Science.gov

Sample records for iron ore pelletizing

  1. Microstructure of bentonite in iron ore green pellets.

    PubMed

    Bhuiyan, Iftekhar U; Mouzon, Johanne; Schröppel, Birgit; Kaech, Andres; Dobryden, Illia; Forsmo, Seija P E; Hedlund, Jonas

    2014-02-01

    Sodium-activated calcium bentonite is used as a binder in iron ore pellets and is known to increase strength of both wet and dry iron ore green pellets. In this article, the microstructure of bentonite in magnetite pellets is revealed for the first time using scanning electron microscopy. The microstructure of bentonite in wet and dry iron ore pellets, as well as in distilled water, was imaged by various imaging techniques (e.g., imaging at low voltage with monochromatic and decelerated beam or low loss backscattered electrons) and cryogenic methods (i.e., high pressure freezing and plunge freezing in liquid ethane). In wet iron ore green pellets, clay tactoids (stacks of parallel primary clay platelets) were very well dispersed and formed a voluminous network occupying the space available between mineral particles. When the pellet was dried, bentonite was drawn to the contact points between the particles and formed solid bridges, which impart strength to the solid compact.

  2. Characterization of iron ore pellets with dextrin added organic binders under different time and temperature conditions

    NASA Astrophysics Data System (ADS)

    babu kotta, Anand; karak, Swapan kumar; Kumar, M.

    2017-02-01

    In the present work, Dextrin is used as a binder for iron ore pelletization, as it’s free from Silica and Alumina. Green pellets were prepared by mixing of iron ore particles (-75 μm) with varying binder percentage (1 wt. % bentonite, 0.5 and 1 wt. % of dextrin) separately. The green pellets were first dried in air for 24 h and then in an electric oven at 383 K for 4 h. The dried pellets were fired at varying temperatures (1173, 1273, 1373, and 1473 K) and indurated for 1 and 2 h. The samples were characterized for physical (pellet size) and mechanical (compressive strengths, porosity and hardness) properties. Good quality pellets were prepared with organic binder, and which increases the compressive strength of dry and fired pellets. Strength results are matching with the bentonite binder pellets and it is well above the industrially acceptable limit (250 kg/pellet). Porosity of the fired pellets decreases with increasing temperature and induration time. The hardness of the pellet varies from surface to core of the pellet. Moreover, the influence of wear mechanism (based on collisions) on pellets and its characteristics of generated particle size distribution (PSD) have been investigated. It was noticed that the material loss during wear test decreases with increasing strength of the pellet. From PSD analysis, the coarse particles were revealed that the collisions are dominating during wear.

  3. Study of nonisothermal reduction of iron ore-coal/char composite pellet

    NASA Astrophysics Data System (ADS)

    Dutta, S. K.; Ghosh, A.

    1994-01-01

    Cold-bonded composite pellets, consisting of iron ore fines and fines of noncoking coal or char, were prepared by steam curing at high pressure in an autoclave employing inorganic binders. Dry compressive strength ranged from 200 to 1000 N for different pellets. The pellets were heated from room temperature to 1273 K under flowing argon at two heating rates. Rates of evolution of product gases were determined from gas Chromatographie analysis, and the temperature of the sample was monitored by thermocouple as a function of time during heating. Degree of reduction, volume change, and compressive strength of the pellets upon reduction were measured subsequently. Degree of reduction ranged from 46 to 99 pct. Nonisothermal devolatilization of coal by this procedure also was carried out for comparison. It has been shown that a significant quantity (10 to 20 pct of the pellet weight) of extraneous H2O and CO2 was retained by dried pellets. This accounted for the generation of additional quantities of H2 and CO during heating. Carbon was the major reductant, but reduction by H2 also was significant. Ore-coal and ore-char composites exhibited a comparable degree of reduction. However, the former showed superior postreduction strength due to a smaller amount of swelling upon reduction.

  4. Effect of Experimental Conditions on Cementite Formation During Reduction of Iron Ore Pellets

    NASA Astrophysics Data System (ADS)

    Kazemi, Mania; Sichen, Du

    2016-12-01

    Experiments have been carried out to study the effect of temperature, gas composition, residence time, and type of iron ore pellets on formation of cementite during gaseous reduction of hematite. Industrial iron ore pellets have been reduced isothermally in a gas mixture with H2 and CO as main components. The presence of Fe3C in the partially reduced pellets shows that reduction and cementite formation take place at the same time. The maximum content of cementite is identified in the samples reduced by H2-CO at 1123 K (850 °C). The decrease in the carbide content due to addition of 1 pct CO2 to the initial gas mixture reveals the major influence of carbon potential in the gas atmosphere. Further increase of CO2 content increases the Fe3C. The variations of the amount of cementite with the CO2 content suggest that both the thermodynamics and kinetics of cementite formation are affected by the gas composition. Cementite decomposes to graphite and iron particles in reducing and inert atmospheres as the residence time of pellets at high temperature is increased above 60 minutes.

  5. Utilization of Lime Fines as an Effective Binder as well as Fluxing Agent for Making Fluxed Iron Ore Pellets

    NASA Astrophysics Data System (ADS)

    Mandal, Arup Kumar; Sarkar, Alok; Sinha, Om Prakash

    2016-04-01

    A laboratory study was carried out to characterize the physical, chemical and mechanical properties of lime fluxed (varying basicity 0-2) hematite iron ore pellets. Lime was used as additive as well as fluxing agent for making iron ore pellets. The effect of additives on different properties of pellets was studied. The findings show that on increasing the addition of lime, more of calcium-alumino-silicate phases were produced as confirmed by SEM-EDAX analysis. These phases have low melting points, which enhances sticking behaviour of pellets, as well as imparts strength to the pellets (resulting increasing compressive strength, tumbler, abrasion and shatter index) but decreases the porosity. The low basicity pellets were found predominantly oxide-bonded, while the high basicity pellets were mostly slag-bonded. This means that the pellet should be fired at sufficiently high enough temperature to generate liquid phases to get the sufficient strength but not so high as to cause the pellets to stick to each other. The obtained properties of these fluxed pellets were compared with the properties of iron ore lump and pellets, which are being used conventionally in the blast furnace for production of iron and steel.

  6. Studies on the reduction kinetics of hematite iron ore pellets with noncoking coals for sponge iron plants

    SciTech Connect

    Kumar, M.; Mohapatra, P.; Patel, S.K.

    2009-07-01

    In the present investigation, fired pellets were made by mixing hematite iron ore fines of -100, -16+18, and -8+10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850{sup o}C to 1000{sup o}C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000{sup o}C, and it was more intense in the first 30min. The values of activation energy, calculated from integral and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of -100 mesh size) in coals were found to be in the range 131-148 and 130-181 kJ mol{sup -1} (for =0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of -100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.

  7. Use of solid fuel in the production of pellets with Venezuelan iron ore

    SciTech Connect

    Rodriguez, A.; Ionescu, D.; Reyes, N.; Carrasquel, A.; Murati, C.; Guzman, J.L. )

    1993-01-01

    The pellet plant of Sidor consists of a dry grinding process for the iron ore and an induration process which takes place in a travelling grate furnace. The technical personnel considered the necessity of increasing the actual levels of productivity of 417 t/h and the abrasion index of 6%. To obtain this target, the technicians developed a series of pilot tests using solid fuel in the pelletizing mixture which gave positive results in the production of fluxed pellets using Venezuelan hematitic ore. At the industrial level the results were more successful than at pilot level; the productivity and the quality of pellets improved above the design values. The amount of coke used in the mixture was 0.7% and it required a significant change in the thermal profile of the furnace. The productivity increased 22.5% the abrasion index improved by 17.0%. The energy consumption was reduced to 25%. After this successful campaign there are plans for increasing the coke addition more than 1% which will allow abrasion levels between 4.0 and 4.5%, the compression strength between 320 and 330 Kg/pellet and also increase the productivity of the plant.

  8. High-carbon fly-ash as a binder for iron ore pellets

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.; Ripke, S.J.; Ramirez, G.

    1999-09-01

    The goal of this project was to convert currently unusable fly-ashes into a material that can be used as a binder for iron ore. Such a binder would also be useful for other high-volume markets, including foundry sand mold binders. Previously, the investigators used fly-ash in combination with calcium hydroxide as an additive while calcium chloride was added as a hardening accelerator. However, the addition of chloride salts have a detrimental effect because chlorine causes corrosion in processing equipment. Therefore, other potential hardening accelerators were investigated during this project. During production, dried iron-ore pellets are required to have crushing strength of at least 22.2 newtons (5 pounds force) per 12.7 mm (1/2 inch) diameter pellet. The pellets are then sintered at temperatures up to 1300 C and must not exhibit a significant degree of spalling or cracking. Pellets will therefore be tested to determine whether acceptable dry crushing strengths can be achieved.

  9. Assessment of reduction behavior of hematite iron ore pellets in coal fines for application in sponge ironmaking

    SciTech Connect

    Kumar, M.; Patel, S.K.

    2009-07-01

    Studies on isothermal reduction kinetics (with F grade coal) in fired pellets of hematite iron ores, procured from four different mines of Orissa, were carried out in the temperature range of 850-1000C to provide information for the Indian sponge iron plants. The rate of reduction in all the fired iron ore pellets increased markedly with a rise of temperature up to 950C, and thereafter it decreased at 1000C. The rate was more intense in the first 30 minutes. All iron ores exhibited almost complete reduction in their pellets at temperatures of 900 and 950C in 2 hours' heating time duration, and the final product morphologies consisted of prominent cracks. The kinetic model equation 1-(1-a){sup 1/3}=kt was found to fit best to the experimental data, and the values of apparent activation energy were evaluated. Reductions of D. R. Pattnaik and M. G. Mohanty iron ore pellets were characterized by higher activation energies (183 and 150 kJ mol{sup -1}), indicating carbon gasification reaction to be the rate-controlling step. The results established lower values of activation energy (83 and 84 kJ mol{sup -1}) for the reduction of G. M. OMC Ltd. and Sakaruddin iron ore pellets, proposing their overall rates to be controlled by indirect reduction reactions.

  10. Phosphorus Migration During Direct Reduction of Coal Composite High-Phosphorus Iron Ore Pellets

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Xue, Qingguo; Wang, Guang; Zhang, Yuanyuan; Wang, Jingsong

    2016-02-01

    This study investigated the direct reduction process and phosphorus migration features of high-phosphorus iron ores using simulated experiments. Results show that iron oxide was successfully reduced, and a Fe-Si-Al slag formed in carbon-bearing pellets at 1473 K (1200 °C). Fluorapatite then began to decompose into Ca3(PO4)2 and CaF2. As the reaction continued, Ca3(PO4)2 and Fe-Si-Al slag reacted quickly with each other to generate CaAl2Si2O8 and P2, while CaF2 turned into SiF4 gas in the presence of high SiO2. A small amount remained in the slag phase and formed CaAl2Si2O8. Further analysis detailed the migration process of the phosphorus into iron phases, as well as the relationship between carburization and phosphorus absorption in the iron phases. As carbon content in the iron phase increased, the austenite grain boundary melted and formed a large quantity of liquid iron which quickly absorbed the phosphorus. Based on the results of simulation and analysis, this paper proposed a method which reduced the absorption of P by the metallic iron formed and reduced P content in metallic iron during direct reduction.

  11. Production and blast-furnace smelting of boron-alloyed iron-ore pellets

    SciTech Connect

    A.A. Akberdin; A.S. Kim

    2008-08-15

    Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

  12. Utilization of waste polyethylene terephthalate as a reducing agent in the reduction of iron ore composite pellets

    NASA Astrophysics Data System (ADS)

    Polat, Gökhan; Birol, Burak; Sarıdede, Muhlis Nezihi

    2014-08-01

    The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450°C for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450°C for 10 min using composite pellets containing 60% PET and 40% coke.

  13. Effective adsorption of phosphate from wastewaters by big composite pellets made of reduced steel slag and iron ore concentrate.

    PubMed

    Wang, Hongjuan; Shen, Shaobo; Liu, Longhui; Ji, Yilong; Wang, Fuming

    2015-01-01

    In order to remove phosphate from wastewater, a large plastic adsorption column filled with big phosphate-adsorbing pellets with diameters of 10 mm, heated by electromagnetic induction coils, was conceived. It was found that the prepared big pellets, which were made of reduced steel slag and iron ore concentrate, contain magnetic Fe and Fe3O4. The thermodynamics and kinetics of adsorption of phosphate from synthetic wastewaters on the pellets were studied in this work. The phosphate adsorption on the pellets followed three models of Freundlich, Langmuir and Dubinin-Kaganer-Radushkevick. The maximum phosphate adsorption capacity Qmax of the pellets were 2.46, 2.74 and 2.77 mg/g for the three temperatures of 20°C, 30°C and 40°C, respectively, based on the Langmuir model. The apparent adsorption energies were -12.9 kJ/mol for the three temperatures. It implied that ion exchange was the main mechanism involved in the adsorption processes. The adsorbed phosphate existed on the pellet surface mainly in the form of Fe3(PO4)2. A reduction pre-treatment of the pellet precursor with H2 greatly enhanced pellet adsorption for phosphate. The adsorption kinetics is better represented by a pseudo-first-order model. The adsorbed phosphate amounts were similar for both real and synthetic wastewaters under similar adsorption conditions. The percentage of adsorbed phosphate for a real wastewater increased with increasing pellet concentration and reached 99.2% at a pellet concentration of 64 (g/L). Some specific phosphate adsorption mechanisms for the pellets were revealed and the pellets showed the potential to efficiently adsorb phosphate from a huge amount of real wastewaters in an industrial scale.

  14. Iron ore: energy, labor, and capital changes with technology.

    PubMed

    Kakela, P J

    1978-12-15

    Resource gathering is depending on leaner crude ores. Iron ore mining typifies this trend. To make lean taconite iron ores useful required a technologic breakthrough-pelletization. The shift to iron ore pellets has the advantage that they require less energy and labor per ton of molten iron than high-grade naturally concentrated ores. Increased reliance on pellets causes a geographic shift of some jobs and environmental effects from blast furnaces to iron ore mines.

  15. Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)

    NASA Astrophysics Data System (ADS)

    Mishra, Srinibash; Roy, Gour Gopal

    2016-08-01

    The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio <2.33) in the pellet, while bottom layer exceeded top layer reduction at higher carbon level (C/Fe2O3 molar ratio >2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.

  16. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  17. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  18. Hydrogen Plasma Processing of Iron Ore

    NASA Astrophysics Data System (ADS)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-03-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  19. Study of Organic and Inorganic Binders on Strength of Iron Oxide Pellets

    NASA Astrophysics Data System (ADS)

    Srivastava, Urvashi; Kawatra, S. Komar; Eisele, Timothy C.

    2013-08-01

    Bentonite is a predominant binder used in iron ore pelletization. However, the presence of a high content of silica and alumina in bentonite is considered undesirable for ironmaking operations. The objective of this study was to identify the alternatives of bentonite for iron ore pelletization. To achieve this goal, different types of organic and inorganic binders were utilized to produce iron oxide pellets. The quality of these iron oxide pellets was compared with pellets made using bentonite. All pellets were tested for physical strength at different stages of pelletization to determine their ability to survive during shipping and handling. The results show that organic binders such as lactose monohydrate, hemicellulose, and sodium lignosulfonate can provide sufficient strength to indurated pellets.

  20. Direct Reduction of Iron Ore

    NASA Astrophysics Data System (ADS)

    Small, M.

    1981-04-01

    In the search for a pure, available iron source, steelmakers are focusing their attention on Directly Reduced Iron (DRI). This material is produced by the reaction of a low gangue iron ore with a hydrocarbonaceous substance. Commercially, DRI is generated in four different reactors: shaft (moving-bed), rotary kiln, fluidized bed, and retort (fixed-bed). Annual worldwide production capacity approaches 33 million metric tons. Detailed assessments have been made of the uses of DRI, especially as a substitute for scrap in electric furnace (EF) steelmaking. DRI is generally of a quality superior to current grades of scrap, with steels produced more efficiently in the EF and containing lower levels of impurities. However, present economics favor EF steel production with scrap. But this situation could change within this decade because of a developing scarcity of good quality scrap.

  1. Effect of polydisperse sintering ore on the pelletizing of fine concentrates

    NASA Astrophysics Data System (ADS)

    Trushko, V. L.; Utkov, V. A.

    2016-01-01

    An addition of the polydisperse Yakovlevo deposit sintering ore on the efficiency of pelletizing and, hence, the gas permeability of a sintering mixture containing fine concentrates is studied. This sintering ore is found to have unique properties, which make it possible to increase the iron content in a sinter and to improve the gas permeability of a sintering mixture significantly (by a factor of 2-4). As a result, the sintering machine capacity can be substantially increased, the strength of the sinter can be increased at a lower fuel flow rate and lower lime consumption, and the blast furnace capacity can be substantially improved at lower consumption of expensive coke. Therefore, this version of using the Yakovlevo deposit sintering ore has a high economic efficiency.

  2. The sources of our iron ores. II

    USGS Publications Warehouse

    Burchard, E.F.

    1933-01-01

    In this instalment** the iron ore deposits of the Lake Superior States, which normally furnish about 80 per cent, of the annual output of the United States, are described together with historical notes on discovery and transportation of ore. Deposits in the Mississippi Valley and Western States are likewise outlined and the sources of imported ore are given. Reviewing the whole field, it is indicated that the great producing deposits of the Lake Superior and southern Appalachian regions are of hematite in basin areas of sedimentary rocks, that hydrated iron oxides and iron carbonates are generally found in undisturbed comparatively recent sediments, and that magnetite occurs in metamorphic and igneous rocks; also that numerical abundance of deposits is not a criterion as to their real importance as a source of supply. Statistics of production of iron ore and estimates of reserves of present grade conclude the paper.

  3. Processing of Goethitic Iron Ore Fines

    NASA Astrophysics Data System (ADS)

    Sharma, J.; Sharma, T.; Mandre, N. R.

    2015-10-01

    In the present investigation an attempt has been made to beneficiate goethitic iron ore containing 59.02 % Iron, 6.51 % Alumina, 4.79 % Silica, 0.089 % Phosphorus with 7.11 % loss on ignition. For this purpose, different beneficiation techniques such as gravity and magnetic separation processes have been employed. During the process two conceptual flow sheets were also developed for the beneficiation of goethite iron ore fines. In the prsent work it was possible to enhance grade of iron to 63.35, 63.18, and 65.35 % from Jigging, Multi Gravity Separation (MGS) and Wet High Intensity Magnetic Separator (WHIMS) respectively.

  4. Characterisation and Processing of Some Iron Ores of India

    NASA Astrophysics Data System (ADS)

    Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.

    2013-10-01

    Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.

  5. Direct Biohydrometallurgical Extraction of Iron from Ore

    SciTech Connect

    T.C. Eisele

    2005-10-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron.

  6. CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE CARS TOWARDS WESTERN SIDE OF CLEVELAND BULK TERMINAL BUILDINGS AND A SELF-UNLOADING IRON ORE SHIP AT DOCK. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  7. Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making

    NASA Astrophysics Data System (ADS)

    Pal, Jagannath; Ghorai, Satadal; Das, Avimanyu

    2015-02-01

    Iron ore microfines and concentrate have very limited uses in sintering processes. They are used in pelletization; however, this process is cost intensive. Furthermore, the microfines of non-coking coal and other carbon-bearing materials, e.g., blast-furnace flue dust (BFD) and coke fines, are not used extensively in the metallurgical industry because of operational difficulties and handling problems. In the present work, to utilize these microfines, coal composite iron oxide micropellets (2-6 mm in size) were produced through an innovative technique in which lime and molasses were used as binding materials in the micropellets. The micropellets were subsequently treated with CO2 or the industrial waste gas to induce the chemical bond formation. The results show that, at a very high carbon level of 22wt% (38wt% coal), the cold crushing strength and abrasion index of the micropellets are 2.5-3 kg/cm2 and 5wt%-9wt%, respectively; these values indicate that the pellets are suitable for cold handling. The developed micropellets have strong potential as a heat source in smelting reduction in iron making and sintering to reduce coke breeze. The micropellets produced with BFD and coke fines (8wt%-12wt%) were used in iron ore sintering and were observed to reduce the coke breeze consumption by 3%-4%. The quality of the produced sinter was at par with that of the conventional blast-furnace sinter.

  8. CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE CARS TOWARDS CLEVELAND BULK TERMINAL BUILDINGS. LOOKING SOUTH. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  9. Effect of carbon species on the reduction and melting behavior of boron-bearing iron concentrate/carbon composite pellets

    NASA Astrophysics Data System (ADS)

    Wang, Guang; Ding, Yin-gui; Wang, Jing-song; She, Xue-feng; Xue, Qing-guo

    2013-06-01

    Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boronbearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon composite pellet. This is a novel flow sheet for the comprehensive utilization of boron-bearing iron concentrate to produce a new kind of man-made boron ore. The effect of reducing agent species (i.e., carbon species) on the reduction and melting process of the composite pellet was investigated at a laboratory scale in the present work. The results show that, the reduction rate of the composite pellet increases from bituminite, anthracite, to coke at temperatures ranging from 950 to 1300°C. Reduction temperature has an important effect on the microstructure of reduced pellets. Carbon species also affects the behavior of reduced metallic iron particles. The anthracite-bearing composite pellet melts faster than the bituminitebearing composite pellet, and the coke-bearing composite pellet cannot melt due to the high fusion point of coke ash. With anthracite as the reducing agent, the recovery rates of iron and boron are 96.5% and 95.7%, respectively. This work can help us get a further understanding of the new process mechanism.

  10. The Preparation and Reduction Behavior of Charcoal Composite Iron Oxide Pellets

    NASA Astrophysics Data System (ADS)

    Konishi, Hirokazu; Usui, Tateo; Harada, Takeshi

    In the energy conversion, biomass has novel advantage, i.e., no CO2 emission, because of carbon neutral. Charcoal composite iron oxide pellets were proposed to decrease CO2 emission for the ironmaking. These pellets were promising to decrease the initial temperature for reduction reaction of carbon composite iron ore agglomerate under a rising temperature condition, such as in a blast furnace shaft. In order to obtain charcoal, Japanese cedar and cypress were carbonized from room temperature to maximum carbonization temperature (TC, max = 1273 K) at a heating rate of 200 K/h, and kept at TC, max until arrival time of 6 h. Reducing gases of CO and CH4 started releasing from relatively low temperature (500 K). In the total gas volume of carbonization, H2 gas of Japanese cedar was more than that of Japanese cypress. These woods have more CO gas volume than Newcastle blend coal has. The obtained charcoal was mixed with reagent grade hematite in the mass ratio of one to four. Then, a small amount of Bentonite was added to the mixture as a binder, and the charcoal composite iron oxide pellets were prepared and reduced at 1273, 1373 and 1473 K in nitrogen gas atmosphere. It was conirmed by the generated gas analysis during reduction reaction that charcoal composite iron oxide pellets had higher reducibility than char composite pellets using Newcastle blend coal. From the XRD analysis of the reduced pellets, it was found that the original Fe2O3 was almost reduced to Fe for 60 min at 1273 K, 20 min at 1373 K and 5~15 min at 1473 K.

  11. Simulation of reduction of iron-oxide-carbon composite pellets in a rotary hearth furnace

    NASA Astrophysics Data System (ADS)

    Halder, Sabuj

    The primary motivation of this work is to evaluate a new alternative ironmaking process which involves the combination of a Rotary Hearth Furnace (RHF) with an iron bath smelter. This work is concerned primarily, with the productivity of the RHF. It is known that the reduction in the RHF is controlled by chemical kinetics of the carbon oxidation and wustite reduction reactions as well as by heat transfer to the pellet surface and within the pellet. It is heat transfer to the pellet which limits the number of layers of pellets in the pellet bed in the RHF and thus, the overall productivity. Different types of carbon like graphite, coal-char and wood charcoal were examined. Part of the research was to investigate the chemical kinetics by de-coupling it from the influence of heat and mass transfer. This was accomplished by carrying out reduction experiments using small iron-oxide-carbon powder composite mixtures. The reaction rate constants were determined by fitting the experimental mass loss with a mixed reaction model. This model accounts for the carbon oxidation by CO2 and wustite reduction by CO, which are the primary rate controlling surface-chemical reactions in the composite system. The reaction rate constants have been obtained using wustite-coal-char powder mixtures and wustite-wood-charcoal mixtures. The wustite for these mixtures was obtained from two iron-oxide sources: artificial porous analytical hematite (PAH) and hematite ore tailings. In the next phase of this study, larger scale experiments were conducted in a RHF simulator using spherical composite pellets. Measurement of the reaction rates was accomplished using off-gas analysis. Different combinations of raw materials for the pellets were investigated. These included artificial ferric oxide as well as naturally existing hematite and taconite ores. Graphite, coal-char and wood-charcoal were the reductants. Experiments were conducted using a single layer, a double layer and a triple layer of

  12. Oolitic ores in the Bakchar iron-ore cluster (Tomsk Oblast)

    NASA Astrophysics Data System (ADS)

    Rudmin, M. A.; Mazurov, A. K.

    2016-12-01

    Oolitic iron ores are typified, and their morphology and composition are studied. Special attention is focused on the character of distribution of valuable and harmful admixtures and determination of the principal minerals concentrating these elements. As a result of this study, three types of ores are identified, such as "loose" ores, cemented ores with glauconite-chlorite-clay cement, and well-cemented ores with siderite cement. The morphology and composition of the ore oolites are characterized. The forms of occurrence of calcium phosphates (anapaite) and phosphates of rare-earth elements (monazite, cularite) that are related to the harmful phosphorus admixture are described. According to the analysis of the elemental composition, the fractions of (-1…+0.2) and (-1…+0.1) mm in the western and eastern segments, respectively, may be promising for processing.

  13. Mineral and Elemental Composition Features of "Loose" Oolitic Ores in Bakchar Iron Ore Cluster (Tomsk Oblast)

    NASA Astrophysics Data System (ADS)

    Rudmin, M.; Mazurov, A.; Bolsunovskaya, L.

    2014-08-01

    Geo-technological investigation considerations of iron ore deposits within the Bakchar ore cluster are being carried out. The mineral and elemental composition of "loose" ores have been studied, embracing such important aspects as the distribution pattern of valuable and harmful impurities, the determination of element concentrators (such as vanadium, phosphate and sulphur) in basic minerals and the analysis of ore composition varaiation in volume ore cluster. Based on investigation results the mineral and elemental composition characteristic features of "loose" ores were defined. Although hydrogoethite was the basic identified ore mineral, such minerals as goethite, lepidocrocite, leptochlorite, siderite and hisingerite were also found. The deportment of calcium phosphate (anapaite) and phosphates of rare-earth elements (monazite, killarite), which are associated with the harmful impurity- phosphorous, are described. It has been defined that the ore constituent composition contains such persistent impurities as vanadium and manganese, the content of which is 0.35% and 0.03%, respectively. The "loose" ores are continuous in mineral composition, both in area and cross-section throughout the Bakchar ore cluster. Based on the sample element composition analysis the most perspective areas for further mineral processing could be: western with the fraction of 1....0.2mm. and eastern- fraction of 1...0.1mm.

  14. Mössbauer studies of iron ore from East Awinat mountains in Libya

    NASA Astrophysics Data System (ADS)

    Ellid, M. S.; Fallagh, F.

    1994-12-01

    In this paper, we report studies of local and imported iron ores using the techniques of Mössbauer spectroscopy, X-ray diffraction, and chemical analysis. Results from Mössbauer spectroscopy and X-ray diffraction of the two ores indicate that the raw materials consist mainly of hematite with a magnetic field of 517 kOe. The d-spacings are consistent with α-Fe2O3. A series of reduction processes in an H2 environment at 410 °C for the local ore was performed in order to understand the kinetics of reduction. The reduction was complete after 5 h and the spectra reveal only an α-Fe phase with a hyperfine magnetic field of 330 kOe. On the other hand, the reduced pellets, from Misratah's Iron and Steel Factory (imported iron ore), reveal the presence of an additional phase. This phase was identified as θ9-carbide with a magnetic field of 208 kOe and an isomer shift of 0.22 mm/s.

  15. Microbial Beneficiation of Salem Iron Ore Using Penicillium purpurogenum

    NASA Astrophysics Data System (ADS)

    Mishra, M.; Pradhan, M.; Sukla, L. B.; Mishra, B. K.

    2011-02-01

    High alumina and silica content in the iron ore affects coke rate, reducibility, and productivity in a blast furnace. Iron ore is being beneficiated all around the world to meet the quality requirement of iron and steel industries. Choosing a beneficiation treatment depends on the nature of the gangue present and its association with the ore structure. The advanced physicochemical methods used for the beneficiation of iron ore are generally unfriendly to the environment. Biobeneficiation is considered to be ecofriendly, promising, and revolutionary solutions to these problems. A characterization study of Salem iron ore indicates that the major iron-bearing minerals are hematite, magnetite, and goethite. Samples on average contains (pct) Fe2O3-84.40, Fe (total)-59.02, Al2O3-7.18, and SiO2-7.53. Penicillium purpurogenum (MTCC 7356) was used for the experiment . It removed 35.22 pct alumina and 39.41 pct silica in 30 days in a shake flask at 10 pct pulp density, 308 K (35 °C), and 150 rpm. In a bioreactor experiment at 2 kg scale using the same organism, it removed 23.33 pct alumina and 30.54 pct silica in 30 days at 300 rpm agitation and 2 to 3 l/min aeration. Alumina and silica dissolution follow the shrinking core model for both shake flask and bioreactor experiments.

  16. Challenges facing the North American iron ore industry

    USGS Publications Warehouse

    Jorgenson, J.D.

    2005-01-01

    During the 20th century, the iron ore mining industries of Canada and the United States passed through several periods of transformation. The beginning of the 21st century has seen yet another period of transformation, with the economic failure of a number of steel companies, the acquisition of their facilities by more viable steelmakers, and the consolidation of control within the North American iron ore industry. Changes in Canadian and United States iron ore production and the market control structure involved are analysed. The consolidation of ownership, formation of foreign joint ventures within Nordi America, planned divestitures of upstream activities by steelmakers, and industry changes made to ensure availability of feedstocks will be reviewed. The ttaditional isolation of the Canadian and United States iron ore operations and their strong linkage to downstream steel production will be discussed in the context of a changing global economy. Management-labour conflicts that have taken place and agreements made during 2000 through 2004 will be discussed in the context of the economic environment leading up to these agreements. Cooperative agreements between competing Canadian and United States companies to resolve client needs in processing and blending will be examined. A joint industry-government project designed to use new technology to produce direct reduced iron nuggets of 96 - 98 per cent iron content using non-coking coals will also be assessed. Changes in iron ore transportation methods, ownership and infrastructure will be reviewed for both rail and inland waterway transport between Canadian and United States companies. A brief analysis of social and environmental issues relating to sustainable development of the Canadian-United States iron ore industry will be included.

  17. 40 CFR 440.10 - Applicability; description of the iron ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the iron... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.10 Applicability; description of the iron ore subcategory. The provisions...

  18. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... domestic iron ore. 1.272-1 Section 1.272-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Expenditures relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of...

  19. 40 CFR 440.10 - Applicability; description of the iron ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the iron... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.10 Applicability; description of the iron ore subcategory. The provisions...

  20. 40 CFR 440.10 - Applicability; description of the iron ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the iron... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.10 Applicability; description of the iron ore subcategory. The provisions of this subpart...

  1. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... domestic iron ore. 1.272-1 Section 1.272-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Expenditures relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of...

  2. 40 CFR 440.10 - Applicability; description of the iron ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the iron... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.10 Applicability; description of the iron ore subcategory. The provisions...

  3. Application of LANDSAT satellite imagery for iron ore prospecting in the western desert of Egypt

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdel-Hady, M. A.; Elghawaby, M. A.; Khawasik, S. M. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The delineation of the geological units and geological structures through image interpretation, corroborated by field observations and structural analysis, led to the discovery of new iron ore deposits. A new locality for iron ore deposition, namely Gebel Qalamun, was discovered, as well as new occurrences within the already known iron ore region of Bahariya Oasis.

  4. 40 CFR 440.10 - Applicability; description of the iron ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the iron... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.10 Applicability; description of the iron ore subcategory. The provisions of this subpart...

  5. Challenges facing the North American iron ore industry

    USGS Publications Warehouse

    Jorgenson, J.D.

    2006-01-01

    Summary: This report is derived from a presentation the author presented in late September at the Iron Ore 2005 Conference sponsored by The Australasian Institute of Mining and Metallurgy and held in Fremantle, Western Australia. Some slight revisions have been made for the new audience.

  6. China's emergence as the world's leading iron-ore-consuming country

    USGS Publications Warehouse

    Kirk, W.S.

    2004-01-01

    China has become the leading iron ore consuming nation, and, based on recent steel production capacity increases and plans for more, its consumption will almost certainly to continue to grow. China's iron ore industry, however, faces a number of problems. China's iron ore is low-grade, expensive to process, and its mines are being depleted. For many Chinese steelmakers, particularly in the coastal regions, the delivered cost of domestic iron ore, is more than the delivered cost of foreign ore. Thus China's iron ore imports are expected to increase. As China's growth continues, it will almost certainly surpass Japan to become the leading iron ore importing country as well. Without China's increasing appetite for iron ore, the world iron ore market would be flat or declining. China's recent imports largely offset the slump in demand in North America and Europe. China is regarded by the iron ore industry as the growth sector for the next decade. Although Chinese imports are expected to continue their rapid increase and imports in other Asian countries are expected to continue growing, there appears to be enough greenfield and expansion projects to meet future demand for iron ore worldwide. Present suppliers of iron ore, Australia, Brazil, India, and South Africa, will probably be the chief beneficiaries of China's increasing consumption of iron ore. How long China can continue its extraordinary growth is the primary issue for the future of the iron ore industry. Based on the number and size of planned blast furnaces it appears that China's growth could continue for several more years. ?? 2004 Taylor and Francis.

  7. Rock magnetic properties and ore microscopy of the iron ore deposit of Las Truchas, Michoacan, Mexico

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Urrutia-Fucugauchi, J.

    1998-02-01

    Iron ore and host rocks have been sampled (90 oriented samples from 19 sites) from the Las Truchas mine, western Mexico. A broad range of magnetic parameters have been studied to characterize the samples: saturation magnetization, Curie temperature, density, susceptibility, remanence intensity, Koenigsberger ratio, and hysteresis parameters. Magnetic properties are controlled by variations in titanomagnetite content, deuteric oxidation, and hydrothermal alteration. Las Truchas deposit formed by contact metasomatism in a Mesozoic volcano-sedimentary sequence intruded by a batholith, and titanomagnetites underwent intermediate degrees of deuteric oxidation. Post-mineralization hydrothermal alteration, evidenced by pyrite, epidote, sericite, and kaolin, seems to be the major event that affected the minerals and magnetic properties. Magnetite grain sizes in iron ores range from 5 to >200 μm, which suggest dominance of multidomain (MD) states. Curie temperatures are 580±5°C, characteristic of magnetite. Hysteresis parameters indicate that most samples have MD magnetite, some samples pseudo-single domain (PSD), and just a few single domain (SD) particles. AF demagnetization and IRM acquisition indicate that NRM and laboratory remanences are carried by MD magnetite in iron ores and PSD-SD magnetite in host rocks. The Koenigsberger ratio falls in a narrow range between 0.1 and 10, indicating the significance of MD and PSD magnetites.

  8. Direct reduction of iron ore by biomass char

    NASA Astrophysics Data System (ADS)

    Zuo, Hai-bin; Hu, Zheng-wen; Zhang, Jian-liang; Li, Jing; Liu, Zheng-jian

    2013-06-01

    By using thermogravimetric analysis the process and mechanism of iron ore reduced by biomass char were investigated and compared with those reduced by coal and coke. It is found that biomass char has a higher reactivity. The increase of carbon-to-oxygen mole ratio (C/O) can lead to the enhancement of reaction rate and reduction fraction, but cannot change the temperature and trend of each reaction. The reaction temperature of hematite reduced by biomass char is at least 100 K lower than that reduced by coal and coke, the maximum reaction rate is 1.57 times as high as that of coal, and the final reaction fraction is much higher. Model calculation indicates that the use of burden composed of biomass char and iron ore for blast furnaces can probably decrease the temperature of the thermal reserve zone and reduce the CO equilibrium concentration.

  9. High-temperature performance prediction of iron ore fines and the ore-blending programming problem in sintering

    NASA Astrophysics Data System (ADS)

    Yan, Bing-ji; Zhang, Jian-liang; Guo, Hong-wei; Chen, Ling-kun; Li, Wei

    2014-08-01

    The high-temperature performance of iron ore fines is an important factor in optimizing ore blending in sintering. However, the application of linear regression analysis and the linear combination method in most other studies always leads to a large deviation from the desired results. In this study, the fuzzy membership functions of the assimilation ability temperature and the liquid fluidity were proposed based on the fuzzy mathematics theory to construct a model for predicting the high-temperature performance of mixed iron ore. Comparisons of the prediction model and experimental results were presented. The results illustrate that the prediction model is more accurate and effective than previously developed models. In addition, fuzzy constraints for the high-temperature performance of iron ore in this research make the results of ore blending more comparable. A solution for the quantitative calculation as well as the programming of fuzzy constraints is also introduced.

  10. Coagulation and flocculation study of iron ore fines

    SciTech Connect

    Singh, B.P.; Besra, L.; Ravi Prasad, A.

    1999-03-01

    A comparative study of the flocculation and coagulation response of an iron ore fines suspension has been carried out, and the extent of flocculation has been assessed by measurement of electrophoretic mobility, supernatant clarity, and settling rate. Of the several commercial flocculants and polyelectrolyte studied, the combination of medium molecular weight anionic flocculants Magnafloc 1011 and Rishfloc 258 (1:1), and coagulant aluminum nitrate was most effective in terms of enhancing settling rate and supernatant clarity.

  11. Utilization of bog iron ores as sorbents of heavy metals.

    PubMed

    Rzepa, Grzegorz; Bajda, Tomasz; Ratajczak, Tadeusz

    2009-03-15

    Sorption properties of bog iron ores with respect to Pb, Cu, Zn, Cr are evaluated at various pH. Maximum sorption determined in the experiments equals to 97.0, 25.2, 25.5, 55.0mg/g for lead(II), copper(II), zinc(II), and chromium(III), respectively. Chromium(VI) is bound in the amount of up to 10.0mg/g. The values of desorption indicate that most of the metals remain stably bound to the surface of bog iron ores, indicating that the chemisorption process prevails. The metals are sorbed as cations at the pH values from 4 to 9. Within this pH range up to 100% of the initial metal amount is immobilized. 90-100% of Cr(VI) is sorbed at pH between 3 and 5. Such properties, combined with favorable conditions of shallow mining and resultant low costs, may be regarded as an incentive for local utilization of bog iron ores in the environmental protection practice.

  12. Atmospheric emission of polychlorinated naphthalenes from iron ore sintering processes.

    PubMed

    Liu, Guorui; Zheng, Minghui; Du, Bing; Nie, Zhiqiang; Zhang, Bing; Liu, Wenbin; Li, Cheng; Hu, Jicheng

    2012-10-01

    Iron ore sintering processes constitute significant sources of dioxins, and studies have confirmed a close correlation between polychlorinated naphthalenes (PCNs) and dioxin formation. Thus, iron ore sintering processes are thought to be a potential source of PCNs, although intensive investigations on PCN emissions from sintering processes have not been carried out. Therefore, the aim of the present study was to qualify and quantify PCN emissions from nine sintering plants operating on different industrial scales. PCN concentrations ranged from 3 to 983 ng m(-3) (0.4-23.3 pg TEQ(PCN) m(-3)) and emission factors ranged from 14 to 1749 μg t(-1) (0.5-41.5 ng TEQ(PCN) t(-1)), with a geometric mean of 84 μg t(-1) (2.1 ng TEQ(PCN) t(-1)). The estimated annual emission of PCNs from sintering processes in China was 1390 mg TEQ(PCN). These figures will assist in the development of a PCN emissions inventory. Regarding emission characteristics, PCNs mainly comprised low-chlorinated homologs. The ratios of several characteristic PCN congeners were also measured and compared with those from other sources. Taken together, these results may provide useful information for identifying the sources of PCNs produced by iron ore sintering processes.

  13. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes. 148.245 Section 148.245 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Requirements for Certain Materials § 148.245 Direct reduced iron (DRI); lumps, pellets, and...

  14. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes. 148.245 Section 148.245 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Requirements for Certain Materials § 148.245 Direct reduced iron (DRI); lumps, pellets, and...

  15. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes. 148.245 Section 148.245 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Requirements for Certain Materials § 148.245 Direct reduced iron (DRI); lumps, pellets, and...

  16. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes. 148.245 Section 148.245 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Requirements for Certain Materials § 148.245 Direct reduced iron (DRI); lumps, pellets, and...

  17. Synthesis of Fe-MCM-41 Using Iron Ore Tailings as the Silicon and Iron Source.

    PubMed

    Li, Xin; Yu, Honghao; He, Yan; Xue, Xiangxin

    2012-01-01

    Highly ordered Fe-MCM-41 molecular sieve was successfully synthesized by using n-hexadecyl-trimethyl ammonium bromide (CTAB) as the template and the iron ore tailings (IOTs) as the silicon and iron source. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance UV-visible spectroscopy, (29)Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption were used to characterize the samples. The results showed that the mesoporous materials had highly ordered 2-dimensional hexagonal structure. The synthesized sample had high surface area, and part of iron atoms is retained in the framework with formation of tetrahedron after removal of the template by calcinations. The results obtained in the present work demonstrate the feasibility of employing iron ore tailings as a potential source of silicon and iron to produce Fe-MCM-41 mesoporous materials.

  18. Synthesis of Fe-MCM-41 Using Iron Ore Tailings as the Silicon and Iron Source

    PubMed Central

    Li, Xin; Yu, Honghao; He, Yan; Xue, Xiangxin

    2012-01-01

    Highly ordered Fe-MCM-41 molecular sieve was successfully synthesized by using n-hexadecyl-trimethyl ammonium bromide (CTAB) as the template and the iron ore tailings (IOTs) as the silicon and iron source. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance UV-visible spectroscopy, 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption were used to characterize the samples. The results showed that the mesoporous materials had highly ordered 2-dimensional hexagonal structure. The synthesized sample had high surface area, and part of iron atoms is retained in the framework with formation of tetrahedron after removal of the template by calcinations. The results obtained in the present work demonstrate the feasibility of employing iron ore tailings as a potential source of silicon and iron to produce Fe-MCM-41 mesoporous materials. PMID:22567574

  19. Effects of Iron Sand Ratios on the Basic Characteristics of Vanadium Titanium Mixed Ores

    NASA Astrophysics Data System (ADS)

    Liu, Dong-hui; Zhang, Jian-liang; Liu, Zheng-jian; Wang, Yao-zu; Xue, Xun; Yan, Jie

    2016-09-01

    Effects of iron sand ratios on the basic characteristics of vanadium titanium mixed ores were investigated using micro-sinter and grey relational analysis methods. The results show that iron sand presents poor assimilability, poor liquid flow capability, and low bonding phase strength. As the iron sand ratio in vanadium titanium mixed ores increases, the mixed ore's assimilation temperature increases, the fluidity index of liquid decreases, and the bonding phase strength first rises and then decreases. The comprehensive index of basic characteristic (CI) improves and then deteriorates with increasing iron sand ratio. The CI of vanadium titanium mixed ores is optimized when the iron sand ratio is 9 wt.%. In order to make full use of low-price iron-bearing materials and improve the sintering characteristics of vanadium titanium magnetite, the iron sand ratio in vanadium titanium mixed ores should be controlled within 9-12 wt.%.

  20. Mineralogy and geochemistry of banded iron formation and iron ores from eastern India with implications on their genesis

    NASA Astrophysics Data System (ADS)

    Roy, Subrata; Venkatesh, A. S.

    2009-12-01

    The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling-Langalata iron ore deposits, Singhbhum-North Orissa Craton, belonging to Iron Ore Group (IOG) eastern India have been studied in detail along with the geochemical evaluation of different iron ores. The geochemical and mineralogical characterization suggests that the massive, hard laminated, soft laminated ore and blue dust had a genetic lineage from BIFs aided with certain input from hydrothermal activity. The PAAS normalized REE pattern of Jilling BIF striking positive Eu anomaly, resembling those of modern hydrothermal solutions from mid-oceanic ridge (MOR). Major part of the iron could have been added to the bottom sea water by hydrothermal solutions derived from hydrothermally active anoxic marine environments. The ubiquitous presence of intercalated tuffaceous shales indicates the volcanic signature in BIF. Mineralogical studies reveal that magnetite was the principal iron oxide mineral, whose depositional history is preserved in BHJ, where it remains in the form of martite and the platy hematite is mainly the product of martite. The different types of iron ores are intricately related with the BHJ. Removal of silica from BIF and successive precipitation of iron by hydrothermal fluids of possible meteoric origin resulted in the formation of martite-goethite ore. The hard laminated ore has been formed in the second phase of supergene processes, where the deep burial upgrades the hydrous iron oxides to hematite. The massive ore is syngenetic in origin with BHJ. Soft laminated ores and biscuity ores were formed where further precipitation of iron was partial or absent.

  1. Synthesis process of forsterite refractory by iron ore tailings.

    PubMed

    Li, Jing; Wang, Qi; Liu, Jihui; Li, Peng

    2009-01-01

    With mineral resources becoming gradually more deficient, as well as the issue of mine tailings causing environmental pollution, more and more people have realized the great significance of tailings utilization. Iron ore tailings, as a kind of secondary resource, have been developed in recycling industries. The feasibility to produce forsterite refractory from high-silicon iron tailings and high-magnesium raw materials were discussed. Also, the synthesis reaction processes were studied from the results of the laboratory experiments. The experiments showed that the synthesis processes can be separated into three steps when using iron tailings to synthesize forsterite: (1) produce magnesium iron sosoloid (Mg(1-X)Fe(X)O) and magnesium metasilicate (MgSiO3), (2) form the fayalite, and (3) create the forsterite. The synthetic productions are primarily forsterite, hortonolite, and small amounts of magnesium metasilicate (MgSiO3). The hortonolite is wrapped around the surface of the forsterite particles and formed the cementing phase. In addition, the method to produce forsterite refractory and lightweight forsterite refractory from iron tailings were offered.

  2. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore

    NASA Astrophysics Data System (ADS)

    Sun, Yong-sheng; Han, Yue-xin; Li, Yan-feng; Li, Yan-jun

    2017-02-01

    To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally reduced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the reduced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumulative frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol-1, and 922.05, respectively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains.

  3. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Expenditures relating to disposal of coal or... Expenditures relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of...

  4. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Expenditures relating to disposal of coal or... Expenditures relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of...

  5. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Expenditures relating to disposal of coal or... relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special treatment... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of...

  6. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: potential use in environmental risk assessment.

    PubMed

    Neves, Natália Rust; Oliva, Marco Antonio; da Cruz Centeno, Danilo; Costa, Alan Carlos; Ribas, Rogério Ferreira; Pereira, Eduardo Gusmão

    2009-06-01

    The Brazilian sandy coastal plain named restinga is frequently subjected to particulate and gaseous emissions from iron ore factories. These gases may come into contact with atmospheric moisture and produce acid rain. The effects of the acid rain on vegetation, combined with iron excess in the soil, can lead to the disappearance of sensitive species and decrease restinga biodiversity. The effects of iron ore dust deposition and simulated acid rain on photosynthesis and on antioxidant enzymes were investigated in Eugenia uniflora, a representative shrub species of the restinga. This study aimed to determine the possible utility of this species in environmental risk assessment. After the application of iron ore dust as iron solid particulate matter (SPM(Fe)) and simulated acid rain (pH 3.1), the 18-month old plants displayed brown spots and necrosis, typical symptoms of iron toxicity and injuries caused by acid rain, respectively. The acidity of the rain intensified leaf iron accumulation, which reached phytotoxic levels, mainly in plants exposed to iron ore dust. These plants showed the lowest values for net photosynthesis, stomatal conductance, transpiration, chlorophyll a content and electron transport rate through photosystem II (PSII). Catalase and superoxide dismutase activities were decreased by simulated acid rain. Peroxidase activity and membrane injury increased following exposure to acid rain and simultaneous SPM(Fe) application. Eugenia uniflora exhibited impaired photosynthetic and antioxidative metabolism in response to combined iron and acid rain stresses. This species could become a valuable tool in environmental risk assessment in restinga areas near iron ore pelletizing factories. Non-invasive evaluations of visual injuries, photosynthesis and chlorophyll a fluorescence, as well as invasive biochemical analysis could be used as markers.

  7. Solubilisation effect of spent wash on oxide-ores of manganese and iron.

    PubMed

    Pervez, S; Pandey, G S

    1991-09-01

    Samples of iron ore (haematite) and manganese ore (pyrolusite) of known compositions were equilibrated with aliquots of analysed sample of spent wash. The concentrations of iron(II), iron(III), complexed iron, manganese(II) ions and complexed Mn-ions were determined after increasing durations. One litre of the spent wash was found to extract out 141 mg of total iron and 161 mg of total manganese. In case of iron, the predominance was of iron(II) (92%), whereas in case of manganese it was of the complexed form (95%).

  8. The North American iron ore industry: a decade into the 21st century

    USGS Publications Warehouse

    Jorgenson, John D.; Perez, A. A

    2011-01-01

    During the 20th century, the iron ore mining industries of Canada and the United States passed through periods of transformation. The beginning of the 21st century has seen another period of transformation, with the failure of a number of steel companies and with consolidation of control within the North American iron ore industry. Canadian and United States iron ore production and the market control structure involved are changing rapidly. Consolidation of ownership, formation of foreign joint ventures, divestitures of upstream activities by steelmakers, and industry changes to ensure availability of feedstocks all played a role in recent developments in the North American iron ore industry. Canadian and U.S. iron ore operations and their strong linkage to downstream production, although isolated, must also be considered within the context of the changing global economy. Projects using new technology to produce direct reduced iron nuggets of 96-98% iron content and other projects designed to produce steel at minesites may once again change the face of the iron ore industry. Social and environmental issues related to sustainable development have had a significant effect on the North American iron ore industry.

  9. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    NASA Astrophysics Data System (ADS)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  10. 20 CFR 404.1084 - Gain or loss from disposition of property; capital assets; timber, coal, and iron ore...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; capital assets; timber, coal, and iron ore; involuntary conversion. 404.1084 Section 404.1084 Employees... from disposition of property; capital assets; timber, coal, and iron ore; involuntary conversion. (a... disposal of iron ore mined in the United States, even if held primarily for sale to customers, if...

  11. Study on Metallized Reduction and Magnetic Separation of Iron from Fine Particles of High Iron Bauxite Ore

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Gen; Chu, Man-Sheng; Wang, Zheng; Zhao, Wei; Tang, Jue

    2017-01-01

    High iron bauxite ore is a typical unmanageable polyparagenetic resource and owns high comprehensive utilization value. Separation of iron from fine particles of high iron bauxite ore by the process of metallized reduction and magnetic dressing was researched systemically. The effect of magnetic field intensity, reduction temperature, reduction time, mole ratio of fixed carbon to reducible oxygen (FC/O) and ore particles size on separation indexes was researched. The results show that, with the conditions of reduction temperature of 1,400 °C, reduction time of 180 min, FC/O of 2.0, ore particle size of -2.0 mm and magnetic field intensity of 40 KA/m, about 89.24 % of the iron could be removed from high iron bauxite ore as metallic iron. Meanwhile, 86.09 % of the aluminum is stayed in non-magnetic fraction as alumina. However, the formation of hercynite (FeAl2O4) limits the reduction rate of iron oxides to metallic iron. The lower reduction conditions and higher recovery ratio of iron could be achieved with adopting ore-coal composite agglomerates or adding catalyst.

  12. Innovative method for boron extraction from iron ore containing boron

    NASA Astrophysics Data System (ADS)

    Wang, Guang; Wang, Jing-song; Yu, Xin-yun; Shen, Ying-feng; Zuo, Hai-bin; Xue, Qing-guo

    2016-03-01

    A novel process for boron enrichment and extraction from ludwigite based on iron nugget technology was proposed. The key steps of this novel process, which include boron and iron separation, crystallization of boron-rich slag, and elucidation of the boron extraction behavior of boron-rich slag by acid leaching, were performed at the laboratory. The results indicated that 95.7% of the total boron could be enriched into the slag phase, thereby forming a boron-rich slag during the iron and slag melting separation process. Suanite and kotoite were observed to be the boron-containing crystalline phases, and the boron extraction properties of the boron-rich slag depended on the amounts and grain sizes of these minerals. When the boron-rich slag was slowly cooled to 1100°C, the slag crystallized well and the efficiency of extraction of boron (EEB) of the slag was the highest observed in the present study. The boron extraction property of the slow-cooled boron-rich slag obtained in this study was much better than that of szaibelyite ore under the conditions of 80% of theoretical sulfuric acid amount, leaching time of 30 min, leaching temperature of 40°C, and liquid-to-solid ratio of 8 mL/g.

  13. Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation.

    PubMed

    Adeleke, Rasheed; Cloete, T E; Khasa, D P

    2012-03-01

    With one of the largest iron ore deposits in the world, South Africa is recognised to be among the top ten biggest exporters of iron ore. Increasing demand and consumption of this mineral triggered search for processing technologies, which can be utilised to "purify" the low-grade iron ore minerals that contain high levels of unwanted potassium (K) and phosphorus (P). This study investigated a potential biological method that can be further developed for the full biobeneficiation of low-grade iron ore minerals. Twenty-three bacterial strains that belong to Proteobacteria, Firmicutes, Bacteroidetes and Actinobateria were isolated from the iron ore minerals and identified with sequence homology and phylogenetic methods. The abilities of these isolates to lower the pH of the growth medium and solubilisation of tricalcium phosphate were used to screen them as potential mineral solubilisers. Eight isolates were successfully screened with this method and utilised in shake flask experiments using iron ore minerals as sources of K and P. The shake flask experiments revealed that all eight isolates have potentials to produce organic acids that aided the solubilisation of the iron ore minerals. In addition, all eight isolates produced high concentrations of gluconic acid followed by relatively lower concentrations of acetic, citric and propanoic acid. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analyses also indicated extracellular polymeric substances could play a role in mineral solubilisation.

  14. Reduction of iron-oxide-carbon composites: part III. Shrinkage of composite pellets during reduction

    SciTech Connect

    Halder, S.; Fruehan, R.J.

    2008-12-15

    This article involves the evaluation of the volume change of iron-oxide-carbon composite pellets and its implications on reduction kinetics under conditions prevalent in a rotary hearth furnace (RHF) that were simulated in the laboratory. The pellets, in general, were found to shrink considerably during the reduction due to the loss of carbon and oxygen from the system, sintering of the iron-oxide, and formation of a molten slag phase at localized regions inside the pellets due to the presence of binder and coal/wood-charcoal ash at the reduction temperatures. One of the shortcomings of the RHF ironmaking process has been the inability to use multiple layers of composite pellets because of the impediment in heat transport to the lower layers of a multilayer bed. However, pellet shrinkage was found to have a strong effect on the reduction kinetics by virtue of enhancing the external heat transport to the lower layers. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multilayer bed was obtained by conducting heat-transfer tests using inert low-carbon steel spheres. It was found that if the pellets of the top layer of the bed shrink by 30 pct, the external heat transfer to the second layer increases by nearly 6 times.

  15. Distribution Behavior of Phosphorus and Metallization of Iron Oxide in Carbothermic Reduction of High-Phosphorus Iron Ore

    NASA Astrophysics Data System (ADS)

    Cha, Ji-Whoe; Kim, Dong-Yuk; Jung, Sung-Mo

    2015-10-01

    Distribution behavior of phosphorus and metallization of iron ore in the carbothermic reduction of high-phosphorus iron ore were investigated. Reduction degree of the iron oxide was evaluated by quadruple mass spectrometry connected to thermogravimetric analysis. The distribution of some elements including phosphorus was examined by electron probe micro-analyzer mapping analyses. The reduction behavior of high-phosphorus iron ore was evaluated as a function of reduction temperature, C/O molar ratio, and CaO addition. High reduction temperature accelerated the reduction of both iron oxide and hydroxylapatite, and high C/O molar ratio also promotes both of them. Those were contradictory to the targets of higher reduction degree of iron oxide and of lower one of hydroxylapatite. It was confirmed that appropriate amount of CaO addition could enhance the reduction of iron oxide, and regulate the reduction of hydroxylapatite.

  16. Application of LANDSAT satellite imagery for iron ore prospecting in the Western Desert of Egypt

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdelhady, M. A.; Elghawaby, M. A.; Khawasik, S. M.

    1977-01-01

    Prospecting for iron ore occurrences was conducted by the Remote Sensing Center in Bahariya Oasis-El Faiyum area covering some 100,000 km squared in the Western Desert of Egypt. LANDSAT-1 satellite images were utilized as the main tool in the regional prospecting of the iron ores. The delineation of the geological units and geological structure through the interpretation of the images corroborated by field observations and structural analysis led to the discovery of new iron ore occurrences in the area of investigation.

  17. Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun

    2016-02-01

    Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.

  18. Selective Removal of Iron from Low-Grade Ti Ore by Reacting with Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Kang, Jungshin; Okabe, Toru H.

    2017-02-01

    Recently, titanium metal production by molten salt electrolysis using CaCl2 as molten salt and TiO2 or rutile (94 to 96 pct TiO2) as feedstock has been drawing attention. However, when a low-grade Ti ore (mainly FeTiO3) is used as feedstock, removal of iron (Fe) from the ore is indispensable. In this study, the influence of reaction temperature, reaction time, particle size of the ore, and source country for the ore on the removal of iron by selective chlorination using CaCl2 was assessed. Experimental results showed that the mass percent of iron in the ore decreased from 49.7 to 1.79 pct under certain conditions by selective removal of iron as FeCl2. As a result, high-grade CaTiO3 was produced when the ore particles smaller than 74 µm reacted with CaCl2 at 1240 K (967 °C) for 8 to 10 hours. Therefore, this study demonstrates that the removal of iron from the ore is feasible through the selective chlorination process using CaCl2 by optimizing the variables.

  19. Dephosphorization of High-Phosphorus Iron Ore Using Different Sources of Aspergillus niger Strains.

    PubMed

    Xiao, Chunqiao; Wu, Xiaoyan; Chi, Ruan

    2015-05-01

    High-phosphorus iron ore is traditionally dephosphorized by chemical process with inorganic acids. However, this process is not recommended nowadays because of its high cost and consequent environmental pollution. With the current tendency for development of a low-cost and eco-friendly process, dephosphorization of high-phosphorus iron ore through microbial process with three different sources of Aspergillus niger strains was studied in this study. Results show that the three strains of A. niger could grow well in the broth, and effectively remove phosphate from high-phosphorus iron ore during the experiments. Meanwhile, the total iron in the broth was also increased. Acidification of the broth seemed to be the major mechanism for the dephosphorization by these strains. High-pressure liquid chromatography analysis indicated that various organic acids were secreted in the broth, which caused a significant drop of the broth pH. Scanning electron microscopy of ore residues revealed that the high-phosphorus iron ore was obviously destroyed by the actions of these strains. Ore residues by energy-dispersive X-ray microanalysis and Fourier transform infrared spectroscopy indicated that the phosphate was obviously removed from the high-phosphorus iron ore. The optimization of the dephosphorization by these strains was also investigated, and the maximum percentages of phosphate removal were recorded at temperature 27-30 °C, initial pH 5.0-6.5, particle size 0.07-0.1 mm, and pulp density of 2-3% (w/v), respectively. The fungus A. niger was found to have good potential for the dephosphorization of high-phosphorus iron ore, and this microbial process seems to be economic and effective in the future industrial application.

  20. Erosion resistance of arc-sprayed coatings to iron ore at 25 and 315 °C

    NASA Astrophysics Data System (ADS)

    Dallaire, S.; Levert, H.; Legoux, J.-G.

    2001-06-01

    Iron ore pellets are sintered and reduced in large continuous industrial oil-fired furnaces. From the furnace, powerful fans extract large volumes of hot gas. Being exposed to gas-borne iron ore particles and temperatures ranging between 125 and 328 °C, fan components are rapidly eroded. Extensive part repair or replacement is required for maintaining a profitable operation. The arc spraying technique has been suggested for repair provided it could produce erosion-resistant coatings. Conventional and cored wires (1.6 mm diameter) were arc sprayed using various spray parameters to produce 250 to 300 µm thick coatings. Arc-sprayed coatings and reference specimens were erosion tested at 25 and 315 °C and impact angles of 25 and 90° in a laboratory gas-blast erosion rig. This device was designed to impact materials with coarse (32 to 300 µm) iron ore particles at a speed of 100 m/s. The coating volume loss due to erosion was measured with a laser profilometer built by National Research Council Canada several years ago. Few arc-sprayed coatings exhibited erosion resistance comparable with structural steel at low impact angles. Erosion of arc-sprayed coatings and reference specimens dramatically increases at 315 °C for both 25° and 90° impact angles. Erosion-enhanced oxidation was found to be responsible for the increase in volume loss above room temperature. Though arc spraying can be appropriate for on-site repair, the development of more erosion-resistant coatings is required for intermediate temperatures.

  1. Content and binding forms of heavy metals, aluminium and phosphorus in bog iron ores from Poland.

    PubMed

    Kaczorek, Danuta; Brümmer, Gerhard W; Sommer, Michael

    2009-01-01

    Bog iron ores are widespread in Polish wetland soils used as meadows or pastures. They are suspected to contain high concentrations of heavy metals, which are precipitated together with Fe along a redox gradient. Therefore, soils with bog iron ore might be important sources for a heavy metal transfer from meadow plants into the food chain. However, this transfer depends on the different binding forms of heavy metals. The binding forms were quantified by sequential extraction analysis of heavy metals (Fe, Mn, Cr, Co, Ni, Cd, Pb) as well as Al and P on 13 representative samples of bog iron ores from central and southwestern Poland. Our results showed total contents of Cr, Co, Ni, Zn, Cd, and Pb not to exceed the natural values for sandy soils from Poland. Only the total Mn was slightly higher. The highest contents of all heavy metals have been obtained in iron oxide fractions V (occluded in noncrystalline and poorly crystalline Fe oxides) and VI (occluded in crystalline Fe oxides). The results show a distinct relationship between the content of Fe and the quantity of Zn and Pb as well P. Water soluble as well as plant available fractions were below the detection limit in most cases. From this we concluded bog iron ores not to be an actual, important source of heavy metals in the food chain. However, a remobilization of heavy metals might occur due to any reduction of iron oxides in bog iron ores, for example, by rising groundwater levels.

  2. Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Thirunavukkarasu, A.; Balamurugan, G.; Shankar, K.

    2011-04-01

    This work describes a new image processing technique for discriminating iron ores (magnetite quartzite deposits) and associated lithology in high-grade granulite region of Salem, Southern Peninsular India using visible, near-infrared and short wave infrared reflectance data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Image spectra show that the magnetite quartzite and associated lithology of garnetiferrous pyroxene granulite, hornblende biotite gneiss, amphibolite, dunite, and pegmatite have absorption features around spectral bands 1, 3, 5, and 7. ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in RGB are constructed by summing the bands representing the shoulders of absorption features as a numerator, and the band located nearest the absorption feature as a denominator to map iron ores and band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB for associated lithology. The results show that ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in a Red-Green-Blue (RGB) color combination identifies the iron ores much better than previously published ASTER band ratios analysis. A Principal Component Analysis (PCA) is applied to reduce redundant information in highly correlated bands. PCA (3, 2, and 1 for iron ores and 5, 4, 2 for granulite rock) in RGB enabled the discrimination between the iron ores and garnetiferrous pyroxene granulite rock. Thus, this image processing technique is very much suitable for discriminating the different types of rocks of granulite region. As outcome of the present work, the geology map of Salem region is provided based on the interpretation of ASTER image results and field verification work. It is recommended that the proposed methods have great potential for mapping of iron ores and associated lithology of granulite region with similar rock units of granulite regions of Southern Peninsular India. This work also demonstrates the ability of ASTER's to provide information on iron ores, which is valuable

  3. Iron and cancer: more ore to be mined.

    PubMed

    Torti, Suzy V; Torti, Frank M

    2013-05-01

    Iron is an essential nutrient that facilitates cell proliferation and growth. However, iron also has the capacity to engage in redox cycling and free radical formation. Therefore, iron can contribute to both tumour initiation and tumour growth; recent work has also shown that iron has a role in the tumour microenvironment and in metastasis. Pathways of iron acquisition, efflux, storage and regulation are all perturbed in cancer, suggesting that reprogramming of iron metabolism is a central aspect of tumour cell survival. Signalling through hypoxia-inducible factor (HIF) and WNT pathways may contribute to altered iron metabolism in cancer. Targeting iron metabolic pathways may provide new tools for cancer prognosis and therapy.

  4. Phytostabilisation potential of lemon grass (Cymbopogon flexuosus (Nees ex Stend) Wats) on iron ore tailings.

    PubMed

    Mohanty, M; Dhal, N K; Patra, P; Das, B; Reddy, P S R

    2012-01-01

    The present pot culture study was carried out for the potential phytostabilisation of iron ore tailings using lemon grass (Cymbopogon flexuosus) a drought tolerant, perennial, aromatic grass. Experiments have been conducted by varying the composition of garden soil (control) with iron ore tailings. The various parameters, viz. growth of plants, number of tillers, biomass and oil content of lemon grass are evaluated. The studies have indicated that growth parameters of lemon grass in 1:1 composition of garden soil and iron ore tailings are significantly more (-5% increase) compared to plants grown in control soil. However, the oil content of lemon grass in both the cases more or less remained same. The results also infer that at higher proportion of tailings the yield of biomass decreases. The studies indicate that lemongrass with its fibrous root system is proved to be an efficient soil binder by preventing soil erosion.

  5. Effect of rare earth Ce on the far infrared radiation property of iron ore tailings ceramics

    SciTech Connect

    Liu, Jie; Meng, Junping; Liang, Jinsheng; Duan, Xinhui; Huo, Xiaoli; Tang, Qingguo

    2015-06-15

    Highlights: • Detailed process proposed for preparation of iron ore tailings ceramics. • Replace natural minerals with iron ore tailings as raw materials for preparing functional ceramics. • Impact mechanism of Ce on far infrared ceramics, as well as its optimum addition amounts can be obtained. • Propose a new perspective on considering the mechanism of far infrared radiation. - Abstract: A kind of far infrared radiation ceramics was prepared by using iron ore tailings, CaCO{sub 3} and SiO{sub 2} as main raw materials, and Ce as additive. The result of Fourier transform infrared spectroscopy showed that the sample exhibits excellent radiation value of 0.914 when doping 7 wt.% Ce. Ce{sup 4+} dissolved into iron diopside and formed interstitial solid solution with it sintered at 1150 °C. The oxidation of Fe{sup 2+} to Fe{sup 3+} caused by Ce{sup 4+} led to a decrease of crystallite sizes and enhancement of Mg–O and Fe–O vibration in iron diopside, which consequently improved the far infrared radiation properties of iron ore tailings ceramics.

  6. 20 CFR 404.1084 - Gain or loss from disposition of property; capital assets; timber, coal, and iron ore...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...; capital assets; timber, coal, and iron ore; involuntary conversion. 404.1084 Section 404.1084 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950... from disposition of property; capital assets; timber, coal, and iron ore; involuntary conversion....

  7. 20 CFR 404.1084 - Gain or loss from disposition of property; capital assets; timber, coal, and iron ore...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...; capital assets; timber, coal, and iron ore; involuntary conversion. 404.1084 Section 404.1084 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950... from disposition of property; capital assets; timber, coal, and iron ore; involuntary conversion....

  8. 20 CFR 404.1084 - Gain or loss from disposition of property; capital assets; timber, coal, and iron ore...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...; capital assets; timber, coal, and iron ore; involuntary conversion. 404.1084 Section 404.1084 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950... from disposition of property; capital assets; timber, coal, and iron ore; involuntary conversion....

  9. The first troglobitic Pseudonannolene from Brazilian iron ore caves (Spirostreptida: Pseudonannolenidae).

    PubMed

    Iniesta, Luiz Felipe Moretti; Ferreira, Rodrigo Lopes

    2013-01-01

    Pseudonannolene spelaea n. sp. is the first strictly cave-dwelling species described for the family Pseudonannolenidae. It is found in iron ore caves in the Brazilian Amazon. The family Pseudonannolenidae is exclusively Neotropical and frequently found in caves of Brazil, from which 20 species are known. The new species is compared with its congeners and with related cave-dwelling species. The family Pseudonannolenidae is discussed, and comments are presented on the conservation status of the caves where the species is found, which potentially may be the target of anthropogenic impacts resulting from iron ore extraction.

  10. Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings

    SciTech Connect

    Yu Honghao; Xue Xiangxin; Huang Dawei

    2009-11-15

    Highly ordered mesoporous materials were successfully synthesized by using the iron ore tailings as the silica source and n-hexadecyltrimethyl ammonium bromide as the template. The samples were detail characterized by powder X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and N{sub 2} physisorption. The as-synthesized materials had high surface area of 527 m{sup 2} g{sup -1} and the mean pore diameter of 2.65 nm with a well-ordered two-dimensional hexagonal structure. It is feasible to prepare mesoporous MCM-41 materials using the iron ore tailings as precursor.

  11. Thermodynamic estimation on the reduction behavior of iron-chromium ore with carbon

    SciTech Connect

    Hino, Mitsutaka; Higuchi, Kenichi; Nagasaka, Tetsuya; Banya, Shiro

    1998-04-01

    Recently, a number of efforts have been made to produce a crude stainless steel melt by direct smelting of iron-chromium ore in a basic oxygen furnace (BOF) without use of ferrochromium alloys, in order to save electric energy and production costs. In this paper, the thermodynamics for reduction of iron-chromium ore by carbon is discussed. The thermodynamic properties of iron-chromium ore were evaluated from previous work on the activities of constituents in the FeO {center_dot} Cr{sub 2}O{sub 3}-MgO {center_dot} Cr{sub 2}O{sub 3}-MgO {center_dot} Al{sub 2}O{sub 3} iron-chromite spinel-structure solid solution saturated with (Cr, Al){sub 2}O{sub 3}, and those of the Fe-Cr-C alloy were estimated by a sublattice model. The stability diagrams were drawn for carbon reduction of pure FeO {center_dot} Cr{sub 2}O{sub 3}, (Fe{sub 0.5}Mg{sub 0.5})O {center_dot} (Cr{sub 0.8}Al{sub 0.2}){sub 2}O{sub 3} iron-chromite solid solution, and South African iron-chromium ore. The evaluated stability diagrams agreed well with the literature data. It was concluded that the lowest temperature for reduction of FeO {center_dot} Cr{sub 2}O{sub 3} in the iron-chromium ore was 1390 K and a temperature higher than 1470 K would be necessary to reduce Cr{sub 2}O{sub 3} in MgO {center_dot} (Cr,Al){sub 2}O{sub 3} in the prereduction process of iron-chromium ore. The composition of liquid Fe-Cr-C alloy in equilibrium with iron-chromium ore was also estimated under 1 atm of CO at steelmaking temperature. The predicted metal composition showed reasonable agreement with the literature values.

  12. In vitro adverse effects of iron ore dusts on human lymphoblastoid cells in culture.

    PubMed

    Wang, He; Wang, Jing J; Sanderson, Barbara J S

    2013-01-01

    The aim of this study was to investigate the adverse effects produced by four types of iron (Fe) ore dust using cultured human cells. Genotoxicity and cytotoxicity induced by Fe ore dusts were determined by assays including cytokinesis block micronucleus (CBMN), population growth, and methyl tetrazolium (MTT). Four iron ore dusts were tested, namely, 1002 Limonite & Goethite (1002), HG2 hematite (HG2), HG1 Soutlem Pit (HG1), and HG4. WIL2 -NS cells were incubated for 10 h with extracts from a range of concentrations (0, 75, or 150 μg/ml) of Fe ore dust. Significant decreases in percent cell viability were seen at 150 μg/ml HG2 and 1002 as measured by MTT, with viability that decreased to 75 and 73%, respectively, compared to untreated controls. The cell population regrew to a different extent after Fe ore dust was removed, except for HG1, where population remained declined. An approximately twofold significant increase in the frequency of micronucleated binucleated cells (MNBNC) was seen with 1002, HG2, and HG1 at 150 μg/ml. A significant rise in apoptosis induction was observed at 150 μg/ml HG1. Data indicate that Fe ore dusts at 150 μg/ml produced cytotoxicity and genotoxicity.

  13. Iron and cancer: more ore to be mined

    PubMed Central

    Torti, Suzy V.; Torti, Frank M.

    2014-01-01

    Iron is an essential nutrient that facilitates cell proliferation and growth. However, iron also has the capacity to engage in redox cycling and free radical formation. Therefore, iron can contribute to both tumour initiation and tumour growth; recent work has also shown that iron has a role in the tumour microenvironment and in metastasis. Pathways of iron acquisition, efflux, storage and regulation are all perturbed in cancer, suggesting that reprogramming of iron metabolism is a central aspect of tumour cell survival. Signalling through hypoxia-inducible factor (HIF) and WNT pathways may contribute to altered iron metabolism in cancer. Targeting iron metabolic pathways may provide new tools for cancer prognosis and therapy. PMID:23594855

  14. 26 CFR 1.631-3 - Gain or loss upon the disposal of coal or domestic iron ore with a retained economic interest.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... domestic iron ore with a retained economic interest. 1.631-3 Section 1.631-3 Internal Revenue INTERNAL...) Sales and Exchanges § 1.631-3 Gain or loss upon the disposal of coal or domestic iron ore with a... disposes of coal (including lignite), or iron ore mined in the United States, held for more than 1 year...

  15. 26 CFR 1.631-3 - Gain or loss upon the disposal of coal or domestic iron ore with a retained economic interest.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... domestic iron ore with a retained economic interest. 1.631-3 Section 1.631-3 Internal Revenue INTERNAL...) Sales and Exchanges § 1.631-3 Gain or loss upon the disposal of coal or domestic iron ore with a... disposes of coal (including lignite), or iron ore mined in the United States, held for more than 1 year...

  16. 26 CFR 1.631-3 - Gain or loss upon the disposal of coal or domestic iron ore with a retained economic interest.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... domestic iron ore with a retained economic interest. 1.631-3 Section 1.631-3 Internal Revenue INTERNAL...) Sales and Exchanges § 1.631-3 Gain or loss upon the disposal of coal or domestic iron ore with a... disposes of coal (including lignite), or iron ore mined in the United States, held for more than 1 year...

  17. 26 CFR 1.631-3 - Gain or loss upon the disposal of coal or domestic iron ore with a retained economic interest.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... domestic iron ore with a retained economic interest. 1.631-3 Section 1.631-3 Internal Revenue INTERNAL...) Sales and Exchanges § 1.631-3 Gain or loss upon the disposal of coal or domestic iron ore with a... disposes of coal (including lignite), or iron ore mined in the United States, held for more than 1 year...

  18. 26 CFR 1.631-3 - Gain or loss upon the disposal of coal or domestic iron ore with a retained economic interest.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... domestic iron ore with a retained economic interest. 1.631-3 Section 1.631-3 Internal Revenue INTERNAL...) Sales and Exchanges § 1.631-3 Gain or loss upon the disposal of coal or domestic iron ore with a... disposes of coal (including lignite), or iron ore mined in the United States, held for more than 1 year...

  19. Method for the production of mineral wool and iron from serpentine ore

    SciTech Connect

    O'Connor, William K; Rush, Gilbert E; Soltau, Glen F

    2011-10-11

    Magnesium silicate mineral wools having a relatively high liquidus temperature of at least about 1400.degree. C. and to methods for the production thereof are provided. The methods of the present invention comprise melting a magnesium silicate feedstock (e.g., comprising a serpentine or olivine ore) having a liquidus temperature of at least about 1400.degree. C. to form a molten magnesium silicate, and subsequently fiberizing the molten magnesium silicate to produce a magnesium silicate mineral wool. In one embodiment, the magnesium silicate feedstock contains iron oxide (e.g., up to about 12% by weight). Preferably, the melting is performed in the presence of a reducing agent to produce an iron alloy, which can be separated from the molten ore. Useful magnesium silicate feedstocks include, without limitation, serpentine and olivine ores. Optionally, silicon dioxide can be added to the feedstock to lower the liquidus temperature thereof.

  20. Estimate of rock mass stability in surface–borehole mining of high-grade iron ore

    NASA Astrophysics Data System (ADS)

    Sammal, AS; Antsiferov, SV; Deev, PV; Sergeev, SV

    2017-02-01

    Under consideration is the estimate of rock mass stability around underground openings generated as a result of hydraulic borehole mining of iron ore. The authors use analytical solutions of two plane elasticity problems on stress state of infinite media with the zone of weakening in the form of one or two circular holes, given initial stresses are set in the study domains.

  1. Geophysical prospecting for iron ore deposit around Tajimi village, Lokoja, North-Central Nigeria

    NASA Astrophysics Data System (ADS)

    Bayowa, Oyelowo; Ogungbesan, Gbenga; Majolagbe, Razak; Oyeleke, Simeon

    2016-09-01

    Ground magnetic and electrical resistivity survey were undertaken to investigate the occurrence and geometry of iron ore deposit around Tajimi village, Lokoja, North-Central Nigeria. The generated residual map of the ground-magnetic data acquired at 250 stations along 15 traverses revealed numerous prominent anomalies, mostly trending in the N-S direction. The radial power spectrum revealed the depth to magnetic sources between 6 m to 20 m. The interpreted VES data characterized the area into three subsurface layers: top soil, presumably iron ore layer and weathered/fresh basement. The result of vertical electrical sounding curves showed a sudden drop in resistivity (42-241 Ωm) over high magnetic response. The geo-electric section revealed that the study area is generally characterized with thin overburden (0.5-1.7 m) and the thickness of the second layer (presumed to be the iron ore layer) ranged between 6.2-25.1 m. The study concluded that areas of high magnetic intensity showed a sudden drop in resistivity value for the VES points, which give an indication of the presence of an electrically conductive structure presumed to be iron ore deposits.

  2. Red iron-ore beds of Silurian age in northeastern Alabama, northwestern Georgia, and eastern Tennessee

    USGS Publications Warehouse

    Whitlow, Jesse W.

    1962-01-01

    Geological studies have determined the lithology and approximate extent of the red iron ores of Silurian age in the Southeast. Detailed investigations have been made by private companies and government agencies. Most of this work has been in the Birmingham, Ala., district, and the remainder of the region has relatively little study in recent years. 

  3. Water determination in iron oxyhydroxides and iron ores by Karl Fischer titration

    NASA Astrophysics Data System (ADS)

    da Cunha, Camila C. R. F.; da Costa, Geraldo M.

    2016-11-01

    Protohematite (Fe2- x/3(OH) x O3- x 1 ≤ x < 0.5) and hydrohematite (Fe2- x/3(OH) x O3- x 0.5 ≤ x < 0) are iron-defective phases containing hydroxyl groups in their structures. These species were described in prior studies mainly with the aid of X-ray diffraction and Infrared spectroscopy. The existence of these phases in soils might have influence in redox processes, and they were considered as a possible water reservoir in Martian soils. In this study, we have used for the first time the Karl Fischer titration method to determine the amount of water released after heating several synthetic samples of goethite, hematite and natural iron ores at 105, 400, 600 and 900 °C. It was found that heating at 105 °C did not remove all moisture from the samples, and higher temperatures were necessary to completely remove all the absorbed water. The water contents determined at 400, 600 and 900 °C were found to be the same within the experimental errors, suggesting the inexistence of both protohematite and hydrohematite in the investigated samples. Therefore, the above-mentioned effects of these phases in soils might have to be reevaluated.

  4. Reduction of iron-oxide-carbon composites: part II. Rates of reduction of composite pellets in a rotary hearth furnace simulator

    SciTech Connect

    Halder, S.; Fruehan, R.J.

    2008-12-15

    A new ironmaking concept is being proposed that involves the combination of a rotary hearth furnace (RHF) with an iron-bath smelter. The RHF makes use of iron-oxide-carbon composite pellets as the charge material and the final product is direct-reduced iron (DRI) in the solid or molten state. This part of the research includes the development of a reactor that simulated the heat transfer in an RHF. The external heat-transport and high heating rates were simulated by means of infrared (IR) emitting lamps. The reaction rates were measured by analyzing the off-gas and computing both the amount of CO and CO{sub 2} generated and the degree of reduction. The reduction times were found to be comparable to the residence times observed in industrial RHFs. Both artificial ferric oxide (PAH) and naturally occurring hematite and taconite ores were used as the sources of iron oxide. Coal char and devolatilized wood charcoal were the reductants. Wood charcoal appeared to be a faster reductant than coal char. However, in the PAH-containing pellets, the reverse was found to be true because of heat-transfer limitations. For the same type of reductant, hematite-containing pellets were observed to reduce faster than taconite-containing pellets because of the development of internal porosity due to cracking and fissure formation during the Fe2O{sub 3}-to-Fe3O{sub 4} transition. This is, however, absent during the reduction of taconite, which is primarily Fe3O{sub 4}. The PAH-wood-charcoal pellets were found to undergo a significant amount of swelling at low-temperature conditions, which impeded the external heat transport to the lower layers. If the average degree of reduction targeted in an RHF is reduced from 95 to approximately 70 pct by coupling the RHF with a bath smelter, the productivity of the RHF can be enhanced 1.5 to 2 times. The use of a two- or three-layer bed was found to be superior to that of a single layer, for higher productivities.

  5. Assessment of health risks due to arsenic from iron ore lumps in a beach setting.

    PubMed

    Swartjes, Frank A; Janssen, Paul J C M

    2016-09-01

    In 2011, an artificial hook-shaped peninsula of 128ha beach area was created along the Dutch coast, containing thousands of iron ore lumps, which include arsenic from natural origin. Elemental arsenic and inorganic arsenic induce a range of toxicological effects and has been classified as proven human carcinogens. The combination of easy access to the beach and the presence of arsenic raised concern about possible human health effects by the local authorities. The objective of this study is therefore to investigate human health risks from the presence of arsenic-containing iron ore lumps in a beach setting. The exposure scenarios underlying the human health-based risk limits for contaminated land in The Netherlands, based on soil material ingestion and a residential setting, are not appropriate. Two specific exposure scenarios related to the playing with iron ore lumps on the beach ('sandcastle building') are developed on the basis of expert judgement, relating to children in the age of 2 to 12years, i.e., a worst case exposure scenario and a precautionary scenario. Subsequently, exposure is calculated by the quantification of the following factors: hand loading, soil-mouth transfer effectivity, hand-mouth contact frequency, contact surface, body weight and the relative oral bioavailability factor. By lack of consensus on a universal reference dose for arsenic for use in the stage of risk characterization, three different types of assessments have been evaluated: on the basis of the current Provisional Tolerable Daily Intake (PTWI), on the basis of the Benchmark Dose Lower limit (BMDL), and by a comparison of exposure from the iron ore lumps with background exposure. It is concluded, certainly from the perspective of the conservative exposure assessment, that unacceptable human health risks due to exposure to arsenic from the iron ore lumps are unlikely and there is no need for risk management actions.

  6. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    NASA Astrophysics Data System (ADS)

    Wicakso, Doni Rahmat; Sutijan, Rochmadi, Budiman, Arief

    2016-06-01

    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 - 600 °C and catalyst weight between 0 - 40 gram. The first step, tar was evaporated at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H2 productivity increased and calorimetric value of bio-oil increased.

  7. Reduction of lateritic iron ore briquette using coal bed reductant by isothermal - temperature gradient method

    NASA Astrophysics Data System (ADS)

    Zulhan, Zulfiadi; Himawan, David Mangatur; Dimyati, Arbi

    2017-01-01

    In this study, isothermal-temperature gradient method was used to separate iron and alumina in lateritic iron ore as an alternative technique. The lateritic iron ore was ground to obtain grain size of less than 200 mesh and agglomerated in the form of cylindrical briquette using a press machine. The iron oxide in the briquette was reduced by addition of coal so that all surface of the briquette was covered by the coal. The temperature profile for the reduction process of the briquette was divided into three stages: the first stage was isothermal at 1000°C, the second stage was temperature gradient at varies heating rate of 5, 6.67 and 8.33°C/minutes from 1000 to 1400°C, and the final stage was isothermal at 1400°C. The effect of dehydroxylation of lateritic iron ore was studied as well. Aluminum distribution inside and outside the briquette was analyzed by scanning electron microscope with energy dispersive spectroscopy (SEM-EDS). The analysis results showed that the aluminum content increased from 8.01% at the outside of the briquette to 13.12% in the inside of the briquette. On contrary, iron content is higher at the outside of the briquette compared to that in the inside. These phenomena indicated that aluminum tends to migrate into the center of the briquette while iron moves outward to the surface of briquette. Furthermore, iron metallization of 91.03% could be achieved in the case of without dehydroxylation treatment. With the dehydroxylation treatment, iron metallization degree was increased up to 95.27%.

  8. Geophysical investigation of banded iron ore mineralization at Ero, North - Central Nigeria

    NASA Astrophysics Data System (ADS)

    Oyedele, Kayode; Oladele, Sunday; Salami, Anthony

    2016-09-01

    The banded iron ore mineralization at Ero was investigated using aeromagnetic, resistivity and induced polarization (IP) methods with the aim of characterizing the deposit. Analysis of the aeromagnetic data involved the application of reduced-to-equator transformation, derivative filters, analytic signal and source parameter imaging techniques. Computer modelling of some of the identified anomalies was undertaken. The electrical resistivity and IP methods helped in discriminating between the iron ore and the host rock. The results showed that the banded iron formations (BIFs) were characterized by spherical analytic signal anomalies ranging from 0.035 nT/m to 0.06 nT/m within the granite gneiss and magnetic susceptibility of 0.007-0.014 SI. The iron ore had low chargeability (0.1-5.0 msec) and resistivity (1.5 × 102 to 2.5 × 103 Ωm). Structural features trending in the NE-SW, E-W, and NW-SE were identified, suggesting that the area had undergone many episodes of tectonic events. Depth to the BIF varied from the surface up to about 200 m. The chargeability response of the iron bodies suggested an average grade of 20%-40%, making the prospect for economic exploitation attractive.

  9. A pilot-scale study of selective desulfurization via urea addition in iron ore sintering

    NASA Astrophysics Data System (ADS)

    Long, Hong-ming; Wu, Xue-jian; Chun, Tie-jun; Di, Zhan-xia; Wang, Ping; Meng, Qing-min

    2016-11-01

    The iron ore sintering process is the main source of SO2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO2 emissions in the flue gas in the iron ore sintering process by adding urea at a given distance from the sintering grate bar. In this paper, a pilot-scale experiment was carried out in a commercial sintering plant. The results showed that, compared to the SO2 concentration in flue gas without urea addition, the SO2 concentration decreased substantially from 694.2 to 108.0 mg/m3 when 0.10wt% urea was added. NH3 decomposed by urea reacted with SO2 to produce (NH4)2SO4, decreasing the SO2 concentration in the flue gas.

  10. In Situ Synchrotron Powder Diffraction Studies of Reduction-Oxidation (Redox) Behavior of Iron Ores and Ilmenite

    NASA Astrophysics Data System (ADS)

    Ilyushechkin, Alexander Y.; Kochanek, Mark; Tang, Liangguang; Lim, Seng

    2017-04-01

    Phase transformations of two types of iron-based oxides (iron ore and industrial-grade ilmenite) were studied using synchrotron powder diffraction of the samples processed in reducing and oxidizing atmospheres at 1173 K (900 °C) and 1223 K (950 °C), respectively. In iron ore oxidation, the disappearance of the wustite and fayalite phases was followed by hematite growth and a decrease of the magnetite phase. The magnetite phase was partially recovered by treatment in a reducing atmosphere. Ilmenite oxidation initiated decomposition of the ilmenite phase with rapid growth of hematite and gradual growth of the pseudobrookite phase. In a reducing atmosphere, ilmenite was gradually recovered from pseudobrookite with a relatively fast initial decrease in rutile and hematite content. Under reducing conditions, there was interaction of iron ore with magnesio-ferrites in iron ore-ash mixture and interaction of ilmenite with silica by the formation of fayalite.

  11. In Situ Synchrotron Powder Diffraction Studies of Reduction-Oxidation (Redox) Behavior of Iron Ores and Ilmenite

    NASA Astrophysics Data System (ADS)

    Ilyushechkin, Alexander Y.; Kochanek, Mark; Tang, Liangguang; Lim, Seng

    2017-01-01

    Phase transformations of two types of iron-based oxides (iron ore and industrial-grade ilmenite) were studied using synchrotron powder diffraction of the samples processed in reducing and oxidizing atmospheres at 1173 K (900 °C) and 1223 K (950 °C), respectively. In iron ore oxidation, the disappearance of the wustite and fayalite phases was followed by hematite growth and a decrease of the magnetite phase. The magnetite phase was partially recovered by treatment in a reducing atmosphere. Ilmenite oxidation initiated decomposition of the ilmenite phase with rapid growth of hematite and gradual growth of the pseudobrookite phase. In a reducing atmosphere, ilmenite was gradually recovered from pseudobrookite with a relatively fast initial decrease in rutile and hematite content. Under reducing conditions, there was interaction of iron ore with magnesio-ferrites in iron ore-ash mixture and interaction of ilmenite with silica by the formation of fayalite.

  12. Reducing acid leaching of manganiferous ore: effect of the iron removal operation on solid waste disposal.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Vegliò, Francesco

    2009-01-01

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO3, NaOH, and Na2CO3. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.

  13. Getting rid of the unwanted: highlights of developments and challenges of biobeneficiation of iron ore minerals-a review.

    PubMed

    Adeleke, Rasheed A

    2014-12-01

    The quest for quality mineral resources has led to the development of many technologies that can be used to refine minerals. Biohydrometallurgy is becoming an increasingly acceptable technology worldwide because it is cheap and environmentally friendly. This technology has been successfully developed for some sulphidic minerals such as gold and copper. In spite of wide acceptability of this technology, there are limitations to its applications especially in the treatment of non-sulphidic minerals such as iron ore minerals. High levels of elements such as potassium (K) and phosphorus (P) in iron ore minerals are known to reduce the quality and price of these minerals. Hydrometallurgical methods that are non-biological involving the use of chemicals are usually used to deal with this problem. However, recent advances in mining technologies favour green technologies, known as biohydrometallurgy, with minimal impact on the environment. This technology can be divided into two, namely bioleaching and biobeneficiation. This review focuses on Biobeneficiation of iron ore minerals. Biobeneficiation of iron ore is very challenging due to the low price and chemical constitution of the ore. There are substantial interests in the exploration of this technology for improving the quality of iron ore minerals. In this review, current developments in the biobeneficiation of iron ore minerals are considered, and potential solutions to challenges faced in the wider adoption of this technology are proposed.

  14. Preliminary report on iron ore reserves at Bomi Hills, Liberia

    USGS Publications Warehouse

    Newhouse, Walter H.; Thayer, Thomas P.; Butler, Arthur P.

    1945-01-01

    At the request if the Liberian Government made through the Department of State of the United States Government, a party of geologists of the Geological Survey, United States Department of the Interior, was sent to Liberia to examine certain mineral deposits. The party, consisting of Walter H. Newhouse, Thomas P. Thayer, and Arthur P. Butler, Jr., left Washington, D.C., about December 1, 1943, and arrived in Monrovia, Liberia, December 12, 1943. They left Roberts Field, Liberia, May 5, 1944, and returned to Washington May 16, 1944. The geologists left Monrovia for field work in the interior on January 9, the delay of several weeks being due to difficulties in obtaining porters. Mr. Arthur Sherman, Mining Engineer for the Liberian Government, who accompanied the party into the interior, capably participated in the examination of the iron deposits and otherwise rendered invaluable assistance sue to his extensive knowledge of the native tribes and trails. President Tubman requested that the part first examined the iron deposits at Bomi Hills. At the close of the work there he requested that iron deposits in the Kpandemai Mountains be investigated. The party therefore left Bomi Hills on March 25 and arrived at Jordense Camp in the Kpandemai Mountain region on April 6. Four days were spent at this place examining the iron mineralization in the vicinity of Castle Rock, Sugar Loaf, and Mt. Wutivi of Kpandemai Mountains. On April 11 Kpandemai village reached. One day was spent on a long transverse into the Kpandemai Mountains to investigate the iron mineralization. The party left Kpandemai Village April 15 and arrived at Monrovia April 27. The iron mineralization in the portions of the Kpandemai Mountains investigated by the party is believed to be too low in grade and too small in amount to be of any present commercial interest and will not be considered further in this report.

  15. Geochemical and mineralogical composition of bog iron ore as a resource for prehistoric iron production - A case study of the Widawa catchment area in Eastern Silesia, Poland

    NASA Astrophysics Data System (ADS)

    Thelemann, Michael; Bebermeier, Wiebke; Hoelzmann, Philipp

    2016-04-01

    Spreading from the Near East in the declining Bronze Age from the 2nd millennium BCE onwards, the technique of iron smelting reached Eastern Silesia, Poland, in approximately the 2nd century BCE (pre-Roman Iron Age). At this time the region of the Widawa catchment area was inhabited by the Przeworsk culture. While the older moraine landscape of the study area lacks ores from geological rock formations, bog iron ores were relatively widespread and, due to their comparatively easy accessibility, were commonly exploited for early iron production. In this poster the mineralogical and elemental composition of local bog iron ore deposits and iron slag finds, as a by-product of the smelting process, are investigated. The crystalline mineralogical composition of local bog iron ores is dominated by quartz (SiO2) and goethite (α FeO(OH)), in contrast to slag samples in which fayalite (Fe2SiO4), wüstite (FeO) and quartz, with traces of goethite, represent the main minerals. Ores and slags are both characterized by notable hematite (Fe2O3), magnetite (Fe3O4) and maghemite (γ-Fe2O3) contents. Analyzed bog iron ore samples show iron contents of up to 64.9 mass% Fe2O3 (45.4 mass% Fe), whereas the iron contents of bloomery slags vary between 48.7 and 72.0 mass% FeO (37.9 and 56.0 mass% Fe). A principal component analysis of the element contents, which were quantified by portable energy-dispersive X-ray fluorescence spectrometry (p-ED-XRF), indicates local variations in the elemental composition. Our results show that bog iron ores are relatively widely distributed with spatially varying iron contents along the Widawa floodplain but present-day formation conditions (e.g. different ground-water levels) are negatively affected by modern land-use practices, such as agriculture and melioration measures.

  16. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater.

    PubMed

    Xu, Jing-Cheng; Chen, Gu; Huang, Xiang-Feng; Li, Guang-Ming; Liu, Jia; Yang, Na; Gao, Sai-Nan

    2009-09-30

    To reclaim treated steel wastewater as cooling water, manganese ore constructed wetland was proposed in this study for the removal of iron and manganese. In lab-scale wetlands, the performance of manganese ore wetland was found to be more stable and excellent than that of conventional gravel constructed wetland. The iron and manganese concentration in the former was below 0.05 mg/L at hydraulic retention time of 2-5 days when their influent concentrations were in the range of 0.16-2.24 mg/L and 0.11-2.23 mg/L, respectively. Moreover, its removals for COD, turbidity, ammonia nitrogen and total phosphorus were 55%, 90%, 67% and 93%, respectively, superior to the corresponding removals in the gravel wetland (31%, 86%, 58% and 78%, respectively). The good performance of manganese ore was ascribed to the enhanced biological manganese removal with the aid of manganese oxide surface and the smaller size of the medium. The presence of biological manganese oxidation was proven by the facts of good manganese removal in wetlands at chemical unfavorable conditions (such as ORP and pH) and the isolation of manganese oxidizing strains from the wetlands. Similar iron and manganese removal was later observed in a pilot-scale gravel-manganese-ore constructed wetland, even though the manganese ore portion in total volume was reduced from 100% (in the lab-scale) to only 4% (in the pilot-scale) for the sake of cost-saving. The quality of the polished wastewater not only satisfied the requirement for cooling water but also suitable as make-up water for other purposes.

  17. Processing and Analysis of Hyperspectral Fingerprints to Characterise Haematite of Singbhum Iron Ore Belt, Orissa, India

    NASA Astrophysics Data System (ADS)

    Magendran, T.; Sanjeevi, S.

    2014-12-01

    The demand for iron ore has been increasing in the recent years, thereby requiring the adoption of fast and accurate approaches to iron ore exploration and its grade-assessment. It is in this context that hyperspectral sensing is deemed as a potential tool. This paper examines the potential of hyperspectral fingerprints in the visible, NIR and SWIR regions of the EMR to assess the grades of haematite of the western Singhbhum iron ore belt of Orissa, eastern India, in a rapid manner. Certain spectro-radiometric measurements and geochemical analysis were carried out and the results have been presented. From the spectral measurements, it is seen that the strength of reflectance and absorption at definite wavelength regions is controlled by the chemical composit ion of the iron ores. It is observed that the primary spectral characteristics of these haematites lie in the 650-750 nm, 850 to 900 nm and 2130-2230 nm regions. The laboratory based hyperspectral fingerprints and multiple regression analysis of spectral parameters and geochemical parameters (Fe% and Al2O3%) predicted the concentration of iron and alumina content in the haematite. A very strong correlation (R2 = 0.96) between the spectral parameters and Fe% in the haematite with a minimum error of 0.1%, maximum error of 7.4% and average error of 2.6% is observed. Similarly, a very strong correlation (R2 = 0.94) between the spectral parameters and Al2O3% in the iron ores with a minimum error of 0.04%, maximum error of 7.49% and average error of 2.5% is observed. This error is perhaps due to the presence of other components (SiO2, TiO2, P2O etc.) in the samples which can alter the degree of reflectance and hence the spectral parameters. Neural network based multi-layer perception (MLP) analysis of various spectral parameters and geochemical parameters helped to understand the relative importance of the spectral parameters for predictive models. The strong correlations (Iron: R2 = 0.96; Alumina: R2 = 0

  18. Nitric oxide formation in an iron oxide pellet rotary kiln furnace.

    PubMed

    Davis, R A

    1998-01-01

    A one-dimensional numerical model was developed to simulate the effects of heat and mass transfer on the formation of oxides of nitrogen (NOx) in a rotary kiln furnace for iron oxide pellet induration. The modeled kiln has a length-to-diameter ratio of approximately seven. The principal mechanism of heat transfer is radiation from the flame, which was described by the net radiation method. The well known Zeldovich mechanism was used to predict thermal NOx generation. Temperature fluctuations in the vicinity of the flame were estimated with a clipped Gaussian probability density function. The thermal energy and mass balance model equations were solved numerically. The model is capable of predicting temperature profiles and NOx production rates in agreement with observed plant performance. The model was used to explore the effects of process changes on the total NOx formation in the kiln. It was concluded that the gas temperature as well as the partial pressure of oxygen in the process gases controls the rate of NOx formation. Lowering the temperature of the kiln gases by increasing the secondary air flow rates requires simultaneously decreasing the pellet production rate in order to maintain the pellet temperatures needed for blast furnace conditions.

  19. Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets.

    PubMed

    Li, Zhaohui; Kirk Jones, H; Zhang, Pengfei; Bowman, Robert S

    2007-08-01

    Chromate transport through columns packed with zeolite/zero valent iron (Z/ZVI) pellets, either untreated or treated with the cationic surfactant hexadecyltrimethylammonium (HDTMA), was studied at different flow rates. In the presence of sorbed HDTMA, the chromate retardation factor increased by a factor of five and the pseudo first-order rate constant for chromate reduction increased by 1.5-5 times. The increase in rate constant from the column studies was comparable to a six-fold increase in the rate constant determined in a batch study. At a fast flow rate, the apparent delay in chromate breakthrough from the HDTMA modified Z/ZVI columns was primarily caused by the increase in chromate reduction rate constant. In contrast, at a slower flow rate, the retardation in chromate transport from the HDTMA modified Z/ZVI columns mainly originated from chromate sorption onto the HDTMA modified Z/ZVI pellets. Due to dual porosity, the presence of immobile water was responsible for the earlier breakthrough of chromate in columns packed with zeolite and Z/ZVI pellets. The results from this study further confirm the role of HDTMA in enhancing sorption and reduction efficiency of contaminants in groundwater remediation.

  20. Offshore sediments record the history of onshore iron ore mining in Goa State, India.

    PubMed

    Sebastian, Tyson; Nath, B Nagender; Naik, Sangeeta; Borole, D V; Pierre, Salou; Yazing, Armoury Kazip

    2017-01-30

    Environmental magnetic and geochemical analyses combined with (210)Pb dating were carried out on a sediment core off Goa from Arabian Sea to reconstruct the sedimentation history of last three and a half centuries and to investigate the impact of onshore iron ore mining on the offshore sedimentation. A drastic increase in sedimentation rate and mineral magnetic concentration parameters divides the core into two units (1 & 2) at a depth of 41cm (1982CE). The high magnetic susceptibility values in Unit 1 sediments are coeval with increased iron ore production on land and illustrate the role of terrestrial mining on the increased offshore sedimentation. The early diagenetic signals were observed in Unit 2 of the core with low concentration parameters, coarse magnetic grain size and magnetically hard mineralogy. The geochemical data of the core also record the Little Ice Age (LIA) climatic events of Dalton and Maunder solar minima.

  1. Environmentally safe design of tailing dams for the management of iron ore tailings in Indian context.

    PubMed

    Ghose, Mrinal K; Sen, P K

    2005-10-01

    The need for the disposal of iron ore tailings in an enviornmentally firiendly manner is of great concern. This paper investigates the soil engineering properties for the construction of iron ore tailing dam, its foundation, construction materials and design data used for the construction analysis of the tailing dam. Geophysical investigations were carried out to establish the bedrock below the spillway. A computer programme taking into account the Swedish Slip Circle Method of analysis was used in the stability analysis of dam. It also focuses on the charactierstics of the tailings reponsible for the determination of optimum size of tailing pond for the containment of the tailings. The studies on the settling characteristics of tailings indicate much less area in comparison to the area provided in the existing tailing ponds in India. In the proposed scheme, it is suggested to provide an additional unit of sedimentation tank before the disposal of tailings to the tailing pond.

  2. Iron ore pollution in Mandovi and Zuari estuarine sediments and its fate after mining ban.

    PubMed

    Kessarkar, Pratima M; Suja, S; Sudheesh, V; Srivastava, Shubh; Rao, V Purnachandra

    2015-09-01

    Iron ore was mined from the banded iron formations of Goa, India, and transported through the Mandovi and Zuari estuaries for six decades until the ban on mining from September 2012. Here we focus on the environmental magnetic properties of sediments from the catchment area, upstream and downstream of these estuaries, and adjacent shelf during peak mining time. Magnetic susceptibility (χ lf) and saturation isothermal remanent magnetization (SIRM) values of sediments were highest in upstream (catchment area and estuaries), decreased gradually towards downstream (catchment area and estuaries), and were lowest on the adjacent shelf. The χ lf values of the Mandovi estuary were two to fourfold higher than those in the Zuari. The sediments of these two estuaries after the mining ban showed enrichment of older magnetite and sharp decrease in the SIRM values. Although the input of ore material has been reduced after mining ban, more flushing of estuarine sediments is required for healthier environment.

  3. Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. [deuterium-carbon monoxide reaction catalysis

    NASA Technical Reports Server (NTRS)

    Nooner, D. W.; Gibert, J. M.; Gelpi, E.; Oro, J.

    1976-01-01

    Experiments were performed in which meteoritic iron, iron ore and nickel-iron alloy were used to catalyze (in Fischer-Tropsch synthesis) the reaction of deuterium and carbon monoxide in a closed vessel. Normal alkanes and alkenes and their monomethyl substituted isomers and aromatic hydrocarbons were synthesized. Iron oxide and oxidized-reduced Canyon Diablo used as Fischer-Tropsch catalysts were found to produce aromatic hydrocarbons in distributions having many of the features of those observed in carbonaceous chondrites, but only at temperatures and reaction times well above 300 C and 6-8 h.

  4. Experimental evaluation of sorptive removal of fluoride from drinking water using iron ore

    NASA Astrophysics Data System (ADS)

    Kebede, Beekam; Beyene, Abebe; Fufa, Fekadu; Megersa, Moa; Behm, Michael

    2016-03-01

    High concentrations of fluoride in drinking water is a public health concern globally and of critical importance in the Rift Valley region. As a low-cost water treatment option, the defluoridation capacity of locally available iron ore was investigated. Residence time, pH, agitation rate, particle size of the adsorbent, sorbent dose, initial fluoride concentration and the effect of co-existing anions were assessed. The sorption kinetics was found to follow pseudo-first-order rate and the experimental equilibrium sorption data fitted reasonably well to the Freundlich model. The sorption capacity of iron ore for fluoride was 1.72 mg/g and the equilibrium was attained after 120 min at the optimum pH of 6. The sorption study was also carried out at natural pH conditions using natural ground water samples and the fluoride level was reduced from 14.22 to 1.17 mg/L (below the WHO maximum permissible limit). Overall, we concluded that iron ore can be used in water treatment for fluoride removal in the Rift Valley region and beyond.

  5. Relationship Between Liquid Fluidity of Iron Ore and Generated Liquid Content During Sintering

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Zhang, Lei; Liu, Li-xia; An, Sheng-li

    2017-02-01

    The fluidity of sintering liquid phase reflects the effective bonding range of the binder phase in the sintering process of iron ores. In this study, the liquid composition and quantity during sintering was calculated using FactSage 7.0 thermodynamic calculation software. The results show that two liquid phases are formed during sintering. One phase is generated at about 1373 K (1100 °C) and the other is generated at about 1523 K (1250 °C). The liquid fluidity index and the low-temperature liquid phase are closely related. The higher-temperature liquid phase has little influence on the liquid fluidity index. The larger the amount of low-temperature liquid phase generated, the higher the liquid fluidity index is. The alkalinity of the low-temperature liquid phase has insignificant influence on the liquid fluidity index. The content of SiO2 in the iron ore is the main factor that affects the liquid fluidity index during sintering. The liquid fluidity index increases greatly with increasing SiO2 content. In contrast, Al2O3 content has little influence on the liquid fluidity index, with an increase in the Al2O3 content only slightly increasing the liquid fluidity index. An increase in the MgO content of the iron ore can reduce liquid generation, promote the spinel generation, and decrease the liquid fluidity index during sintering.

  6. Effect of Tourmaline-Doped on the Far Infrared Emission of Iron Ore Tailings Ceramics.

    PubMed

    Liu, Jie; Meng, Junping; Liang, Jinsheng; Zhang, Hongchen; Gu, Xiaoyang

    2016-04-01

    Iron ore tailings as secondary resources have been of great importance to many countries in the world. Their compositions are similar to that of infrared emission ceramics, but there are few reports about it. In addition, tourmaline has high infrared emission properties due to its unique structure. With the purpose of expanding functional utilization of iron ore tailings, as well as reducing the production cost of far infrared ceramics, a new kind of far infrared emission ceramics was prepared by using iron ore tailings, calcium carbonate, silica, and natural tourmaline. The ceramics powders were characterized by Fourier transform infrared spectroscope, X-ray diffraction and scanning electron microscopy, respectively. The results show that after being sintered at 1065 °C, the percentage of pseudobrookite and lattice strain of samples increased with increasing the elbaite content. Furthermore, the added tourmaline was conducive to the densification sintering of ceramics. The appearance of Li-O vibration at 734.73 cm-1, as well as the strengthened Fe-O vibration at 987.68 cm-1 were attributed to the formation of Li0.375Fe1.23Ti1.4O5 solid solution, which led the average far infrared emissivity of ceramics increase from 0.861 to 0.906 within 8-14 µm.

  7. Investigating the Utility of Iron Ore Waste in Preparing Non-fired Bricks

    NASA Astrophysics Data System (ADS)

    Lamani, Shreekant R.; Mangalpady, Aruna; Vardhan, Harsha

    2016-10-01

    Iron ore waste is a major problem for mine owners due to the difficulty involved in its storage, handling and other environmental related issues. An alternative solution to this is utilisation of iron ore waste (IOW) as some value added product in construction industry. An attempt has been made in this paper in examining the possibility of making non-fired bricks from iron ore waste with some additives like cement and fly-ash. Each of the additives were mixed with IOW in different ratios and different sets of bricks were prepared. The prepared IOW bricks were cured for 7, 14, 21 and 28 days and their respective compressive strength and percentage of water absorption were determined. The results show that IOW bricks prepared with 9% and above cement and with 28 days of curing are suitable for brick making and meet the IS specifications. It was also observed that the weight of the prepared bricks with 9% cement with 28 days of curing varies between 2.35 and 2.45 kg whereas the weight of compressed fire clay bricks varies from 2.80 to 2.89 kg. Results also show that the cost of bricks prepared with cement ranging from 9 to 20% is comparable to that of commercially available compressed bricks.

  8. Beneficiation of Aluminum-, Iron-, and Titanium-Bearing Constituents from Diasporic Bauxite Ores

    NASA Astrophysics Data System (ADS)

    Li, Guanghui; Gu, Foquan; Jiang, Tao; Luo, Jun; Deng, Bona; Peng, Zhiwei

    2017-02-01

    In this study, extraction of aluminum-, iron-, and titanium-bearing constituents from diaspore-type bauxite ores was investigated by stepwise treatment consisting of pre-desilication via alkali-leaching of bauxite ore, extraction of alumina via Bayer process, and recovery of iron from red mud via magnetic separation. The pre-desilication results showed that the removal of silica reached 73.92% and that the mass ratio of alumina to silica (A/S) of bauxite concentrate increased from 2.92 to 9.25 under the conditions of sodium hydroxide concentration of 50 wt.%, leaching temperature of 95°C, leaching time of 30 min, and liquid-to-solid ratio of 5 mL/g. A total of 96.31% alumina was extracted from the bauxite concentrate via the Bayer process. Subsequently, by using two-step magnetic separation (intensity: 0.8 T and 0.2 T), TiO2-bearing iron concentrate with total iron grade of 56.39% and TiO2 grade of 8.66% was obtained with recoveries of iron and TiO2 of 55.79% and 17.37%, respectively. The grade of TiO2 reached 21.22% in the nonmagnetic fraction.

  9. Beneficiation of Aluminum-, Iron-, and Titanium-Bearing Constituents from Diasporic Bauxite Ores

    NASA Astrophysics Data System (ADS)

    Li, Guanghui; Gu, Foquan; Jiang, Tao; Luo, Jun; Deng, Bona; Peng, Zhiwei

    2016-12-01

    In this study, extraction of aluminum-, iron-, and titanium-bearing constituents from diaspore-type bauxite ores was investigated by stepwise treatment consisting of pre-desilication via alkali-leaching of bauxite ore, extraction of alumina via Bayer process, and recovery of iron from red mud via magnetic separation. The pre-desilication results showed that the removal of silica reached 73.92% and that the mass ratio of alumina to silica (A/S) of bauxite concentrate increased from 2.92 to 9.25 under the conditions of sodium hydroxide concentration of 50 wt.%, leaching temperature of 95°C, leaching time of 30 min, and liquid-to-solid ratio of 5 mL/g. A total of 96.31% alumina was extracted from the bauxite concentrate via the Bayer process. Subsequently, by using two-step magnetic separation (intensity: 0.8 T and 0.2 T), TiO2-bearing iron concentrate with total iron grade of 56.39% and TiO2 grade of 8.66% was obtained with recoveries of iron and TiO2 of 55.79% and 17.37%, respectively. The grade of TiO2 reached 21.22% in the nonmagnetic fraction.

  10. Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden

    PubMed Central

    Jonsson, Erik; Troll, Valentin R.; Högdahl, Karin; Harris, Chris; Weis, Franz; Nilsson, Katarina P.; Skelton, Alasdair

    2013-01-01

    Iron is the most important metal for modern industry and Sweden is by far the largest iron-producer in Europe, yet the genesis of Sweden's main iron-source, the ‘Kiruna-type’ apatite-iron-oxide ores, remains enigmatic. We show that magnetites from the largest central Swedish ‘Kiruna-type’ deposit at Grängesberg have δ18O values between −0.4 and +3.7‰, while the 1.90−1.88 Ga meta-volcanic host rocks have δ18O values between +4.9 and +9‰. Over 90% of the magnetite data are consistent with direct precipitation from intermediate to felsic magmas or magmatic fluids at high-temperature (δ18Omgt > +0.9‰, i.e. ortho-magmatic). A smaller group of magnetites (δ18Omgt ≤ +0.9‰), in turn, equilibrated with high-δ18O, likely meteoric, hydrothermal fluids at low temperatures. The central Swedish ‘Kiruna-type’ ores thus formed dominantly through magmatic iron-oxide precipitation within a larger volcanic superstructure, while local hydrothermal activity resulted from low-temperature fluid circulation in the shallower parts of this system. PMID:23571605

  11. Magmatic origin of giant 'Kiruna-type' apatite-iron-oxide ores in central Sweden.

    PubMed

    Jonsson, Erik; Troll, Valentin R; Högdahl, Karin; Harris, Chris; Weis, Franz; Nilsson, Katarina P; Skelton, Alasdair

    2013-01-01

    Iron is the most important metal for modern industry and Sweden is by far the largest iron-producer in Europe, yet the genesis of Sweden's main iron-source, the 'Kiruna-type' apatite-iron-oxide ores, remains enigmatic. We show that magnetites from the largest central Swedish 'Kiruna-type' deposit at Grängesberg have δ(18)O values between -0.4 and +3.7‰, while the 1.90-1.88 Ga meta-volcanic host rocks have δ(18)O values between +4.9 and +9‰. Over 90% of the magnetite data are consistent with direct precipitation from intermediate to felsic magmas or magmatic fluids at high-temperature (δ(18)Omgt > +0.9‰, i.e. ortho-magmatic). A smaller group of magnetites (δ(18)Omgt ≤ +0.9‰), in turn, equilibrated with high-δ(18)O, likely meteoric, hydrothermal fluids at low temperatures. The central Swedish 'Kiruna-type' ores thus formed dominantly through magmatic iron-oxide precipitation within a larger volcanic superstructure, while local hydrothermal activity resulted from low-temperature fluid circulation in the shallower parts of this system.

  12. Respiratory Diseases in Iron Ore Miners and Millers

    PubMed Central

    Edstrom, Harry W.

    1989-01-01

    Workers in iron mines are at risk of developing interstitial lung disease if the dust levels are above the threshold limit value. However, they more commonly develop the usual diseases that affect all workers. Some illnesses, such as chronic bronchitis, bronchial asthma, and the collagen vascular diseases that affect the lung, may be more severe because of the inhalation of dust. The most difficult problem is to differentiate asymptomatic sarcoidosis from pneumoconiosis. The family doctor who also acts as the company doctor must be aware of the potential conflict of interest. PMID:21248910

  13. Genetic and biochemical effects induced by iron ore, Fe and Mn exposure in tadpoles of the bullfrog Lithobates catesbeianus.

    PubMed

    Veronez, Alexandra Caroline da Silva; Salla, Rômulo Victor; Baroni, Vinícius Dadalto; Barcarolli, Indianara Fernanda; Bianchini, Adalto; Dos Reis Martinez, Claudia Bueno; Chippari-Gomes, Adriana Regina

    2016-05-01

    For decades, the extraction of minerals has intensified in order to meet the demand of industry. Iron ore deposits are important sources of metals, such as iron (Fe) and manganese (Mn). The particulate ores can be dispersed during extraction, transport and storage, with potential to induce biological impacts. Amphibians are very sensitive to environmental stressors. Therefore, the present study aimed to assess the effects of iron ore, Fe and Mn exposure during the metamorphosis of Lithobates catesbeianus. Endpoints analyzed included morphological (biometrical and developmental analyses), whole body Fe and Mn concentration in, plasma ferritin concentration, erythrocyte DNA damage (measured through comet assay and micronucleus test) and liver activity of enzymes involved in oxidative status [glutathione S-transferase (GST) and catalase (CAT)]. Tadpoles were kept under control condition (no contaminant addition) or exposed to iron ore (3.79mg/L as fine particulate matter); Fe (nominal concentration: 0.51mg/L Fe as C10H12FeN2NaO8; Fe-EDTA); and Mn (nominal concentration: 5.23mg/L Mn as 4H2O.MnCl2) for 30 days. Virtually, no mortality was observed, except for one tadpole found dead in the iron ore treatment. However, tadpoles exposed to iron ore had longer tail than those kept under control conditions while tadpoles exposed to manganese chloride showed higher body length than control ones. Exposure to Fe and Mn induced a delay in tadpole metamorphosis, especially when these metals are presented not as a mixture (iron ore). Tadpoles exposed to iron ore had increased whole body Fe and Mn while those exposed to Fe and Mn accumulated each metal individually. Tadpoles exposed to any of the contaminants tested showed a significant increase in erythrocyte DNA damage and frequency of micronuclei. In addition, they showed higher liver GST activity respect with those kept under control conditions. Plasma ferritin concentration and liver CAT activity were higher only in tadpoles

  14. Iron Ore Industry Emissions as a Potential Ecological Risk Factor for Tropical Coastal Vegetation

    NASA Astrophysics Data System (ADS)

    Kuki, Kacilda N.; Oliva, Marco A.; Pereira, Eduardo G.

    2008-07-01

    In the coastal zone of the Espírito Santo state, Brazil, fragments of restinga, which form a natural ecosystem, share their space with an increasing number of iron ore industries. The iron ore dust and SO2 originating from the industry processing activities can interfere with the vegetation of the adjacent ecosystems at various levels. This study was undertaken in order to evaluate the effects of industry emissions on representative members of the restinga flora, by measuring physiological and phenological parameters. Foliar samples of Ipomoea pes caprae, Canavalia rosea, Sophora tomentosa, and Schinus terebinthifolius were collected at three increasing distances from an ore industry (1.0, 5.0, and 15.0 km), and were assessed for their dust deposition, chlorophyll, and Fe content. Phenological monitoring was focused on the formation of shoots, flowers, and fruits and was also performed throughout the course of a year. The results showed that the edaphic characteristics and the mineral constitutions of the plants were affected by industry emissions. In addition, the chlorophyll content of the four species increased with proximity to the industry. Phenological data revealed that the reproductive effort, as measured by fruit production, was affected by emissions and S. tomentosa was the most affected species. The use of an integrative approach that combines biochemical and ecological data indicates that the restinga flora is under stress due to industry emissions, which on a long-term basis may put the ecosystem at risk.

  15. Mechanism of Selective Desulphurization in Iron Ore Sintering Process by Adding Urea

    NASA Astrophysics Data System (ADS)

    Long, Hongming; Wu, Xuejian; Chun, Tiejun; Li, Jiaxin; Wang, Ping; Meng, Qingmin; Di, Zhanxia; Zhang, Xiangyang

    2017-02-01

    Iron ore sintering is an important part during the ironmaking process, and a large amount of SO2 is also generated. Our previous research shows that it is an effective way to reduce SO2 content of flue gas by adding urea to a special sintering material zone position. In this paper, the mechanism of selective desulphurization by adding urea during the iron ore sintering was carried out. The results show that 88.14 % desulphurization rate was obtained with the addition of 0.05 % urea particles at 100 mm height from the feed bottom. During the sintering process, when drying zone reached the added position of urea, large amounts of NH3 were generated by urea decomposition, and then reacted with SO2 to produce (NH4)2SO4 in the wetting zone. With the accumulated desulphurization reactions during the sintering, the low SO2 emission in the flue gas was achieved. Moreover, the addition of urea in the bottom zone avoided the ammonia present in the sintering ore and promoted the urea utilization efficiency.

  16. Chelatometric determination of calcium and magnesium in iron ores, slags, anorthosite, limestone, copper-nickel-lead-zinc ores and divers materials.

    PubMed

    Hitchen, A; Zechanowitsch, G

    1980-03-01

    Chelatometric methods for the determination of calcium and magnesium in iron ores, slags, anorthosite, copper-nickel-lead-zinc ores and various other materials are described. Potential interfering elements are masked with triethanolamine and potassium cyanide. In one aliquot calcium is titrated at pH > 12, with calcein and thymolphthalein mixed indicator and in another aliquot calcium and magnesium are titrated in ammonia buffer, with o-cresolphthalein complexone screened with Naphthol Green B as indicator. The results compare favourably with certified values for reference materials of diverse nature.

  17. Carbothermic Reduction of Nickeliferous Laterite Ores for Nickel Pig Iron Production in China: A Review

    NASA Astrophysics Data System (ADS)

    Rao, Mingjun; Li, Guanghui; Jiang, Tao; Luo, Jun; Zhang, Yuanbo; Fan, Xiaohui

    2013-11-01

    Both the consumption and production of crude stainless steel in China rank first in the world. In 2011, the nickel production in China amounted to 446 kilotons, with the proportion of electrolytic nickel and nickel pig iron (NPI) registering 41.5% and 56.5%, respectively. NPI is a low-cost feedstock for stainless steel production when used as a substitute for electrolytic nickel. The existing commercial NPI production processes such as blast furnace smelting, rotary kiln-electric furnace smelting, and Krupp-Renn (Nipon Yakin Oheyama) processes are discussed. As low-temperature (below 1300°C) reduction of nickeliferous laterite ores followed by magnetic separation could provide an alternative avenue without smelting at high temperature (~1500°C) for producing ferronickel with low cost, the fundamentals and recent developments of the low-temperature reduction of nickeliferous laterite ores are reviewed.

  18. Sintering Characteristics of Indian Chrome Ore Fines

    NASA Astrophysics Data System (ADS)

    Nandy, Bikash; Chaudhury, Manoj Kumar; Paul, Jagannath; Bhattacharjee, D.

    2009-10-01

    Chrome ore concentrate consists of high-temperature melting oxides such as Cr2O3, MgO, and Al2O3. The presence of these refractory constituents makes the ore a very high melting mineral. Hence, it is difficult to produce sinter from chrome ore by a pyrometallurgical route. Currently, chrome ore is ground to below 75 μm, pelletized, heat hardened through carbothermic reaction at 1300 °C to 1400 °C, and then charged into a submerged electric arc furnace (EAF), along with lumpy ore for ferrochrome/charge-chrome production. Electricity is a major cost element in this extraction process. This work explores the sinterability of chrome ore. The objective of this study was to: (1) determine whether chrome ore is sinterable and, if so, (2) ascertain ways of achieving satisfactory properties at a low temperature of sintering. Sintering of the raw material feed could be a way to reduce electricity consumption, because during sintering a partial reduction of minerals is expected along with agglomeration. Studies carried out by the authors show that it is possible to agglomerate chrome ore fines through sintering. The chrome ore sinter thus produced was found to be inferior in strength, comparable to that of an iron ore sinter, but strength requirements may not be the same for both. Because the heat generation during chrome ore sintering is high owing to some exothermic reactions, compared with iron ore, and because chrome ore contains a high amount of fines, shallow-bed-depth sinter cake production was attempted in the laboratory-scale pot-sintering machine. The sintered product was found to be a good conductor of electricity because of the presence of phases such as magnetite and maghemite. This characteristic of the chrome ore sinter will subsequently have a favorable impact in terms of power consumption during the production of ferrochrome in a submerged EAF. The sinter made was melted in the arc furnace and it was found that the specific melting energy is comparable to

  19. Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposits

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine; Melkumyan, Arman; Wyman, Derek; Hatherly, Peter

    2015-04-01

    The mining of stratiform ore deposits requires a means of determining the location of stratigraphic boundaries. A variety of geophysical logs may provide the required data but, in the case of banded iron formation hosted iron ore deposits in the Hamersley Ranges of Western Australia, only one geophysical log type (natural gamma) is collected for this purpose. The information from these logs is currently processed by slow manual interpretation. In this paper we present an alternative method of automatically identifying recurring stratigraphic markers in natural gamma logs from multiple drill holes. Our approach is demonstrated using natural gamma geophysical logs that contain features corresponding to the presence of stratigraphically important marker shales. The host stratigraphic sequence is highly consistent throughout the Hamersley and the marker shales can therefore be used to identify the stratigraphic location of the banded iron formation (BIF) or BIF hosted ore. The marker shales are identified using Gaussian Processes (GP) trained by either manual or active learning methods and the results are compared to the existing geological interpretation. The manual method involves the user selecting the signatures for improving the library, whereas the active learning method uses the measure of uncertainty provided by the GP to select specific examples for the user to consider for addition. The results demonstrate that both GP methods can identify a feature, but the active learning approach has several benefits over the manual method. These benefits include greater accuracy in the identified signatures, faster library building, and an objective approach for selecting signatures that includes the full range of signatures across a deposit in the library. When using the active learning method, it was found that the current manual interpretation could be replaced in 78.4% of the holes with an accuracy of 95.7%.

  20. Rapid photometric determination of phosphorus in iron ores and related materials as phosphomolybdenum-blue.

    PubMed

    Bhargava, O P; Gmitro, M

    1984-04-01

    A rapid, simple and accurate method for determining phosphorus photometrically in iron ores and related materials, obviating the use of perchloric acid, is described. The sample is fused with sodium peroxide in a zirconium crucible and the melt dissolved in hydrochloric acid. The molybdenum-blue complex is developed by the addition of ammonium molybdate and hydrazine sulphate and the absorbance is measured at 725 nm. The range of the method is from 0.005 to 1.0% P. A batch of 6 samples can be analysed in about 2 hr.

  1. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier

    SciTech Connect

    Xiao, Rui; Song, Min; Zhang, Shuai; Shen, Laihong; Song, Qilei; Lu, Zuoji

    2010-06-15

    Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO{sub 2}. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO{sub 2} sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasified with 87.2% steam/N{sub 2} mixture and oxidation with 5% O{sub 2} in N{sub 2} at 970 C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H{sub 2} and CO{sub 2} are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO{sub 2} and lower fractions of CO, CH{sub 4}, and H{sub 2} during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis demonstrates

  2. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.

    PubMed

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-01-01

    An iron ore mine site in Swaziland is currently (2015) in a derelict state as a consequence of past (1964-1988) and present (2011 - current) iron ore mining operations. In order to control problems associated with mine wastes, the Swaziland Water Services Corporation (SWSC) recently (2013) proposed the application of biosolids in sites degraded by mining operations. It is thought that this practice could generally improve soil conditions and enhance plant reestablishment. More importantly, the SWSC foresees this as a potential solution to the biosolids disposal problems. In order to investigate the effects of biosolids and plants in soil physicochemical conditions of iron mine soils, we conducted two plant growth trials. Trial 1 consisted of tailings that received biosolids and topsoil (TUSB mix) while in trial 2, tailings received biosolids only (TB mix). In the two trials, the application rates of 0 (control), 10, 25, 50, 75 and 100 t ha(-1) were used. After 30 days of equilibration, 25 seeds of Cynodon dactylon were sown in each pot and thinned to 10 plants after 4 weeks. Plants were watered twice weekly and remained under greenhouse conditions for 12 weeks, subsequent to which soils were subjected to chemical analysis. According to the results obtained, there were significant improvements in soil parameters related to fertility such as organic matter (OM), water holding capacity (WHC), cation exchange capacity (CEC), ammonium [Formula: see text] , magnesium (Mg(2+)), calcium (Ca(2+)) and phosphorus ( [Formula: see text] ). With regard to heavy metals, biosolids led to significant increases in soil total concentrations of Cu, Zn, Cd, Hg and Pb. The higher concentrations of Zn and Cu in treated tailings compared to undisturbed adjacent soils are a cause for concern because in the field, this might work against the broader objectives of mine soil remediation, which include the recolonization of reclaimed sites by soil-dwelling organisms. Therefore, while

  3. Thermal treatment for separating quartz from geethitic iron ore of Gebel Ghorabi, Bahariya oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Monen, H. M. Abdel; Kamel, A. F.

    1993-07-01

    Gebel Ghorabi is located at the extreme northern end of Bahariya Oasis and the mineralized area covers an area of about 2 km 2. Geologically, the iron ore is composed of random alternations of three main yellow, brown and dark brown colored bands. The former band is relatively thicker than the others. The iron particles range in size from a (pisolitic ≫) fraction > 2 mm to earthy (the so-called pisolites may grade down from coarse to about 0.25 mm in size). A bulk sample corresponding more or less to the yellow iron ore band contains 54.16% Fe 2O 3, 26.13% SiO 2 and 5.39% Al 2O 3 as major components. Technologically, the combined effect of a thermal reduction and of a quenching shock on the crushed iron sample (-12 mm) has been investigated. This technique has been found to sufficiently enhance the magnetic properties of the iron minerals which could be easily separated by using a low intensity magnetic separator. The maximum severance of quartz grains from the reduced iron oxides was reached for samples subjected to a slow heating at 700°C for 60 min. and to a fast cooling by quenching in water. A flow sheet for handling the yellow iron ore is here proposed to produce a magnetic iron concentrate with 87.63% Fe 3O 3 and 1.40% SiO 2, and with a recovery of 97.21%.

  4. Effects of Particle Size and Particle Loading on the Tensile Properties of Iron-Ore-Tailing-Filled Epoxy and Polypropylene Composites

    NASA Astrophysics Data System (ADS)

    Onitiri, M. A.; Akinlabi, E. T.

    2017-01-01

    The effect of particle size and particle loading on the stiffness and tensile strength of iron-ore-tailing-filled epoxy and polypropylene composites was investigated experimentally, and the results obtained are compared with calculations by various theoretical models. It was found that the stiffness of the materials increased with content of iron ore tailings.

  5. Reduction Smelting Low Ferronickel from Pre-concentrated Nickel-Iron Ore of Nickel Laterite

    NASA Astrophysics Data System (ADS)

    Zhu, Deqing; Zhou, Xianlin; Luo, Yanhong; Pan, Jian; Bai, Bing

    2016-11-01

    The research of smelting low ferronickel from pre-concentrate nickel-iron ore with 2.76 % Ni and 38.00 % Fetotal was carried out to find an effective way for stainless steel enterprises to use the low-nickel laterite reasonable. The results show that Ni and Fe both have a certain degree of enrichment, and impurities and harm elements have different degrees of reduction after pre-concentration of nickel-iron ore. Most valuable metal did not compound with impurities which greatly accelerated the speed and extent of melt separation reduction. Good alloy of 6.58 % Ni with the overall recoveries of 93.38 % and 89.95 % Fetotal with the overall recoveries of 89.57 % was manufactured under the following conditions: 10 % coke, 1.0 binary basicity, 18 % MgO and 3 % Al2O3 in slag, melting at 1,550 °C for 10 min. The product can be used for the feed of producing stainless steel.

  6. Rock Magnetic and Oxide Microscopy Studies of two South American Iron-Ore Deposits

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.

    2005-05-01

    Microscopy and rock-magnetic studies of the iron oxide-ore and host rocks in the Cristales-Pleito Melon (Chile) and Jacupiranga (Brazil) deposits were carried out to characterize and compare the magnetic mineralogy and the processes that affected the natural remanent magnetization (NRM) during emplacement and evolution of the iron-ore deposits. The microscopy study under reflected light shows that magnetic carriers are mainly magnetites, with minor amounts of ilmenite-hematite minerals. Titanomagnetite, shows trellis texture, which is compatible with high temperature oxy-exsolution processes. Grain sizes range from a few microns to >100 µm, and dominant magnetic state pseudo-single-domain, in agreement with hysteresis measurements. Thermal spectra, continuous susceptibility measurements, and isothermal remanent magnetization (IRM) acquisition suggest a predominance of some spinels (titanomagnetite or titanomaghemite) with low-Ti content as magnetic carriers. These data help to investigate the magnetic domain states and the remanence acquisition processes, and to assess their significance as a source of magnetic anomalies.

  7. Phosphorus retention capacity of iron-ore and blast furnace slag in subsurface flow constructed wetlands.

    PubMed

    Grüneberg, B; Kern, J

    2001-01-01

    The suitability of iron-ore and blast furnace slag for subsurface flow (SSF) constructed wetlands was studied over a period of four months. Dairy farm wastewater (TP 45 mg l(-1)) was percolated through buckets planted with reed (volume 9.1 l; hydraulic load 151 m(-2) d(-1)). One group of buckets was kept under aerobic conditions and the other group under anaerobic conditions, monitored by continuous redox potential measurements. Even at high mass loading rates of 0.65 g P m(-1) d(-1) the slag provided 98% removal efficiency and showed no decrease in performance with time. However, phosphorus fractionation data indicate that the high phosphorus retention capacity under aerobic conditions is to a great extent attributable to unstable sorption onto calcium compounds (NH4Cl-P). Phosphorus sorption of both the slag (200 microg P g(-1)) and the iron-ore (140 microg P g(-1)) was promoted by predominantly anaerobic conditions due to continuous formation of amorphous ferrous hydroxides. None of the substrates had adverse affects on reed growth.

  8. Mineralogical and Beneficiation Studies of a Low Grade Iron Ore Sample

    NASA Astrophysics Data System (ADS)

    Dwari, R. K.; Rao, D. S.; Reddy, P. S. R.

    2014-10-01

    Investigations were carried out, to establish its amenability for physical beneficiation on a low grade siliceous iron ore sample by magnetic separation. Mineralogical studies, with the help of microscope as well as XRD, SEM-EDS revealed that the sample consists of magnetite, hematite and goethite as major opaque oxide minerals where as quartz and kaolinite form the gangue minerals in the sample. Processes involving combination of classification, dry magnetic separation and wet magnetic separation were carried out to upgrade the low grade siliceous iron ore sample to make it suitable as a marketable product. The sample was first ground and each closed size sieve fractions were subjected to dry magnetic separation and it was observed that limited upgradation is possible. The ground sample was subjected to different finer sizes and separated by wet low intensity magnetic separator. Dry beneficiation studies by Permaroll separator indicated that it is possible to get a product with 60.2 % Fe at 22 % weight recovery. It is possible to get an over all concentrate with 54 % Fe at 32.4 % weight recovery by combination of size reduction followed by LIMS and WHIMS.

  9. Grinding Wear Behaviour of Stepped Austempered Ductile Iron as Media Material During Comminution of Iron Ore in Ball Mills

    SciTech Connect

    Raghavendra, H.; Bhat, K. L.; Udupa, K. Rajendra; Hegde, M. M. Rajath

    2011-01-17

    An attempt has been made to evaluate the suitability of austempered ductile iron (ADI) as media material for grinding iron ore in a ball mill. Spheroidal graphite (S.G) iron balls are austenitised at 900 deg. C for 60 minutes and given stepped austempering treatment at 280 deg. C for 30 minutes and 60 minutes followed by 380 deg. C for 60 minutes in each case. These materials are characterised by measuring hardness, analysing X-ray diffraction (X-RD), studying microstructure using optical and scanning electron microscope (SEM). Grinding wear behaviour of these materials was assessed for wear loss in wet condition at different pH value of the mineral slurry and found that the wear rate of grinding media material decreases with increase in pH of the slurry. The wear resistance of ADI balls were compared with forged En31 steel balls and found that the stepped austempered ductile iron is superior to forged En31 steel balls.

  10. Application of indigenous sulfur-oxidizing bacteria from municipal wastewater to selectively bioleach phosphorus from high-phosphorus iron ore: effect of particle size.

    PubMed

    Shen, Shaobo; Rao, Ruirui; Wang, Jincao

    2013-01-01

    The effects of ore particle size on selectively bioleaching phosphorus (P) from high-phosphorus iron ore were studied. The average contents of P and Fe in the iron ore were 1.06 and 47.90% (w/w), respectively. The particle sizes of the ores used ranged from 58 to 3350 microm. It was found that the indigenous sulfur-oxidizing bacteria from municipal wastewater could grow well in the slurries of solid high-phosphorus iron ore and municipal wastewater. The minimum bioleaching pH reached for the current work was 0.33. The P content in bioleached iron ore reduced slightly with decreasing particle size, while the removal percentage of Fe decreased appreciably with decreasing particle size. The optimal particle size fraction was 58-75 microm, because the P content in bioleached iron ore reached a minimum of 0.16% (w/w), the removal percentage of P attained a maximum of 86.7%, while the removal percentage of Fe dropped to a minimum of 1.3% and the Fe content in bioleached iron ore was a maximum of 56.4% (w/w) in this case. The iron ores thus obtained were suitable to be used in the iron-making process. The removal percentage of ore solid decreased with decreasing particle size at particle size range of 106-3350 microm. The possible reasons resulting in above phenomena were explored in the current work. It was inferred that the particle sizes of the iron ore used in this work have no significant effect on the viability of the sulfur-oxidizing bacteria.

  11. Natural radioactivities in iron and nickel ores imported into Japan and the dose assessment for workers handling them.

    PubMed

    Iwaoka, Kazuki; Tagami, Keiko; Yonehara, Hidenori

    2010-09-01

    Japan imports Fe and Ni ores from abroad for use as industrial raw materials in the manufacture of industrial products like stainless steel. Some of these ores might contain high levels of radioactivity, and then workers handling them would be exposed to radiation without being aware of it. Activity concentrations in these ores should be measured to evaluate the radiation exposure of workers. In this study, Fe and Ni ores used as industrial raw materials were collected from iron and steel companies, and the activity concentrations of the (238)U series, the (232)Th series and (40)K in these ores were determined using inductively coupled plasma mass spectrometry (ICP-MS) and gamma ray spectrometry. The activity concentrations of the (238)U series, the (232)Th series and (40)K in these ores samples were lower than the International Atomic Energy Agency (IAEA) values. The doses to workers handling these ores were estimated using methods for dose assessment given in a report by the European Commission. In each scenario, a maximum value of the annual effective dose to workers was estimated to be about 6.8 × 10(-6) Sv, which was lower than intervention exemption levels (annual dose 1.0 × 10(-3) Sv) given in International Commission on Radiological Protection (ICRP) Publication 82.

  12. Phytoremediation: a novel approach for utilization of iron-ore wastes.

    PubMed

    Mohanty, Monalisa; Dhal, Nabin Kumar; Patra, Parikshita; Das, Bisweswar; Reddy, Palli Sita Rama

    2010-01-01

    Large quantities of iron-ore tailings are being generated annually in the world from mining and processing of iron ores. It has been estimated that around 10-15% of the iron ore mined in India has remained unutilized and discarded as slimes during mining and subsequent processing. Soil contamination resulting from mining activities affects surrounding flora and fauna and presents a large clean-up challenge to the mining industry. Innovative new methodologies have been proposed and among the most promising are those that rely on new phytoremediation technology. In this paper we address and review the status of phytoremediation as a technology to reduce and control contaminated mine wastes. Several different approaches and different plant species are used to remove environmentally toxic metals from mine waste sites. Such approaches have the objective of restoring mining waste sites to human and animal use, or at least, to curtail or eliminate the off-site movement of toxic entities that potentially could reach humans. How well phytoremediation performs as an alternative soil restoration technology depends on several factors, including the composition of soil, toxicity level of the contaminant, degree to which plant species fit natural local growth patterns and type of concentration of metal/contaminant in such plants. Phytoremediation has opened prospects for less costly, yet practicable approaches to clean-up contaminated waste sites, particularly those associated with mineral extraction mining. We discuss several plant species that are capable of phytoextracting and/or phytostabilizing harmful elements from contaminated soil and water; such processes are prospectively effective for addressing waste problems that derive from mining and processing activities, as well as those that derive from mitigating the threat posed by waste that surrounds mining sites. Unfortunately, phytoremediation is still in the embryonic stage, and more research is needed to find the plant

  13. Influence of gangue existing states in iron ores on the formation and flow of liquid phase during sintering

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-liang; Wu, Sheng-li; Chen, Shao-guo; Su, Bo; Que, Zhi-gang; Hou, Chao-gang

    2014-10-01

    Gangue existing states largely affect the high-temperature characteristics of iron ores. Using a micro-sintering method and scanning electron microscopy, the effects of gangue content, gangue type, and gangue size on the assimilation characteristics and fluidity of liquid phase of five different iron ores were analyzed in this study. Next, the mechanism based on the reaction between gangues and sintering materials was unraveled. The results show that, as the SiO2 levels increase in the iron ores, the lowest assimilation temperature (LAT) decreases, whereas the index of fluidity of liquid phase (IFL) increases. Below 1.5wt%, Al2O3 benefits the assimilation reaction, but higher concentrations proved detrimental. Larger quartz particles increase the SiO2 levels at the local reaction interface between the iron ore and CaO, thereby reducing the LAT. Quartz-gibbsite is more conductive to assimilation than kaolin. Quartz-gibbsite and kaolin gangues encourage the formation of liquid-phase low-Al2O3-SFCA with high IFL and high-Al2O3-SFCA with low IFL, respectively.

  14. Study of catalytic upgrading of biomass tars using Indonesian iron ore

    NASA Astrophysics Data System (ADS)

    Wicakso, Doni Rahmat; Sutijan, Rochmadi, Budiman, Arief

    2017-03-01

    Catalytic decomposition is a promising way for chemical upgrading process of low quality oil such as biomass tars. In this experiment, catalytic decomposition of biomass tars was performed over Indonesian low grade iron ore catalyst. This process is carried out in a fixed bedreactor which is equipped with preheater to convert the tars into vapor form. The reaction was studied at the temperature range of 500 - 700°C. The kinetic study of catalytic decomposition of biomass tars is represented using first order reaction. The results show that value of constant of chemical reaction is in range 0.2514 - 0.9642 cm3.gr-1.min-1 with value of the frequency factor (A) and the activation energy (E) are 48.98 min-1 and 5724.94 cal.mol-1, respectively.

  15. Microbial Variants from Iron Ore Slimes: Mineral Specificity and pH Tolerance.

    PubMed

    Abhilash; Ghosh, A; Pandey, B D; Sarkar, S

    2015-12-01

    This paper describes the isolation of the native bacterial strains from the iron ore mines slime pond and its extremophilic characteristics. The two microbial isolates designated as CNIOS-1 and CNIOS-2 were grown in selective silicate broth at pH 7.0 and the organisms were tested for their selective adhesion on silicate and alumina minerals. The silicate bacteria with their exopolymers are very potent to grow over aluminosilicates. It was established that CNIOS-1 grew preferentially in the presence of silicate mineral compared to CNIOS-2 which grew in the presence of alumina. The organisms were tested for growth at various pH and trials were carried to define their efficacy for eventual applications to remove gangue minerals of silica and alumina from the raw material.

  16. Adsorption and removal of arsenic from water by iron ore mining waste.

    PubMed

    Nguyen, Tien Vinh; Nguyen, Thi Van Trang; Pham, Tuan Linh; Vigneswaran, Saravanamuth; Ngo, Huu Hao; Kandasamy, J; Nguyen, Hong Khanh; Nguyen, Duc Tho

    2009-01-01

    There is a global need to develop low-cost technologies to remove arsenic from water for individual household water supply. In this study, a purified and enriched waste material (treated magnetite waste, TMW) from the Trai Cau's iron ore mine in the Thai Nguyen Province in Vietnam was examined for its capacity to remove arsenic. The treatment system was packed with TMW that consisted of 75% of ferrous-ferric oxide (Fe(3)O(4)) and had a large surface area of 89.7 m(2)/g. The experiments were conducted at a filtration rate of 0.05 m/h to treat groundwater with an arsenic concentration of 380 microg/L and iron, manganese and phosphate concentrations of 2.07 mg/L, 0.093 mg/L and 1.6 mg/L respectively. The batch experimental results show that this new material was able to absorb up to 0.74 mg arsenic/g. The results also indicated that the treatment system removed more than 90% arsenic giving an effluent with an arsenic concentration of less than 30 microg/L while achieving a removal efficiency of about 80% for Mn(2 + ) and PO(4) (3-). This could be a promising and cost-effective new material for capturing arsenic as well as other metals from groundwater.

  17. Suppression of chlorinated aromatics by nitrogen and sulphur inhibitors in iron ore sintering.

    PubMed

    Zhang, Yadi; Buekens, Alfons; Liu, Lina; Zhang, Yibo; Zeng, Xiaolan; Sun, Yifei

    2016-07-01

    Dioxins generated by iron and steel industry account for the majority of industrial dioxins emissions. This study compares the performance of different additives (including calcium sulphate dehydrate CaSO4·2H2O; calcium polysulphide CaSx; ammonium sulphate (NH4)2SO4; 4-methylthiosemicarbazide H3C-SC(NH)2NH2 and thiourea H2NCSNH2) as suppressant of chlorinated aromatics in iron ore sintering. The formation of chlorobenzenes (CBz) and polychlorinated biphenyls (PCBs), used as surrogates for dioxins, was suppressed significantly in the present of various inhibitors (1 wt%) except for CaSO4·2H2O. Moreover, a larger molar ratio of (S + N)/Cl leads to a higher suppression efficiency, so that the inhibition capacity of (NH4)2SO4 on both CBz and PCBs was weaker than H2NCSNH2. The generation of dioxin-like PCBs (Co- or dl-PCB) was also analysed.

  18. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    NASA Astrophysics Data System (ADS)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U

  19. [Iron ore, economic geology and networks of experts between Wisconsin and the state of Minas Gerais, 1881-1914].

    PubMed

    Fischer, Georg

    2014-01-01

    This article deals with the "discovery" of Brazilian iron ore from two perspectives. The first examines the increasing emphasis of the geosciences and their practical application and global reach since the second half of the nineteenth century. While in Brazil economic geology was integrated step by step into state institutions, at the global level it experienced its moment of triumph with the 11th International Geological Congress in 1910. The second deals with a specific social network with a decisive role in the race for Brazilian iron ore: with transnational experts juggling between the logic of the market and that of the academy. The article reveals the importance of local negotiations in the incorporation of the subsoil of Minas Gerais into the global space of mining.

  20. Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia.

    PubMed

    Diami, Siti Merryan; Kusin, Faradiella Mohd; Madzin, Zafira

    2016-10-01

    The composition of heavy metals (and metalloid) in surface soils of iron ore mine-impacted areas has been evaluated of their potential ecological and human health risks. The mining areas included seven selected locations in the vicinity of active and abandoned iron ore-mining sites in Pahang, Malaysia. Heavy metals such as Fe, Mn, Cu, Zn, Co, Pb, Cr, Ni, and Cd and metalloid As were present in the mining soils of the studied area, while Cu was found exceeding the soil guideline value at all sampling locations. However, the assessment of the potential ecological risk index (RI) indicated low ecological risk (RI between 44 and 128) with respect to Cd, Pb, Cu, As, Zn, Co, and Ni in the surface soils. Contributions of potential ecological risk [Formula: see text]by metal elements to the total potential ecological RI were evident for Cd, As, Pb, and Cu. Contribution of Cu appears to be consistently greater in the abandoned mining area compared to active iron ore-mining site. For non-carcinogenic risk, no significant potential health risk was found to both children and adults as the hazard indices (HIs) were all below than 1. The lifetime cancer risk (LCR) indicated that As has greater potential carcinogenic risk compared to other metals that may induce carcinogenic effects such as Pb, Cr, and Cd, while the LCR of As for children fell within tolerable range for regulatory purposes. Irrespective of carcinogenic or non-carcinogenic risk, greater potential health risk was found among children (by an order of magnitude higher for most metals) compared to adults. The hazard quotient (HQ) and cancer risk indicated that the pathways for the risk to occur were found to be in the order of ingestion > dermal > inhalation. Overall, findings showed that some metals and metalloid were still present at comparable concentrations even long after cessation of the iron ore-mining activities.

  1. Effect of reduction roasting by using bio-char derived from empty fruit bunch on the magnetic properties of Malaysian iron ore

    NASA Astrophysics Data System (ADS)

    Yunus, Nurul A.; Ani, Mohd H.; Salleh, Hamzah M.; Rashid, Rusila Z. A.; Akiyama, Tomohiro; Purwanto, Hadi; Othman, Nur E. F.

    2014-04-01

    Beneficiation of Malaysian iron ore is becoming necessary as iron resources are depleting. However, the upgrading process is challenging because of the weak magnetic properties of Malaysian iron ore. In this study, bio-char derived from oil palm empty fruit bunch (EFB) was utilized as an energy source for reduction roasting. Mixtures of Malaysian iron ore and the bio-char were pressed into briquettes and subjected to reduction roasting processes at 873-1173 K. The extent of reduction was estimated on the basis of mass loss, and the magnetization of samples was measured using a vibrating sample magnetometer (VSM). When reduced at 873 K, the original goethite-rich ore was converted into hematite. An increase in temperature to 1073 K caused a significant conversion of hematite into magnetite and enhanced the magnetic susceptibility and saturation magnetization of samples. The magnetic properties diminished at 1173 K as the iron ore was partially reduced to wustite. This reduction roasting by using the bio-char can assist in upgrading the iron ore by improving its magnetic properties.

  2. Influence of process changes on PCDD/Fs produced in an iron ore sintering plant

    SciTech Connect

    Guerriero, E.; Bianchini, M.; Gigliucci, P.F.; Guarnieri, A.; Mosca, S.; Rossetti, G.; Varde, M.; Rotatori, M.

    2009-01-15

    This study investigated the influence of different charge typologies and additives on the PCDD/Fs amount produced and on the congener profiles in an iron ore sintering plant. Many tests were carried out combining different typologies of charge (iron materials) and solid fuel ('coke breeze' or 'anthracite') with or without the use of urea. The PCDD/Fs produced ranged from 1.2 to 22.7 {mu} g I-TEQ/ton of agglomerate, whereas the PCDD/Fs released to the ambient air ranged from 0.10 to 1.92 ng I-TEQ/Nm{sup 3} because of cleaning in an electrostatic precipitator (ESP) and a Wetfine scrubber (WS). A more homogeneous charge with a higher amount of fine particles charge appeared to produce a lower PCDD/Fs concentration due to a better combustion but this hypothesis needs further investigations on charges having different dimension particles. Only a synergitic action of urea and anthracite was able to reduce the high PCDD/Fs content due to the bad combustion of the more inhomogeneous charge with a lower amount of fine particles. The congener profile was a typical combustion process fingerprint because the PCDFs predominated, the highly chlorinated congeners (HeptaCDD and OctaCDD) prevailed in PCDDs, whereas in PCDFs the profile was more varied; 1,2,3,4,6,7,8-HeptaCDF was the main contributor to the total concentration while 2,3,4,7,8-PentaCDF was the main contributor to the I-TEQ concentration. Whereas all the parameters under scrutiny influenced strongly the amount of PCDD/Fs produced, they affected only slightly the fingerprint of PCDD/Fs. In all cases studied, the reduction obtained using urea, anthracite, or the more homogeneous charge with a higher amount of fine particles was slightly greater on the higher chlorinated congeners in respect to the lower ones.

  3. The search for asbestos within the Peter Mitchell Taconite iron ore mine, near Babbitt, Minnesota.

    PubMed

    Ross, Malcolm; Nolan, Robert P; Nord, Gordon L

    2008-10-01

    Asbestos crystallizes within rock formations undergoing intense deformation characterized by folding, faulting, shearing, and dilation. Some of these conditions have prevailed during formation of the taconite iron ore deposits in the eastern Mesabi Iron Range of Minnesota. This range includes the Peter Mitchell Taconite Mine at Babbitt, Minnesota. The mine pit is over 8 miles long, up to 1 mile wide. Fifty three samples were collected from 30 sites within areas of the pit where faulting, shearing and folding occur and where fibrous minerals might occur. Eight samples from seven collecting sites contain significant amounts of ferroactinolite amphibole that is partially to completely altered to fibrous ferroactinolite. Two samples from two other sites contain ferroactinolite degraded to ropy masses of fibers consisting mostly of ferrian sepiolite as defined by X-ray diffraction and TEM and SEM X-ray spectral analysis. Samples from five other sites contain unaltered amphiboles, however some of these samples also contain a very small number of fiber bundles composed of mixtures of grunerite, ferroactinolite, and ferrian sepiolite. It is proposed that the alteration of the amphiboles was caused by reaction with water-rich acidic fluids that moved through the mine faults and shear zones. The fibrous amphiboles and ferrian sepiolite collected at the Peter Mitchell Mine composes a tiny fraction of one percent of the total rock mass of this taconite deposit; an even a smaller amount of these mineral fragments enter the ambient air during mining and milling. These fibrous minerals thus do not present a significant health hazard to the miners nor to those non-occupationally exposed. No asbestos of any type was found in the mine pit.

  4. Kinetic studies on the reduction of iron ore nuggets by devolatilization of lean-grade coal

    NASA Astrophysics Data System (ADS)

    Biswas, Chanchal; Gupta, Prithviraj; De, Arnab; Chaudhuri, Mahua Ghosh; Dey, Rajib

    2016-12-01

    An isothermal kinetic study of a novel technique for reducing agglomerated iron ore by volatiles released by pyrolysis of lean-grade non-coking coal was carried out at temperature from 1050 to 1200°C for 10-120 min. The reduced samples were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and chemical analysis. A good degree of metallization and reduction was achieved. Gas diffusion through the solid was identified as the reaction-rate-controlling resistance; however, during the initial period, particularly at lower temperatures, resistance to interfacial chemical reaction was also significant, though not dominant. The apparent rate constant was observed to increase marginally with decreasing size of the particles constituting the nuggets. The apparent activation energy of reduction was estimated to be in the range from 49.640 to 51.220 kJ/mol and was not observed to be affected by the particle size. The sulfur and carbon contents in the reduced samples were also determined.

  5. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.

    PubMed

    Du, Jingjing; Lu, Jinsuo; Wu, Qiong; Jing, Chuanyong

    2012-05-15

    Chromite ore processing residue (COPR) poses a great environmental and health risk with persistent Cr(VI) leaching. To reduce Cr(VI) and subsequently immobilize in the solid matrix, COPR was incubated with nanoscale zero-valent iron (nZVI) and the Cr(VI) speciation and leachability were studied. Multiple complementary analysis methods including leaching tests, X-ray powder diffraction, X-ray absorption near edge structure (XANES) spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to investigate the immobilization mechanism. Geochemical PHREEQC model calculation agreed well with our acid neutralizing capacity experimental results and confirmed that when pH was lowered from 11.7 to 7.0, leachate Cr(VI) concentrations were in the range 358-445mgL(-1) which contributed over 90% of dissolved Cr from COPR. Results of alkaline digestion, XANES, and XPS demonstrated that incubation COPR with nZVI under water content higher than 27% could result in a nearly complete Cr(VI) reduction in solids and less than 0.1mgL(-1) Cr(VI) in the TCLP leachate. The results indicated that remediation approaches using nZVI to reduce Cr(VI) in COPR should be successful with sufficient water content to facilitate electron transfer from nZVI to COPR.

  6. NO x Reduction in the Iron Ore Sintering Process with Flue Gas Recirculation

    NASA Astrophysics Data System (ADS)

    Yu, Zhiyuan; Fan, Xiaohui; Gan, Min; Chen, Xuling; Lv, Wei

    2017-02-01

    Flue gas recirculation (FGR) has been implemented for exhaust gas emissions reduction in iron ore sintering. However, the mechanism of NO x reduction through FGR is still unclear. In this paper, the laboratory pot-grate sintering test showed a 30% reduction in gas flow and 15.51% reduction in NO x emissions achieved with a 30% FGR ratio, and the sinter indexes almost matched those of the conventional process. In the sinter zone, NO-CO catalytic reduction occurs in the range of 500-900°C. When the sinter temperature is 700°C, the highest nitrogen reduction ratio (NRR) achieved is 8%; however, the NO x reduction is inhibited as the post-combustion of CO starts when the temperature increases beyond 700°C. NO x in the flue gas is mainly a product of the fuel combustion in the combustion zone, as the nitrogen conversion rate reaches 50-60%, because the N-containing intermediates exist during the fuel combustion. The existence of NO in the FGR gas inhibits the NO x generation from the fuel combustion, and the NO elimination—through the NO-carbon reaction—is significant in the combustion zone. The NRR in the combustion zone reaches a range of 18-20%.

  7. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TONWSHIP, NEW JERSEY

    SciTech Connect

    Gary Gartenberg

    2003-02-01

    This report represents the tenth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government-Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township Compost Storage Facility, engineering continued during this reporting period toward development of the Construction Plans and Technical Specifications for the remediation work. At the Mt. Hope Road subsidence, surface monitoring was conducted periodically at the work area and adjacent areas after the January 2000 construction effort.

  8. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect

    Gary Gartenberg

    2003-12-01

    This report represents the thirteenth Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this semi annual reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township's Jacobs Road Compost Storage Facility, construction was completed during this reporting period and surface monitoring began. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort.

  9. Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes.

    PubMed

    Li, Sumei; Liu, Guorui; Zheng, Minghui; Liu, Wenbin; Li, Jinhui; Wang, Mei; Li, Changliang; Chen, Yuan

    2017-06-05

    Iron ore sintering (SNT) processes are major sources of unintentionally produced chlorinated persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs). However, few studies of emissions of brominated POPs, such as polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) and polybrominated diphenyl ethers (PBDEs), during SNT have been performed. Stack gas and fly ash samples from six typical SNT plants in China were collected and analyzed to determine the concentrations and profiles of PCDD/Fs, PCBs, PCNs, PBDD/Fs, and PBDEs, as well as any correlations among these compounds. The PCDD/F, PCB, PCN, PBDD/F, and PBDE emission factors were 2.47, 0.61, 552, 0.32, and 107μgt(-1), respectively (109, 4.07, 10.4, 4.41 and 0.02ng toxic equivalents t(-1), respectively). PCBs were the most abundant compounds by mass, while PCNs were the next most abundant, contributing 51% and 42% to the total POP concentration, respectively. However, PCDD/Fs were the dominant contributors to the chlorinated and brominated POP toxic equivalent concentrations, contributing 89% to the total toxic equivalent concentration. The PCDD/F and other chlorinated and brominated POP concentrations were positively correlated, indicating that chlorinated and brominated POP emissions could be synergistically decreased using the best available technologies/best environmental practices already developed for PCDD/Fs.

  10. Iron isotope and REE+Y composition of the Cauê banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil

    NASA Astrophysics Data System (ADS)

    Mendes, Mônica; Lobato, Lydia M.; Kunzmann, Marcus; Halverson, Galen P.; Rosière, Carlos A.

    2017-02-01

    The Minas Supergroup banded iron formations (BIFs) of the Brazilian Quadrilátero Ferrífero (QF) mineral province experienced multiple deformational events synchronous with hypogene mineralization, which resulted in the metamorphism of BIFs to itabirites and their upgrade to high-grade iron ore. Here, we present rare earth element and yttrium (REE+Y) compositions together with iron isotope ratios of itabirites and their host iron orebodies from 10 iron deposits to constrain environmental conditions during BIF deposition and the effects of hypogene iron enrichment. The REE+Y characteristics of itabirites (positive Eu anomaly and LREE depletion) indicate hydrothermal iron contribution to the Minas basin. Iron isotope data and Ce anomalies suggest BIFs were precipitated by a combination of anoxic biological-mediated ferrous iron oxidation and abiotic oxidation in an environment with free oxygen (such as an oxygen oasis), perhaps related to increase in oxygen concentrations before the Great Oxidation Event (GOE). The similarity of the REE+Y composition of the itabirites from the different QF deformational domains, as well as to other Superior-type BIFs, indicates that the metamorphism and synchronous hydrothermal mineralization did not significantly affect the geochemical signature of the original BIFs. However, iron isotope compositions of iron ore vary systematically between deformational domains of the QF, likely reflecting the specific mineralization features in each domain.

  11. Iron isotope and REE+Y composition of the Cauê banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil

    NASA Astrophysics Data System (ADS)

    Mendes, Mônica; Lobato, Lydia M.; Kunzmann, Marcus; Halverson, Galen P.; Rosière, Carlos A.

    2016-04-01

    The Minas Supergroup banded iron formations (BIFs) of the Brazilian Quadrilátero Ferrífero (QF) mineral province experienced multiple deformational events synchronous with hypogene mineralization, which resulted in the metamorphism of BIFs to itabirites and their upgrade to high-grade iron ore. Here, we present rare earth element and yttrium (REE+Y) compositions together with iron isotope ratios of itabirites and their host iron orebodies from 10 iron deposits to constrain environmental conditions during BIF deposition and the effects of hypogene iron enrichment. The REE+Y characteristics of itabirites (positive Eu anomaly and LREE depletion) indicate hydrothermal iron contribution to the Minas basin. Iron isotope data and Ce anomalies suggest BIFs were precipitated by a combination of anoxic biological-mediated ferrous iron oxidation and abiotic oxidation in an environment with free oxygen (such as an oxygen oasis), perhaps related to increase in oxygen concentrations before the Great Oxidation Event (GOE). The similarity of the REE+Y composition of the itabirites from the different QF deformational domains, as well as to other Superior-type BIFs, indicates that the metamorphism and synchronous hydrothermal mineralization did not significantly affect the geochemical signature of the original BIFs. However, iron isotope compositions of iron ore vary systematically between deformational domains of the QF, likely reflecting the specific mineralization features in each domain.

  12. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.

    PubMed

    Zhou, Qiying; Jiang, Xia; Li, Xi; Jiang, Wenju

    2016-09-01

    In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency.

  13. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect

    Gary Gartenberg, P.E., P.P.

    2001-04-01

    This report represents the sixth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the White Meadow Mine site, after amended specifications were prepared and continued negotiations took place with the Property Owner, the property ownership was transferred during the reporting period. As a result in the change in property ownership, the remediation project was then to be done by the new Property Owner out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort. At the Green Pond Mine site at the Township Compost Storage Facility, no additional field work was undertaken during this reporting period subsequent to the previous completion of the geophysical survey. With the termination of the White Meadow

  14. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect

    Gary Gartenberg, P.E., P.P.

    2001-04-01

    This report represents the seventh Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township Compost Storage Facility, research and preliminary design was performed during this reporting period toward development of the engineering plans and Technical Specifications for the remediation work. At the White Meadow Mine site, the remediation project was conducted last reporting period by others, out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort.

  15. The Remediation of Abandoned Iron Ore Mine Subsidence in Rockaway Township, New Jersey

    SciTech Connect

    Gartenberg, Gary; Poff, Gregory

    2010-06-30

    This report represents the twenty-seventh and Final Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this last reporting period ending June 30, 2010 and a summary of the work accomplished since the agreement inception in 1997. This report is issued as part of the project reporting provisions set forth in the Cooperator's Agreement between the United States Government - Department of Energy, and Rockaway Township. The purpose of the Cooperator's Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township's Jacobs Road Compost Storage Facility, surface monitoring continued after completion of construction in September 2003. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort. In March 2007, a seventh collapse occurred over a portion of the White Meadow Mine in a public roadway at the intersection of Iowa and Erie Avenues in Rockaway Township. After test drilling, this portion of the mine was remediated by drilling and grouting the stopes.

  16. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect

    Gary Gartenberg, P.E., P.P.

    1999-10-01

    This report represents the fourth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. During this reporting period the Engineering Design for remediation of the surface safety hazards associated with the White Meadow Mine was completed. Construction Plans and Technical Specifications were completed and competitive bids were solicited by the Township for completion of the work. The electrical resistivity survey analysis and report was completed for the Green Pond Mines site at the Township Compost Storage Facility. The geophysical survey results confirmed evidence of abandoned mining activity at the Green Pond Mine site which was previously identified. During this reporting period, the time frame of the Cooperative Agreement between the Township and the Department of Energy was extended. An additional site of subsidence with in the Township related to abandoned mining

  17. Petrogenesis and Fluid inclusions of the Band-e Narges skarn iron ore, Central Iran

    NASA Astrophysics Data System (ADS)

    Nazari, Maliheh; Lotfi, Mohammad; Omran, Neematollah R. N.

    2015-04-01

    The Band Narges iron deposit is located approximately 205km NE of Isfhan and is a small area in the NE of Urumieh- Dokhtar Magmatic Arc, Iran. The skarn hosted in a Cretaceous limestone, intruded by granite and granodiorite. The calcic skarn has experienced two stages of metamorphism: 1) prograde stage, which include endoskarn and exoskarnfacies with clinopyroxene, garnet, scapolite and albite mineralization, and 2) retrograde stage which produced actinolite, epidote, chlorite and apatite assemblage through retrograde alteration. The ore minerals in Band-e Nargesskarn are magnetite, with minor chalcopyrite, pyrrhotite and pyrite. Gange minerals are predominantly diopside, andradite, epidote, chlorite, quartz and calcite. Micro-thermometric measurements yield a homogenization temperature range for skarn alteration of 414 to 448°C, with a salinity of 11 to 13.186 wt.%NaCl equivalent. Fluid inclusions in calcite associated with mineralization generally consist of a vapor bubble and a liquid phase with a rare occurrence of three-phase inclusions. Homogenization temperatures for two phase inclusions vary from 168 °C to 203 °C with a salinity of 0.5 to 2 wt% NaCl equivalent. Homogenization of three phase inclusions was observed between 162 °C to 278 °C with salinity of 4 to 23 wt.%NaCl equivalent. The high-temperature and high-salinity of fluids indicate magmatic nature of the trapped fluids within progradeskarn mineral assemblages in contrast the fluids with lower temprature and lower salinity displaying a possible meteoric source within the retrograde skarn assemblages. Therefore moderate temperature and high-salinity fluids could infer to possible isothermal mixing between the fluids. Key word:Skarn,Band-e Narges,fluid inclusion

  18. Mechanism of unintentionally produced persistent organic pollutant formation in iron ore sintering.

    PubMed

    Sun, Yifei; Liu, Lina; Fu, Xin; Zhu, Tianle; Buekens, Alfons; Yang, Xiaoyi; Wang, Qiang

    2016-04-05

    Effects of temperature, carbon content and copper additive on formation of chlorobenzenes (CBzs) and polychlorinated biphenyls (PCBs) in iron ore sintering were investigated. By heating simulated fly ash (SFA) at a temperature range of 250-500°C, the yield of both CBzs and PCBs presented two peaks of 637ng/g-fly ash at 350°C and 1.5×10(5)ng/g-fly ash at 450°C for CBzs, and 74ng/g-fly ash at 300°C and 53ng/g-fly ash at 500°C. Additionally, in the thermal treatment of real fly ash (RFA), yield of PCBs displayed two peak values at 350°C and 500°C, however, yield of CBzs showed only one peak at 400°C. In the thermal treatment of SFA with a carbon content range of 0-20wt% at 300°C, both CBzs and PCBs obtained the maximum productions of 883ng/g-fly ash for CBzs and 127ng/g-fly ash for PCBs at a 5wt% carbon content. Copper additives also affected chlorinated aromatic formation. The catalytic activity of different copper additives followed the orders: CuCl2∙2H2O>Cu2O>Cu>CuSO4>CuO for CBzs, and CuCl2∙2H2O>Cu2O>CuO>Cu>CuSO4 for PCBs.

  19. The origin of terrestrial pisoliths and pisolitic iron ore deposits: Raindrops and sheetwash in a semi-arid environment

    NASA Astrophysics Data System (ADS)

    Lascelles, Desmond F.

    2016-07-01

    Ooliths evidently form by chemical precipitation in limnic, paralic, fluvial and marine environments, pisoliths, however, appear to be restricted to terrestrial environments. Typically composed of iron, aluminium and manganese sesquioxides with minor admixtures of quartz and kaolinite, they are widely distributed in tropical to subtropical regions overlying deeply weathered soil profiles. Although iron-, aluminium- and manganese-rich end members are important sources of these metals, their genesis is still enigmatic; their formation has never been observed or produced experimentally and current models for their origin are little more than guesses. A new model is presented based on a unique personal observation in which pisoliths are formed by the action of charged raindrops during thunderstorms impacting on dry deeply weathered powdery soils. The pisoliths are transported across pediments by sheetwash, accumulating as thick deposits in the valley floors. Pisolites are characteristically unfossiliferous and typically clearly pedogenic. The absence of fine depositional layering, fossil seeds, leaves and pollen in pisolites is explained by bioturbation and the action of soil organisms during extended pedogenesis while the major coarse bedding features derive from erosional and depositional events in the evolution of the pediment. Pisolitic iron ores (aka channel iron deposits, CID) are a special case of transported pisolitic ferricrust that form an important resource of medium grade iron ore (57-60 wt% Fe) in the Pilbara Region of Western Australia. Apart from minor deposits in the northern Yilgarn Province of Western Australia, they have not been found elsewhere. They differ from normal transported ferricrust and terrestrial pisolites not only in the exceptionally high iron and low alumina and silica content but also in containing abundant fossilised wood particles.

  20. In situ observation of reduction kinetics and 2D mapping of chemical state for heterogeneous reduction in iron-ore sinters

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Murao, R.; Ohta, N.; Noami, K.; Uemura, Y.; Niwa, Y.; Kimijima, K.; Takeichi, Y.; Nitani, H.

    2016-05-01

    Iron-ore sinters constitute the major component of the iron-bearing burden in blast furnaces, and the mechanism of their reduction is one of the key processes in iron making. The heterogeneous reduction of sintered oxides was investigated by the combination of X-ray fluorescence and absorption fine structure, X-ray diffraction, and computed tomography. Two - dimensional mapping of the chemical states (CSs) was performed. The iron CSs FeIII, FeII, and Fe0 exhibited a heterogeneous distribution in a reduced sinter. The reduction started near micro pores, at iron-oxide grains rather than calcium-ferrite ones. The heterogeneous reduction among grains in a sinter may cause the formation of micro cracks. These results provide fundamental insights into heterogeneous reduction schemes for iron-ore sinters.

  1. High resolution remote sensing and potential analysis of iron ore prospecting ——Taking Datong Township,West KunLun Area for example

    NASA Astrophysics Data System (ADS)

    LI, J. Q.; YI, H.; REN, G. L.; GAO, T.; YANG, M.; Han, H. H.; YANG, J. L.

    2016-11-01

    By the high resolution remote sensing anomaly verification, two magnetite ore belt was fist found in the paleoproterozoic Kulangnagu group complex(Pt1 K) at Datong township area. Which located in the southeast of West KunLu Taxkorgan iron deposit prospect area. The magnetite presents ribbon, lenticular, hosted in quartz schist with marble stratum. Based on the regional stratigraphic paleogeographic environment, primary rock formation, ore controlling environment geological background analysis, think that the Kulangnagu group complex have the potential to find metamorphosed sedimentary iron ore. Based on the analysis of high resolution remote sensing, combined with geochemical and geophysical data, We discussed the ore prospecting area and put forward two magnetite favorable prospecting area, one at the south of Datong township area, another at the southeast of Bulunmusha township, given the direction For the next step of prospecting.

  2. Pelletization of fine coals. Technical progress report, March 1, 1992--May 31, 1992

    SciTech Connect

    Sastry, K.V.S.

    1992-09-01

    The first step consisted of producing a batch of seed pellets (in the size range {minus}4.75+4.00 mm) by pelletizing of 200 g of ground coal with desired additives (surface active agents and binders) and moisture content for 800 revolutions. The seed pellets are obtained by sieving the output from the batch drum. The second step involved the production of finished size pellets by layering the seed pellets with stepwise addition of moist feed which is again produced with desired additives and moisture content. Specifically, 25 g of the {minus}4.75+4.00 mm seed pellets are placed in the drum and 20 g of moist fluffy feed is added every 80 revolutions for five times. After 400 revolutions the pellets are sieved on the 4.75 mm screen and the screen undersize which corresponds to new seeds generated during the layering cycles is discarded. Now, 30 g of moist fluffy feed is added every 50 revolutions for five more cycles. These layered pellets are sieved again and the {minus}9.5+8.00 mm pellets. Coal agglomerates produced by the above described technique are nice and spherical. With our past experience with iron ore pelletization we learnt that as long as sufficient fluffy feed is available for the consumption by the seed pellets, they generally grow by forming layers consuming the feed rather than grow by coalescence. This is found to be true in the case of coal also. Growth by coalescence of coal pellets is found to yield raspberry type uneven agglomerates. After ascertaining the possibility of producing nice spherical pellets, several experiments have been conducted to develop the above standard procedure for making pellets in a reproducible way and testing them for their quality.

  3. Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage

    NASA Astrophysics Data System (ADS)

    Yu, Wen; Tang, Qiong-yao; Chen, Jiang-an; Sun, Ti-chang

    2016-10-01

    A thermodynamic analysis of the carbothermic reduction of high-phosphorus oolitic iron ore (HPOIO) was conducted by the FactSage thermochemical software. The effects of temperature, C/O ratio, additive types, and dosages both on the reduction of fluorapatite and the formation of liquid slag were studied. The results show that the minimum thermodynamic reduction temperature of fluorapatite by carbon decreases to about 850°C, which is mainly ascribed to the presence of SiO2, Al2O3, and Fe. The reduction rate of fluorapatite increases and the amount of liquid slag decreases with the rise of C/O ratio. The reduction of fluorapatite is hindered by the addition of CaO and Na2CO3, thereby allowing the selective reduction of iron oxides upon controlled C/O ratio. The thermodynamic results obtain in the present work are in good agreement with the experimental results available in the literatures.

  4. Structural-chemical features and morphology of glauconites in sedimentary iron ore of Bakchar prospect (Western Siberia)

    NASA Astrophysics Data System (ADS)

    Rudmin, M.; Reva, I.; Gunko, A.; Mazurov, A.; Abramova, R.

    2015-11-01

    The research embraces the investigation results of glauconites in Bakchar iron ore occurrences to evaluate the potential diversified commercial application of this mineral. The following lab methods were used to analyze the morphology, chemical composition and structure of glauconites: granulometric analysis, optical microscopy, electron microscopy, X-ray fluorescence analysis, atomic arc-emission analysis and infrared spectroscopy. Glauconite was classified according to morphology and grain color and chemical composition and some specific characteristics were also determined (relative content of absorbed water, random distribution of smectite flakes within the grain structures). The research results showed that pistacho-green glauconite grains are less subjected to alteration than greenish-yellow grains due to the content of potassium, iron, absorbed water and organic impurities.

  5. Key parameters for low-grade fine-grained iron ore valorization: lower environmental impact through reduced waste.

    NASA Astrophysics Data System (ADS)

    Wagner, Christiane; Orberger, Beate; Tudryn, Alina; Baptiste, Benoît; Wirth, Richard; Morgan, Rachel; Miska, Serge

    2016-04-01

    In low-grade banded iron formations (BIFs), a large part of the iron is related to micro- and nano- metric iron-bearing inclusions within quartz and/or carbonates, mainly dolomite (~ 20 to 50 μm). Low-grade fine grained iron ore present two types of environmental risks: a) they are often stocked as tailings. For example, the recent disaster (5th of November 2015) in the Minas Gerais district, Brazil, was caused by the collapse of the Fundão tailings dam at an open cast mine; b) during beneficiation significant amounts of dust are generated also leading to metal loss. A laminated BIF studied from a drill core at Àguas Claras Mine, Quadrilátero Ferrífero, Brazil, contains 26.71 wt. % total iron, 0.2 wt. % SiO2, 0.32 wt.% MnO, 15.46 wt. % MgO, 22.32 wt.% CaO, 0.09 wt. % P2O5, < 0.05 wt. % Al2O3, 0.15 wt. % H2O and 34.08 wt. % CO2. Environmental hazardous elements are present as traces (As: 3-20 ppm, Cd: 0-0.7 ppm; Cr: 0.05-60 ppm, Pb: up to 55 ppm; U: up to 8 ppm). Dolomite and quartz bands alternate with hematite bands. Raman spectroscopy, X-ray diffraction and FIB-TEM analyses reveal that the micro- and nano- metric inclusions in dolomite are hematite and minor goethite, partly occurring as clusters in voids. Curie Balance analyses were carried out at different heating steps and temperatures on whole rock samples and a synthetic mix of decarbonated sample and pure dolomite. X-ray diffraction on the products of the heating experiments shows that that hematite is stable and new phases: magnesioferrite (MgFe2O4), lime (CaO), periclase (MgO), portlandite (Ca(OH)2) and srebrodoskite (Ca2Fe2O5) were formed between 680 °C and 920 °C. These findings promote the economic use of low grade ores rather than their stockpiling as tailings. The presence of OH-bearing goethite reduces the sintering temperature. After having separated coarse hematite from barren dolomite and quartz, a low temperature sintering of the inclusion-bearing dolomite/quartz leads to transformations

  6. Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression.

    PubMed

    Hao, Z Q; Li, C M; Shen, M; Yang, X Y; Li, K H; Guo, L B; Li, X Y; Lu, Y F; Zeng, X Y

    2015-03-23

    Laser-induced breakdown spectroscopy (LIBS) with partial least squares regression (PLSR) has been applied to measuring the acidity of iron ore, which can be defined by the concentrations of oxides: CaO, MgO, Al₂O₃, and SiO₂. With the conventional internal standard calibration, it is difficult to establish the calibration curves of CaO, MgO, Al₂O₃, and SiO₂ in iron ore due to the serious matrix effects. PLSR is effective to address this problem due to its excellent performance in compensating the matrix effects. In this work, fifty samples were used to construct the PLSR calibration models for the above-mentioned oxides. These calibration models were validated by the 10-fold cross-validation method with the minimum root-mean-square errors (RMSE). Another ten samples were used as a test set. The acidities were calculated according to the estimated concentrations of CaO, MgO, Al₂O₃, and SiO₂ using the PLSR models. The average relative error (ARE) and RMSE of the acidity achieved 3.65% and 0.0048, respectively, for the test samples.

  7. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

    NASA Astrophysics Data System (ADS)

    Yang, Song-tao; Zhou, Mi; Jiang, Tao; Guan, Shan-fei; Zhang, Wei-jun; Xue, Xiang-xin

    2016-12-01

    A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V-Ti-Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio ( η), S removal ratio ( R S), and P removal ratio ( R P) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved the η, R S, and R P in the coal-based reduction of V-Ti-Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70 μm at 1350°C, which is substantially larger than the minimum particle size required (20 μm) for magnetic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V-Ti-Cr iron ore followed by magnetic separation.

  8. High-grade iron ore deposits of the Mesabi Range, Minnesota-product of a continental-scale proterozoic ground-water flow system

    USGS Publications Warehouse

    Morey, G.B.

    1999-01-01

    The Mesabi Range along the north edge of the Paleoproterozoic Penokean orogen in northern Minnesota has produced 3.6 billion metric tons of ore since its discovery in 1890. Of that amount, 2.3 billion metric tons were extracted from hematite- or geothite-rich deposits generally referred to as 'high-grade' ores. The high-grade ores formed as the Biwabik Iron-Formation was oxidized, hydrated, and leached by solutions flowing along open faults and fractures. The source of the ore-forming solutions has been debated since it was first proposed that the ores were weathering products formed by descending meteoritic ground-water flowing in late Mesozoic time. Subsequently others believed that the ores were better explained by ascending solutions, possbily hydrothermal solutions of pre-Phanerzoic age. Neither Wolff nor Gruner could reconcile their observations with a reasonable source for the solutions. In this paper, I build on modern mapping of the Mesabi Range and mine-specific geologic observations summarized in the literature to propose a conceptual model in which the high-grade ores formed from ascending solutions that were part of continent-scale topographic or gravity-driven ground-water system. I propose that the ground-water system was active during the later stages of the development of a coupled fold and thrust belt and foreland basin that formed during the Penokean orogen.

  9. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource.

  10. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore

    NASA Astrophysics Data System (ADS)

    Yang, Min; Zhu, Qing-shan; Fan, Chuan-lin; Xie, Zhao-hui; Li, Hong-zhong

    2015-04-01

    In the present study, roasting-induced phase change and its influence on phosphorus removal via leaching has been investigated for high-phosphorus iron ore. The findings indicate that phosphorus in the ore is associated with goethite and exists mainly in amorphous Fe3PO7 phase. The phosphorus remains in the amorphous phase after being roasted below 300°C. Grattarolaite (Fe3PO7) is found in samples roasted at 600-700°C, revealing that phosphorus phase is transformed from the amorphous form to crystalline grattarolaite during roasting. Leaching tests on synthesized pure grattarolaite reveal a low rate of phosphorus removal by sulfuric acid leaching. When the roasting temperature is higher than 800°C, grattarolaite is found to react with alumina to form aluminum phosphate, and the reactivity of grattarolaite with alumina increases with increasing roasting temperature. Consequently, the rate of phosphorus removal also increases with increasing roasting temperature due to the formation of acid-soluble aluminum phosphate.

  11. Stratification Studies with Sub Grade Iron Ore from Deposit No. 10 and 11A, Bacheli Complex, Bailadila, Chhattisgarh, India

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, Gottumukkala; Markandeya, Ravvala; Sharma, Satish Kumar

    2017-04-01

    Experiments were carried out with two different sizes of (-30 + 6 and -6 + 1 mm) sub grade iron ore sample from Deposit No. 10 and 11A, Bacheli Complex, Bailadila, India to study the stratification behaviour at optimised parameters in a under bed air pulsed jig at 1, 2, 5, 10, 15 and 20 minutes residence time. This paper deals with the rate at which stratification takes place and determines the optimum stratification time (residence time) for above two size fractions. Average apparent density along with Jig Stratification Index (JSI) of both the size fractions was calculated. It was observed that the stratification rate is high for fines (-6 + 1 mm) and stratification index was higher for lump (-30 + 6 mm) when compared with the other size fraction. The maximum JSI observed was 0.35 for lump (-30 + 6 mm) and 0.30 for fines (-6 + 1 mm).

  12. Spectroscopic characterization of iron ores formed in different geological environments using FTIR, XPS, Mössbauer spectroscopy and thermoanalyses

    NASA Astrophysics Data System (ADS)

    Salama, Walid; El Aref, Mourtada; Gaupp, Reinhard

    2015-02-01

    Application of thermoanalyses, FTIR, XPS and Mössbauer spectroscopic methods can differentiate between iron ores formed in different geological environments. Two types of iron ore are formed in shallow marine environments in the Bahariya Depression, Egypt, yellowish brown ooidal ironstones (type 1) and black mud and fossiliferous ironstones (type 2). Both types were subjected to subaerial weathering, producing a dark brown lateritic (pedogenic) iron ore (type 3). Microscopic investigation indicates goethite is the main mineral in types 1 and 3, while hematite is the main mineral in type 2 and also occurs in type 3. Thermoanalyses indicated the dehydroxylation endothermic peak of goethite of type 1 occurs between 329 and 345 °C, while in type 3 occurs between 284 and 330 °C. This variation can be attributed to the nanocrystalline nature of the pedogenic goethite. The presence of an exothermic peak at 754 °C in type 3 is probably attributed to goethite-hematite phase transformation. FTIR spectroscopy indicated that goethite of type 1 is characterized by the presence of the δ-OH band between 799 and 802 cm-1, the γ-OH between 898 and 904 cm-1 and the bulk hydroxyl stretch between 3124 and 3133 cm-1. Goethite of type 3 is characterized by the absence of the bulk hydroxyl stretch band and the δ-OH and γ-OH are shifted to higher Wavenumbers that can attributed to a relative Al-for Fe-substitution. Hematite is identified by two IR bands; the first is between 464 and 475 cm-1 and at the second is between 540 and 557 cm-1. Quartz is identified in all iron ore types, nitrates are identified in types 1 and 2, but absent in type 3 and Kaolinite is identified in type 2. The Mössbauer spectrum of type 1 is fitted with one magnetic sextet corresponding to goethite with an isomer shift (IS) = 0.374 mm s-1, a quadruple splitting (QS) = -0.27 mm s-1 and a hyperfine magnetic field (BHF) = ∼37. The Mössbauer spectrum of type 2 is fitted with one magnetic sextet

  13. Os isotopic composition of steels: Constraints on sources of Os in steel & crustal isotopic evolution of iron ores

    NASA Astrophysics Data System (ADS)

    Chatterjee, R. N.; Lassiter, J. C.

    2013-12-01

    Metal contamination during sample processing is a potential concern in Os-isotope studies. We examined Os concentrations and Os isotopes in industrial steels. Samples include high Cr stainless steels (>10.5% Cr), low alloy steels (>=92% Fe) and high alloy steels (<92% Fe). The chief components used to make steel are iron ore, chromites and coke. Coke is derived from coals that have low Os concentration (~36 ppt) [1]. Chromites in steels are mined from chromitites, which have high average Os concentrations and mantle-like 187Os/188Os ratios (~88 ppb Os, 187Os/188Os ≈ 0.127×24) [2]. Iron ores used in US steel manufacturing derive chiefly from magnetites mined from iron-bearing formations such as Banded Iron Formations (BIF), which have median Os concentration of ~4.8 ppb and radiogenic 187Os/188Os ≈ 0.358×388 [3]. Os concentrations in the measured steels span a wide range, from 0.03 to 22 ppb. The 187Os/188Os ratios vary from 0.144-4.12. Such high Os concentrations and radiogenic isotopic compositions confirm that metal contamination can affect Os-isotope compositions during sample processing, particularly for low-[Os] samples. There is no correlation between C and Os concentration in steel, indicating that coke is not a major Os source in steels. Os concentrations in steels are positively correlated with Cr content, suggesting that chromite-derived Os dominates the Os budget in stainless steels. 187Os/188Os is negatively correlated with Cr content, ranging from 0.144-0.195 in high-Cr (>10.5 % Cr) steels but from 0.279-4.12 in low-Cr steels. In addition, there is a positive correlation between 1/Os and 187Os/188Os, consistent with two-component mixing of Os derived from magnetite ore and chromites. Lower Os concentrations in steels than expected from simple mixing of magnetite and chromitite suggest some volatile Os loss during smelting. Although the current data is limited, the 186Os-187Os trend defined by the steel analyses can be utilized to extrapolate

  14. Polycyclic aromatic hydrocarbon emission profiles and removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant

    SciTech Connect

    Ettore Guerriero; Antonina Lutri; Rosanna Mabilia; Maria Concetta Tomasi Sciano; Mauro Rotatori

    2008-11-15

    A monitoring campaign of polychlorinated dibenzo-p-dioxins and dibenzofurans, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyl was carried out in an Italian iron ore sintering plant by sampling the combustion gases at the electrostatic precipitator (ESP) outlet, at the Wetfine scrubber (WS) outlet, and by collecting the ESP dust. Few data are available on these micropollutants produced in iron ore sintering plants, particularly from Italian plants. This study investigates the PAH emission profiles and the removal efficiency of ESPs and WS. PAHs were determined at the stack, ESP outlet flue gases, and in ESP dust to characterize the emission profiles and the performance of the ESP and the WS for reducing PAH emission. The 11 PAHs monitored are listed in the Italian legislative decree 152/2006. The mean total PAH sum concentration in the stack flue gases is 3.96 {mu}g/N m{sup 3}, in ESP outlet flue gases is 9.73 {mu}g/N m{sup 3}, and in ESP dust is 0.53 {mu}g/g. Regarding the emission profiles, the most abundant compound is benzo(b)fluoranthene, which has a relative low BaP toxic equivalency factors (TEF) value, followed by dibenzo(a,l)pyrene, which has a very high BaP(TEF) value. The emission profiles in ESP dust and in the flue gases after the ESP show some changes, whereas the fingerprint in ESP and stack flue gases is very similar. The removal efficiency of the ESP and of WS on the total PAH concentration is 5.2 and 59.5%, respectively. 2 figs., 5 tabs.

  15. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    PubMed

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation.

  16. Summary of the mineralogy of the Colorado Plateau uranium ores

    USGS Publications Warehouse

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little

  17. Using oxygen isotope chemistry to track hydrothermal processes and fluid sources in itabirite-hosted iron ore deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    Hensler, Ana-Sophie; Hagemann, Steffen G.; Brown, Philip E.; Rosière, Carlos A.

    2014-03-01

    The Quadrilátero Ferrífero, Brazil, is presently the largest accumulation of single itabirite-hosted iron ore bodies worldwide. Detailed petrography of selected hypogene high-grade iron ore bodies at, e.g. the Águas Claras, Conceição, Pau Branco and Pico deposits revealed different iron oxide generations, from oldest to youngest: magnetite → martite (hematite pseudomorph after magnetite) → granoblastic (recrystallised) → microplaty (fine-grained, <100 μm) → specular (coarse-grained, >100 μm) hematite. Laser-fluorination oxygen isotope analyses of selected iron ore species showed that the δ18O composition of ore-hosted martite ranges between -4.4 and 0.9 ‰ and is up to 11 ‰ depleted in 18O relative to hematite of the host itabirite. During the modification of iron ore and the formation of new iron oxide generations (e.g. microplaty and specular hematite), an increase of up to 8 ‰ in δ18O values is recorded. Calculated δ18O values of hydrothermal fluids in equilibrium with the iron oxide species indicate: (1) the involvement of isotopically light fluids (e.g. meteoric water or brines) during the upgrade from itabirite-hosted hematite to high-grade iron ore-hosted martite and (2) a minor positive shift in δ18Ofluid values from martite to specular hematite as result of modified meteoric water or brines with slightly elevated δ18O values and/or the infiltration of small volumes of isotopically heavy (metamorphic and/or magmatic) fluids into the iron ore system. The circulation of large fluid volumes that cause the systematic decrease of 18O/16O ratios from itabirite to high-grade iron ore requires the presence of, e.g. extensive faults and/or large-scale folds.

  18. Separation of Iron Phase and P-Bearing Slag Phase from Gaseous-Reduced, High-Phosphorous Oolitic Iron Ore at 1473 K (1200 °C) by Super Gravity

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Lei; Guo, Zhancheng

    2016-04-01

    In situ observation on the morphology evolution and phosphorous migration of gaseous-reduced, high-phosphorous oolitic iron ore during the melting process was carried out with a high-temperature confocal scanning laser microscope. The results showed that 1473 K (1200 °C) was a critical temperature at which the gangue minerals started to form into the slag phase while the iron grains remained in a solid state; in addition, the phosphorus remained in the slag phase. Since the separation of iron grains and P-bearing slag was not achieved at the low temperature under the conventional conditions, separate experiments of the iron phase and the P-bearing slag phase from gaseous-reduced, high-phosphorous oolitic iron ore at 1473 K (1200 °C) by super gravity were carried out in this study. Based on the iron-slag separation by super gravity, phosphorus was removed effectively from the iron phase at the temperature below the melting point of iron. Iron grains moved along the super-gravity direction, joined, and concentrated as the iron phase on the filter, whereas the slag phase containing apatite crystals broke through the barriers of the iron grains and went through the filter. Consequently, increasing the gravity coefficient was definitely beneficial for the separation of the P-bearing slag phase from the iron phase. With the gravity coefficient of G = 1200, the mass fractions of separated slag and iron phases were close to their respective theoretical values, and the mass fraction of MFe in the separated iron phase was up to 98.09 wt pct and that of P was decreased to 0.083 wt pct. The recovery of MFe in the iron phase and that of P in the slag phase were up to 99.19 and 95.83 pct, respectively.

  19. Isolation and phylogenetic characterization of iron-sulfur-oxidizing heterotrophic bacteria indigenous to nickel laterite ores of Sulawesi, Indonesia: Implications for biohydrometallurgy

    NASA Astrophysics Data System (ADS)

    Chaerun, Siti Khodijah; Hung, Sutina; Mubarok, Mohammad Zaki; Sanwani, Edy

    2015-09-01

    The main objective of this study was to isolate and phylogenetically identify the indigenous iron-sulfur-oxidizing heterotrophic bacteria capable of bioleaching nickel from laterite mineral ores. The bacteria were isolated from a nickel laterite mine area in South Sulawesi Province, Indonesia. Seven bacterial strains were successfully isolated from laterite mineral ores (strains SKC/S-1 to SKC/S-7) and they were capable of bioleaching of nickel from saprolite and limonite ores. Using EzTaxon-e database, the 16S rRNA gene sequences of the seven bacterial strains were subjected to phylogenetic analysis, resulting in a complete hierarchical classification system, and they were identified as Pseudomonas taiwanensis BCRC 17751 (98.59% similarity), Bacillus subtilis subsp. inaquosorum BGSC 3A28 (99.14% and 99.32% similarities), Paenibacillus pasadenensis SAFN-007 (98.95% and 99.33% similarities), Bacillus methylotrophicus CBMB 205 (99.37% similarity), and Bacillus altitudinis 41KF2b (99.37% similarity). It is noteworthy that members of the phylum Firmicutes (in particular the genus Bacillus) predominated in this study, therefore making them to have the high potential to be candidates for the bioleaching of nickel from laterite mineral ores. To our knowledge, this is the first report on the predominance of the phylum Firmicutes in the Sulawesi laterite mineral ores.

  20. Mechanochemical activation of iron ore-based catalysts for the hydrogenation of brown coal

    SciTech Connect

    Kuznetsov, P.N.; Kuznetsova, L.I.; Kartseva, N.V.; Chumakov, V.G.

    1998-12-31

    Genesis of iron based catalysts on mechanical treatment in a planetary mill was investigated. Methods for achieving satisfactory mixing of catalyst on coal were surveyed. The preferred method was to conduct mechanochemical activation in the presence of sulfur and water additives, application of activated catalyst to coal followed by drying of the contact produced.

  1. Rare earth elements, S and Sr isotopes and origin of barite from Bahariya Oasis, Egypt: Implication for the origin of host iron ores

    NASA Astrophysics Data System (ADS)

    Baioumy, Hassan M.

    2015-06-01

    Based on their occurrences and relation to the host iron ores, barites are classified into: (1) fragmented barite occurs as pebble to sand-size white to yellowish white barite along the unconformity between the Bahariya Formation and iron ores, (2) interstitial barite is present as pockets and lenses of large and pure crystals inside the iron ores interstitial barite inside the iron ores, and (3) disseminated barite occurs at the top of the iron ores of relatively large crystals of barite embedded in hematite and goethite matrix. In the current study, these barites have been analyzed for their rare earth elements (REE) as well as strontium and sulfur isotopes to assess their source and origin as well as the origin of host iron ores. Barite samples from the three types are characterized by low ΣREE contents ranging between 12 and 21 ppm. Disseminated barite shows relatively lower ΣREE contents (12 ppm) compared to the fragmented (19 ppm) and interstitial (21 ppm) barites. This is probably due to the relatively higher Fe2O3 in the disseminated barite that might dilute its ΣREE content. Chondrite-normalized REE patterns for the three barite mineralizations exhibit enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) as shown by the high (La/Yb)N ratios that range between 14 and 45 as well as pronounced negative Ce anomalies varying between 0.03 and 0.18. The 87Sr/86Sr ratios in the analyzed samples vary between 0.707422 and 0.712237. These 87Sr/86Sr values are higher than the 87Sr/86Sr ratios of the seawater at the time of barite formation (Middle Eocene with 87Sr/86Sr ratios of 0.70773 to 0.70778) suggesting a contribution of hydrothermal fluid of high Sr isotope ratios. The δ34S values in the analyzed barites range between 14.39‰ and 18.92‰. The lower δ34S ratios in the studied barites compared with those of the seawater at the time of barite formation (Middle Eocene with δ34S ratios of 20-22‰) is attributed to a

  2. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the

  3. In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes

    NASA Astrophysics Data System (ADS)

    Horn, Ingo; von Blanckenburg, Friedhelm; Schoenberg, Ronny; Steinhoefel, Grit; Markl, Gregor

    2006-07-01

    immediate close range re-precipitation of the oxidized Fe. Abrupt changes are documented for secondary goethite showing a distinct overgrowth that is 0.4‰ lighter than the core of the grain. If indeed Fe isotopes in secondary minerals from hydrothermal ore deposits record the initial isotopic signatures of their precursor minerals, and these in turn record hydrothermal fluid histories, then the tools are in place for a detailed reconstruction of the deposit's genesis. We expect similar observations from other Fe-rich deposits formed at intermediate and low-temperatures (e.g. banded iron formations). Laser ablation now provides us with the spatial resolution that adds a further dimension to our interpretation of stable Fe-isotope fractionation.

  4. Mineralogy and trace-element geochemistry of the high-grade iron ores of the Águas Claras Mine and comparison with the Capão Xavier and Tamanduá iron ore deposits, Quadrilátero Ferrífero, Brazil

    NASA Astrophysics Data System (ADS)

    Spier, Carlos Alberto; de Oliveira, Sonia Maria Barros; Rosière, Carlos Alberto; Ardisson, José Domingos

    2008-02-01

    Several major iron deposits occur in the Quadrilátero Ferrífero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Cauê Formation, regionally called itabirite, was transformed into high- (Fe >64%) and low-grade (30% < Fe < 64%) hematite ores. Based on their mineralogical composition, three major types of itabirites occur in the QF: siliceous, dolomitic, and amphibolitic itabirite. Unlike other mines in the QF, the Águas Claras Mine contained mainly high-grade ores hosted within dolomitic itabirite. Two distinct types of high-grade ore occurred at the mine: soft and hard. The soft ore was the most abundant and represented more than 85% of the total ore mined until it was mined out in 2002. Soft and hard ores consist essentially of hematite, occurring as martite, anhedral to granular/tabular hematite and, locally, specularite. Gangue minerals are rare, consisting of dolomite, sericite, chlorite, and apatite in the hard and soft ores, and Mn-oxides and ferrihydrite in the soft ore where they are concentrated within porous bands. Chemical analyses show that hard and soft ores consist almost entirely of Fe2O3, with a higher amount of detrimental impurities, especially MnO, in the soft ore. Both hard and soft ores are depleted in trace elements. The high-grade ores at the Águas Claras Mine have at least a dual origin, involving hypogene and supergene processes. The occurrence of the hard, massive high-grade ore within “fresh” dolomitic itabirite is evidence of its hypogene origin. Despite the contention about the origin of the dolomitic itabirite (if this rock is a carbonate-rich facies of the Cauê Formation or a hematite-carbonate precursor of the soft high-grade ore), mineralogical and geochemical features of the soft high-grade ore indicate that it was formed by leaching of dolomite from the dolomitic itabirite by meteoric water. The comparison of the Águas Claras, Capão Xavier and

  5. Stratigraphy of Upper Cretaceous and Cenozoic deposits of the Bakchar iron ore deposit (southwestern Siberia): New data

    NASA Astrophysics Data System (ADS)

    Lebedeva, N. K.; Kuzmina, O. B.; Sobolev, E. S.; Khazina, I. V.

    2017-01-01

    The results of complex palynological and microfaunistic studies of Upper Cretaceous and Cenozoic deposits of the Bakchar iron ore deposit are presented. Geochronologically, the age of the deposits varies from Campanian to Quaternary. It was established that the Slavgorod, Gan'kino, and Jurki (?) formations contain four biostratons in the rank of beds with dinocysts and three biostratons in the rank of beds with spores and pollen. The Cenozoic continental deposits contain four biostratons in the rank of beds, containing spores and pollen. As a result of the study, a large stratigraphic gap in the Cretaceous-Paleogene boundary deposits, covering a significant part of the Maastrichtian, Paleocene, Ypresian, and Lutetian stages of the Eocene, was established. The remnants of a new morphotype of heteromorphic ammonites of genus Baculites were first described in deposits of the Slavgorod Formation (preliminarily, upper Campanian). The distribution features of the different palynomorph groups in the Upper Cretaceous-Cenozoic deposits in the area of study due to transgressive-regressive cycles and climate fluctuations were revealed.

  6. Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor.

    PubMed

    Liu, Yangsheng; Du, Fang; Yuan, Li; Zeng, Hui; Kong, Sifang

    2010-06-15

    The few reuse and large stockpile of iron ore tailings (IOT) led to a series of social and environmental problems. This study investigated the possibility of using the IOT as one of starting materials to prepare lightweight ceramisite (LWC) by a high temperature sintering process. Coal fly ash (CFA) and municipal sewage sludge (SS) were introduced as additives. The LWC was used to serve as a biomedium in a biological aerated filter (BAF) reactor for municipal wastewater treatment, and its purification performance was examined. The effects of sintering parameters on physical properties of the LWC, and leaching concentrations of heavy metals from the LWC were also determined. The microstructure and the phase composition of the LWC were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results revealed that: (1) IOT could be used to produce the LWC under the optimal sintering parameters; (2) the leaching concentrations of heavy metals from the LWC were well below their respective regulatory levels in the China Environmental Quality Standards for Surface Water (CEQS); and (3) the BAF reactor with the LWC serving as the biomedium achieved high removal efficiencies for COD(Cr) (>92%), NH(4)(+)-N (>62%) and total phosphate (T-P) (>63%). Therefore, the LWC produced from the IOT was suitable to serve as the biomedium in the municipal wastewater treatment.

  7. Exposure assessment to dust and free silica for workers of Sangan iron ore mine in Khaf, Iran.

    PubMed

    Naghizadeh, Ali; Mahvi, Amir Hossein; Jabbari, Hossein; Derakhshani, Elham; Amini, Hassan

    2011-11-01

    We aimed to conduct an exposure assessment to dust and free silica for workers of Sangan iron ore mine in Khaf, Iran. The maximum concentrations of total dust and free silica were measured in crusher machine station at 801 ± 155 and 26 ± 7 mg/m(3), respectively. Meanwhile, the minimum concentrations were measured in official and safeguarding station at 8.3 ± 2 and 0.012 ± 0.002 mg/m(3), respectively. Also, the maximum concentrations of respirable dust and free silica were measured in Tappeh Ghermez drilling no. 1 at 66 ± 13 and 1.5 ± 0.4 mg/m(3), respectively, while the minimum concentrations were measured in pneumatic hammer at 5.26 ± 3 and 0.01 ± 0.005 mg/m(3), respectively. Considerate to Iranian standard for respirable dust concentrations (0.11 mg/m(3)) and international standards (ACGIH = 0.1 and NIOSH = 0.05 mg/m(3)), it was found that dust and free silica amounts were much higher than national and international standard levels in this mine.

  8. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Liao, SongYi; Dai, ChangLu; Liu, YuChen; Chen, XiaoYu; Zheng, Feng

    2015-03-01

    A novel glass-ceramic tile consisting of one glass-ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73-99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass-ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn2+0.17Fe3+0.83)[Fe3+1.17Fe2+0.06Ni2+0.77]O4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass-ceramic layer at frequency of 2-18 GHz reached peak reflection loss (RL) of -17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass-ceramic layer can meet the requirements of different level of microwave absorption.

  9. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  10. Experimental and Modeling Study on Reduction of Hematite Pellets by Hydrogen Gas

    NASA Astrophysics Data System (ADS)

    Kazemi, Mania; Pour, Mohsen Saffari; Sichen, Du

    2017-04-01

    Gaseous reduction by hydrogen was performed for three types of hematite pellets, two from industry and one prepared in the laboratory. The reduction mechanisms of the pellets were studied based on the morphologies of the partially reduced samples. Two mechanisms were found, the mechanisms of the two types of industrial pellets being very similar. The degree of reduction was followed as a function of time for each type of pellets. On the basis of the reaction mechanism of the industrial pellets, a mathematical model was developed. As a pioneer effort, the model combined the computational fluid dynamics approach for the flow and mass transfer in the gas phase with model of gas diffusion in the solid phase as well as the description of the chemical reaction at the reaction sites. The calculation results agreed well with the experimentally obtained reduction curves. The present work also emphasized the importance of evaluation of the reduction mechanisms and the properties of different types of iron ore pellets prior to developing a process model. While the present approach has established a good foundation for the dynamic modeling of the shaft reactor, more efforts are required to accomplish a realistic process model.

  11. Experimental and Modeling Study on Reduction of Hematite Pellets by Hydrogen Gas

    NASA Astrophysics Data System (ADS)

    Kazemi, Mania; Pour, Mohsen Saffari; Sichen, Du

    2017-01-01

    Gaseous reduction by hydrogen was performed for three types of hematite pellets, two from industry and one prepared in the laboratory. The reduction mechanisms of the pellets were studied based on the morphologies of the partially reduced samples. Two mechanisms were found, the mechanisms of the two types of industrial pellets being very similar. The degree of reduction was followed as a function of time for each type of pellets. On the basis of the reaction mechanism of the industrial pellets, a mathematical model was developed. As a pioneer effort, the model combined the computational fluid dynamics approach for the flow and mass transfer in the gas phase with model of gas diffusion in the solid phase as well as the description of the chemical reaction at the reaction sites. The calculation results agreed well with the experimentally obtained reduction curves. The present work also emphasized the importance of evaluation of the reduction mechanisms and the properties of different types of iron ore pellets prior to developing a process model. While the present approach has established a good foundation for the dynamic modeling of the shaft reactor, more efforts are required to accomplish a realistic process model.

  12. The polychlorinated dibenzofuran fingerprint of iron ore sinter plant: Its persistence with suppressant and alternative fuel addition.

    PubMed

    Thompson, Dennis; Ooi, Tze C; Anderson, David R; Fisher, Ray; Ewan, Bruce C R

    2016-07-01

    An earlier demonstration that the relative concentrations of isomers of polychlorinated dibenzofuran do not vary as the flamefront of an iron ore sinter plant progresses through the bed, and profiles are similar for two sinter strands has been widened to include studies of the similarity or otherwise between full scale strand and sinter pot profiles, effect of addition of suppressants and of coke fuel substitution with other combustible materials. For dioxin suppressant addition, a study of the whole of the tetra- penta- and hexaCDF isomer range as separated by the DB5MS chromatography column, indicates no significant change in profile: examination of the ratios of the targeted penta- and hexaCDF isomers suggests the profile is similarly unaffected by coke fuel replacement. Addition of KCl at varied levels has also been shown to have no effect on the 'fingerprint' and there is no indication of any effect by the composition of the sinter mix. The recently published full elution sequence for the DB5MS column is applied to the results obtained using this column. It is confirmed that isomers with 1,9-substitution of chlorine atoms are invariably formed in low concentrations. This is consistent with strong interaction between the 1 and 9 substituted chlorine atoms predicted by DFT thermodynamic calculations. Non-1,9-substituted PCDF equilibrium isomer distributions based on DFT-derived thermodynamic data differ considerably from stack gas distributions obtained using SP2331 column separation. A brief preliminary study indicates the same conclusions (apart from the 1,9-interaction effect) hold for the much smaller content of PCDD.

  13. Metasomatic rocks with greisenization associated with the ore-bearing zones in the Iron Mountains (Železné hory Mountains, eastern Bohemia, Czechoslovakia)

    NASA Astrophysics Data System (ADS)

    Němec, Dušan

    1990-10-01

    In the central Iron Mountains the ore-mineralized deformation zones represent deep reaching faults which possibly reach the upper mantle. During geological history they were used by ascending magmas, fluids, and barren and ore hydrothermal solutions. It can be shown that the metasomatism provoked by acid fluids bears the character of greisenization. The type of the original greisenized rocks here can be determined on the basis of elements that were immobile during greisenization, especially Si, Ti, Sc and REE. After or even during greisenization, the metasomatic rocks were affected by shearing metamorphism corresponding in its PT conditions to the middle zone of the almandine-amphibolite facies. It was possibly in this period that the enigmatic skarn body of Samařov originated. Owing to its similarity to the dyke skarn of Kraskov, its similar origin could be assumed: the deposition of skarn minerals from circulating fluids, which were perhaps released during greisenization.

  14. Effect of Addition of Mill Scale on Sintering of Iron Ores

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Pinson, David; Chew, Sheng; Monaghan, Brian J.; Pownceby, Mark I.; Webster, Nathan A. S.; Rogers, Harold; Zhang, Guangqing

    2016-10-01

    Iron-rich (65 to 70 pct total Fe) mill scale generated during processing by steel mills can be recycled by using it as a ferrous raw material in the sintering process. The effect of mill scale addition on the phase formation of sintered specimens from an industrial sinter blend containing 0 to 15 wt pct mill scale was examined, and the mineral phases formed during sintering under various conditions ( T = 1523 K to 1598 K [1250 °C to 1325 °C] and gas compositions of pO2 = 0.5, 5 and 21 kPa) were quantitatively measured. For samples sintered in air (pO2 = 21 kPa), there was negligible effect of mill scale addition on the phases formed. The oxidation of the mill scale was complete, and phases such as Silico-Ferrite of Calcium and Aluminum (SFCA), SFCA-I, and hematite dominated. Under lower oxygen partial pressures (pO2 = 0.5 or 5 kPa), and throughout the temperature range examined, the mill scale was converted to magnetite, with the extent of reaction controlled by the hematite-magnetite conversion kinetics. When sintered in the gas mixture with pO2 = 5 kPa, an increase in the mill scale content from 0 to 15 wt pct resulted in a decrease of hematite and total SFCA phases and a corresponding increase in the amount of magnetite which formed. The oxidation of wustite in mill scale to magnetite decreased the local partial pressure of O2 and increased sintering temperature, which promoted the decomposition of hematite.

  15. Owl Pellets.

    ERIC Educational Resources Information Center

    Thompson, Craig D.

    1987-01-01

    Provides complete Project WILD lesson plans for 20-45-minute experiential science learning activity for grades 3-7 students. Describes how students construct a simple food chain through examination of owl pellets. Includes lesson objective, method, background information, materials, procedure, evaluation, and sources of owl pellets and posters.…

  16. Pelletizing lignite

    DOEpatents

    Goksel, Mehmet A.

    1983-11-01

    Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

  17. Geochemistry of sedimentary ore deposits

    SciTech Connect

    Maynard, J. B.

    1983-01-01

    A text providing a sedimentological treatment of a study on ore deposits, and especially as related to geochemistry. Excellently documented (about 5000 citations). Well indexed with the index of deposits and localities separated. Contents, Iron. Copper and silver. Aluminum and nickel. Manganese. Uranium. Lead and zinc. Volcanic-sedimentary ores. Appendix. Indexes.

  18. Pellet Puzzlers.

    ERIC Educational Resources Information Center

    Hoots, R. A.

    1992-01-01

    Presents information on owl's taxonomy, characteristics, and influences on man. Describes owl pellets, which are digestive discards, and explains how they can be used to determine the owl's diet as a science activity. (PR)

  19. Use of Arbuscular Mycorrhiza and Organic Amendments to Enhance Growth of Macaranga peltata (Roxb.) Müll. Arg. in Iron Ore Mine Wastelands.

    PubMed

    Rodrigues, Cassie R; Rodrigues, Bernard F

    2015-01-01

    Macaranga peltata (Roxb.) Mull. Arg. is a disturbance tolerant plant species with potential in mine wasteland reclamation. Our study aims at studying the phyto-extraction potential of M. peltata and determining plant-soil interaction factors effecting plant growth in iron ore mine spoils. Plants were grown in pure mine spoil and spoil amended with Farm Yard Manure (FYM) and Vermicompost (VC) along with arbuscular mycorrhizal (AM) species Rhizophagus irregularis. Pure and amended mine spoils were evaluated for nutrient status. Plant growth parameters and foliar nutrient contents were determined at the end of one year. FYM amendment in spoil significantly increased plant biomass compared to pure mine spoil and VC amended spoil. Foliar Fe accumulation was recorded highest (594.67 μg/g) in pure spoil with no mortality but considerably affecting plant growth, thus proving to exhibit phyto-extraction potential. FYM and VC amendments reduced AM colonization (30.4% and 37% resp.) and plants showed a negative mycorrhizal dependency (-30.35 and -39.83 resp.). Soil pH and P levels and, foliar Fe accumulation are major factors determining plant growth in spoil. FYM amendment was found to be superior to VC as a spoil amendment for hastening plant growth and establishment in iron ore mine spoil.

  20. Regional prospecting for iron ores in Bahariya Oasis-El Faiyum area, Egypt, using LANDSAT-1 satellite images

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdel-Hady, M. A.; Elghawaby, M. A.; Khawasik, S. M. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. New discoveries of iron deposits were registered as a result of the LANDSAT imagery, and the conditions of the already known iron deposits and occurrences were regionally connected and verified.

  1. Silico-ferrite of Calcium and Aluminum (SFCA) Iron Ore Sinter Bonding Phases: New Insights into Their Formation During Heating and Cooling

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Kimpton, Justin A.

    2012-12-01

    The formation of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter phases during heating and cooling of synthetic iron ore sinter mixtures in the range 298 K to 1623 K (25 °C to 1350 °C) and at oxygen partial pressure of 5 × 10-3 atm has been characterized using in situ synchrotron X-ray diffraction. SFCA and SFCA-I are the key bonding phases in iron ore sinter, and an improved understanding of their formation mechanisms may lead to improved efficiency of industrial sintering processes. During heating, SFCA-I formation at 1327 K to 1392 K (1054 °C to 1119 °C) (depending on composition) was associated with the reaction of Fe2O3, 2CaO·Fe2O3, and SiO2. SFCA formation (1380 K to 1437 K [1107 °C to 1164 °C]) was associated with the reaction of CaO·Fe2O3, SiO2, and a phase with average composition 49.60, 9.09, 0.14, 7.93, and 32.15 wt pct Fe, Ca, Si, Al, and O, respectively. Increasing Al2O3 concentration in the starting sinter mixture increased the temperature range over which SFCA-I was stable before the formation of SFCA, and it stabilized SFCA to a higher temperature before it melted to form a Fe3O4 + melt phase assemblage (1486 K to 1581 K [1213 °C to 1308 °C]). During cooling, the first phase to crystallize from the melt (1452 K to 1561 K [1179 °C to 1288 °C]) was an Fe-rich phase, similar in composition to SFCA-I, and it had an average composition 58.88, 6.89, 0.82, 3.00, and 31.68 wt pct Fe, Ca, Si, Al, and O, respectively. At lower temperatures (1418 K to 1543 K [1145 °C to 1270 °C]), this phase reacted with melt to form SFCA. Increasing Al2O3 increased the temperature at which crystallization of the Fe-rich phase occurred, increased the temperature at which crystallization of SFCA occurred, and suppressed the formation of Fe2O3 (1358 K to 1418 K [1085 °C to 1145 °C]) to lower temperatures.

  2. A study on the structural behavior of reduced pyrite ash pellets by XRD and XRF analysis.

    PubMed

    Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Mehmet Burçin; Ekerim, Ahmet

    2009-05-01

    In Turkey, pyrite ash is created as waste from the roasting of pyrite ores in the production of sulfuric acid. These processes generate great amounts of pyrite ash waste that creates serious environmental pollution due to the release of acids and toxic substances. Pyrite ash waste can be used in the iron production industry as a raw material because of its high Fe(2)O(3) concentration. The aim of this study was to investigate the reduction behaviour of pyrite ash pellets. The pyrite ashes were reduced to obtain the iron contained in pellets. Pyrite ashes samples were pelletized dried at 105 degrees C for 24 h and sintered at 1200 degrees C for 30 min. then reduced in a pressure of 4 atm. under argon gas. The mineralogical transformations that occurred during reduction were analysed by X-ray diffraction and X-ray fluorescence. The X-ray diffraction and X-ray fluorescence measurements of these samples showed that Fe(3)O(4) was successfully reduced to a metallic iron phase in a laboratory-scale electric arc furnace.

  3. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.

    PubMed

    Jang, Min; Hwang, Jung Sung; Choi, Sang Il

    2007-01-01

    Sequential washing techniques using single or dual agents [sodium hydroxide (NaOH) and hydrochloric acid (HCl) solutions] were applied to arsenic-contaminated soils in an abandoned iron-ore mine area. We investigated the best remediation strategies to maximize arsenic removal efficiency for both soils and arsenic-containing washing solution through conducting a series of batch experiments. Based on the results of a sequential extraction procedure, most arsenic prevails in Fe-As precipitates or coprecipitates, and iron exists mostly in the crystalline forms of iron oxide. Soil washing by use of a single agent was not effective in remediating arsenic-contaminated soils because arsenic extractions determined by the Korean standard test (KST) methods for washed soils were not lower than 6mg kg(-1) in all experimental conditions. The results of X-ray diffraction (XRD) indicated that iron-ore fines produced mobile colloids through coagulation and flocculation in water contacting the soils, containing dissolved arsenic and fine particles of ferric arsenate-coprecipitated silicate. The first washing step using 0.2M HCl was mostly effective in increasing the cationic hydrolysis of amorphous ferrihydrite, inducing high removal of arsenic. Thus, the removal step of arsenic-containing flocs can lower arsenic extractions (KST methods) of washed soils. Among several washing trials, alternative sequential washing using 0.2M HCl followed by 1M HCl (second step) and 1M NaOH solution (third step) showed reliable and lower values of arsenic extractions (KST methods) of washed soils. This washing method can satisfy the arsenic regulation of washed soil for reuse or safe disposal application. The kinetic data of washing tests revealed that dissolved arsenic was easily readsorbed into remaining soils at a low pH. This result might have occurred due to dominant species of positively charged crystalline iron oxides characterized through the sequential extraction procedure. However

  4. Desilicification and iron activation-reprecipitation in the high-grade magnetite ores in BIFs of the Anshan-Benxi area, China: Evidence from geology, geochemistry and stable isotopic characteristics

    NASA Astrophysics Data System (ADS)

    Li, Hou-Min; Yang, Xiu-Qing; Li, Li-Xing; Zhang, Zhao-Chong; Liu, Ming-Jun; Yao, Tong; Chen, Jing

    2015-12-01

    The high-grade magnetite ores related to banded iron formations (BIFs) in the Anshan-Benxi area, Liaoning Province in China, have been widely interpreted as the product of replacement of protore by epigenetic hydrothermal fluids. The high-grade iron ore reserves in the mining area II (164 million tons) in the Gongchangling (G2) and Qidashan-Wangjiabuzi (QW) iron deposits (11.45 million tons) are the largest deposits in the Anshan-Benxi area. We present a detailed comparison of the geology, geochemical and stable isotopic compositions of the iron ores in the G2 with those in the QW to constrain the role of desilicification and iron activation-reprecipitation in converting the BIFs to high-grade magnetite ores. These two deposits show marked difference in wall-rock alteration, geochemical features, and oxygen and sulfur isotopic compositions. Wall-rock alteration in the G2 is characterized by garnetization, actinolitization, and chloritization, whereas the QW shows chloritization, biotitization and sericitization. The geochemistry of altered rocks in the G2 is characterized by slight REE fractionation, positive Eu and no significant Ce anomalies, whereas the QW is characterized by high ΣREE contents, strong REE fractionation, and the absence of significant Eu and Ce anomalies. High-grade iron ores in the G2 show similar δ18OV-SMOW values for magnetite, lower δ18OV-SMOW values for quartz and higher δ34SV-CDT values for pyrite when compared to the BIFs, whereas the QW shows lower δ18OV-SMOW values for magnetite, similar δ18OV-SMOW values for quartz and similar δ34SV-CDT values for pyrite. These features indicate that desilicification process by hypogene alkaline-rich hydrothermal fluids were possibly responsible for the formation of high-grade iron ores in the G2 whereas iron activation-reprecipitation process by migmatitic-hydrothermal fluids generated the high-grade iron orebodies in QW.

  5. Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue.

    PubMed

    Geelhoed, Jeanine S; Meeussen, Johannes C L; Roe, Martin J; Hillier, Stephen; Thomas, Rhodri P; Farmer, John G; Paterson, Edward

    2003-07-15

    Chromite ore processing residue (COPR), derived from the so-called high lime processing of chromite ore, contains high levels of Cr(III) and Cr(VI) and has a pH between 11 and 12. Ferrous sulfate, which is used for remediation of Cr(VI) contamination in wastewater and soils via reduction to Cr(III) and subsequent precipitation of iron(III)/chromium(III) hydroxide, has also been proposed for remediation of Cr(VI) in COPR. Instead, however, addition of FeSO4 to the infiltrating solution in column experiments with COPR greatly increased leaching of Cr(VI). Leached Cr(VI) increased from 3.8 to 12.3 mmol kg(-1) COPR in 25 pore volumes with 20 mM FeSO4, reaching solution concentrations as high as 1.6 mM. Fe(II) was ineffective in reducing Cr(VI) to Cr(III) because it precipitated when it entered the column due to the high pH of COPR, while Cr(VI) in solution was transported away with the infiltrating solution. The large increase in leaching of Cr(VI) upon infiltration of sulfate, either as FeSO4 or Na2SO4, was caused by anion exchange of sulfate for chromate in the layered double hydroxide mineral hydrocalumite, a process for which scanning electron microscopy with energy-dispersive X-ray microanalysis provided direct evidence.

  6. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system.

    PubMed

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J D; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-10-04

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S(0) oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S(0) and Fe(2+), which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.

  7. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system

    PubMed Central

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-01-01

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system. PMID:27698381

  8. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system

    NASA Astrophysics Data System (ADS)

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-10-01

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.

  9. Determination of molybdenum in ores, iron and steel by atomic-absorption spectrophotometry after separation by alpha-benzoinoxime extraction or further xanthate extraction.

    PubMed

    Donaldson, E M

    1980-02-01

    A simple and moderately rapid method for determining 0.001% or more of molybdenum in ores, iron and steel is described. After sample decomposition, molybdenum is separated from the matrix elements, except tungsten, by chloroform extraction of its alpha-benzoinoxime complex from a 1.75 M hydrochloric-0.13 M tartaric acid medium. Depending on the amount of tungsten present, molybdenum, if necessary, is back-extracted into concentrated ammonia solution and subsequently separated from coextracted tungsten by chloroform extraction of its xanthate complex from a 1.5M hydrochloric-0.13M tartaric acid medium. It is ultimately determined by atomic-absorption spectrophotometry, at 313.3 nm, in a 15% v/v hydrochloric acid medium containing 1,000 microg/ml of aluminium as the chloride, after evaporation of either extract to dryness with nitric, perchloric and sulphuric acids and dissolution of the salts in dilute ammonia solution.

  10. Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran).

    PubMed

    Soltani, Naghmeh; Keshavarzi, Behnam; Sorooshian, Armin; Moore, Farid; Dunster, Christina; Dominguez, Ana Oliete; Kelly, Frank J; Dhakal, Prakash; Ahmadi, Mohamad Reza; Asadi, Sina

    2017-03-09

    Concentrations of total suspended particulate matter, particulate matter with aerodynamic diameter <2.5 μm (PM2.5), particulate matter <10 μm (PM10), and fallout dust were measured at the Iranian Gol-E-Gohar Mining and Industrial Facility. Samples were characterized in terms of mineralogy, morphology, and oxidative potential. Results show that indoor samples exceeded the 24-h PM2.5 and PM10 mass concentration limits (35 and 150 µg m(-3), respectively) set by the US National Ambient Air Quality Standards. Calcite, magnetite, tremolite, pyrite, talc, and clay minerals such as kaolinite, vermiculite, and illite are the major phases of the iron ore PM. Accessory minerals are quartz, dolomite, hematite, actinolite, biotite, albite, nimite, laumontite, diopside, and muscovite. The scanning electron microscope structure of fibrous-elongated minerals revealed individual fibers in the range of 1.5 nm to 71.65 µm in length and 0.2 nm to 3.7 µm in diameter. The presence of minerals related to respiratory diseases, such as talc, crystalline silica, and needle-shaped minerals like amphibole asbestos (tremolite and actinolite), strongly suggests the need for detailed health-based studies in the region. The particulate samples show low to medium oxidative potential per unit of mass, in relation to an urban road side control, being more reactive with ascorbate than with glutathione or urate. However, the PM oxidative potential per volume of air is exceptionally high, confirming that the workers are exposed to a considerable oxidative environment. PM released by iron ore mining and processing activities should be considered a potential health risk to the mine workers and nearby employees, and strategies to combat the issue are suggested.

  11. The brown iron ores of west-middle Tennessee: Chapter D in Contributions to economic geology (short papers and preliminary reports), 1927: Part I - Metals and nonmetals except fuels

    USGS Publications Warehouse

    Burchard, E.F.

    1927-01-01

    A study of the brown iron ore deposits of west-middle Tennessee has been carried on recently under a cooperative agreement between the Tennessee State Geological Survey and the United States Geological Survey. A detailed report on the subject was submitted in the spring of 1925 to the State Survey for publication as a bulletin, and the writing of the present report was completed in March, 1926. The field work was done mainly between October 22 and November 2, 1921, and April 26 and July 18, 1923; but in October, 1924, a visit was made to the mine at Napier. The writer was assisted in the field in 1921 by. R. W. Smith, assistant geologist, and in 1923 by C. C. Anderson, topographer, both of the Tennessee Survey. Mr. Wilbur A. Nelson, State geologist at the time the work was in progress, visited several mines with the writer and on these occasions as well as many times during the preparation of the report rendered helpful suggestions and guidance. Mr. H. D. Miser, of the United States Geological Survey, State geologist from September 1, 1925, to July 1, 1926, who is especially familiar with the southern part of this area, also cooperated heartily in the preparation of this report; and Mr. H. W. Davis, of the United States Bureau of Mines, compiled the statistical data on iron ore and pig iron. To all these gentlemen the writer desires to express his appreciation. Acknowledgments are also due to the officials and employees of the iron mining and manufacturing companies and to people living in the vicinity of inactive mining properties for their courteous attention and for the large amount of information furnished.In the present paper the general features of the region and of the iron-ore deposits are delineated, but only a few typical ore deposits in each county are described, as the State bulletin will contain detailed descriptions of all properties.

  12. Ore metals through geologic history.

    PubMed

    Meyer, C

    1985-03-22

    The ores of chromite, nickel, copper, and zinc show a wide distribution over geologic time, but those of iron, titanium, lead, uranium, gold, silver, molybdenum, tungsten, and tin are more restricted. Many of the limitations to specific time intervals are probably imposed by the evolving tectonic history of Earth interacting with the effects of the biomass on the evolution of the earth's s surface chemistry. Photosynthetic generation of free oxygen and "carbon" contributes significantlly to the diversity of redox potentials in both sedimentary and igneous-related processes of ore formation, influencing the selection of metals at the source, during transport, and at the site of ore deposition.

  13. Assessment of Vegetation Establishment on Tailings Dam at an Iron Ore Mining Site of Suburban Beijing, China, 7 Years After Reclamation with Contrasting Site Treatment Methods

    NASA Astrophysics Data System (ADS)

    Yan, Demin; Zhao, Fangying; Sun, Osbert Jianxin

    2013-09-01

    Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.

  14. Multistep Reduction Kinetics of Fine Iron Ore with Carbon Monoxide in a Micro Fluidized Bed Reaction Analyzer

    NASA Astrophysics Data System (ADS)

    Chen, Hongsheng; Zheng, Zhong; Chen, Zhiwei; Yu, Wenzhou; Yue, Junrong

    2017-04-01

    The reduction kinetics of Brazilian hematite by CO is investigated in a Micro Fluidized Bed Reaction Analyzer (MFBRA) using an analyzing method based on Johnson-Mehl-Avrami (JMA) model at temperatures of 973 K (700 °C), 1023 K (750 °C), 1073 K (800 °C), and 1123 K (850 °C). The solid products at different reduction stages are evaluated by SEM/EDS and XRD technologies. Results indicate that the reduction process is better to be discussed in terms of a parallel reaction model that consists of the reactions of hematite to wüstite and wüstite to iron, rather than a stepwise route. Meanwhile, the controlling mechanism of the reduction process is found to vary with temperature and the degree of conversion. The overall process is controlled by the gas-solid reaction occurring at the iron/wüstite interface in the initial stages, and then is limited by the nucleation of wüstite, and finally shifts to diffusion control. Moreover, the reactions of hematite to wüstite and wüstite to iron take place simultaneously but with different time dependences, and the apparent activation energies of hematite to wüstite and wüstite to iron are determined as 83.61 and 80.40 KJ/mol, respectively.

  15. Multistep Reduction Kinetics of Fine Iron Ore with Carbon Monoxide in a Micro Fluidized Bed Reaction Analyzer

    NASA Astrophysics Data System (ADS)

    Chen, Hongsheng; Zheng, Zhong; Chen, Zhiwei; Yu, Wenzhou; Yue, Junrong

    2017-01-01

    The reduction kinetics of Brazilian hematite by CO is investigated in a Micro Fluidized Bed Reaction Analyzer (MFBRA) using an analyzing method based on Johnson-Mehl-Avrami (JMA) model at temperatures of 973 K (700 °C), 1023 K (750 °C), 1073 K (800 °C), and 1123 K (850 °C). The solid products at different reduction stages are evaluated by SEM/EDS and XRD technologies. Results indicate that the reduction process is better to be discussed in terms of a parallel reaction model that consists of the reactions of hematite to wüstite and wüstite to iron, rather than a stepwise route. Meanwhile, the controlling mechanism of the reduction process is found to vary with temperature and the degree of conversion. The overall process is controlled by the gas-solid reaction occurring at the iron/wüstite interface in the initial stages, and then is limited by the nucleation of wüstite, and finally shifts to diffusion control. Moreover, the reactions of hematite to wüstite and wüstite to iron take place simultaneously but with different time dependences, and the apparent activation energies of hematite to wüstite and wüstite to iron are determined as 83.61 and 80.40 KJ/mol, respectively.

  16. Petrogenesis of Permian A-type granitoids in the Cihai iron ore district, Eastern Tianshan, NW China: Constraints on the timing of iron mineralization and implications for a non-plume tectonic setting

    NASA Astrophysics Data System (ADS)

    Zheng, Jiahao; Mao, Jingwen; Chai, Fengmei; Yang, Fuquan

    2016-09-01

    The geochronology and geochemistry of granitoids in the Eastern Tianshan, NW China provide important constraints on the timing of iron mineralization, as well as in understanding evolution history of the southern Central Asian Orogenic Belt (CAOB). Here we present results from a detailed study on granitoid rocks from the Cihai iron ore district in the Beishan region, southern part of the Eastern Tianshan. The granitoid rocks are composed of granodiorite, quartz monzonite, granite, and monzonite. Zircon U-Pb analyses yielded the ages of 294.1 ± 2.2 Ma, 286.5 ± 0.7 Ma, 284.3 ± 3.3 Ma, and 265.6 ± 3.0 Ma, respectively, suggesting they were formed in Early-Middle Permian. Among these granitoid rocks, the ages of quartz monzonite and granite are close to the timing of iron mineralization ( 282 Ma), indicating they may provide a source of iron in the Cihai ore district. Geochemically, the granodiorite, granite, and quartz monzonite samples are characterized by high FeOt/(FeOt + MgO) and Ga/Al ratios (0.84-0.94 and 2.28-3.27, respectively), as well as high zircon saturation temperatures (781-908 °C), similar to those of typical A-type granitoids. Isotopically, they display consistently depleted Hf isotopic compositions (εHf(t) = + 1.18 to + 15.37). Geological, geochemical, and isotopic data suggest that the Cihai A-type granitoids were derived from melting of juvenile lower crust. Some Early Permian A-type granitoids were recently identified in the Tarim and Eastern Tianshan with the ages between 294 and 269 Ma. The A-type granitoids in the Eastern Tianshan formed earlier between 294-284 Ma and exhibit characteristics of A2 type granitoids, whereas the A-type granitoids in the Tarim formed later between 277-269 Ma and show A1 granitoids affinity. We suggest that the Permian Tarim mantle plume does not account for the formation of the A-type granitoids in the Eastern Tianshan area, and the Eastern Tianshan was in a non-plume tectonic setting during Early Permian time

  17. Geochemical investigations and Fluid inclusion studies on iron ores from Qatruyeh area, Sanandaj-Sirjan zone, SW Iran: implications for a hydrothermal-metasomatic genetic model

    NASA Astrophysics Data System (ADS)

    Asadi, Sina; Rajabzadeh, Mohammad Ali

    2010-05-01

    The Qatruyeh iron deposits are located in the eastern edge of the NW-SE trending Sanandaj-Sirjan metamorphic zone of southwestern Iran and are hosted by a Late Proterozoic to Early Paleozoic sequence dominated by metamorphosed carbonate rocks. The ores occur as layered bodies, with lesser amounts within disseminated magnetite- and hematite-bearing veins. Geochemical analyses of the high-field strength, large ion lithophile, and rare earth elements (REE) indicate that mineralization within the low-grade layered magnetite ores was related to magmatic process accompanied by Na-Ca alteration. The stage is shown by metasomatic replacement textures, gradational contact between layered magnetite and host rock and mineral assemblages of actinolite + titanite + siderite + tourmaline (dravite) + quartz + paragonite. Chemical analyses on layered magnetite show Zn, Cr, LREE and Co/Ni ratio were enriched, whereas V and HREE were depleted. Subsequent to formation, low-temperature hydrothermal activity produced hematite ores with associated propyllitic-sericitic alteration with hematite (specularite) + chlorite + epidote + muscovite + quartz assemblages. The metacarbonate host rocks are LILE-depleted and HFSE-enriched due to metasomatic alteration. REE were relatively immobile during host rock alterations. Microthermometric analyses generally, have been described and measured only on primary inclusions of two-phase liquid +vapor (type A), and two-phase vapor +liquid with (type B). Type A inclusions are dominated by more than 80 vol % of H2O at room temperature. The first ice temperature of melting (Tm) often occurs around -24.5° to -19.5° C. Salinities determined by last ice Tm were 3.5 to 15 weight percent NaCl equivalent (size of inclusions between 2.5 and 15μm) for inclusions trapped in whole quartz samples. The average of homogenization temperature (Th) values change between 300 and 345°C and Tm measurements range from -11.3° to -3.5°C. Homogenization temperature exists

  18. Determination of tin in ores, iron, steel and non-ferrous alloys by atomic-absorption spectrophotometry after separation by extraction as the iodide.

    PubMed

    Donaldson, E M

    1980-06-01

    A simple and moderately rapid method for determining 0.001% or more of tin in ores, concentrates and tailings, iron, steel and copper-, zinc-, aluminium-, titanium- and zirconium-base alloys is described. After sample decomposition, tin is separated from the matrix elements, except arsenic, by toluene extraction of its iodide from a 3M sulphuric acid-1.5M potassium iodide medium containing tartaric and ascorbic acids. It is finally back-extracted into a nitric-sulphuric acid solution containing hydrochloric acid to prevent the formation of an insoluble tin-arsenic compound and the resultant solution is evaporated to dryness. Tin is subsequently determined by atomic-absorption spectrophotometry in a nitrous oxide-acetylene flame, at 235.4 nm in a 10% hydrochloric-0.5% tartaric acid medium containing 250 mug of potassium per ml. Co-extracted arsenic does not interfere. Results obtained by this method are compared with those obtained spectrophotometrically with gallein after the separation of tin by iodide extraction.

  19. Petrography and geochemistry of Mesoarchaean komatiites from the eastern Iron Ore belt, Singhbhum craton, India, and its similarity with 'Barberton type komatiite'

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Trisrota; Mazumder, Rajat; Arima, Makoto

    2015-01-01

    The Mesoarchaean supracrustals of the Gorumahishani-Badampahar belt, eastern India record sedimentation-volcanism like most other contemporary greenstone belts over the world. The current study reports unambiguous komatiitic rocks from Tua-Dungri hill, Gorumahishani-Badampahar belt, Jharkhand and presents a petrological and geochemical inventory of these very interesting rocks. The Tua-Dungri komatiites are characterised by a well distinguishable cumulate, platy and random spinifex zone. These Tua-Dungri komatiites are rich in SiO2 (47-50 wt%) like Barberton type komatiite or modern day boninite. Their Al depleted nature (Al2O3 = 1.36-2.95 wt%) with very low Al2O3/TiO2 (3.4-6.5) and high CaO/Al2O3 (2-3), high LREE/HREE ratios show further resemblance with the Barberton komatiite. The Tua Dungri komatiite data along with published geochemical, sedimentological and stratigraphic data from the Iron Ore Group of rocks suggest mantle plume activity during the Mesoarchaean on the Singhbhum craton.

  20. Acid-base properties and surface complexation modeling of phosphate anion adsorption by wasted low grade iron ore with high phosphorus.

    PubMed

    Yuan, Xiaoli; Bai, Chenguang; Xia, Wentang; An, Juan

    2014-08-15

    The adsorption phenomena and specific reaction processes of phosphate onto wasted low grade iron ore with high phosphorus (WLGIOWHP) were studied in this work. Zeta potential and Fourier transform infrared spectroscopy (FTIR) analyses were used to elucidate the interaction mechanism between WLGIOWHP and aqueous solution. The results implied that the main adsorption mechanism was the replacement of surface hydroxyl groups by phosphate via the formation of inner-sphere complex. The adsorption process was characterized by chemical adsorption onto WLGIOWHP. The non-electrostatic model (NEM) was used to simulate the surface adsorption of phosphate onto WLGIOWHP. The total surface site density and protonation constants for NEM (N(T)=1.6×10(-4) mol/g, K(a1)=2.2×10(-4), K(a2)=6.82×10(-9)) were obtained by non-linear data fitting of acid-base titrations. In addition, the NEM was used to establish the surface adsorption complexation modeling of phosphate onto WLGIOWHP. The model successfully predicted the adsorption of phosphate onto WLGIOWHP from municipal wastewater.

  1. Determination of chromium in ores, rocks and related materials, iron, steel and non-ferrous alloys by atomic-absorption spectrophotometry after separation by tribenzylamine-chloroform extraction.

    PubMed

    Donaldson, E M

    1980-10-01

    A method for determining trace and moderate amounts of chromium in ores, concentrates, rocks, soils and clays is described. After fusion of the sample with sodium peroxide, the melt is dissolved in dilute sulphuric acid. The chromium(III) produced by the hydrogen peroxide formed is co-precipitated with hydrous ferric oxide. The precipitate is dissolved in 0.7M sulphuric acid and chromium oxidized to chromium(VI) with ceric ammonium sulphate. The chromium(VI) is extracted as an ion-association complex into chloroform containing tribenzylamine and stripped with ammoniacal hydrogen peroxide. This solution is acidified with perchloric acid and chromium determined by atomic-absorption spectrophotometry in an air-acetylene flame, at 357.9 nm. Barium and strontium do not interfere. The procedure is also applicable to iron and steel, and nickel-copper, aluminium and zirconium alloys. Up to 5 mg of manganese and 10 mg each of molybdenum and vanadium will not interfere. In the absence of vanadium, up to 10 mg of tungsten will not interfere. In the presence of 1 mg of vanadium, up to 1 mg of tungsten will not interfere.

  2. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide.

    PubMed

    Li, Jinchunzi; Chen, Zhonglin; Shen, Jimin; Wang, Binyuan; Fan, Leitao

    2015-09-01

    A bench scale study was performed to assess the effectiveness of the solidification of chromite ore processing residue (COPR) by blast furnace slag and calcium hydroxide, and investigate the enhancement effect of pre-reduction using zero-valent iron (ZVI) on the solidification treatment. The degree of Cr immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as the solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method (Chinese standard HJ/T299-2007). Strength tests and semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The experimental results showed that the performance of pre-reduction/solidification (S/S) was superior to that of solidification alone. After pre-reduction, all of the S/S treated COPR samples met the TCLP limit for total Cr (5 mg L(-1)), whereas the samples with a COPR content below 40% met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg L(-1)). At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  3. [Solidification/Stabilization of Chromite Ore Processing Residue (COPR) Using Zero-Valent Iron and Lime-Activated Ground Granulated Blast Furnace Slag].

    PubMed

    Chen, Zhong-lin; Li, Jin-chunzi; Wang, Bin-yuan; Fan, Lei-tao; Shen, Ji-min

    2015-08-01

    The solidification/stabilization (S/S) of chromite ore processing residue (COPR) was performed using zero-valent iron (ZVI) and lime-activated ground granulated blast furnace slag (GGBFS). The degree of Cr immobilization was evaluated using the leaching procedure, mineral composition analysis and morphology analysis. Semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The results showed that after reduction, all of the S/S treated COPR samples met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg x L(-1)), the compressive strength of all the S/S samples could meet the compressive strength standard (15 MPa) for producing clay bricks, and Cr existed as the specie that bound to Fe/Mn oxides in the S/S samples. At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  4. REE signatures in 3.51 Ga BIF and Bedded Chert from Iron Ore Group, Singhbhum Craton, India: Implications for Paleoarchean Ocean Oxygenation

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, J.; Ghosh, G.

    2013-12-01

    The metasedimentary rock records in Archaean greenmstone belts provide primary information on evolution of the early Earth. The bedded cherts and BIFs in particular have been studied from Paleo-Mesoarchean greenstone belts for understanding the nature of the oceanic circulation and for the record of early life. However, scarcity of low-strained Paleo-Mesoarchean successions is a major impediment in this regard. The southern Iron Ore Group (SIOG) (3506.8 × 2.3 Ma, U-Pb SHRIMP on zircon by Mukhopadhyay et al., 2008) of the Singhbhum Craton, eastern India includes low-grade bimodal volcanics-ultramafics and BIF -bearing greenstone succession. The bedded chert and BIFs in this succession show significant stratigraphic variation that suggests a stratified ocean and availability of dissolved oxygen in deep-water regime. Bedded chert occurs interleaved with either metabasics or with the silicic volcanics in the lower part of the succession. BIF occurs only towards the top of the succession conformably overlying the silicic volcanics. The bedded cherts with REE and other trace element compositions such as Cu, Co, Ni, Zr, Hf pointing towards contributions from terrigenous or silicic as well as mafic volcanic sources. In contrast BIFs with very low alumina content and superchondritic Y/Ho ratios (36.2 to 40.1) indicate negligible inputs from terrigenous source and is comparable to cherts from Cenozoic ridges. REE-compositions of the bedded chert with respect to PAAS show a flat pattern with feeble positive Eu-anomaly and negligible negative Ce-anomaly. The REE patterns in BIF though similar but show much stronger positive Eu-anomaly and negative Ce-anomaly in comparison. Stratigraphic trend in the geochemical proxies from bedded cherts to BIF, thus record a relative increase in positive Eu-anomaly and decrease in Ce-anomaly. The increase in Eu-anomaly coincident with the BIF deposition up section is likely to suggest increase in in hydrothermal input and ridge spreading

  5. Metallization of siderite ore in reducing roasting

    NASA Astrophysics Data System (ADS)

    Vusikhis, A. S.; Leont'ev, L. I.; Kudinov, D. Z.; Gulyakov, V. S.

    2016-05-01

    The behavior of the initial ore and the concentrate of magnetoroasting beneficiation during metallization under the conditions that are close to those for reducing roasting of iron ores in a rotary furnace is studied in terms of works on extending the field of application of Bakal siderites. A difference in the mechanisms of the metallization of crude ore and the roasted concentrate is observed. The metallization of roasted concentrate lumps is more efficient than that of crude siderite ore. In this case, the process ends earlier and can be carried out at higher temperatures (1250-1300°C) without danger of skull formation.

  6. Reduction of Sn-Bearing Iron Concentrate with Mixed H2/CO Gas for Preparation of Sn-Enriched Direct Reduced Iron

    NASA Astrophysics Data System (ADS)

    You, Zhixiong; Li, Guanghui; Wen, Peidan; Peng, Zhiwei; Zhang, Yuanbo; Jiang, Tao

    2017-02-01

    The development of manufacturing technology of Sn-bearing stainless steel inspires a novel concept for using Sn-bearing complex iron ore via reduction with mixed H2/CO gas to prepare Sn-enriched direct reduced iron (DRI). The thermodynamic analysis of the reduction process confirms the easy reduction of stannic oxide to metallic tin and the rigorous conditions for volatilizing SnO. Although the removal of tin is feasible by reduction of the pellet at 1223 K (950 °C) with mixed gas of 5 vol pct H2, 28.5 vol pct CO, and 66.5 vol pct CO2 (CO/(CO + CO2) = 30 pct), it is necessary that the pellet be further reduced for preparing DRI. In contrast, maintaining Sn in the metallic pellet is demonstrated to be a promising way to effectively use the ore. It is indicated that only 5.5 pct of Sn is volatilized when the pellet is reduced at 1223 K (950 °C) for 30 minutes with the mixed gas of 50 vol pct H2, 50 vol pct CO (CO/(CO + CO2) = 100 pct). A metallic pellet (Sn-bearing DRI) with Sn content of 0.293 pct, Fe metallization of 93.5 pct, and total iron content of 88.2 pct is prepared as a raw material for producing Sn-bearing stainless steel. The reduced tin in the Sn-bearing DRI either combines with metallic iron to form Sn-Fe alloy or it remains intact.

  7. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOEpatents

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  8. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    PubMed Central

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Pattrick, Richard A.D.; Thomas, Russell A.P.; Kalin, Robert; Lloyd, Jonathan R.

    2015-01-01

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  9. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue.

    PubMed

    Watts, Mathew P; Coker, Victoria S; Parry, Stephen A; Pattrick, Richard A D; Thomas, Russell A P; Kalin, Robert; Lloyd, Jonathan R

    2015-03-01

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4-7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable capacity

  10. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    DOE PAGES

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; ...

    2014-12-11

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ~25% (BnM) and ~50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions.more » In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ≥5% w/w BnM or ≥1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  11. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    SciTech Connect

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Pattrick, Richard A. D.; Thomas, Russell A. P.; Kalin, Robert; Lloyd, Jonathan R.

    2014-12-11

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ~25% (BnM) and ~50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ≥5% w/w BnM or ≥1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  12. Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

    PubMed Central

    Chaudhary, Dhanjee Kumar; Bhattacherjee, Ashis; Patra, Aditya Kumar; Chau, Nearkasen

    2015-01-01

    Background This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. Methods The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration (m/s2)], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. Results More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient β = −0.052, standard error SE = 0.023), manufacturer (β = 1.093, SE = 0.227), rock hardness (β = 0.045, SE = 0.018), uniaxial compressive strength (β = 0.027, SE = 0.009), and density (β = –1.135, SE = 0.235). Conclusion Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system. PMID:26929838

  13. The connection between iron ore formations and "mud-shrimp" colonizations around sunken wood debris and hydrothermal sediments in a Lower Cretaceous continental rift basin, Mecsek Mts., Hungary

    NASA Astrophysics Data System (ADS)

    Jáger, Viktor; Molnár, Ferenc; Buchs, David; Koděra, Peter

    2012-09-01

    pillowed basalts, sulfidized interpillow sediments could not be oxidized completely. The texture of the goethitic iron ore (as an interpillow sediment) is network-like and dentritic, which is very similar to the iron-oxidic and microbial textured sediments of the Juan de Fuca Ridge. The dendritic iron-oxide-hydroxide particles which were involved in this study are not hollow and exceed the size-domain characteristic for bacterial products. However, in some cases hollow- and tube-like particles having a diameter of 1.2-1.5 μm can refer to the activity of the Sphaerotilus-Leptothrix iron-oxidizer bacterial group.

  14. Synchronous Volatilization of Sn, Zn, and As, and Preparation of Direct Reduction Iron (DRI) from a Complex Iron Concentrate via CO Reduction

    NASA Astrophysics Data System (ADS)

    Li, Guanghui; You, Zhixiong; Zhang, Yuanbo; Rao, Mingjun; Wen, Peidan; Guo, Yufeng; Jiang, Tao

    2014-09-01

    Sn-, Zn-, and As-bearing iron ores are typical complex ores and are abundantly reserved in China. This kind of ore is difficult to use effectively due to the complicated relationships between iron and the other valuable metal minerals. Excessive Sn, Zn, and As contents would adversely affect ferrous metallurgy operation as well as the quality of the products. In this study, thermodynamic calculations revealed that it was feasible to synchronously volatilize Sn, Zn, and As via CO reduction. Experimental results showed that preoxidation was necessary for the subsequent reductive volatilization of Zn from the pellets, and the proper preoxidation temperature was 700-725°C under air atmosphere. Synchronous volatilization of Sn, Zn, and As was realized by roasting under weak reductive atmosphere after the pellets were preoxidized. The volatilization ratios of 75.88% Sn, 78.88% Zn, and 84.43% As were obtained, respectively, under the conditions by reduction at 1000°C for 100 min with mixed gas of 50% CO + 50% CO2 (in vol.). A metallic pellet (direct reduction iron) with total iron grade of 87.36%, Fe metallization ratio of 89.27%, and residual Sn, Zn, and As contents of 0.071%, 0.009%, and 0.047%, respectively, was prepared. Sn and As were mainly volatilized during weak reductive atmosphere roasting, and those volatilized in the metallization reduction process were negligible. Most of Zn (78.88%) was volatilized during weak reductive atmosphere roasting, while the metallization reduction process only contributed to 16.10% of total Zn volatilization.

  15. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  16. Phase II Calderon Process to Produce Direct Reduced Iron Research and Development Project

    SciTech Connect

    Albert Calderon

    2007-03-31

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase 1 was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

  17. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect

    Albert Calderon

    2006-01-30

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

  18. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect

    Albert Calderon

    2006-04-19

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

  19. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect

    Albert Calderon

    2004-04-27

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  20. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect

    Albert Calderon

    2004-10-28

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  1. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect

    Albert Calderon

    2003-10-22

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  2. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect

    Albert Calderon

    2004-07-28

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  3. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect

    Albert Calderon

    2005-01-25

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  4. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect

    Albert Calderon

    2005-01-26

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  5. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect

    Albert Calderon

    2005-07-29

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  6. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect

    Albert Calderon; Reina Calderon

    2004-01-27

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  7. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  8. Deuterium pellet injector gun design

    SciTech Connect

    Lunsford, R.V.; Wysor, R.B.; Bryan, W.E.; Shipley, W.D.; Combs, S.K.; Foust, C.R.; Milora, S.L.; Fisher, P.W.

    1985-01-01

    The Deuterium Pellet Injector (DPI), an eight-pellet pneumatic injector, is being designed and fabricated for the Tokamak Fusion Test Reactor (TFTR). It will accelerate eight pellets, 4 by 4 mm maximum, to greater than 1500 m/s. It utilizes a unique pellet-forming mechanism, a cooled pellet storage wheel, and improved propellant gas scavenging.

  9. Pellet inspection apparatus

    DOEpatents

    Wilks, Robert S.; Taleff, Alexander; Sturges, Jr., Robert H.

    1982-01-01

    Apparatus for inspecting nuclear fuel pellets in a sealed container for diameter, flaws, length and weight. The apparatus includes, in an array, a pellet pick-up station, four pellet inspection stations and a pellet sorting station. The pellets are delivered one at a time to the pick-up station by a vibrating bowl through a vibrating linear conveyor. Grippers each associated with a successive pair of the stations are reciprocable together to pick up a pellet at the upstream station of each pair and to deposit the pellet at the corresponding downstream station. The gripper jaws are opened selectively depending on the state of the pellets at the stations and the particular cycle in which the apparatus is operating. Inspection for diameter, flaws and length is effected in each case by a laser beam projected on the pellets by a precise optical system while each pellet is rotated by rollers. Each laser and its optical system are mounted in a container which is free standing on a precise surface and is provided with locating buttons which engage locating holes in the surface so that each laser and its optical system is precisely set. The roller stands are likewise free standing and are similarly precisely positioned. The diameter optical system projects a thin beam of light which scans across the top of each pellet and is projected on a diode array. The fl GOVERNMENT CONTRACT CLAUSE The invention herein described was made in the course of or under a contract or subcontract thereunder with the Department of Energy bearing No. EY-67-14-C-2170.

  10. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-06-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  11. Geochemistry of the furnace magnetite bed, Franklin, New Jersey, and the relationship between stratiform iron oxide ores and stratiform zinc oxide-silicate ores in the New Jersey highlands

    USGS Publications Warehouse

    Johnson, C.A.; Skinner, B.J.

    2003-01-01

    The New Jersey Highlands terrace, which is an exposure of the Middle Proterozoic Grenville orogenic belt located in northeastern United States, contains stratiform zinc oxide-silicate deposits at Franklin and Sterling Hill and numerous massive magnetite deposits. The origins of the zinc and magnetite deposits have rarely been considered together, but a genetic link is suggested by the occurrence of the Furnace magnetite bed and small magnetite lenses immediately beneath the Franklin zinc deposit. The Furnace bed was metamorphosed and deformed along with its enclosing rocks during the Grenvillian orogeny, obscuring the original mineralogy and obliterating the original rock fabrics. The present mineralogy is manganiferous magnetite plus calcite. Trace hydrous silicates, some coexisting with fluorite, have fluorine contents that are among the highest ever observed in natural assemblages. Furnace bed calcite has ??13C values of -5 ?? 1 per mil relative to Peedee belemnite (PDB) and ??18O values of 11 to 20 per mil relative to Vienna-standard mean ocean water (VSMOW). The isotopic compositions do not vary as expected for an original siderite layer that decarbonated during metamorphism, but they are consistent with nearly isochemical metamorphism of an iron oxide + calcite protolith that is chemically and minerlogically similar to iron-rich sediments found near the Red Sea brine pools and isotopically similar to Superior-type banded iron formations. Other magniferous magnite + calcite bodies occur at approximately the same stratigraphic position as far 50 km from the zinc deposits. A model is presented in which the iron and zinc deposits formed along the western edge of a Middle Proterozoic marine basin. Zinc was transported by sulfate-stable brines and was precipitated under sulfate-stable conditions as zincian carbonates and Fe-Mn-Zn oxides and silicates. Whether the zincian assemblages settled from the water column or formed by replacement reactions in shallowly

  12. Carbonaceous pellets and method of pelletizing

    SciTech Connect

    Dondelewski, M.A.

    1982-11-02

    A method is claimed for pelletizing carbonaceous materials including bonding coal fines and lignite coal with a polymeric hydrocarbon binder having reactive sites thereon. For example, with tall oil pitch and the like, in the case of coal, the binder is applied by slurrying the fine coal with the pitch. In the case of lignite, the binder is directly applied to the pulverized material. By action of rolling and tumbling, for example, large agglomerates are formed. With drying and heating, strong water-resistant pellets are formed which have the extremely desirable property of being easily repulverized.

  13. Mineralogical effect correction in wavelength dispersive X-ray florescence analysis of pressed powder pellets

    NASA Astrophysics Data System (ADS)

    Shan, H. Z.; Zhuo, S. J.; Shen, R. X.; Sheng, C.

    2008-05-01

    Two methods are utilized to correct the influence of the mineralogical effect on the calibration of elements in geological samples when the pressed powder pellet method is used in wavelength dispersive X-ray fluorescence analysis. The first method involves checking of the 2θ angle for the analyzed element in each sample to correct peak shift and the second method involves replacing the peak intensity with the peak area of the analytical line, so to correct for any shape distortion of the peak. The results were compared with those obtained from the normal method. Major elements in 27 Chinese Certified Reference Materials (CRMs) of rocks, soils and sediments were calibrated with a linear regression curve without theoretical or empirical coefficients. In view of the K values, the calibrations of all 8 elements were improved by the first method and those of 6 elements were improved by the second method. Sulfur calibrations with 4 iron ore CRMs were improved with the use of both methods. The methods have been successfully applied for the analysis of the major elements in limestone ores from different resources of a cement factory.

  14. Reciprocating pellet press

    DOEpatents

    Jones, Charles W.

    1981-04-07

    A machine for pressing loose powder into pellets using a series of reciprocating motions has an interchangeable punch and die as its only accurately machines parts. The machine reciprocates horizontally between powder receiving and pressing positions. It reciprocates vertically to press, strip and release a pellet.

  15. Lignite pellets and methods of agglomerating or pelletizing

    DOEpatents

    Baker, Albert F.; Blaustein, Eric W.; Deurbrouck, Albert W.; Garvin, John P.; McKeever, Robert E.

    1981-01-01

    The specification discloses lignite pellets which are relatively hard, dust resistant, of generally uniform size and free from spontaneous ignition and general degradation. Also disclosed are methods for making such pellets which involve crushing as mined lignite, mixing said lignite with a binder such as asphalt, forming the lignite binder mixture into pellets, and drying the pellets.

  16. Production of inorganic pellet binders from fly-ash. Technical report, March 1--May 31, 1995

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1995-12-31

    Fly-ash is produced by all coal-fired utilities, and it must be removed from the plant exhaust gases, collected, and disposed of. While much work has been done in the past to utilize fly-ash rather than disposing of it, we nevertheless do not find widespread examples of successful industrial utilization. This is because past work has tended to find uses only for high-quality, easily-utilized fly-ashes, which account for less than 25% of the fly-ash that is produced. The main factor which makes fly-ashes unusable is a high unburned carbon content. In this project, physical separation technologies are being used to remove this carbon, and to convert these unusable fly-ashes into usable products. The main application being studied for the processed fly-ash is as a binder for inorganic materials, such as iron-ore pellets. In the second quarter, additional fly-ash samples were collected from the E. D. Edwards station (Bartonville, IL). Experimentation was begun to study the removal of carbon from these fly-ashes by froth flotation, and make and test pellets that use fly-ash as binder. During the current quarter, flotation experiments were continued on the fly- ashes. Three types of ashes were studied: 1. Ash from the disposal pond (``wet`` ash); 2. Dry fly-ash collected directly from the standard burners (``low-carbon`` ash); 3. Dry fly-ash collected from the low-NOx burners (``high-carbon`` ash). Each of these was chemically analyzed, and conventional flotation experiments were carried out to determine the optimum reagent dosages for carbon removal. Decarbonized ashes were then made from each ash type, in sufficient quantity to be used in pelletization experiments.

  17. Mobile Biomass Pelletizing System

    SciTech Connect

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  18. Radation shielding pellets

    DOEpatents

    Coomes, Edmund P.; Luksic, Andrzej T.

    1988-12-06

    Radiation pellets having an outer shell, preferably, of Mo, W or depleted U nd an inner filling of lithium hydride wherein the outer shell material has a greater melting point than does the inner filling material.

  19. Sources of ores of the ferroalloy metals

    USGS Publications Warehouse

    Burchard, E.F.

    1933-01-01

    Since all steel is made with the addition of alloying elements, the record of the metallic raw materials contributory to the steel industry would be far from complete without reference to the ferroalloy metals. This paper, therefore, supplements two preceding arvicles on the sources of our iron ores. The photographs, with the exception of those relating to molybdenum and vanadium, are by the author.

  20. Pneumatic Pellet-Transporting System

    NASA Technical Reports Server (NTRS)

    Wood, George; Pugsley, Robert A.

    1992-01-01

    Pneumatic system transports food pellets to confined animals. Flow of air into venturi assembly entrains round pellets, drawing them from reservoir into venturi for transport by airflow. Pneumatic pellet-transporting system includes venturi assembly, which creates flow of air that draws pellets into system.

  1. Modeling pellet impact drilling process

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  2. Production of zinc pellets

    SciTech Connect

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  3. Production of zinc pellets

    SciTech Connect

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  4. Upgrading Titanium Ore Through Selective Chlorination Using Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Kang, Jungshin; Okabe, Toru H.

    2013-06-01

    To develop a simple and effective process for upgrading low-grade titanium ore (ilmenite, mainly FeTiO3), a new selective chlorination process based on the use of calcium chloride (CaCl2) as the chlorine source was investigated in this study. Titanium ore and a titanium ore/CaCl2 mixture were placed in two separate crucibles inside a gas-tight quartz tube that was then positioned in a horizontal furnace. In the experiments, the titanium ore in the two crucibles reacted with either HCl produced from CaCl2 or CaCl2 itself at 1100 K (827 °C), leading to the selective removal of the iron present in the titanium ore as iron chlorides [FeCl x (l,g) ( x = 2, 3)]. Various kinds of titanium ores produced in different countries were used as feedstock, and the influence of the particle size and atmosphere on the selective chlorination was investigated. Under certain conditions, titanium dioxide (TiO2) with purity of about 97 pct was directly obtained in a single step from titanium ore containing 51 pct TiO2. Thus, selective chlorination is a feasible method for producing high purity titanium dioxide from low-grade titanium ore.

  5. Positive pulsed corona discharge process for simultaneous removal of SO{sub 2} and NO{sub x} from iron-ore sintering flue gas

    SciTech Connect

    Mok, Y.S.; Nam, I.S.

    1999-08-01

    The authors investigated the application of pulsed corona discharge process to the removal of SO{sub 2} and NO{sub x} from industrial flue gas of an ioron-ore sintering plant. This study was performed on a pilot scale, which is the most advanced demonstration of this process. The flow rate of 5000 m{sup 3}/h of the flue gas was successfully treated. The electrode structure of the corona reactor is the same with that of conventional electrostatic precipitator. The authors made use of magnetic pulse compression technology to produce repetitive high voltage pulse. Pulse width (full width at half maximum) was reduced to less than 1 {micro}s by connecting a resister in parallel with the corona reactor. An inductor was added to the resister in series to minimize the loss by restricting the current flowing through the resister. By this way, they were able to deliver pulse power with peak voltage of 110 kV and peak current of 2.3 kA to the corona reactor. Chemical additives such as ammonia (NH{sub 3}) and propylene (C{sub 3}H{sub 6}) were used to increase the removal efficiencies of SO{sub 2} and NO{sub x}.

  6. Carbothermal Reductive Upgrading of a Bauxite Ore Using Microwave Radiation

    NASA Astrophysics Data System (ADS)

    Lu, T.; Pickles, C. A.; Kelebek, S.

    2012-04-01

    The utilization of microwave radiation as the energy source for the carbothermal reductive upgrading of a bauxite ore was investigated. The bauxite ore was mechanically mixed with carbon and reacted in a quartz crucible in a multimode cavity. The iron oxide in the bauxite ore was reduced to magnetite and/or iron and the magnetic fraction was separated using a Davis Tube Tester. Three experimental arrangements were utilized: (i) microwaving of the mixture, (ii) microwaving of the mixture plus charcoal layers under ambient conditions and (iii) microwaving of the mixture plus charcoal layers in argon. The utilization of the charcoal layers resulted in more uniform heating of the sample. The effects of irradiation time, sample mass and incident power on the mass of the magnetic fraction were determined. Both the iron and the aluminum contents of the magnetic fraction were measured and using these values, the iron removal from the bauxite ore and the alumina recovery in the non-magnetic fraction were calculated. It was shown that under mildly reducing conditions, almost half of the iron could be removed as magnetite. However, the formation of hercynite limited the iron separation as magnetite and higher iron removals could only be achieved through the formation of metallic iron under more highly reducing conditions.

  7. Owl Pellet Paleontology

    ERIC Educational Resources Information Center

    McAlpine, Lisa K.

    2013-01-01

    In this activity for the beginning of a high school Biology 1 evolution unit, students are challenged to reconstruct organisms found in an owl pellet as a model for fossil reconstruction. They work in groups to develop hypotheses about what animal they have found, what environment it inhabited, and what niche it filled. At the end of the activity,…

  8. Quantification and analysis of geomorphic processes on a recultivated iron ore mine on the Italian island of Elba using long-term ground-based lidar and photogrammetric SfM data by a UAV

    NASA Astrophysics Data System (ADS)

    Haas, Florian; Hilger, Ludwig; Neugirg, Fabian; Umstädter, Kathrin; Breitung, Christian; Fischer, Peter; Hilger, Paula; Heckmann, Tobias; Dusik, Jana; Kaiser, Andreas; Schmidt, Jürgen; Della Seta, Marta; Rosenkranz, Ruben; Becht, Michael

    2016-05-01

    This study focuses on the quantification and analysis of geomorphic processes on the barely vegetated slopes of a recultivated iron ore mine on the Italian island of Elba using photographs from terrestrial laser scanning (TLS) and digital photogrammetry by an unmanned aerial vehicle (UAV) over a period of 5 1/2 years. Beside this, the study tried to work out the potential and the limitations of both methods to detect surface changes by geomorphic process dynamics within a natural environment. Both UAV and TLS show the pattern of the erosion and accumulation processes on the investigated slope quite well, but the calculated amounts differ clearly between the methods. The reasons for these differences could be found in the different accuracies (variable level of detections) of the methods and the different viewing geometries. Both effects have an impact on the detectable process dynamics over different timescales on the slope and their calculated amounts, which in both cases can lead to an underestimation of erosion and accumulation by fluvial processes.

  9. Pellet imaging techniques on ASDEX

    SciTech Connect

    Wurden, G.A. ); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. )

    1990-01-01

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast gated photos with an intensified Xybion CCD video camera allow in-situ velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 nanoseconds and exposures every 50 microseconds, the evolution of each pellet in a multi-pellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened D{sub {alpha}}D{sub {beta}}, and D{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2 {times} 10{sup 17}cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of D{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational q-surfaces, but instead are a result of a dynamic, non-stationary, ablation process. 20 refs., 4 figs.

  10. Ores and Climate Change - Primary Shareholders

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.; Hannah, Judith L.

    2015-04-01

    Many in the economic geology community concern themselves with details of ore formation at the deposit scale, whether tallying fluid inclusion data to get at changes in ore-forming fluids or defining structures that aid and abet mineralization. These compilations are generally aimed at interpretation of events at the site of ore formation, with the goal being assignment of the deposit to a sanctioned ore deposit model. While providing useful data, this approach is incomplete and does not, by itself, serve present-day requirements for true interdisciplinary science. The ore-forming environment is one of chaos and disequilibrium at nearly all scales (Stein, 2014). Chaos and complexity are documented by variably altered rocks, veins or disseminated mineralization with multi-generational fluid histories, erratic and unusual textures in host rocks, and the bitumen or other hydrocarbon products entwined within many ore deposits. This should give pause to our drive for more data as a means to find "the answer". The answer lies in the kind of data collected and more importantly, in the way we interpret those data. Rather than constructing an ever-increasing catalog of descriptive mutations on sanctioned ore deposit models (e.g., IOGC or Iron-Oxide Copper Gold deposits), the way forward is to link source and transport of metals, sulfur, and organic material with regional and ultimately whole Earth chemical evolution. Important experimental work provides chemical constraints in controlled and behaved environments. To these data, we add imagination and interpretation, always tying back to field observations. In this paper, several key points are made by way of ore deposit examples: (1) many IOCG deposits are outcomes of profound changes in the chemistry of the Earth's surface, in the interplay of the atmosphere, hydrosphere, biosphere, and lithosphere; (2) the redox history of Fe in deep earth may be ultimately expressed in the ore-forming sequence; and (3) the formation of

  11. Idea of Identification of Copper Ore with the Use of Process Analyser Technology Sensors

    NASA Astrophysics Data System (ADS)

    Jurdziak, Leszek; Kaszuba, Damian; Kawalec, Witold; Król, Robert

    2016-10-01

    The Polish resources of the copper ore exploited by the KGHM S.A. underground mines are considered as one of the most complex in the world and - consequently - the most difficult to be processed. The ore consists of three lithology forms: dolomites, shales and sandstones but in different proportions which has a significant impact on the effectiveness of the grinding and flotation processes. The lithological composition of the ore is generally recognised in-situ but after being mined it is blended on its long way from various mining fields to the processing plant by the complex transportation system consisting of belt conveyors with numerous switching points, ore bunkers and shafts. Identification of the lithological composition of the ore being supplied to the processing plant should improve the adjustments of the ore processing machinery equipment aiming to decrease the specific processing (mainly grinding) energy consumption as well as increase the metal recovery. The novel idea of Process Analyser Technology (PAT) sensors - information carrying pellets, dropped into the transported or processed bulk material which can be read directly when needed - is investigated for various applications within the DISIRE project (a part of the SPIRE initiative, acting under the Horizon2020 framework program) and here is adopted for implementing the annotation the transported copper ore for the needs of ore processing plants control. The identification of the lithological composition of ore blended on its way to the processing plant can be achieved by an information system consisting of pellets that keep the information about the original location of the portions of conveyed ore, the digital, geological database keeping the data of in-situ lithology and the simulation models of the transportation system, necessary to evaluate the composition of the blended ore. The assumptions of the proposed solution and the plan of necessary in-situ tests (with the special respect to harsh

  12. Determination of the oxidizing capacity of manganese ores.

    PubMed

    Prasad, R

    1974-09-01

    An accurate method is described for determining the amount of active oxygen in manganese ores, based on the oxidation-reduction reaction between the ore and arsenic(III) in presence of ammonium molybdate, followed by the back-titration of excess of arsenic(III) with cerium(IV), using osmium tetroxide as catalyst and Disulphine Blue V as indicator. A survey has been made of the applicability of this method to various pyrolusite ores containing less than 0.2% phosphorus. Aluminium(III), copper(II), iron(III), manganese(II), and molybdenum(VI) do not interfere. Up to 30% phosphorus(V) causes no interference.

  13. Reduction of iron-oxide-carbon composites: part I. Estimation of the rate constants

    SciTech Connect

    Halder, S.; Fruehan, R.J.

    2008-12-15

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO{sub 2} and wustite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wustite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wustite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wustite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (> 1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  14. Characterization of iron in airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Tavares, F. V. F.; Ardisson, J. D.; Rodrigues, P. C. H.; Brito, W.; Macedo, W. A. A.; Jacomino, V. M. F.

    2014-01-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and 57Fe-Mössbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. 57Fe-Mössbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area.

  15. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    SciTech Connect

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  16. Pellet interaction with runaway electrons

    SciTech Connect

    James, A. N.; Hollmann, E. M.; Yu, J.H.; Austin, M. E.; Commaux, Nicolas JC; Evans, T.E.; Humphrey, D. A.; Jernigan, T. C.; Parks, P. B.; Putvinski, S.; Strait, E. J.; Tynan, G. R.; Wesley, J. C.

    2011-01-01

    We describe results from recent experiments studying interaction of solid polystyrene pellets with a runaway electron current channel generated after cryogenic argon pellet rapid shutdown of DIII-D. Fast camera imaging shows the pellet trajectory and continuum emission from the subsequent explosion, with geometric calibration providing detailed explosion analysis and runaway energy. Electron cyclotron emission also occurs, associated with knock-on electrons broken free from the pellet by RE which then accelerate and runaway, and also with a short lived hot plasma blown off the pellet surface. In addition, we compare heating and explosion times from observations and a model of pellet heating and breakdown by runaway interaction. (C) 2011 Elsevier B.V. All rights reserved

  17. The F'derik-Zouerate iron district: Mesoarchean and Paleoproterozoic iron formation of the Tiris Complex, Islamic Republic of Mauritania

    USGS Publications Warehouse

    Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Bradley, Dwight C.; Joud, Mohamed; Taleb Mohamed, Ahmed; Horton, John D.; Johnson, Craig A.; Bouabdellah, Mohammed; Slack, John F.

    2016-01-01

    High-grade hematitic iron ores (of HIF, containing 60-65 wt%Fe) have been mined in Mauritania since 1952 from Superior-type iron deposits of the F'derik-Zouerate district.  Depletion of the high-grade ores in recent years has resulted in new exploration projects focused on lower-grade magnetite ores occurring in Algoma-type banded iron formation (of BIF, containing ca. 35 wt% Fe).  Mauritania is the seventeenth largest iron producer in the world and currently has about 1.1 Gt of crude iron ore reserves. 

  18. Two modelling approaches to water-quality simulation in a flooded iron-ore mine (Saizerais, Lorraine, France): a semi-distributed chemical reactor model and a physically based distributed reactive transport pipe network model.

    PubMed

    Hamm, V; Collon-Drouaillet, P; Fabriol, R

    2008-02-19

    The flooding of abandoned mines in the Lorraine Iron Basin (LIB) over the past 25 years has degraded the quality of the groundwater tapped for drinking water. High concentrations of dissolved sulphate have made the water unsuitable for human consumption. This problematic issue has led to the development of numerical tools to support water-resource management in mining contexts. Here we examine two modelling approaches using different numerical tools that we tested on the Saizerais flooded iron-ore mine (Lorraine, France). A first approach considers the Saizerais Mine as a network of two chemical reactors (NCR). The second approach is based on a physically distributed pipe network model (PNM) built with EPANET 2 software. This approach considers the mine as a network of pipes defined by their geometric and chemical parameters. Each reactor in the NCR model includes a detailed chemical model built to simulate quality evolution in the flooded mine water. However, in order to obtain a robust PNM, we simplified the detailed chemical model into a specific sulphate dissolution-precipitation model that is included as sulphate source/sink in both a NCR model and a pipe network model. Both the NCR model and the PNM, based on different numerical techniques, give good post-calibration agreement between the simulated and measured sulphate concentrations in the drinking-water well and overflow drift. The NCR model incorporating the detailed chemical model is useful when a detailed chemical behaviour at the overflow is needed. The PNM incorporating the simplified sulphate dissolution-precipitation model provides better information of the physics controlling the effect of flow and low flow zones, and the time of solid sulphate removal whereas the NCR model will underestimate clean-up time due to the complete mixing assumption. In conclusion, the detailed NCR model will give a first assessment of chemical processes at overflow, and in a second time, the PNM model will provide more

  19. Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan

    ERIC Educational Resources Information Center

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.

    2016-01-01

    The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…

  20. Initial NSTX Lithium Pellet Injection

    NASA Astrophysics Data System (ADS)

    Kugel, H. W.; Bell, M.; Bell, R.; Biewer, T.; Gates, D.; Jardin, S.; Kaita, R.; Leblanc, B.; Paul, S.; Samtaney, R.; Skinner, C. H.; Raman, R.; Bush, C.; Maingi, R.; Soukhanovskii, V.; Nishino, N.; Lee, K. C.; Stutman, D.

    2004-11-01

    A cartridge style Lithium Pellet Injector was installed on NSTX for midplane radial injection. Deuterium gas was used to propel a Li pellet-bearing cartridge down a barrel to a cartridge stop, and the pellet continued into the NSTX plasma at about 150 m/s. 16 lithium pellets, about 2 mg each were injected into LSN and DND, NBI-heated, H-mode plasmas, and into L-mode LSN Ohmic plasmas, and were observed with a Li I filtered Plasma-TV. Li pellets injected into NBI-heated LSN and DND plasmas appeared to ablate in the outer boundary. The pellets injected into OH plasmas exhibited good penetration to the HFS region. Lastly, a NBI preheat was added prior to pellet arrival, and the penetration depth was found to be very sensitive to the NBI turn-off time relative to pellet arrival. As this work progressed, Li luminosity started to be observed from the very initiation of discharges, due to depositions from preceding discharges. Initial modeling results will be presented.

  1. Owl Pellets and Crisis Management.

    ERIC Educational Resources Information Center

    Anderson, Tom

    2002-01-01

    Describes a press conference that was used as a "teachable moment" when owl pellets being used for instructional purposes were found to be contaminated with Salmonella. The incident highlighted the need for safe handling of owl pellets, having a crisis management plan, and the importance of conveying accurate information to concerned parents.…

  2. 26. NORTHERN VIEW OF ORE YARD WITH ORE BRIDGES IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. NORTHERN VIEW OF ORE YARD WITH ORE BRIDGES IN THE BACKGROUND. BLAST FURNACES ALONG THE RIGHT SIDE. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  3. Nuclear fuel pellet transfer escalator

    SciTech Connect

    Huggins, T.B. Sr.; Roberts, E.; Edmunds, M.O.

    1991-09-17

    This patent describes a nuclear fuel pellet escalator for loading nuclear fuel pellets into a sintering boat. It comprises a generally horizontally-disposed pellet transfer conveyor for moving pellets in single file fashion from a receiving end to a discharge end thereof, the conveyor being mounted about an axis at its receiving end for pivotal movement to generally vertically move its discharge end toward and away from a sintering boat when placed below the discharge end of the conveyor, the conveyor including an elongated arm swingable vertically about the axis and having an elongated channel recessed below an upper side of the arm and extending between the receiving and discharge ends of the conveyor; a pellet dispensing chute mounted to the arm of the conveyor at the discharge end thereof and extending therebelow such that the chute is carried at the discharge end of the conveyor for generally vertical movement therewith toward and away from the sintering boat.

  4. Introduction to ore geology

    SciTech Connect

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint.

  5. 14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE 'GEORGE M. CAR.' VIEW LOOKING EAST. (Also see OH-18-38, OH-18-39, and OH-18-40.) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  6. 38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE GEORGE M. CARL.' VIEW LOOKING EAST. (Also see OH-18-14, OH-18-39, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  7. Tritium pellet injector for TFTR

    SciTech Connect

    Gouge, M.J.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foust, C.R.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Wilgen, J.B.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1992-06-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability.

  8. Tritium pellet injector for TFTR

    SciTech Connect

    Gouge, M.J.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foust, C.R.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Wilgen, J.B. ); Schmidt, G.L.; Barnes, G.W.; Persing, R.G. . Plasma Physics Lab.)

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability.

  9. Rate of reduction of ore-carbon composites: Part II. Modeling of reduction in extended composites

    SciTech Connect

    Fortini, O.M.; Fruehan, R.J.

    2005-12-01

    A new process for ironmaking was proposed using a rotary hearth furnace and an iron bath smelter to produce iron employing wood charcoal as an energy source and reductant. This paper examines reactions in composite pellet samples with sizes close to sizes used in industrial practice (10 to 16 min in diameter). A model was constructed using the combined kinetic mechanism developed in Part I of this series of articles along with equations for the computation of pellet temperature and shrinkage during the reaction. The analysis of reaction rates measured for pellets with wood charcoal showed that heat transfer plays a significant role in their overall rate of reaction at elevated temperatures. The slower rates measured in pellets containing coal char show that the intrinsic kinetics of carbon oxidation is more significant than heat transfer. Model calculations suggest that the rates are highly sensitive to the thermal conductivity of pellets containing wood charcoal and are less sensitive to the external conditions of heat transfer. It was seen that the changes in pellet surface area and diameter due to shrinkage introduce little change on reaction rates. The model developed provides an adequate description of pellets of wood charcoal up to circa 90% of reduction. Experimentally determined rates of reduction of iron oxide by wood charcoal were approximately 5 to 10 times faster than rates measured in pellets with coal char.

  10. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.

  11. Simulation of Pellet Ablation

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Ishizaki, Ryuichi

    2000-10-01

    In order to clarify the structure of the ablation flow, 2D simulation is carried out with a fluid code solving temporal evolution of MHD equations. The code includes electrostatic sheath effect at the cloud interface.(P.B. Parks et al.), Plasma Phys. Contr. Fusion 38, 571 (1996). An Eulerian cylindrical coordinate system (r,z) is used with z in a spherical pellet. The code uses the Cubic-Interpolated Psudoparticle (CIP) method(H. Takewaki and T. Yabe, J. Comput. Phys. 70), 355 (1987). that divides the fluid equations into non-advection and advection phases. The most essential element of the CIP method is in calculation of the advection phase. In this phase, a cubic interpolated spatial profile is shifted in space according to the total derivative equations, similarly to a particle scheme. Since the profile is interpolated by using the value and the spatial derivative value at each grid point, there is no numerical oscillation in space, that often appears in conventional spline interpolation. A free boundary condition is used in the code. The possibility of a stationary shock will also be shown in the presentation because the supersonic ablation flow across the magnetic field is impeded.

  12. Pellet injection into ATF plasmas

    SciTech Connect

    Wilgen, J.B.; Bell, J.D.; England, A.C.; Fisher, P.W.; Howe, H.C.; Murakami, M.; Rasmussen, D.A.; Richards, R.K.; Uckan, T.; Wing, W.R. ); Bell, G.L. ); Qualls, A.L. ); Sudo, S. )

    1990-01-01

    Based on the favorable empirical scaling of stellarator confinement with increasing electron density, pellet fueling is expected to result in significant performance improvement of the ATF plasma. With gas-puff fueling, NBI heated plasmas in ATF are limited by a thermal collapse. Pellet fueling provides a potential means to delay this effect and gain access to the favorable high density confinement regime. To provide flexibility for optimization and physics studies, eight different pellet sizes are available. To date, line average densities of up to 4 {times} 10{sup 13} cm{sup {minus}3} have been achieved with a single pellet injected into a 0.7 MW NBI plasma at 0.95 T; the results from optimization studies with up to 1.5 MW of NBI power at 2 T will be presented.

  13. Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA

    USGS Publications Warehouse

    Cline, J.S.; Hofstra, A.A.

    2000-01-01

    deposited gold-enriched pyrite and jasperoid quartz. Gold and pyrite precipitated together as H2S in the ore fluids reacted with iron in the host rocks. As ore fluids mixed with local aquifer fluids, ore fluids became cooler and more dilute. Cooling caused precipitation of ore-stage fluorite and orpiment, and late ore-stage realgar. Phase separation and/or neutralization of the ore fluid during the waning stages of the hydrothermal ore system led to deposition of late ore-stage calcite.

  14. Bioprocessing of ores: Application to space resources

    NASA Astrophysics Data System (ADS)

    Johansson, Karl R.

    The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.

  15. Bioprocessing of ores: Application to space resources

    NASA Technical Reports Server (NTRS)

    Johansson, Karl R.

    1992-01-01

    The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.

  16. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  17. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  18. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  19. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  20. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, R.O.; Keller, R.; Yao, N.P.

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (A1S) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  1. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  2. Single-Step Ironmaking from Ore to Improve Energy Efficiency

    SciTech Connect

    S.K. Kawatra; B. Anamerie; T.C. Eisele

    2005-10-01

    The pig iron nugget process was developed as an alternative to the traditional blast furnace process by Kobe Steel. The process aimed to produce pig iron nuggets, which have similar chemical and physical properties to blast furnace pig iron, in a single step. The pig iron nugget process utilizes coal instead of coke and self reducing and fluxing dried green balls instead of pellets and sinters. In this process the environmental emissions caused by coke and sinter production, and energy lost between pellet induration (heat hardening) and transportation to the blast furnace can be eliminated. The objectives of this research were to (1) produce pig iron nuggets in the laboratory, (2) characterize the pig iron nugget produced and compare them with blast furnace pig iron, (3) investigate the furnace temperature and residence time effects on the pig iron nugget production, and (4) optimize the operational furnace temperatures and residence times. The experiments involved heat treatment of self reducing and fluxing dried green balls at various furnace temperatures and residence times. Three chemically and physically different products were produced after the compete reduction of iron oxides to iron depending on the operational furnace temperatures and/or residence times. These products were direct reduced iron (DRI), transition direct reduced iron (TDRI), and pig iron nuggets. The increase in the carbon content of the system as a function of furnace temperature and/or residence time dictated the formation of these products. The direct reduced iron, transition direct reduced iron, and pig iron nuggets produced were analyzed for their chemical composition, degree of metallization, apparent density, microstructure and microhardness. In addition, the change in the carbon content of the system with the changing furnace temperature and/or residence time was detected by optical microscopy and Microhardness measurements. The sufficient carbon dissolution required for the

  3. Recovery of iron, carbon and zinc from steel plant waste oxides using the AISI-DOE postcombustion smelting technology

    SciTech Connect

    Sarma, B.; Downing, K.B.; Aukrust, E.

    1996-09-01

    This report describes a process to recover steel plant waste oxides to be used in the production of hot metal. The process flowsheet used at the pilot plant. Coal/coke breeze and iron ore pellets/waste oxides are charged into the smelting reactor. The waste oxides are either agglomerated into briquettes (1 inch) using a binder or micro-agglomerated into pellets (1/4 inch) without the use of a binder. The iron oxides dissolve in the slag and are reduced by carbon to produce molten iron. The gangue oxides present in the raw materials report to the slag. Coal charged to the smelter is both the fuel as well as the reductant. Carbon present in the waste oxides is also used as the fuel/reductant resulting in a decrease in the coal requirement. Oxygen is top blown through a central, water-cooled, dual circuit lance. Nitrogen is injected through tuyeres at the bottom of the reactor for stirring purposes. The hot metal and slag produced in the smelting reactor are tapped at regular intervals through a single taphole using a mudgun and drill system. The energy requirements of the process are provided by (i) the combustion of carbon to carbon monoxide, referred to as primary combustion and (ii) the combustion of CO and H{sub 2} to CO{sub 2} and H{sub 2}O, known as postcombustion.

  4. Computer finds ore

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Artificial intelligence techniques are being used for the first time to evaluate geophysical, geochemical, and geologic data and theory in order to locate ore deposits. After several years of development, an intelligent computer code has been formulated and applied to the Mount Tolman area in Washington state. In a project funded by the United States Geological Survey and the National Science Foundation a set of computer programs, under the general title Prospector, was used successfully to locate a previously unknown ore-grade porphyry molybdenum deposit in the vicinity of Mount Tolman (Science, Sept. 3, 1982).The general area of the deposit had been known to contain exposures of porphyry mineralization. Between 1964 and 1978, exploration surveys had been run by the Bear Creek Mining Company, and later exploration was done in the area by the Amax Corporation. Some of the geophysical data and geochemical and other prospecting surveys were incorporated into the programs, and mine exploration specialists contributed to a set of rules for Prospector. The rules were encoded as ‘inference networks’ to form the ‘expert system’ on which the artificial intelligence codes were based. The molybdenum ore deposit discovered by the test is large, located subsurface, and has an areal extent of more than 18 km2.

  5. Possible lunar ores

    NASA Technical Reports Server (NTRS)

    Gillett, Stephen L.

    1991-01-01

    Despite the conventional wisdom that there are no lunar ores, geochemical considerations suggest that local concentrations of useful rare elements exist on the Moon in spite of its extreme dryness. The Moon underwent protracted igneous activity in its history, and certain magmatic processes can concentrate incompatible elements even if anhydrous. Such processes include: (1) separation of a magma into immiscible liquid phases (depending on composition, these could be silicate-silicate, silicate-oxide, silicate-sulfide, or silicate-salt); (2) cumulate deposits in layered igneous intrusions; and (3) concentrations of rare, refractory, lithophile elements (e.g., Be, Li, Zr) in highly differentiated, silica-rich magmas, as in the lunar granites. Terrestrial mining experience indicates that the single most important characteristic of a potential ore is its concentration of the desire element. The utility of a planet as a resource base is that the welter of interacting processes over geologic time can concentrate rare element automatically. This advantage is squandered if adequate exploration for ores is not first carried out.

  6. Complementary effects of torrefaction and co-pelletization: Energy consumption and characteristics of pellets.

    PubMed

    Cao, Liang; Yuan, Xingzhong; Li, Hui; Li, Changzhu; Xiao, Zhihua; Jiang, Longbo; Huang, Binbin; Xiao, Zhihong; Chen, Xiaohong; Wang, Hou; Zeng, Guangming

    2015-06-01

    In this study, complementary of torrefaction and co-pelletization for biomass pellets production was investigated. Two kinds of biomass materials were torrefied and mixed with oil cake for co-pelletization. The energy consumption during pelletization and pellet characteristics including moisture absorption, pellet density, pellet strength and combustion characteristic, were evaluated. It was shown that torrefaction improved the characteristics of pellets with high heating values, low moisture absorption and well combustion characteristic. Furthermore, co-pelletization between torrefied biomass and cater bean cake can reduce several negative effects of torrefaction such as high energy consumption, low pellet density and strength. The optimal conditions for energy consumption and pellet strength were torrefied at 270°C and a blending with 15% castor bean cake for both biomass materials. The present study indicated that compelmentary performances of the torrefaction and co-pelletization with castor bean cake provide a promising alternative for fuel production from biomass and oil cake.

  7. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    SciTech Connect

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub

  8. The biological leaching of an auriferous pyrite ore

    NASA Astrophysics Data System (ADS)

    Riekkola-Vanhanen, Marja; Heimala, Seppo; Sivelä, Carita A.; Viguera, Felipe; Varjola, Irma; Niemelä, Seppo I.; Tuovinen, Olli H.

    1993-12-01

    The oxidation of an auriferous pyrite ore sample was evaluated in biological leaching experiments for subsequent gold recovery via cyanidation. In batch cultures, organisms derived from the mine site oxidized pyrite and ferrous iron at pH values as low as pH 0.6. The recovery of gold was variable in shake flask experiments. In stirred tank bioreactor leaching, gold recovery was proportional to the extent of iron dissolution by bioleaching. The leaching of arsenic from the sample was also directly proportional to iron dissolution.

  9. A mathematical model to predict the size of the pellets formed in freeze pelletization techniques: parameters affecting pellet size.

    PubMed

    Cheboyina, Sreekhar; O'Haver, John; Wyandt, Christy M

    2006-01-01

    A mathematical model was developed based on the theory of drop formation to predict the size of the pellets formed in the freeze pelletization process. Further the model was validated by studying the effect of various parameters on the pellet size such as viscosity of the pellet forming and column liquids, surface/interfacial tension, density difference between pellet forming and column liquids; size, shape, and material of construction of the needle tips and temperatures maintained in the columns. In this study, pellets were prepared from different matrices including polyethylene glycols and waxes. The column liquids studied were silicone oils and aqueous glycerol solutions. The surface/interfacial tension, density difference between pellet forming and column liquids and needle tip size were found to be the most important factors affecting pellet size. The viscosity of the column liquid was not found to significantly affect the size of the pellets. The size of the pellets was also not affected by the pellet forming liquids of low viscosities. An increase in the initial column temperature slightly decreased the pellet size. The mathematical model developed was found to successfully predict the size of the pellets with an average error of 3.32% for different matrices that were studied.

  10. Direct Reduction of Ferrous Oxides to form an Iron-Rich Alternative Charge Material

    NASA Astrophysics Data System (ADS)

    Ünal, H. İbrahim; Turgut, Enes; Atapek, Ş. H.; Alkan, Attila

    2015-12-01

    In this study, production of sponge iron by direct reduction of oxides and the effect of reductant on metallization were investigated. In the first stage of the study, scale formed during hot rolling of slabs was reduced in a rotating furnace using solid and gas reductants. Coal was used as solid reductant and hydrogen released from the combustion reaction of LNG was used as the gas one. The sponge iron produced by direct reduction was melted and solidified. In the second stage, Hematite ore in the form of pellets was reduced using solid carbon in a furnace heated up to 1,100°C for 60 and 120 minutes. Reduction degree of process was evaluated as a function of time and the ratio of Cfix/Fetotal. In the third stage, final products were examined using scanning electron microscope and microanalysis was carried out by energy dispersive x-ray spectrometer attached to the electron microscope. It is concluded that (i) direct reduction using both solid and gas reductants caused higher metallization compared to using only solid reductant, (ii) as the reduction time and ratio of Cfix/Fetotal increased %-reduction of ore increased.

  11. Cogeneration process for production of energy and iron materials

    SciTech Connect

    Lehto, J.M.

    1991-10-08

    This paper reports a process for the production of electricity. It comprises: providing a low grade coal fuel' performing a pyrolysis procedure on the coal fuel at a temperature of about 600{degrees} C. to remove oil and volatiles therefrom, and to generate a resultant coal char product; pelletizing the coal char product to form coal char product pellets, the step of pelletizing comprising pelletizing at least a portion of the coal char product in combination with reducible solid iron material to form coal char pellets containing reducible solid iron material; charging a cupola with the coal char product and the reducible solid iron material, the step of charging a cupola being characterized by charging substantially all the coal char product in the form of coal char product pellets and substantially all the reducible solid iron material in the form of pellets containing the coal char product in combination with the reducible solid iron material; reducing and melting all the reducible solid iron material in the coal char pellets by heating the pellets in the cupola at a suitable temperature under a pressure of at least about 100 psi in the presence of a sufficient upward flow of process gases, with the resultant formation of hot product gases.

  12. PROCESS OF EXTRACTING URANIUM AND RADIUM FROM ORES

    DOEpatents

    Sawyer, C.W.; Handley, R.W.

    1959-07-14

    A process is presented for extracting uranium and radium values from a uranium ore which comprises leaching the ore with a ferric chloride solution at an elevated temperature of above 50 deg C and at a pH less than 4; separating the ore residue from the leaching solution by filtration; precipitating the excess ferric iron present at a pH of less than 5 by adding CaCO/sub 3/ to the filtrate; separating the precipitate by filtration; precipitating the uranium present in the filtrate at a Ph less than 6 by adding BaCO/sub 3/ to the filtrate; separating the precipitate by filtration; and precipitating the radium present in the filtrate by adding H/sub 2/SO/sub 4/ to the filtrate.

  13. 78 FR 48218 - Buy America Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... boat equipment; and for pig iron and processed, pelletized, and reduced iron ores, which was published... manufactured products; for ferry boat equipment; and for pig iron and processed, pelletized, and reduced...

  14. Can I Trust ORE Reports?

    ERIC Educational Resources Information Center

    Feedback, 1984

    1984-01-01

    This issue of FEEDBACK, a newsletter produced by the the Austin Independent School District Office of Research and Evaluation (ORE), illustrates the accuracy, validity, and fairness of ORE reports. The independence of the reports is explained. Internal and external quality controls are used to ensure reliability and accuracy of the reports.…

  15. Electrothermal plasma gun as a pellet injector

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.

    1994-11-01

    The NCSU electrothermal plasma gun SIRENS has been used to accelerate plastic (Lexan polycarbonate) pellets, to determine the feasibility of the use of electrothermal guns as pellet injectors. The use of an electrothermal gun to inject frozen hydrogenic pellets requires a mechanism to provide protective shells (sabots) for shielding the pellet from ablation during acceleration into and through the barrel of the gun. The gun has been modified to accommodate acceleration of the plastic pellets using special acceleration barrels equipped with diagnostics for velocity and position of the pellet, and targets to absorb the pellet`s energy on impact. The length of the acceleration path could be varied between 15 and 45 cm. The discharge energy of the electrothermal gun ranged from 2 to 6 kJ. The pellet velocities have been measured via a set of break wires. Pellet masses were varied between 0.5 and 1.0 grams. Preliminary results on 0.5 and 1.0 g pellets show that the exit velocity reaches 0.9 km/s at 6 kJ input energy to the source. Higher velocities of 1.5 and 2.7 km/s have been achieved using 0.5 and 1.0 gm pellets in 30 cm long barrel, without cleaning the barrel between the shots.

  16. Pellet microfossils: Possible evidence for metazoan life in Early Proterozoic time.

    PubMed

    Robbins, E I; Porter, K G; Haberyan, K A

    1985-09-01

    Microfossils resembling fecal pellets occur in acid-resistant residues and thin sections of Middle Cambrian to Early Proterozoic shale. The cylindrical microfossils average 50 x 110 mum and are the size and shape of fecal pellets produced by microscopic animals today. Pellets occur in dark gray and black rocks that were deposited in the facies that also preserves sulfide minerals and that represent environments analogous to those that preserve fecal pellets today. Rocks containing pellets and algal microfossils range in age from 0.53 to 1.9 gigayears (Gyr) and include Burgess Shale, Greyson and Newland Formations, Rove Formation, and Gunflint Iron-Formation. Similar rock types of Archean age, ranging from 2.68 to 3.8 Gyr, were barren of pellets. If the Proterozoic microfossils are fossilized fecal pellets, they provide evidence of metazoan life and a complex food chain at 1.9 Gyr ago. This occurrence predates macroscopic metazoan body fossils in the Ediacaran System at 0.67 Gyr, animal trace fossils from 0.9 to 1.3 Gyr, and fossils of unicellular eukaryotic plankton at 1.4 Gyr.

  17. Determination of beryllium in ores and rocks by a dilution-fluorometric method with morin

    USGS Publications Warehouse

    May, R.; Grimaldi, F.S.

    1961-01-01

    Beryllium in concentrations as little as a few parts per million is determined fluorometrically with morin in low grade ores by a dilution method without separations. A high sensitivity is obtained by the adoption of instrumental and reaction conditions that give a satisfactory ratio of beryllium to blank fluorescence and at the same time minimize iron interference. Data on the behavior of 47 ions are given. The method is applied to ores containing bertrandite and beryl as the beryllium minerals.

  18. Model for pneumatic pellet injection

    SciTech Connect

    Hogan, J.T.; Milora, S.L.; Schuresko, D.D.

    1983-07-01

    A hydrodynamic code has been developed to model the performance of pneumatic pellet injection systems. The code describes one dimensional, unsteady compressible gas dynamics, including gas friction and heat transfer to the walls in a system with variable area. The mass, momentum, and energy equations are solved with an iterated Lax-Wendroff scheme with additional numerical viscosity. The code is described and comparisons with experimental data are presented.

  19. A geologic assessment of potential lunar ores

    NASA Technical Reports Server (NTRS)

    Mckay, D. S.; Williams, R. J.

    1979-01-01

    Although bulk lunar soil is not a suitable feedstock for extracting metals, certain minerals such as anorthite and ilmenite can be separated and concentrated. These minerals can be considered as potential ores of aluminum, silicon, titanium, andiron. A separation and metal extraction plant could also extract large amounts of oxygen and perhaps hydrogen from these minerals. Anorthie containing 19 percent aluminum and 20 percent silicon can be concentrated from some highland soils where it is present in amounts up to 60 percent. Ilmenite containing 32 percent titanium and 37 percent iron can be concentrated from some mare soils where it is present in amounts up to 10 percent. The ideal mining site would be located at the boundary between a high-titanium mare and a high-aluminum highlands. Such area may exist around the rims of some eastern maria, particularly Tranquilitatis. A location on Earth with raw materials as described above would be considered an economically valuable ore deposit if conventional terrestrial resources were not available.

  20. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Gao, Zhaofu; Zhu, Xiangkun; Sun, Jian; Luo, Zhaohua; Bao, Chuang; Tang, Chao; Ma, Jianxiong

    2017-03-01

    Analyses of sphalerite minerals from the characteristic brecciated Zn-Pb ores of the main ore body in the giant Dongshengmiao deposit have revealed variations in δ66Zn from 0.17 to 0.40‰ and in δ56Fe from -1.78 to -0.35‰. Further, the investigated pyrrhotite samples have iron that is isotopically similar to that of associated sphalerite minerals. The most distinctive pattern revealed by the zinc and iron isotope data is the lateral trend of increasing δ66Zn and δ56Fe values from southwest to northeast within the main ore body. The lead isotopic homogeneity of ore sulfides from the main ore body suggests that there is only one significant source for metal, thus precluding the mixing of multiple metal sources as the key factor controlling spatial variations of zinc and iron isotopes. The most likely control on spatial variations is Rayleigh fractionation during hydrothermal fluid flow, with lighter Zn and Fe isotopes preferentially incorporated into the earliest sulfides to precipitate from fluids. Precipitations of sphalerite and pyrrhotite have played vital roles in the Zn and Fe isotopic variations, respectively, of the ore-forming system. Accordingly, the larger isotopic variability for Fe than Zn within the same hydrothermal system perhaps resulted from a larger proportion of precipitation for pyrrhotite than for sphalerite. The lateral trend pattern revealed by the zinc and iron isotope data is consistent with the occurrence of a cystic-shaped breccia zone, which is characterized by marked elevation in Cu. The results further confirm that Zn and Fe isotopes can be used as a vectoring tool for mineral prospecting.

  1. Pellet injector development and experiments at ORNL

    SciTech Connect

    Baylor, L.R.; Argo, B.E.; Barber, G.C.; Combs, S.K.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.H.

    1993-11-01

    The development of pellet injectors for plasma fueling of magnetic confinement fusion experiments has been under way at Oak Ridge National Laboratory (ORNL) for the past 15 years. Recently, ORNL provided a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor (TFTR) based on the in situ condensation technique that features three single-stage gas guns and an advanced two-stage light gas gun driver. In another application, ORNL supplied the Tore Supra tokamak with a centrifuge pellet injector in 1989 for pellet fueling experiments that has achieved record numbers of injected pellets into a discharge. Work is progressing on an upgrade to that injector to extend the number of pellets to 400 and improve pellet repeatability. In a new application, the ORNL three barrel repeating pneumatic injector has been returned from JET and is being readied for installation on the DIII-D device for fueling and enhanced plasma performance experiments. In addition to these experimental applications, ORNL is developing advanced injector technologies, including high-velocity pellet injectors, tritium pellet injectors, and long-pulse feed systems. The two-stage light gas gun and electron-beam-driven rocket are the acceleration techniques under investigation for achieving high velocity. A tritium proof-of-principle (TPOP) experiment has demonstrated the feasibility of tritium pellet production and acceleration. A new tritium-compatible, extruder-based, repeating pneumatic injector is being fabricated to replace the pipe gun in the TPOP experiment and will explore issues related to the extrudability of tritium and acceleration of large tritium pellets. The tritium pellet formation experiments and development of long-pulse pellet feed systems are especially relevant to the International Tokamak Engineering Reactor (ITER).

  2. Current generation by phased injection of pellets

    SciTech Connect

    Fisch, N.J.

    1983-08-01

    By phasing the injection of frozen pellets into a tokamak plasma, it is possible to generate current. The current occurs when the electron flux to individual members of an array of pellets is asymmetric with respect to the magnetic field. The utility of this method for tokamak reactors, however, is unclear; the current, even though free in a pellet-fueled reactor, may not be large enough to be worth the trouble. Uncertainty as to the utility of this method is, in part, due to uncertainty as to proper modeling of the one-pellet problem.

  3. Impurity pellet injection experiments at TFTR

    SciTech Connect

    Marmar, E.S.

    1992-01-01

    Impurity (Li and C) pellet injection experiments on TFTR have produced a number of new and significant results. (1) We observe reproducible improvements of TFTR supershots after wall-conditioning by Li pellet injection ( lithiumization'). (2) We have made accurate measurements of the pitch angle profiles of the internal magnetic field using two novel techniques. The first measures the internal field pitch from the polarization angles of Li[sup +] line emission from the pellet ablation cloud, while the second measures the pitch angle profiles by observing the tilt of the cigar-shaped Li[sup +] emission region of the ablation cloud. (3) Extensive measurements of impurity pellet penetration into plasmas with central temperatures ranging from [approximately]0.3 to [approximately]7 keV have been made and compared with available theoretical models. Other aspects of pellet cloud physics have been investigated. (4) Using pellets as a well defined perturbation has allowed study of transport phenomena. In the case of small pellet perturbations, the characteristics of the background plasmas are probed, while with large pellets, pellet induced effects are clearly observed. These main results are discussed in more detail in this paper.

  4. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  5. Leaching of molybdenum and arsenic from uranium ore and mill tailings

    USGS Publications Warehouse

    Landa, E.R.

    1984-01-01

    A sequential, selective extraction procedure was used to assess the effects of sulfuric acid milling on the geochemical associations of molybdenum and arsenic in a uranium ore blend, and the tailings derived therefrom. The milling process removed about 21% of the molybdenum and 53% of the arsenic initially present in the ore. While about one-half of the molybdenum in the ore was water soluble, only about 14% existed in this form in the tailings. The major portion of the extractable molybdenum in the tailings appears to be associated with hydrous oxides of iron, and with alkaline earth sulfate precipitates. In contrast with the pattern seen for molybdenum, the partitioning of arsenic into the various extractable fractions differs little between the ore and the tailings. ?? 1984.

  6. Looking West at Line Two Pelletizing Line, Centering Furnaces and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking West at Line Two Pelletizing Line, Centering Furnaces and Dewaxers of First Floor of Pellet Plant - Hematite Fuel Fabrication Facility, Pellet Plant, 3300 State Road P, Festus, Jefferson County, MO

  7. Estimating shot distance from limited pellets pattern.

    PubMed

    Plebe, Alessio; Compagnini, Domenico

    2012-10-10

    Several methods are available for shooting range estimation based on pellets pattern on the target that have a remarkable degree of accuracy. The task is usually approached working under the assumption that the entire distribution of pellets is available for examination. These methods fail, however, when the victim has been hit by a portion of the pattern only. The problem can be solved with reasonable accuracy when there are areas of void in the victim that are adjacent to the area struck by pellets. This study presents a method that can be used in precisely this type of situation, allowing the estimation of shot distance in cases of partial pellet patterns. It is based on collecting distributions in test shots at several distances, and taking samples in the targets, constrained by the shape of the void and the pellet hit areas. Statistical descriptors of patterns are extracted from such samples, and fed into a neural network classifier, estimating shot ranges of distance.

  8. Bilateral shotgun pellet pulmonary emboli

    PubMed Central

    Huebner, Stephen; Ali, Sayed

    2012-01-01

    Intravascular migration of bullets and other foreign bodies is a rare but known complication of penetrating trauma. Missile embolization can represent a diagnostic challenge because it may present in various and unexpected ways. We present the case of a 54-year-old female who sustained shotgun pellet emboli to the pulmonary arteries following a left upper extremity gunshot wound and related vascular surgery. The case illustrates bilateral embolization, and the embolic events occurred following surgery. Embolization should be considered in evaluating patients with gunshot wounds, particularly if there are anomalous symptoms or the projectile is not found in the original, or expected, location. Close attention to the location of the foreign bodies on serial radiographs may reveal the diagnosis of intravascular embolization. PMID:22690290

  9. 2. Photocopied June 1978 'THE IRON DAM.' VIEW OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopied June 1978 'THE IRON DAM.' VIEW OF THE IRON DAM, THE OUTCROPPING OF THE ORE FOUND IN 1826 BY HENDERSON. FURNISHED WATER TO SAWMILL. SOURCE: BENSON LOSSING, THE HUDSON, FROM THE WILDERNESS TO THE SEA, TROY, NEW YORK, 1866, p. 25 - Adirondack Iron & Steel Company, New Furnace, Hudson River, Tahawus, Essex County, NY

  10. O-ring gasket test fixture

    NASA Technical Reports Server (NTRS)

    Turner, James Eric (Inventor); Mccluney, Donald Scott (Inventor)

    1991-01-01

    An apparatus is presented for testing O-ring gaskets under a variety of temperature, pressure, and dynamic loading conditions. Specifically, this apparatus has the ability to simulate a dynamic loading condition where the sealing surface in contact with the O-ring moves both away from and axially along the face of the O-ring.

  11. Looking Northeast Along Hallway between Pellet Plant and Oxide Building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northeast Along Hallway between Pellet Plant and Oxide Building, including Virgin Hopper Bins - Hematite Fuel Fabrication Facility, Pellet Plant, 3300 State Road P, Festus, Jefferson County, MO

  12. A MIXED CHEMICAL REDUCTANT FOR TREATING HEXAVALENT CHROMIUM IN A CHROMITE ORE PROCESSING SOLID WASTE

    EPA Science Inventory

    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  13. Conical O-ring seal

    DOEpatents

    Chalfant, Jr., Gordon G.

    1984-01-01

    A shipping container for radioactive or other hazardous materials which has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  14. Conical O-ring seal

    DOEpatents

    Chalfant, G.G. Jr.

    A shipping container for radioactive or other hazardous materials has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  15. Pelletization of fine coals. Final report

    SciTech Connect

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  16. A centrifuge CO2 pellet cleaning system

    NASA Technical Reports Server (NTRS)

    Foster, C. A.; Fisher, P. W.; Nelson, W. D.; Schechter, D. E.

    1995-01-01

    An advanced turbine/CO2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory (ORNL). The program, sponsored by Warner Robins Air Logistics Center (ALC), Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air 'sandblast' pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting and by combining the use of environmentally benign solvents with the pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies.

  17. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect

    Albert Calderon

    2005-10-14

    The commercialization path of the Calderon technology for making a feedstock for steelmaking with assistance from DOE initially focused on making coke and work was done which proved that the Calderon technology is capable of making good coke for hard driving blast furnaces. U.S. Steel which participated in such demonstration felt that the Calderon technology would be more meaningful in lowering the costs of making steel by adapting it to the making of iron--thus obviating the need for coke. U.S. Steel and Calderon teamed up to jointly work together to demonstrate that the Calderon technology will produce in a closed system iron units from iron concentrate (ore) and coal competitively by eliminating pelletizing, sintering, coking and blast furnace operation. If such process steps could be eliminated, a huge reduction in polluting emissions and greenhouse gases (including CO{sub 2}) relating to steelmaking would ensue. Such reduction will restructure the steel industry away from the very energy-intensive steelmaking steps currently practiced and drastically reduce costs of making steel. The development of a technology to lower U.S. steelmaking costs and become globally competitive is a priority of major importance. Therefore, the development work which Calderon is conducting presently under this Agreement with the U.S. Department of Energy becomes more crucial than ever. During the 3rd quarter of 2005 which the present report covers, virtually all the effort to advance the Calderon technology to make iron units was concentrated towards forming a team with a steelmaker who needs both iron units in the form of hot metal and a substitute for natural gas (SNG), both being major contributors to higher costs in steelmaking. Calderon felt that a very good candidate would be Steel Dynamics (SDI) by virtue that it operates a rotary hearth facility in Butler, Indiana that uses large amounts of natural gas to reduce briquettes made from ore and coal that they subsequently melt

  18. Microbiological survey of birds of prey pellets.

    PubMed

    Dipineto, Ludovico; Bossa, Luigi Maria De Luca; Pace, Antonino; Russo, Tamara Pasqualina; Gargiulo, Antonio; Ciccarelli, Francesca; Raia, Pasquale; Caputo, Vincenzo; Fioretti, Alessandro

    2015-08-01

    A microbiological survey of 73 pellets collected from different birds of prey species housed at the Wildlife Rescue and Rehabilitation Center of Napoli (southern Italy) was performed. Pellets were analyzed by culture and biochemical methods as well as by serotyping and polymerase chain reaction. We isolated a wide range of bacteria some of them also pathogens for humans (i.e. Salmonella enterica serotype Typhimurium, Campylobacter coli, Escherichia coli O serogroups). This study highlights the potential role of birds of prey as asymptomatic carriers of pathogenic bacteria which could be disseminated in the environment not only through the birds of prey feces but also through their pellets.

  19. Virtual phosphorus ore requirement of Japanese economy.

    PubMed

    Matsubae, Kazuyo; Kajiyama, Jun; Hiraki, Takehito; Nagasaka, Tetsuya

    2011-08-01

    Phosphorus is indispensable for agricultural production. Hence, the consumption of imported food indirectly implies the import of phosphorus resources. The global consumption of agricultural products depends on a small number of ore-producing countries. For sustainable management of phosphorus resources, the global supply and demand network should be clarified. In this study, we propose the virtual phosphorus ore requirement as a new indicator of the direct and indirect phosphorus requirements for our society. The virtual phosphorus ore requirement indicates the direct and indirect demands for phosphorus ore transformed into agricultural products and fertilizer. In this study, the virtual phosphorus ore requirement was evaluated for the Japanese economy in 2005. Importantly, the results show that our society requires twice as much phosphorus ore as the domestic demand for fertilizer production. The phosphorus contained in "eaten" agricultural products was only 12% of virtual phosphorus ore requirement.

  20. Bog iron formation in the Nassawango Creek watershed, Maryland, USA

    USGS Publications Warehouse

    Bricker, O.P.; Newell, W.L.; Simon, N.S.; ,

    2004-01-01

    The Nassawango bog ores in the modern environment for surficial geochemical processes were studied. The formation of Nassawango bog ores was suggested to be due to inorganic oxidation when groundwater rich in ferrous iron emerges into the oxic, surficial environment. It was suggested that the process, providing a phosphorus sink, may be an unrecognized benefit for mitigating nutrient loading from agricultural lands. It is found that without the effect of iron fixing bacteria, bog deposites could not form at significant rates.

  1. Method of processing aluminous ores

    SciTech Connect

    Loutfy, R.O.; Keller, R.; Yao, N.P.

    1981-02-24

    A method is described for producing aluminum chloride from aluminous materials containing compounds of iron, titanium and silicon comprising reacting the aluminous materials with carbon and a chlorine-containing gas at a temperature of about 900 K to form a gaseous mixture containing chlorides of aluminum, iron, titanium and silicon and oxides of carbon; cooling the gaseous mixture to a temperature of about 400 K or lower to condense the aluminum chlorides and iron chlorides while titanium chloride and silicon chloride remain in the gas phase to effect a separation thereof; heating the mixture of iron chlorides and aluminum chlorides to a temperature of about 800 K to form gaseous aluminum chlorides and iron chlorides; passing the heated gases into intimate contact with aluminum sulfide to precipitate solid iron sulfide and to form additional gaseous aluminum chlorides; and separating the gaseous aluminum chloride from the solid iron sulfide. 1 fig.

  2. Method of processing aluminous ores

    DOEpatents

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    A method of producing aluminum chloride from aluminous materials containing compounds of iron, titanium and silicon comprising reacting the aluminous materials with carbon and a chlorine-containing gas at a temperature of about 900.degree. K. to form a gaseous mixture containing chlorides of aluminum, iron, titanium and silicon and oxides of carbon; cooling the gaseous mixture to a temperature of about 400.degree. K. or lower to condense the aluminum chlorides and iron chlorides while titanium chloride and silicon chloride remain in the gas phase to effect a separation thereof; heating the mixture of iron chlorides and aluminum chlorides to a temperature of about 800.degree. K. to form gaseous aluminum chlorides and iron chlorides; passing the heated gases into intimate contact with aluminum sulfide to precipitate solid iron sulfide and to form additional gaseous aluminum chlorides; and separating the gaseous aluminum chloride from the solid iron sulfide.

  3. Forging the anthropogenic iron cycle.

    PubMed

    Wang, Tao; Müller, Daniel B; Graedel, T E

    2007-07-15

    Metallurgical iron cycles are characterized for four anthropogenic life stages: production, fabrication and manufacturing, use, and waste management and recycling. This analysis is conducted for year 2000 and at three spatial levels: 68 countries and territories, nine world regions, and the planet. Findings include the following: (1) contemporary iron cycles are basically open and substantially dependent on environmental sources and sinks; (2) Asia leads the world regions in iron production and use; Oceania, Latin America and the Caribbean, Africa, and the Commonwealth of Independent States present a highly production-biased iron cycle; (3) purchased scrap contributes a quarter of the global iron and steel production; (4) iron exiting use is three times less than that entering use; (5) about 45% of global iron entering use is devoted to construction, 24% is devoted to transport equipment, and 20% goes to industrial machinery; (6) with respect to international trade of iron ore, iron and steel products, and scrap, 54 out of the 68 countries are net iron importers, while only 14 are net exporters; (7) global iron discharges in tailings, slag, and landfill approximate one-third of the iron mined. Overall, these results provide a foundation for studies of iron-related resource policy, industrial development, and waste and environmental management.

  4. Modeling of a Hydrogenic Pellet Production System

    NASA Astrophysics Data System (ADS)

    Leachman, J. W.; Pfotenhauer, J. M.; Nellis, G. F.

    2010-04-01

    Solid hydrogenic pellets are used as fuel for fusion energy machines like the ITER device. This paper discusses the numerical modeling of a Pellet Production System (PPS) that is used to generate these pellets. The PPS utilizes a source of supercritical helium to provide the cooling that is necessary to precool, liquefy, and solidify hydrogenic material that is ultimately extruded and cut into fuel pellets. The specific components within the PPS include a pre-cooling heat exchanger, a liquefier, and a twin-screw solidifying extruder. This paper presents numerical models of each component. These numerical models are used as design tools to predict the performance of the respective devices. The performance of the PPS is dominated by the heat transfer coefficient and viscous dissipation associated with the solidifying hydrogenic fluid in the twin-screw extruder. This observation motivates experimental efforts aimed at precise measurement of these quantities.

  5. Hydrogen Uptake of DPB Getter Pellets

    SciTech Connect

    Dinh, L N; Schildbach, M A; Herberg, J L; Saab, A P; Weigle, J; Chinn, S C; Maxwell, R S; McLean II, W

    2008-05-30

    The physical and chemical properties of 1,4-diphenylbutadiyne (DPB) blended with carbon-supported Pd (DPB-Pd/C) in the form of pellets during hydrogenation were investigated. A thermogravimetric analyzer (TGA) was employed to measure the kinetics of the hydrogen uptake by the DPB getter pellets. The kinetics obtained were then used to develop a semi-empirical model, based on gas diffusion into solids, to predict the performance of the getter pellets under various conditions. The accuracy of the prediction model was established by comparing the prediction models with independent experimental data on hydrogen pressure buildup in sealed systems containing DPB getter pellets and subjected to known rates of hydrogen input. The volatility of the hydrogenated DPB products and its effects on the hydrogen uptake kinetics were also analyzed.

  6. Plasma gun pellet acceleration modeling and experiment

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1996-12-31

    Modifications to the electrothermal plasma gun SIRENS have been completed to allow for acceleration experiments using plastic pellets. Modifications have been implemented to the 1-D, time dependent code ODIN to include pellet friction, momentum, and kinetic energy with options of variable barrel length. The code results in the new version, POSEIDON, compare favorably with experimental data and with code results from ODIN. Predicted values show an increased pellet velocity along the barrel length, achieving 2 km/s exit velocity. Measured velocity, at three locations along the barrel length, showed good correlation with predicted values. The code has also been used to investigate the effectiveness of longer pulse length on pellet velocity using simulated ramp up and down currents with flat top, and triangular current pulses with early and late peaking. 16 refs., 5 figs.

  7. Apparatus for feeding nuclear fuel pellets to a loading tray

    SciTech Connect

    Huggins, T.B.

    1981-12-08

    Apparatus for feeding nuclear fuel pellets at a uniform, predetermined rate between pellet centering and grinding apparatus and a tray used for loading pellets into a nuclear fuel rod are described. Pellets discharged from the grinder are conveyed by a woven wire belt to a drive wheel which develops a force available to be applied to pellets preceding it on the belt. The pellets pass under the drive wheel which adds additional weight acting vertically on each pellet. This total weight of pellet and drive wheel coupled with wire belt linear movement acts to push a line of about 36 pellets onto a pellet dumping mechanism. As the dumping mechanism is actuated to dump the pellets on to a loading tray, the pellets moving toward the mechanism are clamped in a stationary position and the drive wheel simultaneously is lifted from its pellet contacting position until the pellet dumping process is completed. The clamping device is then lifted from its pellet and the drive wheel simultaneously is lowered into a pellet contacting position.

  8. The effect of polycarbophil on the gastric emptying of pellets.

    PubMed

    Khosla, R; Davis, S S

    1987-01-01

    The influence of the putative bioadhesive, polycarbophil, on the gastric emptying of a pellet formulation, has been investigated in three fasted subjects. The pellets were radiolabelled with technetium-99m. Gastric emptying was measured using the technique of gamma scintigraphy. The pellets emptied from the stomach rapidly and in an exponential manner. Polycarbophil did not retard the gastric emptying of the pellets.

  9. Pelletized Asphalt for Airfield Damage Repair

    DTIC Science & Technology

    2009-08-01

    HD) design is based on the 75-blow Marshall Hammer and utilizes air voids (Va) and voids filled with asphalt (VFA) as criteria for establishing... flowable ); however, these additives pose their own unique problems. For instance, when sulfur is used to stiffen the binder, it has a tendency to...pellets during the manufacturing process. These fines fill the interstices between the pellets and eliminate the point contact thus creating a

  10. Single pellet crush strength testing of catalysts

    SciTech Connect

    Brienza, P.K. )

    1988-09-01

    ASTM D-32 Committee on Catalysts has developed a standard test method for single pellet crush strength for formed catalyst shapes. This standard was issued under the fixed designation D 4179. The method is applicable to regular catalyst shapes such as tablets and spheres. Extrudates, granular materials, and other irregular shapes are excluded. The committee continues to work on the development of a method for the single pellet crush testing of extrudates.

  11. Pelletization process of postproduction plant waste

    NASA Astrophysics Data System (ADS)

    Obidziński, S.

    2012-07-01

    The results of investigations on the influence of material, process, and construction parameters on the densification process and density of pellets received from different mixtures of tobacco and fine-grained waste of lemon balm are presented. The conducted research makes it possible to conclude that postproduction waste eg tobacco and lemon balm wastes can be successfully pelletized and used as an ecological, solid fuels.

  12. Gas adsorption capacity of wood pellets

    DOE PAGES

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; ...

    2016-02-03

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challengingmore » due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less

  13. Gas adsorption capacity of wood pellets

    SciTech Connect

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; Lau, A.; Bi, X. T.

    2016-02-03

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.

  14. Method for beneficiating coal ore

    SciTech Connect

    Irons, S.D.

    1983-03-15

    A new heavy liquid parting medium comprising an emulsion of water and a substantially water immiscible heavy parting liquid for use in beneficiating ores by gravity separations such as sink -float processes. The specific gravity of the emulsion parting medium can be adjusted by proportioning the relative amounts of water and the substantially water immiscible heavy liquid. Asmined coal is beneficiated using a water-trichlorofluoromethane emulsion as the parting medium in a sink-float separation process.

  15. Leaching of radionuclides from uranium ore and mill tailings ( Ra- 226, Tn-230).

    USGS Publications Warehouse

    Landa, E.R.

    1982-01-01

    The major part of the extractable uranium is associated with a readily acid-soluble fraction in both ore and tailings. The major part of the extractable 226Ra was associated with an iron, manganese hydrous-oxide fraction in the ore and tailings. Thorium-230 was the least leachable of the radionuclides studied. The major portion of the extractable 230Th was associated with alkaline-earth sulphate precipitates, organic matter, or both. The specific effects of milling on each of the nuclides are discussed.-Author

  16. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise

    USGS Publications Warehouse

    Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, William; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.; Bougault, H.; Cambon, P.; Hekinian, R.

    1979-01-01

    Massive ore-grade zinc, copper and iron sulphide deposits have been found at the axis of the East Pacific Rise. Although their presence on the deep ocean-floor had been predicted there was no supporting observational evidence. The East Pacific Rise deposits represent a modern analogue of Cyprus-type sulphide ores associated with ophiolitic rocks on land. They contain at least 29% zinc metal and 6% metallic copper. Their discovery will provide a new focus for deep-sea exploration, leading to new assessments of the concentration of metals in the upper layers of the oceanic crust. ?? 1979 Nature Publishing Group.

  17. Modeling of crushed ore agglomeration for heap leach operations

    NASA Astrophysics Data System (ADS)

    Dhawan, Nikhil

    The focus of this dissertation is modeling of the evolution of size distribution in batch agglomeration drum. There has been no successful work on modeling of crushed ore agglomeration although the framework for population balance modeling of pelletization and granulation is readily available. In this study three different batch agglomeration drums were used to study the agglomeration kinetics of copper, gold and nickel ores. The agglomerate size distribution is inherently subject to random fluctuation due the very nature of the process. Yet, with careful experimentation and size analysis the evolution of size distribution can be followed. The population balance model employing the random coalesce model with a constant rate kernel was shown to work well in a micro and lab scale agglomerator experiments. In small drums agglomerates begin to break in a short time, whereas the growth is uniform in the lab scale drum. The experimental agglomerate size distributions exhibit self-preserving size spectra which confirms the applicability of coalescence rate based model. The same spectra became a useful fact for predicting the size distribution with an empirical model. Since moisture is a principal variable, the absolute deviation from optimum moisture was used as the primary variable in the empirical model. Having established a model for the size distribution, the next step was to delve into the internal constituents of each agglomerate size class. To this end, an experimental scheme known as dip test was devised. The outcome of the test was the size distribution of progeny particles which make up a given size class of agglomerate. The progeny size distribution was analyzed with a model that partitions the particles into a host and guest category. The ensuing partition coefficient is a valuable in determining how a particle in a size class participates in larger agglomerates. This dissertation lays out the fundamentals for applying the population balance concept to batch

  18. Properties of melt extruded enteric matrix pellets.

    PubMed

    Schilling, Sandra U; Shah, Navnit H; Waseem Malick, A; McGinity, James W

    2010-02-01

    The objective of this study was to investigate the properties of enteric matrix pellets that were prepared by hot-melt extrusion in a one-step, continuous process. Five polymers (Eudragit) L100-55, L100 and S100, Aqoat grades LF and HF) were investigated as possible matrix formers, and pellets prepared with Eudragit S100 demonstrated superior gastric protection and acceptable processibility. Extruded pellets containing Eudragit S100 and up to 40% theophylline released less than 10% drug over 2h in acid, however, the processibility and yields were compromised by the high amounts of the non-melting drug material in the formulation. Efficient plasticization of Eudragit S100 was necessary to reduce the polymer's glass transition temperature and melt viscosity. Five compounds including triethyl citrate, methylparaben, polyethylene glycol 8000, citric acid monohydrate and acetyltributyl citrate were investigated in terms of plasticization efficiency and preservation of the delayed drug release properties. The aqueous solubility of the plasticizer and its plasticization efficiency impacted the drug release rate from the matrix pellets. The use of water-soluble plasticizers resulted in a loss of gastric protection, whereas low drug release rates in acid were found for pellets containing insoluble plasticizers or no plasticizer, independent of the extent of Eudragit S100 plasticization. The release rate of theophylline in buffer pH 7.4 was faster for pellets that were prepared with efficient plasticizers. The microstructure and solid-state properties of plasticized pellets were further investigated by scanning electron microscopy and powder X-ray diffraction. Pellets prepared with efficient plasticizers (TEC, methylparaben, PEG 8000) exhibited matrices of low porosity, and the drug was homogeneously dispersed in its original polymorphic form. Pellets containing ATBC or citric acid monohydrate had to be extruded at elevated temperature and showed physical instabilities in

  19. Ultrasonic vibration-assisted (UV-A) pelleting of wheat straw: a constitutive model for pellet density.

    PubMed

    Song, Xiaoxu; Zhang, Meng; Pei, Z J; Wang, Donghai

    2015-07-01

    Ultrasonic vibration-assisted (UV-A) pelleting can increase cellulosic biomass density and reduce biomass handling and transportation costs in cellulosic biofuel manufacturing. Effects of input variables on pellet density in UV-A pelleting have been studied experimentally. However, there are no reports on modeling of pellet density in UV-A pelleting. Furthermore, in the literature, most reported density models in other pelleting methods of biomass are empirical. This paper presents a constitutive model to predict pellet density in UV-A pelleting. With the predictive model, relations between input variables (ultrasonic power and pelleting pressure) and pellet density are predicted. The predicted relations are compared with those determined experimentally in the literature. Model predictions agree well with reported experimental results.

  20. Comparison of the Oxidation Behaviors of High FeO Chromite and Magnetite Concentrates Relevant to the Induration of Ferrous Pellets

    NASA Astrophysics Data System (ADS)

    Zhu, Deqing; Yang, Congcong; Pan, Jian; Li, Xiaobo

    2016-10-01

    Oxidation process plays an important role in producing sufficiently strong ferrous pellets for blast furnace, and the oxidation behavior of pellet feed greatly affects the quality of pellets. As a supplementary research to earlier published work, the present study fixes its particular attention on the fundamental oxidation behavior of a high FeO South African chromite concentrate in comparison to that of typical magnetite concentrate using differential scanning calorimetry, X-ray diffraction analysis, and thermogravimetry at various temperatures ranging from 473 K to 1273 K (200 °C to 1000 °C). The reaction mechanism and phase transformation during the oxidation process of chromite spinel is further explained by thermodynamics calculation performed by FactSage software. Besides, routine laboratory preheating-roasting test of single ore pellets is also conducted to reveal the relevance of oxidizability to the consolidation of pellets. The results show that the chromite spinel possesses much poorer oxidizability than magnetite, usually accompanying complex phase transformations via a preferential nucleation of Fe-rich sesquioxide from the chromite spinel matrix at low temperatures and thereafter the formation of Cr-rich sesquioxide on the substrate of Fe-rich phase at high temperatures. The oxidation of chromite spinel is inferior to that of magnetite from the viewpoint of thermodynamics and dynamic kinetics. Good inherent oxidizability of raw materials is found to have a positive effect on the induration process of pellet.

  1. Microwave heating characteristics of magnetite ore

    NASA Astrophysics Data System (ADS)

    Rajavaram, Ramaraghavulu; Lee, Jaehong; Oh, Joon Seok; Kim, Han Gyeol; Lee, Joonho

    2016-11-01

    The heating characteristics of magnetite ore under microwave irradiation were investigated as a function of incident microwave power, particle size, and magnetite ore mass. The results showed that the heating rate of magnetite ore is highly dependent on microwave power and magnetite ore mass. The maximum heating rate was obtained at a microwave irradiation power of 1.70 kW with a mass of 25 g and particle size between 53-75 µm. The volumetric heating rate of magnetite ore was investigated by measuring the temperature at different depths during microwave irradiation. Microwave irradiation resulted in modification of the microstructure of the magnetite ore, but new phases such as FeO or Fe2O3 were not formed. In addition, the crystal size decreased from 115 nm to 63 nm after microwave irradiation up to 1573 K.

  2. A 400-pellet feed system for the ORNL centrifuge pellet injector

    SciTech Connect

    Foster, C.A.; Qualls, A.L.; Baylor, L.R.; Schechter, D.E.; Dyer, G.R.; Milora, S.L.

    1993-11-01

    An improved and extended pellet fabrication and feed mechanism is being developed for the Oak Ridge National Laboratory (ORNL) centrifuge pellet injector that is presently installed on Tore Supra. This upgrade will extend the number of pellets available for a single-plasma discharge from 100 to 400. In addition, a new pusher and delivery system is expected to improve the performance of the device. As in the original system, deuterium ice is deposited from the gas phase on a liquid-helium-cooled rotating disk, forming a rim of solid deuterium. The rim of ice is machined to a parabolic profile from which pellets are pushed. In the new device, a stack of four ice rims are formed simultaneously, thereby increasing the capacity from 100 to 400 pellets. An improved method of ice formation has also been developed that produces clear ice. The pellet pusher and delivery system utilizes a four-axis, brushless dc servo system to precisely cut and deliver the pellets from the ice rim to the entrance of the centrifuge wheel. Pellets can be formed with sizes ranging from 2.5- to 4-mm diam at a rate of up to 8 per second. The operation of the injector is fully automated by a computer control system. The design and test results of the device are reported.

  3. The enhanced ASDEX Upgrade pellet centrifuge launcher.

    PubMed

    Plöckl, B; Lang, P T

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  4. The enhanced ASDEX Upgrade pellet centrifuge launcher

    NASA Astrophysics Data System (ADS)

    Plöckl, B.; Lang, P. T.

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  5. The enhanced ASDEX Upgrade pellet centrifuge launcher

    SciTech Connect

    Plöckl, B.; Lang, P. T.

    2013-10-15

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  6. Toxicity of nickel ores to marine organisms.

    PubMed

    Florence, T M; Stauber, J L; Ahsanullah, M

    1994-06-06

    Queensland Nickel proposes to import New Caledonian (Ballande) and Indonesian (Gebe) nickel ores, one option being ship-to-barge transfer in Halifax Bay, North Queensland. Because small amounts of ore may be split during the unloading and transfer operations, it was important to investigate the potential impact of the spilt ore on the ecological health of the Bay. Long-term leaching of the ores with seawater showed that only nickel and chromium (VI) were released from the ores in sufficient concentrations to cause toxicity to a range of marine organisms. The soluble fractions of nickel and chromium (VI) were released from the ores within a few days. Nickel, chromium (VI) and the ore leachates showed similar toxicity to the juvenile banana prawn Penaeus merguiensis, the amphipod Allorchestes compressa and both temperature (22 degrees C) and tropical (27 degrees C) strains of the unicellular marine alga Nitzschia closterium. In a series of 30-day sub-chronic microcosm experiments, juvenile leader prawns Penaeus monodon, polychaete worms Galeolaria caespitosa and the tropical gastropod Nerita chamaeleon were all very resistant to the nickel ores, with mortality unaffected by 700 g ore per 50 l seawater. The growth rate of the leader prawns was, however, lower than that of the controls. From these data, a conservative maximum safe concentration of the nickel ores in seawater is 0.1 g l-1. The nickel ore was not highly toxic and if spilt in the quantities predicted, would not have a significant impact on the ecological health of the Bay.

  7. The modes of occurrence of rare-earths ores and the issues on their beneficiation processes

    NASA Astrophysics Data System (ADS)

    Takagi, T.

    2012-04-01

    Rare-earths (RE) ores can largely be divided into the following four types in terms of the modes of occurrence. In each type of RE ores, there are some issues on beneficiation processes, which should be resolved for their successful exploitation. 1. Fine-grained phosphates with iron oxides: This type ores are commonly found from weathered carbonatite and IOCG deposits. The former is Araxa (Brazil), Zandkopsdrift (South Africa), Mt. Weld (Australia) and Yen Phu (Vietnam), and the latter Bayan Obo (China), Vergenoeg (South Africa) and Olympic Dam (Australia). Main RE minerals are monazite, xenotime and florencite contained in the aggregates of iron oxides such as goethite, hematite and magnetite. Fluorite often occurs in the latter type ores. The phosphates and iron oxides occur commonly as very fine grains (< 10 micron meters), and thus they are not readily separated by conventional physical processing. 2. Fluorapatite veins: This type ores are found from the deposits related to alkaline igneous rocks. Nolans Bore (Australia), Palabora (South Africa) and Mushugai Khudag (Mongolia) are the examples. RE is contained mostly in fluorapatite and associated monazite. It is expected that RE can be produced as byproducts of phosphorus fertilizer. However, dissolution of fluorapatite by sulfuric acid causes the coprecipitation of RE with gypsum, which is a refractory material. 3. Silicates and niobium oxides: This type ores are found from hydrothermally altered alkaline plutonic rocks or pegmatitic veins related to alkaline magmatism. Nechalacho and Strange Lake (Canada), Kvanefjeld (Greenland), Bokan Mountain (US), Norra Karr (Sweden) and Dubbo (Australia) are the representative deposits. Main RE minerals are zircon, eudialyte, mosandrite, fergusonite and allanite. They are relatively enriched in heavy RE, and it is expected that part of RE can be produced as byproducts of zirconium. However, their acid dissolution often causes the coprecipitation of RE with silica gel

  8. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    NASA Astrophysics Data System (ADS)

    Judge, Elizabeth J.; Barefield, James E., II; Berg, John M.; Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N.

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines.

  9. Pellet ablation and ablation model development

    SciTech Connect

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs.

  10. CO{sub 2} pellet blasting studies

    SciTech Connect

    Archibald, K.E.

    1997-01-01

    Initial tests with CO{sub 2} pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO{sub 2} pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO{sub 2} blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report.

  11. International Trade of Wood Pellets (Brochure)

    SciTech Connect

    Not Available

    2013-05-01

    The production of wood pellets has increased dramatically in recent years due in large part to aggressive emissions policy in the European Union; the main markets that currently supply the European market are North America and Russia. However, current market circumstances and trade dynamics could change depending on the development of emerging markets, foreign exchange rates, and the evolution of carbon policies. This fact sheet outlines the existing and potential participants in the wood pellets market, along with historical data on production, trade, and prices.

  12. Pellet impact drilling operational parameters: experimental research

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Aliev, F. R.; Gorbenko, M. V.; Baranova, A. V.

    2015-02-01

    The article deals with the study of particle-impact drilling that is designed to enhance the rate-of-penetration function in hard and tough drilling environments. It contains the experimental results on relation between drilling parameters and drilling efficiency, the experiments being conducted by means of a specially designed laboratory model. To interpret the results properly a high-speed camera was used to capture the pellet motion. These results can be used to choose optimal parameters, as well as to develop enhanced design of ejector pellet impact drill bits.

  13. Compositional Variability of Rutile in Hydrothermal Ore Deposits

    NASA Astrophysics Data System (ADS)

    Clark, J. R.; Williams-Jones, A. E.

    2009-05-01

    Rutile is a relatively common accessory phase in many geological environments, and although it is almost always composed dominantly of TiO2, it is also associated with a wide range of minor and trace element substitutions. The most prominent minor elements that occur in rutile are Fe, Cr, V, Nb and Ta. Like Ti, the latter two elements are essentially immobile in most non-magmatic metallic ore deposits, and their concentrations in rutile are largely influenced by precursor mineral compositions. Iron, Cr and V concentrations vary considerably in rutile hosted by ore deposits, and reflect combinations of precursor mineral composition and the bulk chemistry of the local mineralized or altered rock environment. However, in hydrothermal alteration zones, rutile compositions are clearly anomalous compared to those in unaltered host rocks, and have distinctive elemental associations and substitutions in different types of ore deposits. We have evaluated the mineral chemistry of rutile in >40 ore deposits worldwide. In general, rutile in volcanogenic massive sulfide deposits contains Sn (and locally W, Sb and/or Cu). Rutile from mesothermal and related gold deposits invariably contains W, and in some of the larger and more important deposits, also contains Sb and/or V. Tungsten-bearing detrital rutile grains from the Witwatersrand suggest that paleoplacer mineralization may have had a mesothermal/orogenic gold source. In some magmatic-hydrothermal Pd-Ni-Cu deposits, rutile contains Ni and Cu. Rutile associated with granite-related Sn deposits has strongly elevated concentrations of Sn and W, and granite-pegmatite W-Sn deposits contain rutile with these elements plus Nb and Ta. The Olympic Dam deposit hosts rutile that is enriched in W, Sn and Cu. Rutile associated with porphyry and skarn Cu and Cu-Au deposits tends to contain elevated W, Cu (and sometimes V). Although many ore deposits have well-defined and diagnostic rutile compositions, there are some compositional

  14. Settling behaviour of pellet flocs in pelleting flocculation process: analysis through operational conditions.

    PubMed

    Gang, Zhang; Ting-lin, Huang; Chi, Tan; Zhan-peng, Li; Wen-jie, He; Hong-da, Han; Chen, Li

    2010-01-01

    Pellet flocs' settling velocity is an important parameter in the pelleting flocculation blanket (PFB) process, hence, it is necessary to investigate flocs' settling behaviour to achieve the optimum operation parameters of the process. To investigate the settling behaviour of pellets under different operational conditions, a dynamic experiment was carried out to concentrate ferric flocs sludge by pelleting flocculation blanket (PFB) process with the scale of 0.5-1.2 m3/h. Under different operating conditions such as raw water concentration, polyacrylamide (PAM) dosage, up-flow rate, and agitation speed, pellet particles were sampled from different locations of the blanket in various operating stages to analyze pellet size, setting velocity, and porosity. Experimental results indicated that, when the PAM dosage increased from 0.59 mg/L to 1.18 mg/L, pellets size would flocculated from 2.25 mm to 3.52 mm with the settling velocity accelerated from 3.28 mm/s to 7.37 mm/s, while under the same up-flow rate, agitation intensity and PAM dosage, accompany with the raw water concentration increased from 216 mg/L to 840 mg/L, pellets settling velocity would improved from 6.03 mm/s to 13.6 mm/s. Under the experimental condition, along with the up-flow rate increased from 13.3 m/h to 40 m/h, pellets settling velocity would decreased from 4.39 mm/s to 3.42 mm/s due to its lower density.

  15. Pellet ablation and temperature profile measurements in TFTR

    SciTech Connect

    Owens, D.K.; Schmidt, G.L.; Cavallo, A.; Grek, B.; Hulse, R.; Johnson, D.; Mansfield, D.; McNeill, D.; Park, H.; Taylor, G.

    1988-01-01

    Single and multiple deuterium pellets have been injected into a variety of TFTR plasmas, including ohmically heated plasmas with wide range of electron temperatures, neutral beam heated plasmas at several NBI powers and high T/sub e/, post NBI plasmas. Pellet penetration into these plasmas was determined by measuring the pellet speed and duration of the H/sub ..cap alpha..//D/sub ..cap alpha../ light emission during pellet ablation in the plasma. These penetration measurements are compared to the predicted penetration computed using the ablation model developed by Oak Ridge National Laboratory. The plasma density profiles before and after pellet injection are used to estimate the number of particles deposited in the plasma. The plasma particle increase compared to the estimated number of atoms in the pellet yields a measure of the fueling efficiency of pellets in TFTR. The ablation cloud parameters are discussed based on polychromater measurements of the H/sub ..cap alpha..//D/sub ..cap alpha../ line emission from the neutral cloud surrounding the pellet. The electron temperature profile evolution after pellet injection is examined for the case of multiple pellet injection into an ohmically heated plasma. The ORNL pellet ablation code was used to compare measured pellet penetration depths with a theoretical model. The measured input parameters to the model are the electron density and temperature profiles, the neutral beam heating profile, the neutral density profile, the pellet size, pellet speed and pellet composition. The free parameter in the model is the thickness of the neutral cloud surrounding the pellet. This parameter is adjusted to arrive at a reasonable agreement between measured and calculated pellet penetration depths. The output of the model which is directly comparable to experiment is the calculated ablation rate. It is assumed that the broad-band H/sub ..cap alpha..//D/sub ..cap alpha../ emission is proportional to the ablation rate.

  16. Iron versus Copper II. Principles and Applications in Bioinorganic Chemistry.

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1986-01-01

    Discusses the differences between iron and copper. Describes various aspects of the behaviors of these two elements, including those of biological and environmental significance. Addresses the evolution of the atmosphere and sedimentary ore formation, the phylogeny of iron and copper, and some anthropological notes regarding the use of the metals.…

  17. Liquefaction of bituminous coals using disposable ore catalysts and hydrogen. Final report, February 7, 1982-July 31, 1982

    SciTech Connect

    Mathur, V.K.

    1982-09-01

    There are a number of problems associated with the production of liquid fuels from coal. The most complex is the use of commercial catalysts which are expensive, with short life, and cannot be recovered or regenerated. The objective of this study was to conduct experiments on coal hydrogenation using low cost mineral ores as disposable catalysts. Coal samples from Blacksville Mine, Pittsburgh Bed were hydrogenated using a number of ores, ore concentrates and industrial waste products as catalysts. Experiments were also conducted using a commercial catalyst (Harshaw Chemicals, 0402T) and no catalyst at all to compare the results. Since iron pyrite has been reported to be a good disposable catalyst, experiments were also conducted using pyrite individually as well as in admixture with other ores or concentrates. The liquefaction was conducted at 425/sup 0/C under 2000 psig (13,790 kPa) hydrogen pressure for a reaction time of 30 minutes using SRC-II heavy distillate as a vehicle oil. The conclusions of this study are as follows: (a) Results of liquefaction using two cycle technique showed that the catalytic activity of iron pyrite could be enhanced by adding materials like limonite, laterite or red mud. Iron pyrite in admixture with limonite ore or molybdenum oxide concentrate gave the best results among all the binary mixtures studied. (b) Iron pyrite with molybdenum oxide concentrate and cobaltic hydroxide cake (metal loading in each case the same as in Harshaw catalyst) gave results which compared favorably with those obtained using the Harshaw catalyst. It is recommended that work on this project should be continued exploring other ores and their mixtures for their catalytic activity for coal liquefaction.

  18. Looking East on Third Floor of Pellet Plant Including Tops ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking East on Third Floor of Pellet Plant Including Tops of Line One and Blenders One, Two, and Three - Hematite Fuel Fabrication Facility, Pellet Plant, 3300 State Road P, Festus, Jefferson County, MO

  19. Looking Southeast from Second Floor Mezzanine of Pellet Plant to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southeast from Second Floor Mezzanine of Pellet Plant to Erbia Mixing Area and Poreformer and Acrawax Mixing Station - Hematite Fuel Fabrication Facility, Pellet Plant, 3300 State Road P, Festus, Jefferson County, MO

  20. Iron Test

    MedlinePlus

    ... detect and help diagnose iron deficiency or iron overload. In people with anemia , these tests can help ... also be ordered when iron deficiency or iron overload is suspected. Early iron deficiency often goes unnoticed. ...

  1. Depositional environment and origin of the Lilaozhuang Neoarchean BIF-hosted iron-magnesite deposit on the southern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, Hua; Zhang, LianChang; Fabre, Sébastien; Wang, ChangLe; Zhai, MingGuo

    2016-08-01

    The Neoarchean Lilaozhuang iron-magnesite deposit is located in the middle of the Huoqiu banded iron formation (BIF) ore belt in Anhui Province on the southern margin of the North China Craton. The Huoqiu BIF is the unique one that simultaneously develops quartz-type, silicate-type, and carbonate-type magnetite in the region. The Lilaozhuang deposit is characterized by magnesium-rich carbonate (magnesite) in magnetite ores. The BIF-hosted iron ores include mainly of silicate type and carbonate type, with a small amount of quartz type, which chiefly exhibit banded and massive structure, with minor disseminated structure. The magnesite ores occur as crystal-like bright white and exhibits massive structure. The Y/Ho ratio and REY pattern of both iron and magnesite ores are similar to that of seawater, while Eu shows positive anomaly, which is the sign of seafloor hydrothermal mixture. These features suggest that ore-forming materials of iron and magnesium in the Lilaozhuang deposit are mainly from the mixture of seafloor hydrothermal and seawater. Both ores do not exhibit negative Ce anomaly, which indicates that the deposit was formed in an environment showing a lack of oxygen. C-O isotopic compositions indicate that magnesite ore has been reformed by metamorphism of low amphibolite facies and later hydrothermal alteration. Based on the comprehensive analysis, authors suggest that iron and magnesite ores in the Lilaozhuang deposits formed in a confined sea basin on continental margin and was influenced by later complex geological processes.

  2. Dielectric Properties of Peanut-hull Pellets at Microwave Frequencies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut-hull pellets are obtained from a waste product, peanut-hulls, which after pelleting can have several uses, namely as a renewable fuel. Rapid and nondestructive characterization of peanut-hull pellets is important for industrial utilization of this resource. Properties such as water content an...

  3. Owl Pellet Analysis--A Useful Tool in Field Studies

    ERIC Educational Resources Information Center

    Medlin, G. C.

    1977-01-01

    Describes a technique by which the density and hunting habits of owls can be inferred from their pellets. Owl pellets--usually small, cylindrical packages of undigested bone, hair, etc.--are regurgitated by a roosting bird. A series of activities based on owl pellets are provided. (CP)

  4. Determination of small amounts of molybdenum in tungsten and molybdenum ores

    USGS Publications Warehouse

    Grimaldi, F.S.; Wells, R.C.

    1943-01-01

    A rapid method has been developed for the determination of small amounts of molybdenum in tungsten and molybdenum ores. After removing iron and other major constituents the molybdenum thiocyanate color is developed in water-acetone solutions, using ammonium citrate to eliminate the interference of tungsten. Comparison is made by titrating a blank with a standard molybdenum solution. Aliquots are adjusted to deal with amounts of molybdenum ranging from 0.01 to 1.30 mg.

  5. Prospecting For Magnetite Ore Deposits With A Innovative Sensor's of Unique Fundamentally New Magnetometer.

    NASA Astrophysics Data System (ADS)

    Emelianenko, T. I.; Tachaytdinov, R. S.; Sarichev, V. F.; Kotov, B. V.; Susoeva, G. N.

    measurement point. The result is often misleading as an intense magnetic anomaly may be registered in a place where is no ore, and vice versa. Such false anomalies and maps may serve as the only guide in iron ore prospecting. The reserves' forecast based on such magnetic maps are also false as they may yield figures exceeding the actual reserves by tens or even hundreds of times. The existing magnetometres are often insufficiently sensitive and incapable of detecting small commercial processable ore bodies with a weak magnetic anomaly (less than 0.1% of the Earth's field). As regards new large iron ore deposits with strong anomalies, the probabilities of encountering them nowadays are becoming increasingly smaller. Confidence in the good performance and the advantages of the new magnetometres patented by the Magnitogorsk Iron and Steel Works is based on the following considerations: The anomalies' magnetic field is several times stronger than the magnetic field of the Earth; To cite two historical instances, the Sokolovskoye ore deposit in Kazakhstan was discovered in 1949 not by prospectors but by a civil aviation pilot, M.Surgutanov, using an ordinary airplane compass. The Kursk Magnetic Anomaly was discovered in 1778 by Professor I.Inozemtsev using a piece of ore hung on a string. The magnetometres patented by the MMK team, are based on the electromagnetism laws of Ampere, Ohm, Weber, Maxwell and Tesla. The history of magnetic prospecting can be divided into three periods, each of them preceded by a revolution of sorts. The first one occurred in 1910 when the German scientist Schmidt developed an optic mechanical magnetometre which came to be known in Russia as M-2 or "Fanzelau". The second revolution came about in 1936 with the invention by the Russian scientist A.Logachov of an AM-9L aeromagnetometre. The third revolution happened in 1953 when Pickard in the Unuted States (and Tsyrell in 1957 in the Soviet Union) invented a proton and quantum magnetometre. But, having

  6. 40 CFR 98.170 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Iron and Steel Production § 98.170 Definition of the source category. The iron and steel production source category includes facilities with any of the following... means the production of steel from iron ore or iron ore pellets. At a minimum, an integrated iron...

  7. 40 CFR 98.170 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Iron and Steel Production § 98.170 Definition of the source category. The iron and steel production source category includes facilities with any of the following... means the production of steel from iron ore or iron ore pellets. At a minimum, an integrated iron...

  8. Ratio maps of iron ore deposits Atlantic City district, Wyoming

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.

    1973-01-01

    Preliminary results of a spectral rationing technique are shown for a region at the southern end of the Wind River Range, Wyoming. Digital ratio graymaps and analog ratio images have been produced for the test site, but ground truth is not yet available for thorough interpretation of these products. ERTS analog ratio images were found generally better than either ERTS single-channel images or high altitude aerial photos for the discrimination of vegetation from non-vegetation in the test site region. Some linear geological features smaller than the ERTS spatial resolution are seen as well in ERTS ratio and single-channel images as in high altitude aerial photography. Geochemical information appears to be extractable from ERTS data. Good preliminary quantitative agreement between ERTS-derived ratios and laboratory-derived reflectance ratios of rocks and minerals encourage plans to use lab data as training sets for a simple ratio gating logic approach to automatic recognition maps.

  9. Behavior of New Zealand Ironsand During Iron Ore Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Pinson, David; Chew, Sheng; Rogers, Harold; Monaghan, Brian J.; Pownceby, Mark I.; Webster, Nathan A. S.; Zhang, Guangqing

    2016-02-01

    A New Zealand ironsand sample was characterized by scanning electron microscopy (SEM), X-ray fluorescence spectroscopy, qualitative and quantitative X-ray diffraction, and electron probe microanalysis. The titanomagnetite-rich ironsand was added into an industrial sinter blend in the proportion of 5 wt pct, and the mixture was uniaxially pressed into cylindrical tablets and sintered in a tube furnace under flowing gas with various oxygen potentials and temperatures to develop knowledge and understanding of the behavior of titanium during sintering. An industrial sinter with the addition of 3 wt pct ironsand was also examined. Both the laboratory and industrial sinters were characterized by optical and SEM. Various morphologies of relict ironsand particles were present in the industrial sinter due to the heterogeneity of sintering conditions, which could be well simulated by the bench-scale sintering experiments. The assimilation of ironsand during sintering in a reducing atmosphere started with the diffusion of calcium into the lattice of the ironsand matrix, and a reaction zone was formed near the boundary within individual ironsand particles where a perovskite phase was generated. With increasing sintering temperature, in a reducing atmosphere, ironsand particles underwent further assimilation and most of the titanium moved from the ironsand particles into a glass phase. In comparison, more titanium remained in the original ironsand particles when sintered in air. Ironsand particles are more resistant to assimilation in an oxidizing atmosphere.

  10. On prediction and discovery of lunar ores

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    1991-01-01

    Sampling of lunar material and remote geochemical, mineralogical, and photogeologic sensing of the lunar surface, while meager, provide first-cut information about lunar composition and geochemical separation processes. Knowledge of elemental abundances in known lunar materials indicates which common lunar materials might serve as ores if there is economic demand and if economical extraction processes can be developed, remote sensing can be used to extend the understanding of the Moon's major geochemical separations and to locate potential ore bodies. Observed geochemical processes might lead to ores of less abundant elements under extreme local conditions.

  11. 25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE STORAGE YARD. AN ORE BRIDGE THAT FORMERLY TRANSFERRED ORE WITHIN THE STORAGE YARD WAS DESTROYED BY A BLIZZARD IN 1978. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  12. 36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ORE BOAT. BY LATE WINTER, THE ORE STORAGE YARD SEEN AT LEFT WILL BE DEPLETED. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  13. Modeling Dynamic Fracture of Cryogenic Pellets

    SciTech Connect

    Parks, Paul

    2016-06-30

    This work is part of an investigation with the long-range objective of predicting the size distribution function and velocity dispersion of shattered pellet fragments after a large cryogenic pellet impacts a solid surface at high velocity. The study is vitally important for the shattered pellet injection (SPI) technique, one of the leading technologies being implemented at ORNL for the mitigation of disruption damage on current tokamaks and ITER. The report contains three parts that are somewhat interwoven. In Part I we formulated a self-similar model for the expansion dynamics and velocity dispersion of the debris cloud following pellet impact against a thick (rigid) target plate. Also presented in Part I is an analytical fracture model that predicts the nominal or mean size of the fragments in the debris cloud and agrees well with known SPI data. The aim of Part II is to gain an understanding of the pellet fracturing process when a pellet is shattered inside a miter tube with a sharp bend. Because miter tubes have a thin stainless steel (SS) wall a permanent deformation (dishing) of the wall is produced at the site of the impact. A review of the literature indicates that most projectile impact on thin plates are those for which the target is deformed and the projectile is perfectly rigid. Such impacts result in “projectile embedding” where the projectile speed is reduced to zero during the interaction so that all the kinetic energy (KE) of the projectile goes into the energy stored in plastic deformation. Much of the literature deals with perforation of the target. The problem here is quite different; the softer pellet easily undergoes complete material failure causing only a small transfer of KE to stored energy of wall deformation. For the real miter tube, we derived a strain energy function for the wall deflection using a non-linear (plastic) stress-strain relation for 304 SS. Using a dishing profile identical to the linear Kirchkoff-Love profile (for lack

  14. How iron controls iron.

    PubMed

    Kühn, Lukas C

    2009-12-01

    Cells regulate iron homeostasis by posttranscriptional regulation of proteins responsible for iron uptake and storage. This requires RNA-binding activity of iron-regulatory proteins, IRP1 and IRP2. Two studies recently published in Science by Vashisht et al. (2009) and Salahudeen et al. (2009) reveal how cells adjust IRP2 activity.

  15. Simulation of peeling-ballooning modes with pellet injection

    SciTech Connect

    Chen, S. Y.; Huang, J.; Sun, T. T.; Tang, C. J.; Wang, Z. H.

    2014-11-15

    The influence of pellet ablation on the evolution of peeling-ballooning (P-B) modes is studied with BOUT++ code. The atoms coming from pellet ablation can significantly reshape the plasma pressure profile, so the behaviors of P-B modes and edge localized mode (ELM) are modified dramatically. This paper shows that the energy loss associated with an ELM increases substantially over that without the pellet, if the pellet is deposited at the top of the pedestal. On the contrary, for pellet deposition in the middle of the pedestal region the ELM energy loss can be less.

  16. Iron-rich fragments in the Yamansu iron deposit, Xinjiang, NW China: Constraints on metallogenesis

    NASA Astrophysics Data System (ADS)

    Li, Hou-Min; Ding, Jian-Hua; Zhang, Zhao-Chong; Li, Li-Xing; Chen, Jing; Yao, Tong

    2015-12-01

    Volcanic rock-hosted iron deposits are among the important iron ores in China. However, the nature of primary magma and petrogenesis associated with these iron ores remains controversial. Here, we report iron-rich fragments (IRF) from the Yamansu iron deposit in Eastern Tianshan Mountains, NW China, which occurs in association with volcanic breccia, submarine volcanic breccia and ignimbrite. The IRF is composed of five types including oligoclase-iron oxide type (OIO), oligoclase-albite-iron oxide type (OAIO), albite-iron oxide type (AIO), albite-K-feldspar-iron oxide type (AKIO) and K-feldspar-iron oxide type (KIO). These fragments display typical volcanic fabric features, such as porphyritic texture, hyalopilitic texture of the groundmass and vesicles filled by minerals to form amygdales. The feldspar phenocrysts of IRF are dominantly albite. The groundmass of IRF consists of magnetite and feldspar. The magnetite is distributed in between the feldspar laths, and together display hyalopilitic texture which could be observed only in volcanic rocks. The vesicles are filled with magnetite, feldspar, chlorite and calcite from the margin to the interior. The IRF has high Si, Al, Fe, Ca, Ti, Na and K contents and low Mg content. The average total Fe is 26 wt.%. The magnetite is mostly titanium-vanadium magnetite, with the TiO2 content ranging up to 4.86 wt.% and V2O3 content up to 3.20 wt.%. The IRF probably came from iron-rich melts and represent the products of the Fenner magma evolution. The basaltic magma evolved into the Fe-Na-rich residual melts by crystallization under low oxygen fugacity condition in a closed magma chamber after intruding into the shallow crust. The Fe-Na-rich residual melts were emplaced in hypabyssal environments or erupted generating the orebodies or providing the material source for the generation of the high-grade iron ores which were subsequently enriched by the late-stage hydrothermal fluids.

  17. 8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, LOOKING WEST FROM ACCESS ROAD. THE ROADWAY ON THIS LEVEL (CENTER) WAS USED FOR UNLOADING ORE BROUGHT ON BURROWS INTO THE ORE BIN AT THE TOP LEVEL OF THE MILL. THE ORE BIN IN THE UPPER LEFT WAS ADDED LATER WHEN ORE WAS BROUGHT TO THE MILL BY TRUCKS. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  18. Research of Geochemical Associations of Nephelin Ores

    NASA Astrophysics Data System (ADS)

    Vulf, M.; Simonov, K.; Sazonov, A.

    The instant paper concerns research of distribution petrogenic chemical members in urtit ore body of Kia-Shaltyrsk deposit. Rocks of the deposit are ore for producing alum earth. Actuality of the subject based on outlooks of detection noble metal ore-bearing (Au, Pt, Pd, Rh, Ru) in alkaline rocks of Siberia, including rocks of Kia-Shaltyrsk deposit (Kuznetsk Alatau). The main purpose of analysis of distribution of members is directed to detection of a non-uniformity of distribution of substance and segments enriched with alum earth and noble members. The basic solved problems are following: o Creation regression models of ore body; o Definition of cumulative distribution functions of members in a contour of ore body; o The analysis of the obtained outcomes in geologic terms. For construction regression models the full-scale data was used, which was presented by the results of the spectral and silicate analyses of gold and petrogenic members containing 130 assays arranged in ore body. A non-linear multiparameter model of the ore body based on components of nephelin ore using neural net approach was constructed. For each member the corresponding distribution function is produced. The model is constructed on the following members: Au, Al2O3, SiO2, Fe2O3, CaO, MgO, SO3, R2O ((Na2O+K2O) -1) and losses of burning. The error of model forecasting membersS concentrations was from 0.02 up to 20%. Large errors basically connected with assays located near contact of ore body and ad- jacent strata or with very high concentrations of members; also they can be connected with different genesis of rocks or superposition of other processes. The analysis of concentrations of members and normalised absolute errors of the fore- cast has shown, that all members can be sectioned into two groups: first: Al2O3, SiO2, R2O, Fe2O3 and second: Au, losses of burning, CaO, MgO, SO3. The distribution of 1 gold is tightly connected with calcium and losses of burning and spatially linked with zones

  19. Production of sintered porous metal fluoride pellets

    DOEpatents

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  20. Tritium pellet injection sequences for TFTR

    SciTech Connect

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.; Singer, C.E.; Schmidt, G.L.

    1983-01-01

    Tritium pellet injection into neutral deuterium, beam heated deuterium plasmas in the Tokamak Fusion Test Reactor (TFTR) is shown to be an attractive means of (1) minimizing tritium use per tritium discharge and over a sequence of tritium discharges; (2) greatly reducing the tritium load in the walls, limiters, getters, and cryopanels; (3) maintaining or improving instantaneous neutron production (Q); (4) reducing or eliminating deuterium-tritium (D-T) neutron production in non-optimized discharges; and (5) generally adding flexibility to the experimental sequences leading to optimal Q operation. Transport analyses of both compression and full-bore TFTR plasmas are used to support the above observations and to provide the basis for a proposed eight-pellet gas gun injector for the 1986 tritium experiments.

  1. Geology and ore deposits of the Pioche district, Nevada

    USGS Publications Warehouse

    Westgate, L.G.; Knopf, Adolph

    1932-01-01

    attention occur at the intersections of steep fissures with the limestone members of the Pioche shale. In recent years the " bedded " ore of the Combined Metals mine has been of main interest. The ore is essentially a.n intimate intergrowth of pyrite, sphalerite, and galena. Although above water level, the ore is unoxidized. It extends on both sides of the mineralizing fissure as far as 100 feet. At the Prince mine ore beds were formed at seven successively higher horizons in the Pioche shale and the overlying Lyndon and Highland Peak limestones. The ore " beds " above water level in the Prince mine are thoroughly oxidized and consist of manganese-iron oxides low in silver, lead, and zinc. About 800,000 tons of ore carrying 2.5 to 3 ounces of silver to the ton, 3 per cent of lead, 35 per cent of iron, and 15 per cent of manganese has been shipped. The Prince mine was in 1915-1918 the premier producer of lead in Nevada. The ore " bed " that occurs here below water level consists of sphalerite, galena, and pyrite in a gangue of manganosiderite and minor quartz. This is the only locality in the district in which the primary source of the abundant oxidized manganese minerals (wad, pyrolusite, and braunite) has so far been found. Some of the stratiform ore bodies the ore beds, as they are locally called were formed adjacent to exceedingly insignificant-looking fissures; and this dependence on inconspicuous mineralizing fissures is beyond doubt one of the most impressive features in the geology of the district. It opens the possibility that there may be many other bedded deposits which, like the Combined Metals ore bed, do not crop out. To find these ore bodies will be difficult, but their discovery will be aided primarily by applying skillfully a knowledge of the geologic column and by determining the faulting that has disturbed or changed the normal sequence of the strata.

  2. Optimization of Porous Pellets for Phosphate Recovery ...

    EPA Pesticide Factsheets

    The poster presents the preliminary adsorption experiment showing that phosphate concentration is decreasing over time as well as presenting the kinetics models that best fit the data collected over 25 days. The purpose of this project is to find a better material for adsorption of phosphate from water treatment facilities. The material is made into pellets which allow for adsorption and are easier to remove from the system when capacity is reached.

  3. A REAL-TIME COAL CONTENT/ORE GRADE (C2OC) SENSOR

    SciTech Connect

    Rand Swanson

    2005-04-01

    This is the final report of a three year DOE funded project titled ''A real-time coal content/ore grade (C{sub 2}OG) sensor''. The sensor, which is based on hyperspectral imaging technology, was designed to give a machine vision assay of ore or coal. Sensors were designed and built at Resonon, Inc., and then deployed at the Stillwater Mining Company core room in southcentral Montana for analyzing platinum/palladium ore and at the Montana Tech Spectroscopy Lab for analyzing coal and other materials. The Stillwater sensor imaged 91' of core and analyzed this data for surface sulfides which are considered to be pathfinder minerals for platinum/palladium at this mine. Our results indicate that the sensor could deliver a relative ore grade provided tool markings and iron oxidation were kept to a minimum. Coal, talc, and titanium sponge samples were also imaged and analyzed for content and grade with promising results. This research has led directly to a DOE SBIR Phase II award for Resonon to develop a down-hole imaging spectrometer based on the same imaging technology used in the Stillwater core room C{sub 2}OG sensor. The Stillwater Mining Company has estimated that this type of imaging system could lead to a 10% reduction in waste rock from their mine and provide a $650,000 benefit per year. The proposed system may also lead to an additional 10% of ore tonnage, which would provide a total economic benefit of more than $3.1 million per year. If this benefit could be realized on other metal ores for which the proposed technology is suitable, the possible economic benefits to U.S. mines is over $70 million per year. In addition to these currently lost economic benefits, there are also major energy losses from mining waste rock and environmental impacts from mining, processing, and disposing of waste rock.

  4. Biomining: metal recovery from ores with microorganisms.

    PubMed

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.

  5. Direct reduction of low grade nickel laterite ore to produce ferronickel using isothermal - temperature gradient

    NASA Astrophysics Data System (ADS)

    Zulhan, Zulfiadi; Gibranata, Ian

    2017-01-01

    In this study, low grade nickel laterite ore was processed by means of isothermal-temperature gradient method to produce ferronickel nugget. The ore and coal as reductant were ground to obtain the grain size of less than 0.25 mm and 0.425 mm, respectively. Both ground laterite ore and coal were mixed, agglomerated in the form of cylindrical pellet by using press machine and then reduced at temperature of 1000°C to 1400°C in a muffle furnace. The experiments were conducted at three stages each at different temperature profile: the first stage was isothermal at 1000°C; the second stage was temperature gradient at certain heating rate from 1000 to 1400°C; and the third stage was isothermal at 1400°C. The heating rate during temperature gradient stage was varied: 6.67, 8.33 and 10°C/minute. No fluxes were added in these experiments. By addition of 10 wt% of coal into the laterite nikel ore, product of ferronickel nugget was formed with the size varies from 1-2 mm. However, by increasing the coal content, the size of ferronickel nugget was decreased to less than 0.2 mm. The observation of the samples during the heating stage showed that ferronickel nugget grew and separated from the gangue during temperature gradient stage as it achieved the temperature of 1380°C. Furthermore, the experiment results indicated that the recovery of ferronickel can be increased at lower heating rate during temperature gradient stage and longer holding time for final isothermal stage. The highest nickel recovery was obtained at a heating rate of 6.67°C/minute.

  6. On the Ablation Models of Fuel Pellets

    SciTech Connect

    Rozhansky, V.A.; Senichenkov, I.Yu.

    2005-12-15

    The neutral gas shielding model and neutral-gas-plasma shielding model are analyzed qualitatively. The main physical processes that govern the formation of the shielding gas cloud and, consequently, the ablation rate are considered. For the neutral gas shielding model, simple formulas relating the ablation rate and cloud parameters to the parameters of the pellet and the background plasma are presented. The estimates of the efficiency of neutral gas shielding and plasma shielding are compared. It is shown that the main portion of the energy flux of the background electrons is released in the plasma cloud. Formulas for the ablation rate and plasma parameters are derived in the neutral-gas-plasma shielding model. The question is discussed as to why the neutral gas shielding model describes well the ablation rate of the pellet material, although it does not take into account the ionization effects and the effects associated with the interaction of ionized particles with the magnetic field. The reason is that the ablation rate depends weakly on the energy flux of hot electrons; as a result, the attenuation of this flux by the electrostatic shielding and plasma shielding has little effect on the ablation rate. This justifies the use of the neutral gas shielding model to estimate the ablation rate (to within a factor of about 2) over a wide range of parameters of the pellet and the background plasma.

  7. Fabrication of high exposure nuclear fuel pellets

    DOEpatents

    Frederickson, James R.

    1987-01-01

    A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.

  8. Aerogravity and remote sensing observations of an iron deposit in Gara Djebilet, southwestern Algeria

    NASA Astrophysics Data System (ADS)

    Bersi, Mohand; Saibi, Hakim; Chabou, Moulley Charaf

    2016-04-01

    The Gara Djebilet iron ore region is one of the most important regions in Africa. Located in the southwestern part of Algeria at the border with Mauritania, the Gara Djebilet region is characterized by steep terrain, which makes this area not easily accessible. Due to these conditions, remote sensing techniques and geophysics are the best ways to map this iron ore. The Gara Djebilet formations are characterized by high iron content that is especially rich in hematite, chamosite and goethite. The high iron content causes an absorption band at 0.88 μm, which is referred to as band 5 in the Operational Land Imager (OLI) Landsat 8 images. In this study, we integrated geological data, aerogravity data, and remote sensing data for the purpose of mapping the distribution of the Gara Djebilet iron deposit. Several remote sensing treatments were applied to the Landsat 8 OLI image, such as color composites, band ratioing, principal component analysis and a mathematical index, which helped locate the surface distribution of the iron ore. The results from gravity gradient interpretation techniques, 2-D forward modeling and 3-D inversion of aerogravity data provided information about the 2-D and 3-D distribution of the iron deposit. The combination of remote sensing and gravity results help us evaluate the ore potential of Gara Djebilet. The estimated tonnage of the iron ore at Gara Djebilet is approximately 2.37 billion tonnes with 57% Fe.

  9. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 9. Group VII. Ores and Minerals.

    DTIC Science & Technology

    1980-12-01

    DESTINATION COMMODITY ..................................................... 8EA BEA GROUP 1976 1980 1990 2000 2020 2040 038 066 07 33 36 42 50 68 83...064 052 07 140 156 180 222 315 444 064 077 07 22 24 29 36 52 064 114 0? 11 12 14 18 25 35 064 115 07 90 96 114 132 191 248 066 038 07 223 244 281 332...Chemicals and chemical fertilizers 9 Group VII: Ores and Minerals 10 Group VIII: Iron ore, steel and iron 11 Group IX: Feed and food products, nec. 12 Group X

  10. Effects of pellet characteristics on L-lactic acid fermentation by R. oryzae: pellet morphology, diameter, density, and interior structure.

    PubMed

    Fu, Yong-Qian; Yin, Long-Fei; Zhu, Hua-Yue; Jiang, Ru; Li, Shuang; Xu, Qing

    2014-11-01

    The effects of pellet morphology, diameter, density, and interior structure on L-lactic acid fermentation by Rhizopus oryzae were characterized for different inoculum sizes and concentrations of peptone and CaCO3. Inoculum size was the most important factor determining pellet formation and diameter. The diameter decreased with increasing inoculum size, and larger pellets were observed for lower inoculum sizes. Peptone concentration had the greatest effect on pellet density, which increased with increasing peptone concentration. L-lactic acid production depended heavily on pellet density but not on pellet diameter. Low-density pellets formed easily under conditions of low peptone concentration and often had a relatively hollow structure, with a thin condensed layer surrounding the pellet and an extraordinarily loose biomass or hollow center. As expected, this structure greatly decreased production. The production of L-lactic acid increased until the density reached a certain level (50-60 kg/m(3)), in which the compact part was distributed homogeneously in the thick outer layer of the pellet and loose in the central layer. Homogeneously structured, denser pellets had limited mass transfer, causing a lower overall turnover rate. However, the interior structure remained nearly constant throughout all fermentation phases for pellets with the same density. CaCO3 concentration only had a slight influence on pellet diameter and density, probably because it increases spore germination and filamentous hypha extension. This work also provides a new analysis method to quantify the interior structure of pellets, thus giving insight into pellet structure and its relationship with productivity.

  11. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  12. Influences on particle shape in underwater pelletizing processes

    SciTech Connect

    Kast, O. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die opening were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.

  13. Cryogenic pellet production developments for long-pulse plasma operation

    SciTech Connect

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  14. Permeability of wood pellets in the presence of fines.

    PubMed

    Yazdanpanah, F; Sokhansanj, S; Lau, A K; Lim, C J; Bi, X; Melin, S; Afzal, M

    2010-07-01

    Broken pellets and fines are produced when pellets are handled. The resistance to air flow was measured for clean pellets and for pellets mixed with 1-20% broken pellets (fines). A pellet diameter was 6mm. The lengths ranged from 6 to 12 mm. Clean pellets were defined as particles that remained on a 4mm screen. A typical sieve analysis showed 30% of the mass of particles that passed through the 4mm screen was smaller than 1mm. The airflow rates used in the experiment ranged from 0.004 to 0.357 ms(-1). The corresponding pressure drop ranged from 1.9 to 271 Pam(-1) for clean pellets, from 4.8 to 1100 Pam(-1) for 10% fines content, and from 7.9 to 1800 Pam(-1) for 20% fines content. Coefficients of Hukill and Ives' equation were estimated for clean pellets and a multiplier was defined to calculate pressure drop for pellets mixed with fines.

  15. A fuel pellet injector for the Microwave Tokamak Experiment (MTX)

    SciTech Connect

    Hibbs, S.M.; Allen, S.L.; Petersen, D.E.; Sewall, N.R.

    1990-09-01

    Unlike other fueling systems for magnetically confined fusion plasmas, a pellet injector can deliver many fuel gas particles to the core of the plasma, enhancing plasma confinement. We installed a new pellet injector on the MTX (formerly Alcator-O) to provide a plasma with a high core density for experiments both with and without ultrahigh-power microwave heating. Its four-barrel pellet generator is the first to be designed and built at LLNL. Based on pipe-gun'' technology originated at Oak Ridge National Laboratory (ORNL), it incorporates our structural and thermal engineering innovations and a unique control system. The pellet transport, differential vacuum-pumping stages, and fast-opening propellant valves are reused parts of the Impurity Study EXperiment (ISX) pellet injector built by ORNL. We tailored designs of all other systems and components to the MTX. Our injector launches pellets of frozen hydrogen or deuterium into the MTX, either singly or in timed bursts of up to four pellets at velocities of up to 1000 m/s. Pellet diameters range from 1.02 to 2.08 mm. A diagnostic stage measures pellet velocities and allows us to photograph the pellets in flight. We are striving to improve the injector's performance, but its operations is already very consistent and reliable.

  16. Novel-shaped catalyst pellets for packed-bed reactors

    SciTech Connect

    Punuru, A.R.

    1987-01-01

    The effect of the shape of a catalyst pellet, on the performance of a packed bed reactor, is determined by evaluating the effectiveness factor and dimensionless overall rates of the catalyst pellet. Depending upon the values of Thiele modulus and Prater number the use of Novel-shaped catalyst pellets, such as Lessing ring type pellets or partition ring type pellets or spoked wheel type pellets, which improve the overall rate of the pellet, were suggested. The novel-shaped pellets were sectioned into a hollow cylinder and slabs. The dimensionless rates and effectiveness factors were determined for hollow cylinders and slabs separately and the total dimensionless overall rate for the pellet is obtained by adding, the individual rates for slabs and hollow cylinder. The catalyst shape effects were studied on the steam-methane reformer. It was found that using traditional catalyst, a hollow cylindrical pellet with R/sub i//R/sub p/ ratio of 0.39, the dimensionless overall rate decreased from 0.75 at the top, to 0.27 at the bottom of the reformer. Upon using Lessing rings at the top, partition rings at the center, and spoked wheel pellets at the bottom of the reformer, the reaction rate can be improved to 0.9 at the top and to 0.73 at the bottom of the reformer. Though benzene-hydrogenation is exothermic reaction, use of solid cylindrical pellet was suggested, because of the low Thiele modulus. Two-dimensional pseudo homogeneous and heterogeneous reactor models were solved for a first order nonisothermal reaction, considering isothermal pellets. The inclusion of nonisothermal effectiveness factor that consider shape effects was left for future work.

  17. Antimony ore in the Fairbanks district, Alaska

    USGS Publications Warehouse

    Killeen, Pemberton Lewis; Mertie, John B.

    1951-01-01

    Antimony-bearing ores in the Fairbanks district, Alaska, are found principally in two areas, the extremities of which are at points 10 miles west and 23 miles northeast of Fairbanks; and one of two minor areas lies along this same trend 30 miles farther to the northeast. These areas are probably only local manifestations of mineralization that affected a much broader area and formed antimony-bearing deposits in neighboring districts, the closest of which is 50 miles away. The ores were exposed largely as a result of lode gold mining, but at two periods in the past, high prices for antimony ore warranted an independent production and about 2500 tons of stibnite ore was shipped. The sulfide deposits occupy the same fractures along which a gold-quartz mineralization of greater economic importance occurred; and both are probably genetically related to igneous rocks which intrude the schistose country rock. The sulfide is in part contemporaneous with some late-stage quartz in which it occurs as disseminated crystals; and in part the latest filling in the mineralized zones where it forms kidney-shaped masses of essentially solid sulfide. One extremely long mass must have contained nearly 100 tons of ore, but the average of the larger kidneys is closer to several tons. Much of the ore is stibnite, with quartz as a minor impurity, and assays show the tenor to vary from 40 to 65 percent antimony. Sulphantimonites are less abundant but likewise occur as disseminated crystals and as kidney-shaped bodies. Antimony oxides appear on the weathered surface and along fractures within the sulfide ore. Deposits containing either stibnite or sulphantimonite are known at more than 50 localities, but only eighteen have produced ore and the bulk of this came from the mines. The geology of the deposit, and the nature, extent, and period of the workings are covered in the detailed descriptions of individual occurrences. Several geologic and economic factors, which greatly affect

  18. Manufacture of Regularly Shaped Sol-Gel Pellets

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kinder, James D.

    2006-01-01

    An extrusion batch process for manufacturing regularly shaped sol-gel pellets has been devised as an improved alternative to a spray process that yields irregularly shaped pellets. The aspect ratio of regularly shaped pellets can be controlled more easily, while regularly shaped pellets pack more efficiently. In the extrusion process, a wet gel is pushed out of a mold and chopped repetitively into short, cylindrical pieces as it emerges from the mold. The pieces are collected and can be either (1) dried at ambient pressure to xerogel, (2) solvent exchanged and dried under ambient pressure to ambigels, or (3) supercritically dried to aerogel. Advantageously, the extruded pellets can be dropped directly in a cross-linking bath, where they develop a conformal polymer coating around the skeletal framework of the wet gel via reaction with the cross linker. These pellets can be dried to mechanically robust X-Aerogel.

  19. A curious pellet from a great horned owl (Bubo virginianus)

    USGS Publications Warehouse

    Woodman, N.; Dove, C.J.; Peurach, S.C.

    2005-01-01

    One of the traditional methods of determining the dietary preferences of owls relies upon the identification of bony remains of prey contained in regurgitated pellets. Discovery of a pellet containing a large, complete primary feather from an adult, male Ring-necked Pheasant (Phasianus colchicus) prompted us to examine in detail a small sample of pellets from a Great Horned Owl (Bubo virginianus). Our analyses of feather and hair remains in these pellets documented the presence of three species of birds and two species of mammals, whereas bones in the pellets represented only mammals. This finding indicates an important bias that challenges the reliability of owl pellet studies making use of only osteological remains.

  20. Modeling of MOX Fuel Pellet-Clad Interaction Using ABAQUS

    SciTech Connect

    Ambrosek, Richard G.; Pedersen, Robert C.; Maple, Amanda

    2002-07-01

    Post-irradiation examination (PIE) has indicated an increase in the outer diameter of fuel pins being irradiated in the Advanced Test Reactor (ATR) for the MOX irradiation program. The diameter increase is the largest in the region between fuel pellets. The fuel pellet was modeled using PATRAN and the model was evaluated using ABAQUS, version 6.2. The results from the analysis indicate the non-uniform clad diameter is caused by interaction between the fuel pellet and the clad. The results also demonstrate that the interaction is not uniform over the pellet axial length, with the largest interaction occurring in the region of the pellet-pellet interface. Results were obtained for an axisymmetric model and for a 1/8 pie shaped segment, using the coupled temperature-displacement solution technique. (authors)

  1. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    PubMed Central

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  2. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.

    PubMed

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-04

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  3. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C) subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  4. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry.

    PubMed

    Yang, Chunxia; Chen, Yongheng; Peng, Ping'an; Li, Chao; Chang, Xiangyang; Wu, Yingjuan

    2009-08-15

    Total concentrations combined with chemical partitioning of trace elements (Cd, Co, Cr, Mn, Ni, Pb, Tl, and Zn) in raw pyrite ore and solid roasting wastes were investigated in order to elucidate their transformations and partitioning during the roasting of raw pyrite ores in sulfuric acid production. In order to better understand the behavior of these elements during roasting, mineral transformations accompanying roasting were also investigated by using microscopy. Results indicated that the mode of occurrence of trace elements in raw pyrite ore and the thermostability of trace element-bearing species formed during roasting played major roles in the transformations of the selected trace elements. Silicate- and amorphous iron (hydr)oxide-bound elements (Cr and Pb) were stable and mainly retained in their original phases. However, acid-exchangeable and sulfide-bound elements tended to transform into other forms via different pathways: elements that tend to form low thermostable species (Cd, Pb and Tl) were significantly vaporized, whereas elements that tend to form high thermostable species (Co, Mn and Ni) mainly reacted with iron oxides or silicates, which then remained in the solid residues. The volatility of trace elements during the roasting has a significant effect on their subsequent partitioning in roasting wastes. Nonvolatile element (Co, Cr, Mn, and Ni) partitioning was determined by settling of the particulate in which they are bound, whereas the partitioning of (semi)volatile elements (Cd, Pb, Tl, and Zn) was controlled by the adsorption of their gaseous species on the particulate.

  5. Pellet acceleration using an ablation-controlled electrothermal launcher

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1995-12-31

    The NCSU ablation-controlled electrothermal launcher SIRENS has been used to accelerate plastic (Lexan polycarbonate) pellets to investigate the possibility of using electrothermal launchers as frozen pellet injectors for tokamak fueling. Successful installation of such a device would include a protective shell (sabot) to shield the hydrogenic pellet from ablation and allow it to maintain its integrity throughout the acceleration. The SIRENS device has been modified to include specially designed barrel sections equipped with diagnostic ports.

  6. Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Wang, Shuzhong; Wang, Longfei; Lv, Mingming

    2014-12-01

    The performance of three iron-based oxygen carriers (pure Fe2O3, synthetic Fe2O3/MgAl2O4 and iron ore) in reduction process using methane as fuel is investigated in thermo-gravimetric analyzer (TGA). The reaction rate and mechanism between three oxygen carriers and methane are investigated. On the basis of reactivity in reduction process, it may be concluded that Fe2O3/MgAl2O4 has the best reactivity with methane. The reaction rate constant is found to be in the following order: Fe2O3/MgAl2O4 > pure Fe2O3 > iron ore and the activation energy varies between 49 and 184 kJ mol-1. Reduction reactions for the pure Fe2O3 and synthetic Fe2O3/MgAl2O4 are well represented by the reaction controlling mechanism, and for the iron ore the phase-boundary controlled (contracting cylinder) model dominates. The particles of iron ore and synthetic Fe2O3/MgAl2O4 have better stability than that of pure Fe2O3 when the reaction temperature is limited to lower than 1223 K. These preliminary results suggest that iron-based mixed oxygen carrier particles are potential to be used in methane chemical looping process, but the reactivity of the iron ore needs to be increased.

  7. Recovery of Rare Earths, Niobium, and Thorium from the Tailings of Giant Bayan Obo Ore in China

    NASA Astrophysics Data System (ADS)

    Yu, Xiu-Lan; Bai, Li; Wang, Qing-Chun; Liu, Jia; Chi, Ming-Yu; Wang, Zhi-Chang

    2012-06-01

    The recovery of rare earths, niobium, and thorium from Bayan Obo's tailings has been investigated because the Bayan Obo ore is rich in rare earths and rich in niobium and thorium, but it is mined mainly as an iron ore and will be used up soon. By carbochlorination between 823 K (550 °C) and 873 K (600 °C) for 2 hours, 76 to 93 pct of rare earths were recovered from the tailings, which were much higher than those from Bayan Obo's rare earth concentrate, together with 65 to 78 pct of niobium, 72 to 92 pct of thorium, 84 to 91 pct of iron, and 81 to 94 pct of fluorine. This suggests a cooperative reaction mechanism that carbochlorination of iron minerals (and carbonates) in the tailings enhances that of rare earth minerals, which is supported by a thermodynamic analysis. Subsequently, niobium separation from the low-volatile, ultrahigh iron chloride mixture was achieved efficiently by selective oxidation with Fe2O3. This process, combined with the best available technologies for separation of rare earths and thorium from the involatile chloride mixture and for comprehensively using other valuable elements, allows the ore to minimize radioactive waste and to use rare metal resources sustainably in the future.

  8. Revealing accumulation zones of plastic pellets in sandy beaches.

    PubMed

    Moreira, Fabiana T; Balthazar-Silva, Danilo; Barbosa, Lucas; Turra, Alexander

    2016-11-01

    Microplastics such as pellets are reported worldwide on sandy beaches, and have possible direct and indirect impacts on the biota and physical characteristics of the habitats where they accumulate. Evaluations of their standing stock at different spatial scales generate data on levels of contamination. This information is needed to identify accumulation zones and the specific beach habitats and communities that are likely to be most affected. Standing stocks of plastic pellets were evaluated in 13 sandy beaches in São Paulo state, Brazil. The sampling strategy incorporated across-shore transects from coastal dunes and backshores, and vertical profiles of the accumulated pellets down to 1 m depth below the sediment surface. Accumulation zones were identified at regional (among beaches) and local (between compartments) scales. At the regional scale pellet density tended to increase at beaches on the central and southwestern coast, near ports and factories that produce and transport the largest amounts of pellets in the country. At the local scale coastal dunes showed larger accumulations of pellets than backshores. For both compartments pellets tended to occur deeper in areas where standing stocks were larger. Most of the pellets were concentrated from the surface down to 0.4 m depth, suggesting that organisms inhabiting this part of the sediment column are more exposed to the risks associated with the presence of pellets. Our findings shed light on the local and regional scales of spatial variability of microplastics and their consequences for assessment and monitoring schemes in coastal compartments.

  9. New Pellet Injection Schemes on DIII-D

    SciTech Connect

    Anderson, P.M.; Baylor, L.R.; Combs, S.K.; Foust, C.R.; Jernigan, T.C.; Robinson, J.I.

    1999-11-13

    The pellet fueling system on DIII-D has been modified for injection of deuterium pellets from two vertical ports and two inner wall locations on the magnetic high-field side (HFS) of the tokamak. The HFS pellet injection technique was first employed on ASDEX-Upgrade with significant improvements reported in both pellet penetration and fueling efficiency. The new pellet injection schemes on DIII-D required the installation of new guide tubes. These lines are {approx_equal}12.5 m in total length and are made up of complex bends and turns (''roller coaster'' like) to route pellets from the injector to the plasma, including sections inside the torus. The pellet speed at which intact pellets can survive through the curved guide tubes is limited ({approx_equal}200-300 m/s for HFS injection schemes). Thus, one of the three gas guns on the injector was modified to provide pellets in a lower speed regime than the original guns (normal speed range {approx_equal}500 to 1000 m/s). The guide tube installations and gun modifications are described along with the injector operating parameters, and the latest test results are highlighted.

  10. Impurity pellet injection experiments at TFTR. Final performance report

    SciTech Connect

    Marmar, E.S.

    1992-12-01

    Impurity (Li and C) pellet injection experiments on TFTR have produced a number of new and significant results. (1) We observe reproducible improvements of TFTR supershots after wall-conditioning by Li pellet injection (`lithiumization`). (2) We have made accurate measurements of the pitch angle profiles of the internal magnetic field using two novel techniques. The first measures the internal field pitch from the polarization angles of Li{sup +} line emission from the pellet ablation cloud, while the second measures the pitch angle profiles by observing the tilt of the cigar-shaped Li{sup +} emission region of the ablation cloud. (3) Extensive measurements of impurity pellet penetration into plasmas with central temperatures ranging from {approximately}0.3 to {approximately}7 keV have been made and compared with available theoretical models. Other aspects of pellet cloud physics have been investigated. (4) Using pellets as a well defined perturbation has allowed study of transport phenomena. In the case of small pellet perturbations, the characteristics of the background plasmas are probed, while with large pellets, pellet induced effects are clearly observed. These main results are discussed in more detail in this paper.

  11. A new centrifuge pellet injector for fusion experiments

    NASA Astrophysics Data System (ADS)

    Andelfinger, C.; Buchelt, E.; Cierpka, P.; Kollotzek, H.; Lang, P. T.; Lang, R. S.; Prausner, G.; Söldner, F. X.; Ulrich, M.; Weber, G.

    1993-04-01

    This paper reports on the new pellet injection system for refueling the ASDEX Upgrade tokamak with cubic H2 or D2 pellets having alternative side lengths of 1.5, 1.75, and 2.0 mm and optional Ne doping. The system delivers series of about 100 pellets at a maximum repetition rate of more than 40 Hz. The pellets are accelerated by means of a centrifuge with an optimized straight acceleration arm. This configuration minimizes the compulsive force acting on the pellet during the acceleration process. Since this also minimizes stresses inside the pellet, high velocities—a maximum of 1211 m/s being achieved—are possible without destroying the hydrogen cubes. A special pellet feed-in technique based on a static stop cylinder interrupting the acceleration path successfully reduced the horizontal scattering angle to values of less than ±4°; a high efficiency, with more than 90% of the pellets arriving within the acceptance angle, was thus achieved. The whole system was found to work very reliably and reproducibly during the whole test operation period, covering about 105 pellet shots, and is now being integrated into the ASDEX upgrade experiment.

  12. Pellet fueling development at Oak Ridge National Laboratory

    SciTech Connect

    Foster, C.A.; Milora, S.L.; Schuresko, D.D.; Combs, S.K.; Lunsford, R.V.

    1982-01-01

    A pellet injector development program has been under way at the Oak Ridge National Laboratory (ORNL) since 1976 with the goals of developing D/sub 2/, T/sub 2/ pellet fuel injectors capable of reliable repetitive fueling of reactors and of continued experimentation on contemporary plasma devices. The development has focused primarily on two types of injectors that show promise. One of these injectors is the centrifuge-type injector, which accelerates pellets in a high speed rotating track. The other is the gas or pneumatic gun, which accelerates pellets in a gun barrel using compressed helium of H/sub 2/ gas.

  13. Fecal pellets: role in sedimentation of pelagic diatoms.

    PubMed

    Schrader, H J

    1971-10-01

    Membrane-enclosed fecal pellets of planktonic herbivores were sampled at several depths in the Baltic Sea (459 meters deep) and off Portugal (4000 meters deep) by means of a Simonsen multinet. Pellets contained mainly empty shells of planktonic diatoms and silicoflagellates. Two kinds of fecal pellets were found, those with the remains of one species (for example, Thalassiosira baltica) and those with the remains of several species (for example, Chaetoceros, Achnanthes, and Thalassiosira). Siliceous skeletons were protected from dissolution during settling by a membrane around the pellet.

  14. Cell viability and chondrogenic differentiation capability of human mesenchymal stem cells after iron labeling with iron sucrose.

    PubMed

    Papadimitriou, Nikolaos; Thorfve, Anna; Brantsing, Camilla; Junevik, Katarina; Baranto, Adad; Barreto Henriksson, Helena

    2014-11-01

    For evaluation of cell therapy strategies using human mesenchymal stem cells (hMSCs), it is important to be able to trace transplanted cells and their distribution in tissues, for example, cartilage, over time. The aim of the study was to determine effects on cell viability, traceability, and chondrogenic differentiation of hMSCs after iron labeling with iron sucrose. hMSCs were collected (seven donors, 13-57 years) from patients undergoing spinal surgery. Two subsets of experiments were performed. (1) Iron labeling of hMSCs: 1 mg/mL of Venofer(®) (iron sucrose) was added (16 h) to cultures. hMSCs were examined for uptake of iron sucrose (Prussian blue staining) and cell viability (flow cytometry). (2) Iron-labeled hMSCs (passage 4) (n=4, pellet mass), 200,000 cells/tube, were cultured (DMEM-HG) with 10 ng/mL TGFβ and compared with controls (from each donor). The pellets were harvested at days 7, 14, and 28. Real-time PCR, IHC, and histology were used to evaluate SOX9, ACAN, C6S, and COL2A1 expression. Mean number of cells containing iron deposits was 98.1% and mean cell viability was 92.7% (no significant difference compared with unlabeled control cells). Pellets containing iron-labeled cells expressed COL2A1 on protein level (all time points), in similar levels as controls, and glycosaminoglycan accumulation was observed in iron-labeled pellets (day 14 or day 28). Results were supported by the expression of chondrogenic genes SOX9, ACAN, and COL2A1. The results in vitro indicate that iron sucrose can be used as a cell tracer for evaluation of cellular distribution in vivo after transplantation of MSCs and thus contribute with important knowledge when exploring new treatment strategies for degenerated cartilaginous tissues.

  15. Preparation of (U,Pu)O 2 pellets through sol-gel microsphere pelletization technique

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Pai, Rajesh V.; Joshi, J. K.; Mukerjee, S. K.; Vaidya, V. N.; Venugopal, V.

    2006-12-01

    Mixed uranium-plutonium oxide microspheres were prepared by internal gelation process using feed solution of optimized composition. In the feed, total metal concentration was maintained at 1.5 M and hexamethylenetetramine (HMTA)-urea to metal mole ratio ( R) was kept at 1.0. The gel particles obtained from each batch were dried and heated at 250 °C in air and then calcined in O 2 at 800 °C followed by reduction in 8%H 2/92%N 2 at 600 °C for 1 h to obtain soft (U,Pu)O 2 microspheres containing 4 mol% Pu. The soft (U,Pu)O 2 microspheres were directly taken for the preparation of pellets. The microspheres were characterized with respect to surface area, tap density, crush strength and O/M ratio. X-ray diffraction analysis of the mixed oxide microspheres was carried out to identify the phases. The mixed oxide pellets were characterized for their density and micro-homogeneity. The sintering behaviour was studied by dilatometric investigations. The green pellets were sintered in 8%H 2/92%N 2 at 1600 °C for 2 h. The density of the sintered pellet was found to be 10.40 ± 0.05 g/cm 3 with grains in the size range of 3-6 μm with an excellent micro-homogeneity.

  16. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The... an aluminum ore....

  17. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The... an aluminum ore....

  18. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The... an aluminum ore....

  19. The indirect electrochemical refining of lunar ores

    NASA Technical Reports Server (NTRS)

    Semkow, Krystyna W.; Sammells, Anthony F.

    1987-01-01

    Recent work performed on an electrolytic cell is reported which addresses the implicit limitations in various approaches to refining lunar ores. The cell uses an oxygen vacancy conducting stabilized zirconia solid electrolyte to effect separation between a molten salt catholyte compartment where alkali metals are deposited, and an oxygen-evolving anode of composition La(0.89)Sr(0.1)MnO3. The cell configuration is shown and discussed along with a polarization curve and a steady-state current-voltage curve. In a practical cell, cathodically deposited liquid lithium would be continuously removed from the electrolytic cell and used as a valuable reducing agent for ore refining under lunar conditions. Oxygen would be indirectly electrochemically extracted from lunar ores for breathing purposes.

  20. The physical hydrogeology of ore deposits

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  1. Photochemical changes in cyanide speciation in drainage from a precious metal ore heap

    USGS Publications Warehouse

    Johnson, C.A.; Leinz, R.W.; Grimes, D.J.; Rye, R.O.

    2002-01-01

    In drainage from an inactive ore heap at a former gold mine, the speciation of cyanide and the concentrations of several metals were found to follow diurnal cycles. Concentrations of the hexacyanoferrate complex, iron, manganese, and ammonium were higher at night than during the day, whereas weak-acid-dissociable cyanide, silver, gold, copper, nitrite, and pH displayed the reverse behavior. The changes in cyanide speciation, iron, and trace metals can be explained by photodissociation of iron and cobalt cyanocomplexes as the solutions emerged from the heap into sunlight-exposed channels. At midday, environmentally significant concentrations of free cyanide were produced in a matter of minutes, causing trace copper, silver, and gold to be mobilized as cyanocomplexes from solids. Whether rapid photodissociation is a general phenomenon common to other sites will be important to determine in reaching a general understanding of the environmental risks posed by routine or accidental water discharges from precious metal mining facilities.

  2. CONTEXT VIEW ACROSS ORE YARD AT MODERN SELFUNLOADING BOOM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ACROSS ORE YARD AT MODERN SELF-UNLOADING BOOM IN FRONT OF HULETTS. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  3. CONTEXT VIEW SHOWING MODERN TRACKS PASSING UNDER HULETTS AND ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW SHOWING MODERN TRACKS PASSING UNDER HULETTS AND ORE YARD. LOOKING NORTHEAST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  4. CONTEXT VIEW ACROSS ORE YARD AT MODERN SELFUNLOADING SHIP UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ACROSS ORE YARD AT MODERN SELF-UNLOADING SHIP UNLOADING IN FRONT OF HULETTS. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  5. 24. OVERHEAD VIEW OF MARISCAL WORKS ORE BIN FOUNDATION AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. OVERHEAD VIEW OF MARISCAL WORKS ORE BIN FOUNDATION AND CONDENSERS, TOWARD WHERE ORE DELIVERY TRACK WOULD HAVE RUN, LOOKING NORTHEAST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  6. OVERHEAD VIEW OF MARISCAL WORKS ORE BIN FOUNDATION AND CONDENSERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERHEAD VIEW OF MARISCAL WORKS ORE BIN FOUNDATION AND CONDENSERS, TOWARD WHERE ORE DELIVERY TRACK WOULD HAVE RUN, LOOKING NORTHEAST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  7. 4. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO EAST. - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  8. 3. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO WEST. - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  9. 2. VIEW TO NORTHEAST (ORE RECEIVING PLATFORM OUT OF VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW TO NORTHEAST (ORE RECEIVING PLATFORM OUT OF VIEW TO RIGHT). - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  10. 1. VIEW TO SOUTH (RETAINING WALL OF ORE RECEIVING PLATFORM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO SOUTH (RETAINING WALL OF ORE RECEIVING PLATFORM TO LEFT). - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  11. AERIAL OVERVIEW, LOOKING NORTH, WITH FORMER TCIUS STEEL ORE MINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL OVERVIEW, LOOKING NORTH, WITH FORMER TCI-US STEEL ORE MINE HEADQUARTERS (BOTTOM) AND SUPERINTENDENT'S AND FOREMAN HOUSING ALONG MINNESOTA AVENUE AT CREST OF RED MOUNTAIN (TOP LEFT). - Muscoda Red Ore Mining Community, Bessemer, Jefferson County, AL

  12. 4. From west side of boat slip; ore piles, unloaders, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. From west side of boat slip; ore piles, unloaders, blast furnaces, tube conveyors, ore conveyors, stock house, powerhouse. Looking north/northeast - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  13. The influence of polymeric subcoats and pellet formulation on the release of chlorpheniramine maleate from enteric coated pellets.

    PubMed

    Bruce, L Diane; Koleng, John J; McGinity, James W

    2003-09-01

    The influences of aqueous polymeric subcoats and pellet composition on the release properties of a highly water-soluble drug, chlorpheniramine maleate (CPM), from enteric coated pellets were investigated. Three different aqueous polymeric subcoats, Eudragit RD 100, Eudragit RS 30D, and Opadry AMB, were applied to 10% w/w CPM-loaded pellets that were then enteric coated with Eudragit L 30D-55. Observed drug release from the coated pellets in acidic media correlated with water vapor transmission rates derived for the subcoat films. The influence of pellet composition on retarding the release of CPM from enteric coated pellets in 0.1 N HCl was investigated. The rate of drug release was greatest for pellets prepared with lactose, microcrystalline cellulose, or dibasic calcium phosphate compared with pellets formulated with citric acid and microcrystalline cellulose. Citric acid reduced the pellet micro-environmental pH, decreasing the amount of drug leakage in 0.1 N HCL during the first 2 hr of dissolution. Polymer flocculation was observed when CPM was added to the Eudragit L 30D-55 dispersion. An adsorption isotherm was generated for mixtures of CPM and the polymer and the data were found to fit the Freundlich model for adsorption. Adsorption of CPM to the polymer decreased with the addition of citric acid to the drug-polymer mixtures.

  14. Method for extraction of uranium from ores

    SciTech Connect

    Bings, H.; Fischer, P.; Kampf, F.; Pietsch, H.; Thome, R.; Turke, W.; Wargalla, G.; Winkhaus, G.

    1982-11-30

    A method for continuously extracting uranium from ores comprises the steps of: forming a slurry of ore in a leaching solution; heating the slurry while pumping it through a tube reactor at high turbulences characterized by Reynolds numbers in excess of 50,000; supplying gaseous oxygen at high pressures into the tube reactor such that the uranium is substantially completely oxidized in a soluble form but impurities in the slurry are substantially kept from becoming soluble; recovering the uranium oxide solute which is substantially free of impurities.

  15. Platinum metals magmatic sulfide ores.

    PubMed

    Naldrett, A J; Duke, J M

    1980-06-27

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example.

  16. Phosphorus recovery using pelletized adsorptive materials ...

    EPA Pesticide Factsheets

    Phosphorous (P) is one of the essential nutrients for growth and is generally the most limiting nutrient since, it cannot be fixed from the atmosphere. Methods for recovering phosphorous from water systems already exist, but advances are being made to find a more economic, efficient, effective and easy to use method that can allow for reuse of the recovered P. One area of study is in adsorption, which involves finding the best material for adsorption of phosphorous from water and for releasing it back into the environment through desorption or leaching. The goal of this research was to first optimize the capacity for a pelletized adsorptive material that was synthesized with varying amounts of a binder material from 0-20 % and then to study recovering the phosphate for reuse. The pelletized materials were studied through kinetics experiments as well as isotherm experiments to gain insight into the adsorption capacity and mechanism. Following successful adsorption, a simple leaching study was conducted to see how much phosphate would be released back into water without any added desorption aid. Desorption was then studied by changing the pH of solution. Presenting my thesis work with a poster at ACS.

  17. Tritium proof-of-principle pellet injector: Phase 2

    NASA Astrophysics Data System (ADS)

    Fisher, P. W.; Gouge, M. J.

    1995-03-01

    As part of the International Thermonuclear Engineering Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase-2 (TPOP-2) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and DT mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and DT extrusions; integrate, test and evaluate the extruder in a repeating, single-stage light gas gun sized for the ITER application (pellet diameter approximately 7-8 mm); evaluate options for recycling propellant and extruder exhaust gas; evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory requiring secondary and room containment systems. In initial tests with deuterium feed at ORNL, up to thirteen pellets have been extruded at rates up to 1 Hz and accelerated to speeds of order 1.0-1.1 km/s using hydrogen propellant gas at a supply pressure of 65 bar. The pellets are typically 7.4 mm in diameter and up to 11 mm in length and are the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 11% density perturbation to ITER. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first wall tritium inventories by a process called isotopic fueling where tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge.

  18. AMT survey in the Outokumpu ore Belt, Eastern Finland

    NASA Astrophysics Data System (ADS)

    Lahti, Ilkka; Kontinen, Asko; Aatos, Soile; Smirnov, Maxim

    2015-04-01

    The Outokumpu ore belt comprises Paleoroterozoic turbiditic deep-water sediments enclosing fault-bound ophiolitic slices composed dominantly of serpentinites derived from oceanic upper mantle peridotites. These together form the allochthonous Outokumpu suite that was emplaced onto the Karelian Craton margin during the early stages of the Svecofennian Orogeny. The area which has been over 100 years among the most important mining regions in Finland is still supporting active mining and exploration. The main prospectivity is for polymetallic (Cu-Co-Zn-Ni-Ag-Au) sulfide ores that are hosted by carbonate, calc-silicate and quartz rocks fringing serpentinite bodies embedded in extensive formations of electrically conductive iron sulfide and graphite-bearing black schists that are showing no geochemical vectors to the ores (e.g. Peltonen et al., 2008). The presence of conductive schists makes also electromagnetic exploration of the sulfide ores challenging. However, the detection of the black schists at depth would be useful in locating new environments with potential for the serpentinites and prospective Outokumpu rock assemblage. Audiomagnetotelluric (AMT) data has been recently collected to image subsurface conductivity structure of the belt. These data were acquired along five profiles transecting several key-features, including the Miihkali serpentinite, Archean Sotkuma gneiss window and the area SE from the Outokumpu mine. Altogether 91 sites were measured with the site spacing of 300 m - 2 km. AMT data (f = 1 - 10 000 Hz) were acquired during daytime whereas night-recordings enabled to obtain data at the frequency range of 0.01 - 10 000 Hz. Measurements were done using two Metronix 24bit ADU-07e broadband electromagnetic acquisition systems. Robust remote reference processing yielded mostly good data quality, particularly for data recorded during night-time. The survey area is favorable for 2-D modeling as it is characterized by thin, laterally extensive

  19. Rajkonkoski gold-telluride ore occurrence: A new high prospective type of complex noble metal mineralization in the Karelian Proterozoic

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.; Sundblad, K.; Toritsin, A. N.; Golubev, A. I.; Lavrov, O. B.

    2008-11-01

    The Rajkonkoski ore occurrence is located within the region of the Karelian craton (AR2) and the Svecofennian folded belt (PR1) conjugation. It is presented by quartz-carbonate veins in metadoleriles and a zone of brecciation, crumple, and silification of carbonaceous shales within the volcanites of the Soanlakhtinsky suite (PR1). Ore mineralization in black shales and quartz veins has features of genetic similarity presenting different levels of the ore system controlled by different range strike-slip fault dislocations. At the Rajkonkoski ore occurrence, 41 ore minerals have been identified: 12 tellurides (native tellurium, hedleyite, pilsenite, tsumoite, tellurobismuthite, hessite, stuetzite, radclidzhite, joseite-B, altaite, volynskite, petzite); 4 bismuth-tellurides of the following compositions Bi3Te, Bi3Te2, BiTe4, PbBiTe; 3 selenides (clausthalite, tellurolaitakarite, native selenium); and 12 native metals (gold, silver, electrum, copper, iron, lead, tin, bismuth, osmiridium). The contents of the main ore minerals in places exceed 10%, and the concentrations of elements reach as follows: Cu and Pb, 5%; Zn, Bi, 1%; Se, 219 ppm; Te, 171 ppm; Sb, 3 ppm; As, 5 ppm; Ag, >0.1%; Au, 35.28 ppm. Ore mineralization is formed during the temperature interval from 550°C up to <170oC in the conditions of high activity of Se and Te, and beginning from medium temperatures (>300°C) complete miscibilities galenite-clausthalite and galenite-altaite are observed. In aggregate with a wide temperature interval (>400°C) of ore process evolution and mineral specia variety of telluride and native metal mineralizations, the original “torsion” of different temperature mineralizations makes it possible to determine the affiliation of the Rajkonkoski ore occurrence to the xenothermal type deposits or epithermal “alkaline,” gold-telluride A-type characterized by a close connection with magmatism of increased alkalinity and the original geochemical (Te-V-F) and mineral

  20. 29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE M. HUMPHREY'S' CARGO OF 25,000. TONS OF ORE. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  1. 17. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN BUILT IN 1911-1912, THIS WAS THE LARGEST ORE-UNLOADING DOCK ON THE GREAT LAKES. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  2. 3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, c. 1908-10. SHOWS EXPOSED CRUSHER HOUSE IN FRONT OF (SOUTH) CRUDE ORE BIN AND SNOW SHED ADDED OVER TRAM TRACKS. NOTE LACK OF EAST OR WEST CRUDE ORE BINS. CREDIT JW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  3. 18. VIEW OF CRUDE ORE BINS FROM WEST. WEST CRUDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF CRUDE ORE BINS FROM WEST. WEST CRUDE ORE BIN AND TRESTLE FROM TWO JOHNS TRAMLINE TO SOUTH, CRUDE ORE BIN IN FOREGROUND. MACHINE SHOP IN BACKGROUND. THE TRAM TO PORTLAND PASSED TO NORTH OF MACHINE SHOP. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  4. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    EPA Science Inventory

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  5. Geology and ore deposits of the Whitepine area, Tomichi mining district, Gunnison County, Colorado

    USGS Publications Warehouse

    Robinson, Charles Sherwood

    1956-01-01

    those of the Erie, North Star, and Tenderfoot mines. In the Erie mine the ore deposits are in the Leadville limestone at, or just below, its contact with the Belden shale. In the North Star and Tenderfoot mines the ore bodies are in the Manitou dolomite along the crest of an anticline and the trough of a syncline, respectively. The vein deposits occur in the Silver Plume granite, Princeton quartz monzonite, and Paleozoic sedimentary rocks. The only vein of commercial importance was that of the Spar Copper mine, which is in the Silver Plume granite. Contact metamorphic minerals are found chiefly in the top of the Leadville limestone in the vicinity of the Erie mine, and in the limestone of the Belden shale. Magnetite is the only ore mineral and it was produced only from the Iron King mine. The replacement deposits consist, in general, of sphalerite, galena, pyrite, and chalcopyrite in a gangue of siliclfied limestone or dolomite, quartz, and calcite. The veins, for the most part, consist of pyrite and quartz with only minor amounts of galena, sphalerite, and chalcopyrite. In both types of deposits gold is believed to be associated with the pyrite and sphalerite and silver with the galena. Oxidized ore was the chief product of the early mining. This ore consists of calamine, cerussite, smithsonite, or anglesite, or a combination of these minerals, in a gangue of siliceous limestone or silicified limestone or dolomite. Oxidation did not extend, in most cases, for more than 150 feetbelow the surface. The ore deposits are believed to be genetically related to the Princeton quartz monzonite batholith. Ore-bearing solutions derived from the cooling of magma are believed to have migrated upwards along the pre-existing faults replacing favorable zones in the sedimentary rocks, or depositing quartz and ore minerals in open fissures in the igneous rocks.

  6. Oxidizing Roasting Performances of Coke Fines Bearing Brazilian Specularite Pellets

    NASA Astrophysics Data System (ADS)

    Chun, Tiejun; Zhu, Deqing

    2016-06-01

    Oxidized pellets, consisting of Brazilian specularite fines and coke fines, were prepared by disc pelletizer using bentonite as binder. The roasting process of pellets includes preheating stage and firing stage. The compressive strength of preheated pellets and fired pellets reached the peak value at 1.5% coke fines dosage. During the initial stage of preheating, some original Fe2O3 was reduced to Fe3O4 because of partial reduction atmosphere in pellet. During the later stage of preheating and firing stage, coke fines were burnt out, and the secondary Fe2O3 (new generation Fe2O3) was generated due to the re-oxidization of Fe3O4, which improved the recrystallization of Fe2O3. Compared with the fired pellets without adding coke fines, fired pellets with 1.5% coke fines exhibited the comparable RSI (reduction swelling index) and RDI+3.15 mm (reduction degradation index), and slightly lower RI (reducibility index).

  7. Unique neuro-ophthalmic presentation of gun pellet injury.

    PubMed

    Sharma, Reena; Sharma, Sanjay; Phuljhele, Swati; Saxena, Rohit

    2016-01-01

    We describe a unique case of orbital gunshot injury with isolated intraorbital pellets lodged symmetrically in the two apices, causing identical clinical presentation, and absence of any associated globe or cerebral injury. He developed bilateral complete third nerve palsy with bilateral traumatic optic neuropathy. The optic nerve strut prevented the pellets from going into the brain on both the sides.

  8. Unique neuro-ophthalmic presentation of gun pellet injury

    PubMed Central

    Sharma, Reena; Sharma, Sanjay; Phuljhele, Swati; Saxena, Rohit

    2016-01-01

    We describe a unique case of orbital gunshot injury with isolated intraorbital pellets lodged symmetrically in the two apices, causing identical clinical presentation, and absence of any associated globe or cerebral injury. He developed bilateral complete third nerve palsy with bilateral traumatic optic neuropathy. The optic nerve strut prevented the pellets from going into the brain on both the sides. PMID:27843239

  9. 21 CFR 520.300b - Cambendazole pellets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cambendazole pellets. 520.300b Section 520.300b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300b Cambendazole pellets....

  10. Enumeration and characterization of microorganisms associated with the uranium ore deposit at Cigar Lake, Canada; Informal report

    SciTech Connect

    Francis, A.J.; Joshi-Tope, G.; Gillow, J.B.; Dodge, C.J.

    1994-03-01

    The high-grade uranium deposit at Cigar Lake, Canada, is being investigated as a natural analog for the disposal of nuclear fuel waste. Geochemical aspects of the site have been studied in detail, but the microbial ecology has not been fully investigated. Microbial populations in an ore sample and in groundwater samples from the vicinity of the ore zone were examined to determine their effect on uranium mobility. Counts of the total number of bacteria and of respiring bacteria were obtained by direct microscopy, and the viable aerobic and anaerobic bacteria were assessed as colony forming units (CFUs) by the dilution plating technique. In addition, the population distribution of denitrifiers, fermenters, iron- and sulfur-oxidizers, iron- and sulfate-reducers, and methanogens was determined by the most probable number (MPN) technique.

  11. Structure of magnetite lodes at the Estyunino iron deposit in the central Urals

    NASA Astrophysics Data System (ADS)

    Rudnitsky, V. F.; Aleshin, K. B.; Kuznetsov, A. Zh.; Ivanchenko, V. S.

    2013-11-01

    The structure of magnetite lodes is determined by iron and sulfur distribution, as well as texture and structure of ore. These features have been revealed by documentation of cores from ore intervals in exploration boreholes penetrating two main lodes 21 and 22 of the Estyunino iron deposit. The documentation of cores was accompanied by sampling for microscopic examination of texture and structure of ore and selection of Fe and S contents in ore. Then these data were summarized as sections of the lodes. It was established that the structure of magnetite lodes is characterized by conformable ore layers distinguished by texture, structure, and Fe and S contents. Banded and spotty ores containing less than 50% magnetite are predominant. Layers of homogeneous massive ore are infrequent. The textural pattern indicates a volcaniclastic nature of host rocks. The spotty texture is characteristic of hyaloclastites with vitreous shards. The banded texture with oriented distribution of fiamme is inherent to volcaniclastic rocks. In both cases, magnetite selectively replaces dark-colored vitreous fragments and is also dispersed in the salic matrix and lava fragments. No indications of crosscutting superposed relationships are observed. The available data can be satisfactorily explained by an impregnation-metasomatic mode of ore deposition.

  12. PROCESS OF RECOVERING URANIUM FROM ITS ORES

    DOEpatents

    Galvanek, P. Jr.

    1959-02-24

    A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.

  13. Ore Melting and Reduction in Silicomanganese Production

    NASA Astrophysics Data System (ADS)

    Ringdalen, Eli; Gaal, Sean; Tangstad, Merete; Ostrovski, Oleg

    2010-12-01

    The charge for silicomangansese production consists of manganese ore (often mixed with ferromanganese slag) dolomite or calcite, quartz, and in some cases, other additions. These materials have different melting properties, which have a strong effect on reduction and smelting reactions in the production of a silicomanganese alloy. This article discusses properties of Assman, Gabonese, and Companhia Vale do Rio Doce (CVRD) ores, CVRD sinter and high-carbon ferromanganese (HC FeMn) slag, and their change during silicomanganese production. The melting and reduction temperatures of these manganese sources were measured in a carbon monoxide atmosphere, using the sessile drop method and a differential thermal analysis/thermogravimetric analysis. Equilibrium phases were analyzed using FACTSage (CRCT, Montreal, Canada and GTT, Aachen, Germany) software. Experimental investigations and an analysis of equilibrium phases revealed significant differences in the melting behavior and reduction of different manganese sources. The difference in smelting of CVRD ore and CVRD sinter was attributed to a faster reduction of sinter by the graphite substrate and carbon monoxide. The calculation of equilibrium phases in the reduction process of manganese ores using FACTSage correctly reflects the trends in the production of manganese alloys. The temperature at which the manganese oxide concentration in the slag was reduced below 10 wt pct can be assigned to the top of the coke bed in the silicomanganese furnace. This temperature was in the range 1823 K to 1883 K (1550 °C to 1610 °C).

  14. ["Piggyback" shot: ballistic parameters of two simultaneously discharged airgun pellets].

    PubMed

    Frank, Matthias; Schönekess, Holger C; Grossjohann, Rico; Ekkernkamp, Axel; Bockholdt, Britta

    2014-01-01

    Green and Good reported an uncommon case of homicide committed with an air rifle in 1982 (Am. J. Forensic Med. Pathol. 3: 361-365). The fatal wound was unusual in that two airgun pellets were loaded in so-called "piggyback" fashion into a single shot air rifle. Lack of further information on the ballistic characteristics of two airgun pellets as opposed to one conventionally loaded projectile led to this investigation. The mean kinetic energy (E) of the two pellets discharged in "piggyback" fashion was E = 3.6 J and E = 3.4 J, respectively. In comparison, average kinetic energy values of E = 12.5 J were calculated for conventionally discharged single diabolo pellets. Test shots into ballistic soap confirmed the findings of a single entrance wound as reported by Green and Good. While the ballistic background of pellets discharged in "piggyback" fashion could be clarified, the reason behind this mode of shooting remains unclear.

  15. Calculation of density profiles in tandem mirrors fueled by pellets

    SciTech Connect

    Campbell, R.B.; Gilmore, J.M.

    1983-12-02

    We have modified the LLNL radial transport code TMT to model reactor regime plasmas, fueled by pellets. The source profiles arising from pellet fueling are obtained from existing pellet ablation models. Because inward radial diffusion due to inverted profiles must compete with trapping of central cell ions in the transition region for tandem mirrors, pellets must penetrate fairly far into the plasma. In fact, based on our radial calculations, a pellet with a velocity of 10 km/sec cannot sustain the central flux tubes; a velocity more like 100 km/sec will be necessary. We also find that the central cell radial diffusion must exceed classical by about a factor of 100.

  16. Straw pellets as fuel in biomass combustion units

    SciTech Connect

    Andreasen, P.; Larsen, M.G.

    1996-12-31

    In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

  17. Analysis of pellet properties with use of artificial neural networks.

    PubMed

    Mendyk, Aleksander; Kleinebudde, Peter; Thommes, Markus; Yoo, Angelina; Szlęk, Jakub; Jachowicz, Renata

    2010-11-20

    The objective was to prepare neural models identifying relationships between formulation characteristics and pellet properties based on algorithmic approach of crucial variables selection and neuro-fuzzy systems application. The database consisted of information about 227 pellet formulations prepared by extrusion/spheronization method, with various model drugs and excipients. Cheminformatic description of excipients and model drugs was employed for numerical description of pellet formulations. Initial numbers of neural model inputs were up to around 3000. The inputs reduction procedure based on sensitivity analysis allowed to obtain less than 40 inputs for each model. The reduced models were subjects of fuzzy logic implementation resulting in logical rules tables providing human-readable rule sets applicable in future development of pellet formulations. Neural modeling enhanced knowledge about pelletization process and provided means for future computer-guided search for the optimal formulation.

  18. Transport and MHD simulations of intrinsic and pellet induced ELMs

    NASA Astrophysics Data System (ADS)

    Kim, Ki Min; Na, Yong-Su; Yi, Sumin; Kim, Hyunseok; Kim, Jin Yong

    2010-11-01

    Verification of ELM mechanism and demonstration of ELM control are important issues in current fusion researches targeting ITER and DEMO. This work investigates the physics and operational characteristics of intrinsic and pellet induced ELMs throughout transport simulations using 1.5 D transport codes (C1.5/ASTRA) and MHD simulations using M3D code. Transport simulations are focused on prediction of the global parameters such as ELM energy loss in the type-I ELMy H-mode discharges with and without pellet pace making to examine an applicability of pellet injection for ELM mitigation in KSTAR and ITER. On the other hand, MHD simulations are conducted to explore the physics of intrinsic and pellet induced ELMs by applying the artificial free energy sources of velocity stream and density perturbations on the marginally stable equilibrium, respectively. Similarities and differences of triggering phenomena between intrinsic and pellet induced ELMs are discussed from the MHD approach.

  19. Fabrication of very high density fuel pellets of thorium dioxide

    NASA Astrophysics Data System (ADS)

    Shiratori, Tetsuo; Fukuda, Kosaku

    1993-06-01

    Very high density ThO 2 pellets were prepared without binders and lubricants from the ThO 2 powder originated by the thorium oxalate, which was aimed to simplify the fabrication process by skipping a preheat treatment. The as-received ThO 2 powder with a surface area of 4.56 m 2/g was ball-milled up to about 9 m 2/g in order to increase the green pellet density as high as possible. Both of the single-sided and the double-sided pressing were tested in the range from 2 to 5 t/cm 2 in the green pellet formation. Sintering temperature was such low as 1550°C. The pellet prepared in this experiment had a very high density in the range from about 96 to 98% TD without any cracks, in which a difference of the pellet density was not recognized in the single-sided pressing methods.

  20. Pelletizing/reslurrying as a means of distributing and firing clean coal

    SciTech Connect

    Not Available

    1992-06-09

    This volume contains appendices for: atomization test report; cost estimation model--pelletization material balance and equipment selection; cost estimation model--pelletization capital investment estimates; cost estimation--pelletization operating cost estimates; cost estimation model--pellet-CWF formulation material balance and equipment selection; cost estimation model--pellet-CWF capital investment estimates; cost estimation model--pellet-CWF operating cost estimates; and cost estimation model--direct CWF operating cost estimates.