Role of Siderophores in Marine Synechococcus

    DTIC Science & Technology

    2009-06-01

    the pigments phycourobilin to phycoerythrobilin expressed as absorbance at 495 and 545 nm respectively. 10 A. R. Rivers, R. W. Jakuba and E. A. Webb...even the mechanism that first transports Fe through the outer membrane is undefined (Webb et al., 2001). As Fe is a cofactor in many photosynthetic ...K., and Straus, N.A. (1992) An iron stress operon involved in photosynthetic electron transport in the marine cyanobacterium Synechococcus sp. PCC

  5. New perspectives on the molecular basis of the interaction between oxygen homeostasis and iron metabolism

    PubMed Central

    Recalcati, Stefania; Gammella, Elena; Cairo, Gaetano

    2015-01-01

    Oxygen and iron are two elements closely related from a (bio)chemical point of view. Moreover, they share the characteristic of being indispensable for life, while also being potentially toxic. Therefore, their level is strictly monitored, and sophisticated pathways have evolved to face variations in either element. In addition, the expression of proteins involved in iron and oxygen metabolism is mainly controlled by a complex interplay of proteins that sense both iron levels and oxygen availability (ie, prolyl hydroxylases, hypoxia inducible factors, and iron regulatory proteins), and in turn activate feedback mechanisms to re-establish homeostasis. In this review, we describe how cells and organisms utilize these intricate networks to regulate responses to changes in oxygen and iron levels. We also explore the role of these pathways in some pathophysiological settings. PMID:27774486

  6. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress.

    PubMed

    Koskenkorva-Frank, Taija S; Weiss, Günter; Koppenol, Willem H; Burckhardt, Susanna

    2013-12-01

    Production of minute concentrations of superoxide (O2(*-)) and nitrogen monoxide (nitric oxide, NO*) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance-a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2(*-), hydrogen peroxide (H2O2), and NO*. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2(*-), H2O2, NO*, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us

  7. Modeling iron limitation of primary production in the coastal Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Fiechter, Jerome; Moore, Andrew M.; Edwards, Christopher A.; Bruland, Kenneth W.; Di Lorenzo, Emanuele; Lewis, Craig V. W.; Powell, Thomas M.; Curchitser, Enrique N.; Hedstrom, Kate

    2009-12-01

    A lower trophic level NPZD ecosystem model with explicit iron limitation on nutrient uptake is coupled to a three-dimensional coastal ocean circulation model to investigate the regional ecosystem dynamics of the northwestern coastal Gulf of Alaska (CGOA). Iron limitation is included in the NPZD model by adding governing equations for two micro-nutrient compartments: dissolved iron and phytoplankton-associated iron. The model has separate budgets for nitrate (the limiting macro-nutrient in the standard NPZD model) and for iron, with iron limitation on nitrate uptake being imposed as a function of the local phytoplankton realized Fe:C ratio. While the ecosystem model represents a simple approximation of the complex lower trophic level ecosystem of the northwestern CGOA, simulated chlorophyll concentrations reproduce the main characteristics of the spring bloom, high shelf primary production, and "high-nutrient, low-chlorophyll" (HNLC) environment offshore. Over the 1998-2004 period, model-data correlations based on spatially averaged, monthly mean chlorophyll concentrations are on average 0.7, with values as high as 0.9 and as low as 0.5 for individual years. The model also provides insight on the importance of micro- and macro-nutrient limitation on the shelf and offshore, with the shelfbreak region acting as a transition zone where both nitrate and iron availability significantly impact phytoplankton growth. Overall, the relative simplicity of the ecosystem model provides a useful platform to perform long-term simulations to investigate the seasonal and interannual CGOA ecosystem variability, as well as to conduct sensitivity studies to evaluate the robustness of simulated fields to ecosystem model parameterization and forcing. The ability of the model to differentiate between nitrate-limited, and iron-limited growth conditions, and to identify their spatial and temporal occurrences, is also a first step towards understanding the role of environmental gradients in

  8. MYB10 and MYB72 Are Required for Growth under Iron-Limiting Conditions

    PubMed Central

    Palmer, Christine M.; Hindt, Maria N.; Schmidt, Holger; Clemens, Stephan; Guerinot, Mary Lou

    2013-01-01

    Iron is essential for photosynthesis and is often a limiting nutrient for plant productivity. Plants respond to conditions of iron deficiency by increasing transcript abundance of key genes involved in iron homeostasis, but only a few regulators of these genes have been identified. Using genome-wide expression analysis, we searched for transcription factors that are induced within 24 hours after transferring plants to iron-deficient growth conditions. Out of nearly 100 transcription factors shown to be up-regulated, we identified MYB10 and MYB72 as the most highly induced transcription factors. Here, we show that MYB10 and MYB72 are functionally redundant and are required for plant survival in alkaline soil where iron availability is greatly restricted. myb10myb72 double mutants fail to induce transcript accumulation of the nicotianamine synthase gene NAS4. Both myb10myb72 mutants and nas4-1 mutants have reduced iron concentrations, chlorophyll levels, and shoot mass under iron-limiting conditions, indicating that these genes are essential for proper plant growth. The double myb10myb72 mutant also showed nickel and zinc sensitivity, similar to the nas4 mutant. Ectopic expression of NAS4 rescues myb10myb72 plants, suggesting that loss of NAS4 is the primary defect in these plants and emphasizes the importance of nicotianamine, an iron chelator, in iron homeostasis. Overall, our results provide evidence that MYB10 and MYB72 act early in the iron-deficiency regulatory cascade to drive gene expression of NAS4 and are essential for plant survival under iron deficiency. PMID:24278034

  9. Experimental hemochromatosis due to MHC class I HFE deficiency: Immune status and iron metabolism

    PubMed Central

    Bahram, Seiamak; Gilfillan, Susan; Kühn, Lukas C.; Moret, Rémy; Schulze, Johannes B.; Lebeau, Annette; Schümann, Klaus

    1999-01-01

    The puzzling linkage between genetic hemochromatosis and histocompatibility loci became even more so when the gene involved, HFE, was identified. Indeed, within the well defined, mainly peptide-binding, MHC class I family of molecules, HFE seems to perform an unusual yet essential function. As yet, our understanding of HFE function in iron homeostasis is only partial; an even more open question is its possible role in the immune system. To advance on both of these avenues, we report the deletion of HFE α1 and α2 putative ligand binding domains in vivo. HFE-deficient animals were analyzed for a comprehensive set of metabolic and immune parameters. Faithfully mimicking human hemochromatosis, mice homozygous for this deletion develop iron overload, characterized by a higher plasma iron content and a raised transferrin saturation as well as an elevated hepatic iron load. The primary defect could, indeed, be traced to an augmented duodenal iron absorption. In parallel, measurement of the gut mucosal iron content as well as iron regulatory proteins allows a more informed evaluation of various hypotheses regarding the precise role of HFE in iron homeostasis. Finally, an extensive phenotyping of primary and secondary lymphoid organs including the gut provides no compelling evidence for an obvious immune-linked function for HFE. PMID:10557317

  10. Glucose metabolism in the Belgrade rat, a model of iron-loading anemia.

    PubMed

    Jia, Xuming; Kim, Jonghan; Veuthey, Tania; Lee, Chih-Hao; Wessling-Resnick, Marianne

    2013-06-15

    The iron-diabetes hypothesis proposes an association between iron overload and glucose metabolism that is supported by a number of epidemiological studies. The prevalence of type 2 diabetes in patients with hereditary hemochromatosis and iron-loading thalassemia supports this hypothesis. The Belgrade rat carries a mutation in the iron transporter divalent metal transporter 1 (DMT1) resulting in iron-loading anemia. In this study, we characterized the glycometabolic status of the Belgrade rat. Belgrade rats displayed normal glycemic control. Insulin signaling and secretion were not impaired, and pancreatic tissue did not incur damage despite high levels of nonheme iron. These findings suggest that loss of DMT1 protects against oxidative damage to the pancreas and helps to maintain insulin sensitivity despite iron overload. Belgrade rats had lower body weight but increased food consumption compared with heterozygous littermates. The unexpected energy balance was associated with increased urinary glucose output. Increased urinary excretion of electrolytes, including iron, was also observed. Histopathological evidence suggests that altered renal function is secondary to changes in kidney morphology, including glomerulosclerosis. Thus, loss of DMT1 appears to protect the pancreas from injury but damages the integrity of kidney structure and function.

  11. Modulation of iron metabolism in aging and in Alzheimer's disease: relevance of the choroid plexus

    PubMed Central

    Mesquita, Sandro D.; Ferreira, Ana C.; Sousa, João C.; Santos, Nadine C.; Correia-Neves, Margarida; Sousa, Nuno; Palha, Joana A.; Marques, Fernanda

    2012-01-01

    Iron is essential for mammalian cellular homeostasis. However, in excess, it promotes free radical formation and is associated with aging-related progressive deterioration and with neurodegenerative disorders such as Alzheimer's disease (AD). There are no mechanisms to excrete iron, which makes iron homeostasis a very tightly regulated process at the level of the intestinal absorption. Iron is believed to reach the brain through receptor-mediated endocytosis of iron-bound transferrin by the brain barriers, the blood-cerebrospinal fluid (CSF) barrier, formed by the choroid plexus (CP) epithelial cells and the blood-brain barrier (BBB) formed by the endothelial cells of the brain capillaries. Importantly, the CP epithelial cells are responsible for producing most of the CSF, the fluid that fills the brain ventricles and the subarachnoid space. Recently, the finding that the CP epithelial cells display all the machinery to locally control iron delivery into the CSF may suggest that the general and progressive senescence of the CP may be at the basis of the impairment of regional iron metabolism, iron-mediated toxicity, and the increase in inflammation and oxidative stress that occurs with aging and, particularly, in AD. PMID:22661928

  12. Glucose metabolism in the Belgrade rat, a model of iron-loading anemia

    PubMed Central

    Jia, Xuming; Kim, Jonghan; Veuthey, Tania; Lee, Chih-Hao

    2013-01-01

    The iron-diabetes hypothesis proposes an association between iron overload and glucose metabolism that is supported by a number of epidemiological studies. The prevalence of type 2 diabetes in patients with hereditary hemochromatosis and iron-loading thalassemia supports this hypothesis. The Belgrade rat carries a mutation in the iron transporter divalent metal transporter 1 (DMT1) resulting in iron-loading anemia. In this study, we characterized the glycometabolic status of the Belgrade rat. Belgrade rats displayed normal glycemic control. Insulin signaling and secretion were not impaired, and pancreatic tissue did not incur damage despite high levels of nonheme iron. These findings suggest that loss of DMT1 protects against oxidative damage to the pancreas and helps to maintain insulin sensitivity despite iron overload. Belgrade rats had lower body weight but increased food consumption compared with heterozygous littermates. The unexpected energy balance was associated with increased urinary glucose output. Increased urinary excretion of electrolytes, including iron, was also observed. Histopathological evidence suggests that altered renal function is secondary to changes in kidney morphology, including glomerulosclerosis. Thus, loss of DMT1 appears to protect the pancreas from injury but damages the integrity of kidney structure and function. PMID:23599042

  13. Phosphate and iron limitation of phytoplankton biomass in Lake Tahoe

    USGS Publications Warehouse

    Chang, Cecily C.Y.; Kuwabara, J.S.; Pasilis, S.P.

    1992-01-01

    Bioassays were carried out to assess the response of inoculated, single-species diatom populations (Cyclotella meneghiniana and Aulocosiera italica) to additions of synthetic chelators and phosphate. A chemical speciation model along with the field data was also used to predict how trace metal speciation, and hence bioavailability, was affected by the chelator additions. Results suggest that phosphate was limiting to phytoplankton biomass. Other solutes, Fe in particular, may also exert controls on biomass. Nitrate limitation seems less likely, although Fe-limiting conditions may have led to an effective N limitation because algae require Fe to carry out nitrate reduction. -from Authors

  14. Orphan nuclear receptor SHP regulates iron metabolism through inhibition of BMP6-mediated hepcidin expression

    PubMed Central

    Kim, Don-Kyu; Kim, Yong-Hoon; Jung, Yoon Seok; Kim, Ki-Sun; Jeong, Jae-Ho; Lee, Yong-Soo; Yuk, Jae-Min; Oh, Byung-Chul; Choy, Hyon E.; Dooley, Steven; Muckenthaler, Martina U.; Lee, Chul-Ho; Choi, Hueng-Sik

    2016-01-01

    Small heterodimer partner (SHP) is a transcriptional corepressor regulating diverse metabolic processes. Here, we show that SHP acts as an intrinsic negative regulator of iron homeostasis. SHP-deficient mice maintained on a high-iron diet showed increased serum hepcidin levels, decreased expression of the iron exporter ferroportin as well as iron accumulation compared to WT mice. Conversely, overexpression of either SHP or AMP-activated protein kinase (AMPK), a metabolic sensor inducing SHP expression, suppressed BMP6-induced hepcidin expression. In addition, an inhibitory effect of AMPK activators metformin and AICAR on BMP6-mediated hepcidin gene expression was significantly attenuated by ablation of SHP expression. Interestingly, SHP physically interacted with SMAD1 and suppressed BMP6-mediated recruitment of the SMAD complex to the hepcidin gene promoter by inhibiting the formation of SMAD1 and SMAD4 complex. Finally, overexpression of SHP and metformin treatment of BMP6 stimulated mice substantially restored hepcidin expression and serum iron to baseline levels. These results reveal a previously unrecognized role for SHP in the transcriptional control of iron homeostasis. PMID:27688041

  15. Iron Limitation Triggers Early Egress by the Intracellular Bacterial Pathogen Legionella pneumophila

    PubMed Central

    Zheng, Huaixin; VanRheenen, Susan M.; Ghosh, Soma; Cianciotto, Nicholas P.; Isberg, Ralph R.

    2016-01-01

    Legionella pneumophila is an intracellular bacterial pathogen that replicates in alveolar macrophages, causing a severe form of pneumonia. Intracellular growth of the bacterium depends on its ability to sequester iron from the host cell. In the L. pneumophila strain 130b, one mechanism used to acquire this essential nutrient is the siderophore legiobactin. Iron-bound legiobactin is imported by the transport protein LbtU. Here, we describe the role of LbtP, a paralog of LbtU, in iron acquisition in the L. pneumophila strain Philadelphia-1. Similar to LbtU, LbtP is a siderophore transport protein and is required for robust growth under iron-limiting conditions. Despite their similar functions, however, LbtU and LbtP do not contribute equally to iron acquisition. The Philadelphia-1 strain lacking LbtP is more sensitive to iron deprivation in vitro. Moreover, LbtP is important for L. pneumophila growth within macrophages while LbtU is dispensable. These results demonstrate that LbtP plays a dominant role over LbtU in iron acquisition. In contrast, loss of both LbtP and LbtU does not impair L. pneumophila growth in the amoebal host Acanthamoeba castellanii, demonstrating a host-specific requirement for the activities of these two transporters in iron acquisition. The growth defect of the ΔlbtP mutant in macrophages is not due to alterations in growth kinetics. Instead, the absence of LbtP limits L. pneumophila replication and causes bacteria to prematurely exit the host cell. These results demonstrate the existence of a preprogrammed exit strategy in response to iron limitation that allows L. pneumophila to abandon the host cell when nutrients are exhausted. PMID:27185787

  16. Sleep Disorders in Parkinson’s Disease: Clinical Features, Iron Metabolism and Related Mechanism

    PubMed Central

    Yu, Shu-yang; Sun, Li; Liu, Zhuo; Huang, Xi-yan; Zuo, Li-jun; Cao, Chen-jie; Zhang, Wei; Wang, Xiao-min

    2013-01-01

    Objective To investigate clinical features, iron metabolism and neuroinflammation in Parkinson’s disease (PD) patients with sleep disorders (SD). Methods 211 PD patients were evaluated by Pittsburgh Sleep Quality Index (PSQI) and a body of scales for motor symptoms and non-motor symptoms. 94 blood and 38 cerebral spinal fluid (CSF) samples were collected and iron and its metabolism-relating proteins, neuroinflammatory factors were detected and analyzed. Results 136 cases (64.5%) of PD patients were accompanied by SD. Factor with the highest score in PSQI was daytime dysfunction. Depression, restless leg syndrome, autonomic symptoms and fatigue contributed 68.6% of the variance of PSQI score. Transferrin level in serum and tumor necrosis factor–α level in CSF decreased, and the levels of iron, transferrin, lactoferrin and prostaglandin E2 in CSF increased in PD patients with SD compared with those without SD. In CSF, prostaglandin E2 level was positively correlated with the levels of transferrin and lactoferrin, and tumor necrosis factor–α level was negatively correlated with the levels of iron, transferrin and lactoferrin in CSF. Conclusions Depression, restless leg syndrome, autonomic disorders and fatigue are the important contributors for the poor sleep in PD patients. Abnormal iron metabolism may cause excessive iron deposition in brain and be related to SD in PD patients through dual potential mechanisms, including neuroinflammation by activating microglia and neurotoxicity by targeting neurons. Hence, inhibition of iron deposition-related neuroinflammation and neurotoxicity may cast a new light for drug development for SD in PD patients. PMID:24376607

  17. Stoichiometry, Metabolism and Nutrient Limitation Across the Periodic Table in Natural Flowing-Water Chemostats

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Nifong, R. L.; Kurz, M. J.; Cropper, W. P.; Martin, J. B.

    2014-12-01

    Relative supplies of macro and micronutrients (C,N,P, various metals), along with light and water, controls ecosystem metabolism, trophic energy transfer and community structure. Here we test the hypothesis, using measurements from 41 spring-fed rivers in Florida, that tissue stoichiometry indicates autotroph nutrient limitation status. Low variation in discharge, temperature and chemical composition within springs, but large variation across springs creates an ideal setting to assess the relationship between limitation and resource supply. Molar N:P ranges from 0.4 to 90, subjecting autotrophs to dramatically different nutrient supply. Over this gradient, species-specific autotroph tissue C:N:P ratios are strictly homeostatic, and with no evidence that nutrient supply affects species composition. Expanding to include 19 metals and micronutrients revealed autotrophs are more plastic in response to micronutrient variation, particularly for iron and manganese whose supply fluxes are small compared to biotic demand. Using a Droop model modified to reflect springs conditions (benthic production, light limitation, high hydraulic turnover), we show that tissue stoichiometry transitions from homeostatic to plastic with the onset of nutrient limitation, providing a potentially powerful new tool for predicting nutrient limitation and thus eutrophication in flowing waters.

  18. Mitochondria: A crossroads for lipid metabolism defect in neurodegeneration with brain iron accumulation diseases.

    PubMed

    Aoun, Manar; Tiranti, Valeria

    2015-06-01

    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of brain iron deposition syndromes that lead to mixed extrapyramidal features and progressive dementia. Exact pathologic mechanism of iron deposition in NBIA remains unknown. However, it is becoming increasingly evident that many neurodegenerative diseases are hallmarked by metabolic dysfunction that often involves altered lipid profile. Among the identified disease genes, four encode for proteins localized in mitochondria, which are directly or indirectly implicated in lipid metabolism: PANK2, CoASY, PLA2G6 and C19orf12. Mutations in PANK2 and CoASY, both implicated in CoA biosynthesis that acts as a fatty acyl carrier, lead, respectively, to PKAN and CoPAN forms of NBIA. Mutations in PLA2G6, which plays a key role in the biosynthesis and remodeling of membrane phospholipids including cardiolipin, lead to PLAN. Mutations in C19orf12 lead to MPAN, a syndrome similar to that caused by mutations in PANK2 and PLA2G6. Although the function of C19orf12 is largely unknown, experimental data suggest its implication in mitochondrial homeostasis and lipid metabolism. Altogether, the identified mutated proteins localized in mitochondria and associated with different NBIA forms support the concept that dysfunctions in mitochondria and lipid metabolism play a crucial role in the pathogenesis of NBIA. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.

  19. Estrogen contributes to regulating iron metabolism through governing ferroportin signaling via an estrogen response element.

    PubMed

    Qian, Yi; Yin, Chunyang; Chen, Yue; Zhang, Shuping; Jiang, Li; Wang, Fudi; Zhao, Meirong; Liu, Sijin

    2015-05-01

    Ferroportin (FPN) is the only known iron exporter in mammalian cells, and is universally expressed in most types of cells. FPN signaling plays a crucial role in maintaining iron homeostasis through governing the level of intracellular iron. Serum iron storage is conversely related with the estrogen level in the female bodies, and women in post-menopause are possibly subjected to iron retention. However, the potential effects of estrogen on iron metabolism are not clearly understood. Here, FPN mRNA transcription in all selected estrogen receptor positive (ER+) cells was significantly reduced upon 17β-estradiol (E2) treatment; and this inhibitory effect could be attenuated by ER antagonist tamoxifen. Likewise, in murine bone marrow-derived macrophages (BMDMs), FPN reduction with elevated intracellular iron (reflected by increased ferritin) was observed in response to E2; however, ferritin level barely responded to E2 in FPN-null BMDMs. The observation of inhibition of FPN mRNA expression was not replicated in ER(-) cells upon E2. A functional estrogen response element (ERE) was identified within the promoter of FPN, and this ERE was responsible for the suppressive effect of E2 on FPN expression. Moreover, ovariectomized (OVX) and sham-operated (SHAM) mice were used to further confirm the in vitro finding. The expression of hepatic FPN was induced in OVX mice, compared to that in the SHAM mice. Taken together, our results demonstrated that estrogen is involved in regulating FPN expression through a functional ERE on its promoter, providing additional insights into a vital role of estrogen in iron metabolism.

  20. The Thermodynamics and Kinetics of Iron Redox Metabolism in Hot Spring Ecosystems

    NASA Astrophysics Data System (ADS)

    St Clair, B. E.; Shock, E.

    2012-12-01

    The oxidation of ferrous iron and the reduction of ferric minerals are widespread sources of metabolic energy for microorganisms in hot spring ecosystems. How these energy sources are used can be determined by combining thermodynamic calculations with kinetic experiments. By measuring concentrations of ferrous iron, total iron, pH, dissolved hydrogen and oxygen, as well as temperature and many other parameters in hot springs at Yellowstone National Park, we can calculate chemical affinities of iron redox reactions, which reveal the maximum amount of energy an organism can derive from the catalysis of a given reaction. Iron redox reactions typically involve protons, and energy yields are greatly affected by pH. The heterotrophic reduction of ferric minerals typically consumes a large stoichiometric number of protons compared to the other components. For example, the reduction of hematite (Fe2O3), to ferrous ions with glucose requires 48 moles of protons per mole of glucose oxidized. Calculations indicate this proton requirement increases the energy yield with decreasing pH. The opposite trend is observed for iron oxidation reactions. The autotrophic oxidation of ferrous iron to hematite releases four protons per mole of hematite formed. As a consequence, the energy yield from this reaction decreases with decreasing pH. How effectively energy sources are tapped depends on the efficiencies of microbial metabolism compared with the rates of abiotic mechanisms for the same redox reactions. Experiments were performed across the pH spectrum on isolated sediments incubated in situ and assayed for biological oxidation and reduction by monitoring changing concentrations of Fe2+. In hot springs with pH values <2, particularly those with large gas flows, abiological reduction is rapid. Biological reduction, nevertheless, occasionally proceeded faster than the abiological rate. The quick abiological reduction rate, combined with the high solubility of ferrous iron, leads to

  1. Effects of Iron Overload on Ascorbic Acid Metabolism*

    PubMed Central

    Wapnick, A. A.; Lynch, S. R.; Krawitz, P.; Seftel, H. C.; Charlton, R. W.; Bothwell, T. H.

    1968-01-01

    Studies of the ascorbic acid status in two subjects with idiopathic haemochromatosis and in 12 with transfusional siderosis showed that all had decreased levels of white cell ascorbic acid. The urinary excretion of ascorbic acid was also diminished in those subjects in whom such measurements were made. The administration of ascorbic acid was followed by only a small rise in the urinary ascorbic acid output, while the oxalic acid levels (measured in two subjects) showed a significant rise. These findings resemble those described in siderotic Bantu, and support the thesis that increased iron stores lead to irreversible oxidation of some of the available ascorbic acid. PMID:5673960

  2. Effects of iron overload on ascorbic acid metabolism.

    PubMed

    Wapnick, A A; Lynch, S R; Krawitz, P; Seftel, H C; Charlton, R W; Bothwell, T H

    1968-09-21

    Studies of the ascorbic acid status in two subjects with idiopathic haemochromatosis and in 12 with transfusional siderosis showed that all had decreased levels of white cell ascorbic acid. The urinary excretion of ascorbic acid was also diminished in those subjects in whom such measurements were made. The administration of ascorbic acid was followed by only a small rise in the urinary ascorbic acid output, while the oxalic acid levels (measured in two subjects) showed a significant rise. These findings resemble those described in siderotic Bantu, and support the thesis that increased iron stores lead to irreversible oxidation of some of the available ascorbic acid.

  3. Seasonally dependent iron limitation of nitrogen fixation in tropical forests of karst landscapes

    NASA Astrophysics Data System (ADS)

    Winbourne, J. B.; Brewer, S.; Houlton, B. Z.

    2015-12-01

    Limestone tropical forests in karst topography are one of the most poorly studied ecosystems on Earth, and has been substantially cleared by human activities throughout much of Central America. This ecosystem is noted for its high level of plant productivity, biomass, endemism and biological diversity compared to nearby neighboring tropical forests on volcanic rock substrates (Brewer et al. 2002). A question remains as to how limestone tropical forests are able to maintain the high nutrient demands of plant photosynthesis and tree biomass growth. Here, we demonstrate that rates of nitrogen (N) fixation are higher in limestone versus volcanic soil substrates, with direct evidence for the emergence of seasonally dependent iron limitation of N fixation in limestone tropical forest. N fixation rates showed a three-fold increase in response to iron additions, especially during the wet season when N demands of the forest trees are highest. In contrast, adjacent forests growing on the more classical acidic volcanic soils showed no response to iron or other nutrient additions. Biologically available pools of iron were exceedingly low in the limestone forest site, consistent with the complexation of iron under high pH conditions. Biological acquisition of iron, as measured by the concentration of iron chelating compounds (i.e. siderophores), provided additional evidence for iron limitation of microbial processes in limestone tropical forests, where concentrations were six times higher than those at the volcanic site. Our results suggest that the functioning of limestone tropical forest is strongly regulated by interactions between iron, soil pH, and N cycling.

  4. Simultaneous growth on citrate reduces the effects of iron limitation during toluene degradation in Pseudomonas.

    PubMed

    Dinkla, I J T; Janssen, D B

    2003-01-01

    Rhizoremediation has been suggested as an attractive bioremediation strategy for the effective breakdown of pollutants in soil. The presence of plant root exudates such as organic acids, sugars, and amino acids that may serve as carbon sources or biosynthetic building blocks and the limited bioavailability of iron may influence the degradation of pollutants in the rhizosphere. To test the effect of such compounds on hydrocarbon degradation, trace concentrations of yeast extract or mixtures of organic acids and amino acids were added to continuous cultures of Pseudomonas putida mt2 and P. putida WCS358 (TOL) growing on toluene. By addition of these compounds increased growth yields and higher specific growth rates on toluene were obtained. The effects of iron limitation on the substrate utilization pattern of both strains were tested by growing the strains on a mixture of toluene and the readily degradable carbon source citrate while the iron concentration was varied. Simultaneous use of both substrates under carbon-limited as well as iron-limited conditions was observed. Growth yields were less reduced and iron requirement was lower during iron-limited growth in the toluene + citrate grown cultures compared to cultures in which toluene was used as the sole carbon source. The kinetic properties of the cells for toluene degradation were less hampered by the lack of iron when citrate was used as an additional carbon source. The results indicate that the availability of low concentrations of natural organic compounds, such as produced in the rhizosphere, may positively influence the degradative performance of hydrocarbon-degrading bacteria.

  5. Deregulation of Genes Related to Iron and Mitochondrial Metabolism in Refractory Anemia with Ring Sideroblasts

    PubMed Central

    del Rey, Mónica; Benito, Rocío; Fontanillo, Celia; Campos-Laborie, Francisco J.; Janusz, Kamila; Velasco-Hernández, Talía; Abáigar, María; Hernández, María; Cuello, Rebeca; Borrego, Daniel; Martín-Zanca, Dionisio; De Las Rivas, Javier; Mills, Ken I.; Hernández-Rivas, Jesús M.

    2015-01-01

    The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified. PMID:25955609

  6. Iron metabolism and oxidative profile of dogs naturally infected by Ehrlichia canis: Acute and subclinical disease.

    PubMed

    Bottari, Nathieli B; Crivellenti, Leandro Z; Borin-Crivellenti, Sofia; Oliveira, Jéssica R; Coelho, Stefanie B; Contin, Catarina M; Tatsch, Etiane; Moresco, Rafael N; Santana, Aureo E; Tonin, Alexandre A; Tinucci-Costa, Mirela; Da Silva, Aleksandro S

    2016-03-01

    The aim of this study was to evaluate the oxidant profile and iron metabolism in serum of dogs infected by Ehrlichia canis. Banked sera samples of dogs were divided into two groups: negative control (n = 17) and infected by E. canis on acute (n = 24), and subclinical (n = 18) phases of the disease. The eritrogram, leucogram, and platelet counts were evaluate as well as iron, ferritin, and transferrin levels, latent iron binding capacity (LIBC), and transferrin saturation index (TSI) concentration. In addition, the advanced oxidation protein products (AOPP) and ferric reducing ability of plasma (FRAP) in sera were also analyzed. Blood samples were examined for the presence of E. canis by PCR techniques. History and clinical signals were recorded for each dog. During the acute phase of the disease, infected animals showed thrombocytopenia and anemia when compared to healthy animals (P < 0.05) as a consequence of lower iron levels. Ferritin and transferrin levels were higher in both phases (acute and subclinical) of the disease. The AOPP and FRAP levels increased in infected animals on the acute phase; however, the opposite occurred in the subclinical phase. We concluded that dogs naturally infected by E. canis showed changes in the iron metabolism and developed an oxidant status in consequence of disease pathophysiology.

  7. Serotonergic dysfunctions and abnormal iron metabolism: Relevant to mental fatigue of Parkinson disease.

    PubMed

    Zuo, Li-Jun; Yu, Shu-Yang; Hu, Yang; Wang, Fang; Piao, Ying-Shan; Lian, Teng-Hong; Yu, Qiu-Jin; Wang, Rui-Dan; Li, Li-Xia; Guo, Peng; Du, Yang; Zhu, Rong-Yan; Jin, Zhao; Wang, Ya-Jie; Wang, Xiao-Min; Chan, Piu; Chen, Sheng-Di; Wang, Yong-Jun; Zhang, Wei

    2016-12-01

    Fatigue is a very common non-motor symptom in Parkinson disease (PD) patients. It included physical fatigue and mental fatigue. The potential mechanisms of mental fatigue involving serotonergic dysfunction and abnormal iron metabolism are still unknown. Therefore, we evaluated the fatigue symptoms, classified PD patients into fatigue group and non-fatigue group, and detected the levels of serotonin, iron and related proteins in CSF and serum. In CSF, 5-HT level is significantly decreased and the levels of iron and transferrin are dramatically increased in fatigue group. In fatigue group, mental fatigue score is negatively correlated with 5-HT level in CSF, and positively correlated with the scores of depression and excessive daytime sleepiness, and disease duration, also, mental fatigue is positively correlated with the levels of iron and transferrin in CSF. Transferrin level is negatively correlated with 5-HT level in CSF. In serum, the levels of 5-HT and transferrin are markedly decreased in fatigue group; mental fatigue score exhibits a negative correlation with 5-HT level. Thus serotonin dysfunction in both central and peripheral systems may be correlated with mental fatigue through abnormal iron metabolism. Depression, excessive daytime sleepiness and disease duration were the risk factors for mental fatigue of PD.

  8. Using skin to assess iron accumulation in human metabolic disorders

    NASA Astrophysics Data System (ADS)

    Guinote, I.; Fleming, R.; Silva, R.; Filipe, P.; Silva, J. N.; Veríssimo, A.; Napoleão, P.; Alves, L. C.; Pinheiro, T.

    2006-08-01

    The distribution of Fe in skin was assessed to monitor body Fe status in human hereditary hemochromatosis. The paper reports on data from nine patients with hemochromatosis that were studied along the therapeutic programme. Systemic evaluation of Fe metabolism was carried out by measuring with PIXE technique the Fe concentration in plasma and blood cells, and by determining with biochemical methods the indicators of Fe transport in serum (ferritin and transferrin). The Fe distribution and concentration in skin was assessed by nuclear microscopy and Fe deposits in liver estimated through nuclear magnetic resonance. Elevated Fe concentrations in skin were related to increased plasma Fe (p < 0.004), serum ferritin content (p < 0.01) and Fe deposits in liver (p < 0.004). The relationship of Fe deposits in organs and metabolism markers may help to better understand Fe pools mobilisation and to establish the quality of skin as a marker for the disease progression and therapy efficacy.

  9. Effect of Nordic Walking training on iron metabolism in elderly women

    PubMed Central

    Kortas, Jakub; Prusik, Katarzyna; Flis, Damian; Prusik, Krzysztof; Ziemann, Ewa; Leaver, Neil; Antosiewicz, Jedrzej

    2015-01-01

    Background Despite several, well-documented pro-healthy effects of regular physical training, its influence on body iron stores in elderly people remains unknown. At the same time, body iron accumulation is associated with high risk of different morbidities. Purpose We hypothesized that Nordic Walking training would result in pro-healthy changes in an elderly group of subjects by reducing body iron stores via shifts in iron metabolism-regulating proteins. Methods Thirty-seven women aged 67.7±5.3 years participated in this study. They underwent 32 weeks of training, 1-hour sessions three times a week, between October 2012 and May 2013. Fitness level, blood morphology, CRP, vitamin D, ferritin, hepcidin, and soluble Hjv were assessed before and after the training. Results The training program caused a significant decrease in ferritin, which serves as a good marker of body iron stores. Simultaneously, the physical cardiorespiratory fitness had improved. Furthermore, blood hepcidin was positively correlated with the ferritin concentration after the training. The concentration of blood CRP dropped, but the change was nonsignificant. The applied training resulted in a blood Hjv increase, which was inversely correlated with the vitamin D concentration. Conclusion Overall the Nordic Walking training applied in elderly people significantly reduced blood ferritin concentration, which explains the observed decrease in body iron stores. PMID:26664101

  10. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation

    NASA Technical Reports Server (NTRS)

    Raiswell, R.; Canfield, D. E.; Berner, R. A.

    1994-01-01

    Measurements of degree of pyritisation require an estimate of sediment iron which is capable of reaction with dissolved sulphide to form pyrite, either directly or indirectly via iron monosulphide precursors. Three dissolution techniques (buffered dithionite, cold 1 M HCl, boiling 12 M HCl) were examined for their capacity to extract iron from a variety of iron minerals, and iron-bearing sediments, as a function of different extraction times and different grain sizes. All the iron oxides studied are quantitatively extracted by dithionite and boiling HCl (but not by cold HCl). Both HCl techniques extract more iron from silicates than does dithionite but probably about the same amounts as are potentially capable of sulphidation. Modern sediment studies indicate that most sedimentary pyrite is formed rapidly from iron oxides, with smaller amounts formed more slowly from iron silicates (if sufficient geologic time is available). It is therefore recommended that the degree of pyritisation be defined with respect to the dithionite-extractable (mainly iron oxide) pool and/or the boiling HCl-extractable pool (which includes some silicate iron) for the recognition of iron-limited pyritisation.

  11. Iron limitation effects a massive shift in iron and flavin based antioxidant enzyme systems and their substrates in the Chlorophyte alga Dunaliella tertiolecta

    NASA Astrophysics Data System (ADS)

    Traggis, H. M.

    2012-12-01

    Ubiquitous in the neritic ocean, it is now believed that iron-limitation is the most important factor controlling primary production in oceanic phytoplankton. To investigate the effects of iron deficiency, Dunaliella tertiolecta was cultured under limiting (100 nM Fe) and replete (1μM Fe) iron concentrations. The physiological status and the Water-Water antioxidant defense system were evaluated. Iron limitation effected a 21% drop in PSII efficiency (replete= 0.634± 0.012; limiting= 0.507± 0.012) concurrent with a 17.5% reduction in photosynthetic rates (replete= 265.8 umol 02/mg chl/hr ± 5.7; limiting= 219.3 umol 02/mg chl/hr ± 5.7). Both heme and non-heme based antioxidant enzyme activities were assessed. Heme-based Ascorbate peroxidase (APX), exhibits an 84% iron limited rate reduction (replete and limited = 36.23 and 5.72 umol ascorbate mg prot-1 hr-1 ±2.96, respectively). Conversely, the flavin-based Monodehydroascorbate reductase (MDHAR), exhibits a significant rate increase, 2.16±0.19 (replete) to 3.86±0.19 umol NADH mg prot-1 hr-1 under iron-limitation. Iron deficient cultures exhibit a 34% increase in total available ascorbate. These investigations suggest that D. tertiolecta is able to maintain a stable growth rate under iron limitation by re-allocating its subcellular usage of available iron and increasing the availability of total ascorbate. Further investigations will determine the presence of additional iron/flavin based molecules involved in the photosynthetic apparatus and anti-oxidant scavenging mechanisms.

  12. Cytosolic aconitase activity sustains adipogenic capacity of adipose tissue connecting iron metabolism and adipogenesis.

    PubMed

    Moreno, María; Ortega, Francisco; Xifra, Gemma; Ricart, Wifredo; Fernández-Real, José Manuel; Moreno-Navarrete, José María

    2015-04-01

    To gain insight into the regulation of intracellular iron homeostasis in adipose tissue, we investigated the role of iron regulatory protein 1/cytosolic aconitase 1 (ACO1). ACO1 gene expression and activity increased in parallel to expression of adipogenic genes during differentiation of both murine 3T3-L1 cells and human preadipocytes. Lentiviral knockdown (KD) of Aco1 in 3T3-L1 preadipocytes led to diminished cytosolic aconitase activity and isocitrate dehydrogenase 1 (NADP(+)), soluble (Idh1) mRNA levels, decreased intracellular NADPH:NADP ratio, and impaired adipogenesis during adipocyte differentiation. In addition, Aco1 KD in fully differentiated 3T3-L1 adipocytes decreased lipogenic, Idh1, Adipoq, and Glut4 gene expression. A bidirectional cross-talk was found between intracellular iron levels and ACO1 gene expression and protein activity. Although iron in excess, known to increase reactive oxygen species production, and iron depletion both resulted in decreased ACO1 mRNA levels and activity, Aco1 KD led to reduced gene expression of transferrin receptor (Tfrc) and transferrin, disrupting intracellular iron uptake. In agreement with these findings, in 2 human independent cohorts (n = 85 and n = 38), ACO1 gene expression was positively associated with adipogenic markers in subcutaneous and visceral adipose tissue. ACO1 gene expression was also positively associated with the gene expression of TFRC while negatively linked to ferroportin (solute carrier family 40 (iron-regulated transporter), member 1) mRNA levels. Altogether, these results suggest that ACO1 activity is required for the normal adipogenic capacity of adipose tissue by connecting iron, energy metabolism, and adipogenesis.

  13. Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria

    NASA Technical Reports Server (NTRS)

    Fischer, U.

    1985-01-01

    Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.

  14. Transcriptional Orchestration of the Global Cellular Response of a Model Pennate Diatom to Diel Light Cycling under Iron Limitation

    PubMed Central

    McCrow, John P.; Badger, Jonathan H.; Zheng, Hong; New, Ashley M.; Dupont, Chris L.; Obata, Toshihiro; Fernie, Alisdair R.; Allen, Andrew E.

    2016-01-01

    Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved in the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic

  15. Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans.

    PubMed

    Do, Eunsoo; Hu, Guanggan; Caza, Mélissa; Oliveira, Debora; Kronstad, James W; Jung, Won Hee

    2015-02-01

    Amino acid biosynthetic pathways that are absent in mammals are considered an attractive target for antifungal therapy. Leucine biosynthesis is one such target pathway, consisting of a five-step conversion process starting from the valine precursor 2-keto-isovalerate. Isopropylmalate dehydrogenase (Leu1) is an Fe-S cluster protein that is required for leucine biosynthesis in the model fungus Saccharomyces cerevisiae. The human pathogenic fungus Cryptococcus neoformans possesses an ortholog of S. cerevisiae Leu1, and our previous transcriptome data showed that the expression of LEU1 is regulated by iron availability. In this study, we characterized the role of Leu1 in iron homeostasis and the virulence of C. neoformans. We found that deletion of LEU1 caused leucine auxotrophy and that Leu1 may play a role in the mitochondrial-cytoplasmic Fe-S cluster balance. Whereas cytoplasmic Fe-S protein levels were not affected, mitochondrial Fe-S proteins were up-regulated in the leu1 mutant, suggesting that Leu1 mainly influences mitochondrial iron metabolism. The leu1 mutant also displayed increased sensitivity to oxidative stress and cell wall/membrane disrupting agents, which may have been caused by mitochondrial dysfunction. Furthermore, the leu1 mutant was deficient in capsule formation and showed attenuated virulence in a mouse inhalation model of cryptococcosis. Overall, our results indicate that Leu1 plays a role in iron metabolism and is required for virulence in C. neoformans.

  16. Vitamin D, Iron Metabolism, and Diet in Alpinists During a 2-Week High-Altitude Climb.

    PubMed

    Kasprzak, Zbigniew; Śliwicka, Ewa; Hennig, Karol; Pilaczyńska-Szcześniak, Łucja; Huta-Osiecka, Anna; Nowak, Alicja

    2015-09-01

    A defensive mechanism against hypobaric hypoxia at high altitude is erythropoesis. Some authors point to the contribution of vitamin D to the regulation of this process. The aim of the present study was to assess the 25-hydroxycholecalciferol (25(OH)D) level and its associations with iron metabolic and inflammatory indices in participants of a 2-week mountaineering expedition. The study sample included 9 alpinists practicing recreational mountain climbing. Every 2 or 3 days they set up a different base between 3200 and 3616 m with the intention of climbing 4000 m peaks in the Mont Blanc massif. Before their departure for the mountains and 2 days after returning to the sea level anthropometric parameters, hematological parameters, serum levels of 25(OH)D and iron metabolic indices were measured in all the participants. The composition of the participants' diet was also evaluated. The comparative analysis showed a significant decrease in body mass, BMI values, total iron, and 25(OH)D concentrations (p<0.05). Also significant increases in unsaturated iron-binding capacity, hematocrit, and C-reactive protein concentrations (p<0.05) were found. It can be concluded that the 2-week climbing expedition contributed to the reduction of 25(OH)D levels and these changes were associated with modulation of immune processes. Moreover, the climbers' diet requires some serious modifications.

  17. Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans

    PubMed Central

    Do, Eunsoo; Hu, Guanggan; Caza, Mélissa; Oliveira, Debora; Kronstad, James W.; Jung, Won Hee

    2015-01-01

    Amino acid biosynthetic pathways that are absent in mammals are considered an attractive target for antifungal therapy. Leucine biosynthesis is one such target pathway, consisting of a five-step conversion process starting from the valine precursor 2-keto-isovalerate. Isopropylmalate dehydrogenase (Leu1) is an Fe-S cluster protein that is required for leucine biosynthesis in the model fungus Saccharomyces cerevisiae. The human pathogenic fungus Cryptococcus neoformans possesses an ortholog of S. cerevisiae Leu1, and our previous transcriptome data showed that the expression of LEU1 is regulated by iron availability. In this study, we characterized the role of Leu1 in iron homeostasis and the virulence of C. neoformans. We found that deletion of LEU1 caused leucine auxotrophy and that Leu1 may play a role in the mitochondrial-cytoplasmic Fe-S cluster balance. Whereas cytoplasmic Fe-S protein levels were not affected, mitochondrial Fe-S proteins were up- regulated in the leu1 mutant, suggesting that Leu1 mainly influences mitochondrial iron metabolism. The leu1 mutant also displayed increased sensitivity to oxidative stress and cell wall/membrane disrupting agents, which may have been caused by mitochondrial dysfunction. Furthermore, the leu1 mutant was deficient in capsule formation and showed attenuated virulence in a mouse inhalation model of cryptococcosis. Overall, our results indicate that Leu1 plays a role in iron metabolism and is required for virulence in C. neoformans. PMID:25554701

  18. Herbicide safeners: uses, limitations, metabolism, and mechanisms of action.

    PubMed

    Abu-Qare, Aqel W; Duncan, Harry J

    2002-09-01

    Several methods were examined to minimize crops injury caused by herbicides. Thus increase their selectivity. A selective herbicide is one that controls weeds at rates that do not injure the crop. Herbicides are selective in a particular crop within certain limits imposed by the herbicide, the plant, the application rate, the method and time of application, and environment conditions. Herbicide safeners are compounds of diverse chemical families. They are applied with herbicides to protect crops against their injury. Using chemical safeners offer practical, efficient and simple method of improving herbicide selectivity. This method has been applied successfully in cereal crops such as maize, rice and sorghum, against pre-emergence thiocarbamate and chloroacetanilide herbicides. Some reports indicate promising results for the development of safeners for post-emergence herbicides in broadleaved crops. Various hypotheses were proposed explaining mechanisms of action of herbicide safeners: interference with uptake and translocation of the herbicide, alteration in herbicide metabolism, and competition at site of action of the herbicide. Even though progress was made in the development of herbicide safeners and in understanding their mechanisms of action, more research is needed to elucidate clearly how these chemicals act and why their activity is restricted to particular crops and herbicides.

  19. Zebrafish in the sea of mineral (iron, zinc, and copper) metabolism

    PubMed Central

    Zhao, Lu; Xia, Zhidan; Wang, Fudi

    2014-01-01

    Iron, copper, zinc, and eight other minerals are classified as essential trace elements because they present in minute in vivo quantities and are essential for life. Because either excess or insufficient levels of trace elements can be detrimental to life (causing human diseases such as iron-deficiency anemia, hemochromatosis, Menkes syndrome and Wilson's disease), the endogenous levels of trace minerals must be tightly regulated. Many studies have demonstrated the existence of systems that maintain trace element homeostasis, and these systems are highly conserved in multiple species ranging from yeast to mice. As a model for studying trace mineral metabolism, the zebrafish is indispensable to researchers. Several large-scale mutagenesis screens have been performed in zebrafish, and these screens led to the identification of a series of metal transporters and the generation of several mutagenesis lines, providing an in-depth functional analysis at the system level. Moreover, because of their developmental advantages, zebrafish have also been used in mineral metabolism-related chemical screens and toxicology studies. Here, we systematically review the major findings of trace element homeostasis studies using the zebrafish model, with a focus on iron, zinc, copper, selenium, manganese, and iodine. We also provide a homology analysis of trace mineral transporters in fish, mice and humans. Finally, we discuss the evidence that zebrafish is an ideal experimental tool for uncovering novel mechanisms of trace mineral metabolism and for improving approaches to treat mineral imbalance-related diseases. PMID:24639652

  20. Springs as Model Systems for Aquatic Ecosystems Ecology: Stoichiometry, Metabolism and Nutrient Limitation

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Nifong, R. L.; Kurz, M. J.; Martin, J. B.; Cropper, W. P.; Korhnak, L. V.

    2013-12-01

    Springs have been called nature's chemostats, where low variation in discharge, temperature and chemistry creates a natural laboratory in which to address basic questions about aquatic ecosystems. Ecological stoichiometry posits that patterns of metabolism, trophic energy transfer and community structure arise in response to coupled elemental cycles. In this work we synthesize several recent studies in Florida's iconic springs to explore the overarching hypothesis that stoichiometry can be used to indicate the nutrient limitation status of autotrophs and ecosystem metabolism. Of foremost importance is that the chemically stable conditions observed in springs ensures that autotroph tissue elemental composition, which is thought to vary with environmental supply, is near steady state. Moreover, the elemental ratios of discharging water vary dramatically across our study springs (for example, molar N:P ranges from 0.4:1 to 400:1), subjecting the communities of autotrophs, which are largely conserved across systems, to dramatically different nutrient supply. At the scale of whole ecosystem metabolism, we show that C:N:P ratios are strongly conserved across a wide gradient of environmental supplies, counter to the prediction of stoichiometric plasticity. Moreover, the absence of a relationship between gross primary production and nutrient concentrations or stoichiometry suggests that metabolic homeostasis may be a diagnostic symptom of nutrient saturation. At the scale of individual autotrophs, both submerged vascular plants and filamentous algae, this finding is strongly reinforced, with remarkable within-species tissue C:N:P homeostasis over large gradients, and no statistically significant evidence that gradients in nutrient supply affect autotroph composition. Expanding the suite of elements for which contemporaneous environment and tissue measurements are available to include 19 metals and micronutrients revealed that, while plants were homeostatic across large N

  1. Dealing with iron metabolism in rice: from breeding for stress tolerance to biofortification.

    PubMed

    Santos, Railson Schreinert Dos; Araujo, Artur Teixeira de; Pegoraro, Camila; Oliveira, Antonio Costa de

    2017-03-16

    Iron is a well-known metal. Used by humankind since ancient times in many different ways, this element is present in all living organisms, where, unfortunately, it represents a two-way problem. Being an essential block in the composition of different proteins and metabolic pathways, iron is a vital component for animals and plants. That is why iron deficiency has a severe impact on the lives of different organisms, including humans, becoming a major concern, especially in developing countries where access to adequate nutrition is still difficult. On the other hand, this metal is also capable of causing damage when present in excess, becoming toxic to cells and affecting the whole organism. Because of its importance, iron absorption, transport and storage mechanisms have been extensively investigated in order to design alternatives that may solve this problem. As the understanding of the strategies that plants use to control iron homeostasis is an important step in the generation of improved plants that meet both human agricultural and nutritional needs, here we discuss some of the most important points about this topic.

  2. [Asbestos-stimulated changes in nitric oxide and iron metabolism in rats].

    PubMed

    Shandarenko, S H; Kishko, T O; Chumachenko, I M; Dmytrenko, M P

    2011-01-01

    Under intratracheal asbestos fibers installation it has been investigated NO synthesis in the lung and liver tissues of Wistar rats by EPR method. Asbestos A6-45, sifted through the sieve with size 0.1 mm, has been administrated in a dose of 5 mg/kg. To evaluate the NO synthesis EPR and NO-trap methods have been used. The amplitude of EPR signal "trap-NO" in the lung samples was 12, 16 and 14 times greater than in controls on the 3th, 6th and 10th days after asbestos installation and was corresponding to NO rate of about 2 mkmol/(g x h). In the liver samples of asbestos-stimulated animals the NO level contained in the non-heme iron nitrosyl complexes was about 2 mkmol/g. Thus, the asbestos fibers stimulate NO synthesis not only in the lung tissue, but also in other organs. The obtained data shows that under NO hyperproduction certain changes in iron metabolism take place, such as: the decrease of transferrin iron and the accumulation of ferric iron not bound with transferrin. The accumulation of ferric iron not shielded by proteins is one of the oxidative stress triggers.

  3. Iron limitation impact on eddy-induced ecosystem variability in the coastal Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Fiechter, Jerome; Moore, Andrew M.

    2012-04-01

    A data assimilative, coupled physical-biological model for the northwestern coastal Gulf of Alaska (CGOA) is used to characterize lower trophic level ecosystem response to eddy variability at the shelfbreak over a 5-year period (1998-2002). The ocean circulation component is an implementation of the Regional Ocean Modeling System (ROMS), the lower trophic level ecosystem component is a six-compartment Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model with iron limitation, and the data assimilation component is the adjoint-based, four-dimensional variational (4D-Var) system available in ROMS. Assimilated observations consist of weekly satellite sea surface height and temperature, as well as bimonthly in situ temperature and salinity measurements. Overall, the model results are in agreement with earlier observational studies, and confirm that eddy-induced cross-shelf transport of biological properties can potentially enhance phytoplankton concentrations in the basin by: (1) alleviating iron limitation on phytoplankton growth by transporting iron-rich shelf waters offshore, and (2) transporting elevated shelf phytoplankton concentrations offshore. Simulated nutrient anomalies during eddy events indicate a substantial increase in dissolved iron concentrations in near-surface waters, thereby suggesting that eddy-induced offshore transport of iron-rich shelf waters is the dominant mechanism regulating locally-generated offshore production in the CGOA high nutrient-low chlorophyll (HNLC) region during eddy events. In fact, for the period 1998-2002, the model results predict that approximately two thirds of the eddy-induced production in the Yakutat/Sitka "eddy corridor" is associated with locally-generated production resulting from alleviated iron limitation conditions on phytoplankton growth. The remaining third can be attributed to eddy-induced offshore export of chlorophyll concentrations of shelf origin.

  4. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  5. Presence of acute phase changes in zinc, iron, and copper metabolism in turkey embryos

    SciTech Connect

    Klasing, K.C.; Richards, M.P.; Darcey, S.E.; Laurin, D.E.

    1987-01-01

    Acute phase changes in trace mineral metabolism were examined in turkey embryos. An endotoxin injection resulted in increased concentrations of serum copper and liver zinc and decreased concentrations of serum zinc in embryos incubated either in ovo or ex ovo. Changes in zinc and copper metabolism occurred when endotoxin either was injected intramuscularly, into the amnionic fluid, or administered onto the chorioallantoic membrane. Unlike poults, embryos did not respond to an inflammatory challenge with decreased serum iron concentrations. Acute phase changes in embryo serum zinc and copper as well as liver zinc concentrations were similar to those in poults. Increased liver zinc concentrations were associated with increased zinc in metallothionein (MT). An injection of a crude interleukin 1 preparation into embryos resulted in similar increases in hepatic zinc and MT concentrations as an endotoxin injection, suggesting a role for this cytokine in mediating the acute phase changes in embryonic zinc metabolism.

  6. Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions.

    PubMed

    Vannozzi, Alessandro; Donnini, Silvia; Vigani, Gianpiero; Corso, Massimiliano; Valle, Giorgio; Vitulo, Nicola; Bonghi, Claudio; Zocchi, Graziano; Lucchin, Margherita

    2016-01-01

    Iron chlorosis is a serious deficiency that affects orchards and vineyards reducing quality and yield production. Chlorotic plants show abnormal photosynthesis and yellowing shoots. In grapevine iron uptake and homeostasis are most likely controlled by a mechanism known as "Strategy I," characteristic of non-graminaceous plants and based on a system of soil acidification, iron reduction and transporter-mediated uptake. Nowadays, grafting of varieties of economic interest on tolerant rootstocks is widely used practice against many biotic and abiotic stresses. Nevertheless, many interspecific rootstocks, and in particular those obtained by crossing exclusively non-vinifera genotypes, can show limited nutrient uptake and transport, in particular for what concerns iron. In the present study, 101.14, a commonly used rootstock characterized by susceptibility to iron chlorosis was subjected to both Fe-absence and Fe-limiting conditions. Grapevine plantlets were grown in control, Fe-deprived, and bicarbonate-supplemented hydroponic solutions. Whole transcriptome analyses, via mRNA-Seq, were performed on root apices of stressed and unstressed plants. Analysis of differentially expressed genes (DEGs) confirmed that Strategy I is the mechanism responsible for iron uptake in grapevine, since many orthologs genes to the Arabidopsis "ferrome" were differentially regulated in stressed plant. Molecular differences in the plant responses to Fe absence and presence of bicarbonate were also identified indicating the two treatments are able to induce response-mechanisms only partially overlapping. Finally, we measured the expression of a subset of genes differentially expressed in 101.14 (such as IRT1, FERRITIN1, bHLH38/39) or known to be fundamental in the "strategy I" mechanism (AHA2 and FRO2) also in a tolerant rootstock (M1) finding important differences which could be responsible for the different degrees of tolerance observed.

  7. Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions

    PubMed Central

    Vannozzi, Alessandro; Donnini, Silvia; Vigani, Gianpiero; Corso, Massimiliano; Valle, Giorgio; Vitulo, Nicola; Bonghi, Claudio; Zocchi, Graziano; Lucchin, Margherita

    2017-01-01

    Iron chlorosis is a serious deficiency that affects orchards and vineyards reducing quality and yield production. Chlorotic plants show abnormal photosynthesis and yellowing shoots. In grapevine iron uptake and homeostasis are most likely controlled by a mechanism known as “Strategy I,” characteristic of non-graminaceous plants and based on a system of soil acidification, iron reduction and transporter-mediated uptake. Nowadays, grafting of varieties of economic interest on tolerant rootstocks is widely used practice against many biotic and abiotic stresses. Nevertheless, many interspecific rootstocks, and in particular those obtained by crossing exclusively non-vinifera genotypes, can show limited nutrient uptake and transport, in particular for what concerns iron. In the present study, 101.14, a commonly used rootstock characterized by susceptibility to iron chlorosis was subjected to both Fe-absence and Fe-limiting conditions. Grapevine plantlets were grown in control, Fe-deprived, and bicarbonate-supplemented hydroponic solutions. Whole transcriptome analyses, via mRNA-Seq, were performed on root apices of stressed and unstressed plants. Analysis of differentially expressed genes (DEGs) confirmed that Strategy I is the mechanism responsible for iron uptake in grapevine, since many orthologs genes to the Arabidopsis “ferrome” were differentially regulated in stressed plant. Molecular differences in the plant responses to Fe absence and presence of bicarbonate were also identified indicating the two treatments are able to induce response-mechanisms only partially overlapping. Finally, we measured the expression of a subset of genes differentially expressed in 101.14 (such as IRT1, FERRITIN1, bHLH38/39) or known to be fundamental in the “strategy I” mechanism (AHA2 and FRO2) also in a tolerant rootstock (M1) finding important differences which could be responsible for the different degrees of tolerance observed. PMID:28105035

  8. Transcriptional and translational regulatory responses to iron limitation in the globally distributed marine bacterium Candidatus Pelagibacter ubique

    SciTech Connect

    Smith, Daniel P.; Kitner, J. B.; Norbeck, Angela D.; Clauss, Therese RW; Lipton, Mary S.; Schwalbach, M. S.; Steindler, L.; Nicora, Carrie D.; Smith, Richard D.; Giovannoni, Stephen J.

    2010-05-05

    Abstract Background: Iron is recognized as an important micronutrient that limits microbial plankton productivity over vast regions of the oceans. We investigated the gene expression responses of Candidatus Pelagibacter ubique cultures to iron limitation in natural seawater media supplemented with a siderophore to chelate iron. Methodology/Principal Findings: Microarray data indicated transcription of the periplasmic iron binding protein sfuC increased by 16-fold, and iron transporter subunits, iron-sulfur center assembly genes, and the putative ferroxidase rubrerythrin transcripts increased to a lesser extent. Quantitative peptide mass spectrometry revealed that sfuC protein abundance increased 27-fold, despite an average decrease of 59% across the global proteome. Two RNA-binding proteins, CspE and CspL, correlated well with iron availability, suggesting that they may contribute to the observed differences between the transcriptome and proteome. Conclusions/Significance: We propose sfuC as a marker gene for indicating iron limitation in marine metatranscriptomic and metaproteomic ecological surveys. The marked proteome reduction was not directly correlated to changes in the transcriptome, implicating post-transcriptional regulatory mechanisms as modulators of protein expression. We propose a model in which the RNA-binding activity of cspE and cspL selectively enables protein synthesis of the iron acquisition protein sfuC during transient growth-limiting episodes of iron scarcity.

  9. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons

    PubMed Central

    Tao, Ling-xue; Huang, Xiao-tian; Chen, Yu-ting; Tang, Xi-can; Zhang, Hai-yan

    2016-01-01

    Aim: Iron dyshomeostasis is one of the primary causes of neuronal death in Alzheimer's disease (AD). Huperzine A (HupA), a natural inhibitor of acetylcholinesterase (AChE), is a licensed anti-AD drug in China and a nutraceutical in the United Sates. Here, we investigated the protective effects of HupA against iron overload-induced injury in neurons. Methods: Rat cortical neurons were treated with ferric ammonium citrate (FAC), and cell viability was assessed with MTT assays. Reactive oxygen species (ROS) assays and adenosine triphosphate (ATP) assays were performed to assess mitochondrial function. The labile iron pool (LIP) level, cytosolic-aconitase (c-aconitase) activity and iron uptake protein expression were measured to determine iron metabolism changes. The modified Ellman's method was used to evaluate AChE activity. Results: HupA significantly attenuated the iron overload-induced decrease in neuronal cell viability. This neuroprotective effect of HupA occurred concurrently with a decrease in ROS and an increase in ATP. Moreover, HupA treatment significantly blocked the upregulation of the LIP level and other aberrant iron metabolism changes induced by iron overload. Additionally, another specific AChE inhibitor, donepezil (Don), at a concentration that caused AChE inhibition equivalent to that of HupA negatively, influenced the aberrant changes in ROS, ATP or LIP that were induced by excessive iron. Conclusion: We provide the first demonstration of the protective effects of HupA against iron overload-induced neuronal damage. This beneficial role of HupA may be attributed to its attenuation of oxidative stress and mitochondrial dysfunction and elevation of LIP, and these effects are not associated with its AChE-inhibiting effect. PMID:27498774

  10. Daily regulation of serum and urinary hepcidin is not influenced by submaximal cycling exercise in humans with normal iron metabolism.

    PubMed

    Troadec, Marie-Bérengère; Lainé, Fabrice; Daniel, Vincent; Rochcongar, Pierre; Ropert, Martine; Cabillic, Florian; Perrin, Michèle; Morcet, Jeff; Loréal, Olivier; Olbina, Gordana; Westerman, Mark; Nemeth, Elizabeta; Ganz, Tomas; Brissot, Pierre

    2009-06-01

    Hepcidin and hemojuvelin (HJV) are two critical regulators of iron metabolism as indicated by the development of major iron overload associated to mutations in hepcidin and HJV genes. Hepcidin and HJV are highly expressed in liver and muscles, respectively. Intensive muscular exercise has been reported to modify serum iron parameters and to increase hepcidinuria. The present study aimed at evaluating the potential impact of low intensity muscle exercise on iron metabolism and on hepcidin, its key regulator. Fourteen normal volunteers underwent submaximal cycling-based exercise in a crossover design and various iron parameters, including serum and urinary hepcidin, were serially studied. The results demonstrated that submaximal ergocycle endurance exercise did not modulate hepcidin. This study also indicated that hepcidinuria did not show any daily variation whereas serum hepcidin did. The findings, by demonstrating that hepcidin concentrations are not influenced by submaximal cycling exercise, may have implications for hepcidin sampling in medical practice.

  11. Iron pentacarbonyl detection limits in the cigarette smoke matrix using FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Parrish, Milton E.; Plunkett, Susan E.; Harward, Charles N.

    2005-11-01

    Endogenous metals present in tobacco from agricultural practices have been purported to generate metal carbonyls in cigarette smoke. Transition metal catalysts, such as iron oxide, have been investigated for the reduction of carbon monoxide (CO) in cigarette smoke. These studies motivated the development of an analytical method to determine if iron pentacarbonyl [Fe(CO) 5] is present in mainstream smoke from cigarette models having cigarette paper made with iron oxide. An FT-IR puff-by-puff method was developed and the detection limit was determined using two primary reference spectra from different sources to estimate the amount of Fe(CO) 5 present in a high-pressure steel cylinder of CO. We do not detect Fe(CO) 5 in a single 35 mL puff from reference cigarettes or from those cigarette models having cigarette paper made with iron oxide, with a 30-ppbV limit of detection (LOD). Also, it was shown that a filter containing activated carbon would remove Fe(CO) 5.

  12. Pf4 bacteriophage produced by Pseudomonas aeruginosa inhibits Aspergillus fumigatus metabolism via iron sequestration.

    PubMed

    Penner, Jack C; Ferreira, Jose A G; Secor, Patrick R; Sweere, Johanna M; Birukova, Maria K; Joubert, Lydia-Marie; Haagensen, Janus A J; Garcia, Omar; Malkovskiy, Andrey V; Kaber, Gernot; Nazik, Hasan; Manasherob, Robert; Spormann, Alfred M; Clemons, Karl V; Stevens, David A; Bollyky, Paul L

    2016-09-01

    Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) are major human pathogens known to interact in a variety of disease settings, including airway infections in cystic fibrosis. We recently reported that clinical CF isolates of Pa inhibit the formation and growth of Af biofilms. Here, we report that the bacteriophage Pf4, produced by Pa, can inhibit the metabolic activity of Af biofilms. This phage-mediated inhibition was dose dependent, ablated by phage denaturation, and was more pronounced against preformed Af biofilm rather than biofilm formation. In contrast, planktonic conidial growth was unaffected. Two other phages, Pf1 and fd, did not inhibit Af, nor did supernatant from a Pa strain incapable of producing Pf4. Pf4, but not Pf1, attaches to Af hyphae in an avid and prolonged manner, suggesting that Pf4-mediated inhibition of Af may occur at the biofilm surface. We show that Pf4 binds iron, thus denying Af a crucial resource. Consistent with this, the inhibition of Af metabolism by Pf4 could be overcome with supplemental ferric iron, with preformed biofilm more resistant to reversal. To our knowledge, this is the first report of a bacterium producing a phage that inhibits the growth of a fungus and the first description of a phage behaving as an iron chelator in a biological system.

  13. Metabolic Strategies in Energy-Limited Microbial Communities in the Anoxic Subsurface (Frasassi Cave System, Italy)

    NASA Astrophysics Data System (ADS)

    McCauley, R. L.; Jones, D. S.; Schaperdoth, I.; Steinberg, L.; Macalady, J. L.

    2010-12-01

    Two major sources of energy, light and chemical potential, are available to microorganisms. However, energy is not always abundant and is often a limiting factor in microbial survival and replication. The anoxic, terrestrial subsurface offers a unique opportunity to study microorganisms and their potentially novel metabolic strategies that are relevant for understanding biogeochemistry and biosignatures as related to the non-photosynthetic, energy-limited environments on the modern and ancient Earth and elsewhere in the solar system. Geochemical data collected in a remote stratified lake 600 m below ground surface in the sulfidic Frasassi cave system (Italy) suggest that little redox energy is available for life, consistent with low signal from domain-specific FISH probes. The carbon isotope signatures of biofilms (-33‰) and DIC (-9‰) in the anoxic water suggest in situ production by lithoautotrophs using RuBisCO. 16S rDNA libraries constructed from the biofilm are dominated by diverse sulfate reducing bacteria. The remaining bacterial and archaeal clones affiliate with more than 11 major uncultivated or novel prokaryotic lineages. Diverse dsrAB gene sequences are consistent with high sulfate concentrations and undetectable or extremely low oxygen, nitrate, and iron concentrations. However, the electron donor for sulfate reduction is unclear. Methane is detectable in the anoxic water although no 16S rDNA sequences associated with known methanogens or anaerobic methane oxidizers were retrieved. mcrA gene sequences retrieved from the biofilm by cloning are not related to cultivated methanogens or to known anaerobic methane oxidizers. Non-purgable organic carbon (NPOC) is below detection limits (i.e. <42 μM acetate) suggesting that alternative electron donors or novel metabolisms may be important. A sample collected by cave divers in October 2009 was pyrosequenced at the Pennsylvania State University Genomics Core Facility using Titanium chemistry (454 Life

  14. Searching iron sensors in plants by exploring the link among 2′-OG-dependent dioxygenases, the iron deficiency response and metabolic adjustments occurring under iron deficiency

    PubMed Central

    Vigani, Gianpiero; Morandini, Piero; Murgia, Irene

    2013-01-01

    Knowledge accumulated on the regulation of iron (Fe) homeostasis, its intracellular trafficking and transport across various cellular compartments and organs in plants; storage proteins, transporters and transcription factors involved in Fe metabolism have been analyzed in detail in recent years. However, the key sensor(s) of cellular plant “Fe status” triggering the long-distance shoot–root signaling and leading to the root Fe deficiency responses is (are) still unknown. Local Fe sensing is also a major task for roots, for adjusting the internal Fe requirements to external Fe availability: how such sensing is achieved and how it leads to metabolic adjustments in case of nutrient shortage, is mostly unknown. Two proteins belonging to the 2′-OG-dependent dioxygenases family accumulate several folds in Fe-deficient Arabidopsis roots. Such proteins require Fe(II) as enzymatic cofactor; one of their subgroups, the HIF-P4H (hypoxia-inducible factor-prolyl 4-hydroxylase), is an effective oxygen sensor in animal cells. We envisage here the possibility that some members of the 2′-OG dioxygenase family may be involved in the Fe deficiency response and in the metabolic adjustments to Fe deficiency or even in sensing Fe, in plant cells. PMID:23755060

  15. Searching iron sensors in plants by exploring the link among 2'-OG-dependent dioxygenases, the iron deficiency response and metabolic adjustments occurring under iron deficiency.

    PubMed

    Vigani, Gianpiero; Morandini, Piero; Murgia, Irene

    2013-01-01

    Knowledge accumulated on the regulation of iron (Fe) homeostasis, its intracellular trafficking and transport across various cellular compartments and organs in plants; storage proteins, transporters and transcription factors involved in Fe metabolism have been analyzed in detail in recent years. However, the key sensor(s) of cellular plant "Fe status" triggering the long-distance shoot-root signaling and leading to the root Fe deficiency responses is (are) still unknown. Local Fe sensing is also a major task for roots, for adjusting the internal Fe requirements to external Fe availability: how such sensing is achieved and how it leads to metabolic adjustments in case of nutrient shortage, is mostly unknown. Two proteins belonging to the 2'-OG-dependent dioxygenases family accumulate several folds in Fe-deficient Arabidopsis roots. Such proteins require Fe(II) as enzymatic cofactor; one of their subgroups, the HIF-P4H (hypoxia-inducible factor-prolyl 4-hydroxylase), is an effective oxygen sensor in animal cells. We envisage here the possibility that some members of the 2'-OG dioxygenase family may be involved in the Fe deficiency response and in the metabolic adjustments to Fe deficiency or even in sensing Fe, in plant cells.

  16. Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation.

    PubMed

    Benyamina, Sofiane M; Baldacci-Cresp, Fabien; Couturier, Jérémy; Chibani, Kamel; Hopkins, Julie; Bekki, Abdelkader; de Lajudie, Philippe; Rouhier, Nicolas; Jacquot, Jean-Pierre; Alloing, Geneviève; Puppo, Alain; Frendo, Pierre

    2013-03-01

    Legumes interact symbiotically with bacteria of the Rhizobiaceae to form nitrogen-fixing root nodules. We investigated the contribution of the three glutaredoxin (Grx)-encoding genes present in the Sinorhizobium meliloti genome to this symbiosis. SmGRX1 (CGYC active site) and SmGRX3 (CPYG) recombinant proteins displayed deglutathionylation activity in the 2-hydroethyldisulfide assay, whereas SmGRX2 (CGFS) did not. Mutation of SmGRX3 did not affect S. meliloti growth or symbiotic capacities. In contrast, SmGRX1 and SmGRX2 mutations decreased the growth of free-living bacteria and the nitrogen fixation capacity of bacteroids. Mutation of SmGRX1 led to nodule abortion and an absence of bacteroid differentiation, whereas SmGRX2 mutation decreased nodule development without modifying bacteroid development. The higher sensitivity of the Smgrx1 mutant strain as compared with wild-type strain to oxidative stress was associated with larger amounts of glutathionylated proteins. The Smgrx2 mutant strain displayed significantly lower levels of activity than the wild type for two iron-sulfur-containing enzymes, aconitase and succinate dehydrogenase. This lower level of activity could be associated with deregulation of the transcriptional activity of the RirA iron regulator and higher intracellular iron content. Thus, two S. meliloti Grx proteins are essential for symbiotic nitrogen fixation, playing independent roles in bacterial differentiation and the regulation of iron metabolism.

  17. Accumulation and metabolism of iron-dextran by hepatocytes, Kupffer cells and endothelial cells in the neonatal pig liver.

    PubMed

    Caperna, T J; Failla, M L; Steele, N C; Richards, M P

    1987-02-01

    Treatment of newborn pigs with supplemental iron is a common procedure utilized to prevent neonatal anemia. The aim of this study was to investigate the hepatic distribution and intracellular metabolism of iron-dextran, a widely used colloidal-iron-carbohydrate preparation. Piglets were injected intramuscularly with iron-dextran (50 mg Fe/kg body wt) at 1 d of age. Hepatocytes and sinusoidal cells (Kupffer cells and endothelial cells) were isolated from iron-treated and control (uninjected) piglets at 2, 6 and 11 d of age. The concentrations of iron, copper and zinc in isolated cells were determined by atomic-absorption spectroscopy. In addition, the quantities of ferritin-protein and ferritin-iron were measured by immunoelectrophoresis and ion-exchange chromatography, respectively. At 2 d of age, the concentration (microgram/mg cell protein) of iron was 5-, 62- and 54-fold higher in hepatocytes, Kupffer cells and endothelial cells, respectively, isolated from iron-treated piglets than from control piglets. Hepatocytes, Kupffer cells and endothelial cells accumulated ferritin in response to iron-dextran treatment. Higher concentrations of ferritin-protein and ferritin-iron were present in Kupffer cells and endothelial cells than in hepatocytes at all times after treatment with iron-dextran. The percentage of cellular iron that was associated with ferritin, however, was greater in hepatocytes than in sinusoidal cells. Iron accumulated by all three liver cell types was mobilized to extrahepatic sites. Slight alterations in zinc and copper status of liver cells were evident at 11 d of age as a result of iron treatment.

  18. Effects of dietary manganese and iron on manganese and iron metabolism during infancy

    SciTech Connect

    Kiehl, H.; Loennerdal, B. )

    1991-03-15

    To derive a better understanding of the metabolism of Mn during infancy, infant formulas with different levels of Mn and Fe were labeled with {sup 54}Mn and {sup 59}Fe and administered orally to suckling rats: control low-Fe formula; control with 100-times Mn; and control with 100-times Fe. Another group received 200 {mu}g MnCl{sub 2} daily during infancy. 12 hr post-dosing, the pattern of {sup 54}Mn distribution in the tissues paralleled that of {sup 59}Fe. An excess of either mineral decreased overall retention but led to higher recoveries of both elements in the proximal intestine and liver. Conversely, these recoveries in pups given Mn from birth were lower than in controls. Analysis of the cytosolic fractions from intestine and liver using FPLC gel filtration demonstrated the impact of the mineral loads on protein profiles. In all cases except the high-Mn dose, dietary manipulations resulted in greater relative levels of a high molecular weight protein with MW similar to ferritin. The high-Mn formula seemed to induce in the hepatocyte a lower MW protein with which most of the {sup 54}Mn and {sup 59}Fe was associated. These results suggest a possible role of Mn as a regulator in the synthesis of cytosolic proteins of the enterocyte and hepatocyte in infants.

  19. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  20. Interference of quorum sensing in Pseudomonas syringae by bacterial epiphytes that limit iron availability.

    PubMed

    Dulla, Glenn F J; Krasileva, Ksenia V; Lindow, Steven E

    2010-06-01

    Leaf surfaces harbour bacterial epiphytes that are capable of influencing the quorum sensing (QS) system, density determination through detection of diffusible signal molecules, of the plant-pathogen Pseudomonas syringae pv. syringae (Pss) which controls expression of extracellular polysaccharide production, motility and other factors contributing to virulence to plants. Approximately 11% of the bacterial epiphytes recovered from a variety of plants produced a diffusible factor capable of inhibiting the QS system of Pss as indicated by suppression of ahlI. Blockage of QS by these interfering strains correlated strongly with their ability to limit iron availability to Pss. A direct relationship between the ability of isogenic Escherichia coli strains to sequester iron via their production of different siderophores and their ability to suppress QS in Pss was also observed. Quorum sensing induction was inversely related to iron availability in culture media supplemented with iron chelators or with FeCl(3). Co-inoculation of interfering strains with Pss onto leaves increased the number of resultant disease lesions over twofold compared with that on plants inoculated with Pss alone. Transposon-generated mutants of interfering strains in which QS inhibition was blocked did not increase disease when co-inoculated with Pss. Increased disease incidence was also not observed when a non-motile mutant of Pss was co-inoculated onto plants with QS interfering bacteria suggesting that these strains enhanced the motility of Pss in an iron-dependent manner, leading to an apparent increase in virulence of this pathogen. Considerable cross-talk mediated by iron scavenging apparently occurs on plants, thereby altering the behaviour of bacteria such as Pss that exhibit important QS-dependent traits in this habitat.

  1. Interaction of 2-chloronaphthalene with high carbon iron filings (HCIF): adsorption, dehalogenation and mass transfer limitations.

    PubMed

    Sinha, Alok; Bose, Purnendu

    2007-10-15

    Interaction of 2-chloronaphthalene (2-CN) with high-carbon iron filings (HCIF) was studied in anaerobic batch systems, both under well-mixed and poorly-mixed conditions. In well-mixed conditions, partitioning of 2-CN between solid and aqueous phases was fast, resulting in rapid attainment of equilibrium. Equilibrium partitioning could be described by a Freundlich isotherm, C(s)=K x [C(a)](m), where C(s) (micromoles g(-1) iron) and C(a) (micromoles L(-1)) were the solid and aqueous phase 2-CN concentrations, respectively. Isotherm parameters, m and K were determined to be 0.76 and 5.6 x 10(-2) (micromole g(-1) iron)/(micromole L(-1)), respectively. Sorption (k(2)) and desorption (k(3)) rate constants were determined to be 5.60 x 10(-1) h(-1) g(-1) iron L and 10 h(-1), respectively. Reductive dehalogenation of aqueous phase 2-CN occurred concurrently but at a slower rate, and could be described by the expression (dC(T)//dt)= -k(1) x M x (C(a))(N), where C(T) (micromoles L(-1)) was the total 2-CN concentration and M (g iron L(-1)) the concentration of HCIF. The values of k(1) and N were determined to be 1.09 x 10(-2) h(-1) g(-1) iron L and 1.647, respectively. In poorly mixed conditions, adsorption (k(2)) and desorption (k(3)) rate constants were 3.92 x 10(-5) h(-1) g(-1) iron L and 7 x 10(-4) h(-1), respectively, i.e., several orders of magnitude less than in well-mixed systems. The dehalogenation rate parameters, k(1) and N were determined to be 2.22 x 10(-4) h(-1) g(-1) iron L and 0.986, respectively, suggesting slower dehalogenation. These results highlight how mass-transfer limitations during the interaction between HCIF and 2-CN in poorly mixed systems, such as permeable reactive barriers (PRBs), can potentially impact the dehalogenation process.

  2. Prion Protein (PrP) Knock-Out Mice Show Altered Iron Metabolism: A Functional Role for PrP in Iron Uptake and Transport

    PubMed Central

    Singh, Ajay; Kong, Qingzhong; Luo, Xiu; Petersen, Robert B.; Meyerson, Howard; Singh, Neena

    2009-01-01

    Despite overwhelming evidence implicating the prion protein (PrP) in prion disease pathogenesis, the normal function of this cell surface glycoprotein remains unclear. In previous reports we demonstrated that PrP mediates cellular iron uptake and transport, and aggregation of PrP to the disease causing PrP-scrapie (PrPSc) form results in imbalance of iron homeostasis in prion disease affected human and animal brains. Here, we show that selective deletion of PrP in transgenic mice (PrPKO) alters systemic iron homeostasis as reflected in hematological parameters and levels of total iron and iron regulatory proteins in the plasma, liver, spleen, and brain of PrPKO mice relative to matched wild type controls. Introduction of radiolabeled iron (59FeCl3) to Wt and PrPKO mice by gastric gavage reveals inefficient transport of 59Fe from the duodenum to the blood stream, an early abortive spike of erythropoiesis in the long bones and spleen, and eventual decreased 59Fe content in red blood cells and all major organs of PrPKO mice relative to Wt controls. The iron deficient phenotype of PrPKO mice is reversed by expressing Wt PrP in the PrPKO background, demonstrating a functional role for PrP in iron uptake and transport. Since iron is required for essential metabolic processes and is also potentially toxic if mismanaged, these results suggest that loss of normal function of PrP due to aggregation to the PrPSc form induces imbalance of brain iron homeostasis, resulting in disease associated neurotoxicity. PMID:19568430

  3. The effects of maternal iron deficiency on infant fibroblast growth factor-23 and mineral metabolism

    PubMed Central

    Braithwaite, V.S.; Prentice, A.; Darboe, M.K.; Prentice, A.M.; Moore, S.E.

    2016-01-01

    Fibroblast growth factor-23 (FGF23), a phosphate(Phos)-regulating hormone, is abnormally elevated in hypophosphataemic syndromes and an elevated FGF23 is a predictor of mortality in kidney disease. Recent findings suggest iron deficiency as a potential mediator of FGF23 expression and murine studies have shown in utero effects of maternal iron deficiency on offspring FGF23 and phosphate metabolism. Our aim was to investigate the impact of maternal iron status on infant FGF23 and mineral metabolites over the first 2 years of life. Infants born to mothers with normal (NIn = 25,) and low (LIn = 25) iron status during pregnancy, from a mother-infant trial (ISRCTN49285450) in rural Gambia, West Africa, had blood and plasma samples analysed at 12, 24, 52, 78 and 104 weeks (wk) of age. Circulating intact-FGF23 (I-FGF23), Phos, total alkaline phosphatase (TALP) and haemoglobin (Hb) decreased and estimated glomerular filtration rate increased over time [all P ≤ 0.0001)]. C-terminal-FGF23 (C-FGF23) and TALP were significantly higher in LI compared with NI, from 52 wk for C-FGF23 [Beta coefficient (SE) 18.1 (0.04) %, P = 0.04] and from 24 wk for TALP [44.7 (29.6) U/L, P = 0.04]. Infant Hb was the strongest negative predictor of C-FGF23 concentration [− 21% (4%) RU/mL, P ≤ 0.0001], Phos was the strongest positive predictor of I-FGF23 [32.0(3.9) pg/mL, P ≤ 0.0001] and I-FGF23 did not predict C-FGF23 over time [− 0.5% (0.5%), P = 0.3]. In conclusion, this study suggests that poor maternal iron status is associated with a higher infant C-FGF23 and TALP but similar I-FGF23 concentrations in infants and young children. These findings further highlight the likely public health importance of preventing iron deficiency during pregnancy. Whether or not children who are born to iron deficient mothers have persistently high concentrations of these metabolites and are more likely to be at risk of impaired bone development and pre-disposed to rickets

  4. THE LATTICE PARAMETERS AND SOLUBILITY LIMITS OF ALPHA IRON AS AFFECTED BY SOME BINARY TRANSITION-ELEMENT ADDITIONS.

    DTIC Science & Technology

    The lattice parameters of alpha iron with binary additions of all the transition metals, except technetium, have been accurately determined on solid...samples. No direct correlation with solute size is observed, but an effect of electron configuration is noted. The solubility limits of alpha iron with

  5. Effects of Iron Limitation on the Degradation of Toluene by Pseudomonas Strains Carrying the TOL (pWWO) Plasmid

    PubMed Central

    Dinkla, Inez J. T.; Gabor, Esther M.; Janssen, Dick B.

    2001-01-01

    Most aerobic biodegradation pathways for hydrocarbons involve iron-containing oxygenases. In iron-limited environments, such as the rhizosphere, this may influence the rate of degradation of hydrocarbon pollutants. We investigated the effects of iron limitation on the degradation of toluene by Pseudomonas putida mt2 and the transconjugant rhizosphere bacterium P. putida WCS358(pWWO), both of which contain the pWWO (TOL) plasmid that harbors the genes for toluene degradation. The results of continuous-culture experiments showed that the activity of the upper-pathway toluene monooxygenase decreased but that the activity of benzyl alcohol dehydrogenase was not affected under iron-limited conditions. In contrast, the activities of three meta-pathway (lower-pathway) enzymes were all found to be reduced when iron concentrations were decreased. Additional experiments in which citrate was used as a growth substrate and the pathways were induced with the gratuitous inducer o-xylene showed that expression of the TOL genes increased the iron requirement in both strains. Growth yields were reduced and substrate affinities decreased under iron-limited conditions, suggesting that iron availability can be an important parameter in the oxidative breakdown of hydrocarbons. PMID:11472911

  6. Lipocalin 2 bolsters innate and adaptive immune responses to blood-stage malaria infection by reinforcing host iron metabolism.

    PubMed

    Zhao, Hong; Konishi, Aki; Fujita, Yukiko; Yagi, Masanori; Ohata, Keiichi; Aoshi, Taiki; Itagaki, Sawako; Sato, Shintaro; Narita, Hirotaka; Abdelgelil, Noha H; Inoue, Megumi; Culleton, Richard; Kaneko, Osamu; Nakagawa, Atsushi; Horii, Toshihiro; Akira, Shizuo; Ishii, Ken J; Coban, Cevayir

    2012-11-15

    Plasmodium parasites multiply within host erythrocytes, which contain high levels of iron, and parasite egress from these cells results in iron release and host anemia. Although Plasmodium requires host iron for replication, how host iron homeostasis and responses to these fluxes affect Plasmodium infection are incompletely understood. We determined that Lipocalin 2 (Lcn2), a host protein that sequesters iron, is abundantly secreted during human (P. vivax) and mouse (P. yoeliiNL) blood-stage malaria infections and is essential to control P. yoeliiNL parasitemia, anemia, and host survival. During infection, Lcn2 bolsters both host macrophage function and granulocyte recruitment and limits reticulocytosis, or the expansion of immature erythrocytes, which are the preferred target cell of P. yoeliiNL. Additionally, a chronic iron imbalance due to Lcn2 deficiency results in impaired adaptive immune responses against Plasmodium parasites. Thus, Lcn2 exerts antiparasitic effects by maintaining iron homeostasis and promoting innate and adaptive immune responses.

  7. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.

    PubMed

    Chen, Lu; Bromberger, Paul David; Nieuwenhuiys, Gavin; Hatti-Kaul, Rajni

    2016-01-01

    Lactobacillus reuteri, a heterofermentative bacterium, metabolizes glycerol via a Pdu (propanediol-utilization) pathway involving dehydration to 3-hydroxypropionaldehyde (3-HPA) followed by reduction to 1,3-propandiol (1,3-PDO) with concomitant generation of an oxidized cofactor, NAD+ that is utilized to maintain cofactor balance required for glucose metabolism and even for oxidation of 3-HPA by a Pdu oxidative branch to 3-hydroxypropionic acid (3-HP). The Pdu pathway is operative inside Pdu microcompartment that encapsulates different enzymes and cofactors involved in metabolizing glycerol or 1,2-propanediol, and protects the cells from the toxic effect of the aldehyde intermediate. Since L. reuteri excretes high amounts of 3-HPA outside the microcompartment, the organism is likely to have alternative alcohol dehydrogenase(s) in the cytoplasm for transformation of the aldehyde. In this study, diversity of alcohol dehydrogenases in Lactobacillus species was investigated with a focus on L. reuteri. Nine ADH enzymes were found in L. reuteri DSM20016, out of which 3 (PduQ, ADH6 and ADH7) belong to the group of iron-dependent enzymes that are known to transform aldehydes/ketones to alcohols. L. reuteri mutants were generated in which the three ADHs were deleted individually. The lagging growth phenotype of these deletion mutants revealed that limited NAD+/NADH recycling could be restricting their growth in the absence of ADHs. Notably, it was demonstrated that PduQ is more active in generating NAD+ during glycerol metabolism within the microcompartment by resting cells, while ADH7 functions to balance NAD+/NADH by converting 3-HPA to 1,3-PDO outside the microcompartment in the growing cells. Moreover, evaluation of ADH6 deletion mutant showed strong decrease in ethanol level, supporting the role of this bifuctional alcohol/aldehyde dehydrogenase in ethanol production. To the best of our knowledge, this is the first report revealing both internal and external recycling

  8. Discovering the role of mitochondria in the iron deficiency-induced metabolic responses of plants.

    PubMed

    Vigani, Gianpiero

    2012-01-01

    In plants, iron (Fe) deficiency-induced chlorosis is a major problem, affecting both yield and quality of crops. Plants have evolved multifaceted strategies, such as reductase activity, proton extrusion, and specialised storage proteins, to mobilise Fe from the environment and distribute it within the plant. Because of its fundamental role in plant productivity, several issues concerning Fe homeostasis in plants are currently intensively studied. The activation of Fe uptake reactions requires an overall adaptation of the primary metabolism because these activities need the constant supply of energetic substrates (i.e., NADPH and ATP). Several studies concerning the metabolism of Fe-deficient plants have been conducted, but research focused on mitochondrial implications in adaptive responses to nutritional stress has only begun in recent years. Mitochondria are the energetic centre of the root cell, and they are strongly affected by Fe deficiency. Nevertheless, they display a high level of functional flexibility, which allows them to maintain the viability of the cell. Mitochondria represent a crucial target of studies on plant homeostasis, and it might be of interest to concentrate future research on understanding how mitochondria orchestrate the reprogramming of root cell metabolism under Fe deficiency. In this review, I summarise what it is known about the effect of Fe deficiency on mitochondrial metabolism and morphology. Moreover, I present a detailed view of the possible roles of mitochondria in the development of plant responses to Fe deficiency, integrating old findings with new and discussing new hypotheses for future investigations.

  9. Iron Limitation of a Springtime Bacterial and Phytoplankton Community in the Ross Sea: Implications for Vitamin B12 Nutrition

    PubMed Central

    Bertrand, Erin M.; Saito, Mak A.; Lee, Peter A.; Dunbar, Robert B.; Sedwick, Peter N.; DiTullio, Giacomo R.

    2011-01-01

    The Ross Sea is home to some of the largest phytoplankton blooms in the Southern Ocean. Primary production in this system has previously been shown to be iron limited in the summer and periodically iron and vitamin B12 colimited. In this study, we examined trace metal limitation of biological activity in the Ross Sea in the austral spring and considered possible implications for vitamin B12 nutrition. Bottle incubation experiments demonstrated that iron limited phytoplankton growth in the austral spring while B12, cobalt, and zinc did not. This is the first demonstration of iron limitation in a Phaeocystis antarctica-dominated, early season Ross Sea phytoplankton community. The lack of B12 limitation in this location is consistent with previous Ross Sea studies in the austral summer, wherein vitamin additions did not stimulate P. antarctica growth and B12 was limiting only when bacterial abundance was low. Bottle incubation experiments and a bacterial regrowth experiment also revealed that iron addition directly enhanced bacterial growth. B12 uptake measurements in natural water samples and in an iron fertilized bottle incubation demonstrated that bacteria serve not only as a source for vitamin B12, but also as a significant sink, and that iron additions enhanced B12 uptake rates in phytoplankton but not bacteria. Additionally, vitamin uptake rates did not become saturated upon the addition of up to 95 pM B12. A rapid B12 uptake rate was observed after 13 min, which then decreased to a slower constant uptake rate over the next 52 h. Results from this study highlight the importance of iron availability in limiting early season Ross Sea phytoplankton growth and suggest that rates of vitamin B12 production and consumption may be impacted by iron availability. PMID:21886638

  10. Proanthocyanidin Protects Human Embryo Hepatocytes from Fluoride-Induced Oxidative Stress by Regulating Iron Metabolism.

    PubMed

    Niu, Qiang; Mu, Lati; Li, Shugang; Xu, Shangzhi; Ma, Ruling; Guo, Shuxia

    2016-02-01

    To investigate whether grape seed proanthocyanidin extract (GSPE) antagonizes fluoride-induced oxidative injury by regulating iron metabolism, human embryo hepatic cells (L-02) were incubated with sodium fluoride (NaF, 80 mg/L) and/or GSPE (100 μmol/L) for 24 h. Results showed the glutathione peroxidase (GSH-Px) content, superoxide dismutase (SOD) activity, and total antioxidant capacity (T-AOC) level of the NaF group were significantly lower than that of the control group (P < 0.05), while malondialdehyde (MDA) content increased in the NaF group compared with the control group (P < 0.05). Moreover, the indexes mentioned above showed opposite changes in the NaF + GSPE group. In addition, iron content significantly increased in the NaF group compared to the control group(P < 0.05) and significantly decreased in the NaF + GSPE group compared to the NaF group (P < 0.05). Furthermore, hepcidin (coded by HAMP) messenger RNA (mRNA) expression significantly increased in the NaF group compared to the control group(P < 0.05) and significantly decreased in the NaF + GSPE group compared to the NaF group (P < 0.05). Ferroportin 1 (coded by FPN1) mRNA expression significantly decreased in the NaF group compared to the control group (P < 0.05) and significantly increased in the NaF + GSPE group compared to the NaF group (P < 0.05). These results indicate that GSPE provides significant cellular protection against oxidative stress induced by excessive fluoride via the iron metabolism regulation.

  11. Alterations of systemic and muscle iron metabolism in human subjects treated with low-dose recombinant erythropoietin.

    PubMed

    Robach, Paul; Recalcati, Stefania; Girelli, Domenico; Gelfi, Cecilia; Aachmann-Andersen, Niels J; Thomsen, Jonas J; Norgaard, Anne M; Alberghini, Alessandra; Campostrini, Natascia; Castagna, Annalisa; Viganò, Agnese; Santambrogio, Paolo; Kempf, Tibor; Wollert, Kai C; Moutereau, Stéphane; Lundby, Carsten; Cairo, Gaetano

    2009-06-25

    The high iron demand associated with enhanced erythropoiesis during high-altitude hypoxia leads to skeletal muscle iron mobilization and decrease in myoglobin protein levels. To investigate the effect of enhanced erythropoiesis on systemic and muscle iron metabolism under nonhypoxic conditions, 8 healthy volunteers were treated with recombinant erythropoietin (rhEpo) for 1 month. As expected, the treatment efficiently increased erythropoiesis and stimulated bone marrow iron use. It was also associated with a prompt and considerable decrease in urinary hepcidin and a slight transient increase in GDF-15. The increased iron use and reduced hepcidin levels suggested increased iron mobilization, but the treatment was associated with increased muscle iron and L ferritin levels. The muscle expression of transferrin receptor and ferroportin was up-regulated by rhEpo administration, whereas no appreciable change in myoglobin levels was observed, which suggests unaltered muscle oxygen homeostasis. In conclusion, under rhEpo stimulation, the changes in the expression of muscle iron proteins indicate the occurrence of skeletal muscle iron accumulation despite the remarkable hepcidin suppression that may be mediated by several factors, such as rhEpo or decreased transferrin saturation or both.

  12. Iron Status and Metabolic Syndrome in Patients with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Ghamarchehreh, Mohammad Ebrahim; Jonaidi-Jafari, Nematollah; Bigdeli, Mohammad; Khedmat, Hossein; Saburi, Amin

    2016-01-01

    BACKGROUND A hypothesis has been presented about the role of serum iron, ferritin and transferrin saturation among patients with non-alcoholic fatty liver disease (NAFLD) and resistance to insulin (metabolic syndrome [MetS]), but there is much controversy. This study aimed at investigating the level of serum iron and demographic characteristics in patients with NAFLD with or without MetS. METHODS A case-control study was conducted on patients with elevated liver enzymes referring to Baqiyatallah clinic, Tehran, Iran during 2010-2011. After ruling out other causes of increased aminotransferases and approving the diagnosis of NAFLD, the patients were divided into two groups of with or without MetS. Then, the individuals’ demographic, sonographic, and laboratory characteristics were recorded. RESULTS This research included 299 patients suffering from NAFLD who were divided into MetS (n=143; 47.8%) and non-MetS (n=156; 52.2%) groups. The age, systolic and diastolic blood pressure, body mass index, waist/hip ratio, glucose tolerance test, serum insulin, C. peptide, triglyceride, and HB A1c were different between MetS and non-MetS groups (p<0.05). There was no significant difference in serum iron and ferritin levels between the two groups, however, a significant correlation was found between serum ferritin and alanine transaminase (p=0.005) and also aspartate aminotransferase (p=0.032). CONCLUSION Our findings did not show a significant relationship between iron, in free or storage form, and the presence of MetS among patients with NAFLD, but serum ferritin can correlate with hepatocytes injuries indicated by raised aminotransferases. Nevertheless, to clarify this relationship further molecular, genomic, and histopathological studies are required. PMID:26933479

  13. Effects of exercise on hepcidin response and iron metabolism during recovery.

    PubMed

    Peeling, Peter; Dawson, Brian; Goodman, Carmel; Landers, Grant; Wiegerinck, Erwin T; Swinkels, Dorine W; Trinder, Debbie

    2009-12-01

    Urinary hepcidin, inflammation, and iron metabolism were examined during the 24 hr after exercise. Eight moderately trained athletes (6 men, 2 women) completed a 60-min running trial (15-min warm-up at 75-80% HR(peak) + 45 min at 85-90% HR(peak)) and a 60-min trial of seated rest in a randomized, crossover design. Venous blood and urine samples were collected pretrial, immediately posttrial, and at 3, 6, and 24 hr posttrial. Samples were analyzed for interleukin-6 (IL-6), C-reactive protein (CRP), serum iron, serum ferritin, and urinary hepcidin. The immediate postrun levels of IL-6 and 24-hr postrun levels of CRP were significantly increased from baseline (6.9 and 2.6 times greater, respectively) and when compared with the rest trial (p < or = .05). Hepcidin levels in the run trial after 3, 6, and 24 hr of recovery were significantly greater (1.7-3.1 times) than the pre- and immediate postrun levels (p < or = .05). This outcome was consistent in all participants, despite marked variation in the magnitude of rise. In addition, the 3-hr postrun levels of hepcidin were significantly greater than at 3 hr in the rest trial (3.0 times greater, p < or = .05). Hepcidin levels continued to increase at 6 hr postrun but failed to significantly differ from the rest trial (p = .071), possibly because of diurnal influence. Finally, serum iron levels were significantly increased immediately postrun (1.3 times, p < or = .05). The authors concluded that high-intensity exercise was responsible for a significant increase in hepcidin levels subsequent to a significant increase in IL-6 and serum iron.

  14. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism

    PubMed Central

    Tomkova, Veronika; Korenkova, Vlasta; Langerova, Lucie; Simonova, Ekaterina; Zjablovskaja, Polina; Alberich-Jorda, Meritxell; Neuzil, Jiri; Truksa, Jaroslav

    2017-01-01

    The importance of iron in the growth and progression of tumors has been widely documented. In this report, we show that tumor-initiating cells (TICs), represented by spheres derived from the MCF7 cell line, exhibit higher intracellular labile iron pool, mitochondrial iron accumulation and are more susceptible to iron chelation. TICs also show activation of the IRP/IRE system, leading to higher iron uptake and decrease in iron storage, suggesting that level of properly assembled cytosolic iron-sulfur clusters (FeS) is reduced. This finding is confirmed by lower enzymatic activity of aconitase and FeS cluster biogenesis enzymes, as well as lower levels of reduced glutathione, implying reduced FeS clusters synthesis/utilization in TICs. Importantly, we have identified specific gene signature related to iron metabolism consisting of genes regulating iron uptake, mitochondrial FeS cluster biogenesis and hypoxic response (ABCB10, ACO1, CYBRD1, EPAS1, GLRX5, HEPH, HFE, IREB2, QSOX1 and TFRC). Principal component analysis based on this signature is able to distinguish TICs from cancer cells in vitro and also Leukemia-initiating cells (LICs) from non-LICs in the mouse model of acute promyelocytic leukemia (APL). Majority of the described changes were also recapitulated in an alternative model represented by MCF7 cells resistant to tamoxifen (TAMR) that exhibit features of TICs. Our findings point to the critical importance of redox balance and iron metabolism-related genes and proteins in the context of cancer and TICs that could be potentially used for cancer diagnostics or therapy. PMID:28031527

  15. Gravitational collapse of a rotating iron stellar core: The limiting case of transparency to neutrino emission

    NASA Astrophysics Data System (ADS)

    Imshennik, V. S.; Molokanov, V. O.

    2010-10-01

    A quasi-one-dimensional hydrodynamic model for the collapse of a rotating iron stellar core is used to determine the neutrino spectra in the limiting case of total transparency to neutrino emission (without any deposition effect). The derived spectra allow the previously constructed spectra used to theoretically estimate the number of events in the LSD underground neutrino detector from SN 1987A to be refined. At typical iron stellar core parameters, including those that characterize the core rotation specified in the initial conditions of the model, this number has turned out to be 1.6, which is close in order of magnitude to its experimental value of 5. Here, we compare in detail these results by assuming that the transparency of the collapsing iron core itself could be attributable to the development of its three-dimensional dynamical instability—the subject of future theoretical studies. The physical formulation of the problem coincides closely with the collapse model proposed in our previous paper, where the above number of events turned out to be 0.5. We have confirmed the previously published results with regard to the neutrino spectra, including the significant superiority of electron neutrinos over electron antineutrinos in them. The hydrostatically equilibrium configuration (a rotating collapsar) obtained in our model calculation is discussed in comparison with self-similar solutions that are close in physical formulation of the problem. This result seems a nontrivial consequence of the included rotation effects that hinder nonstop collapse established in the mentioned self-similar solutions.

  16. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.

    PubMed

    Sperling, Erik A; Wolock, Charles J; Morgan, Alex S; Gill, Benjamin C; Kunzmann, Marcus; Halverson, Galen P; Macdonald, Francis A; Knoll, Andrew H; Johnston, David T

    2015-07-23

    Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.

  17. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation

    NASA Astrophysics Data System (ADS)

    Sperling, Erik A.; Wolock, Charles J.; Morgan, Alex S.; Gill, Benjamin C.; Kunzmann, Marcus; Halverson, Galen P.; MacDonald, Francis A.; Knoll, Andrew H.; Johnston, David T.

    2015-07-01

    Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.

  18. The Effect of the Hemochromatosis (HFE) Genotype on Lead Load and Iron Metabolism among Lead Smelter Workers

    PubMed Central

    Fan, Guangqin; Du, Guihua; Li, Huijun; Lin, Fen; Sun, Ziyong; Yang, Wei; Feng, Chang; Zhu, Gaochun; Li, Yanshu; Chen, Ying; Jiao, Huan; Zhou, Fankun

    2014-01-01

    Background Both an excess of toxic lead (Pb) and an essential iron disorder have been implicated in many diseases and public health problems. Iron metabolism genes, such as the hemochromatosis (HFE) gene, have been reported to be modifiers for lead absorption and storage. However, the HFE gene studies among the Asian population with occupationally high lead exposure are lacking. Objectives To explore the modifying effects of the HFE genotype (wild-type, H63D variant and C282Y variant) on the Pb load and iron metabolism among Asian Pb-workers with high occupational exposure. Methods Seven hundred and seventy-one employees from a lead smelter manufacturing company were tested to determine their Pb intoxication parameters, iron metabolic indexes and identify the HFE genotype. Descriptive and multivariate analyses were conducted. Results Forty-five H63D variant carriers and no C282Y variant carrier were found among the 771 subjects. Compared with subjects with the wild-type genotype, H63D variant carriers had higher blood lead levels, even after controlling for factors such as age, sex, marriage, education, smoking and lead exposure levels. Multivariate analyses also showed that the H63D genotype modifies the associations between the blood lead levels and the body iron burden/transferrin. Conclusions No C282Y variant was found in this Asian population. The H63D genotype modified the association between the lead and iron metabolism such that increased blood lead is associated with a higher body iron content or a lower transferrin in the H63D variant. It is indicated that H63D variant carriers may be a potentially highly vulnerable sub-population if they are exposed to high lead levels occupationally. PMID:24988074

  19. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution.

    PubMed

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments.

  20. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    PubMed Central

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  1. Iron-limitation and high light stress on phytoplankton populations from the Australian Sub-Antarctic Zone (SAZ)

    NASA Astrophysics Data System (ADS)

    Petrou, Katherina; Hassler, Christel S.; Doblin, Martina A.; Shelly, Kirsten; Schoemann, Véronique; van den Enden, Rick; Wright, Simon; Ralph, Peter J.

    2011-11-01

    The high nutrient low chlorophyll (HNLC) surface waters of the Southern Ocean are characterised by high concentrations of nitrate and phosphate, low concentrations of dissolved iron and deep vertical mixing. Future climate scenarios predict increased surface temperatures and ocean stratification in the region. These changes to vertical mixing will result in a slowdown of nutrient supply to surface waters and an increase in the integrated irradiance in the upper mixed layer. To investigate the influence of iron-limitation and high irradiance on phytoplankton growth and physiology, a 6-day shipboard incubation experiment was conducted during the Sub-Antarctic Zone Sensitivity to Environmental Change (SAZ Sense) voyage using phytoplankton populations from the upper mixed layer in the north-eastern SAZ region. Iron-limitation was induced with an organic siderophore and was compared with a 1 nM iron-enriched incubation and an unamended treatment (under silicate replete conditions). As expected, iron enrichment led to dominance by large diatoms and enhanced photosynthetic performance, while the iron-limited community showed a decline in total chl a and photochemical efficiency. Under the added stress of high light, the iron-limited community was able to cope with the shift from in situ (<150 μmol photons m -2 s -1) to incubation (mean=765 μmol photons m -2 s -1) irradiance by increasing the proportion of photoprotective pigments and diverting excess light energy via energy-dependent quenching ( qE). The responses to iron-limitation under high light showed that the phytoplankton community was able to acclimate to these conditions, but exhibited an overall decline in photosynthetic activity. Data presented here suggest the community shifts, in particular the decrease in diatoms, and the decline in photosynthetic performance of phytoplankton under low iron-high irradiance conditions has the potential to impact future ocean productivity and biogeochemical cycling.

  2. Hepcidin and iron metabolism in non-diabetic obese and type 2 diabetic rats.

    PubMed

    Chen, Yue; Yin, Hui-qing; Liu, Hao-ling; Xiu, Lei; Peng, Xiao-yu

    2015-12-01

    The aim of this study was to investigate the changes of iron levels and hepatic regulatory molecules expression involved in iron metabolism in non-diabetic obese/type 2 diabetic rat models. Male Wistar rats were divided into 3 groups: control group, non-diabetic obese group and type 2 diabetic group (n=20 each). The rats were evaluated physiologically and biochemically. The hepatic histopathological changes were observed using haematoxylin and eosin (HE) staining. The mRNA expression patterns of hepcidin, interleukin-6 (IL-6), hypoxia-inducible factor (HIF) and ferroportin (Fpn) in the rat liver in control group, non-diabetic obese group and type 2 diabetic group were analyzed by real-time RT-PCR. The protein expression patterns of hepcidin in liver of each group were further analyzed by immunohistochemistry and Western blotting. As compared with control group, the ferritin in non-diabetic obese group and type 2 diabetic group was increased significantly (P<0.001). However, there was no significant difference in soluble transferring receptor (sTfR):ferritin ratio among the three groups (P>0.05). The real-time RT-PCR, immunohistochemistry and Western blotting results all revealed that the expression levels of hepcidin in non-diabetic obese group and type 2 diabetic group were elevated significantly as compared with those in control group (P<0.001). The expression levels of hepcidin mRNA between non-diabetic obese group and type 2 diabetic group showed no significant difference (P>0.05). However, the protein expression levels of hepcidin in type 2 diabetic group were significantly higher than those in non-diabetic obese group (P<0.05). Compared to control group, the expression levels of IL-6 mRNA in non-diabetic obese group and type 2 diabetic group were increased significantly and the expression levels of Fpn mRNA decreased (P<0.05). However, the expression levels of HIF mRNA had no significant difference among three groups. It is suggested that iron metabolism is

  3. Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions.

    PubMed

    Hempel, Kristina; Herbst, Florian-Alexander; Moche, Martin; Hecker, Michael; Becher, Dörte

    2011-04-01

    Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.

  4. Initial Characterization of Carbon Metabolism in Iron Oxidizing Microbial Communities of Acidic Hot Springs in Norris Geyser Basin, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Kreuzer, H. W.; Jennings, R. D.; Whitmore, L.; Inskeep, W. P.; Moran, J.

    2012-12-01

    Norris Geyser Basin in Yellowstone National Park is home to several acidic, sulfidic hot springs. Visual inspection of the springs reveals distinct geochemical regions starting with a sulfur deposition zone followed by a transition to iron oxide deposition downstream. The microbial communities in the iron oxidation zones are dominated by Archaea, including several members that appear to define previously unrecognized taxa. Abiotic iron oxidation rates are very slow at these temperatures (typically ~ 65-70 oC) and pH's (typically ~3). Therefore, the relatively rapid iron oxide deposition rate strongly suggests the process is microbially mediated, and an organism previously isolated from these springs, Metallosphaera yellowstonensis, has been shown to oxide iron in culture. M. yellowstonensis has been observed in the all microbial communities analyzed in the iron oxidizing zones of these springs, though metagenomic profiling suggests it constitutes only ~20% of the community membership. When we began our studies of C flow in the iron-oxidizing community, no C source had been demonstrated. Observed potential carbon sources in the springs include dissolved inorganic carbon, dissolved organic carbon, and methane, as well as random inputs of heterotrophic carbon in the forms of insect carcasses, pine needles, and animal scat. The temperatures in the iron oxidation zones are above the photosynthetic upper temperature limit, thus precluding photosynthetic-based autotrophy within the community itself. We are employing geochemical and stable isotope techniques to assess carbon inventories in the system. We have demonstrated that M. yellowstonensis as well as excised samples of iron oxide mat communities can fix CO2, and our estimated isotopic fractionation factor is consistent with the 3-hydroxypropionate 4-hydroxybutyrate pathway. Genes of this pathway have been identified in the M. yellowstonensis genome. We have tentatively identified small amounts of organic compounds

  5. Evidence for a metabolic limitation of survival in hypothermic hamsters.

    NASA Technical Reports Server (NTRS)

    Prewitt, R. L.; Anderson, G. L.; Musacchia, X. J.

    1972-01-01

    The underlying factors limiting survival in the hypothermic state are studied. Hamsters of both sexes, clipped and unclipped, were inducted into profound hypothermia by the helium cold method until they reached a temperature between 7 and 10 C. It appears that the primary cause of death is failure of respiration due to the depletion of carbohydrate energy supplies and may explain why survival time in hypothermia is shorter than the normal hibernation time of the hamster.

  6. Impaired growth under iron-limiting conditions associated with the acquisition of colistin resistance in Acinetobacter baumannii.

    PubMed

    López-Rojas, Rafael; García-Quintanilla, Meritxell; Labrador-Herrera, Gema; Pachón, Jerónimo; McConnell, Michael J

    2016-06-01

    Acquisition of colistin resistance in Acinetobacter baumannii has been associated with reduced bacterial fitness and virulence, although the mechanisms underlying this fitness loss have not been well characterised. In this study, the role played by environmental iron levels on the growth and survival of colistin-resistant strains of A. baumannii was assessed. Growth assays with the colistin-susceptible ATCC 19606 strain and its colistin-resistant derivative RC64 [colistin minimum inhibitory concentration (MIC) of 64 mg/L] demonstrated that the strains grew similarly in rich laboratory medium (Mueller-Hinton broth), whereas RC64 demonstrated impaired growth compared with ATCC 19606 in human serum (>100-fold at 24 h). Compared with RC64, ATCC 19606 grew in the presence of higher concentrations of the iron-specific chelator 2,2'-bipyridine and grew more readily under iron-limiting conditions in solid and liquid media. In addition, iron supplementation of human serum increased the growth of RC64 compared with unsupplemented human serum to a greater extent than ATCC 19606. The ability of 11 colistin-resistant clinical isolates with mutations in the pmrB gene to grow in iron-replete and iron-limiting conditions was assessed, demonstrating that eight of the strains showed reduced growth under iron limitation. Individual mutations in the pmrB gene did not directly correlate with a decreased capacity for growth under iron limitation, suggesting that mutations in pmrB may not directly produce this phenotype. Together these results indicate that acquisition of colistin resistance in A. baumannii can be associated with a decreased ability to grow in low-iron environments.

  7. Wilson's disease patient with iron metabolism discharge barriers: A case report

    PubMed Central

    Cai, Guoen; Huang, Xinming; Ye, Qinyong; Xiong, Wenting; Duan, Qing

    2017-01-01

    Wilson's disease (WD) is an autosomal genetic disease. In the present study, the patient was a 35-year-old woman who exhibited drinking bucking (bulbar paralysis) and dysphagia for a period of nine years. Genetic analysis of the patient identified the Thr935Met and Pro992Leu mutations, which lead to copper metabolism discharge barriers. Moreover, magnetic resonance imaging revealed a susceptibility-weighted imaging (SWI) hyperintense area in the bilateral substantia nigra and lenticular nuclei. These SWI observations indicated that ‘mineral deposits’ were present. The present case demonstrates that the SWI hyperintense area in the bilateral lenticular nuclei, substantia nigra and red nucleus combined with the patient's symptoms indicated that there is a possibility to diagnose WD when it is not detected by genetic analysis. In addition, it demonstrates that systemic mineral removal treatment (including manganese, iron and copper) may be successful for the initial treatment of WD. PMID:28123513

  8. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants

    PubMed Central

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K.

    2016-01-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. PMID:26685186

  9. Iron metabolism in African American women in the second and third trimesters of high-risk pregnancies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To examine iron metabolism during the second and third trimesters in African American women with high-risk pregnancies. Design: Longitudinal pilot study. Setting: Large, university-based, urban Midwestern U.S. medical center. Participants: Convenience sample of 32 African American wome...

  10. Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism.

    PubMed

    Keijer, Jaap; Bekkenkamp-Grovenstein, Melissa; Venema, Dini; Dommels, Yvonne E M

    2011-06-01

    Cancer cells are resistant to apoptosis and show a shift in energy production from mitochondrial oxidative phosphorylation to cytosolic glycolysis. Apoptosis resistance and metabolic reprogramming are linked in many cancer cells and both processes center on mitochondria. Clearly, mutated cancer cells escape surveillance and turn into selfish cells. However, many of the mechanisms that operate cellular metabolic control still function in cancer cells. This review describes the metabolic importance of glucose and glutamine, glycolytic enzymes, oxygen, growth cofactors and mitochondria and focuses on the potential role of bioactive food components, including micronutrients. The role of B- and A-vitamin cofactors in (mitochondrial) metabolism is highlighted and the cancer protective potential of omega-3 fatty acids and several polyphenols is discussed in relation to metabolic reprogramming, including the mechanisms that may be involved. Furthermore, it is shown that cancer cell growth reduction by limiting the growth cofactor folic acid seems to be associated with reversal of metabolic reprogramming. Altogether, reversal of metabolic reprogramming may be an attractive strategy to increase susceptibility to apoptotic surveillance. Food bioactive components that affect various aspects of metabolism may be important tools to reverse glycolytic to oxidative metabolism and enhance sensitivity to apoptosis. The success of such a strategy may depend on several actors, acting in concert. Growth cofactors may be one of these, which call for careful (re)evaluation of their function in normal and in cancer metabolism.

  11. Evolution of metabolic rate in a parasitic wasp: the role of limitation in intrinsic resources.

    PubMed

    Moiroux, Joffrey; Giron, David; Vernon, Philippe; van Baaren, Joan; van Alphen, Jacques J M

    2012-07-01

    Metabolic rate, a physiological trait closely related to fitness traits, is expected to evolve in response to two main environmental variables: (1) climate, low metabolic rates being found in dry and hot regions when comparing populations originating from different climates in a common garden experiment and (2) resource limitations, low metabolic rates being selected when resources are limited. The main goal of this study was to investigate if differences in intrinsic resource limitations may have disrupted the expected evolution of metabolic rate in response to climate in a parasitic wasp. We compared CO(2) production of females from 4 populations of a Drosophila parasitoid, Leptopilina boulardi, as an estimate of their metabolic rate. Two populations from a hot and dry area able to synthesise lipids de novo at adult stage were compared with two populations originating from a mild and humid climate where no lipid accumulation during adult life was observed. These last females are thus more limited in lipids than the first ones. We observed that a high metabolic rate has been selected in hot and dry environments, contrarily to the results of a great majority of studies. We suggest that lipogenesis occurring there may have allowed the selection of a higher metabolic rate, as females are less limited in energetic resources than females from the mild environment. A high metabolic rate may have been selected there as it partly compensates for the long distances that females have to cross to find laying opportunities in distant orchards. We suggest that intrinsic resources should be integrated when investigating geographical variations in metabolism as this factor may disrupt evolution in response to climate.

  12. Molecular evidence of iron limitation and availability in the global diazotroph Trichodesmium

    PubMed Central

    Chappell, Phoebe Dreux; Moffett, James W; Hynes, Annette M; Webb, Eric A

    2012-01-01

    The activity of the N2-fixing cyanobacterial genus Trichodesmium is critical to the global nitrogen (N) and carbon (C) cycles. Although iron (Fe) has been shown to be an important element limiting the growth and N2 fixation of Trichodesmium, there have been no specific data demonstrating the in situ affect of Fe on Trichodesmium. We surveyed Trichodesmium populations from the Atlantic and Pacific Oceans for Fe limitation using a novel quantitative reverse transcriptase-PCR (qRT-PCR) method monitoring the expression of an Fe limitation-induced gene, isiB. Here we report the first molecular evidence of in situ Fe limitation of Trichodesmium N2 fixation, which was evident in samples from the Pacific Ocean, whereas limitation appeared minimal to nonexistent in Atlantic Ocean samples. As our method is Trichodesmium clade specific, we were also able to determine that representatives from the Trichodesmium tenue clade were the most biologically active group of Trichodesmium in the majority of our samples, which speaks to their dominance in open ocean regimes. Furthermore, comparisons of our field expression and chemical data with laboratory studies suggest that the majority of dissolved Fe in the open ocean is available to Trichodesmium colonies regardless of Fe complexation. PMID:22402399

  13. The Regulation of Iron Absorption and Homeostasis

    PubMed Central

    Wallace, Daniel F

    2016-01-01

    Iron is an essential element in biology, required for numerous cellular processes. Either too much or too little iron can be detrimental, and organisms have developed mechanisms for balancing iron within safe limits. In mammals there are no controlled mechanisms for the excretion of excess iron, hence body iron homeostasis is regulated at the sites of absorption, utilisation and recycling. This review will discuss the discoveries that have been made in the past 20 years into advancing our understanding of iron homeostasis and its regulation. The study of iron-associated disorders, such as the iron overload condition hereditary haemochromatosis and various forms of anaemia have been instrumental in increasing our knowledge in this area, as have cellular and animal model studies. The liver has emerged as the major site of systemic iron regulation, being the location where the iron regulatory hormone hepcidin is produced. Hepcidin is a negative regulator of iron absorption and recycling, achieving this by binding to the only known cellular iron exporter ferroportin and causing its internalisation and degradation, thereby reducing iron efflux from target cells and reducing serum iron levels. Much of the research in the iron metabolism field has focussed on the regulation of hepcidin and its interaction with ferroportin. The advances in this area have greatly increased our knowledge of iron metabolism and its regulation and have led to the development of novel diagnostics and therapeutics for iron-associated disorders. PMID:28303071

  14. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    NASA Technical Reports Server (NTRS)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at p< 0

  15. Temporal development of the barley leaf metabolic response to Pi limitation.

    PubMed

    Alexova, Ralitza; Nelson, Clark J; Millar, A Harvey

    2016-12-20

    The response of plants to Pi limitation involves interplay between root uptake of Pi , adjustment of resource allocation to different plant organs, and increased metabolic Pi use efficiency. To identify potentially novel, early-responding, metabolic hallmarks of Pi limitation in crop plants, we studied the metabolic response of barley leaves over the first 7 days of Pi stress, and the relationship of primary metabolites with leaf Pi levels and leaf biomass. The abundance of leaf Pi , Tyr, and shikimate were significantly different between low Pi and control plants 1 h after transfer of the plants to low Pi . Combining these data with (15) N metabolic labeling, we show that over the first 48 hours of Pi limitation metabolic flux through the N assimilation and aromatic amino acid pathways is increased. We propose that together with a shift in amino acid metabolism in the chloroplast a transient restoration of the energetic and redox state of the leaf is achieved. Correlation analysis of metabolite abundances revealed a central role for major amino acids in Pi stress, appearing to modulate partitioning of soluble sugars between amino acid and carboxylate synthesis, thereby limiting leaf biomass accumulation when external Pi is low.

  16. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency

    PubMed Central

    Puig, Sergi; Vergara, Sandra V.; Thiele, Dennis J.

    2008-01-01

    Summary Iron (Fe) is an essential co-factor for a wide range of cellular processes. We have previously demonstrated that during Fe-deficiency yeast Cth2 is expressed and promotes degradation of a battery of mRNAs leading to reprogramming of Fe-dependent metabolism and Fe-storage. We report that the Cth2-homologous protein, Cth1, is transiently expressed during Fe-deprivation and participates in the response to Fe-deficiency through the degradation of mRNAs primarily involved in mitochondrially-localized activities including respiration and amino acid biosynthesis. In parallel, wild type but not cth1Δ cth2Δ cells accumulate mRNAs encoding proteins that function in glucose import and storage and store high levels of glycogen. In addition, Fe-deficiency leads to Snf1 phosphorylation, a member of the AMP-activated protein kinase family required for the cellular response to glucose starvation. These studies demonstrate a metabolic reprogramming as a consequence of Fe-starvation that is dependent on the coordinated activities of two mRNA-binding proteins. PMID:18522836

  17. Drosophila mitoferrin is essential for male fertility: evidence for a role of mitochondrial iron metabolism during spermatogenesis

    PubMed Central

    2010-01-01

    Background Mammals and Drosophila melanogaster share some striking similarities in spermatogenesis. Mitochondria in spermatids undergo dramatic morphological changes and syncytial spermatids are stripped from their cytoplasm and then individually wrapped by single membranes in an individualization process. In mammalian and fruit fly testis, components of the mitochondrial iron metabolism are expressed, but so far their function during spermatogenesis is unknown. Here we investigate the role of Drosophila mitoferrin (dmfrn), which is a mitochondrial carrier protein with an established role in the mitochondrial iron metabolism, during spermatogenesis. Results We found that P-element insertions into the 5'-untranslated region of the dmfrn gene cause recessive male sterility, which was rescued by a fluorescently tagged transgenic dmfrn genomic construct (dmfrnvenus). Testes of mutant homozygous dmfrnSH115 flies were either small with unorganized content or contained some partially elongated spermatids, or testes were of normal size but lacked mature sperm. Testis squashes indicated that spermatid elongation was defective and electron micrographs showed mitochondrial defects in elongated spermatids and indicated failed individualization. Using a LacZ reporter and the dmfrnvenus transgene, we found that dmfrn expression in testes was highest in spermatids, coinciding with the stages that showed defects in the mutants. Dmfrn-venus protein accumulated in mitochondrial derivatives of spermatids, where it remained until most of it was stripped off during individualization and disposed of in waste bags. Male sterility in flies with the hypomorph alleles dmfrnBG00456 and dmfrnEY01302 over the deletion Df(3R)ED6277 was increased by dietary iron chelation and suppressed by iron supplementation of the food, while male sterility of dmfrnSH115/Df(3R)ED6277 flies was not affected by food iron levels. Conclusions In this work, we show that mutations in the Drosophila mitoferrin gene

  18. Vishweshwaraiah Iron Steel Limited (VISL) fire disasters following steel converter blast, 30 July 2003.

    PubMed

    Kumar, Pramod

    2010-02-01

    A fire disaster occurred in Vishweshwaraiah Iron Steel Limited (VISL), Bhadravathi, India on 30 July 2003. The steel converter containing 24,000 kg of liquid metal (pig iron) at very high temperature exploded. A total of 30 workers became victims. Seven persons died on the spot. Twenty-three victims were transferred to the VISL hospital; of these, six were transferred to the burns unit of the Kasturba Hospital, Manipal (180 km from VISL). All six treated at the burns unit suffered 3-65% total body surface area (TBSA) burn, two had external injuries and two had eye involvement. Out of the six patients admitted at the burns unit, two expired (one due to refractory shock and another due to pulmonary embolism). Out of four survivors, one underwent tangential excision; another underwent operation for removal of foreign body from both soles and the remaining two were managed conservatively. Of the four survivors, two who had eye injuries, one developed minute corneal opacities within 2 months. The total duration of hospital stay of survivors at the burns unit varied from 8 to 43 days. All the victims were counselled by VISL psychiatrists before resuming their duties. Except the one who developed mixed anxiety-depression disorder, all survivors returned to work. The article describes the mechanism of the incident, injuries sustained and suggestions in relation to future safety measures.

  19. The capacity of Porphyromonas gingivalis to multiply under iron-limiting conditions correlates with its pathogenicity in an animal model.

    PubMed

    Grenier, D; Goulet, V; Mayrand, D

    2001-07-01

    Isolates of Porphyromonas gingivalis have various abilities to induce infections in an animal model. The hypothesis of this study was that pathogenic strains of P. gingivalis could multiply under iron-limiting conditions, while non-pathogenic strains could not. Three pathogenic strains (W50, W83, and ATCC 49417) grew to a final optical density (660 nm) > 2 in horse serum, while the growth of the 3 non-pathogenic strains (ATCC 33277, LB13D-2, and HW24D-1) was negligible. When an excess of hemin or ferric chloride was added to the serum, significant growth of the non-pathogenic strains occurred. Under iron-limiting conditions, the pathogenic strains of P. gingivalis had a much lower requirement for human iron-loaded transferrin and hemin than the non-pathogenic strains. Proteolytic degradation of transferrin, which may be associated with the release of iron, was not markedly different for pathogenic and non-pathogenic strains. In addition, no relationship could be established between the level of 55Fe uptake from 55Fe-transferrin and the pathogenicity of strains. Our study provided evidence that the ability of P. gingivalis to multiply in vitro under iron-limiting conditions may be correlated with its ability to induce infections in an animal model. Isolates of P. gingivalis possessing a low requirement for iron are likely to have a higher potential for initiating periodontal infections.

  20. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism

    PubMed Central

    Bromberger, Paul David; Nieuwenhuiys, Gavin; Hatti-Kaul, Rajni

    2016-01-01

    Lactobacillus reuteri, a heterofermentative bacterium, metabolizes glycerol via a Pdu (propanediol-utilization) pathway involving dehydration to 3-hydroxypropionaldehyde (3-HPA) followed by reduction to 1,3-propandiol (1,3-PDO) with concomitant generation of an oxidized cofactor, NAD+ that is utilized to maintain cofactor balance required for glucose metabolism and even for oxidation of 3-HPA by a Pdu oxidative branch to 3-hydroxypropionic acid (3-HP). The Pdu pathway is operative inside Pdu microcompartment that encapsulates different enzymes and cofactors involved in metabolizing glycerol or 1,2-propanediol, and protects the cells from the toxic effect of the aldehyde intermediate. Since L. reuteri excretes high amounts of 3-HPA outside the microcompartment, the organism is likely to have alternative alcohol dehydrogenase(s) in the cytoplasm for transformation of the aldehyde. In this study, diversity of alcohol dehydrogenases in Lactobacillus species was investigated with a focus on L. reuteri. Nine ADH enzymes were found in L. reuteri DSM20016, out of which 3 (PduQ, ADH6 and ADH7) belong to the group of iron-dependent enzymes that are known to transform aldehydes/ketones to alcohols. L. reuteri mutants were generated in which the three ADHs were deleted individually. The lagging growth phenotype of these deletion mutants revealed that limited NAD+/NADH recycling could be restricting their growth in the absence of ADHs. Notably, it was demonstrated that PduQ is more active in generating NAD+ during glycerol metabolism within the microcompartment by resting cells, while ADH7 functions to balance NAD+/NADH by converting 3-HPA to 1,3-PDO outside the microcompartment in the growing cells. Moreover, evaluation of ADH6 deletion mutant showed strong decrease in ethanol level, supporting the role of this bifuctional alcohol/aldehyde dehydrogenase in ethanol production. To the best of our knowledge, this is the first report revealing both internal and external recycling

  1. Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leptospira interrogans is the causative agent of leptospirosis, a zoonosis of global significance. Iron is essential for growth of most bacterial species. Since availability of iron is low in the host, pathogens have evolved complex iron acquisition mechanisms to survive and establish infection. In ...

  2. Limited Influence of Oxygen on the Evolution of Chemical Diversity in Metabolic Networks

    PubMed Central

    Takemoto, Kazuhiro; Yoshitake, Ikumi

    2013-01-01

    Oxygen is thought to promote species and biomolecule diversity. Previous studies have suggested that oxygen expands metabolic networks by acquiring metabolites with different chemical properties (higher hydrophobicity, for example). However, such conclusions are typically based on biased evaluation, and are therefore non-conclusive. Thus, we re-investigated the effect of oxygen on metabolic evolution using a phylogenetic comparative method and metadata analysis to reduce the bias as much as possible. Notably, we found no difference in metabolic network expansion between aerobes and anaerobes when evaluating phylogenetic relationships. Furthermore, we showed that previous studies have overestimated or underestimated the degrees of differences in the chemical properties (e.g., hydrophobicity) between oxic and anoxic metabolites in metabolic networks of unicellular organisms; however, such overestimation was not observed when considering the metabolic networks of multicellular organisms. These findings indicate that the contribution of oxygen to increased chemical diversity in metabolic networks is lower than previously thought; rather, phylogenetic signals and cell-cell communication result in increased chemical diversity. However, this conclusion does not contradict the effect of oxygen on metabolic evolution; instead, it provides a deeper understanding of how oxygen contributes to metabolic evolution despite several limitations in data analysis methods. PMID:24958261

  3. Application of circuit simulation method for differential modeling of TIM-2 iron uptake and metabolism in mouse kidney cells.

    PubMed

    Xie, Zhijian; Harrison, Scott H; Torti, Suzy V; Torti, Frank M; Han, Jian

    2013-01-01

    Circuit simulation is a powerful methodology to generate differential mathematical models. Due to its highly accurate modeling capability, circuit simulation can be used to investigate interactions between the parts and processes of a cellular system. Circuit simulation has become a core technology for the field of electrical engineering, but its application in biology has not yet been fully realized. As a case study for evaluating the more advanced features of a circuit simulation tool called Advanced Design System (ADS), we collected and modeled laboratory data for iron metabolism in mouse kidney cells for a H ferritin (HFt) receptor, T cell immunoglobulin and mucin domain-2 (TIM-2). The internal controlling parameters of TIM-2 associated iron metabolism were extracted and the ratios of iron movement among cellular compartments were quantified by ADS. The differential model processed by circuit simulation demonstrated a capability to identify variables and predict outcomes that could not be readily measured by in vitro experiments. For example, an initial rate of uptake of iron-loaded HFt (Fe-HFt) was 2.17 pmol per million cells. TIM-2 binding probability with Fe-HFt was 16.6%. An average of 8.5 min was required for the complex of TIM-2 and Fe-HFt to form an endosome. The endosome containing HFt lasted roughly 2 h. At the end of endocytosis, about 28% HFt remained intact and the rest was degraded. Iron released from degraded HFt was in the labile iron pool (LIP) and stimulated the generation of endogenous HFt for new storage. Both experimental data and the model showed that TIM-2 was not involved in the process of iron export. The extracted internal controlling parameters successfully captured the complexity of TIM-2 pathway and the use of circuit simulation-based modeling across a wider range of cellular systems is the next step for validating the significance and utility of this method.

  4. Haematological and iron-related parameters in male and female athletes according to different metabolic energy demands.

    PubMed

    Milic, Radoje; Martinovic, Jelena; Dopsaj, Milivoj; Dopsaj, Violeta

    2011-03-01

    We investigated the iron-related haematological parameters in both male and female athletes participating in different sporting disciplines necessitating different metabolic energy demands. A total of 873 athletes (514 males, mean age: 22.08 ± 4.95 years and 359 females, mean age: 21.38 ± 3.88 years) were divided according to gender and to the predominant energy system required for participation in sport (aerobic, anaerobic or mixed) and haematological and iron-related parameters were measured. For both male and female athletes, significant differences related to the predominant energy system were found at a general level: male (Wilks' λ = 0.798, F = 3.047, p < 0.001) and female (Wilks' λ = 0.762, F = 2.591, p < 0.001). According to the ferritin cutoff value of 35 μg/L, whole body iron and sTfR significantly differed in all three groups of male and female athletes (p < 0.001). The percentage of hypochromic erythrocytes in male athletes was significantly higher only in those who required an anaerobic energy source (p < 0.001), whilst in the females hypochromic erythrocytes (p < 0.001) and haemoglobin (anaerobic, p = 0.042; mixed, p = 0.006) were significantly different only in anaerobic and mixed energy source athletes. According to the ferritin cutoff value of 22 μg/L, in females, whole body iron, sTfR and hypochromic erythrocytes were significantly higher in all three groups of athletes than those below the aforementioned cutoff value (p < 0.001). We conclude that the predominant energy system required for participation in sport affects haematological parameters. sTfR and body iron proved to be reliable parameters for monitoring the dynamics of iron metabolism and could contribute to successful iron-deficiency prevention.

  5. Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Our objective was to compare the capacity of iron (Fe) biofortified and standard pearl millet (Pennisetum glaucum L.) to deliver Fe for hemoglobin (Hb) synthesis. Pearl millet is the most widely grown type of millet. It is common primarily in West Africa and the Indian subcontinent, and ...

  6. Relationship between Serum Levels of Body Iron Parameters and Insulin Resistance and Metabolic Syndrome in Korean Children

    PubMed Central

    Lee, Hye-Ja; Jang, Han Byul; Park, Ji Eun; Park, Kyung-Hee; Kang, Jae Heon; Park, Sang Ick; Song, Jihyun

    2014-01-01

    Objectives An increase in serum ferritin and levels of the cleaved soluble form of transferrin receptor (sTfR) are related to several metabolic conditions. We evaluated the relationship between body iron status indicators, including ferritin and sTfR, and insulin resistance and metabolic syndrome (MetS) in Korean children. Methods A cross-sectional study was conducted on 1350 children in Korea. Anthropometrical parameters; lipid profiles; levels of glucose, insulin, and leptin; and iron status indicators, including sTfR, serum ferritin, serum iron, total iron-binding capacity (TIBC), and transferrin saturation (TS), were analyzed. Results Although serum sTfR levels were significantly higher in boys than in girls (2.20 vs. 2.06 mg/L, p < 0.0001), serum iron and TS were higher in girls than in boys (101.38 vs. 95.77 mg/L, p = 0.027 and 30.15 vs. 28.91%, p = 0.04, respectively). Waist circumference (WC) and leptin were most significantly associated with body iron indicators when adjusted for age and sex. After adjusting for age, sex, and WC, sTfR levels showed the strongest positive association with leptin levels (p = 0.0001). Children in the highest tertile for homeostasis model assessment-insulin resistance (HOMA-IR) had higher TIBC (p = 0.0005) and lower serum iron (p = 0.0341), and the lowest TS (p < 0.0001) after adjustment for confounders. Children with higher sTfR were most significantly associated with risk of MetS compared with those lower sTfR (p = 0.0077). Conclusion The associations of serum levels of iron metabolism markers with leptin levels, HOMA-IR, and MetS suggest that iron-related factors may involve insulin resistance and MetS. PMID:25379371

  7. Influence of Lead on Repetitive Behavior and Dopamine Metabolism in a Mouse Model of Iron Overload

    PubMed Central

    Kueon, Chojin; Kim, Jonghan

    2014-01-01

    Exposures to lead (Pb) are associated with neurological problems including psychiatric disorders and impaired learning and memory. Pb can be absorbed by iron transporters, which are up-regulated in hereditary hemochromatosis, an iron overload disorder in which increased iron deposition in various parenchymal organs promote metal-induced oxidative damage. While dysfunction in HFE (High Fe) gene is the major cause of hemochromatosis, the transport and toxicity of Pb in Hfe-related hemochromatosis are largely unknown. To elucidate the relationship between HFE gene dysfunction and Pb absorption, H67D knock-in Hfe-mutant and wild-type mice were given drinking water containing Pb 1.6 mg/ml ad libitum for 6 weeks and examined for behavioral phenotypes using the nestlet-shredding and marble-burying tests. Latency to nestlet-shredding in Pb-treated wild-type mice was prolonged compared with non-exposed wild-types (p < 0.001), whereas Pb exposure did not alter shredding latency in Hfe-mutant mice. In the marble-burying test, Hfe-mutant mice showed an increased number of marbles buried compared with wild-type mice (p = 0.002), indicating more repetitive behavior upon Hfe mutation. Importantly, Pb-exposed wild-type mice buried more marbles than non-exposed wild-types, whereas the number of marbles buried by Hfe-mutant mice did not change whether or not exposed to Pb. These results suggest that Hfe mutation could normalize Pb-induced behavioral alteration. To explore the mechanism of repetitive behavior caused by Pb, western blot analysis was conducted for proteins involved in brain dopamine metabolism. The levels of tyrosine hydroxylase and dopamine transporter increased upon Pb exposure in both genotypes, whereas Hfe-mutant mice displayed down-regulation of the dopamine transporter and dopamine D1 receptor with D2 receptor elevated. Taken together, our data support the idea that both Pb exposure and Hfe mutation increase repetitive behavior in mice and further suggest that

  8. Bacillus subtilis Metabolism and Energetics in Carbon-Limited and Excess-Carbon Chemostat Culture

    PubMed Central

    Dauner, Michael; Storni, Tazio; Sauer, Uwe

    2001-01-01

    The energetic efficiency of microbial growth is significantly reduced in cultures growing under glucose excess compared to cultures growing under glucose limitation, but the magnitude to which different energy-dissipating processes contribute to the reduced efficiency is currently not well understood. We introduce here a new concept for balancing the total cellular energy flux that is based on the conversion of energy and carbon fluxes into energy equivalents, and we apply this concept to glucose-, ammonia-, and phosphate-limited chemostat cultures of riboflavin-producing Bacillus subtilis. Based on [U-13C6]glucose-labeling experiments and metabolic flux analysis, the total energy flux in slow-growing, glucose-limited B. subtilis is almost exclusively partitioned in maintenance metabolism and biomass formation. In excess-glucose cultures, in contrast, uncoupling of anabolism and catabolism is primarily achieved by overflow metabolism, while two quantified futile enzyme cycles and metabolic shifts to energetically less efficient pathways are negligible. In most cultures, about 20% of the total energy flux could not be assigned to a particular energy-consuming process and thus are probably dissipated by processes such as ion leakage that are not being considered at present. In contrast to glucose- or ammonia-limited cultures, metabolic flux analysis revealed low tricarboxylic acid (TCA) cycle fluxes in phosphate-limited B. subtilis, which is consistent with CcpA-dependent catabolite repression of the cycle and/or transcriptional activation of genes involved in overflow metabolism in the presence of excess glucose. ATP-dependent control of in vivo enzyme activity appears to be irrelevant for the observed differences in TCA cycle fluxes. PMID:11717290

  9. Volume dependence of the Grüneisen parameter and maximum compression limit for iron

    NASA Astrophysics Data System (ADS)

    Shanker, J.; Singh, B. P.; Baghel, H. K.

    2007-01-01

    Relationships for the volume dependence of the Grüneisen parameter γ have been used to discuss the behaviour of solids in the limit of infinite pressure ( P→∞). The model recently developed by Burakovsky and Preston (J. Phys. Chem. Solids 65 (2004) 1581) yields γ∞, q∞ and λ∞, the values of Grüneisen parameter γ and its logarithmic volume derivatives q and λ at P→∞, which are found to have fixed values, same for all the solids studied. On the other hand, the thermodynamics of solids at P→∞ formulated by Stacey (Geophys. J. Int. 143 (2000) 621) reveals that γ∞ and pressure derivative of bulk modulus are different for different materials. The empirical formulation for the volume dependence of γ used by Stacey and Davis (Phys. Earth Planet. Intr. 142 (2004) 137) has been shown to be approximately equivalent to the relationship proposed earlier by Al’tshuler et al. (J. Appl. Mech. Tech. Phys. 28 (1987) 129). The shock-pressure data for iron have been used to discuss the maximum compression limit for iron and to emphasize the invalidity of our recent criterion based on the lattice potential energy (Physica B 364 (2005) 186). The Burakovsky-Preston model based on the Thomas-Fermi approximation ( γ∞=1/2 and =5/3) has been found to be more consistent with the shock-compression data. The constraints γ∞>2/3 and >5/3 developed by Stacey are not in agreement with the strong shock compression limit reported for several materials. It is shown here that the Slater formula for γ which was found by Stacey to assume the status of an identity at P→∞ and used by him to derive the constraints for γ∞ and , is invalid when =5/3 It is also pointed out that γ∞=1/2 is to be preferred over γ∞=2/3 because of the thermodynamic constraint >1+ γ∞ developed by Stacey.

  10. Iron metabolism and related genetic diseases: A cleared land, keeping mysteries.

    PubMed

    Brissot, Pierre; Loréal, Olivier

    2016-02-01

    Body iron has a very close relationship with the liver. Physiologically, the liver synthesizes transferrin, in charge of blood iron transport; ceruloplasmin, acting through its ferroxidase activity; and hepcidin, the master regulator of systemic iron. It also stores iron inside ferritin and serves as an iron reservoir, both protecting the cell from free iron toxicity and ensuring iron delivery to the body whenever needed. The liver is first in line for receiving iron from the gut and the spleen, and is, therefore, highly exposed to iron overload when plasma iron is in excess, especially through its high affinity for plasma non-transferrin bound iron. The liver is strongly involved when iron excess is related either to hepcidin deficiency, as in HFE, hemojuvelin, hepcidin, and transferrin receptor 2 related haemochromatosis, or to hepcidin resistance, as in type B ferroportin disease. It is less involved in the usual (type A) form of ferroportin disease which targets primarily the macrophagic system. Hereditary aceruloplasminemia raises important pathophysiological issues in light of its peculiar organ iron distribution.

  11. [Quality of life and iron metabolism in patients with anemic syndrome developed on the background of chronic heart failure].

    PubMed

    Ryndina, N; Kravchun, P; Tytova, G

    2013-03-01

    The presence of concomitant anemia in many aspects defines an unfavorable course of chronic heart failure, affects patient's quality of life. Among anemic patients with chronic heart failure prevailed persons with a relative deficiency of iron. Aim of the study - to evaluate the quality of life for patients with anemia on the background of chronic heart failure, using a questionnaire FACT-An, and to analyze the existence and nature of the relations between quality of life and indicators of the iron metabolism, based on the study of transferrin saturation and ferritin. Ferritin concentration was determined by ELISA. Transferrin saturation were determined by the formula. Questionnaire FACT-An was used for assess the quality of life in anemic patients with chronic heart failure. The presence of functional iron deficiency in patients with chronic heart failure and anemic syndrome is accompanied by deterioration of parameters of quality of life mainly due to the scale of physical activity and social functioning.

  12. Metabolic Implications in the Biochemical Responses to Iron Deficiency in Cucumber (Cucumis sativus L.) Roots.

    PubMed Central

    Rabotti, G.; De Nisi, P.; Zocchi, G.

    1995-01-01

    Strategy I plants respond to Fe deficiency by inducing morphological and biochemical modifications at the root level that are apt to make iron available for uptake. Cucumber (Cucumis sativus L.) grown in the absence of Fe has been shown to increase the capacity to acidify the rhizosphere and Fe3+ reduction activity. We have determined in these roots some metabolic activities that might be correlated with the increased proton extrusion. Proton efflux from roots may be followed by a mechanism regulating the cytosolic pH according to the pH-stat theory. Roots grown in the absence of Fe showed an increase in dark 14CO2 fixation and organic acid synthesis and a 6-fold increase in the extractable phosphoenolpyruvate carboxylase activity with respect to the control roots. Dehydrogenase activities producing cytosolic NAD(P)H were also increased under Fe deficiency. The presence of Fe2+, but not Fe3+, inhibited dark 14CO2 fixation in a range between 24 and 52% but did not show any effect on the in vitro phosphoenolpyruvate carboxylase activity. PMID:12228426

  13. [Biomarkers of iron metabolism and inflammation in patients with chronic heart failure and various types of left ventricular dysfunction].

    PubMed

    Kazymyrko, V K; Kutovyĭ, V V; Ivanyts'ka, L M; Dubkova, A G; Silant'ieva, T S

    2013-09-01

    Study the level of some of the indicators of iron metabolism and inflammatory markers in patients with chronic heart failure due to hypertension and coronary heart disease. The results of the study in systolic and diastolic dysfunction of the left ventricle, the varying degrees of severity of heart failure. The level of the studied parameters determined by the severity of heart failure and does not depend on the nature of left ventricular dysfunction.

  14. First-pass metabolism limits the intestinal absorption of enteral alpha-ketoglutarate in young pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our results in a previous study indicated that the portal absorption of intragastrically fed alpha-ketoglutarate (AKG) was limited in young pigs. Our aim was to quantify the net portal absorption, first-pass metabolism, and whole-body flux of enterally infused AKG. In study 1, we quantified the net ...

  15. Iron limitation modulates ocean acidification effects on southern ocean phytoplankton communities.

    PubMed

    Hoppe, Clara J M; Hassler, Christel S; Payne, Christopher D; Tortell, Philippe D; Rost, Björn; Trimborn, Scarlett

    2013-01-01

    The potential interactive effects of iron (Fe) limitation and Ocean Acidification in the Southern Ocean (SO) are largely unknown. Here we present results of a long-term incubation experiment investigating the combined effects of CO2 and Fe availability on natural phytoplankton assemblages from the Weddell Sea, Antarctica. Active Chl a fluorescence measurements revealed that we successfully cultured phytoplankton under both Fe-depleted and Fe-enriched conditions. Fe treatments had significant effects on photosynthetic efficiency (Fv/Fm; 0.3 for Fe-depleted and 0.5 for Fe-enriched conditions), non-photochemical quenching (NPQ), and relative electron transport rates (rETR). pCO2 treatments significantly affected NPQ and rETR, but had no effect on Fv/Fm. Under Fe limitation, increased pCO2 had no influence on C fixation whereas under Fe enrichment, primary production increased with increasing pCO2 levels. These CO2-dependent changes in productivity under Fe-enriched conditions were accompanied by a pronounced taxonomic shift from weakly to heavily silicified diatoms (i.e. from Pseudo-nitzschia sp. to Fragilariopsis sp.). Under Fe-depleted conditions, this functional shift was absent and thinly silicified species dominated all pCO2 treatments (Pseudo-nitzschia sp. and Synedropsis sp. for low and high pCO2, respectively). Our results suggest that Ocean Acidification could increase primary productivity and the abundance of heavily silicified, fast sinking diatoms in Fe-enriched areas, both potentially leading to a stimulation of the biological pump. Over much of the SO, however, Fe limitation could restrict this possible CO2 fertilization effect.

  16. Iron as a Cofactor That Limits the Promotion of Cyanobacteria in Lakes Across a Tropic Gradient

    NASA Astrophysics Data System (ADS)

    Sorichetti, R. J.; Creed, I. F.; Trick, C. G.

    2014-12-01

    The frequency and intensity of cyanobacterial blooms (cyanoblooms) is increasing globally. While cyanoblooms in eutrophic (nutrient-rich) freshwater lakes are expected to persist and worsen with climate change projections, many of the "new" cyanobloom reports pertain to oligotrophic (nutrient-poor) freshwater lakes with no prior history of cyanobloom occurrence. Under the pressures of a changing climate, there exists a critical research need to revisit existing conceptual models and identify cyanobloom regulating factors currently unaccounted for. Iron (Fe) is required in nearly all pathways of cyanobacterial macronutrient use, though its precise role in regulating cyanobacterial biomass across the lake trophic gradient is not fully understood. The hypotheses tested were: (1) cyanobacteria will predominate in lakes when bioavailable Fe concentration is low, and (2) cyanobacteria overcome this Fe limitation in all lakes using the siderophore-based Fe acquisition strategy to scavenge Fe providing a competitive advantage over other phytoplankton. These hypotheses were tested using natural lakes across an oligo-meso-eutrophic gradient across Canada. In all lakes sampled, the relative cyanobacterial biomass was highest at low predicted Fe bioavailability (< 1.0 × 10-19 mol L-1). Within this range of low bioavailable Fe, iron-binding organic ligands were measured. Concentrations of ligands with reactive hydroxamate moieties were positively correlated to cyanobacterial biomass in both the oligotrophic (r2 = 0.77, p < 0.001) and eutrophic (r2 = 0.81, p < 0.001) lakes suggesting a possible low-Fe mediated cellular origin, siderophores. Fe-binding ligands with catecholate-type binding sites were detected in all lakes, although lack of a relationship with cyanobacterial biomass and a significant relationship with dissolved organic carbon (DOC) in oligotrophic (r2 = 0.65, p < 0.001) and eutrophic (r2 = 0.65, p < 0.001) lakes may indicate an allochthonous source that is not

  17. Differential Role of Ferritins in Iron Metabolism and Virulence of the Plant-Pathogenic Bacterium Erwinia chrysanthemi 3937▿

    PubMed Central

    Boughammoura, Aïda; Matzanke, Berthold F.; Böttger, Lars; Reverchon, Sylvie; Lesuisse, Emmanuel; Expert, Dominique; Franza, Thierry

    2008-01-01

    During infection, the phytopathogenic enterobacterium Erwinia chrysanthemi has to cope with iron-limiting conditions and the production of reactive oxygen species by plant cells. Previous studies have shown that a tight control of the bacterial intracellular iron content is necessary for full virulence. The E. chrysanthemi genome possesses two loci that could be devoted to iron storage: the bfr gene, encoding a heme-containing bacterioferritin, and the ftnA gene, coding for a paradigmatic ferritin. To assess the role of these proteins in the physiology of this pathogen, we constructed ferritin-deficient mutants by reverse genetics. Unlike the bfr mutant, the ftnA mutant had increased sensitivity to iron deficiency and to redox stress conditions. Interestingly, the bfr ftnA mutant displayed an intermediate phenotype for sensitivity to these stresses. Whole-cell analysis by Mössbauer spectroscopy showed that the main iron storage protein is FtnA and that there is an increase in the ferrous iron/ferric iron ratio in the ftnA and bfr ftnA mutants. We found that ftnA gene expression is positively controlled by iron and the transcriptional repressor Fur via the small antisense RNA RyhB. bfr gene expression is induced at the stationary phase of growth. The σS transcriptional factor is necessary for this control. Pathogenicity tests showed that FtnA and the Bfr contribute differentially to the virulence of E. chrysanthemi depending on the host, indicating the importance of a perfect control of iron homeostasis in this bacterial species during infection. PMID:18165304

  18. Divergent responses of Atlantic coastal and oceanic Synechococcus to iron limitation.

    PubMed

    Mackey, Katherine R M; Post, Anton F; McIlvin, Matthew R; Cutter, Gregory A; John, Seth G; Saito, Mak A

    2015-08-11

    Marine Synechococcus are some of the most diverse and ubiquitous phytoplankton, and iron (Fe) is an essential micronutrient that limits productivity in many parts of the ocean. To investigate how coastal and oceanic Atlantic Synechococcus strains acclimate to Fe availability, we compared the growth, photophysiology, and quantitative proteomics of two Synechococcus strains from different Fe regimes. Synechococcus strain WH8102, from a region in the southern Sargasso Sea that receives substantial dust deposition, showed impaired growth and photophysiology as Fe declined, yet used few acclimation responses. Coastal WH8020, from the dynamic, seasonally variable New England shelf, displayed a multitiered, hierarchical cascade of acclimation responses with different Fe thresholds. The multitiered response included changes in Fe acquisition, storage, and photosynthetic proteins, substitution of flavodoxin for ferredoxin, and modified photophysiology, all while maintaining remarkably stable growth rates over a range of Fe concentrations. Modulation of two distinct ferric uptake regulator (Fur) proteins that coincided with the multitiered proteome response was found, implying the coastal strain has different regulatory threshold responses to low Fe availability. Low nitrogen (N) and phosphorus (P) availability in the open ocean may favor the loss of Fe response genes when Fe availability is consistent over time, whereas these genes are retained in dynamic environments where Fe availability fluctuates and N and P are more abundant.

  19. Sequestration efficiency in the iron-limited North Atlantic: Implications for iron supply mode to fertilized blooms

    NASA Astrophysics Data System (ADS)

    Le Moigne, Frédéric A. C.; Moore, C. Mark; Sanders, Richard J.; Villa-Alfageme, Maria; Steigenberger, Sebastian; Achterberg, Eric P.

    2014-07-01

    Estimates of the amount of carbon sequestered in the ocean interior per unit iron (Fe) supplied, as quantified by the sequestration efficiency (Ceffx), vary widely. Such variability in Ceffx has frequently been attributed to estimate uncertainty rather than intrinsic variability. Here we derive new estimates of Ceffx for the subpolar North Atlantic, where Fe stressed conditions have recently been demonstrated. Derived values of Ceffx from across the region, including areas subject to atypical external Fe fertilization events during the year of sample collection (2010), ranged from 17 to 19 kmol C (mol Fe-1). Comparing these estimates with values from other systems, considered in the context of variable bloom durations in the different oceanographic settings, we suggest that apparent variability in Ceffx may be related to the mode of Fe delivery.

  20. Invited Commentary: Limitations and Usefulness of the Metabolically Healthy Obesity Phenotype

    PubMed Central

    Bradshaw, Patrick T.; Stevens, June

    2015-01-01

    The fraction of the obese population who appear to be free of the metabolic abnormalities that usually accompany excess adiposity has garnered a great deal of attention recently. The so-called “metabolically healthy obesity” concept is thought to offer a refinement of the traditional obesity definitions that are based solely on anthropometry. The commentary by Rey-López et al. (Am J Epidemiol. 2015;182(9):737–741) in this issue of the Journal highlights several limitations of the “metabolically healthy obesity” concept and calls into question its usefulness as a public health metric. We discuss several of the issues raised by these authors and offer some perspective on why the utility of this concept remains unresolved. PMID:26363515

  1. Alcanivorax borkumensis produces an extracellular siderophore in iron-limitation condition maintaining the hydrocarbon-degradation efficiency.

    PubMed

    Denaro, R; Crisafi, F; Russo, D; Genovese, M; Messina, E; Genovese, L; Carbone, M; Ciavatta, M L; Ferrer, M; Golyshin, P; Yakimov, M M

    2014-10-01

    Obligate marine hydrocarbonoclastic bacteria possess genetic and physiological features to use hydrocarbons as sole source of carbon and to compete for the uptake of nutrients in usually nutrient-depleted marine habitats. In the present work we have studied the siderophore-based iron uptake systems in Alcanivorax borkumensis SK2 and their functioning during biodegradation of an aliphatic hydrocarbon, tetradecane, under iron limitation conditions. The antiSMASH analysis of SK2 genome revealed the presence of two different putative operons of siderophore synthetases. Search for the predicted core structures indicated that one siderophore is clearly affiliated to the family of complex oligopeptidic siderophores possessing an Orn-Ser-Orn carboxyl motif whereas the second one is likely to belong to the family of SA (salicylic acid)-based siderophores. Analyzing the supernatant of SK2 culture, an extracellular siderophore was identified and its structure was resolved. Thus, along with the recently described membrane-associated amphiphilic tetrapeptidic siderophore amphibactin, strain SK2 additionally produces an extracellular type of iron-chelating molecule with structural similarity to pseudomonins. Comparative Q-PCR analysis of siderophore synthetases demonstrated their significant up-regulation in iron-depleted medium. Different expression patterns were recorded for two operons during the early and late exponential phases of growth, suggesting a different function of these two siderophores under iron-depleted conditions.

  2. Relation between iron metabolism and antioxidants enzymes and δ-ALA-D activity in rats experimentally infected by Fasciola hepatica.

    PubMed

    Bottari, Nathieli B; Mendes, Ricardo E; Baldissera, Matheus D; Bochi, Guilherme V; Moresco, Rafael N; Leal, Marta L R; Morsch, Vera M; Schetinger, Maria R C; Christ, Ricardo; Gheller, Larissa; Marques, Éder J; Da Silva, Aleksandro S

    2016-06-01

    The aim of this study was to evaluate the iron metabolism in serum, as well as antioxidant enzymes, in addition to the Delta-Aminolevulinic Acid Dehydratase (δ-ALA-D) activity in the liver of rats experimentally infected by Fasciola hepatica. Thirty male adult rats (Wistar) specific pathogen free were divided into four groups: two uninfected group (CTRL 1 and CTRL 2) with five animals each and two infected groups (INF 1 and INF 2) with 10 animals each. Infection was performed orally with 20 metacercariae at day 1. On day 15 (CTRL 1 and INF 1 groups) and 87 PI (CTRL 2 and INF 2 groups) blood and bone marrow were collected and the animals were subsequently euthanized for liver sampling. Blood was allocated in tubes without anticoagulant for serum acquisition to measure iron, transferrin and unsaturated iron binding capacity (UIBC). δ-ALA-D, superoxide dismutase (SOD), and catalase (CAT) activities were measured in the liver. A decrease in iron, transferrin and UIBC levels was observed in all infected animals compared to control groups (P < 0.05). Furthermore, iron accumulation was observed in bone marrow of infected mice. Infected animals showed an increase in δ-ALA-D activity at 87 post-infection (PI) (INF 2) as well as in SOD activity at days 15 (INF 1) and 87 PI (INF 2). On the other hand, CAT activity was reduced in rats infected by F. hepatica during acute and chronic phase of fasciolosis (INF 1 and INF 2 groups), when moderate (acute) and severe necrosis in the liver histopathology were observed. These results may suggest that oxidative damage to tissues along with antioxidant mechanisms might have taken part in fasciolosis pathogenesis and are also involved in iron deficiency associated to changes in δ-ALA-D activity during chronic phase of disease.

  3. The effect of 8-week different-intensity walking exercises on serum hepcidin, IL-6, and iron metabolism in pre-menopausal women.

    PubMed

    Buyukyazi, G; Ulman, C; Çelik, A; Çetinkaya, C; Şişman, A R; Çimrin, D; Doğru, Y; Kaya, D

    2017-03-01

    Objective Hepcidin may be an important mediator in exercise-induced iron deficiency. Despite the studies investigating acute exercise effects on hepcidin and markers of iron metabolism, we found no studies examining the chronic effects of walking exercises (WE) on hepcidin and markers of iron metabolism in premenopausal women. The chronic effects of two 8-week different-intensity WE on hepcidin, interleukin 6 (IL-6), and markers of iron metabolism in pre-menopausal women were examined. Methods Exercise groups (EG) [moderate tempo walking group (MTWG), n = 11; brisk walking group (BWG), n = 11] walked 3 days/week, starting from 30 to 51 min. Control group (CG; n = 8) did not perform any exercises. BWG walked at ∼70%-75%; MTWG at ∼50%-55% of HRRmax. VO2max, hepcidin, IL-6, and iron metabolism markers were determined before and after the intervention. Results VO2max increased in both EGs, favoring the BWG. Hepcidin increased in the BWG (p < 0.01) and CG (p < 0.05). IL-6 decreased in the BWG and the MTWG (p < 0.05; p < 0.01). While iron, ferritin, transferrin, and transferrin saturation levels did not change in any group, total iron binding capacity (p < 0.05), red blood cells (p < 0.05), and hematocrit (p < 0.01) increased only in the BWG. Conclusion Both WE types may be useful to prevent inflammation. However, brisk walking is advisable due to the positive changes in VO2max and some iron metabolism parameters, which may contribute to prevent iron deficiency. The increase in hepcidin levels remains unclear and necessitates further studies.

  4. Iron and carbon metabolism by a mineral-oxidizing Alicyclobacillus-like bacterium.

    PubMed

    Yahya, Adibah; Hallberg, Kevin B; Johnson, D Barrie

    2008-04-01

    A novel iron-oxidizing, moderately thermophilic, acidophilic bacterium (strain "GSM") was isolated from mineral spoil taken from a gold mine in Montana. Biomolecular analysis showed that it was most closely related to Alicyclobacillus tolerans, although the two bacteria differed in some key respects, including the absence (in strain GSM) of varpi-alicyclic fatty acids and in their chromosomal base compositions. Isolate GSM was able to grow in oxygen-free media using ferric iron as terminal electron acceptor confirming that it was a facultative anaerobe, a trait not previously described in Alicyclobacillus spp.. The acidophile used both organic and inorganic sources of energy and carbon, although growth and iron oxidation by isolate GSM was uncoupled in media that contained both fructose and ferrous iron. Fructose utilization suppressed iron oxidation, and oxidation of ferrous iron occurred only when fructose was depleted. In contrast, fructose catabolism was suppressed when bacteria were harvested while actively oxidizing iron, suggesting that both ferrous iron- and fructose-oxidation are inducible in this acidophile. Isolate GSM accelerated the oxidative dissolution of pyrite in liquid media either free of, or amended with, organic carbon, although redox potentials were significantly different in these media. The potential of this isolate for commercial mineral processing is discussed.

  5. [Iron and invasive fungal infection].

    PubMed

    Álvarez, Florencio; Fernández-Ruiz, Mario; Aguado, José María

    2013-01-01

    Iron is an essential factor for both the growth and virulence of most of microorganisms. As a part of the innate (or nutritional) immune system, mammals have developed different mechanisms to store and transport this element in order to limit free iron bioavailability. To survive in this hostile environment, pathogenic fungi have specific uptake systems for host iron sources, one of the most important of which is based on the synthesis of siderophores-soluble, low-molecular-mass, high-affinity iron chelators. The increase in free iron that results from iron-overload conditions is a well-established risk factor for invasive fungal infection (IFI) such as mucormycosis or aspergillosis. Therefore, iron chelation may be an appealing therapeutic option for these infections. Nevertheless, deferoxamine -the first approved iron chelator- paradoxically increases the incidence of IFI, as it serves as a xeno-siderophore to Mucorales. On the contrary, the new oral iron chelators (deferiprone and deferasirox) have shown to exert a deleterious effect on fungal growth both in vitro and in animal models. The present review focuses on the role of iron metabolism in the pathogenesis of IFI and summarises the preclinical data, as well as the limited clinical experience so far, in the use of new iron chelators as treatment for mucormycosis and invasive aspergillosis.

  6. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    NASA Astrophysics Data System (ADS)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  7. Evaluation of iron metabolism indices and their relation with physical work capacity in athletes.

    PubMed Central

    Karamizrak, S O; Işlegen, C; Varol, S R; Taşkiran, Y; Yaman, C; Mutaf, I; Akgün, N

    1996-01-01

    OBJECTIVE--To evaluate the relation between iron status and physical working capacity, and to assess the effect of oral iron treatment on these variables, in athletes with borderline iron status. METHODS--Blood haemoglobin (Hb), packed cell volume (PCV), red blood cell count (RBC), serum iron, total iron binding capacity (TIBC), and ferritin determinations were compared in 71 male and 18 female athletes participating in various sports and in matched male (n = 11) and female (n = 8) controls. The first aim was to assess the relations between these variables and performance in a physical work capacity test (PWC170). Oral iron treatment (175-350 mg ferrous fumarate daily) was provided for three weeks to six male and five female athletes with borderline Hb concentrations, to determine the effects of such treatment on both iron status and performance. RESULTS--Among females, handball players had the lowest serum ferritin concentrations (P < 0.05), the highest TIBC values, and lowest PWC170 scores (P < 0.01); runners had the highest ferritin concentrations and PWC170 scores (P < 0.01). There were significant correlations (P < 0.01) between PWC170 and PCV, serum ferritin, and transferrin saturation of female athletes. Hb, serum iron, serum ferritin, and transferrin saturation increased with iron treatment in both males (P < 0.01) and females (P < 0.05). CONCLUSIONS--Serum ferritin determination may prove a valuable addition to the screening of athletes and may indicate the need for iron treatment, even though a causal effect on improvement of work capacity may not be present. PMID:8665109

  8. Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification.

    PubMed

    Petry, Nicolai; Egli, Ines; Gahutu, Jean B; Tugirimana, Pierrot L; Boy, Erick; Hurrell, Richard

    2012-03-01

    Biofortification of plants is a new approach to combat iron deficiency. Common beans (Phaseolus vulgaris) can be bred with a higher iron concentration but are rich in iron absorption inhibitors, phytic acid (PA), and polyphenols (PP). To evaluate the potential of beans to combat iron deficiency, three iron absorption studies were carried out in 61 Rwandese women with low iron status. Studies 1 and 2 compared iron absorption from high and low PP beans, similar in PA and iron, fed as bean puree in a double meal design or with rice and potatoes as multiple meals. Study 3 compared iron absorption from high and normal iron beans with similar PP levels and a PA:iron molar ratio, fed with potatoes or rice in multiple meals. Iron absorption was measured as erythrocyte incorporation of stable iron isotopes. In study 1, iron absorption from the high PP bean (3.4%) was 27% lower (P < 0.01) than from low PP bean (4.7%), but when fed in multiple meals (study 2), there was no difference (7 and 7.4%, respectively; P > 0.05). In study 3, iron absorption from the high iron bean (3.8%) was 40% lower (P < 0.001) than from the normal iron bean (6.3%), resulting in equal amounts of iron absorbed. When beans were combined with other meal components in multiple meals, high PP concentration had no negative impact on iron absorption. However, the quantity of iron absorbed from composite meals with high iron beans was no higher than with normal iron beans, indicating that efficacious iron biofortification may be difficult to achieve in beans rich in PA and PP.

  9. The Association of Multiple Biomarkers of Iron Metabolism and Type 2 Diabetes - the EPIC-InterAct Study

    PubMed Central

    Podmore, Clara; Meidtner, Karina; Schulze, Matthias B; Scott, Robert A; Ramond, Anna; Butterworth, Adam S; Di Angelantonio, Emanuele; Danesh, John; Arriola, Larraitz; Barricarte, Aurelio; Boeing, Heiner; Clavel-Chapelon, Françoise; Cross, Amanda J; Dahm, Christina C; Fagherazzi, Guy; Franks, Paul W; Gavrila, Diana; Grioni, Sara; Gunter, Marc J; Gusto, Gaelle; Jakszyn, Paula; Katzke, Verena; Key, Timothy J; Kühn, Tilman; Mattiello, Amalia; Nilsson, Peter M; Olsen, Anja; Overvad, Kim; Palli, Domenico; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Sánchez-Cantalejo, Emilio; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke MW; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L; van der Schouw, Yvonne T; Feskens, Edith JM; Forouhi, Nita G; Sharp, Stephen J; Riboli, Elio; Langenberg, Claudia; Wareham, Nicholas J

    2016-01-01

    Objective Observational studies show an association between ferritin and type 2 diabetes (T2D), suggesting a role of high iron stores for T2D development. However, ferritin is influenced by factors other than iron stores, which is less the case for other biomarkers of iron metabolism. We investigate associations of ferritin, transferrin saturation (TSAT), serum iron and transferrin with T2D incidence, to clarify the role of iron in the pathogenesis of T2D. Research and Design Methods The EPIC-InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a European cohort with 3.99 million person-years of follow-up. We studied the prospective association of ferritin, TSAT, serum iron and transferrin with incident T2D in 11,052 cases and a random sub-cohort of 15,182 individuals and assessed whether these associations differed by subgroups of the population. Results Higher levels of ferritin and transferrin were associated with a higher risk of T2D [HR in men and women, respectively: 1.07 (95% CI: 1.01; 1.12) and 1.12 (1.05; 1.19) per 100 μg/L higher ferritin level; 1.11 (1.00; 1.24) and 1.22 (1.12; 1.33) per 0.5 g/L higher transferrin level] after adjustment for age, centre, BMI, physical activity, smoking status, education, hsCRP, ALT and GGT. Elevated TSAT (≥45% versus <45%) was associated with a lower risk of T2D in women [0.68 (0.54; 0.86)] but was not statistically significantly associated in men [0.90 (0.75; 1.08)]. Serum iron was not associated with T2D. The association of ferritin with T2D was stronger among leaner individuals (pinteraction<0.01). Conclusions The pattern of association of TSAT and transferrin with T2D suggests that the underlying relationship between iron stores and T2D is more complex than the simple link suggested by the association of ferritin with T2D. PMID:26861925

  10. Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum.

    PubMed

    Bozzaro, Salvatore; Buracco, Simona; Peracino, Barbara

    2013-01-01

    Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.

  11. Serum Hepcidin and Soluble Transferrin Receptor in the Assessment of Iron Metabolism in Children on a Vegetarian Diet.

    PubMed

    Ambroszkiewicz, Jadwiga; Klemarczyk, Witold; Mazur, Joanna; Gajewska, Joanna; Rowicka, Grażyna; Strucińska, Małgorzata; Chełchowska, Magdalena

    2017-03-24

    The aim of this study was to assess the effect of vegetarian diet on iron metabolism parameters paying special attention to serum hepcidin and soluble transferrin receptor (sTfR) concentrations in 43 prepubertal children (age range 4.5-9.0 years) on vegetarian and in 46 children on omnivorous diets. There were no significant differences according to age, weight, height, and body mass index (BMI) between vegetarian and omnivorous children. Vegetarians had similar intake of iron and vitamin B12 and a significantly higher intake of vitamin C (p < 0.05) compared with non-vegetarians. Hematologic parameters and serum iron concentrations were within the reference range in both groups of children. Serum transferrin levels were similar in all subjects; however, ferritin concentrations were significantly (p < 0.01) lower in vegetarians than in omnivores. In children on a vegetarian diet, median hepcidin levels were lower (p < 0.05) but sTfR concentrations significantly higher (p < 0.001) compared with omnivorous children. In the multivariate regression model, we observed associations between hepcidin level and ferritin concentration (β = 0.241, p = 0.05) in the whole group of children as well as between hepcidin concentration and CRP level (β = 0.419, p = 0.047) in vegetarians. We did not find significant associations with concentration of sTfR and selected biochemical, anthropometric, and dietary parameters in any of the studied groups of children. As hematologic parameters and iron concentrations in vegetarians and omnivores were comparable and ferritin level was lower in vegetarians, we suggest that inclusion of novel markers, in particular sTfR (not cofounded by inflammation) and hepcidin, can better detect subclinical iron deficiency in children following vegetarian diets.

  12. Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii.

    PubMed

    Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Mosadegh, Ellahe; Mansouri, Shahla

    2015-01-01

    Acinetobacter baumannii is an important source of infections in intensive care units (ICUs) of our hospitals in Kerman, Iran and the most frequently isolated strains produce biofilm. There is a little information about role of iron (Fe) levels on acyl homoserine lactone (AHL) production and biofilm formation in this microorganism. In the present study, we investigated the influence of iron-III limitation on AHL, siderophore, catechol and virulence factors in the biofilm forming clinical strains of A. baumannii. A total of 65 non-duplicated multidrug resistance (MDR) strains of A. baumannii were isolated from patients in ICUs of 2 hospitals in Kerman, Iran. Antibiotic susceptibility, siderophore and other iron chelators, hemolysis, cell twitching motility, capsule, gelatinase and DNase were studied. Presence of quorum sensing, LuxI and LuxR genes was detected by multiplex-PCR. AHL activity quantified by colorimetric method and the functional groups were determined by Fourier Transform Infra-Red Spectroscopy (FT-IR). Biofilm formation was detected by microtiter plate technique. All of the isolates were resistant to third generation of cephalosporins, ciprofloxacin, levofloxacin, tetracycline, whereas, 78% and 81% were resistant to amikacin and carbapenems, respectively. The siderophore activity was highest at 20 μM Fe(3+) (70%); however, it decreased to 45% as concentration of Fe(3+) increased to 80 μM. Furthermore, screening of the isolates for LuxI and LuxR genes showed that presence of both genes required in the isolates with high AHL activity. FT-IR analysis indicated C=O bond of the lactone ring and primary amides. Significantly, a higher amount of AHL (70%) was detected in the presence of low concentration of iron-III (20 μM); as iron concentration increased to 80 μM, the AHL activity was reduced to 40% (P ≤ 0.05). All the isolates exhibited twitching motility and had a capsule. No any gelatinase or DNase activity was detected. Quantification of the

  13. Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii

    PubMed Central

    Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Mosadegh, Ellahe; Mansouri, Shahla

    2015-01-01

    Abstract Acinetobacter baumannii is an important source of infections in intensive care units (ICUs) of our hospitals in Kerman, Iran and the most frequently isolated strains produce biofilm. There is a little information about role of iron (Fe) levels on acyl homoserine lactone (AHL) production and biofilm formation in this microorganism. In the present study, we investigated the influence of iron-III limitation on AHL, siderophore, catechol and virulence factors in the biofilm forming clinical strains of A. baumannii. A total of 65 non-duplicated multidrug resistance (MDR) strains of A. baumannii were isolated from patients in ICUs of 2 hospitals in Kerman, Iran. Antibiotic susceptibility, siderophore and other iron chelators, hemolysis, cell twitching motility, capsule, gelatinase and DNase were studied. Presence of quorum sensing, LuxI and LuxR genes was detected by multiplex-PCR. AHL activity quantified by colorimetric method and the functional groups were determined by Fourier Transform Infra-Red Spectroscopy (FT-IR). Biofilm formation was detected by microtiter plate technique. All of the isolates were resistant to third generation of cephalosporins, ciprofloxacin, levofloxacin, tetracycline, whereas, 78% and 81% were resistant to amikacin and carbapenems, respectively. The siderophore activity was highest at 20 μM Fe3+ (70%); however, it decreased to 45% as concentration of Fe3+ increased to 80 μM. Furthermore, screening of the isolates for LuxI and LuxR genes showed that presence of both genes required in the isolates with high AHL activity. FT-IR analysis indicated C=O bond of the lactone ring and primary amides. Significantly, a higher amount of AHL (70%) was detected in the presence of low concentration of iron-III (20 μM); as iron concentration increased to 80 μM, the AHL activity was reduced to 40% (P ≤ 0.05). All the isolates exhibited twitching motility and had a capsule. No any gelatinase or DNase activity was detected. Quantification of

  14. Phosphate limited fed-batch processes: impact on carbon usage and energy metabolism in Escherichia coli.

    PubMed

    Schuhmacher, Tom; Löffler, Michael; Hurler, Thilo; Takors, Ralf

    2014-11-20

    Phosphate starvation is often applied as a tool to limit cell growth in microbial production processes without hampering carbon and/or nitrogen supply alternatively. This contribution focuses on the interplay of process induced phosphate starvation and microbial performance studying an l-tryptophan overproducing Escherichia coli strain as a model for highly ATP demanding processes in comparison with an E. coli wildtype strain. To enable a time-resolved analysis, constant phosphate feeding strategies were applied to elongate the transition from phosphate saturated to phosphate limited cell growth. With increasing phosphate limitation, a reduced cellular efficiency of ATP formation via respiratory chain activity and the ATP synthase complex was found for both strains. Process balancing, transcriptome analysis and flux balance analysis are pointing toward a multi-stage decoupling scenario, which in essence deteriorates the stoichiometric ratio of ATP formation to proton translocation, thereby affecting ATP availability from respiration and carbon usage. Starting off with a potential influence on ATP-synthase efficiency (stage 1), decoupling is further increased by modified respiratory activity (stage 2) and byproduct overflow (stage 3) finally resulting in a metabolic breakdown entering complete phosphate depletion (stage 4). The decoupling is initiated by phosphate limitation; further effects are mainly mediated on metabolic level through ATP availability and energy charge, additionally affected by ATP demanding product synthesis.

  15. The Metabolic Status Drives Acclimation of Iron Deficiency Responses in Chlamydomonas reinhardtii as Revealed by Proteomics Based Hierarchical Clustering and Reverse Genetics*

    PubMed Central

    Höhner, Ricarda; Barth, Johannes; Magneschi, Leonardo; Jaeger, Daniel; Niehues, Anna; Bald, Till; Grossman, Arthur; Fufezan, Christian; Hippler, Michael

    2013-01-01

    Iron is a crucial cofactor in numerous redox-active proteins operating in bioenergetic pathways including respiration and photosynthesis. Cellular iron management is essential to sustain sufficient energy production and minimize oxidative stress. To produce energy for cell growth, the green alga Chlamydomonas reinhardtii possesses the metabolic flexibility to use light and/or carbon sources such as acetate. To investigate the interplay between the iron-deficiency response and growth requirements under distinct trophic conditions, we took a quantitative proteomics approach coupled to innovative hierarchical clustering using different “distance-linkage combinations” and random noise injection. Protein co-expression analyses of the combined data sets revealed insights into cellular responses governing acclimation to iron deprivation and regulation associated with photosynthesis dependent growth. Photoautotrophic growth requirements as well as the iron deficiency induced specific metabolic enzymes and stress related proteins, and yet differences in the set of induced enzymes, proteases, and redox-related polypeptides were evident, implying the establishment of distinct response networks under the different conditions. Moreover, our data clearly support the notion that the iron deficiency response includes a hierarchy for iron allocation within organelles in C. reinhardtii. Importantly, deletion of a bifunctional alcohol and acetaldehyde dehydrogenase (ADH1), which is induced under low iron based on the proteomic data, attenuates the remodeling of the photosynthetic machinery in response to iron deficiency, and at the same time stimulates expression of stress-related proteins such as NDA2, LHCSR3, and PGRL1. This finding provides evidence that the coordinated regulation of bioenergetics pathways and iron deficiency response is sensitive to the cellular and chloroplast metabolic and/or redox status, consistent with systems approach data. PMID:23820728

  16. Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism.

    PubMed

    van Bakel, Harm; Strengman, Eric; Wijmenga, Cisca; Holstege, Frank C P

    2005-08-11

    Exhaustive microarray time course analyses of Saccharomyces cerevisiae during copper starvation and copper excess reveal new aspects of metal-induced gene regulation. Aside from identifying targets of established copper- and iron-responsive transcription factors, we find that genes encoding mitochondrial proteins are downregulated and that copper-independent iron transport genes are preferentially upregulated, both during prolonged copper deprivation. The experiments also suggest the presence of a small regulatory iron pool that links copper and iron responses. One hundred twenty-eight genes with putative roles in metal metabolism were further investigated by several systematic phenotype screens. Of the novel phenotypes uncovered, hsp12-Delta and arn1-Delta display increased sensitivity to copper, cyc1-Delta and crr1-Delta show resistance to high copper, vma13-Delta exhibits increased sensitivity to iron deprivation, and pep12-Delta results in reduced growth in high copper and low iron. Besides revealing new components of eukaryotic metal trafficking pathways, the results underscore the previously determined intimate links between iron and copper metabolism and mitochondrial and vacuolar function in metal trafficking. The analyses further suggest that copper starvation can specifically lead to downregulation of respiratory function to preserve iron and copper for other cellular processes.

  17. Dysregulated iron metabolism in the choroid plexus in fragile X-associated tremor/ataxia syndrome.

    PubMed

    Ariza, Jeanelle; Steward, Craig; Rueckert, Flora; Widdison, Matt; Coffman, Robert; Afjei, Atiyeh; Noctor, Stephen C; Hagerman, Randi; Hagerman, Paul; Martínez-Cerdeño, Verónica

    2015-02-19

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene that is characterized by progressive action tremor, gait ataxia, and cognitive decline. Recent studies of mitochondrial dysfunction in FXTAS have suggested that iron dysregulation may be one component of disease pathogenesis. We tested the hypothesis that iron dysregulation is part of the pathogenic process in FXTAS. We analyzed postmortem choroid plexus from FXTAS and control subjects, and found that in FXTAS iron accumulated in the stroma, transferrin levels were decreased in the epithelial cells, and transferrin receptor 1 distribution was shifted from the basolateral membrane (control) to a predominantly intracellular location (FXTAS). In addition, ferroportin and ceruloplasmin were markedly decreased within the epithelial cells. These alterations have implications not only for understanding the pathophysiology of FXTAS, but also for the development of new clinical treatments that may incorporate selective iron chelation.

  18. Changes in Serum Ferritin and Other Factors Associated with Iron Metabolism During Chronic Hyperbaric Exposure

    DTIC Science & Technology

    1979-03-01

    N. Cooley. 1974. Bone scane withcomplex. Damageo fluorine-18 in diagnosing osteonecrosis in divers. In: :ould result in release of stored reserves...STRESS-GILMAN ET AL. Related Osteonecrosis . Proceedings of a symposium on in patients with iron overload and with acute and Dysbaric Osteonecrosis ...N. Walder. 1975. Serum ferritin, cobalt excretion, and body iron 19ඕ. Serum ferritin and dysbaric osteonecrosis . Under- status. C.M.A. J., 112

  19. Associations of iron metabolism genes with blood manganese levels: a population-based study with validation data from animal models

    PubMed Central

    2011-01-01

    Background Given mounting evidence for adverse effects from excess manganese exposure, it is critical to understand host factors, such as genetics, that affect manganese metabolism. Methods Archived blood samples, collected from 332 Mexican women at delivery, were analyzed for manganese. We evaluated associations of manganese with functional variants in three candidate iron metabolism genes: HFE [hemochromatosis], TF [transferrin], and ALAD [δ-aminolevulinic acid dehydratase]. We used a knockout mouse model to parallel our significant results as a novel method of validating the observed associations between genotype and blood manganese in our epidemiologic data. Results Percentage of participants carrying at least one copy of HFE C282Y, HFE H63D, TF P570S, and ALAD K59N variant alleles was 2.4%, 17.7%, 20.1%, and 6.4%, respectively. Percentage carrying at least one copy of either C282Y or H63D allele in HFE gene was 19.6%. Geometric mean (geometric standard deviation) manganese concentrations were 17.0 (1.5) μg/l. Women with any HFE variant allele had 12% lower blood manganese concentrations than women with no variant alleles (β = -0.12 [95% CI = -0.23 to -0.01]). TF and ALAD variants were not significant predictors of blood manganese. In animal models, Hfe-/- mice displayed a significant reduction in blood manganese compared with Hfe+/+ mice, replicating the altered manganese metabolism found in our human research. Conclusions Our study suggests that genetic variants in iron metabolism genes may contribute to variability in manganese exposure by affecting manganese absorption, distribution, or excretion. Genetic background may be critical to consider in studies that rely on environmental manganese measurements. PMID:22074419

  20. Spectroscopic studies of flavoproteins and non-haem iron proteins of submitochondrial particles of Torulopsis utilis modified by iron- and sulphate-limited growth in continuous culture

    PubMed Central

    Ragan, C. I.; Garland, P. B.

    1971-01-01

    1. A spectroscopic resolution has been made of the components contributing to the `iron-flavoprotein' trough extending from 450 to 520nm in the reduced-minus-oxidized difference spectrum of submitochondrial particles of Torulopsis utilis. 2. Seven components were identified other than cytochrome b, ubiquinone and succinate dehydrogenase. On the basis of the effects of iron- and sulphate-limited growth of cells on their subsequently derived electron-transport particles, and also by consideration of analytical measurements of the concentration of FMN, FAD, non-haem iron and acid-labile sulphide in the electron-transport particles in relation to the magnitude of the spectroscopic changes, it was possible to identify five of these components as follows: species 1a, the flavin of NADH dehydrogenase ferroflavoprotein; species 1b, the iron–sulphur component of NADH dehydrogenase ferroflavoprotein; species 1′, the flavin of an NADPH dehydrogenase; species 2, an iron–sulphur or ferroflavoprotein component; species 3, the flavin of l-3-glycerophosphate dehydrogenase. Two additional components were a fluorescent flavoprotein, probably lipoamide dehydrogenase, and a b-type cytochrome reducible by NADH or NADPH but not reoxidizable by the respiratory chain. 3. Species 1b and 2 were undetectable in electron-transport particles from iron- or sulphate-limited cells, but could be recovered in vivo under non-growing conditions. 4. The recovery in vivo of species 2 but not species 1b was inhibited by cycloheximide. 5. The recovery of species 1b correlates with the recovery of site 1 conservation. 6. The recovery of species 1b with species 2 correlates with the recovery of piericidin A sensitivity. 7. Evidence is presented for an NADPH dehydrogenase distinct from NADH dehydrogenase. The oxidation of NADH and NADPH by the respiratory chain is sensitive to piericidin A, and an iron–sulphur protein common to both pathways (species 2) is suggested as the piericidin A

  1. Testosterone alters iron metabolism and stimulates red blood cell production independently of dihydrotestosterone.

    PubMed

    Beggs, Luke A; Yarrow, Joshua F; Conover, Christine F; Meuleman, John R; Beck, Darren T; Morrow, Matthew; Zou, Baiming; Shuster, Jonathan J; Borst, Stephen E

    2014-09-01

    Testosterone (T) stimulates erythropoiesis and regulates iron homeostasis. However, it remains unknown whether the (type II) 5α-reduction of T to dihydrotestosterone (DHT) mediates these androgenic effects, as it does in some other tissues. Our purpose was to determine whether inhibition of type II 5α-reductase (via finasteride) alters red blood cell (RBC) production and serum markers of iron homeostasis subsequent to testosterone-enanthate (TE) administration in older hypogonadal men. Sixty men aged ≥60 yr with serum T <300 ng/dl or bioavailable T <70 ng/dl received treatment with TE (125 mg/wk) vs. vehicle paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased RBC count 9%, hematocrit 4%, and hemoglobin 8% while suppressing serum hepcidin 57% (P < 0.001 for all measurements). Most of the aforementioned changes occurred in the first 3 mo of treatment, and finasteride coadministration did not significantly alter any of these effects. TE also reduced serum ferritin 32% (P = 0.002) within 3 mo of treatment initiation without altering iron, transferrin, or transferrin saturation. We conclude that TE stimulates erythropoiesis and alters iron homeostasis independently of the type II 5α-reductase enzyme. These results demonstrate that elevated DHT is not required for androgen-mediated erythropoiesis or for alterations in iron homeostasis that would appear to support iron incorporation into RBCs.

  2. Relations between iron and vanadium metabolism: in vivo incorporation of vanadium into iron proteins of the rat

    SciTech Connect

    Sabbioni, E.; Marafante, E.

    1981-09-01

    In vivo experiments with /sup 48/V and /sup 59/Fe radiotracers were performed to study the association of V with Fe proteins. Each male rat was injected ip with 10 ..mu..g /sup 48/VO/sup 2 +/ and then with 1 ..mu..g /sup 59/Fe/sup 3 +/ to label Fe-containing proteins. The radioactivities incorporated were measured in plasma transferrin, red blood cell hemoglobin, liver ferritin, partially purified heart myoglobin, and liver mitochondrial and microsomal cytochromes b and c and ferriporphyrin. Liver ferritin can bind V in vivo similarly to plasma transferrin, as shown by gel filtration and immunoprecipitation. Negligible amounts of /sup 48/V were incorporated into hemoglobin, partially purified myoglobin, and cytochromes b and c. These findings suggest that the nonenzymatic Fe-containing proteins may be involved in the V metabolism.

  3. Global analysis of the Nitrosomonas europaea iron starvation stimulon.

    PubMed

    Vajrala, Neeraja; Sayavedra-Soto, Luis A; Bottomley, Peter J; Arp, Daniel J

    2012-04-01

    The importance of iron to the metabolism of the ammonia-oxidizing bacterium Nitrosomonas europaea is well known. However, the mechanisms by which N. europaea acquires iron under iron limitation are less well known. To obtain insight into these mechanisms, transcriptional profiling of N. europaea was performed during growth under different iron availabilities. Of 2,355 N. europaea genes on DNA microarrays, transcripts for 247 genes were identified as differentially expressed when cells were grown under iron limitation compared to cells grown under iron-replete conditions. Genes with higher transcript levels in response to iron limitation included those with confirmed or assigned roles in iron acquisition. Genes with lower transcript levels included those encoding iron-containing proteins. Our analysis identified several potentially novel iron acquisition systems in N. europaea and provided support for the primary involvement of a TonB-dependent heme receptor gene in N. europaea iron homeostasis. We demonstrated that hemoglobin can act as an iron source under iron-depleted conditions for N. europaea. In addition, we identified a hypothetical protein carrying a lipocalin-like domain that may have the ability to chelate iron for growth in iron-limited media.

  4. Rate limiting factors in trichloroethylene co-metabolic degradation by phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, Joo Hwa

    2014-04-01

    The potential of aerobic granular sludge in co-metabolic removal of recalcitrant substances was evaluated using trichloroethylene (TCE) as the model compound. Aerobic granules cultivated in a sequencing batch reactor with phenol as the growth substrate exhibited TCE and phenol degradation activities lower than previously reported values. Depletion of reducing energy and diffusion limitation within the granules were investigated as the possible rate limiting factors. Sodium formate and citrate were supplied to the granules in batch studies as external electron sources. No significant enhancing effect was observed on the instant TCE transformation rates, but 10 mM formate could improve the ultimate transformation capacity by 26 %. Possible diffusion barrier was studied by sieving the biomass into five size fractions, and determining their specific TCE and phenol degradation rates and capacities. Biomass in the larger size fractions generally showed lower activities. Large granules of >700 μm diameter exhibited only 22 % of the flocs' TCE transformation capacity and 35 % of its phenol dependent SOUR, indicating the possible occurrence of diffusion limitation in larger biomass. However, the highest specific TCE transformation rate was observed with the fraction that mostly consisted of small granules (150-300 μm), suggesting an optimal size range while applying aerobic granules in TCE co-metabolic removal.

  5. Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare.

    PubMed

    Pérez-López, Usue; Robredo, Anabel; Lacuesta, Maite; Mena-Petite, Amaia; Muñoz-Rueda, Alberto

    2012-03-01

    The future environment may be altered by high concentrations of salt in the soil and elevated [CO(2)] in the atmosphere. These have opposite effects on photosynthesis. Generally, salt stress inhibits photosynthesis by stomatal and non-stomatal mechanisms; in contrast, elevated [CO(2)] stimulates photosynthesis by increasing CO(2) availability in the Rubisco carboxylating site and by reducing photorespiration. However, few studies have focused on the interactive effects of these factors on photosynthesis. To elucidate this knowledge gap, we grew the barley plant, Hordeum vulgare (cv. Iranis), with and without salt stress at either ambient or elevated atmospheric [CO(2)] (350 or 700 μmol mol(-1) CO(2), respectively). We measured growth, several photosynthetic and fluorescence parameters, and carbohydrate content. Under saline conditions, the photosynthetic rate decreased, mostly because of stomatal limitations. Increasing salinity progressively increased metabolic (photochemical and biochemical) limitation; this included an increase in non-photochemical quenching and a reduction in the PSII quantum yield. When salinity was combined with elevated CO(2), the rate of CO(2) diffusion to the carboxylating site increased, despite lower stomatal and internal conductance. The greater CO(2) availability increased the electron sink capacity, which alleviated the salt-induced metabolic limitations on the photosynthetic rate. Consequently, elevated CO(2) partially mitigated the saline effects on photosynthesis by maintaining favorable biochemistry and photochemistry in barley leaves.

  6. Iron regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in Saccharomyces cerevisiae.

    PubMed

    Ihrig, Jessica; Hausmann, Anja; Hain, Anika; Richter, Nadine; Hamza, Iqbal; Lill, Roland; Mühlenhoff, Ulrich

    2010-03-01

    Budding yeast (Saccharomyces cerevisiae) responds to iron deprivation both by Aft1-Aft2-dependent transcriptional activation of genes involved in cellular iron uptake and by Cth1-Cth2-specific degradation of certain mRNAs coding for iron-dependent biosynthetic components. Here, we provide evidence for a novel principle of iron-responsive gene expression. This regulatory mechanism is based on the modulation of transcription through the iron-dependent variation of levels of regulatory metabolites. As an example, the LEU1 gene of branched-chain amino acid biosynthesis is downregulated under iron-limiting conditions through depletion of the metabolic intermediate alpha-isopropylmalate, which functions as a key transcriptional coactivator of the Leu3 transcription factor. Synthesis of alpha-isopropylmalate involves the iron-sulfur protein Ilv3, which is inactivated under iron deficiency. As another example, decreased mRNA levels of the cytochrome c-encoding CYC1 gene under iron-limiting conditions involve heme-dependent transcriptional regulation via the Hap1 transcription factor. Synthesis of the iron-containing heme is directly correlated with iron availability. Thus, the iron-responsive expression of genes that are downregulated under iron-limiting conditions is conferred by two independent regulatory mechanisms: transcriptional regulation through iron-responsive metabolites and posttranscriptional mRNA degradation. Only the combination of the two processes provides a quantitative description of the response to iron deprivation in yeast.

  7. The effects of intestinal Escherichia coli 263, intravenous infusion of Escherichia coli 263 culture filtrate and iron dextran supplementation on iron metabolism in the young pig.

    PubMed

    Knight, C D; Klasing, K C; Forsyth, D M

    1984-12-01

    An experiment using 32 pigs in a 2(3) factorial arrangement of treatments was used to determine the effects on the (1) level of iron dextran supplementation, (2) iv infusion of an Escherichia coli 263 culture filtrate and (3) presence of E. coli 263 in a ligated intestinal segment, on the ability of the young pig to limit systemic Fe availability. Iron dextran was administered im 3 d postpartum. Culture filtrate was infused iv, E. coli were injected into ligated intestines and blood sampling was started at 14 d postpartum. Blood was taken every 2 h for 22 h, after which pigs were euthanized and livers, spleens and kidneys were removed. Pigs receiving 400 mg of iron dextran (HiFe) exhibited greater serum Fe (SFe) and lower total Fe-binding capacity (TIBC) than pigs injected with 100 mg Fe (LoFe). The effects of the E. coli culture filtrate infusion appeared to be associated with endotoxin-induced circulatory shock. The presence of E. coli in the intestine increased TIBC in LoFe pigs, but not in HiFe pigs. The increase in TIBC coincided with the time of maximal fluid secretion into the intestine. Intestinal E. coli also caused an increase in liver Fe content, particularly in HiFe pigs. These data suggest that intestinal E. coli can cause a shift of Fe from the plasma to the reticuloendothelial system, and pigs receiving high supplemental dosages of Fe are less able to limit the availability of Fe to microorganisms.

  8. Practice guidelines for the diagnosis and management of microcytic anemias due to genetic disorders of iron metabolism or heme synthesis.

    PubMed

    Donker, Albertine E; Raymakers, Reinier A P; Vlasveld, L Thom; van Barneveld, Teus; Terink, Rieneke; Dors, Natasja; Brons, Paul P T; Knoers, Nine V A M; Swinkels, Dorine W

    2014-06-19

    During recent years, our understanding of the pathogenesis of inherited microcytic anemias has gained from the identification of several genes and proteins involved in systemic and cellular iron metabolism and heme syntheses. Numerous case reports illustrate that the implementation of these novel molecular discoveries in clinical practice has increased our understanding of the presentation, diagnosis, and management of these diseases. Integration of these insights into daily clinical practice will reduce delays in establishing a proper diagnosis, invasive and/or costly diagnostic tests, and unnecessary or even detrimental treatments. To assist the clinician, we developed evidence-based multidisciplinary guidelines on the management of rare microcytic anemias due to genetic disorders of iron metabolism and heme synthesis. These genetic disorders may present at all ages, and therefore these guidelines are relevant for pediatricians as well as clinicians who treat adults. This article summarizes these clinical practice guidelines and includes background on pathogenesis, conclusions, and recommendations and a diagnostic flowchart to facilitate using these guidelines in the clinical setting.

  9. Relativistic iron lines in accretion disks: the contribution of higher order images in the strong deflection limit

    NASA Astrophysics Data System (ADS)

    Aldi, Giulio Francesco; Bozza, Valerio

    2017-02-01

    The shapes of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analytical calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.

  10. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Schuback, Nina; Flecken, Mirkko; Maldonado, Maria T.; Tortell, Philippe D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at an unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in reaction center II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5-fold changes in the conversion factor between ETRRCII and carbon fixation (Kc / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light and correlates with the increased expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and Kc / nPSII requires further validation but has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  11. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Schuback, N.; Flecken, M.; Maldonado, M. T.; Tortell, P. D.

    2015-10-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation at PSII (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis, and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific, over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5 fold changes in the conversion factor coupling ETRRCII and carbon fixation (Φe:C / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light, and correlates with the expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and the conversion factor Φe:C / nPSII has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  12. A comparative study of iron-related metabolic parameters in the eye of three animal species.

    PubMed

    Vázquez-Quiñones, Luis E; García-Castiñeiras, Sixto

    2007-12-01

    In order to obtain a wider perspective of iron homeostasis in the eye, a comparative study was undertaken of several iron-related parameters (Total Iron, TI; Total Iron Binding Capacity, TIBC; Transferrin, Tf; and saturation of Tf) both in blood serum and in ocular tissues (lens, cornea, iris-ciliary body, retina) and fluids (vitreous body, aqueous humor) of several animal species (pig, cow and rat). The relative degree of oxidative stress of tissues and fluids was evaluated based on the criteria that high values of TI and Tf saturation, and low values of TIBC and Tf, would promote iron-related oxidative stress. The inclusion of both diurnal (pig, cow) and nocturnal (rat) animal species in this comparative work provided the opportunity to explore if iron homeostasis parameters are in some way influenced by the higher oxidative stress level expected in animals with diurnal living habits. This project involved also the design of new and very sensitive methods of analyses, given the fact that in many cases very small amounts of sample (i.e., aqueous humor), and/or low concentration of analytes (i.e., transferrin) are available. All results were expressed as concentration relative to mg protein as determined with the Bradford method (microplate assay). When analyzing TI/TIBC it was possible to define a loosely bound iron pool (LBIP) in ocular tissues that was proportional to the degree of vascularization of the tissues analyzed. The comparison of iron related parameters patterns within the eye and among species allowed us to reach the following conclusions: (1) The aqueous humor and vitreous body of cow and pig exhibited highest concentration of Tf and a very low saturation of Tf, while the lowest value of Tf was detected in all species in the lens; (2) TI showed the tendency to be highest in the vitreous body of cow and pig, and lowest in the lens of all three species. The very low iron concentration in the lens may effectively counteract the risk of having a low Tf

  13. Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection

    PubMed Central

    Samarakoon, Thilani N; Yapa, Asanka S; Abayaweera, Gayani; Basel, Matthew T; Maynez, Pamela; Ortega, Raquel; Toledo, Yubisela; Bossmann, Leonie; Robinson, Colette; Janik, Katharine E; Koper, Olga B; Li, Ping; Motamedi, Massoud; Higgins, Daniel A; Gadbury, Gary

    2016-01-01

    Summary Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl)porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis. PMID:27335730

  14. Iron Dextran Increases Hepatic Oxidative Stress and Alters Expression of Genes Related to Lipid Metabolism Contributing to Hyperlipidaemia in Murine Model

    PubMed Central

    Silva, Maísa; Guerra, Joyce Ferreira da Costa; Sampaio, Ana Flávia Santos; de Lima, Wanderson Geraldo; Silva, Marcelo Eustáquio

    2015-01-01

    The objective of this study was to investigate the effects of iron dextran on lipid metabolism and to determine the involvement of oxidative stress. Fischer rats were divided into two groups: the standard group (S), which was fed the AIN-93M diet, and the standard plus iron group (SI), which was fed the same diet but also received iron dextran injections. Serum cholesterol and triacylglycerol levels were higher in the SI group than in the S group. Iron dextran was associated with decreased mRNA levels of pparα, and its downstream gene cpt1a, which is involved in lipid oxidation. Iron dextran also increased mRNA levels of apoB-100, MTP, and L-FABP indicating alterations in lipid secretion. Carbonyl protein and TBARS were consistently higher in the liver of the iron-treated rats. Moreover, a significant positive correlation was found between oxidative stress products, lfabp expression, and iron stores. In addition, a negative correlation was found between pparα expression, TBARS, carbonyl protein, and iron stores. In conclusion, our results suggest that the increase observed in the transport of lipids in the bloodstream and the decreased fatty acid oxidation in rats, which was promoted by iron dextran, might be attributed to increased oxidative stress. PMID:25685776

  15. Current limiting behavior in three-phase transformer-type SFCLs using an iron core according to variety of fault

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Sun; Jung, Byung-Ik; Ha, Kyoung-Hun; Choi, Soo-Geun; Park, Hyoung-Min; Choi, Hyo-Sang

    To apply the superconducting fault current limiter (SFCL) to the power system, the reliability of the fault-current-limiting operation must be ensured in diverse fault conditions. The SFCL must also be linked to the operation of the high-speed recloser in the power system. In this study, a three-phase transformer-type SFCL, which has a neutral line to improve the simultaneous quench characteristics of superconducting elements, was manufactured to analyze the fault-current-limiting characteristic according to the single, double, and triple line-to-ground faults. The transformer-type SFCL, wherein three-phase windings are connected to one iron core, reduced the burden on the superconducting element as the superconducting element on the sound phase was also quenched in the case of the single line-to-ground fault. In the case of double or triple line-to-ground faults, the flux from the faulted phase winding was interlinked with other faulted or sound phase windings, and the fault-current-limiting rate decreased because the windings of three phases were inductively connected by one iron core.

  16. Sulfur amino acid metabolism limits the growth of children living in environments of poor sanitation.

    PubMed

    Bickler, Stephen W; Ring, Jason; De Maio, Antonio

    2011-09-01

    Environmental enteropathy has been identified as a cause of poor growth in children living in low-income countries, but a mechanism has not been well defined. We suggest changes in sulfur amino acid metabolism can in part explain the poor growth and possibly the histological changes in the small bowel, which is the hallmark of environmental enteropathy. In environments of poor sanitation, where infection is common, we propose increased oxidative stress drives methionine metabolism toward cystathionine synthesis. This "cystathionine siphon" limits sulfur amino acids from participating in critical protein synthesis pathways. Increased expression of cystathionine β-synthase (CBS) could be one mechanism, as lipopolysaccharide and TNFα increase activity of this enzyme in vivo. CBS catalyzes the first of two steps in the transsulfuration pathway that converts homocysteine to cysteine. As enterocytes are one of the most rapidly proliferating cells in the body, we suggest diminished translation might also be important in the barrier failure observed in environmental enteropathy. Identifying sulfur amino acid metabolism as a mechanism leading to poor growth provides a new testable hypothesis for the undernutrition observed in children living in settings of poor sanitation.

  17. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Feng, Tian-Ya; Yang, Zhi-Kai; Zheng, Jian-Wei; Xie, Ying; Li, Da-Wei; Murugan, Shanmugaraj Bala; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2015-05-28

    Phosphorus (P) is an essential macronutrient for the survival of marine phytoplankton. In the present study, phytoplankton response to phosphorus limitation was studied by proteomic profiling in diatom Phaeodactylum tricornutum in both cellular and molecular levels. A total of 42 non-redundant proteins were identified, among which 8 proteins were found to be upregulated and 34 proteins were downregulated. The results also showed that the proteins associated with inorganic phosphate uptake were downregulated, whereas the proteins involved in organic phosphorus uptake such as alkaline phosphatase were upregulated. The proteins involved in metabolic responses such as protein degradation, lipid accumulation and photorespiration were upregulated whereas energy metabolism, photosynthesis, amino acid and nucleic acid metabolism tend to be downregulated. Overall our results showed the changes in protein levels of P. tricornutum during phosphorus stress. This study preludes for understanding the role of phosphorous in marine biogeochemical cycles and phytoplankton response to phosphorous scarcity in ocean. It also provides insight into the succession of phytoplankton community, providing scientific basis for elucidating the mechanism of algal blooms.

  18. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum

    PubMed Central

    Feng, Tian-Ya; Yang, Zhi-Kai; Zheng, Jian-Wei; Xie, Ying; Li, Da-Wei; Murugan, Shanmugaraj Bala; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2015-01-01

    Phosphorus (P) is an essential macronutrient for the survival of marine phytoplankton. In the present study, phytoplankton response to phosphorus limitation was studied by proteomic profiling in diatom Phaeodactylum tricornutum in both cellular and molecular levels. A total of 42 non-redundant proteins were identified, among which 8 proteins were found to be upregulated and 34 proteins were downregulated. The results also showed that the proteins associated with inorganic phosphate uptake were downregulated, whereas the proteins involved in organic phosphorus uptake such as alkaline phosphatase were upregulated. The proteins involved in metabolic responses such as protein degradation, lipid accumulation and photorespiration were upregulated whereas energy metabolism, photosynthesis, amino acid and nucleic acid metabolism tend to be downregulated. Overall our results showed the changes in protein levels of P. tricornutum during phosphorus stress. This study preludes for understanding the role of phosphorous in marine biogeochemical cycles and phytoplankton response to phosphorous scarcity in ocean. It also provides insight into the succession of phytoplankton community, providing scientific basis for elucidating the mechanism of algal blooms. PMID:26020491

  19. The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in Cryptococcus neoformans.

    PubMed

    Do, Eunsoo; Park, Minji; Hu, Guanggan; Caza, Mélissa; Kronstad, James W; Jung, Won Hee

    2016-09-02

    The lysine biosynthesis pathway via α-aminoadipate in fungi is considered an attractive target for antifungal drugs due to its absence in mammalian hosts. The iron-sulfur cluster-containing enzyme homoaconitase converts homocitrate to homoisocitrate in the lysine biosynthetic pathway, and is encoded by LYS4 in the model yeast Saccharomyces cerevisiae. In this study, we identified the ortholog of LYS4 in the human fungal pathogen, Cryptococcus neoformans, and found that LYS4 expression is regulated by iron levels and by the iron-related transcription factors Hap3 and HapX. Deletion of the LYS4 gene resulted in lysine auxotrophy suggesting that Lys4 is essential for lysine biosynthesis. Our study also revealed that lysine uptake was mediated by two amino acid permeases, Aap2 and Aap3, and influenced by nitrogen catabolite repression (NCR). Furthermore, the lys4 mutant showed increased sensitivity to oxidative stress, agents that challenge cell wall/membrane integrity, and azole antifungal drugs. We showed that these phenotypes were due in part to impaired mitochondrial function as a result of LYS4 deletion, which we propose disrupts iron homeostasis in the organelle. The combination of defects are consistent with our observation that the lys4 mutant was attenuated virulence in a mouse inhalation model of cryptococcosis.

  20. Hepcidin and Iron Metabolism in Pregnancy: Correlation with Smoking and Birth Weight and Length.

    PubMed

    Chełchowska, Magdalena; Ambroszkiewicz, Jadwiga; Gajewska, Joanna; Jabłońska-Głąb, Ewa; Maciejewski, Tomasz M; Ołtarzewski, Mariusz

    2016-09-01

    To estimate the effect of tobacco smoking on iron homeostasis and the possible association between hepcidin and the neonatal birth weight and length, concentrations of serum hepcidin and selected iron markers were measured in 81 healthy pregnant women (41 smokers and 40 nonsmokers). The smoking mothers had significantly lower concentrations of serum hepcidin (p < 0.001), iron (p < 0.001), and hemoglobin (p < 0.05), but higher erythropoietin (p < 0.05) levels compared with non-smoking pregnant women. Logistic regression analysis showed the highest negative impact of the number of cigarettes smoked per day (β = -0.46; p < 0.01) and positive impact of ferritin level (β = 0.47; p < 0.001) on serum hepcidin concentration. The birth weight and the body length of smoking mothers' infants were significantly lower than in tobacco abstinent group (p < 0.001). In multiple regression analysis, birth body weight (β = 0.56; p < 0.001) and length (β = 0.50; p < 0.001) were significantly related to maternal hepcidin values. Tobacco smoking affected hepcidin level in serum of pregnant women in a dose-dependent manner. Low concentrations of iron and hemoglobin in maternal serum coexisting with high level of erythropoietin suggest that smoking could lead to subclinical iron deficiency and chronic hypoxia not only in mothers but also in fetus. Low serum hepcidin concentration in smoking pregnant women might be associated with lower fetal birth weight and length.

  1. Hepatocyte Nuclear Factor 4α Controls Iron Metabolism and Regulates Transferrin Receptor 2 in Mouse Liver*

    PubMed Central

    Matsuo, Shunsuke; Ogawa, Masayuki; Muckenthaler, Martina U.; Mizui, Yumiko; Sasaki, Shota; Fujimura, Takafumi; Takizawa, Masayuki; Ariga, Nagayuki; Ozaki, Hiroaki; Sakaguchi, Masakiyo; Gonzalez, Frank J.; Inoue, Yusuke

    2015-01-01

    Iron is an essential element in biological systems, but excess iron promotes the formation of reactive oxygen species, resulting in cellular toxicity. Several iron-related genes are highly expressed in the liver, a tissue in which hepatocyte nuclear factor 4α (HNF4α) plays a critical role in controlling gene expression. Therefore, the role of hepatic HNF4α in iron homeostasis was examined using liver-specific HNF4α-null mice (Hnf4aΔH mice). Hnf4aΔH mice exhibit hypoferremia and a significant change in hepatic gene expression. Notably, the expression of transferrin receptor 2 (Tfr2) mRNA was markedly decreased in Hnf4aΔH mice. Promoter analysis of the Tfr2 gene showed that the basal promoter was located at a GC-rich region upstream of the transcription start site, a region that can be transactivated in an HNF4α-independent manner. HNF4α-dependent expression of Tfr2 was mediated by a proximal promoter containing two HNF4α-binding sites located between the transcription start site and the translation start site. Both the GC-rich region of the basal promoter and the HNF4α-binding sites were required for maximal transactivation. Moreover, siRNA knockdown of HNF4α suppressed TFR2 expression in human HCC cells. These results suggest that Tfr2 is a novel target gene for HNF4α, and hepatic HNF4α plays a critical role in iron homeostasis. PMID:26527688

  2. Metabolic flexibility of the Fe(II)-oxidizing phototropic strain Rhodopseudomonas palustris TIE1 and its potential role in microbial iron cycling

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Oswald, K.; Melton, E. D.; Kappler, A.

    2012-04-01

    The biogeochemical conversion of iron(II) and iron(III) is widespread in many aquatic and terrestrial environments. In the anoxic regime of soils and sediments the conversion and alternation of the iron redox state is predominantly run by microorganisms that are thought to gain life-sustaining energy by the oxidation and/or reduction of ferrous/ferric components. The spatial arrangement of microbial iron(II) oxidation and iron(III) reduction is largely controlled by the availability of the required electron acceptor and electron donor, as well as the essential source of energy (i.e. light or chemical energy). The physico-chemical patterns of many microbial environments undergo dynamic variations (i.e. diurnal and seasonal changes) as a function of natural external forces (i.e. seasonality, storm events, algae blooms) which strongly affects the local budget of organic carbon and nutrients, as well as the day light penetration. Such fluctuations force microorganisms either to follow the flow of substrate or to switch their metabolism to alternative electron acceptors and/or donors. Different photoferrotrophic bacteria have been shown to be able to grow either on organic (heterotrophic) or inorganic (autotrophic) substrates while exploiting light as their energy source. Within the frame of this study the preference for organic substrates (lactate and acetate) and/or ferrous iron (in simultaneous presence) for photo(ferro)trophic growth of Rhodopseudomonas palustris TIE1 has been investigated in detail. Rates of iron oxidation, acetate/lactate consumption and growth have been followed over time as a function of different lactate to acetate to iron(II) ratios. Additional experiments have been designed to evaluate the potential of Rhodopseudomonas palustris TIE1 to contribute to the redox cycling of iron. TIE1 has been grown in a batch set-up in which the iron(III)-reducing strain Shewanella oneidensis MR1 has been incubated at different ferrihydrite concentrations in

  3. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability.

    PubMed

    Luo, Jie; Li, Hong; Liu, Tongxian; Polle, Andrea; Peng, Changhui; Luo, Zhi-Bin

    2013-11-01

    To investigate N metabolism of two contrasting Populus species in acclimation to low N availability, saplings of slow-growing species (Populus popularis, Pp) and a fast-growing species (Populus alba × Populus glandulosa, Pg) were exposed to 10, 100, or 1000 μM NH4NO3. Despite greater root biomass and fine root surface area in Pp, lower net influxes of NH4(+) and NO3(-) at the root surface were detected in Pp compared to those in Pg, corresponding well to lower NH4(+) and NO3(-) content and total N concentration in Pp roots. Meanwhile, higher stable N isotope composition (δ(15)N) in roots and stronger responsiveness of transcriptional regulation of 18 genes involved in N metabolism were found in roots and leaves of Pp compared to those of Pg. These results indicate that the N metabolism of Pp is more sensitive to decreasing N availability than that of Pg. In both species, low N treatments decreased net influxes of NH4(+) and NO3(-), root NH4(+) and foliar NO3(-) content, root NR activities, total N concentration in roots and leaves, and transcript levels of most ammonium (AMTs) and nitrate (NRTs) transporter genes in leaves and genes involved in N assimilation in roots and leaves. Low N availability increased fine root surface area, foliar starch concentration, δ(15)N in roots and leaves, and transcript abundance of several AMTs (e.g. AMT1;2) and NRTs (e.g. NRT1;2 and NRT2;4B) in roots of both species. These data indicate that poplar species slow down processes of N acquisition and assimilation in acclimation to limiting N supply.

  4. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    PubMed

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed.

  5. New insights into the human body iron metabolism analyzed by a Petri net based approach.

    PubMed

    Sackmann, Andrea; Formanowicz, Dorota; Formanowicz, Piotr; Blazewicz, Jacek

    2009-04-01

    Iron homeostasis is one of the most important biochemical processes in the human body. Despite this fact, the process is not fully understood and until recently only rough descriptions of parts of the process could be found in the literature. Here, an extension of the recently published formal model of the main part of the process is presented. This extension consists in including all known mechanisms of hepcidin regulation. Hepcidin is a hormone synthesized in the liver which is mainly responsible for an inhibition of iron absorption in the small intestine during an inflammatory process. The model is expressed in the language of Petri net theory which allows for its relatively easy analysis and simulation.

  6. Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. x Poncirus trifoliata (L.) Raf].

    PubMed

    Martínez-Cuenca, Mary-Rus; Iglesias, Domingo J; Talón, Manuel; Abadía, Javier; López-Millán, Ana-Flor; Primo-Millo, Eduardo; Legaz, Francisco

    2013-03-01

    The effects of iron (Fe) deficiency on the low-molecular-weight organic acid (LMWOA) metabolism have been investigated in Carrizo citrange (CC) [Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.] roots. Major LMWOAs found in roots, xylem sap and root exudates were citrate and malate and their concentrations increased with Fe deficiency. The activities of several enzymes involved in the LMWOA metabolism were also assessed in roots. In the cytosolic fraction, the activities of malate dehydrogenase (cMDH) and phosphoenolpyruvate carboxylase (PEPC) enzymes were 132 and 100% higher in Fe-deficient conditions, whereas the activity of pyruvate kinase was 31% lower and the activity of malic enzyme (ME) did not change. In the mitochondrial fraction, the activities of fumarase, MDH and citrate synthase enzymes were 158, 117 and 53% higher, respectively, in Fe-deficient extracts when compared with Fe-sufficient controls, whereas no significant differences between treatments were found for aconitase (ACO) activity. The expression of their corresponding genes in roots of Fe-deficient plants was higher than that measured in Fe-sufficient controls, except for ACO and ME. Also, dicarboxylate-tricarboxylate carrier (DTC) expression was significantly increased in Fe-deficient roots. In conclusion, Fe deficiency in CC seedlings causes a reprogramming of the carbon metabolism that involves an increase of anaplerotic fixation of carbon via PEPC and MDH activities in the cytosol and a shift of the Krebs cycle in the mitochondria towards a non-cyclic mode, as previously described in herbaceous species. In this scheme, DTC could play an important role shuttling both malate and reducing equivalents between the cytosol and the mitochondria. As a result of this metabolic switch malate and citrate concentrations in roots, xylem sap and root exudates increase.

  7. Partitioning the metabolic scope: the importance of anaerobic metabolism and implications for the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis.

    PubMed

    Ejbye-Ernst, Rasmus; Michaelsen, Thomas Y; Tirsgaard, Bjørn; Wilson, Jonathan M; Jensen, Lasse F; Steffensen, John F; Pertoldi, Cino; Aarestrup, Kim; Svendsen, Jon C

    2016-01-01

    Ongoing climate change is predicted to affect the distribution and abundance of aquatic ectotherms owing to increasing constraints on organismal physiology, in particular involving the metabolic scope (MS) available for performance and fitness. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis prescribes MS as an overarching benchmark for fitness-related performance and assumes that any anaerobic contribution within the MS is insignificant. The MS is typically derived from respirometry by subtracting standard metabolic rate from the maximal metabolic rate; however, the methodology rarely accounts for anaerobic metabolism within the MS. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), this study tested for trade-offs (i) between aerobic and anaerobic components of locomotor performance; and (ii) between the corresponding components of the MS. Data collection involved measuring oxygen consumption rate at increasing swimming speeds, using the gait transition from steady to unsteady (burst-assisted) swimming to detect the onset of anaerobic metabolism. Results provided evidence of the locomotor performance trade-off, but only in S. aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic performance. Our results suggest that without accounting for anaerobic metabolism within the MS, studies involving the OCLTT hypothesis could overestimate the metabolic scope available for

  8. Partitioning the metabolic scope: the importance of anaerobic metabolism and implications for the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis

    PubMed Central

    Ejbye-Ernst, Rasmus; Michaelsen, Thomas Y.; Tirsgaard, Bjørn; Wilson, Jonathan M.; Jensen, Lasse F.; Steffensen, John F.; Pertoldi, Cino; Aarestrup, Kim; Svendsen, Jon C.

    2016-01-01

    Ongoing climate change is predicted to affect the distribution and abundance of aquatic ectotherms owing to increasing constraints on organismal physiology, in particular involving the metabolic scope (MS) available for performance and fitness. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis prescribes MS as an overarching benchmark for fitness-related performance and assumes that any anaerobic contribution within the MS is insignificant. The MS is typically derived from respirometry by subtracting standard metabolic rate from the maximal metabolic rate; however, the methodology rarely accounts for anaerobic metabolism within the MS. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), this study tested for trade-offs (i) between aerobic and anaerobic components of locomotor performance; and (ii) between the corresponding components of the MS. Data collection involved measuring oxygen consumption rate at increasing swimming speeds, using the gait transition from steady to unsteady (burst-assisted) swimming to detect the onset of anaerobic metabolism. Results provided evidence of the locomotor performance trade-off, but only in S. aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic performance. Our results suggest that without accounting for anaerobic metabolism within the MS, studies involving the OCLTT hypothesis could overestimate the metabolic scope available for

  9. Limited fetal metabolism of rosiglitazone: Elimination via the maternal compartment in the pregnant ewe.

    PubMed

    Bazargan, Maryam; Foster, David Jr; Muhlhausler, Beverly S; Morrison, Janna L; McMillen, ICaroline; Davey, Andrew K

    2016-06-01

    Despite the fact that fetal drug exposure is common, the disposition of drugs in the fetus is poorly understood. This study aimed to investigate fetal placental and non-placental disposition of rosiglitazone in the pregnant ewe. Steady state was reached after day 5 of fetal infusion, and were ∼1.8 fold higher than maternal concentrations (P<0.001). The AUC for fetal rosiglitazone concentration throughout the infusion was inversely correlated with placental and fetal weight. Metabolic activity of the fetal liver microsomes were ∼25 fold lower than maternal microsomes (P<0.001). The findings suggest that trans-placental transfer is the major route through which rosiglitazone is cleared from the fetal compartment, while non-placental hepatic elimination makes only a minor contribution. This supports a limited capacity of the fetus for eliminating this class of drugs, and highlights the potential for drug toxicity when administering pharmacotherapy to the mother/fetus in human pregnancy.

  10. Metabolic Flux Analysis of the Synechocystis sp. PCC 6803 ΔnrtABCD Mutant Reveals a Mechanism for Metabolic Adaptation to Nitrogen-Limited Conditions.

    PubMed

    Nakajima, Tsubasa; Yoshikawa, Katsunori; Toya, Yoshihiro; Matsuda, Fumio; Shimizu, Hiroshi

    2017-03-01

    Metabolic flux redirection during nitrogen-limited growth was investigated in the Synechocystis sp. PCC 6803 glucose-tolerant (GT) strain under photoautotrophic conditions by isotopically non-stationary metabolic flux analysis (INST-MFA). A ΔnrtABCD mutant of Synechocystis sp. PCC 6803 was constructed to reproduce phenotypes arising during nitrogen starvation. The ΔnrtABCD mutant and the wild-type GT strain were cultured under photoautotrophic conditions by a photobioreactor. Intracellular metabolites were labeled over a time course using NaH13CO3 as a carbon source. Based on these data, the metabolic flux distributions in the wild-type and ΔnrtABCD cells were estimated by INST-MFA. The wild-type GT and ΔnrtABCD strains displayed similar distribution patterns, although the absolute levels of metabolic flux were lower in ΔnrtABCD. Furthermore, the relative flux levels for glycogen metabolism, anaplerotic reactions and the oxidative pentose phosphate pathway were increased in ΔnrtABCD. This was probably due to the increased expression of enzyme genes that respond to nitrogen depletion. Additionally, we found that the ratio of ATP/NADPH demand increased slightly in the ΔnrtABCD mutant. These results indicated that futile ATP consumption increases under nitrogen-limited conditions because the Calvin-Benson cycle and the oxidative pentose phosphate pathway form a metabolic futile cycle that consumes ATP without CO2 fixation and NADPH regeneration.

  11. Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation.

    PubMed

    Küpper, Hendrik; Setlík, Ivan; Seibert, Sven; Prásil, Ondrej; Setlikova, Eva; Strittmatter, Martina; Levitan, Orly; Lohscheider, Jens; Adamska, Iwona; Berman-Frank, Ilana

    2008-01-01

    * As iron (Fe) deficiency is a main limiting factor of ocean productivity, its effects were investigated on interactions between photosynthesis and nitrogen fixation in the marine nonheterocystous diazotrophic cyanobacterium Trichodesmium IMS101. * Biophysical methods such as fluorescence kinetic microscopy, fast repetition rate (FRR) fluorimetry, and in vivo and in vitro spectroscopy of pigment composition were used, and nitrogenase activity and the abundance of key proteins were measured. * Fe limitation caused a fast down-regulation of nitrogenase activity and protein levels. By contrast, the abundance of Fe-requiring photosystem I (PSI) components remained constant. Total levels of phycobiliproteins remained unchanged according to single-cell in vivo spectra. However, the regular 16-kDa phycoerythrin band decreased and finally disappeared 16-20 d after initiation of Fe limitation, concomitant with the accumulation of a 20-kDa protein cross-reacting with the phycoerythrin antibody. Concurrently, nitrogenase expression and activity increased. Fe limitation dampened the daily cycle of photosystem II (PSII) activity characteristic of diazotrophic Trichodesmium cells. Further, it increased the number and prolonged the time period of occurrence of cells with elevated basic fluorescence (F(0)). Additionally, it increased the effective cross-section of PSII, probably as a result of enhanced coupling of phycobilisomes to PSII, and led to up-regulation of the Fe stress protein IsiA. * Trichodesmium survives short-term Fe limitation by selectively down-regulating nitrogen fixation while maintaining but re-arranging the photosynthetic apparatus.

  12. Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply

    PubMed Central

    2010-01-01

    Background Plants grown under iron deficiency show different morphological, biochemical and physiological changes. These changes include, among others, the elicitation of different strategies to improve the acquisition of Fe from the rhizosphere, the adjustment of Fe homeostasis processes and a reorganization of carbohydrate metabolism. The application of modern techniques that allow the simultaneous and untargeted analysis of multiple proteins and metabolites can provide insight into multiple processes taking place in plants under Fe deficiency. The objective of this study was to characterize the changes induced in the root tip proteome and metabolome of sugar beet plants in response to Fe deficiency and resupply. Results Root tip extract proteome maps were obtained by 2-D isoelectric focusing polyacrylamide gel electrophoresis, and approximately 140 spots were detected. Iron deficiency resulted in changes in the relative amounts of 61 polypeptides, and 22 of them were identified by mass spectrometry (MS). Metabolites in root tip extracts were analyzed by gas chromatography-MS, and more than 300 metabolites were resolved. Out of 77 identified metabolites, 26 changed significantly with Fe deficiency. Iron deficiency induced increases in the relative amounts of proteins and metabolites associated to glycolysis, tri-carboxylic acid cycle and anaerobic respiration, confirming previous studies. Furthermore, a protein not present in Fe-sufficient roots, dimethyl-8-ribityllumazine (DMRL) synthase, was present in high amounts in root tips from Fe-deficient sugar beet plants and gene transcript levels were higher in Fe-deficient root tips. Also, a marked increase in the relative amounts of the raffinose family of oligosaccharides (RFOs) was observed in Fe-deficient plants, and a further increase in these compounds occurred upon short term Fe resupply. Conclusions The increases in DMRL synthase and in RFO sugars were the major changes induced by Fe deficiency and resupply

  13. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism

    PubMed Central

    Weigel, WA; Demuth, DR; Torres-Escobar, A; Juárez-Rodríguez, MD

    2015-01-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment. PMID:25923132

  14. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism.

    PubMed

    Weigel, W A; Demuth, D R; Torres-Escobar, A; Juárez-Rodríguez, M D

    2015-10-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment.

  15. Limit on the Electron Electric Dipole Moment in Gadolinium-Iron Garnet

    SciTech Connect

    Heidenreich, B.J.; Elliott, O.T.; Charney, N.D.; Virgien, K.A.; Bridges, A.W.; McKeon, M.A.; Peck, S.K.; Krause, D. Jr.; Gordon, J.E.; Hunter, L.R.; Lamoreaux, S.K.

    2005-12-16

    A new method for the detection of the electron electric dipole moment (EDM) using a solid is described. The method involves the measurement of a voltage induced across the solid by the alignment of the sample's magnetic dipoles in an applied magnetic field, H. A first application of the method to GdIG has resulted in a limit on the electron EDM of 5x10{sup -24}e cm, which is a factor of 40 below the limit obtained from the only previous solid-state EDM experiment. The result is limited by the imperfect discrimination of an unexpectedly large voltage that is even upon the reversal of the sample magnetization.

  16. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    NASA Astrophysics Data System (ADS)

    Feng, Jianghua; Zhao, Jing; Hao, Fuhua; Chen, Chang; Bhakoo, Kishore; Tang, Huiru

    2011-05-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  17. Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana

    PubMed Central

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Heuvelink, Ep; Prinzenberg, Aina E.; Marcelis, Leo F. M.

    2016-01-01

    A better understanding of the metabolic and diffusional limitations of photosynthesis in fluctuating irradiance can help identify targets for improving crop yields. We used different genotypes of Arabidopsis thaliana to characterise the importance of Rubisco activase (Rca), stomatal conductance (gs), non-photochemical quenching of chlorophyll fluorescence (NPQ) and sucrose phosphate synthase (SPS) on photosynthesis in fluctuating irradiance. Leaf gas exchange and chlorophyll fluorescence were measured in leaves exposed to stepwise increases and decreases in irradiance. rwt43, which has a constitutively active Rubisco enzyme in different irradiance intensities (except in darkness), showed faster increases than the wildtype, Colombia-0, in photosynthesis rates after step increases in irradiance. rca-2, having decreased Rca concentration, showed lower rates of increase. In aba2-1, high gs increased the rate of change after stepwise irradiance increases, while in C24, low gs tended to decrease it. Differences in rates of change between Colombia-0 and plants with low levels of NPQ (npq1-2, npq4-1) or SPS (spsa1) were negligible. In Colombia-0, the regulation of Rubisco activation and of gs were therefore limiting for photosynthesis in fluctuating irradiance, while levels of NPQ or SPS were not. This suggests Rca and gs as targets for improvement of photosynthesis of plants in fluctuating irradiance. PMID:27502328

  18. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.

    PubMed

    Weger, Harold G; Walker, Crystal N; Fink, Michael B

    2007-10-01

    The colorimetric Fe2+ indicators bathophenanthroline disulfonic acid (BPDS) and 3-(2-pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine (FZ) are routinely used to assay for plasma membrane ferric reductase activity in iron-limited algal cells and also in roots from iron-limited plants. Ferric reductase assays using these colorimetric indicators must take into account the fact that Fe3+ chelators (e.g. ethylenediaminetetraacetic acid) can also in general bind Fe2+ and may therefore compete with the colorimetric Fe2+ indicators, leading to the potential for underestimation of the ferric reduction rate. Conversely, the presence of BPDS or FZ may also facilitate the reduction of Fe3+ chelates, potentially leading to overestimation of ferric reduction rates. Last, both BPDS and FZ have non-negligible affinities for Fe3+ in addition to their well-known affinities for Fe2+; this leads to potential difficulties in ascertaining whether free and/or chelated Fe3+ are potential substrates for the ferric reductase. Similar issues arise when assaying for cupric reductase activity using the colorimetric Cu+ indicator bathocuproinedisulfonic acid (BCDS). In this paper, we describe an oxygen-electrode-based assay (conducted in darkness) for both ferric and cupric reductase activities that does not use colorimetric indicators. Using this assay system, we show that the plasma membrane metal reductase activity of iron-limited cells of the green alga Chlorella kessleri reduced complexed Fe3+ (i.e. Fe3+ chelates) but did not reduce free (non-chelated) Fe3+, and also reduced free Cu2+ to Cu+, but did not reduce Cu2+ that was part of Cu2+ chelates. We suggest that the potential for reduction of free Fe3+ cannot be adequately assayed using colorimetric assays. As well, the BPDS-based assay system consistently yielded similar estimates of ferric reductase activity compared with the O2-electrode-based assays at relatively low Fe3+ concentration, but higher estimates at higher Fe3

  19. Beneficial effect of pollen and/or propolis on the metabolism of iron, calcium, phosphorus, and magnesium in rats with nutritional ferropenic anemia.

    PubMed

    Haro, A; López-Aliaga, I; Lisbona, F; Barrionuevo, M; Alférez, M J; Campos, M S

    2000-11-01

    There has been considerable debate regarding the nutritional benefits of pollen and the propolis produced by bees, although most contributions have lacked scientific soundness. This paper describes the possible beneficial effect of their use in pharmacological products in cases of anemic syndrome. We studied the effect of these two natural products on the digestive utilization of iron, calcium, phosphorus, and magnesium, using control rats and rats with nutritional ferropenic anemia. The addition of these products to the diet produced a positive effect on weight gain; this fact could constitute a scientific basis for the application of pollen and propolis as fortifiers. They improve the digestive utilization of iron and the regeneration efficiency of hemoglobin, especially during recovery from an anemic syndrome. They also have a positive effect on phosphocalcic metabolism and maintain an appropiate level of magnesium metabolism. Furthermore, in iron-deficient rats, these natural products palliate, to a large extent, the adverse effects of iron deficiency on calcium and magnesium metabolism as a result of the improvement in the digestive utilization of these minerals.

  20. Increased iron availability resulting from increased CO2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta).

    PubMed

    Chen, Binbin; Zou, Dinghui; Yang, Yufeng

    2017-04-01

    Ocean acidification caused by rising CO2 is predicted to increase the concentrations of dissolved species of Fe(II) and Fe(III), leading to the enhanced photosynthetic carbon sequestration in some algal species. In this study, the carbon and nitrogen metabolism in responses to increased iron availability under two CO2 levels (390 μL L(-1) and 1000 μL L(-1)), were investigated in the maricultivated macroalga Pyropia haitanensis (Rhodophyta). The results showed that, elevated CO2 increased soluble carbonhydrate (SC) contents, resulting from enhanced photosynthesis and photosynthetic pigment synthesis in this algae, but declined its soluble protein (SP) contents, resulting in increased ratio of SC/SP. This enhanced photosynthesis performance and carbon accumulation was more significant under iron enrichment condition in seawater, with higher iron uptake rate at high CO2 level. As a key essential biogenic element for algae, Fe-replete functionally contributed to P. haitanensis photosynthesis. Increased SC fundamentally provided carbon skeletons for nitrogen assimilation. The significant increase of carbon and nitrogen assimilation finally contributed to enhanced growth in this alga. This was also intuitively reflected by respiration that provided energy for cellular metabolism and algal growth. We propose that, in the predicted scenario of rising atmospheric CO2, P. haitanensis is capable to adjust its physiology by increasing its carbon and nitrogen metabolism to acclimate the acidified seawater, at the background of global climate change and simultaneously increased iron concentration due to decreased pH levels.

  1. Insulin resistance, atherogenicity, and iron metabolism in multiple sclerosis with and without depression: Associations with inflammatory and oxidative stress biomarkers and uric acid.

    PubMed

    Oliveira, Sayonara Rangel; Kallaur, Ana Paula; Lopes, Josiane; Colado Simão, Andrea Name; Vissoci Reiche, Edna Maria; de Almeida, Elaine Regina Delicato; Morimoto, Helena Kaminami; de Carvalho Jennings de Pereira, Wildea Lice; Alfieri, Daniela Frizon; Flauzino, Tamires; de Meleck Proença, Caio; Gomes, Anna Maria; Kaimen-Maciel, Damacio Ramón; Maes, Michael

    2017-04-01

    Depression is accompanied by metabolic disorders in iron metabolism, lipoproteins, and insulin resistance. We measured plasma levels of ferritin, iron, lipids, insulin, and glucose and computed the homeostasis model assessment (HOMA2IR) and atherogenic index of plasma (AIP) in MS patients with and without depression and healthy controls. Explanatory variables were serum uric acid, interleukin (IL)-6, lipid hydroperoxides (CL-LOOH), albumin, and C-reactive protein (CRP). Depression was assessed using the Hospital Anxiety and Depression Scale (HADS), neurological disability using the Expanded Disability Status Scale (EDSS), and disease progression using ∆EDSS over five years earlier. HOMA2IR and insulin were predicted by diagnosis (increased in MS), age and body mass index (BMI); AIP by diagnosis, sex, BMI, CRP, and uric acid; triglycerides by diagnosis (higher in MS without depression), age, BMI and uric acid; ferritin by diagnosis (higher in MS), sex, CRP, and albumin; and iron by albumin. The HADS score was significantly predicted by ∆EDSS, gastro-intestinal symptoms, iron (inverse), and age. MS is characterized by significantly increased insulin resistance, which is determined by increased insulin levels; and increased ferritin, a biomarker of inflammation. Depression in MS is not associated with increased insulin resistance and atherogenicity but with lowered iron.

  2. Aft2, a Novel Transcription Regulator, Is Required for Iron Metabolism, Oxidative Stress, Surface Adhesion and Hyphal Development in Candida albicans

    PubMed Central

    Xu, Ning; Cheng, Xinxin; Yu, Qilin; Qian, Kefan; Ding, Xiaohui; Liu, Ruming; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2013-01-01

    Morphological transition and iron metabolism are closely relevant to Candida albicans pathogenicity and virulence. In our previous study, we demonstrated that C. albicans Aft2 plays an important role in ferric reductase activity and virulence. Here, we further explored the roles of C. albicans Aft2 in numerous cellular processes. We found that C. albicans Aft2 exhibited an important role in iron metabolism through bi-directional regulation effects on iron-regulon expression. Deletion of AFT2 reduced cellular iron accumulation under iron-deficient conditions. Furthermore, both reactive oxygen species (ROS) generation and superoxide dismutase (SOD) activity were remarkably increased in the aft2Δ/Δ mutant, which were thought to be responsible for the defective responses to oxidative stress. However, we found that over-expression of C. albicans AFT2 under the regulation of the strong PGK1 promoter could not effectively rescue Saccharomyces cerevisiae aft1Δ mutant defects in some cellular processes, such as cell-wall assembly, ion homeostasis and alkaline resistance, suggesting a possibility that C. albicans Aft2 weakened its functional role of regulating some cellular metabolism during the evolutionary process. Interestingly, deletion of AFT2 in C. albicans increased cell surface hydrophobicity, cell flocculation and the ability of adhesion to polystyrene surfaces. In addition, our results also revealed that C. albicans Aft2 played a dual role in regulating hypha-specific genes under solid and liquid hyphal inducing conditions. Deletion of AFT2 caused an impaired invasive growth in solid medium, but an increased filamentous aggregation and growth in liquid conditions. Moreover, iron deficiency and environmental cues induced nuclear import of Aft2, providing additional evidence for the roles of Aft2 in transcriptional regulation. PMID:23626810

  3. Zinc, iron and calcium are major limiting nutrients in the complementary diets of rural Kenyan children.

    PubMed

    Ferguson, Elaine; Chege, Peter; Kimiywe, Judith; Wiesmann, Doris; Hotz, Christine

    2015-12-01

    Poor quality infant and young child (IYC) diets contribute to chronic under-nutrition. To design effective IYC nutrition interventions, an understanding of the extent to which realistic food-based strategies can improve dietary adequacy is required. We collected 24-h dietary recalls from children 6-23 months of age (n = 401) in two rural agro-ecological zones of Kenya to assess the nutrient adequacy of their diets. Linear programming analysis (LPA) was used to identify realistic food-based recommendations (FBRs) and to determine the extent to which they could ensure intake adequacy for 12 nutrients. Mean nutrient densities of the IYC diets were below the desired level for four to nine of the 10 nutrients analysed, depending on the age group. Mean dietary diversity scores ranged from 2.1 ± 1.0 among children 6-8 months old in Kitui County to 3.7 ± 1.1 food groups among children 12-23 months old in Vihiga County. LPA confirmed that dietary adequacy for iron, zinc and calcium will be difficult to ensure using only local foods as consumed. FBRs for breastfed children that promote the daily consumption of cows'/goats' milk (added to porridges), fortified cereals, green leafy vegetables, legumes, and meat, fish or eggs, 3-5 times per week can ensure dietary adequacy for nine and seven of 12 nutrients for children 6-11 and 12-23 months old, respectively. For these rural Kenyan children, even though dietary adequacy could be improved via realistic changes in habitual food consumption practices, alternative interventions are needed to ensure dietary adequacy at the population level.

  4. Zuclopenthixol-acetate treatment in catatonic patients: the implication of iron metabolism.

    PubMed

    Conca, A; Bertsch, E; Küng, A; Waschgler, R; Hrubos, W; König, P; Hansen, M

    2003-02-01

    There is some evidence of ferropenia correlating with neuroleptic malignant syndrome and catatonic symptoms. The aim of this prospective and naturalistic study was to investigate the implications of ferremia in patients undergoing an intramuscular injection treatment of Zuclopenthixol-acetate in Visceolo. We recruited 59 catatonic patients (33 females). Age, sex, psychiatric and somatic diagnoses, body mass index (BMI), dosage and duration of Zuclopenthixol-acetate medication and the timing of the changeover from intramuscular to oral prescription, the single dosage of Clopenthixol if initially coadministered, incidence, onset and duration of transient benign hyperthermia, iron, ferritin, transferrin and saturation values, and white and red blood cell counts as well as liver function and electrolytes were registered. A transient and benign hyperthermic reaction (mean degrees: 37.5 + 0.3 degrees C) lasting for an average of 3.0 + 1.9 d was shown by 72.9% patients (N = 43, 22 females), during a mean treatment period of 5.8 + 3.1 d. These patients were medicated with significant different mean doses of Zuclopenthixol-acetate and compared to the patients with normal body temperature (ANOVA P < 0.01). The duration of Zuclopenthixol-acetate application did not vary between these patients groups. Furthermore, significant differences of iron (59.5 + 30.6 micromol/dl vs. 87.8 + 40.8 micromol/dl; ANOVA P < 0.006) and transferrin saturation values (18.3 + 10.4% vs. 27.2 + 17.0%; ANOVA P < 0.02) were found. Ferritin and transferrin were not implicated in the episode of hyperthermia. Diagnoses, sex, white and red blood cell counts also did not vary between these groups. Our findings indicate a possible involvement of ferropenia in catatonic patients, regardless of the diagnoses, and in the development of benign transient hyperthermia, also known as drug fever.

  5. Iron metabolism modulation in Atlantic salmon infested with the sea lice Lepeophtheirus salmonis and Caligus rogercresseyi: A matter of nutritional immunity?

    PubMed

    Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian

    2017-01-01

    Sea lice are copepodid ectoparasites that produce high economic losses and environmental issues, thus impacting the salmon aquaculture worldwide. Atlantic salmon (Salmo salar) from Northern and Southern Hemispheres are primarily parasitized by Lepeophtheirus salmonis and Caligus rogercresseyi, respectively. To cope L. salmonis infestation, studies suggest that Atlantic salmon can restrict iron availability as a mechanism of nutritional immunity. However, no molecular studies of iron regulation from salmonids infected with C. rogercresseyi have been reported. The aim of this study was to determine if there are differences in the regulation of iron metabolism in Atlantic salmon infested with L. salmonis or C. rogercresseyi. For comparisons, skin and head kidney were profiled using qPCR of 15 genes related to iron regulation in Atlantic salmons infected with each sea louse species in Norway and Chile, respectively. Prior to infestation, no significant differences were observed between fish group. However, genes involved in iron transport and Heme biosynthesis were highly upregulated in Atlantic salmon infested with L. salmonis. Interestingly, hepcidin and Heme oxygenase, a component of the Heme degradation pathway, were upregulated during C. rogercresseyi infestation. Oxidative stress related genes were also evaluated, showing higher transcription activity in the head kidney than in the skin of Atlantic salmon infested with L. salmonis. These comparative results suggest pathogen-specific responses in infected Atlantic salmon, where iron metabolism is primarily regulated during the infestation with L. salmonis than C. rogercresseyi. Feeding behavior, for instance haematophagy, of the infesting sea lice species in relation to iron modulation is discussed.

  6. [Iron dysregulation and anemias].

    PubMed

    Ikuta, Katsuya

    2015-10-01

    Most iron in the body is utilized as a component of hemoglobin that delivers oxygen to the entire body. Under normal conditions, the iron balance is tightly regulated. However, iron dysregulation does occasionally occur; total iron content reductions cause iron deficiency anemia and overexpression of the iron regulatory peptide hepcidin disturbs iron utilization resulting in anemia of chronic disease. Conversely, the presence of anemia may ultimately lead to iron overload; for example, thalassemia, a common hereditary anemia worldwide, often requires transfusion, but long-term transfusions cause iron accumulation that leads to organ damage and other poor outcomes. On the other hand, there is a possibility that iron overload itself can cause anemia; iron chelation therapy for the post-transfusion iron overload observed in myelodysplastic syndrome or aplastic anemia improves dependency on transfusions in some cases. These observations reflect the extremely close relationship between anemias and iron metabolism.

  7. Integration of Genome-Scale Metabolic Nodels of Iron-Reducing Bacteria With Subsurface Flow and Geochemical Reactive Transport Models

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Mahadevan, R.; Fang, Y.; Garg, S.; Long, P. E.; Lovley, D. M.

    2008-12-01

    Several field and laboratory experiments have demonstrated that the growth and activity of iron-reducing bacteria can be stimulated in many subsurface environments by amendment of groundwater with a soluble electron donor. Under strong iron-reducing conditions, these organisms mediate reactions that can impact a wide range of subsurface contaminants including chlorinated hydrocarbons, metals, and radionuclides. Therefore there is strong interest in in-situ bioremediation as a potential technology for cleanup of contaminated aquifers. To evaluate and design bioremediation systems, as well as to evaluate the viability of monitored natural attenuation as an alternative, quantitative models of biogeochemically reactive transport are needed. To date, most such models represent microbial activity in terms of kinetic rate (e.g., Monod- type) formulations. Such models do not account for fundamental changes in microbial functionality (such as utilization of alternative respiratory pathways) that occur as the result of spatial and temporal variations in the geochemical environment experienced by microorganisms. Constraint-based genome-scale in silico models of microbial metabolism present an alternative to simplified rate formulations that provide flexibility to account for changes in microbial function in response to local geochemical conditions. We have developed and applied a methodology for coupling a constraint-based in silico model of Geobacter sulfurreducens with a conventional model of groundwater flow, transport, and geochemical reaction. Two uses of the in silico model are tested: 1) incorporation of modified microbial growth yield coefficients based on the in silico model, and 2) variation of reaction rates in a reactive transport model based on in silico modeling of a range of local geochemical conditions. Preliminary results from this integrated model will be presented.

  8. Acinetobacter baumannii Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal Limitation.

    PubMed

    Juttukonda, Lillian J; Chazin, Walter J; Skaar, Eric P

    2016-09-27

    During infection, bacterial pathogens must adapt to a nutrient metal-limited environment that is imposed by the host. The innate immune protein calprotectin inhibits bacterial growth in vitro by chelating the divalent metal ions zinc (Zn(2+), Zn) and manganese (Mn(2+), Mn), but pathogenic bacteria are able to cause disease in the presence of this antimicrobial protein in vivo. One such pathogen is Acinetobacter baumannii, a Gram-negative bacterium that causes pneumonia and bloodstream infections that can be complicated by resistance to multiple antibiotics. A. baumannii inhibition by calprotectin is dependent on calprotectin Mn binding, but the mechanisms employed by A. baumannii to overcome Mn limitation have not been identified. This work demonstrates that A. baumannii coordinates transcription of an NRAMP family Mn transporter and a urea carboxylase to resist the antimicrobial activities of calprotectin. This NRAMP family transporter facilitates Mn accumulation and growth of A. baumannii in the presence of calprotectin. A. baumannii is found to utilize urea as a sole nitrogen source, and urea utilization requires the urea carboxylase encoded in an operon with the NRAMP family transporter. Moreover, urea carboxylase activity is essential for calprotectin resistance in A. baumannii Finally, evidence is provided that this system combats calprotectin in vivo, as deletion of the transporter impairs A. baumannii fitness in a mouse model of pneumonia, and this fitness defect is modulated by the presence of calprotectin. These findings reveal that A. baumannii has evolved mechanisms to subvert host-mediated metal sequestration and they uncover a connection between metal starvation and metabolic stress.

  9. Acinetobacter baumannii Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal Limitation

    PubMed Central

    Juttukonda, Lillian J.; Chazin, Walter J.

    2016-01-01

    ABSTRACT During infection, bacterial pathogens must adapt to a nutrient metal-limited environment that is imposed by the host. The innate immune protein calprotectin inhibits bacterial growth in vitro by chelating the divalent metal ions zinc (Zn2+, Zn) and manganese (Mn2+, Mn), but pathogenic bacteria are able to cause disease in the presence of this antimicrobial protein in vivo. One such pathogen is Acinetobacter baumannii, a Gram-negative bacterium that causes pneumonia and bloodstream infections that can be complicated by resistance to multiple antibiotics. A. baumannii inhibition by calprotectin is dependent on calprotectin Mn binding, but the mechanisms employed by A. baumannii to overcome Mn limitation have not been identified. This work demonstrates that A. baumannii coordinates transcription of an NRAMP family Mn transporter and a urea carboxylase to resist the antimicrobial activities of calprotectin. This NRAMP family transporter facilitates Mn accumulation and growth of A. baumannii in the presence of calprotectin. A. baumannii is found to utilize urea as a sole nitrogen source, and urea utilization requires the urea carboxylase encoded in an operon with the NRAMP family transporter. Moreover, urea carboxylase activity is essential for calprotectin resistance in A. baumannii. Finally, evidence is provided that this system combats calprotectin in vivo, as deletion of the transporter impairs A. baumannii fitness in a mouse model of pneumonia, and this fitness defect is modulated by the presence of calprotectin. These findings reveal that A. baumannii has evolved mechanisms to subvert host-mediated metal sequestration and they uncover a connection between metal starvation and metabolic stress. PMID:27677795

  10. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides

    NASA Astrophysics Data System (ADS)

    Birsoy, Kıvanç; Possemato, Richard; Lorbeer, Franziska K.; Bayraktar, Erol C.; Thiru, Prathapan; Yucel, Burcu; Wang, Tim; Chen, Walter W.; Clish, Clary B.; Sabatini, David M.

    2014-04-01

    As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.

  11. Exercise hyperthermia as a factor limiting physical performance - Temperature effect on muscle metabolism

    NASA Technical Reports Server (NTRS)

    Kozlowski, S.; Brzezinska, Z.; Kruk, B.; Kaciuba-Uscilko, H.; Greenleaf, J. E.

    1985-01-01

    The effect of trunk cooling on the muscle contents of ATP, ADP, AMP, creatine phosphate (CrP), and creatine, as well as of glycogen, some glycolytic intermediates, pyruvate, and lactate were assessed in 11 fasted dogs exercised at 20 C on treadmill to exhaustion. Without cooling, dogs were able to run 57 min, and their rectal (Tre) and muscle (Tm) temperatures increased to 41.8 and 43.0 C, respectively. Cooling with ice packs prolonged the ability to run by 45 percent, and resulted in lower Tre (by 1.1 C) and Tm (by 1.2 C). Depletion of muscle content of total high-energy phosphates (ATP + CrP) and glycogen, and increases in contents of AMP, pyruvate, and lactate were lower in cooled dogs than in non-cooled dogs. The muscle content of lactiate correlated positively with TM. These results indicate that hypothermia accelerates glycolysis, and shifts the equilibrium between high- and low-energy phosphates in favor of the latter. The adverse effect of hypothermia on muscle metabolism may be relevant to the limitation of endurance.

  12. Metabolic rate limits the effect of sperm competition on mammalian spermatogenesis.

    PubMed

    delBarco-Trillo, Javier; Tourmente, Maximiliano; Roldan, Eduardo R S

    2013-01-01

    Sperm competition leads to increased sperm production in many taxa. This response may result from increases in testes size, changes in testicular architecture or changes in the kinetics of spermatogenesis, but the impact of each one of these processes on sperm production has not been studied in an integrated manner. Furthermore, such response may be limited in species with low mass-specific metabolic rate (MSMR), i.e., large-bodied species, because they cannot process energy and resources efficiently enough both at the organismic and cellular levels. Here we compare 99 mammalian species and show that higher levels of sperm competition correlated with a) higher proportions of seminiferous tubules, b) shorter seminiferous epithelium cycle lengths (SECL) which reduce the time required to produce sperm, and c) higher efficiencies of Sertoli cells (involved in sperm maturation). These responses to sperm competition, in turn, result in higher daily sperm production, more sperm stored in the epididymides, and more sperm in the ejaculate. However, the two processes that require processing resources at faster rates (SECL and efficiency of Sertoli cells) only respond to sperm competition in species with high MSMR. Thus, increases in sperm production with intense sperm competition occur via a complex network of mechanisms, but some are constrained by MSMR.

  13. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis.

    PubMed

    Tschoep, Hendrik; Gibon, Yves; Carillo, Petronia; Armengaud, Patrick; Szecowka, Marek; Nunes-Nesi, Adriano; Fernie, Alisdair R; Koehl, Karin; Stitt, Mark

    2009-03-01

    We have established a simple soil-based experimental system that allows a small and sustained restriction of growth of Arabidopsis by low nitrogen (N). Plants were grown in a large volume of a peat-vermiculite mix that contained very low levels of inorganic N. As a control, inorganic N was added in solid form to the peat-vermiculite mix, or plants were grown in conventional nutrient-rich solids. The low N growth regime led to a sustained 20% decrease of the relative growth rate over a period of 2 weeks, resulting in a two- to threefold decrease in biomass in 35- to 40-day-old plants. Plants in the low N regime contained lower levels of nitrate, lower nitrate reductase activity, lower levels of malate, fumarate and other organic acids and slightly higher levels of starch, as expected from published studies of N-limited plants. However, their rosette protein content was unaltered, and total and many individual amino acid levels increased compared with N-replete plants. This metabolic phenotype reveals that Arabidopsis responds adaptively to low N by decreasing the rate of growth, while maintaining the overall protein content, and maintaining or even increasing the levels of many amino acids.

  14. Dysregulated Erythropoietin, Hepcidin, and Bone Marrow Iron Metabolism Contribute to Interferon-Induced Anemia in Hepatitis C.

    PubMed

    van Rijnsoever, Marius; Galhenage, Sumedha; Mollison, Lindsay; Gummer, Joel; Trengove, Robert; Olynyk, John K

    2016-11-01

    Anemia is a complication of interferon-containing hepatitis C treatments. We characterized effects of interferon-based therapy on hepcidin and erythropoietin (EPO) production, iron metabolism, hemolysis, and hematopoiesis. Standard hemopoiesis [reticulocyte hemoglobin (Hb), reticulocyte production index (RPI), free Hb, and haptoglobin], iron biochemistry, hepcidin, and EPO levels were measured in 10 subjects over 12 weeks. There was a rapid decline in Hb during treatment, from a mean pretreatment (t = 0 weeks) Hb of 158.6 to 125.2 g/L at week 4 (P = 0.003) and 122.8 g/L at week 12 (P = 0.005). Paradoxically, the RPI (a measure of bone marrow responsiveness to EPO) decreased on initiation of hepatitis C virus treatment from 0.78% to 0.53% (P = 0.04). Despite worsening anemia, there was no significant increase in EPO levels. Hepcidin levels increased to >20 nM in 3 subjects from 5.8 to 27.5 nM (P = 0.009) compared with 9.6 to 12.3 nM (P = 0.5) for the remainder of subjects. Hepcidin levels peaked at week 1 before returning to baseline levels at week 4. Subjects who responded with a rise in serum hepcidin levels to >20 nM had a significantly greater drop in Hb (27.2 g/L, P = 0.008) and reticulocyte Hb (-1.4 g/L, P = 0.013) compared with the subjects who did not exhibit any change in hepcidin production. In conclusion, 30% of subjects treated with interferon exhibited significant transient increase in serum hepcidin levels, which was associated with more extreme anemia and decreased iron availability as evidenced by decreased reticulocyte Hb. In addition, there was a failure to upregulate EPO production in response to anemia and hemolysis ( https://clinicaltrials.gov trial NCT01726400).

  15. Targeting tissue-specific metabolic signaling pathways in aging: the promise and limitations.

    PubMed

    Hu, Fang; Liu, Feng

    2014-01-01

    It has been well established that most of the age-related diseases such as insulin resistance, type 2 diabetes, hypertension, cardiovascular disease, osteoporosis, and atherosclerosis are all closely related to metabolic dysfunction. On the other hand, interventions on metabolism such as calorie restriction or genetic manipulations of key metabolic signaling pathways such as the insulin and mTOR signaling pathways slow down the aging process and improve healthy aging. These findings raise an important question as to whether improving energy homeostasis by targeting certain metabolic signaling pathways in specific tissues could be an effective anti-aging strategy. With a more comprehensive understanding of the tissue-specific roles of distinct metabolic signaling pathways controlling energy homeostasis and the cross-talks between these pathways during aging may lead to the development of more effective therapeutic interventions not only for metabolic dysfunction but also for aging.

  16. Effect of calcium phosphate and vitamin D3 supplementation on bone remodelling and metabolism of calcium, phosphorus, magnesium and iron

    PubMed Central

    2014-01-01

    Background The aim of the present study was to determine the effect of calcium phosphate and/or vitamin D3 on bone and mineral metabolism. Methods Sixty omnivorous healthy subjects participated in the double-blind, placebo-controlled parallel designed study. Supplements were tricalcium phosphate (CaP) and cholecalciferol (vitamin D3). At the beginning of the study (baseline), all subjects documented their normal nutritional habits in a dietary record for three successive days. After baseline, subjects were allocated to three intervention groups: CaP (additional 1 g calcium/d), vitamin D3 (additional 10 μg/d) and CaP + vitamin D3. In the first two weeks, all groups consumed placebo bread, and afterwards, for eight weeks, the test bread according to the intervention group. In the last week of each study period (baseline, placebo, after four and eight weeks of intervention), a faecal (three days) and a urine (24 h) collection and a fasting blood sampling took place. Calcium, phosphorus, magnesium and iron were determined in faeces, urine and blood. Bone formation and resorption markers were analysed in blood and urine. Results After four and eight weeks, CaP and CaP + vitamin D3 supplementations increased faecal excretion of calcium and phosphorus significantly compared to placebo. Due to the vitamin D3 supplementations (vitamin D3, CaP + vitamin D3), the plasma 25-(OH)D concentration significantly increased after eight weeks compared to placebo. The additional application of CaP led to a significant increase of the 25-(OH)D concentration already after four weeks. Bone resorption and bone formation markers were not influenced by any intervention. Conclusions Supplementation with daily 10 μg vitamin D3 significantly increases plasma 25-(OH)D concentration. The combination with daily 1 g calcium (as CaP) has a further increasing effect on the 25-(OH)D concentration. Both CaP alone and in combination with vitamin D3 have no beneficial effect on bone

  17. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  18. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  19. Genes related to iron metabolism and susceptibility to Alzheimer's disease in Basque population.

    PubMed

    Blázquez, L; De Juan, D; Ruiz-Martínez, J; Emparanza, J I; Sáenz, A; Otaegui, D; Sistiaga, A; Martínez-Lage, P; Lamet, I; Samaranch, L; Buiza, C; Etxeberria, I; Arriola, E; Cuadrado, E; Urdaneta, E; Yanguas, J; López de Munain, A

    2007-12-01

    Alzheimer's disease (AD) is the most common dementing disorder and presents with a progressive and irreversible cognitive decline of gradual onset. To date, several reports have involved iron in AD physiopathology. In this study, we have analysed TFC2 variant and HFE mutations (H63D and C282Y) in 211 AD patients and 167 controls recruited from an area of the Basque Country. Furthermore, we have studied APOE genotype as it is a well-known risk factor for AD. APOE epsilon 4 allele was associated with an increased risk of AD and an earlier age at onset, whereas no association was found between TFC2 or HFE C282Y mutation and disease susceptibility. The frequency of H63D mutation was higher in control population (29.9%) than in AD patients (18%), suggesting a protective role of this allele on AD either due to the presence of the mutation itself or through the effect of other related genes in the ancestral haplotype in which it is included.

  20. Zinc and iron metabolism in Euglena gracilis: metal redistribution during Zn and Fe deficiency

    SciTech Connect

    Taylor, P.; Gingrich, D.; Antholine, W.E.; Petering, D.H.

    1986-05-01

    The normal cytosolic distribution of Zn and Fe in Euglena gracilis and their changes during Zn and Fe deficiency and repletion in relationship to cell proliferation were examined. Using Sephadex G-75 chromatography, two metal pools were found-Zn and Fe bound to high molecular weight (HMW) proteins and a pool of low molecular weight (LMW) Zn and Fe of less than 2000 daltons (ZnL, FeL), containing 80-90% of the cytosolic Zn and Fe. ZnL and FeL can be separated on Sephadex G-15 and by HPLC techniques. According to ESR analysis both HMW and LMW iron is high spin Fe(III). Under conditions of Zn deficiency, cell proliferation is halted after 48 hrs. in concert with the depletion of the ZnL. Within error, HMW protein bound Zn is unaffected. ZnL appears to be a labile store of Zn to supply the cell with this essential metal. In contrast, during Fe deficiency cell proliferation is unaffected. Yet both HMW and LMW pools are depleted within 48 hrs. Both bands of Fe appear to be storage forms of the metal. Proliferative capacity of the alga is evidently more sensitive to Zn deficiency than to Fe depletion, possibly because Euglena can scavenge adventitious Fe from the medium by a siderophore-mediated mechanism.

  1. Microbial Metabolism Shifts Towards an Adverse Profile with Supplementary Iron in the TIM-2 In vitro Model of the Human Colon

    PubMed Central

    Kortman, Guus A. M.; Dutilh, Bas E.; Maathuis, Annet J. H.; Engelke, Udo F.; Boekhorst, Jos; Keegan, Kevin P.; Nielsen, Fiona G. G.; Betley, Jason; Weir, Jacqueline C.; Kingsbury, Zoya; Kluijtmans, Leo A. J.; Swinkels, Dorine W.; Venema, Koen; Tjalsma, Harold

    2016-01-01

    Oral iron administration in African children can increase the risk for infections. However, it remains unclear to what extent supplementary iron affects the intestinal microbiome. We here explored the impact of iron preparations on microbial growth and metabolism in the well-controlled TNO's in vitro model of the large intestine (TIM-2). The model was inoculated with a human microbiota, without supplementary iron, or with 50 or 250 μmol/L ferrous sulfate, 50 or 250 μmol/L ferric citrate, or 50 μmol/L hemin. High resolution responses of the microbiota were examined by 16S rDNA pyrosequencing, microarray analysis, and metagenomic sequencing. The metabolome was assessed by fatty acid quantification, gas chromatography-mass spectrometry (GC-MS), and 1H-NMR spectroscopy. Cultured intestinal epithelial Caco-2 cells were used to assess fecal water toxicity. Microbiome analysis showed, among others, that supplementary iron induced decreased levels of Bifidobacteriaceae and Lactobacillaceae, while it caused higher levels of Roseburia and Prevotella. Metagenomic analyses showed an enrichment of microbial motility-chemotaxis systems, while the metabolome markedly changed from a saccharolytic to a proteolytic profile in response to iron. Branched chain fatty acids and ammonia levels increased significantly, in particular with ferrous sulfate. Importantly, the metabolite-containing effluent from iron-rich conditions showed increased cytotoxicity to Caco-2 cells. Our explorations indicate that in the absence of host influences, iron induces a more hostile environment characterized by a reduction of microbes that are generally beneficial, and increased levels of bacterial metabolites that can impair the barrier function of a cultured intestinal epithelial monolayer. PMID:26779139

  2. Transcriptome Analysis of the Intracellular Facultative Pathogen Piscirickettsia salmonis: Expression of Putative Groups of Genes Associated with Virulence and Iron Metabolism

    PubMed Central

    Machuca, Alvaro; Martinez, Victor

    2016-01-01

    The intracellular facultative bacteria Piscirickettsia salmonis is one of the most important pathogens of the Chilean aquaculture. However, there is a lack of information regarding the whole genomic transcriptional response according to different extracellular environments. We used next generation sequencing (NGS) of RNA (RNA-seq) to study the whole transcriptome of an isolate of P. salmonis (FAVET-INBIOGEN) using a cell line culture and a modified cell-free liquid medium, with or without iron supplementation. This was done in order to obtain information about the factors there are involved in virulence and iron acquisition. First, the isolate was grown in the Sf21 cell line; then, the bacteria were cultured into a cell-free liquid medium supplemented or not with iron. We identified in the transcriptome, genes associated with type IV secretion systems, genes related to flagellar structure assembly, several proteases and sigma factors, and genes related to the development of drug resistance. Additionally, we identified for the first time several iron-metabolism associated genes including at least two iron uptake pathways (ferrous iron and ferric iron uptake) that are actually expressed in the different conditions analyzed. We further describe putative genes that are related with the use and storage of iron in the bacteria, which have not been previously described. Several sets of genes related to virulence were expressed in both the cell line and cell-free culture media (for example those related to flagellar structure; such as basal body, MS-ring, C-ring, proximal and distal rod, and filament), which may play roles in other basic processes rather than been restricted to virulence. PMID:28033422

  3. Microbial Metabolism Shifts Towards an Adverse Profile with Supplementary Iron in the TIM-2 In vitro Model of the Human Colon

    SciTech Connect

    Kortman, Guus A. M.; Dutilh, Bas E.; Maathuis, Annet J. H.; Engelke, Udo F.; Boekhorst, Jos; Keegan, Kevin P.; Nielsen, Fiona G. G.; Betley, Jason; Weir, Jacqueline C.; Kingsbury, Zoya; Kluijtmans, Leo A. J.; Swinkels, Dorine W.; Venema, Koen; Tjalsma, Harold

    2016-01-06

    Oral iron administration in African children can increase the risk for infections. However, it remains unclear to what extent supplementary iron affects the intestinal microbiome. We here explored the impact of iron preparations on microbial growth and metabolism in the well-controlled TNO's in vitro model of the large intestine (TIM-2). The model was inoculated with a human microbiota, without supplementary iron, or with 50 or 250 μmol/L ferrous sulfate, 50 or 250 μmol/L ferric citrate, or 50 μmol/L hemin. High resolution responses of the microbiota were examined by 16S rDNA pyrosequencing, microarray analysis, and metagenomic sequencing. The metabolome was assessed by fatty acid quantification, gas chromatography-mass spectrometry (GC-MS), and 1H-NMR spectroscopy. Cultured intestinal epithelial Caco-2 cells were used to assess fecal water toxicity. Microbiome analysis showed, among others, that supplementary iron induced decreased levels of Bifidobacteriaceae and Lactobacillaceae, while it caused higher levels of Roseburia and Prevotella. Metagenomic analyses showed an enrichment of microbial motility-chemotaxis systems, while the metabolome markedly changed from a saccharolytic to a proteolytic profile in response to iron. Branched chain fatty acids and ammonia levels increased significantly, in particular with ferrous sulfate. Importantly, the metabolite-containing effluent from iron-rich conditions showed increased cytotoxicity to Caco-2 cells. In conclusion, our explorations indicate that in the absence of host influences, iron induces a more hostile environment characterized by a reduction of microbes that are generally beneficial, and increased levels of bacterial metabolites that can impair the barrier function of a cultured intestinal epithelial monolayer.

  4. Microbial Metabolism Shifts Towards an Adverse Profile with Supplementary Iron in the TIM-2 In vitro Model of the Human Colon

    DOE PAGES

    Kortman, Guus A. M.; Dutilh, Bas E.; Maathuis, Annet J. H.; ...

    2016-01-06

    Oral iron administration in African children can increase the risk for infections. However, it remains unclear to what extent supplementary iron affects the intestinal microbiome. We here explored the impact of iron preparations on microbial growth and metabolism in the well-controlled TNO's in vitro model of the large intestine (TIM-2). The model was inoculated with a human microbiota, without supplementary iron, or with 50 or 250 μmol/L ferrous sulfate, 50 or 250 μmol/L ferric citrate, or 50 μmol/L hemin. High resolution responses of the microbiota were examined by 16S rDNA pyrosequencing, microarray analysis, and metagenomic sequencing. The metabolome was assessedmore » by fatty acid quantification, gas chromatography-mass spectrometry (GC-MS), and 1H-NMR spectroscopy. Cultured intestinal epithelial Caco-2 cells were used to assess fecal water toxicity. Microbiome analysis showed, among others, that supplementary iron induced decreased levels of Bifidobacteriaceae and Lactobacillaceae, while it caused higher levels of Roseburia and Prevotella. Metagenomic analyses showed an enrichment of microbial motility-chemotaxis systems, while the metabolome markedly changed from a saccharolytic to a proteolytic profile in response to iron. Branched chain fatty acids and ammonia levels increased significantly, in particular with ferrous sulfate. Importantly, the metabolite-containing effluent from iron-rich conditions showed increased cytotoxicity to Caco-2 cells. In conclusion, our explorations indicate that in the absence of host influences, iron induces a more hostile environment characterized by a reduction of microbes that are generally beneficial, and increased levels of bacterial metabolites that can impair the barrier function of a cultured intestinal epithelial monolayer.« less

  5. The ColRS system of Xanthomonas oryzae pv. oryzae is required for virulence and growth in iron-limiting conditions.

    PubMed

    Subramoni, Sujatha; Pandey, Alok; Vishnu Priya, M R; Patel, Hitendra Kumar; Sonti, Ramesh V

    2012-09-01

    Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice, produces siderophores only under iron-limiting conditions. We screened 15 400 mTn5-induced mutants of X. oryzae pv. oryzae and isolated 27 mutants that produced siderophores even under iron-replete conditions. We found that the mTn5 insertions in 25 of these mutants were in or close to six genes. Mutants with insertions in five of these genes [colS, XOO1806 (a conserved hypothetical protein), acnB, prpR and prpB] exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. Insertions in a sixth gene, XOO0007 (a conserved hypothetical protein), were found to affect the ability to grow on iron-limiting medium, but did not affect the virulence. Targeted gene disruptants for colR (encoding the predicted cognate regulatory protein for ColS) also exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. colR and colS mutants were defective in the elicitation of hypersensitive response symptoms on the nonhost tomato. In addition, colR and colS mutants induced a rice basal defence response, suggesting that they are compromised in the suppression of host innate immunity. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that a functional ColRS system is required for the optimal expression of several genes encoding components of the type 3 secretion system (T3SS) of X. oryzae pv. oryzae. Our results demonstrate the role of several novel genes, including colR/colS, in the promotion of growth on iron-limiting medium and the virulence of X. oryzae pv. oryzae.

  6. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current.

    PubMed

    Assmy, Philipp; Smetacek, Victor; Montresor, Marina; Klaas, Christine; Henjes, Joachim; Strass, Volker H; Arrieta, Jesús M; Bathmann, Ulrich; Berg, Gry M; Breitbarth, Eike; Cisewski, Boris; Friedrichs, Lars; Fuchs, Nike; Herndl, Gerhard J; Jansen, Sandra; Krägefsky, Sören; Latasa, Mikel; Peeken, Ilka; Röttgers, Rüdiger; Scharek, Renate; Schüller, Susanne E; Steigenberger, Sebastian; Webb, Adrian; Wolf-Gladrow, Dieter

    2013-12-17

    Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux.

  7. [The effect of exogenous antioxidants on the antioxidant status of erythrocytes and hepcidin content in blood of patients with disorders of iron metabolism regulation].

    PubMed

    Shcherbinina, S P; Levina, A A; Lisovskaia, I L; Ataullakhanov, F I

    2013-01-01

    In many diseases associated with impairments in iron metabolism, erythrocytes exhibit an increased sensitivity to oxidative stress induced in vitro. In this study, we have examined the antioxidant status of erythrocytes from healthy donors and from 12 patients with disorders of iron homeostasis by measuring the extent of t-BHP-induced hemolysis in vitro. The extent of hemolysis observed with patient erythrocytes was significantly higher than that observed in experiment with normal cells. After therapeutic infusions of the antioxidants mexidol or emoxypin, oxidative hemolysis in patients was restored to normal values and blood hepcidin content increased significantly. A significant correlation was observed between hepcidin concentration after treatment and t-BHP-induced hemolysis before treatment. These data suggest that antioxidants may exert a favorable effect under pathological conditions associated with iron overload disease.

  8. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species.

    PubMed

    Lushchak, Oleh V; Piroddi, Marta; Galli, Francesco; Lushchak, Volodymyr I

    2014-01-01

    Aconitase, an enzyme possessing an iron-sulfur cluster that is sensitive to oxidation, is involved in the regulation of cellular metabolism. There are two isoenzymes of aconitase (Aco)--mitochondrial (mAco) and cytosolic (cAco) ones. The primary role of mAdco is believed to be to control cellular ATP production via regulation of intermediate flux in the Krebs cycle. The cytosolic Aco in its reduced form operates as an enzyme, whereas in the oxidized form it is involved in the control of iron homeostasis as iron regulatory protein 1 (IRP1). Reactive oxygen species (ROS) play a central role in regulation of Aco functions. Catalytic Aco activity is regulated by reversible oxidation of [4Fe-4S]²⁺ cluster and cysteine residues, so redox-dependent posttranslational modifications (PTMs) have gained increasing consideration as regards possible regulatory effects. These include modifications of cysteine residues by oxidation, nitrosylation and thiolation, as well as Tyr nitration and oxidation of Lys residues to carbonyls. Redox-independent PTMs such as phosphorylation and transamination also have been described. In the presence of a sustained ROS flux, redox-dependent PTMs may lead to enzyme damage and cell stress by impaired energy and iron metabolism. Aconitase has been identified as a protein that undergoes oxidative modification and inactivation in aging and certain oxidative stress-related disorders. Here we describe possible mechanisms of involvement of the two aconitase isoforms, cAco and mAco, in the control of cell metabolism and iron homeostasis, balancing the regulatory, and damaging effects of ROS.

  9. [Use of intravenous iron supplementation in chronic kidney disease: Interests, limits, and recommendations for a better practice].

    PubMed

    Rottembourg, Jacques; Rostoker, Guy

    2015-12-01

    Iron deficiency is an important clinical concern in chronic kidney disease (CKD), giving rise to iron-deficiency anaemia, and various impaired cellular functions. Oral supplementation, in particular with ferrous salts, is associated with a high rate of gastro-intestinal side effects and is poorly absorbed, a problem that is avoided with intravenous (IV) irons. Recently, with the approval of the European Medicines Agency's Committee for Medicinal Products for Human Use, the French Agence nationale de sécurité du médicament et des produits de santé (ANSM) took adequate measures to minimize the risk of allergic reactions, by correction on the summary of intravenous iron products characteristics. All IV iron products should be prescribed, administered and injected, inside public or private hospitals exclusively, and a clinical follow-up after the infusion for at least 30 minutes is mandatory. The most stable intravenous iron complexes (low molecular weight iron dextran, ferric carboxymaltose, and iron isomaltoside 1000 [under agreement]) can be given in higher single doses and more rapidly than less recent preparations such as iron sucrose (originator or similars). Test doses are advisable for conventional low molecular weight iron dextrans, but are no more mandatory. Iron supplementation is recommended for all CKD patients with iron-deficiency anaemia and those who receive erythropoiesis-stimulating agents, whether or not they require dialysis. Intravenous iron is the preferred route of administration in haemodialysis patients, with randomized trials showing a significantly greater increase in haemoglobin levels for intravenous versus oral iron and a low rate of treatment-related adverse events during these trials. According ANSM, physicians should apply the product's label recommendations especially the posology. In the non-dialysis CKD population, the erythropoietic response is also significantly higher using intravenous versus oral iron, and tolerability is at

  10. Short-term heat stress exposure limits based on wet bulb globe temperature adjusted for clothing and metabolic rate.

    PubMed

    Bernard, Thomas E; Ashley, Candi D

    2009-10-01

    Most heat stress exposure assessments based on wet bulb globe temperature (WBGT) consider the environmental conditions, metabolic demands, and clothing requirements, and the exposure limit is for extended work periods (e.g., a typical workday). The U.S. Navy physiological heat exposure limit (PHEL) curves and rational models of heat stress also consider time as a job risk factor so that there is a limiting time for exposures above a conventional WBGT exposure limit. The PHEL charts have not been examined for different clothing and the rational models require personal computers. The current study examined the role of clothing in short-term (time limited) exposures and proposed a relationship between a Safe Exposure Time and WBGT adjusted for clothing and metabolic rate. Twelve participants worked at a metabolic rate of 380 W in three clothing ensembles [clothing adjustment factors]: (1) work clothes (0 degrees C-WBGT), (2) NexGen microporous coveralls (2.5 degrees C-WBGT), and (2) vapor-barrier coveralls (6.5 degrees C-WBGT) at five levels of heat stress (approximately at the clothing adjusted TLV plus 7.0, 8.0, 9.5, 11.5 and 15.0 degrees C-WBGT). The combinations of metabolic rate, clothing, and environment were selected in anticipation that the participants would reach a physiological limit in less than 120 min. WBGT-based clothing adjustment factors were used to account for different clothing ensembles, and no differences were found for ensemble, which meant that the clothing adjustment factor can be used in WBGT-based time limited exposures. An equation was proposed to recommend a Safe Exposure Time for exposures under 120 min. The recommended times were longer than the PHEL times or times from a rational model of heat stress.

  11. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  12. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction.

    PubMed

    Vogt, Michael; Haas, Sabine; Klaffl, Simon; Polen, Tino; Eggeling, Lothar; van Ooyen, Jan; Bott, Michael

    2014-03-01

    Using metabolic engineering, an efficient L-leucine production strain of Corynebacterium glutamicum was developed. In the wild type of C. glutamicum, the leuA-encoded 2-isopropylmalate synthase (IPMS) is inhibited by low L-leucine concentrations with a K(i) of 0.4 mM. We identified a feedback-resistant IMPS variant, which carries two amino acid exchanges (R529H, G532D). The corresponding leuA(fbr) gene devoid of the attenuator region and under control of a strong promoter was integrated in one, two or three copies into the genome and combined with additional genomic modifications aimed at increasing L-leucine production. These modifications involved (i) deletion of the gene encoding the repressor LtbR to increase expression of leuBCD, (ii) deletion of the gene encoding the transcriptional regulator IolR to increase glucose uptake, (iii) reduction of citrate synthase activity to increase precursor supply, and (iv) introduction of a gene encoding a feedback-resistant acetohydroxyacid synthase. The production performance of the resulting strains was characterized in bioreactor cultivations. Under fed-batch conditions, the best producer strain accumulated L-leucine to levels exceeding the solubility limit of about 24 g/l. The molar product yield was 0.30 mol L-leucine per mol glucose and the volumetric productivity was 4.3 mmol l⁻¹ h⁻¹. These values were obtained in a defined minimal medium with a prototrophic and plasmid-free strain, making this process highly interesting for industrial application.

  13. High diving metabolism results in a short aerobic dive limit for Steller sea lions (Eumetopias jubatus).

    PubMed

    Gerlinsky, Carling D; Rosen, David A S; Trites, Andrew W

    2013-07-01

    The diving capacity of marine mammals is typically defined by the aerobic dive limit (ADL) which, in lieu of direct measurements, can be calculated (cADL) from total body oxygen stores (TBO) and diving metabolic rate (DMR). To estimate cADL, we measured blood oxygen stores, and combined this with diving oxygen consumption rates (VO2) recorded from 4 trained Steller sea lions diving in the open ocean to depths of 10 or 40 m. We also examined the effect of diving exercise on O2 stores by comparing blood O2 stores of our diving animals to non-diving individuals at an aquarium. Mass-specific blood volume of the non-diving individuals was higher in the winter than in summer, but there was no overall difference in blood O2 stores between the diving and non-diving groups. Estimated TBO (35.9 ml O2 kg(-1)) was slightly lower than previously reported for Steller sea lions and other Otariids. Calculated ADL was 3.0 min (based on an average DMR of 2.24 L O2 min(-1)) and was significantly shorter than the average 4.4 min dives our study animals performed when making single long dives-but was similar to the times recorded during diving bouts (a series of 4 dives followed by a recovery period on the surface), as well as the dive times of wild animals. Our study is the first to estimate cADL based on direct measures of VO2 and blood oxygen stores for an Otariid and indicates they have a much shorter ADL than previously thought.

  14. Limits on Population III star formation with the most iron-poor stars

    NASA Astrophysics Data System (ADS)

    de Bennassuti, M.; Salvadori, S.; Schneider, R.; Valiante, R.; Omukai, K.

    2017-02-01

    We study the impact of star-forming minihaloes, and the initial mass function (IMF) of Population III (Pop III) stars, on the Galactic halo metallicity distribution function (MDF) and on the properties of C-enhanced and C-normal stars at [Fe/H] < -3. For our investigation we use a data-constrained merger tree model for the Milky Way formation, which has been improved to self-consistently describe the physical processes regulating star formation in minihaloes, including the poor sampling of the Pop III IMF. We find that only when star-forming minihaloes are included the low-Fe tail of the MDF is correctly reproduced, showing a plateau that is built up by C-enhanced metal-poor stars imprinted by primordial faint supernovae. The incomplete sampling of the Pop III IMF in inefficiently star-forming minihaloes (<10-3 M⊙ yr-1) strongly limits the formation of pair-instability supernovae (PISNe), with progenitor masses mPopIII = [140-260] M⊙, even when a flat Pop III IMF is assumed. Second-generation stars formed in environments polluted at >50 per cent level by PISNe are thus extremely rare, corresponding to ≈0.25 per cent of the total stellar population at [Fe/H] < -2, which is consistent with recent observations. The low-Fe tail of the MDF strongly depends on the Pop III IMF shape and mass range. Given the current statistics, we find that a flat Pop III IMF model with mPopIII = [10-300] M⊙ is disfavoured by observations. We present testable predictions for Pop III stars extending down to lower masses, with mPopIII = [0.1-300] M⊙.

  15. Microbial Community Composition Impacts Pathogen Iron Availability during Polymicrobial Infection

    PubMed Central

    Stacy, Apollo; Whiteley, Marvin

    2016-01-01

    Iron is an essential nutrient for bacterial pathogenesis, but in the host, iron is tightly sequestered, limiting its availability for bacterial growth. Although this is an important arm of host immunity, most studies examine how bacteria respond to iron restriction in laboratory rather than host settings, where the microbiome can potentially alter pathogen strategies for acquiring iron. One of the most important transcriptional regulators controlling bacterial iron homeostasis is Fur. Here we used a combination of RNA-seq and chromatin immunoprecipitation (ChIP)-seq to characterize the iron-restricted and Fur regulons of the biofilm-forming opportunistic pathogen Aggregatibacter actinomycetemcomitans. We discovered that iron restriction and Fur regulate 4% and 3.5% of the genome, respectively. While most genes in these regulons were related to iron uptake and metabolism, we found that Fur also directly regulates the biofilm-dispersing enzyme Dispersin B, allowing A. actinomycetemcomitans to escape from iron-scarce environments. We then leveraged these datasets to assess the availability of iron to A. actinomycetemcomitans in its primary infection sites, abscesses and the oral cavity. We found that A. actinomycetemcomitans is not restricted for iron in a murine abscess mono-infection, but becomes restricted for iron upon co-infection with the oral commensal Streptococcus gordonii. Furthermore, in the transition from health to disease in human gum infection, A. actinomycetemcomitans also becomes restricted for iron. These results suggest that host iron availability is heterogeneous and dependent on the infecting bacterial community. PMID:27973608

  16. Iron metabolism in obesity: how interaction between homoeostatic mechanisms can interfere with their original purpose. Part I: underlying homoeostatic mechanisms of energy storage and iron metabolisms and their interaction.

    PubMed

    Becker, Christiane; Orozco, Mónica; Solomons, Noel W; Schümann, Klaus

    2015-04-01

    Adipose tissue plasticity mediated by inflammation is an important evolutionary achievement to survive seasonal climate changes. It permits to store excessive calories and to release them if required, using inflammatory cells to remove the debris. This process is regulated by a complex interaction of cytokines (TNF-α, IL-6), adipokines (adiponectin, apelin, liptin), adhesion molecules (ICAM-1, VCAM-1, E-selectin) and transcription factors (NF-κB, HIF-1α). Iron mediates electron transfer as an essential component of e.g. myeloperoxidase, hemoglobin, cytochrome C and ribonucleotide reductase. Conversely, unbound iron can catalyze oxidation of lipids, proteins, and DNA. To balance the essential with the potentially toxic function requires an efficient iron homoeostasis. This is mediated by hepcidin's interaction with the iron-exporter ferroportin, to adapt intestinal iron absorption and body iron-sequestration to changes in demand. In addition, the interaction of iron-responsive elements (IRE) and iron-responsive proteins (IRP), the IRE/IRP-mechanism, regulates cellular iron homoeostasis. Obesity-induced inflammation interacts with both these mechanisms and disturbs iron availability by impairing its absorption, and by sequestering it in the reticuloendothelial system. Both mechanisms lead to anemia and reduce physical fitness which, in a vicious cycle, can support the development of pathological obesity. Thus, interaction between these two sets of beneficial regulatory mechanisms can become detrimental in situations of ample calorie supply.

  17. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  18. Black soyabean seed coat extract regulates iron metabolism by inhibiting the expression of hepcidin.

    PubMed

    Mu, Mingdao; Wu, Aimin; An, Peng; Du, Xiaoli; Wu, Qian; Shen, Xiaoyun; Wang, Fudi

    2014-04-14

    Hepcidin, a key regulator of Fe homeostasis, is an ideal drug target for treating patients with Fe disorders such as haemochromatosis, anaemia of chronic inflammation and Fe-deficiency anaemia. However, whether (and how) traditional Chinese black foods (e.g., black soyabeans) target hepcidin and improve Fe-deficiency anaemia remains unclear. Herein, we report that black soyabean seed coat extract (BSSCE) can potently inhibit the in vitro and in vivo expression of hepcidin. In the present study, in cells treated with 200 μg/ml BSSCE, hepcidin expression was found to be reduced to only 6% of the control levels (P<0.01). An AIN-76A diet containing 2% BSSCE was fed to 8-week-old male C57BL/6 mice for 0, 1, 7, 15 or 30 d; importantly, compared with the day 0 group, the day 7 group exhibited nearly a 50% decrease in hepatic hepcidin expression (P<0.01), a 35% decrease in splenic Fe concentrations (P<0.05) and a 135% increase in serum Fe concentrations (P<0.05). Mechanistically, the effect of BSSCE on hepcidin expression was mediated via a reduction in the phosphorylation levels of mothers against decapentaplegic homolog proteins (Smad)1/5/8. Consequently, the mice in the day 30 group exhibited large increases in erythrocyte counts (111% v. day 0, P<0.01), Hb concentrations (109%, P<0.01) and haematocrit values (108%, P<0.01). In conclusion, these results indicate that black soyabean extract regulates Fe metabolism by inhibiting the expression of hepcidin. This finding can be used to optimise the intervention of patients with hepcidin-related diseases, including Fe-deficiency anaemia.

  19. Metabolome Analysis of Arabidopsis thaliana Roots Identifies a Key Metabolic Pathway for Iron Acquisition

    PubMed Central

    Schmidt, Holger; Günther, Carmen; Weber, Michael; Spörlein, Cornelia; Loscher, Sebastian; Böttcher, Christoph; Schobert, Rainer; Clemens, Stephan

    2014-01-01

    Fe deficiency compromises both human health and plant productivity. Thus, it is important to understand plant Fe acquisition strategies for the development of crop plants which are more Fe-efficient under Fe-limited conditions, such as alkaline soils, and have higher Fe density in their edible tissues. Root secretion of phenolic compounds has long been hypothesized to be a component of the reduction strategy of Fe acquisition in non-graminaceous plants. We therefore subjected roots of Arabidopsis thaliana plants grown under Fe-replete and Fe-deplete conditions to comprehensive metabolome analysis by gas chromatography-mass spectrometry and ultra-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Scopoletin and other coumarins were found among the metabolites showing the strongest response to two different Fe-limited conditions, the cultivation in Fe-free medium and in medium with an alkaline pH. A coumarin biosynthesis mutant defective in ortho-hydroxylation of cinnamic acids was unable to grow on alkaline soil in the absence of Fe fertilization. Co-cultivation with wild-type plants partially rescued the Fe deficiency phenotype indicating a contribution of extracellular coumarins to Fe solubilization. Indeed, coumarins were detected in root exudates of wild-type plants. Direct infusion mass spectrometry as well as UV/vis spectroscopy indicated that coumarins are acting both as reductants of Fe(III) and as ligands of Fe(II). PMID:25058345

  20. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition.

    PubMed

    Schmidt, Holger; Günther, Carmen; Weber, Michael; Spörlein, Cornelia; Loscher, Sebastian; Böttcher, Christoph; Schobert, Rainer; Clemens, Stephan

    2014-01-01

    Fe deficiency compromises both human health and plant productivity. Thus, it is important to understand plant Fe acquisition strategies for the development of crop plants which are more Fe-efficient under Fe-limited conditions, such as alkaline soils, and have higher Fe density in their edible tissues. Root secretion of phenolic compounds has long been hypothesized to be a component of the reduction strategy of Fe acquisition in non-graminaceous plants. We therefore subjected roots of Arabidopsis thaliana plants grown under Fe-replete and Fe-deplete conditions to comprehensive metabolome analysis by gas chromatography-mass spectrometry and ultra-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Scopoletin and other coumarins were found among the metabolites showing the strongest response to two different Fe-limited conditions, the cultivation in Fe-free medium and in medium with an alkaline pH. A coumarin biosynthesis mutant defective in ortho-hydroxylation of cinnamic acids was unable to grow on alkaline soil in the absence of Fe fertilization. Co-cultivation with wild-type plants partially rescued the Fe deficiency phenotype indicating a contribution of extracellular coumarins to Fe solubilization. Indeed, coumarins were detected in root exudates of wild-type plants. Direct infusion mass spectrometry as well as UV/vis spectroscopy indicated that coumarins are acting both as reductants of Fe(III) and as ligands of Fe(II).

  1. Chemical oxygen demand removal efficiency and limited factors study of aminosilicone polymers in a water emulsion by iron-carbon micro-electrolysis.

    PubMed

    Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu

    2014-02-01

    Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.

  2. Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming

    PubMed Central

    Berdeja, Mariam; Nicolas, Philippe; Kappel, Christian; Dai, Zhan Wu; Hilbert, Ghislaine; Peccoux, Anthony; Lafontaine, Magali; Ollat, Nathalie; Gomès, Eric; Delrot, Serge

    2015-01-01

    Grapevine is a perennial crop often cultivated by grafting a scion cultivar on a suitable rootstock. Rootstocks influence scions, particularly with regard to water uptake and vigor. Therefore, one of the possibilities to adapt viticulture to the extended drought stress periods is to select rootstocks conferring increased tolerance to drought. However, the molecular mechanisms associated with the ability of rootstock/scion combination to influence grape berry metabolism under drought stress are still poorly understood. The transcriptomic changes induced by drought stress in grape berries (cv. Pinot noir) from vines grafted on either 110R (drought-tolerant) or 125AA (drought-sensitive) rootstock were compared. The experiments were conducted in the vineyard for two years and two grape berry developmental stages (50% and 100% veraison). The genome-wide microarray approach showed that water stress strongly impacts gene expression in the berries, through ontology categories that cover cell wall metabolism, primary and secondary metabolism, signaling, stress, and hormones, and that some of these effects strongly depend on the rootstock genotype. Indeed, under drought stress, berries from vines grafted on 110R displayed a different transcriptional response compared to 125AA-concerning genes related to jasmonate (JA), phenylpropanoid metabolism, and pathogenesis-related proteins. The data also suggest a link between JA and secondary metabolism in water-stressed berries. Overall, genes related to secondary metabolism and JA are more induced and/or less repressed by drought stress in the berries grafted on the drought-sensitive rootstock 125AA. These rootstock-dependent gene expression changes are relevant for berry composition and sensory properties. PMID:26504567

  3. A comparison of mitochondria from Torulopsis utilis grown in continous culture with glycerol, iron, ammonium, magnesium or phosphate as the growth-limiting nutrient

    PubMed Central

    Light, P. Ann; Garland, P. B.

    1971-01-01

    1. Mitochondria prepared from Torulopsis utilis grown in a chemostat with iron-limited growth were found to lack energy conservation but not electron flow in that segment of the respiratory chain leading from intramitochondrial NADH to the cytochromes [i.e. the site 1 segment (Lehninger, 1964)]. 2. Site 1 energy conservation was present in mitochondria prepared from cells grown under conditions of limitation by glycerol, ammonium and magnesium. Phosphate-limited growth resulted in mitochondrial preparations without respiratory control. 3. Mitochondria from cells grown under conditions of iron limitation were insensitive to the respiratory inhibitor piericidin A, whereas sensitivity was present in mitochondria prepared from glycerol-, ammonium-, magnesium- or phosphate-limited cells. 4. These observations are considered to provide indirect evidence for a role of non-haem iron in the mechanism of energy conservation and also piericidin A sensitivity in T. utilis mitochondria. 5. A readily constructed and inexpensive pH-measuring and -controlling circuit is described for use with continuous-culture apparatus. PMID:4331254

  4. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    SciTech Connect

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  5. Body iron stores and iron restoration rate in Japanese patients with chronic hepatitis C as measured during therapeutic iron removal revealed neither increased body iron stores nor effects of C282Y and H63D mutations on iron indices.

    PubMed

    Shiono, Y; Hayashi, H; Wakusawa, S; Sanae, F; Takikawa, T; Yano, M; Yoshioka, K; Saito, H

    2001-05-01

    Information on the level of iron stores in chronic hepatitis C is clinically important because its reduction is technically simple and therapeutically effective. This study was performed to measure the levels of iron stores from the total amounts of hemoglobin removed during iron reduction therapy. The C282Y and H63D mutations of HFE gene were analyzed in 94 patients. All of the patients were negative for C282Y mutation. One patient was homozygous, and 4 patients were heterozygous for H63D mutation. The body iron stores and iron restoration rate were measured in 59 patients in serial courses of iron reduction therapy. Mean values of body iron stores in the two groups with and without H63D mutation were 890 and 606 mg, while those of iron restoration rate were 1.85 and 1.52 mg/day, respectively. None of the indices of iron metabolism were different from the reference values measured similarly in healthy subjects, suggesting that the iron deposition in chronic hepatitis C is limited to the liver, probably due to changes in the iron distribution in tissues.

  6. The A736V TMPRSS6 polymorphism influences hepcidin and iron metabolism in chronic hemodialysis patients: TMPRSS6 and hepcidin in hemodialysis

    PubMed Central

    2013-01-01

    Background Aim of this study was to evaluate whether the A736V TMPRSS6 polymorphism, a major genetic determinant of iron metabolism in healthy subjects, influences serum levels of hepcidin, the hormone regulating iron metabolism, and erythropoiesis in chronic hemodialysis (CHD). Methods To this end, we considered 199 CHD patients from Northern Italy (157 with hepcidin evaluation), and 188 healthy controls without iron deficiency, matched for age and gender. Genetic polymorphisms were evaluated by allele specific polymerase chain reaction assays, and hepcidin quantified by mass spectrometry. Results Serum hepcidin levels were not different between the whole CHD population and controls (median 7.1, interquartile range (IQR) 0.55-17.1 vs. 7.4, 4.5-17.9 nM, respectively), but were higher in the CHD subgroup after exclusion of subjects with relative iron deficiency (p = 0.04). In CHD patients, the A736V TMPRSS6 polymorphism influenced serum hepcidin levels in individuals positive for mutations in the HFE gene of hereditary hemochromatosis (p < 0.0001). In particular, the TMPRSS6 736 V variant was associated with higher hepcidin levels (p = 0.017). At multivariate analysis, HFE and A736V TMPRSS6 genotypes predicted serum hepcidin independently of ferritin and C reactive protein (p = 0.048). In patients without acute inflammation and overt iron deficiency (C reactive protein <1 mg/dl and ferritin >30 ng/ml; n = 86), hepcidin was associated with lower mean corpuscular volume (p = 0.002), suggesting that it contributed to iron-restricted erythropoiesis. In line with previous results, in patients without acute inflammation and severe iron deficiency the “high hepcidin” 736 V TMPRSS6 variant was associated with higher erythropoietin maintenance dose (p = 0.016), independently of subclinical inflammation (p = 0.02). Conclusions The A736V TMPRSS6 genotype influences hepcidin levels, erythropoiesis, and anemia management in CHD patients

  7. Extensive gut metabolism limits the intestinal absorption of excessive supplemental dietary glutamate loads in infant pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glutamate (Glu) is a major intestinal oxidative fuel, key neurotransmitter, and may be a useful dietary supplement to augment health of the infant gut. We quantified the metabolic fate of various supplemental dietary Glu intakes in young pigs surgically implanted with vascular, intraduodenal (ID), o...

  8. [The effect of limiting neuronal energy metabolism on the level of impulse activity and membrane potentials].

    PubMed

    Voronova, N V; Chumachenko, A A

    1989-01-01

    The changes of the membrane potential and the frequency of impulse activity of the crayfish stretch receptor neuron have been studied under condition of energy supply deficiency. The energetic metabolism inhibitors have been found not to exert a significant effect on the membrane potential. The activity of the glycolysis process and the Krebs cycle have different effect on the sensitivity of the generating mechanism.

  9. Metabolism

    MedlinePlus

    ... and intestines. Several of the hormones of the endocrine system are involved in controlling the rate and direction ... For Kids For Parents MORE ON THIS TOPIC Endocrine System What Can I Do About My High Metabolism? ...

  10. Metabolism

    MedlinePlus

    ... symptoms. Metabolic diseases and conditions include: Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism is caused ... or through surgery or radiation treatments. Hypothyroidism (pronounced: hi-po-THIGH-roy-dih-zum). Hypothyroidism is caused ...

  11. Crystal structure of a substrate complex of myo-inositol oxygenase, a di-iron oxygenase with a key role in inositol metabolism.

    PubMed

    Brown, Peter M; Caradoc-Davies, Tom T; Dickson, James M J; Cooper, Garth J S; Loomes, Kerry M; Baker, Edward N

    2006-10-10

    Altered metabolism of the inositol sugars myo-inositol (MI) and d-chiro-inositol is implicated in diabetic complications. In animals, catabolism of MI and D-chiro-inositol depends on the enzyme MI oxygenase (MIOX), which catalyzes the first committed step of the glucuronate-xylulose pathway, and is found almost exclusively in the kidneys. The crystal structure of MIOX, in complex with MI, has been determined by multiwavelength anomalous diffraction methods and refined at 2.0-A resolution (R=0.206, Rfree=0.253). The structure reveals a monomeric, single-domain protein with a mostly helical fold that is distantly related to the diverse HD domain superfamily. Five helices form the structural core and provide six ligands (four His and two Asp) for the di-iron center, in which the two iron atoms are bridged by a putative hydroxide ion and one of the Asp ligands, Asp-124. A key loop forms a lid over the MI substrate, which is coordinated in bidentate mode to one iron atom. It is proposed that this mode of iron coordination, and interaction with a key Lys residue, activate MI for bond cleavage. The structure also reveals the basis of substrate specificity and suggests routes for the development of specific MIOX inhibitors.

  12. Competing for Iron: Duplication and Amplification of the isd Locus in Staphylococcus lugdunensis HKU09-01 Provides a Competitive Advantage to Overcome Nutritional Limitation.

    PubMed

    Heilbronner, Simon; Monk, Ian R; Brozyna, Jeremy R; Heinrichs, David E; Skaar, Eric P; Peschel, Andreas; Foster, Timothy J

    2016-08-01

    Staphylococcus lugdunensis is a coagulase negative bacterial pathogen that is particularly associated with severe cases of infectious endocarditis. Unique amongst the coagulase-negative staphylococci, S. lugdunensis harbors an iron regulated surface determinant locus (isd). This locus facilitates the acquisition of heme as a source of nutrient iron during infection and allows iron limitation caused by "nutritional immunity" to be overcome. The isd locus is duplicated in S. lugdunensis HKU09-01 and we show here that the duplication is intrinsically unstable and undergoes accordion-like amplification and segregation leading to extensive isd copy number variation. Amplification of the locus increased the level of expression of Isd proteins and improved binding of hemoglobin to the cell surface of S. lugdunensis. Furthermore, Isd overexpression provided an advantage when strains were competing for a limited amount of hemoglobin as the sole source of iron. Gene duplications and amplifications (GDA) are events of fundamental importance for bacterial evolution and are frequently associated with antibiotic resistance in many species. As such, GDAs are regarded as evolutionary adaptions to novel selective pressures in hostile environments pointing towards a special importance of isd for S. lugdunensis. For the first time we show an example of a GDA that involves a virulence factor of a Gram-positive pathogen and link the GDA directly to a competitive advantage when the bacteria were struggling with selective pressures mimicking "nutritional immunity".

  13. Competing for Iron: Duplication and Amplification of the isd Locus in Staphylococcus lugdunensis HKU09-01 Provides a Competitive Advantage to Overcome Nutritional Limitation

    PubMed Central

    Heilbronner, Simon; Brozyna, Jeremy R.; Heinrichs, David E.; Skaar, Eric P.; Peschel, Andreas; Foster, Timothy J.

    2016-01-01

    Staphylococcus lugdunensis is a coagulase negative bacterial pathogen that is particularly associated with severe cases of infectious endocarditis. Unique amongst the coagulase-negative staphylococci, S. lugdunensis harbors an iron regulated surface determinant locus (isd). This locus facilitates the acquisition of heme as a source of nutrient iron during infection and allows iron limitation caused by “nutritional immunity” to be overcome. The isd locus is duplicated in S. lugdunensis HKU09-01 and we show here that the duplication is intrinsically unstable and undergoes accordion-like amplification and segregation leading to extensive isd copy number variation. Amplification of the locus increased the level of expression of Isd proteins and improved binding of hemoglobin to the cell surface of S. lugdunensis. Furthermore, Isd overexpression provided an advantage when strains were competing for a limited amount of hemoglobin as the sole source of iron. Gene duplications and amplifications (GDA) are events of fundamental importance for bacterial evolution and are frequently associated with antibiotic resistance in many species. As such, GDAs are regarded as evolutionary adaptions to novel selective pressures in hostile environments pointing towards a special importance of isd for S. lugdunensis. For the first time we show an example of a GDA that involves a virulence factor of a Gram-positive pathogen and link the GDA directly to a competitive advantage when the bacteria were struggling with selective pressures mimicking “nutritional immunity”. PMID:27575058

  14. Pathogenic Mechanisms Underlying Iron Deficiency and Iron Overload: New Insights for Clinical Application.

    PubMed

    Kotze, M J; van Velden, D P; van Rensburg, S J; Erasmus, R

    2009-08-01

    Iron uptake, utilisation, release and storage occur at the gene level. Individuals with variant forms of genes involved in iron metabolism may have different requirements for iron and are likely to respond differently to the same amount of iron in the diet, a concept termed nutrigenetics. Iron deficiency, iron overload and the anemia of inflammation are the commonest iron-related disorders. While at least four types of hereditary iron overload have been identified to date, our knowledge of the genetic basis and consequences of inherited iron deficiency remain limited. The importance of genetic risk factors in relation to iron overload was highlighted with the identification of the HFE gene in 1996. Deleterious mutations in this gene account for 80-90% of inherited iron overload and are associated with loss of iron homeostasis, alterations in inflammatory responses, oxidative stress and in its most severe form, the disorder hereditary haemochromatosis (HH). Elucidation of the genetic basis of HH has led to rapid clinical benefit through drastic reduction in liver biopsies performed as part of the diagnostic work-up of affected patients. Today, detection of a genetic predisposition in the presence of high serum ferritin and transferrin saturation levels is usually sufficient to diagnose HH, thereby addressing the potential danger of inherited iron overload which starts with the same symptoms as iron deficiency, namely chronic fatigue. This review provides the scientific back-up for application of pathology supported genetic testing, a new test concept that is well placed for optimizing clinical benefit to patients with regard to iron status.

  15. Quantification of metabolic limitations during recombinant protein production in Escherichia coli.

    PubMed

    Heyland, Jan; Blank, Lars M; Schmid, Andreas

    2011-09-10

    Escherichia coli is one of the major microorganisms for recombinant protein production because it has been best characterized in terms of molecular genetics and physiology, and because of the availability of various expression vectors and strains. The synthesis of proteins is one of the most energy consuming processes in the cell, with the result that cellular energy supply may become critical. Indeed, the so called metabolic burden of recombinant protein synthesis was reported to cause alterations in the operation of the host's central carbon metabolism. To quantify these alterations in E. coli metabolism in dependence of the rate of recombinant protein production, (13)C-tracer-based metabolic flux analysis in differently induced cultures was used. To avoid dilution of the (13)C-tracer signal by the culture history, the recombinant protein produced was used as a flux probe, i.e., as a read out of intracellular flux distributions. In detail, an increase in the generation rate rising from 36 mmol(ATP)g(CDW)(-1)h(-1) for the reference strain to 45 mmol(ATP)g(CDW)(-1)h(-1) for the highest yielding strain was observed during batch cultivation. Notably, the flux through the TCA cycle was rather constant at 2.5±0.1 mmol g(CDW)(-1)h(-1), hence was independent of the induced strength for gene expression. E. coli compensated for the additional energy demand of recombinant protein synthesis by reducing the biomass formation to almost 60%, resulting in excess NADPH. Speculative, this excess NADPH was converted to NADH via the soluble transhydrogenase and subsequently used for ATP generation in the electron transport chain. In this study, the metabolic burden was quantified by the biomass yield on ATP, which constantly decreased from 11.7g(CDW)mmol(ATP)(-1) for the reference strain to 4.9g(CDW)mmol(ATP)(-1) for the highest yielding strain. The insights into the operation of the metabolism of E. coli during recombinant protein production might guide the optimization of

  16. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis.

    PubMed

    Kim, So-Jeong; Park, Soo-Je; Cha, In-Tae; Min, Deullae; Kim, Jin-Seog; Chung, Won-Hyung; Chae, Jong-Chan; Jeon, Che Ok; Rhee, Sung-Keun

    2014-01-01

    DNA stable isotope probing and metagenomic sequencing were used to assess the metabolic potential of iron-reducing bacteria involved in anaerobic aromatic hydrocarbon degradation in oil spill-affected tidal flats. In a microcosm experiment, (13) C-toluene was degraded with the simultaneous reduction of Fe(III)-NTA, which was also verified by quasi-stoichiometric (13) C-CO2 release. The metabolic potential of the dominant member affiliated with the genus Desulfuromonas in the heavy DNA fraction was inferred using assembled scaffolds (designated TF genome, 4.40 Mbp with 58.8 GC mol%), which were obtained by Illumina sequencing. The gene clusters with peripheral pathways for toluene and benzoate conversion possessed the features of strict and facultative anaerobes. In addition to the class II-type benzoyl-CoA reductase (Bam) of strict anaerobes, the class I-type (Bcr) of facultative anaerobes was encoded. Genes related to the utilization of various anaerobic electron acceptors, including iron, nitrate (to ammonia), sulfur and fumarate, were identified. Furthermore, genes encoding terminal oxidases (caa3 , cbb3 and bd) and a diverse array of genes for oxidative stress responses were detected in the TF genome. This metabolic versatility may be an adaptation to the fluctuating availability of electron acceptors and donors in tidal flats.

  17. Melatonin exerts a more potent effect than S-adenosyl-l-methionine against iron metabolism disturbances, oxidative stress and tissue injury induced by obstructive jaundice in rats.

    PubMed

    Muñoz-Castañeda, Juan R; Túnez, Isaac; Herencia, Carmen; Ranchal, Isidora; González, Raúl; Ramírez, Luz M; Arjona, Alvaro; Barcos, Montserrat; Espejo, Isabel; Cruz, Adolfo; Montilla, Pedro; Padillo, Francisco J; Muntané, Jordi

    2008-07-30

    Melatonin and S-adenosyl-l-methionine (SAMe) prevent oxidative stress and tissue dysfunction in obstructive jaundice (OJ). Lipid peroxidation is exacerbated in the presence of trace amounts of iron (Fe). The study investigated the regulation by melatonin and SAMe the induction of oxidative stress, iron metabolism disturbances and tissue injury in an experimental model of OJ. Different parameters of lipid peroxidation, antioxidant status, tissue injury and Fe metabolism were determined in liver and blood. OJ induced Fe accumulation in liver, and increased transferrin (Tf) saturation and loosely bound Fe content in blood. Melatonin, and SAMe at lesser extent, enhanced protein Tf content in liver and blood, that reduced loosely bound Fe content in blood. Melatonin and SAMe did not affect ferritin (FT) and Tf mRNA expression, but reduced Tf receptor (TfR) mRNA expression in liver. In conclusion, the effect of melatonin and SAMe on Fe metabolism may be included in the beneficial properties of these agents on lipid peroxidation and tissue injury induced by OJ.

  18. Influence of the availability of iron during hypoxia on the genes associated with apoptotic activity and local iron metabolism in rat H9C2 cardiomyocytes and L6G8C5 skeletal myocytes.

    PubMed

    Dziegala, Magdalena; Kasztura, Monika; Kobak, Kamil; Bania, Jacek; Banasiak, Waldemar; Ponikowski, Piotr; Jankowska, Ewa A

    2016-10-01

    The differential availability of iron during hypoxia is presumed to affect the functioning of cardiac and skeletal myocytes. Rat H9C2 cardiomyocytes and L6G8C5 myocytes were cultured for 48 h in normoxic or hypoxic conditions at the optimal, reduced or increased iron concentration. The mRNA expression levels of markers of apoptosis [B‑cell lymphoma‑2 (Bcl2; inhibition) and Bcl‑2‑activated X protein (Bax; induction)], atrophy (Atrogin), glycolysis (pyruvate kinase 2; PKM2) and iron metabolism [transferrin receptor 1 (TfR1; iron importer), ferroportin 1 (FPN1; iron exporter), ferritin heavy chain (FTH; iron storage protein) and hepcidin (HAMP; iron regulator)] were determined using reverse transcription‑quantitative polymerase chain reaction, and cell viability was measured using an tetrazolium reduction assay. Cardiomyocytes and myocytes, when exposed to hypoxia, demonstrated an increased Bax/Bcl‑2 gene expression ratio (P<0.05). Additional deferoxamine (DFO) treatment resulted in further increases in Bax/Bcl‑2 in each cell type (P<0.001 each) and this was associated with the 15% loss in viability. The analogous alterations were observed in both cell types upon ammonium ferric citrate (AFC) treatment during hypoxia; however, the increased Bax/Bcl‑2 ratio and associated viability loss was lower compared with that in case of DFO treatment (P<0.05 each). Under hypoxic conditions, myocytes demonstrated an increased expression of PKM2 (P<0.01). Additional DFO treatment caused an increase in the mRNA expression levels of PKM2 and Atrogin‑1 (P<0.001 and P<0.05, respectively), whereas AFC treatment caused an increased mRNA expression of PKM2 (P<0.01) and accompanied decreased mRNA expression of Atrogin‑1 (P<0.05). The expression augmentation of PKM2 during hypoxia was greater upon low iron compared with that of ferric salt treatment (P<0.01). Both cell types upon DFO during hypoxia demonstrated the increased expression of TfR1

  19. Aging attenuates vascular and metabolic plasticity but does not limit improvement in muscle VO(2) max.

    PubMed

    Lawrenson, L; Hoff, J; Richardson, R S

    2004-04-01

    The interactions between exercise, vascular and metabolic plasticity, and aging have provided insight into the prevention and restoration of declining whole body and small muscle mass exercise performance known to occur with age. Metabolic and vascular adaptations to normoxic knee-extensor exercise training (1 h 3 times a week for 8 wk) were compared between six sedentary young (20 +/- 1 yr) and six sedentary old (67 +/- 2 yr) subjects. Arterial and venous blood samples, in conjunction with a thermodilution technique facilitated the measurement of quadriceps muscle blood flow and hematologic variables during incremental knee-extensor exercise. Pretraining, young and old subjects attained a similar maximal work rate (WR(max)) (young = 27 +/- 3, old = 24 +/- 4 W) and similar maximal quadriceps O(2) consumption (muscle Vo(2 max)) (young = 0.52 +/- 0.03, old = 0.42 +/- 0.05 l/min), which increased equally in both groups posttraining (WR(max), young = 38 +/- 1, old = 36 +/- 4 W, Muscle Vo(2 max), young = 0.71 +/- 0.1, old = 0.63 +/- 0.1 l/min). Before training, muscle blood flow was approximately 500 ml lower in the old compared with the young throughout incremental knee-extensor exercise. After 8 wk of knee-extensor exercise training, the young reduced muscle blood flow approximately 700 ml/min, elevated arteriovenous O(2) difference approximately 1.3 ml/dl, and increased leg vascular resistance approximately 17 mmHg x ml(-1) x min(-1), whereas the old subjects revealed no training-induced changes in these variables. Together, these findings indicate that after 8 wk of small muscle mass exercise training, young and old subjects of equal initial metabolic capacity have a similar ability to increase quadriceps muscle WR(max) and muscle Vo(2 max), despite an attenuated vascular and/or metabolic adaptation to submaximal exercise in the old.

  20. Classification and genetic features of neonatal haemochromatosis: a study of 27 affected pedigrees and molecular analysis of genes implicated in iron metabolism

    PubMed Central

    Kelly, A.; Lunt, P.; Rodrigues, F.; Berry, P; Flynn, D.; McKiernan, P.; Kelly, D.; Mieli-Vergani, G.; Cox, T.

    2001-01-01

    Neonatal haemochromatosis (NH) is a severe and newly recognised syndrome of uncertain aetiology, characterised by congenital cirrhosis or fulminant hepatitis and widespread tissue iron deposition. NH occurs in the context of maternal disease including viral infection, as a complication of metabolic disease in the fetus, and sporadically or recurrently, without overt cause, in sibs. Although an underlying genetic basis for NH has been suspected, no test is available for predictive analysis in at risk pregnancies.
  As a first step towards an understanding of the putative genetic basis for neonatal haemochromatosis, we have conducted a systematic study of the mode of transmission of this disorder in a total of 40 infants born to 27 families. We have moreover carried out a molecular analysis of candidate genes (β2-microglobulin, HFE, and haem oxygenases 1 and 2) implicated in iron metabolism. No pathogenic mutations in these genes were identified that segregate consistently with the disease phenotype in multiplex pedigrees. However, excluding four pedigrees with clear evidence of maternal infection associated with NH, a pedigree showing transmission of maternal antinuclear factor and ribonucleoprotein antibodies to the affected infants, and two families with possible matrilineal inheritance of disease in maternal half sibs, a large subgroup of the affected pedigrees point to the inheritance of an autosomal recessive trait. This included 14 pedigrees with affected and unaffected infants and a single pedigree where all four affected infants were the sole offspring of consanguineous but otherwise healthy parents.
  We thus report three distinct patterns of disease transmission in neonatal haemochromatosis. In the differentiation of a large subgroup showing transmission of disease in a manner suggesting autosomal recessive inheritance, we also provide the basis for further genome wide studies to define chromosomal determinants of iron storage disease in the

  1. The physiology of long-distance migration: extending the limits of endurance metabolism.

    PubMed

    Weber, Jean-Michel

    2009-03-01

    Long-distance migrants have evolved specific adaptations that make their athletic records possible. Unique mechanisms explaining their amazing capacity for endurance exercise have now been uncovered, particularly with respect to energy storage, mobilization, transport and utilization. Birds are champions of migration because flying offers a key compromise: it allows more rapid movement than swimming, but has a lower cost of transport than running. High efficiency for muscle contraction, pointed wings, low wingloading, travelling in V-formations, storing fuel as energy-dense lipids and atrophy of non-essential organs are some of their strategies to decrease the cost of transport. The ability to process lipids rapidly also emerges as a crucial component of the migrant phenotype. High lipid fluxes are made possible by lipoprotein shuttles and fatty acid binding proteins (FABPs) that accelerate lipid transport and by upgrading the metabolic machinery for lipolysis and lipid oxidation. Preparation for long flights can include natural doping on n-3 polyunsaturated fatty acids (n-3 PUFAs) from unique invertebrate diets. Muscle performance is improved by restructuring membrane phospholipids and by activating key genes of lipid metabolism through peroxisome proliferator-activated receptors (PPARs). The physiological secret to long migrations does not depend on a single ;magic' adaptation but on the integration of multiple adjustments in morphology, biomechanics, behavior, nutrition and metabolism. Research on the physiology of migrants improves the fundamental knowledge of exercise biology, but it also has important implications for wildlife conservation, treating obesity and improving the performance of human athletes.

  2. Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability: hypothesis for a protective role in Friedreich ataxia

    PubMed Central

    Campanella, Alessandro; Rovelli, Elisabetta; Santambrogio, Paolo; Cozzi, Anna; Taroni, Franco; Levi, Sonia

    2009-01-01

    Mitochondrial ferritin (FtMt) is a nuclear-encoded iron-sequestering protein that specifically localizes in mitochondria. In mice it is highly expressed in cells characterized by high-energy consumption, while is undetectable in iron storage tissues like liver and spleen. FtMt expression in mammalian cells was shown to cause a shift of iron from cytosol to mitochondria, and in yeast it rescued the defects associated with frataxin deficiency. To study the role of FtMt in oxidative damage, we analyzed the effect of its expression in HeLa cells after incubation with H2O2 and Antimycin A, and after a long-term growth in glucose-free media that enhances mitochondrial respiratory activity. FtMt reduced the level of reactive oxygen species (ROS), increased the level of adenosine 5'triphosphate and the activity of mitochondrial Fe-S enzymes, and had a positive effect on cell viability. Furthermore, FtMt expression reduces the size of cytosolic and mitochondrial labile iron pools. In cells grown in glucose-free media, FtMt level was reduced owing to faster degradation rate, however it still protected the activity of mitochondrial Fe-S enzymes without affecting the cytosolic iron status. In addition, FtMt expression in fibroblasts from Friedreich ataxia (FRDA) patients prevented the formation of ROS and partially rescued the impaired activity of mitochondrial Fe-S enzymes, caused by frataxin deficiency. These results indicate that the primary function of FtMt involves the control of ROS formation through the regulation of mitochondrial iron availability. They are consistent with the expression pattern of FtMt observed in mouse tissues, suggesting a FtMt protective role in cells characterized by defective iron homeostasis and respiration, such as in FRDA. PMID:18815198

  3. A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange.

    PubMed

    Hillman, Stanley S; Hancock, Thomas V; Hedrick, Michael S

    2013-02-01

    Maximal aerobic metabolic rates (MMR) in vertebrates are supported by increased conductive and diffusive fluxes of O(2) from the environment to the mitochondria necessitating concomitant increases in CO(2) efflux. A question that has received much attention has been which step, respiratory or cardiovascular, provides the principal rate limitation to gas flux at MMR? Limitation analyses have principally focused on O(2) fluxes, though the excess capacity of the lung for O(2) ventilation and diffusion remains unexplained except as a safety factor. Analyses of MMR normally rely upon allometry and temperature to define these factors, but cannot account for much of the variation and often have narrow phylogenetic breadth. The unique aspect of our comparative approach was to use an interclass meta-analysis to examine cardio-respiratory variables during the increase from resting metabolic rate to MMR among vertebrates from fish to mammals, independent of allometry and phylogeny. Common patterns at MMR indicate universal principles governing O(2) and CO(2) transport in vertebrate cardiovascular and respiratory systems, despite the varied modes of activities (swimming, running, flying), different cardio-respiratory architecture, and vastly different rates of metabolism (endothermy vs. ectothermy). Our meta-analysis supports previous studies indicating a cardiovascular limit to maximal O(2) transport and also implicates a respiratory system limit to maximal CO(2) efflux, especially in ectotherms. Thus, natural selection would operate on the respiratory system to enhance maximal CO(2) excretion and the cardiovascular system to enhance maximal O(2) uptake. This provides a possible evolutionary explanation for the conundrum of why the respiratory system appears functionally over-designed from an O(2) perspective, a unique insight from previous work focused solely on O(2) fluxes. The results suggest a common gas transport blueprint, or Bauplan, in the vertebrate clade.

  4. Iron-refractory iron deficiency anemia.

    PubMed

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-03-05

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field.

  5. Iron-Refractory Iron Deficiency Anemia

    PubMed Central

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-01-01

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the “atypical” microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  6. Plasmid-Encoded Iron Uptake Systems.

    PubMed

    Di Lorenzo, Manuela; Stork, Michiel

    2014-12-01

    Plasmids confer genetic information that benefits the bacterial cells containing them. In pathogenic bacteria, plasmids often harbor virulence determinants that enhance the pathogenicity of the bacterium. The ability to acquire iron in environments where it is limited, for instance the eukaryotic host, is a critical factor for bacterial growth. To acquire iron, bacteria have evolved specific iron uptake mechanisms. These systems are often chromosomally encoded, while those that are plasmid-encoded are rare. Two main plasmid types, ColV and pJM1, have been shown to harbor determinants that increase virulence by providing the cell with essential iron for growth. It is clear that these two plasmid groups evolved independently from each other since they do not share similarities either in the plasmid backbones or in the iron uptake systems they harbor. The siderophores aerobactin and salmochelin that are found on ColV plasmids fall in the hydroxamate and catechol group, respectively, whereas both functional groups are present in the anguibactin siderophore, the only iron uptake system found on pJM1-type plasmids. Besides siderophore-mediated iron uptake, ColV plasmids carry additional genes involved in iron metabolism. These systems include ABC transporters, hemolysins, and a hemoglobin protease. ColV- and pJM1-like plasmids have been shown to confer virulence to their bacterial host, and this trait can be completely ascribed to their encoded iron uptake systems.

  7. Limited brain metabolism changes differentiate between the progression and clearance of rabies virus.

    PubMed

    Schutsky, Keith; Portocarrero, Carla; Hooper, D Craig; Dietzschold, Bernhard; Faber, Milosz

    2014-01-01

    Central nervous system (CNS) metabolic profiles were examined from rabies virus (RABV)-infected mice that were either mock-treated or received post-exposure treatment (PET) with a single dose of the live recombinant RABV vaccine TriGAS. CNS tissue harvested from mock-treated mice at middle and late stage infection revealed numerous changes in energy metabolites, neurotransmitters and stress hormones that correlated with replication levels of viral RNA. Although the large majority of these metabolic changes were completely absent in the brains of TriGAS-treated mice most likely due to the strong reduction in virus spread, TriGAS treatment resulted in the up-regulation of the expression of carnitine and several acylcarnitines, suggesting that these compounds are neuroprotective. The most striking change seen in mock-treated RABV-infected mice was a dramatic increase in brain and serum corticosterone levels, with the later becoming elevated before clinical signs or loss of body weight occurred. We speculate that the rise in corticosterone is part of a strategy of RABV to block the induction of immune responses that would otherwise interfere with its spread. In support of this concept, we show that pharmacological intervention to inhibit corticosterone biosynthesis, in the absence of vaccine treatment, significantly reduces the pathogenicity of RABV. Our results suggest that widespread metabolic changes, including hypothalamic-pituitary-adrenal axis activation, contribute to the pathogenesis of RABV and that preventing these alterations early in infection with PET or pharmacological blockade helps protect brain homeostasis, thereby reducing disease mortality.

  8. Iron Treatment Strategies in Dialysis-Dependent CKD.

    PubMed

    Pandey, Richa; Daloul, Reem; Coyne, Daniel W

    2016-03-01

    Iron deficiency is common in patients on chronic dialysis, and most require iron-replacement therapy. In addition to absolute iron deficiency, many patients have functional iron deficiency as shown by a suboptimal response to the use of erythropoietin-stimulating agents. Both absolute and functional iron-deficiency anemia have been shown to respond to intravenous (IV) iron replacement. Although parenteral iron is an efficacious method and superior to standard doses of oral iron in patients on hemodialysis, there are ongoing safety concerns about repeated exposure potentially enhancing infection risk and cardiovascular disease. Each IV iron product is composed of an iron core with a carbohydrate shell. The avidity of iron binding and the type of carbohydrate shell play roles in the safe maximal dose and the frequency and severity of acute infusion reactions. All IV iron products are taken up into the reticuloendothelial system where the shell is metabolized and the iron is stored within tissue ferritin or exported to circulating transferrin. IV iron can be given as large intermittent doses (loading therapy) or in smaller doses at frequent intervals (maintenance dosing regimen). Limited trial data and observational data suggest that a maintenance dosing regimen is more efficacious and possibly safer than loading therapy. There is no consensus regarding the preferred method of iron repletion in patients on peritoneal dialysis, although small studies comparing oral and parenteral iron regimens in these patients have shown the latter to be more efficacious. Use of IV iron in virtually all hemodialysis and many peritoneal dialysis patients remains the standard of care.

  9. Inter-relationships of MnO 2 precipitation, siderophore-Mn (III) complex formation, siderophore degradation, and iron limitation in Mn (II)-oxidizing bacterial cultures

    NASA Astrophysics Data System (ADS)

    Parker, Dorothy L.; Morita, Takami; Mozafarzadeh, Mylene L.; Verity, Rebecca; McCarthy, James K.; Tebo, Bradley M.

    2007-12-01

    To examine the pathways that form Mn (III) and Mn (IV) in the Mn (II)-oxidizing bacterial strains Pseudomonas putida GB-1 and MnB1, and to test whether the siderophore pyoverdine (PVD) inhibits Mn (IV)O 2 formation, cultures were subjected to various protocols at known concentrations of iron and PVD. Depending on growth conditions, P. putida produced one of two oxidized Mn species - either soluble PVD-Mn (III) complex or insoluble Mn (IV)O 2 minerals - but not both simultaneously. PVD-Mn (III) was present, and MnO 2 precipitation was inhibited, both in iron-limited cultures that had synthesized 26-50 μM PVD and in iron-replete (non-PVD-producing) cultures that were supplemented with 10-550 μM purified PVD. PVD-Mn (III) arose by predominantly ligand-mediated air oxidation of Mn (II) in the presence of PVD, based on the following evidence: (a) yields and rates of this reaction were similar in sterile media and in cultures, and (b) GB-1 mutants deficient in enzymatic Mn oxidation produced PVD-Mn (III) as efficiently as wild type. Only wild type, however, could degrade PVD-Mn (III), a process linked to the production of both MnO 2 and an altered PVD with absorbance and fluorescence spectra markedly different from those of either PVD or PVD-Mn (III). Two conditions, the presence of bioavailable iron and the absence of PVD at concentrations exceeding those of Mn, both had to be satisfied for MnO 2 to appear. These results suggest that P. putida cultures produce soluble Mn (III) or MnO 2 by different and mutually inhibitory pathways: enzymatic catalysis yielding MnO 2 under iron sufficiency or PVD-promoted oxidation yielding PVD-Mn (III) under iron limitation. Since PVD-producing Pseudomonas species are environmentally prevalent Mn oxidizers, these data predict influences of iron (via PVD-Mn (III) versus MnO 2) on the global oxidation/reduction cycling of various pollutants, recalcitrant organic matter, and elements such as C, S, N, Cr, U, and Mn.

  10. Icariin regulates systemic iron metabolism by increasing hepatic hepcidin expression through Stat3 and Smad1/5/8 signaling.

    PubMed

    Zhang, Miao; Liu, Jing; Guo, Wenli; Liu, Xin; Liu, Sijin; Yin, Huijun

    2016-05-01

    Systemic iron homeostasis is strictly controlled under normal conditions to ensure a balance between the absorption, utilization, storage and recycling of iron. The hepcidin-ferroportin (FPN) axis is of critical importance in the maintenance of iron homeostasis. Hepcidin deficiency gives rise to enhanced dietary iron absorption, as well as to increased iron release from macrophages, and this in turn results in iron accumulation in the plasma and organs, and is associated with a range of tissue pathologies. Low hepcidin levels have been demonstrated in most forms of hereditary hemochromatosis (HH), as well as in β-thalassemia. Therapies that increase hepcidin concentrations may potentially play a role in the treatment of these iron overload-related diseases. To date, natural compounds have not been extensively investigated for this purpose, to the best of our knowledge. Thus, in the present study, we screened natural compounds that have the potential to regulate hepcidin expression. By performing hepcidin promoter-luciferase assay, RT-qPCR and animal experiments, we demonstrated that icariin and berberine were potent stimulators of hepcidin transcription. Mechanistic experiments indicated that icariin and berberine increased hepcidin expression by activating the signal transducer and activator of transcription 3 (Stat3) and Smad1/5/8 signaling pathways. The induction of hepcidin was confirmed in mice following icariin administration, coupled with associated changes in serum and tissue iron concentrations. In support of these findings, the icariin analogues, epimedin A, B and C, also increased hepatic hepcidin expression. However, these changes were not observed in hepcidin-deficient [Hamp1-/- or Hamp1‑knockout (KO)] mice following icariin administration, thereby verifying hepatic hepcidin as the target of icariin. Although berberine exhibited a robust capacity to promote hepcidin expression in vitro, it failed to alter hepcidin expression in mice. Taken together

  11. Iron concentration limits growth rate and the expression of virulence factors in hrp-inducing minimal medium with Pseudomonas syringae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although chemically-defined media have been developed and widely used to study the expression of virulence factors in the model plant pathogen, Pseudomonas syringae, it has been difficult to link specific medium components to the induction response. Using a chemostat system, we found that iron is th...

  12. A micronutrient-fortified food enhances iron and selenium status of Zambian infants but has limited efficacy on zinc.

    PubMed

    Gibson, Rosalind S; Kafwembe, Emmanuel; Mwanza, Sydney; Gosset, Laura; Bailey, Karl B; Mullen, Anne; Baisley, Kathy; Filteau, Suzanne

    2011-05-01

    Micronutrient-fortified, cereal-based infant foods are recommended for reducing multiple micronutrient deficiencies in low-income countries, but their nutritional quality is not always optimal. In a double-blind randomized trial, we compared the efficacy of a locally produced porridge based on maize, beans, bambaranuts, and groundnuts fortified with 19 (rich) or 9 (basal) micronutrients. Infants aged 6 mo from Lusaka, Zambia were randomized to receive the richly fortified (n = 373) or basal (n = 370) porridge daily for 12 mo along with routine vitamin A supplements. Baseline and final micronutrient status and inflammation (based on α-1-glycoprotein) were assessed using nonfasting blood samples. Baseline prevalence of anemia (39%) and zinc deficiency (51%) were a public health concern. There were overall treatment effects on hemoglobin (Hb) (P = 0.001), serum transferrin receptor (P < 0.001), serum ferritin (P < 0.001), and serum selenium (P = 0.009); biomarker responses for iron and zinc were modified by baseline concentrations, and for Hb and iron by socioeconomic status. At 18 mo, the adjusted odds of anemia, iron deficiency anemia (Hb <105 g/L and transferrin receptor > 11.0 mg/L), and iron deficiency were 0.37 (95% CI = 0.25, 0.55), 0.18 (0.09, 0.35), and 0.30 (0.18, 0.50) times those in the basal group, respectively. The rich level of fortification had no overall treatment effect on serum zinc (1.09; 0.66, 1.80) but improved serum zinc in children with lower Hb concentrations at baseline (P = 0.024). A locally produced cereal- and legume-based infant food richly fortified with micronutrients reduced anemia and improved iron and selenium status but may require reformulation to improve the biochemical zinc status of urban Zambian infants.

  13. Mutations in the clathrin-assembly gene Picalm are responsible for the hematopoietic and iron metabolism abnormalities in fit1 mice.

    PubMed

    Klebig, Mitchell L; Wall, Melissa D; Potter, Mark D; Rowe, Erica L; Carpenter, Donald A; Rinchik, Eugene M

    2003-07-08

    Recessive N-ethyl-N-nitrosourea (ENU)-induced mutations recovered at the fitness-1 (fit1) locus in mouse chromosome 7 cause hematopoietic abnormalities, growth retardation, and shortened life span, with varying severity of the defects in different alleles. Abnormal iron distribution and metabolism and frequent scoliosis have also been associated with an allele of intermediate severity (fit14R). We report that fit14R, as well as the most severe fit15R allele, are nonsense point mutations in the mouse ortholog of the human phosphatidylinositol-binding clathrin assembly protein (PICALM) gene, whose product is involved in clathrin-mediated endocytosis. A variety of leukemias and lymphomas have been associated with translocations that fuse human PICALM with the putative transcription factor gene AF10. The Picalmfit1-5R and Picalmfit1-4R mutations are splice-donor alterations resulting in transcripts that are less abundant than normal and missing exons 4 and 17, respectively. These exon deletions introduce premature termination codons predicted to truncate the proteins near the N and C termini, respectively. No mutations in the genes encoding Picalm, clathrin, or components of the adaptor protein complex 2 (AP2) have been previously described in which the suite of disorders present in the Picalmfit1 mutant mice is apparent. These mutants thus provide unique models for exploring how the endocytic function of mouse Picalm and the transport processes mediated by clathrin and the AP2 complex contribute to normal hematopoiesis, iron metabolism, and growth.

  14. Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; Poehlein, Anja; Tischler, Judith S.; González, Carolina; Ossandon, Francisco J.; Daniel, Rolf; Holmes, David S.; Schlömann, Michael; Mühling, Martin

    2016-01-01

    Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus

  15. Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism

    PubMed Central

    Lu, Qing; Harris, Valerie A.; Rafikov, Ruslan; Sun, Xutong; Kumar, Sanjiv; Black, Stephen M.

    2015-01-01

    We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia–ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen–glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation. PMID:26209813

  16. Iron's role in paediatric restless legs syndrome - a review.

    PubMed

    Dosman, Cara; Witmans, Manisha; Zwaigenbaum, Lonnie

    2012-04-01

    Paediatric restless legs syndrome (RLS) treatment is important because RLS's associated sleep disturbance causes significant developmental-behavioural morbidity and impacts family well-being. RLS is associated with brain iron insufficiency and dopaminergic dysfunction. Diagnosis requires fulfillment of diagnostic criteria, which for children are currently in evolution, and have limitations, especially in preschoolers. The community physician needs to recognize the possibility of RLS to refer to a sleep specialist for diagnostic confirmation and management recommendations, which include oral iron therapy, even though there is currently no definitive research evidence for iron efficacy in most children with RLS. A 3 mg to 6 mg elemental iron/kg/day dose for three months could be tried if the ferritin level is <50 ug/L. Sleep hygiene and behavioural strategies are also recommended. Iron supplementation should be safe in the absence of iron metabolism disorders, provided that transferrin saturation and ferritin levels are monitored pre-and post-treatment.

  17. Induction of hypoxic root metabolism results from physical limitations in O 2 bioavailability in microgravity

    NASA Astrophysics Data System (ADS)

    Liao, J.; Liu, G.; Monje, O.; Stutte, G. W.; Porterfield, D. M.

    2004-01-01

    Numerous spaceflight experiments have noted changes in the roots that are consistent with hypoxia in the rootzone. These observations include general ultrastructure analysis and biochemical measurements to direct measurements of stress specific enzymes. In experiments that have monitored alcohol dehydrogenase (ADH), the data shows this hypoxically responsive gene is induced and is associated with increased ADH activity in microgravity. These changes in ADH could be induced either by spaceflight hypoxia resulting from inhibition of gravity mediated O 2 transport, or by a non-specific stress response due to inhibition of gravisensing. We tested these hypotheses in a series of two experiments. The objective of the first experiment was to determine if physical changes in gravity-mediated O 2 transport can be directly measured, while the second series of experiments tested whether disruption of gravisensing can induce a non-specific ADH response. To directly measure O 2 bioavailability as a function of gravity, we designed a sensor that mimics metabolic oxygen consumption in the rhizosphere. Because of these criteria, the sensor is sensitive to any changes in root O 2 bioavailability that may occur in microgravity. In a KC-135 experiment, the sensor was implanted in a moist granular clay media and exposed to microgravity during parabolic flight. The resulting data indicated that root O 2 bioavailability decreased in phase with gravity. In experiments that tested for non-specific induction of ADH, we compared the response of transgenic Arabidopsis plants (ADH promoted GUS marker gene) exposed to clinostat, control, and waterlogged conditions. The plants were grown on agar slats in a growth chamber before being exposed to the experimental treatments. The plants were stained for GUS activity localization, and subjected to biochemical tests for ADH, and GUS enzyme activity. These tests showed that the waterlogging treatment induced significant increases in GUS and ADH

  18. Dietary intakes of zinc and heme iron from red meat, but not from other sources, are associated with greater risk of metabolic syndrome and cardiovascular disease.

    PubMed

    de Oliveira Otto, Marcia C; Alonso, Alvaro; Lee, Duk-Hee; Delclos, George L; Bertoni, Alain G; Jiang, Rui; Lima, Joao A; Symanski, Elaine; Jacobs, David R; Nettleton, Jennifer A

    2012-03-01

    Metabolic syndrome (MetS), Type 2 diabetes (T2D), and cardiovascular disease (CVD) share an inflammatory etiology and are known to be influenced by diet. We investigated associations of hypothesized prooxidative (Fe) and antioxidative (Zn, Mg, β-carotene, vitamin C, vitamin E) micronutrients with incident MetS, T2D, and CVD in the Multi-Ethnic Study of Atherosclerosis. Participants, 45-84 y at baseline (2000-2002), were followed through 2010. Diet was assessed by FFQ. After adjusting for demographics and behavioral confounders, including BMI, dietary vitamin E intake was inversely associated with incident MetS and CVD [HR for extreme quintiles: MetS = 0.78 (95% CI = 0.62, 0.97), P-trend = 0.01; CVD: HR = 0.69 (95% CI = 0.46, 1.03), P-trend = 0.04]. Intakes of heme iron and Zn from red meat, but not from other sources, were positively associated with risk of MetS [heme iron from red meat: HR = 1.25 (95% CI = 0.99,1.56), P-trend = 0.03; Zn from red meat: HR = 1.29 (95% CI = 1.03,1.61), P-trend = 0.04] and CVD [heme iron from red meat: HR = 1.65 (95% CI = 1.10,2.47), P-trend = 0.01; Zn from red meat: HR = 1.51 (95% CI = 1.02, 2.24), P-trend = 0.01]. Dietary intakes of nonheme iron, Mg, vitamin C, and β-carotene were not associated with risk of MetS, T2D, or CVD. Data provided little support for the associations between specific micronutrients and MetS, T2D, or CVD. However, nutrients consumed in red meat, or red meat as a whole, may increase risk of MetS and CVD.

  19. Dietary Intakes of Zinc and Heme Iron from Red Meat, but Not from Other Sources, Are Associated with Greater Risk of Metabolic Syndrome and Cardiovascular Disease123

    PubMed Central

    de Oliveira Otto, Marcia C.; Alonso, Alvaro; Lee, Duk-Hee; Delclos, George L.; Bertoni, Alain G.; Jiang, Rui; Lima, Joao A.; Symanski, Elaine; Jacobs, David R.; Nettleton, Jennifer A.

    2012-01-01

    Metabolic syndrome (MetS), Type 2 diabetes (T2D), and cardiovascular disease (CVD) share an inflammatory etiology and are known to be influenced by diet. We investigated associations of hypothesized prooxidative (Fe) and antioxidative (Zn, Mg, β-carotene, vitamin C, vitamin E) micronutrients with incident MetS, T2D, and CVD in the Multi-Ethnic Study of Atherosclerosis. Participants, 45–84 y at baseline (2000–2002), were followed through 2010. Diet was assessed by FFQ. After adjusting for demographics and behavioral confounders, including BMI, dietary vitamin E intake was inversely associated with incident MetS and CVD [HR for extreme quintiles: MetS = 0.78 (95% CI = 0.62, 0.97), P-trend = 0.01; CVD: HR = 0.69 (95% CI = 0.46, 1.03), P-trend = 0.04]. Intakes of heme iron and Zn from red meat, but not from other sources, were positively associated with risk of MetS [heme iron from red meat: HR = 1.25 (95% CI = 0.99,1.56), P-trend = 0.03; Zn from red meat: HR = 1.29 (95% CI = 1.03,1.61), P-trend = 0.04] and CVD [heme iron from red meat: HR = 1.65 (95% CI = 1.10,2.47), P-trend = 0.01; Zn from red meat: HR = 1.51 (95% CI = 1.02, 2.24), P-trend = 0.01]. Dietary intakes of nonheme iron, Mg, vitamin C, and β-carotene were not associated with risk of MetS, T2D, or CVD. Data provided little support for the associations between specific micronutrients and MetS, T2D, or CVD. However, nutrients consumed in red meat, or red meat as a whole, may increase risk of MetS and CVD. PMID:22259193

  20. [INFLUENCE OF THE REGULAR INTAKE OF FERMENTED MILK PRODUCTS ENRICHED BY MICRONUTRIENTS ON SOME INDICES OF IRON METABOLISM IN ADOLESCENTS INVOLVED IN SPORTS].

    PubMed

    Turchaninov, D V; Bovarskaya, L A; Bogdashin, I V; Bagrova, L V; Gotwald, A R; Kozubenko, O V

    2015-01-01

    There was performed an experimental study of the influence of regular intake offermented milk enriched by products "Bifidin" and "Prolacta" on indices of iron metabolism in adolescents of 12-17 years, involved in sports (n = 94). In all study participants there was made double blood test (every 60 days), there were determined the levels of hemoglobin, serum iron, serum ferritin, C-reactive protein. The intervention in the main group (n = 68) was in daily intake offermented milk product in a volume of 200 ml (1 Cup) in addition to the normal diet within 2 months, including 35 cases who had used the bioproduct "Bifidin" and 33 persons- bioproduct "Prolacta". The control group was consisted of 26 persons from the adolescents engaged in the same sections, but not taking additional fermented milk drinks. The average values of all studied indices in adolescent athletes of the main and control groups before and after the intervention were consistent with reference values. Latent iron deficiency was detected in 23.4 ± 4.4% of adolescents involved in sports. At the second point of the research in two months of intake of enriched dairy products in the main group there was noticed the gain in levels of serum iron, ferritin, and the decline of the concentration of C-reactive protein. The results of the study allow us to consider enriched dairy products "Bifidin" and "Prolacta" as one of the components of complex measures of prophylaxis of hypovitaminosis and microelementoses in adolescents who are actively involved in sports.

  1. Genetic Engineering of Glycinebetaine Production toward Enhancing Stress Tolerance in Plants: Metabolic Limitations1

    PubMed Central

    Huang, Jun; Hirji, Rozina; Adam, Luc; Rozwadowski, Kevin L.; Hammerlindl, Joe K.; Keller, Wilf A.; Selvaraj, Gopalan

    2000-01-01

    Glycinebetaine (betaine) affords osmoprotection in bacteria, plants and animals, and protects cell components against harsh conditions in vitro. This and a compelling body of other evidence have encouraged the engineering of betaine production in plants lacking it. We have installed the metabolic step for oxidation of choline, a ubiquitous substance, to betaine in three diverse species, Arabidopsis, Brassica napus, and tobacco (Nicotiana tabacum), by constitutive expression of a bacterial choline oxidase gene. The highest levels of betaine in independent transgenics were 18.6, 12.8, and 13 μmol g−1 dry weight, respectively, values 10- to 20-fold lower than the levels found in natural betaine producers. However, choline-fed transgenic plants synthesized substantially more betaine. Increasing the choline supplementation further enhanced betaine synthesis, up to 613 μmol g−1 dry weight in Arabidopsis, 250 μmol g−1 dry weight in B. napus, and 80 μmol g−1 dry weight in tobacco. These studies demonstrate the need to enhance the endogenous choline supply to support accumulation of physiologically relevant amounts of betaine. A moderate stress tolerance was noted in some but not all betaine-producing transgenic lines based on relative shoot growth. Furthermore, the responses to stresses such as salinity, drought, and freezing were variable among the three species. PMID:10712538

  2. Paracoccidioides spp. ferrous and ferric iron assimilation pathways

    PubMed Central

    Bailão, Elisa Flávia L. C.; Lima, Patrícia de Sousa; Silva-Bailão, Mirelle G.; Bailão, Alexandre M.; Fernandes, Gabriel da Rocha; Kosman, Daniel J.; Soares, Célia Maria de Almeida

    2015-01-01

    Iron is an essential micronutrient for almost all organisms, including fungi. Usually, fungi can uptake iron through receptor-mediated internalization of a siderophore or heme, and/or reductive iron assimilation (RIA). Traditionally, the RIA pathway consists of ferric reductases (Fres), ferroxidase (Fet3) and a high-affinity iron permease (Ftr1). Paracoccidioides spp. genomes do not present an Ftr1 homolog. However, this fungus expresses zinc regulated transporter homologs (Zrts), members of the ZIP family of membrane transporters that are able in some organisms to transport zinc and iron. A 2,3,5-triphenyltetrazolium chloride (TTC)-overlay assay indicates that both Pb01 and Pb18 express a ferric reductase activity; however, 59Fe uptake assays indicate that only in Pb18 is this activity coupled to a reductase-dependent iron uptake pathway. In addition, Zrts are up-regulated in iron deprivation, as indicated by RNAseq and qRT-PCR using Pb01 transcripts. RNAseq strategy also demonstrated that transcripts related to siderophore uptake and biosynthesis are up-regulated in iron-deprived condition. The data suggest that the fungus could use both a non-classical RIA, comprising ferric reductases and Fe/Zn permeases (Zrts), and siderophore uptake pathways under iron-limited conditions. The study of iron metabolism reveals novel surface molecules that could function as accessible targets for drugs to block iron uptake and, consequently, inhibit pathogen's proliferation. PMID:26441843

  3. Signatures of nitrogen limitation in the elemental composition of the proteins involved in the metabolic apparatus.

    PubMed

    Acquisti, Claudia; Kumar, Sudhir; Elser, James J

    2009-07-22

    Nitrogen (N) is a fundamental component of nucleotides and amino acids and is often a limiting nutrient in natural ecosystems. Thus, study of the N content of biomolecules may establish important connections between ecology and genomics. However, while significant differences in the elemental composition of whole organisms are well documented, how the flux of nutrients in the cell has shaped the evolution of different cellular processes remains poorly understood. By examining the elemental composition of major functional classes of proteins in four multicellular eukaryotic model organisms, we find that the catabolic machinery shows substantially lower N content than the anabolic machinery and the rest of the proteome. This pattern suggests that ecological selection for N conservation specifically targets cellular components that are highly expressed in response to nutrient limitation. We propose that the RNA component of the anabolic machineries is the mechanistic force driving the elemental imbalance we found, and that RNA functions as an intracellular nutrient reservoir that is degraded and recycled during starvation periods. A comparison of the elemental composition of the anabolic and catabolic machineries in species that have experienced different levels of N limitation in their evolutionary history (animals versus plants) suggests that selection for N conservation has preferentially targeted the catabolic machineries of plants, resulting in a lower N content of the proteins involved in their catabolic processes. These findings link the composition of major cellular components to the environmental factors that trigger the activation of those components, suggesting that resource availability has constrained the atomic composition and the molecular architecture of the biotic processes that enable cells to respond to reduced nutrient availability.

  4. Is reproduction limiting growth?. Comment on ;Physics of metabolic organization; by Marko Jusup et al.

    NASA Astrophysics Data System (ADS)

    Pecquerie, Laure; Lika, Konstadia

    2017-03-01

    Jusup et al. [1] aimed at covering the theoretical foundations of DEB theory and presenting the broadness of its applications for both physicists and biologists and they successfully do so. One of the most striking assumptions of DEB theory for biologists that is, as mentioned by the authors, at odds with an existing body of literature in fisheries sciences [2,3], is the so-called κ-rule. A constant allocation to growth and somatic maintenance throughout ontogeny is indeed at odds with the widely accepted limitation of growth at the onset of sexual maturity by the reproduction process.

  5. Maternal multiple micronutrient supplementation has limited impact on micronutrient status of Bangladeshi infants compared with standard iron and folic acid supplementation.

    PubMed

    Eneroth, Hanna; El Arifeen, Shams; Persson, Lars-Ake; Lönnerdal, Bo; Hossain, Mohammad Bakhtiar; Stephensen, Charles B; Ekström, Eva-Charlotte

    2010-03-01

    Knowledge about the impact of maternal food and micronutrient supplementation on infant micronutrient status is limited. We examined the effect of maternal food and micronutrient supplementation on infant micronutrient status in the Maternal and Infant Nutrition Interventions in Matlab Trial. Pregnant women (n = 4436) were randomized to Early or Usual promotion of enrollment in a food supplementation program. In addition, they were randomly allocated to 1 of the following 3 types of daily micronutrient supplements provided from wk 14 of gestation to 3 mo postpartum: 1) folic acid and 30 mg iron (Fe30Fol); 2) folic acid and 60 mg iron; or 3) a multiple micronutrient including folic acid and 30 mg iron (MMS). At 6 mo, infant blood samples (n = 1066) were collected and analyzed for hemoglobin and plasma ferritin, zinc, retinol, vitamin B-12, and folate. The vitamin B-12 concentration differed between the micronutrient supplementation groups (P = 0.049). The prevalence of vitamin B-12 deficiency was lower in the MMS group (26.1%) than in the Fe30Fol group (36.5%) (P = 0.003). The prevalence of zinc deficiency was lower in the Usual food supplementation group (54.1%) than in the Early group (60.2%) (P = 0.046). There were no other differential effects according to food or micronutrient supplementation groups. We conclude that maternal multiple micronutrient supplementation may have a beneficial effect on vitamin B-12 status in infancy.

  6. [Safety aspects of parenteral iron supplementation therapies in patients with chronic kidney disease].

    PubMed

    Potthoff, S A; Münch, H G

    2013-06-01

    Iron deficiency often occurs in patients with chronic kidney disease and can be effectively treated with parenteral supplementation of iron. In these patients, prompt application of iron therapy can help to reduce the dependence of erythropoietin-stimulating agents and effectively treat anemia. Correct evaluation of iron metabolism in CKD patients can be difficult. Duration of and response to therapy should always be considered while planning parenteral supplementation of iron. The main safety aspects of parenteral iron preparations relate to their possible anaphylactic potential and the potential induction of oxidative stress due to the release of free iron. However, parenteral iron supplementation is usually safe and without major side effects. Regarding current data, none of the iron preparations is showing definitive superiority. Although uncommon, iron preparations containing dextran can lead to severe side effects, therefore these preparations appear to have an inferior safety profile. Due to limited data, a comparison of third-generation iron preparations with previous preparations is not possible. Recently, for the first time, the third generation iron preparation ferumoxytol has been directly compared to iron sucrose. From this data and others, it remains unclear whether third generation iron preparations show safety-relevant superiority.

  7. Iron limitation in the Western Interior Seaway during the Late Cretaceous OAE 3 and its role in phosphorus recycling and enhanced organic matter preservation

    NASA Astrophysics Data System (ADS)

    Tessin, Allyson; Sheldon, Nathan D.; Hendy, Ingrid; Chappaz, Anthony

    2016-09-01

    The sedimentary record of the Coniacian-Santonian Oceanic Anoxic Event 3 (OAE 3) in the North American Western Interior Seaway is characterized by a prolonged period of enhanced organic carbon (OC) burial. This study investigates the role of Fe in enhancing organic matter preservation and maintaining elevated primary productivity to sustain black shale deposition within the Coniacian-Santonian-aged Niobrara Formation in the USGS #1 Portland core. Iron speciation results indicate the development of a reactive Fe limitation coeval with reduced bioturbation and increased organic matter preservation, suggesting that decreased sulfide buffering by reactive Fe may have promoted enhanced organic matter preservation at the onset of OAE 3. An Fe limitation would also provide a feedback mechanism to sustain elevated primary productivity through enhanced phosphorus recycling. Additionally our results demonstrate inconsistencies between Fe-based and trace metal redox reconstructions. Iron indices from the Portland core indicate a single stepwise change, whereas the trace metal redox proxies indicate fluctuating redox conditions during and after OAE 3. Using Fe speciation to reconstruct past redox conditions may be complicated by a number of factors, including Fe sequestration in diagenetic carbonate phases and efficient sedimentary pyrite formation in a system with limited Fe supply and high levels of export production.

  8. Iron metabolism in obesity: how interaction between homoeostatic mechanisms can interfere with their original purpose. Part II: epidemiological and historic aspects of the iron/obesity interaction.

    PubMed

    Becker, Christiane; Orozco, Mónica; Solomons, Noel W; Schümann, Klaus

    2015-04-01

    The change from a mainly vegetarian fare to meat consumption went along with brain growth and increased insulin resistance to improve brain's glucose supply. Meat consumption increased iron bioavailability and, thus, physical and mental fitness. The "predation-release-hypothesis" proposes that group coordination, arms and fire abolished the survival advantage of lean individuals from predation. The "thrifty gene-hypothesis", in contrast, proposes that surviving repeated episodes of starvation increased efficiency of food utilization in the offspring; they learned to utilize every available calorie. As a consequence of either mechanism, improved food security will increase prevalence of obesity along with that of its fatal consequences, such as diabetes, hypertension, heart diseases, and cancer. Thus, improved food security collides with the biologically evolved mechanisms to store excessive calories in preparation for a famine that never came. The crash between homoeostatic mechanisms and human intervention caused the presently observed pandemia of obesity and explains why it is so difficult to avoid, in spite of its well known and often fatal consequences.

  9. Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation.

    PubMed

    Jayasinghe, Nadeera; Franks, Ashley; Nevin, Kelly P; Mahadevan, Radhakrishnan

    2014-10-01

    Microbial fuel cells (MFCs) have been proposed as an alternative energy resource for the conversion of organic compounds to electricity. In an MFC, microorganisms such as Geobacter sulfurreducens form an anode-associated biofilm that can completely oxidize organic matter (electron donor) to carbon dioxide with direct electron transfer to the anode (electron acceptor). Mathematical models are useful in analyzing biofilm processes; however, existing models rely on Nernst-Monod type expressions, and evaluate extracellular processes separated from the intracellular metabolism of the microorganism. Thus, models that combine both extracellular and intracellular components, while addressing spatial heterogeneity, are essential for improved representation of biofilm processes. The goal of this work is to develop a model that integrates genome-scale metabolic models with the model of biofilm environment. This integrated model shows the variations of electrical current production and biofilm thickness under the presence/absence of NH4 in the bulk solution, and under varying maintenance energy demands. Further, sensitivity analysis suggested that conductivity is not limiting electrical current generation and that increasing cell density can lead to enhanced current generation. In addition, the modeling results also highlight instances such as the transformation into respiring cells, where the mechanism of electrical current generation during biofilm development is not yet clearly understood.

  10. Parenteral iron supplementation.

    PubMed

    Kumpf, V J

    1996-08-01

    Indications for the use of parenteral iron are limited to conditions in which the oral supplementation of iron is not possible or fails. An overview of iron balance and iron requirements is presented to describe situations in which iron supplementation may be required. When parenteral iron supplementation is required, careful attention to proper dosing and administration is necessary to optimize efficacy and safety. The purpose of this article is to review the literature regarding the clinical use of parenteral iron therapy and provide guidelines on dosing and administration. Methods of iron dextran administration, including the IV and intramuscular injection of undiluted drug and total dose infusion, are compared. Complications associated with the use of parenteral iron are also be reviewed. Finally, the use of iron supplementation in patients receiving parenteral nutrition care explored.

  11. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata.

    PubMed

    Srivastava, Vivek Kumar; Suneetha, Korivi Jyothiraj; Kaur, Rupinder

    2014-10-01

    Iron is an essential nutrient for all living organisms and human pathogens employ a battery of factors to scavenge iron from the high-affinity iron-binding host proteins. In the present study, we have elucidated, via a candidate gene approach, major iron acquisition and homoeostatic mechanisms operational in an opportunistic human fungal pathogen Candida glabrata. Phenotypic, biochemical and molecular analysis of a set of 13 C. glabrata strains, deleted for proteins potentially implicated in iron metabolism, revealed that the high-affinity reductive iron uptake system is required for utilization of alternate carbon sources and for growth under both in vitro iron-limiting and in vivo conditions. Furthermore, we show for the first time that the cysteine-rich CFEM (common in fungal extracellular membranes) domain-containing cell wall structural protein, CgCcw14, and a putative haemolysin, CgMam3, are essential for maintenance of intracellular iron content, adherence to epithelial cells and virulence. Consistent with their roles in iron homoeostasis, mitochondrial aconitase activity was lower and higher in mutants disrupted for high-affinity iron transport, and haemolysin respectively. Additionally, we present evidence that the mitochondrial frataxin, CgYfh1, is pivotal to iron metabolism. Besides yielding insights into major in vitro and in vivo iron acquisition strategies, our findings establish high-affinity iron uptake mechanisms as critical virulence determinants in C. glabrata.

  12. Metabolic Regulation of “Ca. Methylacidiphilum Fumariolicum” SolV Cells Grown Under Different Nitrogen and Oxygen Limitations

    PubMed Central

    Khadem, Ahmad F.; Pol, Arjan; Wieczorek, Adam S.; Jetten, Mike S. M.; Op den Camp, Huub J. M.

    2012-01-01

    Aerobic methanotrophic bacteria can use methane as their sole energy source. The discovery of “Ca. Methylacidiphilum fumariolicum” strain SolV and other verrucomicrobial methanotrophs has revealed that the ability of bacteria to oxidize CH4 is much more diverse than has previously been assumed in terms of ecology, phylogeny, and physiology. A remarkable characteristic of the methane-oxidizing Verrucomicrobia is their extremely acidophilic phenotype, growing even below pH 1. In this study we used RNA-Seq to analyze the metabolic regulation of “Ca. M. fumariolicum” SolV cells growing at μmax in batch culture or under nitrogen fixing or oxygen limited conditions in chemostats, all at pH 2. The analysis showed that two of the three pmoCAB operons each encoding particulate methane monoxygenases were differentially expressed, probably regulated by the available oxygen. The hydrogen produced during N2 fixation is apparently recycled as demonstrated by the upregulation of the genes encoding a Ni/Fe-dependent hydrogenase. These hydrogenase genes were also upregulated under low oxygen conditions. Handling of nitrosative stress was shown by the expression of the nitric oxide reductase encoding genes norB and norC under all conditions tested, the upregulation of nitrite reductase nirK under oxygen limitation and of hydroxylamine oxidoreductase hao in the presence of ammonium. Unraveling the gene regulation of carbon and nitrogen metabolism helps to understand the underlying physiological adaptations of strain SolV in view of the harsh conditions of its natural ecosystem. PMID:22848206

  13. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-30

    Shewanella oneidensis MR-1 is a facultative anaerobe growing by coupling organic matter oxidation to reduction of wide range of electron acceptors. Here we quantitatively assessed lactate and pyruvate metabolism of these bacteria under three distinct conditions: electron acceptor limited growth on lactate with O2 and fumarate, and pyruvate fermentation, which does not sustain growth but allows cells to survive for prolonged period. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of all ATP needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute much to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, and TCA cycle did not contribute significantly to substrate oxidation. Pyruvate dehydrogenase reaction was not involved in lactate metabolism under O2 limitation, however was important for anaerobic growth probably supplying reducing equivalents for biosynthesis. Unexpectedly, obtained results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination between substrate-level phosphorylation and a respiratory process, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). Based on involved enzymes localization we hypothesize that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  14. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions.

    PubMed

    Pinchuk, Grigoriy E; Geydebrekht, Oleg V; Hill, Eric A; Reed, Jennifer L; Konopka, Allan E; Beliaev, Alexander S; Fredrickson, Jim K

    2011-12-01

    Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O(2), lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O(2) limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P)H-independent d-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force.

  15. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-01

    Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of wide range of electron acceptors. Here, we quantitatively assessed lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor limited growth on lactate with O2; lactate with fumarate; and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the TCA cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under O2 limitation but was required for anaerobic growth likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  16. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle.

    PubMed

    Huntington, G B; Harmon, D L; Richards, C J

    2006-04-01

    Growing cattle in the United States consume up to 6 kg of starch daily, mainly from corn or sorghum grain. Total tract apparent digestibility of starch usually ranges from 90 to 100% of starch intake. Ruminal starch digestion ranges from 75 to 80% of starch intake and is not greatly affected by intake over a range of 1 to 5 kg of starch/d. Starch apparently digested in the small intestine decreases from 80 to 34% as starch entering the small intestine increases from 0.2 to 2 kg/d. Starch apparently digested in the large intestine ranges from 44 to 46% of starch entering the large intestine. Approximately 70% of starch digested in the small intestine appears as glucose in the bloodstream. Within the range of starch intakes that do not cause rumen upsets, increasing starch (and energy) intake increases the amount of starch digested in the rumen, increases the supply of starch to the small intestine, increases starch digested in small intestine (albeit at reduced efficiency), and increases starch digested in the large intestine, such that total tract digestibility remains relatively constant. With increased starch intake, most of the starch is still digested in the rumen, but increasing amounts of starch escape ruminal and intestinal digestion, and disappear distal to the ileocecal junction. Again, within the range of starch intakes that do not cause rumen upsets, as starch intake increases, hepatic gluconeogenesis increases, glucose entry increases, and glucose irreversible loss increases, with a significant portion lost as CO2. The ability to increase use of dietary starch to support greater weight gains or improved marbling could come from increasing starch digestion in a healthy rumen or in the small intestine, but we conclude that the main limit to use of dietary starch to support live weight gain is digestion and absorption from the small intestine. Increased oxidation of glucose at greater starch intakes may alter energetic efficiency by sparing other

  17. Modeling human Coenzyme A synthase mutation in yeast reveals altered mitochondrial function, lipid content and iron metabolism

    PubMed Central

    Berti, Camilla C.; Dallabona, Cristina; Lazzaretti, Mirca; Dusi, Sabrina; Tosi, Elena; Tiranti, Valeria; Goffrini, Paola

    2015-01-01

    Mutations in nuclear genes associated with defective coenzyme A biosynthesis have been identified as responsible for some forms of neurodegeneration with brain iron accumulation (NBIA), namely PKAN and CoPAN. PKAN are defined by mutations in PANK2, encoding the pantothenate kinase 2 enzyme, that account for about 50% of cases of NBIA, whereas mutations in CoA synthase COASY have been recently reported as the second inborn error of CoA synthesis leading to CoPAN. As reported previously, yeast cells expressing the pathogenic mutation exhibited a temperature-sensitive growth defect in the absence of pantothenate and a reduced CoA content. Additional characterization revealed decreased oxygen consumption, reduced activities of mitochondrial respiratory complexes, higher iron content, increased sensitivity to oxidative stress and reduced amount of lipid droplets, thus partially recapitulating the phenotypes found in patients and establishing yeast as a potential model to clarify the pathogenesis underlying PKAN and CoPAN diseases. PMID:28357284

  18. Variation in an Iron Metabolism Gene Moderates the Association Between Blood Lead Levels and Attention-Deficit/Hyperactivity Disorder in Children

    PubMed Central

    Nigg, Joel T.; Elmore, Alexis L.; Natarajan, Neil; Friderici, Karen H.; Nikolas, Molly A.

    2016-01-01

    Although attention-deficit/hyperactivity disorder (ADHD) is a heritable neurodevelopmental condition, there is also considerable scientific and public interest in environmental modulators of its etiology. Exposure to neurotoxins is one potential source of perturbation of neural, and hence psychological, development. Exposure to lead in particular has been widely investigated and is correlated with neurodevelopmental outcomes, including ADHD. To investigate whether this effect is likely to be causal, we used a Mendelian randomization design with a functional gene variant. In a case-control study, we examined the association between ADHD symptoms in children and blood lead level as moderated by variants in the hemochromatosis (HFE) gene. The HFE gene regulates iron uptake and secondarily modulates lead metabolism. Statistical moderation was observed: The magnitude of the association of blood lead with symptoms of ADHD was altered by functional HFE genotype, which is consistent with a causal hypothesis. PMID:26710823

  19. Iron, hepcidin, and the metal connection

    PubMed Central

    Loréal, Olivier; Cavey, Thibault; Bardou-Jacquet, Edouard; Guggenbuhl, Pascal; Ropert, Martine; Brissot, Pierre

    2014-01-01

    Identification of new players in iron metabolism, such as hepcidin, which regulates ferroportin and divalent metal transporter 1 expression, has improved our knowledge of iron metabolism and iron-related diseases. However, from both experimental data and clinical findings, “iron-related proteins” appear to also be involved in the metabolism of other metals, especially divalent cations. Reports have demonstrated that some metals may affect, directly or indirectly, the expression of proteins involved in iron metabolism. Throughout their lives, individuals are exposed to various metals during personal and/or occupational activities. Therefore, better knowledge of the connections between iron and other metals could improve our understanding of iron-related diseases, especially the variability in phenotypic expression, as well as a variety of diseases in which iron metabolism is secondarily affected. Controlling the metabolism of other metals could represent a promising innovative therapeutic approach. PMID:24926268

  20. Iron and Mechanisms of Emotional Behavior

    PubMed Central

    Kim, Jonghan; Wessling-Resnick, Marianne

    2014-01-01

    Iron is required for appropriate behavioral organization. Iron deficiency results in poor brain myelination and impaired monoamine metabolism. Glutamate and GABA homeostasis is modified by changes in brain iron status. Such changes not only produce deficits in memory/learning capacity and motor skills, but also emotional and psychological problems. An accumulating body of evidence indicates that both energy metabolism and neurotransmitter homeostasis influence emotional behavior, and both functions are influenced by brain iron status. Like other neurobehavioral aspects, the influence of iron metabolism on mechanisms of emotional behavior are multifactorial: brain region-specific control of behavior, regulation of neurotransmitters and associated proteins, temporal and regional differences in iron requirements, oxidative stress responses to excess iron, sex differences in metabolism, and interactions between iron and other metals. To better understand the role that brain iron plays in emotional behavior and mental health, this review discusses the pathologies associated with anxiety and other emotional disorders with respect to body iron status. PMID:25154570

  1. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis following cold stress in Elymus nutans Griseb.

    PubMed

    Fu, Juanjuan; Gates, Roger N; Xu, Yuefei; Hu, Tianming

    2016-10-01

    attributed to reduced diffusion limitations and rapid recuperation of metabolic factors.

  2. Effect of chronic ethanol ingestion on the metabolism of copper, iron, manganese, selenium, and zinc in an animal model of alcoholic cardiomyopathy

    SciTech Connect

    Bogden, J.D.; Al-Rabiai, S.; Gilani, S.H.

    1984-01-01

    Alcoholic cardiomyopathy (AC) is one of the diseases caused by alcohol abuse, and there has been considerable debate about the possibility that nutritional factors may be important in the etiology of AC. In addition, there is evidence that ethanol may affect the metabolism of trace elements. The purpose of this investigation was to determine if chronic ethanol administration produces changes in the metabolism of the essential metals copper, iron, manganese, zinc, and selenium using an animal model of AC. Eighteen male Sprague-Dawley rats were divided into three groups; an ad libitum control group (AL), a pair-fed control group (PF), and an ethanol-dosed group (ETOH). The latter group received gradually increasing concentrations (5-25%) of ethanol in the drinking water for 15 wk. Food intake was monitored and urine and feces collected for a 4-d period during the study to determine ethanol effects on trace-element balance. Growth of both the PF and ETOH animals was inhibited. Ethanol produced substantial increases in liver manganese and decreases in liver copper and zinc. Metal concentrations in heart and concentrations in other tissues studied (spleen, testes, brain, bone, kidney, and muscle) did not differ significantly among the groups, except for testes selenium and kidney zinc. Reduced food intake and ethanol ingestion were associated with a reduced percentage of ingested selenium excreted in the urine. Deficiencies of copper, iron, manganese, selenium, and zinc in myocardial tissue are not likely to be involved in the pathogenesis of AC in the rat. 38 references, 1 figure, 4 tables.

  3. Iron and the endurance athlete.

    PubMed

    Hinton, Pamela S

    2014-09-01

    Iron is a trace mineral that is highly significant to endurance athletes. Iron is critical to optimal athletic performance because of its role in energy metabolism, oxygen transport, and acid-base balance. Endurance athletes are at increased risk for suboptimal iron status, with potential negative consequences on performance, because of the combination of increased iron needs and inadequate dietary intake. This review paper summarizes the role of iron in maximal and submaximal exercise and describes the effects of iron deficiency on exercise performance. Mechanisms that explain the increased risk of iron deficiency in endurance athletes, including exercise-associated inflammation and hepcidin release on iron sequestration, are described. Information on screening athletes for iron deficiency is presented, and suggestions to increase iron intake through diet modification or supplemental iron are provided.

  4. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.

    PubMed

    Jiang, Danlie; Hu, Xialin; Wang, Rui; Yin, Daqiang

    2015-03-01

    Oxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen≈8mgL(-1)) and anaerobic (dissolved oxygen <3mgL(-1)) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe(0)≈8±5%), thus magnetization mainly depended on magnetite content. Since sufficient dissolved oxygen led to the much less magnetite (∼15%) in HO-nZVI than that in LO-nZVI (>90%), HO-nZVI was far less magnetic (Ms=88kAm(-1)) than LO-nZVI (Ms=365kAm(-1)). Consequently, HO-nZVI formed small agglomerates (228±10nm), while LO-nZVI tended to form chain-like aggregations (>1μm) which precipitated rapidly. Based on the EDLVO theory, we suggested that dissolved oxygen level determined aggregation morphologies by controlling the degree of oxidation and the magnitude of magnetization. Then the chain-like alignment of LO-nZVI would promote further aggregation, but the agglomerate morphology of HO-nZVI would eliminate magnetic forces and inhibit the aggregation while HO-nZVI remained magnetic. Our results indicated the fine colloidal stability of HO-nZVI, which might lead to the great mobility in the environment.

  5. Role of skeletal muscles impairment and brain oxygenation in limiting oxidative metabolism during exercise after bed rest.

    PubMed

    Porcelli, Simone; Marzorati, Mauro; Lanfranconi, Francesca; Vago, Paola; Pisot, Rado; Grassi, Bruno

    2010-07-01

    "Central" and "peripheral" limitations to oxidative metabolism during exercise were evaluated in 10 young males following a 35-day horizontal bed rest (BR). Incremental exercise (IE) and moderate- and heavy-intensity constant-load exercises (CLE) were carried out on a cycloergometer before and 1-2 days after BR. Pulmonary gas exchange, cardiac output (Q; by impedance cardiography), skeletal muscle (vastus lateralis), and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined. After BR, "peak" (values at exhaustion during IE) workload, peak O(2) uptake (Vo(2 peak)), peak stroke volume, Q(peak), and peak skeletal muscle O(2) extraction were decreased (-18, -18, -22, -19, and -33%, respectively). The gas exchange threshold was approximately 60% of Vo(2 peak) both before and after BR. At the highest workloads, brain oxygenation data suggest an increased O(2) extraction, which was unaffected by BR. Vo(2) kinetics during CLE (same percentage of peak workload before and after BR) were slower (time constant of the "fundamental" component: 31.1 +/- 2.0 s before vs. 40.0 +/- 2.2 s after BR); the amplitude of the "slow component" was unaffected by BR, thus it would be greater, after BR, at the same absolute workload. A more pronounced "overshoot" of skeletal muscle O(2) extraction during CLE was observed after BR, suggesting an impaired adjustment of skeletal muscle O(2) delivery. The role of skeletal muscles in the impairment of oxidative metabolism during submaximal and maximal exercise after BR was identified. The reduced capacity of peak cardiovascular O(2) delivery did not determine a "competition" for the available O(2) between skeletal muscles and brain.

  6. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    PubMed Central

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-01-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community. PMID:28300176

  7. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community.

    PubMed

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-16

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlate(TM) technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  8. FMN-coated fluorescent iron oxide nanoparticles for RCP-mediated targeting and labeling of metabolically active cancer and endothelial cells.

    PubMed

    Jayapaul, Jabadurai; Hodenius, Michael; Arns, Susanne; Lederle, Wiltrud; Lammers, Twan; Comba, Peter; Kiessling, Fabian; Gaetjens, Jessica

    2011-09-01

    Riboflavin is an essential vitamin for cellular metabolism and is highly upregulated in metabolically active cells. Consequently, targeting the riboflavin carrier protein (RCP) may be a promising strategy for labeling cancer and activated endothelial cells. Therefore, Ultrasmall SuperParamagnetic Iron Oxide nanoparticles (USPIO) were adsorptively coated with the endogenous RCP ligand flavin mononucleotide (FMN), which renders them target-specific and fluorescent. The core diameter, surface morphology and surface coverage of the resulting FMN-coated USPIO (FLUSPIO) were evaluated using a variety of physico-chemical characterization techniques (TEM, DLS, MRI and fluorescence spectroscopy). The biocompatibility of FLUSPIO was confirmed using three different cell viability assays (Trypan blue staining, 7-AAD staining and TUNEL). In vitro evaluation of FLUSPIO using MRI and fluorescence microscopy demonstrated high labeling efficiency of cancer cells (PC-3, DU-145, LnCap) and activated endothelial cells (HUVEC). Competition experiments (using MRI and ICP-MS) with a 10- and 100-fold excess of free FMN confirmed RCP-specific uptake of the FLUSPIO by PC-3 cells and HUVEC. Hence, RCP-targeting via FMN may be an elegant way to render nanoparticles fluorescent and to increase the labeling efficacy of cancer and activated endothelial cells. This was shown for FLUSPIO, which due to their high T(2)-relaxivity, are favorably suited for MR cell tracking experiments and cancer detection in vivo.

  9. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    NASA Astrophysics Data System (ADS)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  10. Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis.

    PubMed

    Liu, T; Kishton, R J; Macintyre, A N; Gerriets, V A; Xiang, H; Liu, X; Abel, E D; Rizzieri, D; Locasale, J W; Rathmell, J C

    2014-10-16

    The metabolic profiles of cancer cells have long been acknowledged to be altered and to provide new therapeutic opportunities. In particular, a wide range of both solid and liquid tumors use aerobic glycolysis to supply energy and support cell growth. This metabolic program leads to high rates of glucose consumption through glycolysis with secretion of lactate even in the presence of oxygen. Identifying the limiting events in aerobic glycolysis and the response of cancer cells to metabolic inhibition is now essential to exploit this potential metabolic dependency. Here, we examine the role of glucose uptake and the glucose transporter Glut1 in the metabolism and metabolic stress response of BCR-Abl+ B-cell acute lymphoblastic leukemia cells (B-ALL). B-ALL cells were highly glycolytic and primary human B-ALL samples were dependent on glycolysis. We show B-ALL cells express multiple glucose transporters and conditional genetic deletion of Glut1 led to a partial loss of glucose uptake. This reduced glucose transport capacity, however, was sufficient to metabolically reprogram B-ALL cells to decrease anabolic and increase catabolic flux. Cell proliferation decreased and a limited degree of apoptosis was also observed. Importantly, Glut1-deficient B-ALL cells failed to accumulate in vivo and leukemic progression was suppressed by Glut1 deletion. Similarly, pharmacologic inhibition of aerobic glycolysis with moderate doses of 2-deoxyglucose (2-DG) slowed B-ALL cell proliferation, but extensive apoptosis only occurred at high doses. Nevertheless, 2-DG induced the pro-apoptotic protein Bim and sensitized B-ALL cells to the tyrosine kinase inhibitor Dasatinib in vivo. Together, these data show that despite expression of multiple glucose transporters, B-ALL cells are reliant on Glut1 to maintain aerobic glycolysis and anabolic metabolism. Further, partial inhibition of glucose metabolism is sufficient to sensitize cancer cells to specifically targeted therapies, suggesting

  11. Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis

    PubMed Central

    Liu, T; Kishton, R J; Macintyre, A N; Gerriets, V A; Xiang, H; Liu, X; Abel, E D; Rizzieri, D; Locasale, J W; Rathmell, J C

    2014-01-01

    The metabolic profiles of cancer cells have long been acknowledged to be altered and to provide new therapeutic opportunities. In particular, a wide range of both solid and liquid tumors use aerobic glycolysis to supply energy and support cell growth. This metabolic program leads to high rates of glucose consumption through glycolysis with secretion of lactate even in the presence of oxygen. Identifying the limiting events in aerobic glycolysis and the response of cancer cells to metabolic inhibition is now essential to exploit this potential metabolic dependency. Here, we examine the role of glucose uptake and the glucose transporter Glut1 in the metabolism and metabolic stress response of BCR-Abl+ B-cell acute lymphoblastic leukemia cells (B-ALL). B-ALL cells were highly glycolytic and primary human B-ALL samples were dependent on glycolysis. We show B-ALL cells express multiple glucose transporters and conditional genetic deletion of Glut1 led to a partial loss of glucose uptake. This reduced glucose transport capacity, however, was sufficient to metabolically reprogram B-ALL cells to decrease anabolic and increase catabolic flux. Cell proliferation decreased and a limited degree of apoptosis was also observed. Importantly, Glut1-deficient B-ALL cells failed to accumulate in vivo and leukemic progression was suppressed by Glut1 deletion. Similarly, pharmacologic inhibition of aerobic glycolysis with moderate doses of 2-deoxyglucose (2-DG) slowed B-ALL cell proliferation, but extensive apoptosis only occurred at high doses. Nevertheless, 2-DG induced the pro-apoptotic protein Bim and sensitized B-ALL cells to the tyrosine kinase inhibitor Dasatinib in vivo. Together, these data show that despite expression of multiple glucose transporters, B-ALL cells are reliant on Glut1 to maintain aerobic glycolysis and anabolic metabolism. Further, partial inhibition of glucose metabolism is sufficient to sensitize cancer cells to specifically targeted therapies, suggesting

  12. Two-band and pauli-limiting effects on the upper critical field of 112-type iron pnictide superconductors

    PubMed Central

    Xing, Xiangzhuo; Zhou, Wei; Wang, Jinhua; Zhu, Zengwei; Zhang, Yufeng; Zhou, Nan; Qian, Bin; Xu, Xiaofeng; Shi, Zhixiang

    2017-01-01

    The temperature dependence of upper critical field μ0Hc2 of Ca0.83La0.17FeAs2 and Ca0.8La0.2Fe0.98Co0.02As2 single crystals are investigated by measuring the resistivity for the inter-plane (H//c) and in-plane (H//ab) directions in magnetic fields up to 60 T. It is found that μ0Hc2(T) of both crystals for H//c presents a sublinear temperature dependence with decreasing temperature, whereas the curve of μ0Hc2(T) for H//ab has a convex curvature and gradually tends to saturate at low temperatures. μ0Hc2(T) in both crystals deviates from the conventional Werthamer-Helfand-Hohenberg (WHH) theoretical model without considering spin paramagnetic effect for H//c and H//ab directions. Detailed analyses show that the behavior of μ0Hc2(T) in 112-type Iron-based superconductors (IBSs) is similar to that of most IBSs. Two-band model is required to fully reproduce the behavior of μ0Hc2(T) for H//c, while the effect of spin paramagnetic effect is responsible for the behavior of μ0Hc2(T) for H//ab. PMID:28383529

  13. Iron Test

    MedlinePlus

    ... detect and help diagnose iron deficiency or iron overload. In people with anemia , these tests can help ... also be ordered when iron deficiency or iron overload is suspected. Early iron deficiency often goes unnoticed. ...

  14. Systems biology and metabolic modelling unveils limitations to polyhydroxybutyrate accumulation in sugarcane leaves; lessons for C4 engineering.

    PubMed

    McQualter, Richard B; Bellasio, Chandra; Gebbie, Leigh K; Petrasovits, Lars A; Palfreyman, Robin W; Hodson, Mark P; Plan, Manuel R; Blackman, Deborah M; Brumbley, Stevens M; Nielsen, Lars K

    2016-02-01

    In planta production of the bioplastic polyhydroxybutyrate (PHB) is one important way in which plant biotechnology can address environmental problems and emerging issues related to peak oil. However, high biomass C4 plants such as maize, switch grass and sugarcane develop adverse phenotypes including stunting, chlorosis and reduced biomass as PHB levels in leaves increase. In this study, we explore limitations to PHB accumulation in sugarcane chloroplasts using a systems biology approach, coupled with a metabolic model of C4 photosynthesis. Decreased assimilation was evident in high PHB-producing sugarcane plants, which also showed a dramatic decrease in sucrose and starch content of leaves. A subtle decrease in the C/N ratio was found which was not associated with a decrease in total protein content. An increase in amino acids used for nitrogen recapture was also observed. Based on the accumulation of substrates of ATP-dependent reactions, we hypothesized ATP starvation in bundle sheath chloroplasts. This was supported by mRNA differential expression patterns. The disruption in ATP supply in bundle sheath cells appears to be linked to the physical presence of the PHB polymer which may disrupt photosynthesis by scattering photosynthetically active radiation and/or physically disrupting thylakoid membranes.

  15. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro.

    PubMed

    Lesjak, Marija; Hoque, Rukshana; Balesaria, Sara; Skinner, Vernon; Debnam, Edward S; Srai, Surjit K S; Sharp, Paul A

    2014-01-01

    Balancing systemic iron levels within narrow limits is critical for maintaining human health. There are no known pathways to eliminate excess iron from the body and therefore iron homeostasis is maintained by modifying dietary absorption so that it matches daily obligatory losses. Several dietary factors can modify iron absorption. Polyphenols are plentiful in human diet and many compounds, including quercetin--the most abundant dietary polyphenol--are potent iron chelators. The aim of this study was to investigate the acute and longer-term effects of quercetin on intestinal iron metabolism. Acute exposure of rat duodenal mucosa to quercetin increased apical iron uptake but decreased subsequent basolateral iron efflux into the circulation. Quercetin binds iron between its 3-hydroxyl and 4-carbonyl groups and methylation of the 3-hydroxyl group negated both the increase in apical uptake and the inhibition of basolateral iron release, suggesting that the acute effects of quercetin on iron transport were due to iron chelation. In longer-term studies, rats were administered quercetin by a single gavage and iron transporter expression measured 18 h later. Duodenal FPN expression was decreased in quercetin-treated rats. This effect was recapitulated in Caco-2 cells exposed to quercetin for 18 h. Reporter assays in Caco-2 cells indicated that repression of FPN by quercetin was not a transcriptional event but might be mediated by miRNA interaction with the FPN 3'UTR. Our study highlights a novel mechanism for the regulation of iron bioavailability by dietary polyphenols. Potentially, diets rich in polyphenols might be beneficial for patients groups at risk of iron loading by limiting the rate of intestinal iron absorption.

  16. Iron acquisition by Cryptococcus neoformans.

    PubMed

    Vartivarian, S E; Cowart, R E; Anaissie, E J; Tashiro, T; Sprigg, H A

    1995-01-01

    Iron is an essential element for the growth and metabolism of microbial cells. Most pathogenic microbes elaborate powerful iron chelating agents (siderophores) to mobilize iron from ferric ligands. The pathogenic yeast, Cryptococcus neoformans has not been found to produce siderophores and its mechanism of iron acquisition is unknown. This investigation explored an alternative pathway for iron acquisition by examining the interactions of iron with the cell surface. Iron uptake experiments were conducted utilizing radiolabelled ferrous iron and ferric iron chelates, with evidence for the presence of iron(II) receptors and the generation of ferrous iron by surface reduction. Hyperbolic kinetics were found when 59FeII was presented to the organism and uptake was blocked with bathophenanthroline sulphonate, an Fe2+ chelator. The yeast also acquired iron as [59Fe3+]-citrate and [59Fe3+]-pyrophosphate while bathophenanthroline sulphonate reduced the acquisition of these ferric ligands by 48% and 52% respectively. Pre-incubation with either ferric ligand also reduced iron acquisition by 50%. KCN inhibited uptake of iron(II) by 90% and uptake of [59Fe3+]-pyrophosphate and [59Fe3+]-citrate by 46% and 56% respectively; dinitrophenol had no effect on these processes. The data suggest that C. neoformans can (i) generate ferrous iron at the cell surface via a reduction of ferric chelates, with the subsequent acquisition of the ferrous iron, and (ii) acquire iron through the interaction of ferric chelates with a surface component.

  17. Salmonella proteomics under oxidative stress reveals coordinated regulation of antioxidant defense with iron metabolism and bacterial virulence.

    PubMed

    Fu, Jiaqi; Qi, Linlu; Hu, Mo; Liu, Yanhua; Yu, Kaiwen; Liu, Qian; Liu, Xiaoyun

    2017-03-22

    Salmonella Typhimurium is a bacterial pathogen that can cause widespread gastroenteritis. Salmonella encounters reactive oxygen species both under free-living conditions and within their mammalian host during infection. To study its response to oxidative stress, we performed the first large-scale proteomic profiling of Salmonella upon exposure to H2O2. Among 1600 detected proteins, 83 proteins showed significantly altered abundance. Interestingly, only a subset of known antioxidants was induced, likely due to distinct regulatory mechanisms. In addition, we found elevation of several Salmonella acquired phage products with potential contribution to DNA repair under oxidative stress. Furthermore, we observed robust induction of iron-uptake systems and disruption of these pathways led to bacterial survival defects under H2O2 challenge. Importantly, this work is the first to report that oxidative stress severely repressed the Salmonella type III secretion system (T3SS), reducing its virulence. Biological significance Salmonella, a Gram-negative bacterial pathogen, encounters reactive oxygen species (ROS) both endogenously and exogenously. To better understand its response to oxidative stress, we performed the first large-scale profiling of Salmonella protein expression upon H2O2 treatment. Among 1600 quantified proteins, the abundance of 116 proteins was altered significantly. Notably, iron acquisition systems were induced to promote bacterial survival under oxidative stress. Furthermore, we are the first to report that oxidative stress severely repressed Salmonella type III secretion system and hence reduced its virulence. We believe that these findings will not only help us better understand the molecular mechanisms that Salmonella has evolved to counteract ROS but also the global impact of oxidative stress on bacterial physiology.

  18. Post-Transcriptional Regulation of Iron Homeostasis in Saccharomyces cerevisiae

    PubMed Central

    Martínez-Pastor, María Teresa; de Llanos, Rosa; Romero, Antonia María; Puig, Sergi

    2013-01-01

    Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in a wide variety of biological processes. Recent studies in Saccharomyces cerevisiae have shown that in response to iron deficiency, an RNA-binding protein denoted Cth2 coordinates a global metabolic rearrangement that aims to optimize iron utilization. The Cth2 protein contains two Cx8Cx5Cx3H tandem zinc fingers (TZFs) that specifically bind to adenosine/uridine-rich elements within the 3′ untranslated region of many mRNAs to promote their degradation. The Cth2 protein shuttles between the nucleus and the cytoplasm. Once inside the nucleus, Cth2 binds target mRNAs and stimulates alternative 3′ end processing. A Cth2/mRNA-containing complex is required for export to the cytoplasm, where the mRNA is degraded by the 5′ to 3′ degradation pathway. This post-transcriptional regulatory mechanism limits iron utilization in nonessential pathways and activates essential iron-dependent enzymes such as ribonucleotide reductase, which is required for DNA synthesis and repair. Recent findings indicate that the TZF-containing tristetraprolin protein also functions in modulating human iron homeostasis. Elevated iron concentrations can also be detrimental for cells. The Rnt1 RNase III exonuclease protects cells from excess iron by promoting the degradation of a subset of the Fe acquisition system when iron levels rise. PMID:23903042

  19. Methanogens rapidly transition from methane production to iron reduction.

    PubMed

    Sivan, O; Shusta, S S; Valentine, D L

    2016-03-01

    Methanogenesis, the microbial methane (CH4 ) production, is traditionally thought to anchor the mineralization of organic matter as the ultimate respiratory process in deep sediments, despite the presence of oxidized mineral phases, such as iron oxides. This process is carried out by archaea that have also been shown to be capable of reducing iron in high levels of electron donors such as hydrogen. The current pure culture study demonstrates that methanogenic archaea (Methanosarcina barkeri) rapidly switch from methanogenesis to iron-oxide reduction close to natural conditions, with nitrogen atmosphere, even when faced with substrate limitations. Intensive, biotic iron reduction was observed following the addition of poorly crystalline ferrihydrite and complex organic matter and was accompanied by inhibition of methane production. The reaction rate of this process was of the first order and was dependent only on the initial iron concentrations. Ferrous iron production did not accelerate significantly with the addition of 9,10-anth