Science.gov

Sample records for iron oxides coated

  1. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  2. Synthesis and Reactive Properties of Iron Oxide-Coated Nanoaluminum

    NASA Astrophysics Data System (ADS)

    Kaplowitz, Daniel A.; Jian, Guoqiang; Gaskell, Karen; Jacob, Rohit; Zachariah, Michael R.

    2014-04-01

    A homogeneous coating of Fe3O4 on in situ-generated nanoaluminum was accomplished by thermal decomposition of Fe(CO)5 in an aluminum aerosol stream and subsequent oxidation of iron by air bleed. X-ray photoelectron spectroscopy (XPS) investigation revealed that oxygen penetrated through this coating, and Fe3O4 facilitated the formation of an expanded aluminum oxide layer compared to an uncoated aluminum case. Closed cell combustion tests displayed a minor decrease in pressure response for the coated product, which was attributed to the increased aluminum oxide layer. The critical ignition temperature was reduced for the coated product in T-jump fine-wire combustion tests.

  3. Copper Iron Conversion Coating for Solid Oxide Fuel Cell Interconnects

    NASA Astrophysics Data System (ADS)

    Grolig, Jan Gustav; Alnegren, Patrik; Froitzheim, Jan; Svensson, Jan-Erik

    2015-11-01

    A conversion coating of iron and copper was investigated with the purpose of increasing the performance of Sanergy HT as a potential SOFC interconnect material. Samples were exposed to a simulated cathode atmosphere (air, 3 % H2O) for durations of up to 1000 h at 850 °C. Their performance in terms of corrosion, chromium evaporation and electrical resistance (ASR) was monitored and compared to uncoated and cobalt-coated Sanergy HT samples. The copper iron coating had no negative effects on corrosion protection and decreased chromium evaporation by about 80%. An Area Specific Resistance (ASR) of 10 mΩcm2 was reached after 1000 h of exposure. Scanning Electron Microscopy revealed well adherent oxide layers comprised of an inner chromia layer and an outer spinel oxide layer.

  4. Iron oxide nanoparticles for magnetically assisted patterned coatings

    NASA Astrophysics Data System (ADS)

    Dodi, Gianina; Hritcu, Doina; Draganescu, Dan; Popa, Marcel I.

    2015-08-01

    Iron oxide nanoparticles able to magnetically assemble during the curing stage of a polymeric support to create micro-scale surface protuberances in a controlled manner were prepared and characterized. The bare Fe3O4 particles were obtained by two methods: co-precipitation from an aqueous solution containing Fe3+/Fe2+ ions with a molar ratio of 2:1 and partial oxidation of ferrous ions in alkaline conditions. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetization measurement. They were subsequently functionalized using oleic acid, sodium oleate, or non-ionic surfactant mixtures with various hydrophilic to lipophilic balance (HLB) values. Composite nanoparticle-polymer films prepared by spraying were deposited and cured by drying on glass slides under a static magnetic field in the range of 1.5-5.5 mT. Magnetic field generated surface roughness was evidenced by optical and scanning electron microscopy. The optimum hierarchical patterning was obtained with the nanoparticles produced by partial oxidation and functionalized with hydrophobic surfactants. Possible applications may include ice-phobic composite coatings.

  5. Magnetic hyperthermia in phosphate coated iron oxide nanofluids

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Muthukumaran, T.; Philip, John

    2016-06-01

    We study the magnetic field induced hyperthermia in water based phosphate coated Fe3O4 nanofluids, synthesized by a co-precipitation method using ferrous and ferric salt solutions, ammonia and orthophosphoric acid. The specific absorption rate (SAR) values were measured at a fixed frequency of 126 kHz and at extremely low field amplitudes. The SAR values were determined from the initial rate of temperature rise curves under non-adiabatic conditions. It was observed that the SAR initially increases with sample concentration, attains a maximum at an optimum concentration and beyond which SAR decreases. The decrease in SAR values beyond the optimum concentration was attributed to the enhancement of dipolar interaction and agglomeration of the particles. The system independent intrinsic loss power (ILP) values, obtained by normalizing the SAR values with respect to field amplitude and frequency, were found to vary between 158-125 nHm2 kg-1, which were the highest benchmark values reported in the biologically safe experimental limit of 1.03-0.92×108 Am-1 s-1. The very high value of ILP observed in the bio-compatible phosphate coated iron oxide nanofluids may find practical applications for these nanoparticles in tumor targeted hyperthermia treatment.

  6. Transport and viability of Escherichia coli cells in clean and iron oxide coated sand following coating with silver nanoparticles.

    PubMed

    Ngwenya, Bryne T; Curry, Philip; Kapetas, Leon

    2015-08-01

    A mechanistic understanding of processes controlling the transport and viability of bacteria in porous media is critical for designing in situ bioremediation and microbiological water decontamination programs. We investigated the combined influence of coating sand with iron oxide and silver nanoparticles on the transport and viability of Escherichia coli cells under saturated conditions. Results showed that iron oxide coatings increase cell deposition which was generally reversed by silver nanoparticle coatings in the early stages of injection. These observations are consistent with short-term, particle surface charge controls on bacteria transport, where a negatively charged surface induced by silver nanoparticles reverses the positive charge due to iron oxide coatings, but columns eventually recovered irreversible cell deposition. Silver nanoparticle coatings significantly increased cell inactivation during transit through the columns. However, when viability data is normalised to volume throughput, only a small improvement in cell inactivation is observed for silver nanoparticle coated sands relative to iron oxide coating alone. This counterintuitive result underscores the importance of net surface charge in controlling cell transport and inactivation and implies that the extra cost for implementing silver nanoparticle coatings on porous beds coated with iron oxides may not be justified in designing point of use water filters in low income countries.

  7. Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles.

    PubMed

    Kitis, M; Kaplan, S S

    2007-08-01

    The oxidative removal of natural organic matter (NOM) from waters using hydrogen peroxide and iron-coated pumice particles as heterogeneous catalysts was investigated. Two NOM sources were tested: humic acid solution and a natural source water. Iron coated pumice removed about half of the dissolved organic carbon (DOC) concentration at a dose of 3000 mg l(-1) in 24 h by adsorption only. Original pumice and peroxide dosed together provided UV absorbance reductions as high as 49%, mainly due to the presence of metal oxides including Al(2)O(3), Fe(2)O(3) and TiO(2) in the natural pumice, which are known to catalyze the decomposition of peroxide forming strong oxidants. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. A strong linear correlation was found between iron contents of coated pumices and UV absorbance reductions. Peroxide consumption also correlated with UV absorbance reduction. Control experiments proved the effective coating and the stability of iron oxide species bound on pumice surfaces. Results overall indicated that in addition to adsorptive removal of NOM by metal oxides on pumice surfaces, surface reactions between iron oxides and peroxide result in the formation of strong oxidants, probably like hydroxyl radicals, which further oxidize both adsorbed NOM and remaining NOM in solution, similar to those in Fenton-like reactions.

  8. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    NASA Astrophysics Data System (ADS)

    Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin

    2008-03-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.

  9. Removal of iron and arsenic (III) from drinking water using iron oxide-coated sand and limestone

    NASA Astrophysics Data System (ADS)

    Devi, Rashmi R.; Umlong, Iohborlang M.; Das, Bodhaditya; Borah, Kusum; Thakur, Ashim J.; Raul, Prasanta K.; Banerjee, Saumen; Singh, Lokendra

    2014-06-01

    A method for removal of iron and arsenic (III) from contaminated water using iron oxide-coated sand and limestone has been developed for drinking water. For the intended use, sand was coated with ferric chloride and used as filtering media. Limestone was added onto the coated sand and the effect of limestone addition on removal efficiency of iron and arsenic was monitored. Both batch and column experiments were conducted to investigate the efficiency of coated sand and limestone as filtering media. Maximum removal of iron (99.8 %) was obtained with coated sand at a dose of 5 g/100 ml and by adding 0.2 g/100 ml of limestone at pH 7.3. Arsenic (III) removal efficiency increased with the increased dose of coated sand and was best removed at pH 7.12. The maximum adsorption capacity for arsenic (III) obtained from Langmuir model was found to be 0.075 mg/g and the kinetics data followed pseudo-first order better than pseudo-second order. Energy dispersive X-ray analysis and FT-IR study proved the removal of iron and arsenic. Column experiment showed removal of iron and arsenic (III) to <0.3 mg/l and 10 μg/l, respectively, from an initial concentration of 20 mg/l (iron) and 200 μg/l (arsenic).

  10. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance

    PubMed Central

    Ma, L L; Borwankar, A U; Willsey, B W; Yoon, K Y; Tam, J O; Sokolov, K V; Feldman, M D; Milner, T E; Johnston, K P

    2013-01-01

    A homologous series of Au-coated iron oxide nanoparticles, with hydrodynamic diameters smaller than 60 nm was synthesized with very low Auto-iron mass ratios as low as 0.15. The hydrodynamic diameter was determined by dynamic light scattering and the composition by atomic absorption spectroscopy and energy dispersive x-ray spectroscopy (EDS). Unusually low Au precursor supersaturation levels were utilized to nucleate and grow Au coatings on iron oxide relative to formation of pure Au nanoparticles. This approach produced unusually thin coatings, by lowering autocatalytic growth of Au on Au, as shown by transmission electron microscopy (TEM). Nearly all of the nanoparticles were attracted by a magnet indicating a minimal amount of pure Au particles The coatings were sufficiently thin to shift the surface plasmon resonance (SPR) to the near infrared (NIR), with large extinction coefficients., despite the small particle hydrodynamic diameters, observed from dynamic light scattering to be less than 60 nm. PMID:23238021

  11. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors.

    PubMed

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas; Rydtoft, Louise Munk; Lokanathan, Arcot R; Hansen, Line; Østergaard, Leif; Kingshott, Peter; Howard, Kenneth A; Besenbacher, Flemming; Nielsen, Niels Chr; Kjems, Jørgen

    2012-04-07

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333-20,000 Da PEG coatings that resulted in larger hydrodynamic size, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (M(w)) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating M(w) of 10,000 Da.

  12. Preparation and characterization of thermosensitive PNIPAA-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Shengmao; Zhang, Linna; He, Benfang; Wu, Zhishen

    2008-08-01

    A new and facile approach was established to fabricate thermoresponsive poly(N-isopropylacrylamide) (PNIPAA) coated iron oxide nanoparticles in a non-aqueous medium. The morphology and structure of the nanoparticle-doped composite were analyzed by means of transmission electron microscopy (TEM), x-ray powder diffraction (XRD), and Fourier transformation infrared spectrometry (FTIR). The thermosensitivity of the composite was also investigated. Results indicated that the oil-soluble iron oxide nanoparticles encapsulated with PNIPAA, composed of an inorganic iron oxide core and biocompatible PNIPAA shell, were dispersed well in water and had a sphere-like shape. The PNIPAA-coated iron oxide nanoparticles with such a kind of core-shell structure showed excellent thermosensitivity. Namely, the aqueous suspension of PNIPAA-coated iron oxide nanoparticles dramatically changed from transparent to opaque as the temperature increased from room temperature to 38 °C, showing potential as optical transmittance switch materials and their significance in the fields of protein adsorption and purification controlled release, and drug delivery.

  13. Decolorization of black liquor from bioethanol G2 production using iron oxide coating sands

    NASA Astrophysics Data System (ADS)

    Barlianti, Vera; Triwahyuni, Eka; Waluyo, Joko; Sari, Ajeng Arum

    2017-01-01

    Bioethanol G2 production using oil palm empty fruit bunch as raw material consists of four steps, namely pretreatment, hydrolysis, fermentation, and purification process. Pretreatment process generates black liquor that causes serious environmental pollution if it is released to the environment. The objective of this research is studying the ability of iron oxide coating sands to adsorb the color of black liquor. The iron oxide coating sands were synthesized from FeCl3.6H2O with quartz sands as support material. This research was conducted on batch mode using black liquor in various pH values. Result obtained that kind of iron oxide on quartz sands's surface was goethite. The result also indicated decreasing of color intensity of black liquor after adsorption process. This research supports local material utilization in environmental technology development to solve some environmental problems.

  14. Removal of heavy metal ions by iron oxide coated sewage sludge.

    PubMed

    Phuengprasop, Thapanapong; Sittiwong, Jarinya; Unob, Fuangfa

    2011-02-15

    The municipal sewage sludge was modified with iron oxide employed in metal ions removal. The surface modification method was proposed and the effect of parameters in the preparation was studied. The iron oxide coated sludge had higher surface area, pore volume and iron content, compared to uncoated sludge. The suitable conditions for removal of Cu(II), Cd(II), Ni(II) and Pb(II) ions from solutions were investigated using batch method. The suitable pH value in the extraction was 7 for adsorption of Cd(II) and Ni(II), 6 for Cu(II) and 5 for Pb(II) ions. The presence of NaNO(3), Ca(NO(3))(2) and Na(2)SO(4) in metal solution in the concentration of 0.01 M and 0.50 M could reduce the removal efficiency. The adsorption isotherms for the adsorption of the metal ions were defined by Langmuir relation. The maximum adsorption capacity of the iron oxide coated sludge for Cu(II), Cd(II), Ni(II) and Pb(II) was 17.3, 14.7, 7.8 and 42.4 mg g(-1), respectively. The adsorption kinetics for every metal ions followed pseudo-second order model. The metal removal from wastewater by iron oxide coated sludge was also demonstrated.

  15. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sun, Sheng-Nan; Wei, Chao; Zhu, Zan-Zan; Hou, Yang-Long; Subbu, S. Venkatraman; Xu, Zhi-Chuan

    2014-03-01

    Iron oxide nanoparticles are the most popular magnetic nanoparticles used in biomedical applications due to their low cost, low toxicity, and unique magnetic property. Magnetic iron oxide nanoparticles, including magnetite (Fe3O4) and maghemite (γ-Fe2O3), usually exhibit a superparamagnetic property as their size goes smaller than 20 nm, which are often denoted as superparamagnetic iron oxide nanoparticles (SPIONs) and utilized for drug delivery, diagnosis, therapy, and etc. This review article gives a brief introduction on magnetic iron oxide nanoparticles in terms of their fundamentals of magnetism, magnetic resonance imaging (MRI), and drug delivery, as well as the synthesis approaches, surface coating, and application examples from recent key literatures. Because the quality and surface chemistry play important roles in biomedical applications, our review focuses on the synthesis approaches and surface modifications of iron oxide nanoparticles. We aim to provide a detailed introduction to readers who are new to this field, helping them to choose suitable synthesis methods and to optimize the surface chemistry of iron oxide nanoparticles for their interests.

  16. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vengsarkar, Pranav S.; Roberts, Christopher B.

    2014-10-01

    Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic-lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20-40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.

  17. Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles

    PubMed Central

    Shi, Si-feng; Jia, Jing-fu; Guo, Xiao-kui; Zhao, Ya-ping; Chen, De-sheng; Guo, Yong-yuan; Zhang, Xian-long

    2016-01-01

    Staphylococcus aureus can adhere to most foreign materials and form biofilm on the surface of medical devices. Biofilm infections are difficult to resolve. The goal of this in vitro study was to explore the use of chitosan-coated nanoparticles to prevent biofilm formation. For this purpose, S. aureus was seeded in 96-well plates to incubate with chitosan-coated iron oxide nanoparticles in order to study the efficiency of biofilm formation inhibition. The biofilm bacteria count was determined using the spread plate method; biomass formation was measured using the crystal violet staining method. Confocal laser scanning microscopy and scanning electron microscopy were used to study the biofilm formation. The results showed decreased viable bacteria numbers and biomass formation when incubated with chitosan-coated iron oxide nanoparticles at all test concentrations. Confocal laser scanning microscopy showed increased dead bacteria and thinner biofilm when incubated with nanoparticles at a concentration of 500 µg/mL. Scanning electron microscopy revealed that chitosan-coated iron oxide nanoparticles inhibited biofilm formation in polystyrene plates. Future studies should be performed to study these nanoparticles for anti-infective use. PMID:27994455

  18. Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles.

    PubMed

    Shi, Si-Feng; Jia, Jing-Fu; Guo, Xiao-Kui; Zhao, Ya-Ping; Chen, De-Sheng; Guo, Yong-Yuan; Zhang, Xian-Long

    Staphylococcus aureus can adhere to most foreign materials and form biofilm on the surface of medical devices. Biofilm infections are difficult to resolve. The goal of this in vitro study was to explore the use of chitosan-coated nanoparticles to prevent biofilm formation. For this purpose, S. aureus was seeded in 96-well plates to incubate with chitosan-coated iron oxide nanoparticles in order to study the efficiency of biofilm formation inhibition. The biofilm bacteria count was determined using the spread plate method; biomass formation was measured using the crystal violet staining method. Confocal laser scanning microscopy and scanning electron microscopy were used to study the biofilm formation. The results showed decreased viable bacteria numbers and biomass formation when incubated with chitosan-coated iron oxide nanoparticles at all test concentrations. Confocal laser scanning microscopy showed increased dead bacteria and thinner biofilm when incubated with nanoparticles at a concentration of 500 µg/mL. Scanning electron microscopy revealed that chitosan-coated iron oxide nanoparticles inhibited biofilm formation in polystyrene plates. Future studies should be performed to study these nanoparticles for anti-infective use.

  19. Mechanisms of enhanced osteoblast gene expression in the presence of hydroxyapatite coated iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tran, Nhiem; Hall, Douglas; Webster, Thomas J.

    2012-11-01

    Hydroxyapatite (HA) coated iron oxide (Fe3O4) magnetic nanoparticles have been shown to enhance osteoblast (bone forming cells) proliferation and osteoblast differentiation into calcium depositing cells (through increased secretion of alkaline phosphatase, collagen and calcium deposition) compared to control samples without nanoparticles. Such nanoparticles are, thus, very promising for numerous orthopedic applications including magnetically directed osteoporosis treatment. The objective of the current study was to elucidate the mechanisms of the aforementioned improved osteoblast responses in the presence of HA coated Fe3O4 nanoparticles. Results demonstrated large amounts of fibronectin (a protein known to increase osteoblast functions) adsorption on HA coated Fe3O4 nanoparticles. Specifically, fibronectin adsorption almost doubled when HA coated Fe3O4 nanoparticle concentrations increased from 12.5 to 100 μg ml-1, and from 12.5 to 200 μg ml-1, a four fold increase was observed. Results also showed greater osteoblast gene regulation (specifically, osteocalcin, type I collagen and cbfa-1) in the presence of HA coated Fe3O4 nanoparticles. Collectively, these results provide a mechanism for the observed enhanced osteoblast functions in the presence of HA coated iron oxide nanoparticles, allowing their further investigation for a number of orthopedic applications.

  20. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    NASA Astrophysics Data System (ADS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  1. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes

    NASA Astrophysics Data System (ADS)

    Geppert, Mark; Hohnholt, Michaela C.; Thiel, Karsten; Nürnberger, Sylvia; Grunwald, Ingo; Rezwan, Kurosch; Dringen, Ralf

    2011-04-01

    Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 µM iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg - 1 protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 °C was drastically lowered compared to cells that had been incubated at 37 °C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 °C, but not in cells exposed to the nanoparticles at 4 °C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.

  2. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.

    PubMed

    Boguslavsky, Yonit; Margel, Shlomo

    2008-01-01

    Maghemite (gamma-Fe2O3) nanoparticles of 15 +/- 3 nm diameter were prepared by nucleation of gelatin/iron oxide followed by growth of gamma-Fe2O3 films onto these nuclei. The gamma-Fe2O3 nanoparticles were coated with polydivinylbenzene (PDVB) by emulsion polymerization of divinylbenzene (DVB) in an aqueous continuous phase containing the gamma-Fe2O3 nanoparticles. The PDVB-coated gamma-Fe2O3 nanoparticles, dispersed in water, were separated from homo-PDVB nanoparticles using the high gradient magnetic field (HGMF) technique. The influence of DVB concentration on the amount of PDVB coating, on the size and size distribution of the coated gamma-Fe2O3 nanoparticles and on their magnetic properties, has been investigated. Air-stable carbon-coated iron (alpha-Fe/C) crystalline nanoparticles of 41 +/- 12 nm diameter have been prepared by annealing the PDVB-coated gamma-Fe2O3 nanoparticles at 1050 degrees C in an inert atmosphere. These nanoparticles exhibit high saturation magnetization value (83 emu g(-1)) and excellent resistance to oxidation. Characterization of the PDVB-coated gamma-Fe2O3 and of the alpha-Fe/C nanoparticles has been accomplished by TEM, HRTEM, DLS, FTIR, XRD, thermal analysis, zeta-potential, and magnetic measurements.

  3. Antibacterial activity and cytocompatibility of titanium oxide coating modified by iron ion implantation.

    PubMed

    Tian, Yaxin; Cao, Huiliang; Qiao, Yuqin; Meng, Fanhao; Liu, Xuanyong

    2014-10-01

    In this work, zero valent iron nanoparticles (Fezero-NPs) and iron oxide nanoparticles (Feox-NPs) were synthesized at the subsurface and surface regions of titanium oxide coatings (TOCs) by plasma immersion ion implantation. This novel Fe-NPs/TOC system showed negligible iron releasing, great electron storage capability and excellent cytocompatibility in vitro. Importantly, the system showed selective antibacterial ability which can kill Staphylococcus aureus under dark conditions but has no obvious antibacterial effect against Escherichia coli. Owing to a bipolar Schottky barrier between Fezero-NPs/TOC and Fezero-NPs/Feox-NPs, electrons could be captured by the Fezero-NPs bounded at the subsurface region of the coating. This electron storage capability of the Fe-NPs/TOC system induced extracellular electron transportation and accumulation of adequate valence-band holes (h(+)) at the external side, which caused oxidation damage to S. aureus cells in the dark. No obvious biocide effect against E. coli resulted from lack of electron transfer ability between E. coli and substrate materials. This work may open up a novel and controlled strategy to design coatings of implants with antibacterial ability and cytocompatibility for medical applications.

  4. Optimization of preparation of chitosan-coated iron oxide nanoparticles for biomedical applications by chemometrics approaches

    NASA Astrophysics Data System (ADS)

    Honary, Soheila; Ebrahimi, Pouneh; Rad, Hossein Asgari; Asgari, Mahsa

    2013-08-01

    Functionalized magnetic nanoparticles are used in several biomedical applications, such as drug delivery, magnetic cell separation, and magnetic resonance imaging. Size and surface properties of iron oxide nanoparticles are the two important factors which could dramatically affect the nanoparticle efficiency as well as their stability. In this study, the chemometrics approach was applied to optimize the coating process of iron oxide nanoparticles. To optimize the size of nanoparticles, the effect of two experimental parameters on size was investigated by means of multivariate analysis. The factors considered were chitosan molecular weight and chitosan-to-tripolyphosphate concentration ratio. The experiments were performed according to face-centered cube central composite response surface design. A second-order regression model was obtained which characterized by both descriptive and predictive abilities. The method was optimized with respect to the percent of Z average diameter's increasing after coating as response. It can be concluded that experimental design provides a suitable means of optimizing and testing the robustness of iron oxide nanoparticle coating method.

  5. Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics.

    PubMed

    Alwi, Rudolf; Telenkov, Sergey; Mandelis, Andreas; Leshuk, Timothy; Gu, Frank; Oladepo, Sulayman; Michaelian, Kirk

    2012-10-01

    In this study, we report for the first time the use of silica-coated superparamagnetic iron oxide nanoparticles (SPION) as contrast agents in biomedical photoacoustic imaging. Using frequency-domain photoacoustic correlation (the photoacoustic radar), we investigated the effects of nanoparticle size, concentration and biological media (e.g. serum, sheep blood) on the photoacoustic response in turbid media. Maximum detection depth and the minimum measurable SPION concentration were determined experimentally. The nanoparticle-induced optical contrast ex vivo in dense muscular tissues (avian pectus and murine quadricept) was evaluated and the strong potential of silica-coated SPION as a possible photoacoustic contrast agents was demonstrated.

  6. Self-assembly of graphene oxide coated soft magnetic carbonyl iron particles and their magnetorheology

    SciTech Connect

    Zhang, W. L.; Choi, H. J.

    2014-05-07

    The surface of carbonyl iron (CI) microspheres was modified with graphene oxide (GO) as a coating material using 4-aminobenzoic acid as the grafting agent. The morphology, elemental composition, and magnetic properties of the GO-coated CI (GO/CI) particles were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry, respectively, confirming their composite formation. The magnetorheological (MR) performance of the GO/CI particle-based suspension was examined using a rotational rheometer connected to a magnetic field supply. The GO/CI particles suspension exhibited typical MR properties with increasing shear stress and viscosity depending on the applied magnetic field strength.

  7. Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin P.; Baghdadi, Neazar; Kownacka, Alicja E.; Nigam, Shubhanchi; Clemente, Gonçalo S.; Al-Yassiry, Mustafa M.; Domarkas, Juozas; Lorch, Mark; Pickles, Martin; Gibbs, Peter; Tripier, Raphaël; Cawthorne, Christopher; Archibald, Stephen J.

    2015-09-01

    The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging.The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no

  8. Stable Strontium Isotopic Fractionation During Sorption onto Magnetic Nano-Humid Acid Coated Iron Oxide Particles

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; You, C.-F.; Tu, Y.-J.

    2012-04-01

    The mobility of strontium (Sr) through hydrological systems is critically governed by sorption reactions of solid phases such as iron oxides and clay minerals. Inorganic precipitated and bacteriogenic iron oxides are widespread in marine and fresh systems fed by iron-rich supplies, which may impact the global Sr cycle. A series of laboratory batch experiments of Sr sorption onto humid acid coated magnetic nano iron oxides using high purity in-house standard were performed in this study and aimed for gaining a better understanding of mechanisms controlling Sr mobility. The results indicate that Sr sorption is a function of pH, 100 % Sr remains unbounded at pH <4 and more than 85 % absorbed at pH >8. Temperature controlled experiments in the range of 5 - 35 degrees C indicate a positive relationship between sorption capacity and temperature. Measurements of stable Sr isotopes (δ88Sr and δ87Sr) in batch experiments show that lighter isotopes reacted preferentially with iron oxides, and a negligible pH effect on isotopic fractionation. To calculate the degree of the kinetic isotope effect, Rayleigh fractionation model is applied to evaluate the isotope fractionation factor, α is 0.99985 at pH 8.17 (equals to Δ88Sr ~ 0.15 ‰). Temperature exerts only minor isotopic fractionation effect and reveals more importance at lower temperatures. This new finding provides crucial information for a detail evaluation of sorption processes in natural environments.

  9. Biocompatible and fluorescent superparamagnetic iron oxide nanoparticles with superior magnetic properties coated with charged polysaccharide derivatives.

    PubMed

    Lachowicz, Dorota; Szpak, Agnieszka; Malek-Zietek, Katarzyna E; Kepczynski, Mariusz; Muller, Robert N; Laurent, Sophie; Nowakowska, Maria; Zapotoczny, Szczepan

    2017-02-01

    Syntheses and characterizations of biocompatible superparamagnetic iron oxide nanoparticles with embedded curcumin and coated with ultrathin layer of hyaluronic acid-curcumin (HA-Cur) conjugate have been reported. Zeta potential measurements confirmed effective coating of native iron oxide nanoparticles stabilized by cationic derivative of chitosan (SPION-CCh) with the synthesized HA-Cur conjugate. Both SPIONs with embedded curcumin and the ones coated with HA-Cur (SPION-CCh/HA-Cur) revealed desired magnetic characteristics while fluorescent properties were much better for the coated nanoparticles. SPION-CCh/HA-Cur nanoparticles were shown to be very promising candidates for T2 MRI contrast agents as they can easily penetrate cell membrane and their relaxivity is exceptionally high (ca. 470mM(-1)s(-1)). They may be also tracked using confocal fluorescence microscopy due to the presence of fluorescent curcumin in the coating. In vitro studies indicated that the obtained SPIONs-CCh/HA-Cur were non-toxic for EA.hy926 endothelial cells.

  10. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes.

    PubMed

    Huang, Li-Zhi; Hansen, Hans Christian B; Bjerrum, Morten Jannik

    2016-04-05

    Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30μAcm(-2) was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400μM of the nitroaromatic compound at a potential of -0.7V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant=0.28h(-1)) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant=6.9μM h(-1)). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and low over potential.

  11. Magnetic resonance imaging of glioma with novel APTS-coated superparamagnetic iron oxide nanoparticles

    PubMed Central

    2014-01-01

    We report in vitro and in vivo magnetic resonance (MR) imaging of C6 glioma cells with a novel acetylated 3-aminopropyltrimethoxysilane (APTS)-coated iron oxide nanoparticles (Fe3O4 NPs). In the present study, APTS-coated Fe3O4 NPs were formed via a one-step hydrothermal approach and then chemically modified with acetic anhydride to generate surface charge-neutralized NPs. Prussian blue staining and transmission electron microscopy (TEM) data showed that acetylated APTS-coated Fe3O4 NPs can be taken up by cells. Combined morphological observation, cell viability, and flow cytometric analysis of the cell cycle indicated that the acetylated APTS-coated Fe3O4 NPs did not significantly affect cell morphology, viability, or cell cycle, indicating their good biocompatibility. Finally, the acetylated APTS-coated Fe3O4 nanoparticles were used in magnetic resonance imaging of C6 glioma. Our results showed that the developed acetylated APTS-coated Fe3O4 NPs can be used as an effective labeling agent to detect C6 glioma cells in vitro and in vivo for MR imaging. The results from the present study indicate that the developed acetylated APTS-coated Fe3O4 NPs have a potential application in MR imaging. PMID:24994959

  12. Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings.

    PubMed

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Salaklang, Jatuporn; Hofmann, Heinrich

    2014-05-21

    Because of their biocompatibility and unique magnetic properties, superparamagnetic iron oxide nanoparticles NPs (SPIONs) are recognized as some of the most prominent agents for theranostic applications. Thus, understanding the interaction of SPIONs with biological systems is important for their safe design and efficient applications. In this study, SPIONs were coated with 2 different polymers: polyvinyl alcohol polymer (PVA) and dextran. The obtained NPs with different surface charges (positive, neutral, and negative) were used as a model study of the effect of surface charges and surface polymer materials on protein adsorption using a magnetic separator. We found that the PVA-coated SPIONs with negative and neutral surface charge adsorbed more serum proteins than the dextran-coated SPIONs, which resulted in higher blood circulation time for PVA-coated NPs than the dextran-coated ones. Highly abundant proteins such as serum albumin, serotransferrin, prothrombin, alpha-fetoprotein, and kininogen-1 were commonly found on both PVA- and dextran-coated SPIONs. By increasing the ionic strength, soft- and hard-corona proteins were observed on 3 types of PVA-SPIONs. However, the tightly bound proteins were observed only on negatively charged PVA-coated SPIONs after the strong protein elution.

  13. Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and Coatings

    NASA Astrophysics Data System (ADS)

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Salaklang, Jatuporn; Hofmann, Heinrich

    2014-05-01

    Because of their biocompatibility and unique magnetic properties, superparamagnetic iron oxide nanoparticles NPs (SPIONs) are recognized as some of the most prominent agents for theranostic applications. Thus, understanding the interaction of SPIONs with biological systems is important for their safe design and efficient applications. In this study, SPIONs were coated with 2 different polymers: polyvinyl alcohol polymer (PVA) and dextran. The obtained NPs with different surface charges (positive, neutral, and negative) were used as a model study of the effect of surface charges and surface polymer materials on protein adsorption using a magnetic separator. We found that the PVA-coated SPIONs with negative and neutral surface charge adsorbed more serum proteins than the dextran-coated SPIONs, which resulted in higher blood circulation time for PVA-coated NPs than the dextran-coated ones. Highly abundant proteins such as serum albumin, serotransferrin, prothrombin, alpha-fetoprotein, and kininogen-1 were commonly found on both PVA- and dextran-coated SPIONs. By increasing the ionic strength, soft- and hard-corona proteins were observed on 3 types of PVA-SPIONs. However, the tightly bound proteins were observed only on negatively charged PVA-coated SPIONs after the strong protein elution.

  14. Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and Coatings

    PubMed Central

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Salaklang, Jatuporn; Hofmann, Heinrich

    2014-01-01

    Because of their biocompatibility and unique magnetic properties, superparamagnetic iron oxide nanoparticles NPs (SPIONs) are recognized as some of the most prominent agents for theranostic applications. Thus, understanding the interaction of SPIONs with biological systems is important for their safe design and efficient applications. In this study, SPIONs were coated with 2 different polymers: polyvinyl alcohol polymer (PVA) and dextran. The obtained NPs with different surface charges (positive, neutral, and negative) were used as a model study of the effect of surface charges and surface polymer materials on protein adsorption using a magnetic separator. We found that the PVA-coated SPIONs with negative and neutral surface charge adsorbed more serum proteins than the dextran-coated SPIONs, which resulted in higher blood circulation time for PVA-coated NPs than the dextran-coated ones. Highly abundant proteins such as serum albumin, serotransferrin, prothrombin, alpha-fetoprotein, and kininogen-1 were commonly found on both PVA- and dextran-coated SPIONs. By increasing the ionic strength, soft- and hard-corona proteins were observed on 3 types of PVA-SPIONs. However, the tightly bound proteins were observed only on negatively charged PVA-coated SPIONs after the strong protein elution. PMID:24846348

  15. Magnetorheology of suspensions based on graphene oxide coated or added carbonyl iron microspheres and sunflower oil

    NASA Astrophysics Data System (ADS)

    Chen, Kaikai; Zhang, Wen Ling; Shan, Lei; Zhang, Xiangjun; Meng, Yonggang; Choi, Hyoung Jin; Tian, Yu

    2014-10-01

    Magnetorheological (MR) fluids based on carbonyl iron (CI) particles coated with graphene oxide (GO) and sunflower oils were studied and compared with MR fluids (MRFs) prepared with CI particles added with GO sheets. Adding GO sheets into CI had a negligible effect on the rheological properties of the MRF. Coating the spheres with GO markedly decreased the shear strength at high shear rates due to the remarkable lubricating function of the GO surface. Different behaviors were observed in the shear thickening phenomenon when the GO surface changed the mechanical interaction between particles. The results demonstrated the importance of the role of interparticle friction for MRF in shear mode and discussed the weak shear thickening phenomenon with fine lubricating coating layers and oils.

  16. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells

    SciTech Connect

    Kunzmann, Andrea; Andersson, Britta; Vogt, Carmen; Feliu, Neus; Ye Fei; Gabrielsson, Susanne; Toprak, Muhammet S.; Buerki-Thurnherr, Tina; Laurent, Sophie; Vahter, Marie; Krug, Harald; Muhammed, Mamoun; Scheynius, Annika; Fadeel, Bengt

    2011-06-01

    Engineered nanoparticles are being considered for a wide range of biomedical applications, from magnetic resonance imaging to 'smart' drug delivery systems. The development of novel nanomaterials for biomedical applications must be accompanied by careful scrutiny of their biocompatibility. In this regard, particular attention should be paid to the possible interactions between nanoparticles and cells of the immune system, our primary defense system against foreign invasion. On the other hand, labeling of immune cells serves as an ideal tool for visualization, diagnosis or treatment of inflammatory processes, which requires the efficient internalization of the nanoparticles into the cells of interest. Here, we compare novel monodispersed silica-coated iron oxide nanoparticles with commercially available dextran-coated iron oxide nanoparticles. The silica-coated iron oxide nanoparticles displayed excellent magnetic properties. Furthermore, they were non-toxic to primary human monocyte-derived macrophages at all doses tested whereas dose-dependent toxicity of the smaller silica-coated nanoparticles (30 nm and 50 nm) was observed for primary monocyte-derived dendritic cells, but not for the similarly small dextran-coated iron oxide nanoparticles. No macrophage or dendritic cell secretion of pro-inflammatory cytokines was observed upon administration of nanoparticles. The silica-coated iron oxide nanoparticles were taken up to a significantly higher degree when compared to the dextran-coated nanoparticles, irrespective of size. Cellular internalization of the silica-coated nanoparticles was through an active, actin cytoskeleton-dependent process. We conclude that these novel silica-coated iron oxide nanoparticles are promising materials for medical imaging, cell tracking and other biomedical applications.

  17. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery.

    PubMed

    Jiang, Shan; Eltoukhy, Ahmed A; Love, Kevin T; Langer, Robert; Anderson, Daniel G

    2013-03-13

    The safe, targeted and effective delivery of gene therapeutics remains a significant barrier to their broad clinical application. Here we develop a magnetic nucleic acid delivery system composed of iron oxide nanoparticles and cationic lipid-like materials termed lipidoids. Coated nanoparticles are capable of delivering DNA and siRNA to cells in culture. The mean hydrodynamic size of these nanoparticles was systematically varied and optimized for delivery. While nanoparticles of different sizes showed similar siRNA delivery efficiency, nanoparticles of 50-100 nm displayed optimal DNA delivery activity. The application of an external magnetic field significantly enhanced the efficiency of nucleic acid delivery, with performance exceeding that of the commercially available lipid-based reagent, Lipofectamine 2000. The iron oxide nanoparticle delivery platform developed here offers the potential for magnetically guided targeting, as well as an opportunity to combine gene therapy with MRI imaging and magnetic hyperthermia.

  18. High-temperature oxidation/sulfidation resistance of iron-aluminide coatings

    SciTech Connect

    Tortorelli, P.F.; Wright, I.G.; Goodwin, G.M.; Howell, M.

    1996-04-01

    Iron aluminides containing > 20-25 at. % Al have oxidation and sulfidation resistance at temperatures well above those at which these alloys have adequate mechanical strength. Accordingly, these alloys may find application as coatings or claddings on more conventional higher-strength materials which are generally less corrosion-resistant at high temperatures. To this end, iron-aluminide coatings were prepared by gas tungsten arc and gas metal arc weld-overlay techniques. Specimens were cut from weld deposits and exposed to a highly aggressive oxidizing-sulfidizing (H2S-H2-H2O-Ar) environment at 800 C. All the weld overlayers showed good corrosion behavior under isothermal conditions, including a gas metal arc-produced deposit with only 21 at. % Al. Rapid degradation in corrosion resistance was observed under thermal cycling conditions when the initally grown scales spalled and the rate of reaction was then not controlled by formation of slowly growing Al oxide. Higher starting Al concentrations (> {approximately} 25 at. %) are needed to assure overall oxidation-sulfidation resistance of the weld overlays, but hydrogen cracking susceptibility must be minimized in order to physically separate the corrosive species from the reactive substrate material.

  19. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    EPA Science Inventory

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  20. Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant

    NASA Astrophysics Data System (ADS)

    Mondini, Sara; Drago, Carmelo; Ferretti, Anna M.; Puglisi, Alessandra; Ponti, Alessandro

    2013-03-01

    Long-term colloidal stability of magnetic iron oxide nanoparticles (NPs) is an important goal that has not yet been fully achieved. To make an advance in our understanding of the colloidal stability of iron oxide NPs in aqueous media, we prepared NPs comprising a monodisperse (13 nm) iron oxide core coated with a PEG-based (PEG: polyethyleneglycol) surfactant. This consists of a methoxy-terminated PEG chain (MW = 5000 Da) bearing four catechol groups via a diethylenetriamine linker. The surfactant was grafted onto the nanocrystals by ligand exchange monitored by infrared spectroscopy. The colloidal stability of these nanoparticles was probed by monitoring the time evolution of the Z-average intensity-weighted radius Rh and volume-weighted size distribution Pv obtained from analysis of dynamic light scattering data. The nanoparticles showed no sign of aggregation for four months in deionized water at room temperature and also when subjected to thermal cycling between 25 and 75 °C. In 0.01 M PBS (phosphate buffered saline), aggregation (if any) is slow and partial; after 66 h, about 50% of NPs have not aggregated. Aggregation is more effective in 0.15 M NH4AcO buffer, where isolated particles are not observed after 66 h, and especially in acidic NH4AcO/AcOH buffer, where aggregation is complete within 1 h and precipitation is observed. The differing stability of the NPs in the above aqueous media is closely related to their ζ potential.

  1. The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice.

    PubMed

    Kolosnjaj-Tabi, Jelena; Javed, Yasir; Lartigue, Lénaic; Volatron, Jeanne; Elgrabli, Dan; Marangon, Iris; Pugliese, Giammarino; Caron, Benoit; Figuerola, Albert; Luciani, Nathalie; Pellegrino, Teresa; Alloyeau, Damien; Gazeau, Florence

    2015-08-25

    Safe implementation of nanotechnology and nanomedicine requires an in-depth understanding of the life cycle of nanoparticles in the body. Here, we investigate the long-term fate of gold/iron oxide heterostructures after intravenous injection in mice. We show these heterostructures degrade in vivo and that the magnetic and optical properties change during the degradation process. These particles eventually eliminate from the body. The comparison of two different coating shells for heterostructures, amphiphilic polymer or polyethylene glycol, reveals the long lasting impact of initial surface properties on the nanocrystal degradability and on the kinetics of elimination of magnetic iron and gold from liver and spleen. Modulation of nanoparticles reactivity to the biological environment by the choice of materials and surface functionalization may provide new directions in the design of multifunctional nanomedicines with predictable fate.

  2. Decontamination of spent iron-oxide coated sand from filters used in arsenic removal.

    PubMed

    Rahman, Ismail M M; Begum, Zinnat A; Sawai, Hikaru; Maki, Teruya; Hasegawa, Hiroshi

    2013-06-01

    Sand filters devised with iron-rich adsorbents are extensively promoted and deployed in the arsenic-prone south and south-east Asian countries (e.g., Bangladesh). The approach offers superior performance in removing arsenic while the spent sludge from the sand filters is an issue of concern due to the possibility of toxic releases after being discarded. In this work, a new technique is proposed for the treatment of spent iron-oxide coated sand (IOCS) from filters used in arsenic removal. Chelant-washing of the arsenic-loaded IOCS is combined with the solid phase extraction treatment to accomplish the objective. The unique point of the proposed process is the cost-effective scheme, which includes the option of recycling of the washing solvent beside the decontamination of the spent arsenic-rich sludge.

  3. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  4. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings.

    PubMed

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Zhong, Zhihui; Wang, Li; Li, Hongxia; Xiao, Kai

    2014-10-24

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating.

  5. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Zhong, Zhihui; Wang, Li; Li, Hongxia; Xiao, Kai

    2014-10-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating.

  6. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects

    NASA Astrophysics Data System (ADS)

    Bomati-Miguel, Oscar; Miguel-Sancho, Nuria; Abasolo, Ibane; Candiota, Ana Paula; Roca, Alejandro G.; Acosta, Milena; Schwartz, Simó; Arus, Carles; Marquina, Clara; Martinez, Gema; Santamaria, Jesus

    2014-03-01

    Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (<10 μg Fe/ml). Moreover, cell uptake assays on HeLa and U87MG and hemolysis tests have demonstrated that TEG-SPIONs and DMSA-SPIONs were well internalized by the cells and did not induce any adverse effect on the red blood cells at the tested concentrations. Finally, in vitro relaxivity measurements and post mortem MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.

  7. The effect of coating on heat generation properties of Iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan

    Magnetic nanoparticles have attracted more and more attention for their potential application as heating agents in cancer hyperthermia. The effectiveness of cancer hyperthermia can be increased by using particles that have a higher heat generation rate, quantified by specific absorption rate (SAR), at a smaller applied field. In order to optimize the functionality of nanoparticles as heating agents, it is essential to have a comprehensive understanding of factors that may influence SAR including coating and aggregation. In all biomedical applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration and add functionality. Coatings may profoundly influence particles' clustering behavior and magnetic properties. Yet its effect on the heat generation rate of the nanoparticles has been scarcely investigated. In this context, a systematic investigation was carried out in this dissertation in order to understand the impact of the surface coating of magnetic nanoparticles on their heat generation rate. The study also includes investigation of normal nerve cell viability in presence of biofunctionalized magnetic nanoparticles with and without exposure to magnetic heating. Commercially available suspensions of iron oxide nanoparticles with a diameter of approximately 10 nm and different coatings relevant to biomedical applications such as aminosilane, carboxymethyl-dextran, protein A, biotin were extensively characterized. First of all, magnetic phase reduction of magnetite nanoparticles was examined by studying the discrepancy between the volume fraction of magnetic phase calculated from magnetization curve and the magnetic core concentration obtained from Tiron chelation test. The findings indicated that coatings might interact with the surface atoms of the magnetic core and form a magnetically disordered layer reducing the total amount of the magnetic phase. Secondly, the impact of coating and aggregation

  8. Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines

    PubMed Central

    Zhu, Xiao-Ming; Wang, Yi-Xiang J; Leung, Ken Cham-Fai; Lee, Siu-Fung; Zhao, Feng; Wang, Da-Wei; Lai, Josie MY; Wan, Chao; Cheng, Christopher HK; Ahuja, Anil T

    2012-01-01

    Purpose To compare the cellular uptake efficiency and cytotoxicity of aminosilane (SiO2-NH2)-coated superparamagnetic iron oxide (SPIO@SiO2-NH2) nanoparticles with three other types of SPIO nanoparticles coated with SiO2 (SPIO@SiO2), dextran (SPIO@dextran), or bare SPIO in mammalian cell lines. Materials and methods Four types of monodispersed SPIO nanoparticles with a SPIO core size of 7 nm and an overall size in a range of 7–15 nm were synthesized. The mammalian cell lines of MCF-7, MDA-MB-231, HT-29, RAW264.7, L929, HepG2, PC-3, U-87 MG, and mouse mesenchymal stem cells (MSCs) were incubated with four types of SPIO nanoparticles for 24 hours in the serum-free culture medium Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 μg/mL iron concentration. The cellular uptake efficiencies of SPIO nanoparticles were compared by Prussian blue staining and intracellular iron quantification. In vitro magnetic resonance imaging of MSC pellets after SPIO labeling was performed at 3 T. The effect of each SPIO nanoparticle on the cell viability of RAW 264.7 (mouse monocyte/macrophage) cells was also evaluated. Results Transmission electron microscopy demonstrated surface coating with SiO2-NH2, SiO2, and dextran prevented SPIO nanoparticle aggregation in DMEM culture medium. MCF-7, MDA-MB-231, and HT-29 cells failed to show notable iron uptake. For all the remaining six cell lines, Prussian blue staining and intracellular iron quantification demonstrated that SPIO@ SiO2-NH2 nanoparticles had the highest cellular uptake efficiency. SPIO@SiO2-NH2, bare SPIO, and SPIO@dextran nanoparticles did not affect RAW 264.7 cell viability up to 200 μg Fe/mL, while SPIO@SiO2 reduced RAW 264.7 cell viability from 10 to 200 μg Fe/mL in a dose-dependent manner. Conclusion Cellular uptake efficiency of SPIO nanoparticles depends on both the cell type and SPIO surface characteristics. Aminosilane surface coating enhanced the cellular uptake efficiency without inducing cytotoxicity in a

  9. Superparamagnetic Iron Oxide Nanoparticles Coated with Galactose-Carrying Polymer for Hepatocyte Targeting

    PubMed Central

    Yoo, Mi Kyong; Kim, In Yong; Kim, Eun Mi; Jeong, Hwan-Jeong; Lee, Chang-Moon; Jeong, Yong Yeon; Akaike, Toshihiro; Cho, Chong Su

    2007-01-01

    Our goal is to develop the functionalized superparamagnetic iron oxide nanoparticles (SPIONs) demonstrating the capacities to be delivered in liver specifically and to be dispersed in physiological environment stably. For this purpose, SPIONs were coated with polyvinylbenzyl-O-β-D-galactopyranosyl-D-gluconamide (PVLA) having galactose moieties to be recognized by asialoglycoprotein receptors (ASGP-R) on hepatocytes. For use as a control, we also prepared SPIONs coordinated with 2-pyrrolidone. The sizes, size distribution, structure, and coating of the nanoparticles were characterized by transmission electron microscopy (TEM), electrophoretic light scattering spectrophotometer (ELS), X-ray diffractometer (XRD), and Fourier transform infrared (FT-IR), respectively. Intracellular uptake of the PVLA-coated SPIONs was visualized by confocal laser scanning microscopy, and their hepatocyte-specific delivery was also investigated through magnetic resonance (MR) images of rat liver. MRI experimental results indicated that the PVLA-coated SPIONs possess the more specific accumulation property in liver compared with control, which suggests their potential utility as liver-targeting MRI contrast agent. PMID:18317519

  10. Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Fu-Kuo; Chen, Wen-Chang; Lai, Sheng-Feng; Liu, Chi-Jen; Wang, Cheng-Liang; Wang, Chang-Hai; Chen, Hsiang-Hsin; Hua, Tzu-En; Cheng, Yi-Yun; Wu, M. K.; Hwu, Y.; Yang, Chung-Shi; Margaritondo, G.

    2010-01-01

    We investigated iron oxide nanoparticles with two different surface modifications, dextran coating and cross-linked dextran coating, showing that their different internalization affects their capability to enhance radiation damage to cancer cells. The internalization was monitored with an ultrahigh resolution transmission x-ray microscope (TXM), indicating that the differences in the particle surface charge play an essential role and dominate the particle-cell interaction. We found that dextran-coated iron oxide nanoparticles cannot be internalized by HeLa and EMT-6 cells without being functionalized with amino groups (the cross-linked dextran coating) that modify the surface potential from -18 mV to 13.4 mV. The amount of cross-linked dextran-coated iron oxide nanoparticles uptaken by cancer cells reached its maximum, 1.33 × 109 per HeLa cell, when the co-culture concentration was 40 µg Fe mL-1 or more. Standard tests indicated that these internalized nanoparticles increased the damaging effects of x-ray irradiation, whereas they are by themselves biocompatible. These results could lead to interesting therapy applications; furthermore, iron oxide also produces high contrast for magnetic resonance imaging (MRI) in the diagnosis and therapy stages.

  11. Preparation of composite with silica-coated nanoparticles of iron oxide spinels for applications based on magnetically induced hyperthermia

    NASA Astrophysics Data System (ADS)

    Andrade, Angela L.; Fabris, José D.; Pereira, Márcio C.; Domingues, Rosana Z.; Ardisson, José D.

    2013-04-01

    It is reported a novel method to prepare magnetic core (iron oxide spinels)-shell (silica) composites containing well-dispersed magnetic nanoparticles in aqueous solution. The synthetic process consists of two steps. In a first step, iron oxide nanoparticles obtained through co-precipitation are dispersed in an aqueous solution containing tetramethylammonium hydroxide; in a second step, particles of this sample are coated with silica, through hydrolyzation of tetraethyl orthosilicate. The intrinsic atomic structure and essential properties of the core-shell system were assessed with powder X-ray diffraction, Fourier transform infrared spectrometry, Mössbauer spectroscopy and transmission electron microscopy. The heat released by this ferrofluid under an AC-generated magnetic field was evaluated by following the temperature evolution under increasing magnetic field strengths. Results strongly indicate that this ferrofluid based on silica-coated iron oxide spinels is technologically a very promising material to be used in medical practices, in oncology.

  12. Effective delivery of immunosuppressive drug molecules by silica coated iron oxide nanoparticles.

    PubMed

    Hwang, Jangsun; Lee, Eunwon; Kim, Jieun; Seo, Youngmin; Lee, Kwan Hong; Hong, Jong Wook; Gilad, Assaf A; Park, Hansoo; Choi, Jonghoon

    2016-06-01

    Iron oxide nanoparticles have been used in a wide range of biomedical applications, including drug delivery, molecular imaging, and cellular imaging. Various surface modifications have been applied to the particles to stabilize their surface and to give them a moiety for anchoring tags and/or drug molecules. Conventional methods of delivering immunosuppressant drugs often require a high dose of drugs to ensure therapeutic effects, but this can lead to toxic side effects. In this study, we used silica-coated iron oxide nanoparticles (IOSs) for a drug delivery application in which the nanoparticles carry the minimum amount of drug required to be effective to the target cells. IOSs could be loaded with water-insoluble immunosuppressive drug molecules (MPA: mycophenolic acid) and be used as a contrast agent for MRI. We characterized the IOSs for their physicochemical properties and found their average hydrodynamic diameter and core size to be 40.5nm and 5nm, respectively. Following the introduction of MPA-loaded IOSs (IOS/M), we evaluated the secretion dynamics of cytokines from peripheral blood mononuclear cells stimulated with phytohemagglutinin (PHA). The results showed that IOS/M effectively inhibited the secretion of the cytokines interleukin-2 and tumor necrosis factor α, with a minimal concentration of MPA. In conclusion, IOS/M may have potential applications in both efficient drug delivery and MRI.

  13. Photoactive nanocomplex formed from chlorophyll assembly on TMA-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Barbaros, Sibel; Meray, Zeynep; Tecim, Tuğba; Genç, Rükan

    2016-07-01

    In this study, hierarchical self-assembly of photocatalytic nanodisks through non-covalent interactions between spinach-extracted chlorophyll molecules and trimethylammonium hydroxide-coated magnetic iron oxide nanoparticles was discussed. Combination of chlorophyll molecules with iron oxide nanoparticles generated an alteration in light absorption at both visible and near-IR region with accompanying enhancement in fluorescence emission. Further, photocatalytic role of resulting molecular assembly was studied by means of the photoinduced degradation of methylene blue dye under UV light and direct sun irradiation at neutral pH. In order to enhance the long-term stability of the hybrid nanocatalyst, commercially available cellulose membrane was used as a support and magnetic recovery and reusability was achieved where the nanocatalyst retained more than 90 % of its efficiency even after four cycles. This simple strategy could initiate the development of new materials for wastewater treatment including membrane-based technologies. On the other hand, their sunlight-induced photocatalytic activity could easily be conducted to dye-synthesized solar cells or their enhanced photoluminescence can provide a strong basis for future bioimaging tools.

  14. BACTERIOPHAGE PRD1 AND SILICA COLLOID TRANSPORT AND RECOVERY IN AN IRON OXIDE-COATED SAND AQUIFER. (R826179)

    EPA Science Inventory

    Bacteriophage PRD1 and silica colloids were co-injected into
    sewage-contaminated and uncontaminated zones of an iron oxide-coated sand
    aquifer on Cape Cod, MA, and their transport was monitored over distances up to
    6 m in three arrays. After deposition, the attache...

  15. Pharmaceutical formulation of HSA hybrid coated iron oxide nanoparticles for magnetic drug targeting.

    PubMed

    Zaloga, Jan; Pöttler, Marina; Leitinger, Gerd; Friedrich, Ralf P; Almer, Gunter; Lyer, Stefan; Baum, Eva; Tietze, Rainer; Heimke-Brinck, Ralph; Mangge, Harald; Dörje, Frank; Lee, Geoffrey; Alexiou, Christoph

    2016-04-01

    In this work we present a new formulation of superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic drug targeting. The particles were reproducibly synthesized from current good manufacturing practice (cGMP) - grade substances. They were surface coated using fatty acids as anchoring molecules for human serum albumin. We comprehensively characterized the physicochemical core-shell structure of the particles using sophisticated methods. We investigated biocompatibility and cellular uptake of the particles using an established flow cytometric method in combination with microwave-plasma assisted atomic emission spectroscopy (MP-AES). The cytotoxic drug mitoxantrone was adsorbed on the protein shell and we showed that even in complex media it is slowly released with a close to zero order kinetics. We also describe an in vitro proof-of-concept assay in which we clearly showed that local enrichment of this SPION-drug conjugate with a magnet allows site-specific therapeutic effects.

  16. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bloemen, Maarten; Brullot, Ward; Luong, Tai Thien; Geukens, Nick; Gils, Ann; Verbiest, Thierry

    2012-09-01

    Superparamagnetic iron oxide nanoparticles can provide multiple benefits for biomedical applications in aqueous environments such as magnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles' surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality water-dispersible nanoparticles around 10 nm in size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.

  17. Urban runoff treatment using nano-sized iron oxide coated sand with and without magnetic field applying

    PubMed Central

    2013-01-01

    Increase of impervious surfaces in urban area followed with increases in runoff volume and peak flow, leads to increase in urban storm water pollution. The polluted runoff has many adverse impacts on human life and environment. For that reason, the aim of this study was to investigate the efficiency of nano iron oxide coated sand with and without magnetic field in treatment of urban runoff. In present work, synthetic urban runoff was treated in continuous separate columns system which was filled with nano iron oxide coated sand with and without magnetic field. Several experimental parameters such as heavy metals, turbidity, pH, nitrate and phosphate were controlled for investigate of system efficiency. The prepared column materials were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDXA) instruments. SEM and EDXA analyses proved that the sand has been coated with nano iron oxide (Fe3O4) successfully. The results of SEM and EDXA instruments well demonstrate the formation of nano iron oxide (Fe3O4) on sand particle. Removal efficiency without magnetic field for turbidity; Pb, Zn, Cd and PO4 were observed to be 90.8%, 73.3%, 75.8%, 85.6% and 67.5%, respectively. When magnetic field was applied, the removal efficiency for turbidity, Pb, Zn, Cd and PO4 was increased to 95.7%, 89.5%, 79.9%, 91.5% and 75.6% respectively. In addition, it was observed that coated sand and magnetic field was not able to remove NO3 ions. Statistical analyses of data indicated that there was a significant difference between removals of pollutants in two tested columns. Results of this study well demonstrate the efficiency of nanosized iron oxide-coated sand in treatment of urban runoff quality; upon 75% of pollutants could be removed. In addition, in the case of magnetic field system efficiency can be improved significantly. PMID:24360061

  18. Urban runoff treatment using nano-sized iron oxide coated sand with and without magnetic field applying.

    PubMed

    Khiadani Hajian, Mehdi; Zarrabi, Mansur; Foroughi, Maryam

    2013-12-20

    Increase of impervious surfaces in urban area followed with increases in runoff volume and peak flow, leads to increase in urban storm water pollution. The polluted runoff has many adverse impacts on human life and environment. For that reason, the aim of this study was to investigate the efficiency of nano iron oxide coated sand with and without magnetic field in treatment of urban runoff. In present work, synthetic urban runoff was treated in continuous separate columns system which was filled with nano iron oxide coated sand with and without magnetic field. Several experimental parameters such as heavy metals, turbidity, pH, nitrate and phosphate were controlled for investigate of system efficiency. The prepared column materials were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDXA) instruments. SEM and EDXA analyses proved that the sand has been coated with nano iron oxide (Fe3O4) successfully. The results of SEM and EDXA instruments well demonstrate the formation of nano iron oxide (Fe3O4) on sand particle. Removal efficiency without magnetic field for turbidity; Pb, Zn, Cd and PO4 were observed to be 90.8%, 73.3%, 75.8%, 85.6% and 67.5%, respectively. When magnetic field was applied, the removal efficiency for turbidity, Pb, Zn, Cd and PO4 was increased to 95.7%, 89.5%, 79.9%, 91.5% and 75.6% respectively. In addition, it was observed that coated sand and magnetic field was not able to remove NO3 ions. Statistical analyses of data indicated that there was a significant difference between removals of pollutants in two tested columns. Results of this study well demonstrate the efficiency of nanosized iron oxide-coated sand in treatment of urban runoff quality; upon 75% of pollutants could be removed. In addition, in the case of magnetic field system efficiency can be improved significantly.

  19. Oleate coating of iron oxide nanoparticles in aqueous systems: the role of temperature and surfactant concentration

    NASA Astrophysics Data System (ADS)

    Roth, Hans-Christian; Schwaminger, Sebastian; Fraga García, Paula; Ritscher, Jonathan; Berensmeier, Sonja

    2016-04-01

    Coating magnetic nanoparticles (MNPs) with sodium oleate (SO) is known to be an excellent method to create biocompatible, stable colloids with a narrow size distribution. However, the mechanism of oleate adsorption on the MNP surface in aqueous systems, as well as its influence on colloidal stability, is not yet fully understood. In this context, we present here a physico-chemical study to provide a deeper understanding of surfactant interaction mechanisms with nanoparticles. We examined the effect of temperature and the SO/MNP ratio (w/w) on the adsorption process in water and observed the existence of a maximum for the adsorbed oleate amount at lower temperatures, whereas at higher temperatures, the isotherm can be adapted to the Langmuir model with constant capacity after saturation. The oleate load on the MNP surface was quantified using reversed-phase high-performance liquid chromatography measurements of samples in solution. The thermogravimetric analyses of the solid residues together with infrared spectroscopy analyses indicate a bilayer-similar structure at the MNP/water interface even for low oleate loads. The oleate interacts with the iron oxide surface through a bidentate coordination of the carboxyl group. Zeta potential measurements demonstrate the high stability of the coated system. The maximal oleate load per unit mass of MNPs reaches approximately 0.35 goleate g MNP -1 .

  20. Refinement of adsorptive coatings for fluorescent riboflavin-receptor-targeted iron oxide nanoparticles.

    PubMed

    Tsvetkova, Yoanna; Beztsinna, Nataliia; Jayapaul, Jabadurai; Weiler, Marek; Arns, Susanne; Shi, Yang; Lammers, Twan; Kiessling, Fabian

    2016-01-01

    Flavin mononucleotide (FMN) is a riboflavin derivative that can be exploited to target the riboflavin transporters (RFTs) and the riboflavin carrier protein (RCP) in cells with high metabolic activity. In this study we present the synthesis of different FMN-coated ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) and their efficiency as targeting contrast agents. Since FMN alone cannot stabilize the nanoparticles, we used adenosine phosphates--AMP, ADP and ATP--as spacers to obtain colloidally stable nanoparticles. Nucleotides with di- and triphosphate groups were intended to increase the USPIO charge and thus improve zeta potential and stability. However, all nanoparticles formed negatively charged clusters with similar properties in terms of zeta potential (-28 ± 2 mV), relaxivity (228-259 mM(-1) s(-1) at 3 T) and hydrodynamic radius (53-85 nm). Molecules with a higher number of phosphate groups, such as ADP and ATP, have a higher adsorption affinity towards iron oxide, which, instead of providing more charge, led to partial desorption and replacement of FMN. Hence, we obtained USPIOs carrying different amounts of targeting agent, which significantly influenced the nanoparticles' uptake. The nanoparticles' uptake by different cancer cells and HUVECs was evaluated photometrically and with MR relaxometry, showing that the cellular uptake of the USPIOs increases with the FMN amount on their surface. Thus, for USPIOs targeted with riboflavin derivatives the use of spacers with increasing numbers of phosphate groups does not improve either zeta potential or the particles' stability, but rather detaches the targeting moieties from their surface, leading to lower cellular uptake.

  1. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer

    USGS Publications Warehouse

    Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.

    1999-01-01

    Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by

  2. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI.

    PubMed

    Barrow, Michael; Taylor, Arthur; Murray, Patricia; Rosseinsky, Matthew J; Adams, Dave J

    2015-10-07

    Iron oxide nanoparticles (IONPs, sometimes called superparamagnetic iron oxide nanoparticles or SPIONs) have already shown promising results for in vivo cell tracking using magnetic resonance imaging (MRI). To fully exploit the potential of these materials as contrast agents, there is still a need for a greater understanding of how they react to physiological conditions. A key aspect is the specific nature of the surface coating, which can affect important properties of the IONPs such as colloidal stability, toxicity, magnetism and labelling efficiency. Polymers are widely used as coatings for IONPs as they can increase colloidal stability in hydrophilic conditions, as well as protect the iron oxide core from degradation. In this tutorial review, we will examine the design and synthesis approaches currently being employed to produce polymer coated IONPs as cell tracking agents, and what considerations must be made. We will also give some perspective on the challenges and limitations that remain for polymer coated IONPs as MRI contrast agents for stem cell tracking.

  3. The catalytic activity of the iron-coated pumice particles used as heterogeneous catalysts in the oxidation of natural organic matter by H2O2.

    PubMed

    Alver, Alper; Karaarslan, Mihrican; Kılıç, Ahmet

    2016-08-01

    The oxidative removal of natural organic matter (NOM) from waters was investigated by hydrogen peroxide (H2O2) and iron-coated pumice particles in heterogeneous catalytic oxidation process (HCOP). Removal of trihalomethane (THM) precursors, which is formed THM by the reacts with chloride, was performed with the hydroxyl radicals. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. The studies were carried out in two sections: (1) decomposition of hydrogen peroxide in pure water with iron-coated pumice and (2) oxidation of THM Precursor (NOM) by hydrogen peroxide with iron-coated pumice. The monitored parameters in this study include dissolved organic carbon and trihalomethanes formation potential. The results show that iron-coated pumice catalyst significantly increased the removal efficiency of NOM in the HCOP. The results show that iron-coated pumice catalyst significantly increased the removal efficiency of NOM in the HCOP. Results show that the oxidation of NOM and remaining NOM with H2O2 is improved by the addition of iron-coated pumice particles which activate the H2O2 molecule, leading to the formation of hydroxyl radicals in a Fenton-like process.

  4. Structures and magnetic properties of iron- and cobalt-containing oxide coatings on an aluminum alloy formed in electrolytes via plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Rudnev, V. S.; Morozova, V. P.; Lukiyanchuk, I. V.; Adigamova, M. V.; Tkachenko, I. A.; Ustinov, A. Yu.; Kharitonskii, P. V.; Frolov, A. M.

    2014-05-01

    The effect of the nature of the supporting electrolyte in the composition of electrolytic suspensions containing dispersed particles of Fe(III) and Co(II) hydroxides, and of anodic and bipolar anodic-cathodic polarization on features of the formation, composition, and magnetic characteristics of oxide coatings is studied. In all cases, iron and cobalt are incorporated into the coatings and are concentrated predominantly in pores. The pores of the coatings include particles consisting of the reduced metals, presumably surrounded by oxide or hydroxide shells. The electrolyte composition affects the concentration and ratio of the metals in the particles. A correlation is observed between the ferro- or ferrimagnetism of the coatings and the content and ratio of cobalt and iron in the pores.

  5. Removal of arsenic(V) from aqueous solutions using iron-oxide-coated modified activated carbon.

    PubMed

    Zhang, Q L; Gao, Nai-Yun; Lin, Y C; Xu, Bin; Le, Lin-sheng

    2007-08-01

    Removal of arsenic(V) from aqueous solutions was evaluated with the following three different sorption materials: coal-based activated carbon 12 x 40 (activated carbon), iron(II) oxide (FeO)/activated carbon-H, and iron oxide. The apparent characteristics and physical chemistry performances of these adsorbents were investigated by X-ray diffraction, nitrogen adsorption, and scanning electronic microscope. Also, batch experiments for arsenic removal were performed, and the effects of pH value on arsenic(V) removal were studied. The results suggest that the main phases of the iron oxide surface are magnetite, maghemite, hematite, and goethite; fine and uniform iron oxide particles can cover activated carbon surfaces and affect the surface area or pore structures of activated carbon; adsorption kinetics obey a pseudo-first-order rate equation; and adsorption capacities of adsorbents are affected by the values of pH. The optimum value of pH for iron oxide lies in a narrow range between 4.0 and 5.5, and arsenic(V) removal by FeO/activated carbon-H is ideal and stable in the pH range 3 to 7, while activated carbon has the lowest adsorption capacity in the entire pH range. Also, the adsorption characteristics of FeO/activated carbon-H composites and virgin activated carbon match well the Langmuir adsorption model, while those of iron oxide fit well the Freundlich adsorption model.

  6. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI

    PubMed Central

    Tarin, Carlos; Carril, Monica; Martin-Ventura, Jose Luis; Markuerkiaga, Irati; Padro, Daniel; Llamas-Granda, Patricia; Moreno, Juan Antonio; García, Isabel; Genicio, Nuria; Plaza-Garcia, Sandra; Blanco-Colio, Luis Miguel; Penades, Soledad; Egido, Jesus

    2015-01-01

    CD163 is a membrane receptor expressed by macrophage lineage. Studies performed in atherosclerosis have shown that CD163 expression is increased at inflammatory sites, pointing at the presence of intraplaque hemorrhagic sites or asymptomatic plaques. Hence, imaging of CD163 expressing macrophages is an interesting strategy in order to detect atherosclerotic plaques. We have prepared a targeted probe based on gold-coated iron oxide nanoparticles vectorized with an anti-CD163 antibody for the specific detection of CD163 by MRI. Firstly, the specificity of the targeted probe was validated in vitro by incubation of the probe with CD163(+) or (−) macrophages. The probe was able to selectively detect CD163(+) macrophages both in human and murine cells. Subsequently, the targeted probe was injected in 16 weeks old apoE deficient mice developing atherosclerotic lesions and the pararenal abdominal aorta was imaged by MRI. The accumulation of probe in the site of interest increased over time and the signal intensity decreased significantly 48 hours after the injection. Hence, we have developed a highly sensitive targeted probe capable of detecting CD163-expressing macrophages that could provide useful information about the state of the atheromatous lesions. PMID:26616677

  7. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    NASA Astrophysics Data System (ADS)

    Cruz-Acuña, Melissa; Maldonado-Camargo, Lorena; Dobson, Jon; Rinaldi, Carlos

    2016-09-01

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle-cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  8. Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.

    2014-11-01

    Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.

  9. Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma

    PubMed Central

    Liang, Jinying; Zhang, Xinxin; Miao, Yunqiu; Li, Juan; Gan, Yong

    2017-01-01

    The development of noninvasive imaging techniques for the accurate diagnosis of progressive hepatocellular carcinoma (HCC) is of great clinical significance and has always been desired. Herein, a hepatocellular carcinoma cell-targeting fluorescent magnetic nanoparticle (NP) was obtained by conjugating near-infrared fluorescence to the surface of Fe3O4 (NIRF-Fe3O4) NPs, followed by coating the lipids consisting of tumoral hepatocytes-targeting polymer (Gal-P123). This magnetic NP (GPC@NIRF-Fe3O4) with superparamagnetic behavior showed high stability and safety in physiological conditions. In addition, GPC@NIRF-Fe3O4 achieved more specific uptake of human liver cancer cells than free Fe3O4 NPs. Importantly, with superpara-magnetic iron oxide and strong NIR absorbance, GPC@NIRF-Fe3O4 NPs demonstrate prominent tumor-contrasted imaging performance both on fluorescent and T2-weighted magnetic resonance (MR) imaging modalities in a living body. The relative MR signal enhancement of GPC@NIRF-Fe3O4 NPs achieved 5.4-fold improvement compared with NIR-Fe3O4 NPs. Therefore, GPC@ NIRF-Fe3O4 NPs may be potentially used as a candidate for dual-modal imaging of tumors with information covalidated and directly compared by combining fluorescence and MR imaging. PMID:28352173

  10. Validation of In-Situ Iron-Manganese Oxide Coated Stream Pebbles as Sensors for Arsenic Source Monitoring

    NASA Astrophysics Data System (ADS)

    Blake, J.; Peters, S. C.; Casteel, A.

    2013-12-01

    Locating nonpoint source contaminant fluxes can be challenging due to the inherent heterogeneity of source and of the subsurface. Contaminants such as arsenic are a concern for drinking water quality and ecosystem health. Arsenic contamination can be the result of several natural and anthropogenic sources, and therefore it can be difficult to trace and identify major areas of arsenic in natural systems. Identifying a useful source indicator for arsenic is a crucial step for environmental remediation efforts. Previous studies have found iron-manganese oxide coated streambed pebbles as useful source indicators due to their high attraction for heavy metals in water. In this study, pebbles, surface water at baseflow and nearby rocks were sampled from the Pennypack Creek and its tributaries, in southwestern Pennsylvania, to test the ability of coated streambed pebbles as environmental source indicators for arsenic. Quartz pebbles, 5-7 cm in diameter, were sampled to minimize elemental contamination from rock chemistry. In addition, quartz provides an excellent substrate for iron and manganese coatings to form. These coatings were leached from pebbles using 4M nitric acid with 0.1% concentrated hydrochloric acid. Following sample processing, analyses were performed using an ICP-MS and the resulting data were spatially organized using ArcGIS software. Arsenic, iron and manganese concentrations in the leachate are normalized to pebble surface area and each location is reported as a ratio of arsenic to iron and manganese. Results suggest that iron-manganese coated stream pebbles are useful indicators of arsenic location within a watershed.

  11. Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria.

    PubMed

    Padwal, Priyanka; Bandyopadhyaya, Rajdip; Mehra, Sarika

    2014-12-23

    The emergence of drug resistance is a major problem faced in current tuberculosis (TB) therapy, representing a global health concern. Mycobacterium is naturally resistant to most drugs due to export of the latter outside bacterial cells by active efflux pumps, resulting in a low intracellular drug concentration. Thus, development of agents that can enhance the effectiveness of drugs used in TB treatment and bypass the efflux mechanism is crucial. In this study, we present a new nanoparticle-based strategy for enhancing the efficacy of existing drugs. To that end, we have developed poly(acrylic acid) (PAA)-coated iron oxide (magnetite) nanoparticles (PAA-MNPs) as efflux inhibitors and used it together with rifampicin (a first line anti-TB drug) on Mycobacterium smegmatis. PAA-MNPs of mean diameter 9 nm interact with bacterial cells via surface attachment and are then internalized by cells. Although PAA-MNP alone does not inhibit cell growth, treatment of cells with a combination of PAA-MNP and rifampicin exhibits a synergistic 4-fold-higher growth inhibition compared to rifampicin alone. This is because the combination of PAA-MNP and rifampicin results in up to a 3-fold-increased accumulation of rifampicin inside the cells. This enhanced intracellular drug concentration has been explained by real-time transport studies on a common efflux pump substrate, ethidium bromide (EtBr). It is seen that PAA-MNP increases the accumulation of EtBr significantly and also minimizes the EtBr efflux in direct proportion to the PAA-MNP concentration. Our results thus illustrate that the addition of PAA-MNP with rifampicin may bypass the innate drug resistance mechanism of M. smegmatis. This generic strategy is also found to be successful for other anti-TB drugs, such as isoniazid and fluoroquinolones (e.g., norfloxacin), only when stabilized, coated nanoparticles (such as PAA-MNP) are used, not PAA or MNP alone. We hence establish coated nanoparticles as a new class of efflux

  12. Biodistribution of polyacrylic acid-coated iron oxide nanoparticles is associated with proinflammatory activation and liver toxicity.

    PubMed

    Couto, Diana; Freitas, Marisa; Costa, Vera Marisa; Chisté, Renan Campos; Almeida, Agostinho; Lopez-Quintela, M Arturo; Rivas, José; Freitas, Paulo; Silva, Paula; Carvalho, Félix; Fernandes, Eduarda

    2016-10-01

    Iron oxide nanoparticles (IONs) have physical and chemical properties that render them useful for several new biomedical applications. Still, so far, in vivo safety studies of IONs with coatings of biomedical interest are still scarce. The aim of this study, therefore, was to clarify the acute biological effects of polyacrylic acid (PAA)-coated IONs, by determining their biodistribution and their potential proinflammatory and toxic effects in CD-1 mice. The biodistribution of PAA-coated IONs in several organs (liver, spleen, kidneys, brain, heart, testes and lungs), the plasma cytokines, chemokine and aminotransferases levels, white blood cell count, oxidative stress parameters, adenosine triphosphate and histologic features of liver, spleen and kidneys were evaluated 24 h after a single acute (8, 20 or 50 mg kg(-1) ) intravenous administration of PAA-coated IONs in magnetite form. The obtained results showed that these IONs accumulate mainly in the liver and spleen and, to a lesser extent, in the lungs. Although our data showed that PAA-coated IONs do not cause severe organ damage, an inflammatory process was triggered in vivo, as evidenced by as evidenced by increased neutrophils and large lymphocytes in the differential blood count. Moreover, an accumulation of iron in macrophages of the liver and spleen was observed and hepatic lipid peroxidation was elicited, showing that the IONs are able to induce oxidative stress. The effects of these nanoparticles need to be further investigated regarding the mechanisms involved and the long-term consequences of intravenous administration of PAA-coated IONs. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Effect of HSA coated iron oxide labeling on human umbilical cord derived mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Sanganeria, Purva; Chandra, Sudeshna; Bahadur, Dhirendra; Khanna, Aparna

    2015-03-01

    Human umbilical cord derived mesenchymal stem cells (hUC-MSCs) are known for self-renewal and differentiation into cells of various lineages like bone, cartilage and fat. They have been used in biomedical applications to treat degenerative disorders. However, to exploit the therapeutic potential of stem cells, there is a requirement of sensitive non-invasive imaging techniques which will offer the ability to track transplanted cells, bio-distribution, proliferation and differentiation. In this study, we have analyzed the efficacy of human serum albumin coated iron oxide nanoparticles (HSA-IONPs) on the differentiation of hUC-MSCs. The colloidal stability of the HSA-IONPs was tested over a long period of time (≥20 months) and the optimized concentration of HSA-IONPs for labeling the stem cells was 60 μg ml-1. Detailed in vitro assays have been performed to ascertain the effect of the nanoparticles (NPs) on stem cells. Lactate dehydrogenase (LDH) assay showed minimum release of LDH depicting the least disruptions in cellular membrane. At the same time, mitochondrial impairment of the cells was also not observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry analysis revealed lesser generation of reactive oxygen species in HSA-IONPs labeled hUC-MSCs in comparison to bare and commercial IONPs. Transmission electron microscopy showed endocytic engulfment of the NPs by the hUC-MSCs. During the process, the gross morphologies of the actin cytoskeleton were found to be intact as shown by immunofluorescence microscopy. Also, the engulfment of the HSA-IONPs did not show any detrimental effect on the differentiation potential of the stem cells into adipocytes, osteocytes and chondrocytes, thereby confirming that the inherent properties of stem cells were maintained.

  14. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    SciTech Connect

    MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

    2010-06-01

    We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to be less expensive than

  15. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash.

    PubMed

    Mathieu, Johanna L; Gadgil, Ashok J; Addy, Susan E A; Kowolik, Kristin

    2010-09-01

    We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (approximately $0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R(2) = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6 x 10(- 6)mol/g (0.20 mg/g). Time-to-90% (defined as the time interval for ARUBA to remove 90% of the total amount of arsenic that is removed at equilibrium) is less than 1 hour. Reaction rates (pseudo-second-order kinetic model, R(2) > or = 0.99) increase from 2.4 x 10(5) to 7.2 x 10(5) g mol(- 1)min(- 1) as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to

  16. Multifunctional Silver Coated E-33/Iron Oxide Water Filters: Inhibition of Biofilm Growth and Arsenic Removal

    EPA Science Inventory

    Bayoxide® E33 (E-33, Goethite) is a widely used commercial material for arsenic adsorption. It is a mixture of iron oxyhydroxide and oxides. E-33 is primarily used to remove arsenic from water and to a lesser extent, other anions, but generally lacks multifunctuality. It is a non...

  17. The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere

    NASA Astrophysics Data System (ADS)

    Mahmed, N.; Heczko, O.; Lancok, A.; Hannula, S.-P.

    2014-03-01

    The synthesis of iron oxide nanoparticles, i.e., magnetite was attempted by using only ferrous ion (Fe2+) as a magnetite precursor, under an ambient atmosphere. The room temperature reverse co-precipitation method was used, by applying two synthesis protocols. The freshly prepared iron oxide was also immediately coated with Stöber silica (SiO2) layer, forming the coreshell structure. The phase, stoichiometry, crystallite and the particle size of the synthesized powders were determined by using X-ray diffraction (XRD) and transmission electron microscope (TEM), while the magnetic and oxidation behaviors were studied by using the vibrating sample magnetometer (VSM) and Mössbauer spectroscopy. Based on the results, the bare iron oxide nanoparticles are in the stoichiometry between the magnetite and the maghemite stoichiometry, i.e., oxidation occurs. This oxidation is depending on the synthesis protocols used. With the silica coating, the oxidation can be prevented, as suggested by the fits of Mössbauer spectra and low temperature magnetic measurement.

  18. The iron-coating role on the oxidation kinetics of a pyritic sludge doped with fly ash

    NASA Astrophysics Data System (ADS)

    Pérez-López, Rafael; Cama, Jordi; Nieto, José Miguel; Ayora, Carles

    2007-04-01

    The present study examines the processes that control the oxidation attenuation of a pyrite-rich sludge (72 wt% pyrite) from the Iberian Pyrite Belt by the buffer capacity of a fly ash from Los Barrios power station (S Spain), using saturated column experiments. In addition, in order to understand the behaviour of both materials inside these experiments, a fly-ash leaching test and flow-through experiments with pyritic sludge were carried out. The fly-ash leaching test showed that after leaching this material with a slightly acid solution (Millipore MQ water; pH 5.6) the pH raised up to 10.2 and that the metals released by the fly-ash dissolution did not increase significantly the metal concentrations in the output solutions. The flow-through experiments with the pyritic sludge were performed at pH 9, 22 °C and O 2 partial pressure of 0.21 atm, to calculate the dissolution rate of this residue simulating the fly-ash addition. In the experiments Fe bearing oxyhydroxides precipitated as the sludge dissolved. In two non-stirred experiments the iron precipitates formed Fe-coatings on the pyrite surfaces preventing the interaction between the oxidizing agents and the pyrite grains, halting pyrite oxidation (this process is known as pyrite microencapsulation), whereas in two stirred experiments, stirring hindered the iron precipitates to coat the pyrite grains. Thus, based on the release of S (aqueous sulphate) the steady-state pyritic sludge dissolution rate obtained was 9.0 ± 0.2 × -11 mol m -2 s -1. In the saturated column experiments, the sludge dissolution was examined at acidic and basic pH at 22 °C and oxygen-saturated atmosphere. In a saturated column experiment filled with the pyritic sludge, pyrite oxidation occurred favourably at pH approx. 3.7. As the leachates of the fly ash yielded high basic pH, in another saturated column, consisting of an initial thick layer of fly-ash material and a layer of pyritic sludge, the pyrite dissolution took place at p

  19. Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Hałupka-Bryl, Magdalena; Bednarowicz, Magdalena; Dobosz, Bernadeta; Krzyminiewski, Ryszard; Zalewski, Tomasz; Wereszczyńska, Beata; Nowaczyk, Grzegorz; Jarek, Marcin; Nagasaki, Yukio

    2015-06-01

    Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles with chemiotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer. The aim of this work is to characterize physical and magnetic properties of synthesized nanoparicles. Characterization was carried out using EPR, HRTEM, X-ray diffraction, SQUID and NMR methods. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery.

  20. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms.

    PubMed

    Herrling, Maria P; Lackner, Susanne; Tatti, Oleg; Guthausen, Gisela; Delay, Markus; Franzreb, Matthias; Horn, Harald

    2016-02-15

    The increased application of engineered nanoparticles (ENP) in industrial processes and consumer products has raised concerns about their impact on health and environmental safety. When ENP enter the global water cycle by e.g. wastewater streams, wastewater treatment plants (WWTP) represent potential sinks for ENP. During biological WWT, the attachment of ENP to biofilms is responsible for the desired removal of ENP from the water phase avoiding their release into the aquatic environment. However, the fundamental mechanisms guiding the interactions between ENP and biofilms are not yet fully understood. Therefore, this study investigates the behavior and biosorption of inorganic ENP, here magnetic iron oxide nanoparticles coated with silica (scFe3O4-NP), with heterotrophic biofilms at different time scales. Their magnetic properties enable to follow scFe3O4-NP in the biofilm system by a magnetic susceptibility balance and magnetic resonance imaging. Biofilms were exposed to scFe3O4-NP at short contact times (5 min) in flow cells and complementary, scFe3O4-NP were introduced into a moving bed biofilm reactor (MBBR) to be observed for 27 d. Mass balances revealed that scFe3O4-NP sorbed to the biofilm within a few minutes, but that the total biosorption was rather low (3.2 μg Fe/mg TSS). scFe3O4-NP mainly sorbed to the biofilm surface inducing the detachment of outer biofilm parts starting after an exposure time of 3h in the MBBR. The biosorption depended on the exposure concentration of scFe3O4-NP, but less on the contact time. Most scFe3O4-NP exited the flow cell (up to 65%) and the MBBR (57%) via the effluent. This effect was favored by the stabilization of scFe3O4-NP in the bulk liquid by organic matter leading to a low retention capacity of the MBBR system. The results contribute to improve our understanding about the fate of ENP in environmental and in technical biofilm systems and give indications for future investigations needed.

  1. Anisotropic magnetic field observed at 300 K in citrate-coated iron oxide nanoparticles: effect of counterions

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.; Li, Lin; Mukherjee, Sudip; Ghosh, Goutam

    2015-12-01

    Iron oxide nanoparticles (IONPs) have been synthesized by chemical co-precipitation method and coated with three citrates, namely, tri-lithium citrate (TLC), tri-sodium citrate (TSC), or tri-potassium citrate (TKC). In these `core-shell' structures, the `core' is a cluster of average 3 IONPs which is enveloped by a `shell' of citrate molecules and counterions, and thus called `core-shell' nano-clusters (CS-NCs), of average size 20 to 22 nm. The counterions in the three CS-NCs differ in ionic radii (r_{{ion}}), in the order of Li+ < Na+ < K+. Our aim was to investigate the effect of counterions on magnetic interactions between CS-NCs in different powder samples at 300 K, using vibrating sample magnetometer and electron magnetic resonance (EMR) techniques. The hysteresis loops showed negligible coercivity field ( H c) in all samples. The saturation magnetization ( M S) was the highest for TLC-coated CS-NCs. The blocking temperature ( T B), obtained from zero-field-cooled measurements, was >300 K for TLC-coated CS-NCs and <300 K for TSC- and TKC-coated CS-NCs. The EMR linewidth (∆ B PP), measured at 300 K, was also the broadest for TLC-coated CS-NCs. At low temperatures, Δ B PP was found to increase more significantly for TSC- and TKC-coated CS-NCs than for TLC-coated CS-NCs. These results indicate a significant anisotropic field effect; arising due to thermal motion of counterions at 300 K, on the magnetic interactions in TLC-coated CS-NCs. To our knowledge, this is the first report on the effect of counterions on magnetic interactions between CS-NCs.

  2. DMSA-Coated Iron Oxide Nanoparticles Greatly Affect the Expression of Genes Coding Cysteine-Rich Proteins by Their DMSA Coating.

    PubMed

    Zhang, Ling; Wang, Xin; Zou, Jinglu; Liu, Yingxun; Wang, Jinke

    2015-10-19

    The dimercaptosuccinic acid (DMSA) was widely used to coat iron oxide nanoparticles (FeNPs); however, its intracellular cytotoxicity remains to be adequately elucidated. This study analyzed the differentially expressed genes (DEGs) in four mammalian cells treated by a DMSA-coated magnetite FeNP at various doses at different times. The results revealed that about one-fourth of DEGs coded cysteine-rich proteins (CRPs) in all cells under each treatment, indicating that the nanoparticles greatly affected the expressions of CRP-coding genes. Additionally, about 26% of CRP-coding DEGs were enzyme genes in all cells, indicating that the nanoparticles greatly affected the expression of enzyme genes. Further experiments with the nanoparticles and a polyethylenimine (PEI)-coated magnetite FeNP revealed that the effect mainly resulted from DMSA carried into cells by the nanoparticles. This study thus first reported the cytotoxicity of DMSA at the gene transcription level as coating molecules of FeNPs. This study provides new insight into the molecular mechanism by which the DMSA-coated nanoparticles resulted in the transcriptional changes of many CRP-coding genes in cells. This study draws attention toward the intracellular cytotoxicity of DMSA as a coating molecule of nanoparticles, which has very low toxicity as an orally administered antidote due to its extracellular distribution.

  3. Iron Oxide Nanoparticles Coated with a Phosphorothioate Oligonucleotide and a Cationic Peptide: Exploring Four Different Ways of Surface Functionalization

    PubMed Central

    Geinguenaud, Frédéric; Banissi, Claire; Carpentier, Antoine F.; Motte, Laurence

    2015-01-01

    The superparamagnetic iron oxide nanoparticles (SPIONs) have great potential in therapeutic and diagnostic applications. Due to their superparamagnetic behavior, they are used clinically as a Magnetic Resonance Imaging (MRI) contrast agent. Iron oxide nanoparticles are also recognized todays as smart drug-delivery systems. However, to increase their specificity, it is essential to functionalize them with a molecule that effectively targets a specific area of the body. Among the molecules that can fulfill this role, peptides are excellent candidates. Oligonucleotides are recognized as potential drugs for various diseases but suffer from poor uptake and intracellular degradation. In this work, we explore four different strategies, based on the electrostatic interactions between the different partners, to functionalize the surface of SPIONs with a phosphorothioate oligonucleotide (ODN) and a cationic peptide labeled with a fluorophore. The internalization of the nanoparticles has been evaluated in vitro on RAW 264.7 cells. Among these strategies, the “«one-step assembly»”, i.e., the direct complexation of oligonucleotides and peptides on iron oxide nanoparticles, provides the best way of coating for the internalization of the nanocomplexes.

  4. Design and optimization of lipid-modified poly(amidoamine) dendrimer coated iron oxide nanoparticles as probes for biomedical applications

    NASA Astrophysics Data System (ADS)

    Boni, A.; Bardi, G.; Bertero, A.; Cappello, V.; Emdin, M.; Flori, A.; Gemmi, M.; Innocenti, C.; Menichetti, L.; Sangregorio, C.; Villa, S.; Piazza, V.

    2015-04-01

    Superparamagnetic iron oxide nanoparticles with a wide size range (2.6-14.1 nm) were synthesized and coated with the amphiphilic poly(amidoamine) PAMAM-C12 dendrimer. The resulting well dispersed and stable water suspensions were fully characterized in order to explore their possible use in biomedical applications. The structural and magnetic properties of the nanoparticles were preserved during the coating and were related to their relaxometric behaviour. The Nuclear Magnetic Resonance Dispersion (NMRD) profiles were found to be in accordance with the Roch model. The biocompatibility was assessed by means of cell viability tests and Transmission Electron Microscopy (TEM) analysis. The nanoparticles' capability of being detected via Magnetic Resonance Imaging (MRI) was investigated by means of clinical MRI scanners both in water and agar gel phantoms, and in a mouse model.Superparamagnetic iron oxide nanoparticles with a wide size range (2.6-14.1 nm) were synthesized and coated with the amphiphilic poly(amidoamine) PAMAM-C12 dendrimer. The resulting well dispersed and stable water suspensions were fully characterized in order to explore their possible use in biomedical applications. The structural and magnetic properties of the nanoparticles were preserved during the coating and were related to their relaxometric behaviour. The Nuclear Magnetic Resonance Dispersion (NMRD) profiles were found to be in accordance with the Roch model. The biocompatibility was assessed by means of cell viability tests and Transmission Electron Microscopy (TEM) analysis. The nanoparticles' capability of being detected via Magnetic Resonance Imaging (MRI) was investigated by means of clinical MRI scanners both in water and agar gel phantoms, and in a mouse model. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01148e

  5. TREG coated iron oxide nanoparticles as contrast agent for MRI in-vivo use

    NASA Astrophysics Data System (ADS)

    Gutierrez-Garcia, Eric; Hidalgo-Tobon, Silvia; Lopez, Ciro; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery; De Celis Alonso, Benito; Dies Suarez, Pilar; Obregon, Manuel; Perez-Pena, Mario; Platas-Neri, Diana; Mendez-Rojas, Miguel

    2014-11-01

    Super-paramagnetic iron oxide nanoparticles (SPIONs) are of interest due to their great potential applications in diverse fields such as biomedicine. In this work we have prepared SPION nanoparticles using the polyol technique and characterized the magnetic properties of them for MRI in-vivo use. Nanoparticle preparation: All reagents were purchased from commercial sources (Sigma-Aldrich, St. Louis, USA) Iron (III) acetylacetonate, [Fe(acac)3], was used as the iron oxide precursor and thermally decomposed at high temperatures in triethyleneglycol (TREG). Nano-sized magnetite particles were prepared by an adaptation of the method proposed by Wei Cai et al[1-3]. A healthy rabbit was scanned on a clinical 1.5 T Philips MR scanner. Images were taken in 2D mode with a mFFE sequence. Relaxation time T2 was obtained from the MR images using a Matlab algorithm where the signal intensity decay was calculated at each image and then adjusted to a mono-exponential curve. Images were obtained before contrast injection, 24 hours and 36 hours following SPIONs administration. Signal decay at different Echo times for the prepared magnetic SPIONs, before and after contrast injection was measured. It was visualized a concentration of the agent contrast in brain and liver and the results were compared with images obtained from histopathology.

  6. Enhancement of the activity of enzyme immobilized on polydopamine-coated iron oxide nanoparticles by rational orientation of formate dehydrogenase.

    PubMed

    Gao, Xin; Ni, Kefeng; Zhao, Chengcheng; Ren, Yuhong; Wei, Dongzhi

    2014-10-20

    Immobilization of enzymes onto nanoparticles and retention of their structure and activity, which may be related to the orientation of enzymes on nanoparticles, remain a challenge. Here, we developed a novel enzyme-orientation strategy to enhance the activity of formate dehydrogenase immobilized on polydopamine-coated iron oxide nanoparticles via site-directed mutation. Seven mutants were constructed based on homology modeling of formate dehydrogenase and immobilized on polydopamine-coated iron oxide nanoparticles to investigate the influence of these mutations on immobilization. The immobilized mutant C242A/C275V/C363V/K389C demonstrated the highest immobilization yield and retained 90% of its initial activity, which was about 3-fold higher than that of wild-type formate dehydrogenase. Moreover, co-immobilization of formate dehydrogenase and leucine dehydrogenase was performed for the synthesis of l-tert-leucine. The catalytic efficiency of the co-immobilized mutant C242A/C275V/C363V/K389C and leucine dehydrogenase increased by more than 4-fold compared to that of co-immobilized wild-type formate dehydrogenase and leucine dehydrogenase.

  7. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties.

    PubMed

    Lartigue, Lenaic; Innocenti, Claudia; Kalaivani, Thangavel; Awwad, Azzam; Sanchez Duque, Maria del Mar; Guari, Yannick; Larionova, Joulia; Guérin, Christian; Montero, Jean-Louis Georges; Barragan-Montero, Véronique; Arosio, Paolo; Lascialfari, Alessandro; Gatteschi, Dante; Sangregorio, Claudio

    2011-07-13

    Synthesis of functionalized magnetic nanoparticles (NPs) for biomedical applications represents a current challenge. In this paper we present the synthesis and characterization of water-dispersible sugar-coated iron oxide NPs specifically designed as magnetic fluid hyperthermia heat mediators and negative contrast agents for magnetic resonance imaging. In particular, the influence of the inorganic core size was investigated. To this end, iron oxide NPs with average size in the range of 4-35 nm were prepared by thermal decomposition of molecular precursors and then coated with organic ligands bearing a phosphonate group on one side and rhamnose, mannose, or ribose moieties on the other side. In this way a strong anchorage of the organic ligand on the inorganic surface was simply realized by ligand exchange, due to covalent bonding between the Fe(3+) atom and the phosphonate group. These synthesized nanoobjects can be fully dispersed in water forming colloids that are stable over very long periods. Mannose, ribose, and rhamnose were chosen to test the versatility of the method and also because these carbohydrates, in particular rhamnose, which is a substrate of skin lectin, confer targeting properties to the nanosystems. The magnetic, hyperthermal, and relaxometric properties of all the synthesized samples were investigated. Iron oxide NPs of ca. 16-18 nm were found to represent an efficient bifunctional targeting system for theranostic applications, as they have very good transverse relaxivity (three times larger than the best currently available commercial products) and large heat release upon application of radio frequency (RF) electromagnetic radiation with amplitude and frequency close to the human tolerance limit. The results have been rationalized on the basis of the magnetic properties of the investigated samples.

  8. The adsorptive removal of disinfection by-product precursors in a high-SUVA water using iron oxide-coated pumice and volcanic slag particles.

    PubMed

    Kaplan Bekaroglu, S S; Yigit, N O; Karanfil, T; Kitis, M

    2010-11-15

    The main objective of this work was to study the effectiveness of iron oxide-coated pumice and volcanic slag particles in removing disinfection by-product (DBP) precursors from a raw drinking water source with high specific UV absorbance (SUVA(254)) value. Iron oxide coating of particles significantly increased dissolved organic carbon (DOC) uptakes and decreased DBP formation after chlorination compared to uncoated particles. pH values close to neutral levels during adsorption and chlorination provided DOC, trihalomethane and haloacetic acid reductions around 60-75% employing 6 g/L coated particle dosage. Higher degree of DOC and DBP reductions (>85%) were obtained with increasing particle dose. The uptake of bromide by iron oxide surfaces was negligible and increasing bromide concentrations (up to 550 μg/L) did not negatively impact the DOC uptake. However, due to competition between natural organic matter (NOM) and bicarbonate for the iron oxide surfaces, increasing bicarbonate alkalinity levels reduced DOC uptakes. Overall, the results indicated that the iron oxide-coated pumice/slag particles are effective adsorbents to remove NOM and control DBP formation in waters with relatively high DOC and SUVA(254) levels. However, they may not be effective for waters with alkalinity levels above 250 mg CaCO(3)/L.

  9. Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes.

    PubMed

    Ntim, Susana Addo; Mitra, Somenath

    2011-05-12

    This study presents the removal of trace level arsenic to meet drinking water standards using an iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid as a sorbent. The synthesis was facilitated by the high degree of nanotube functionalization using a microwave assisted process, and a controlled assembly of iron oxide was possible where the MWCNT served as an effective support for the oxide. In the final product, 11 % of the carbon atoms were attached to Fe. The Fe-MWCNT was effective in arsenic removal to below the drinking water standard levels of 10 µg L(-1). The absorption capacity of the composite was 1723 µg g(-1) and 189 µg g(-1) for As(III) and As(V) respectively. The adsorption of As(V) on Fe-MWCNT was faster than that of As(III). The pseudo-second order rate equation was found to effectively describe the kinetics of arsenic adsorption. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models.

  10. Contribution of coated humic acids calculated through their surface coverage on nano iron oxides for ofloxacin and norfloxacin sorption.

    PubMed

    Peng, Hongbo; Liang, Ni; Li, Hao; Chen, Fangyuan; Zhang, Di; Pan, Bo; Xing, Baoshan

    2015-09-01

    Sorption of organic contaminants on organo-mineral complexes has been investigated extensively, but the sorption contribution of mineral particles was not properly addressed before calculating KOC, especially for ionic organic contaminants. We measured the surface coverage of a humic acid (HA) on nano iron oxides (n-Fe2O3) in a series of synthesized organo-mineral complexes. The contribution of the coated HA to ofloxacin (OFL) and norfloxacin (NOR) sorption in HA-n-Fe2O3 complexes was over 80% of the total sorption with the surface coverage of 36% and fOC of 1.6%. All the coated HA showed higher sorption to NOR and OFL in comparison to the original HA, suggesting HA fractionation and/or physical re-conformation during organo-mineral complex formation. The decreased KOC with multilayer coating may suggest the importance of site-specific interactions for OFL sorption, while the increased KOC with multilayer coating may suggest the importance of partitioning in hydrophobic region for NOR sorption.

  11. Polyaspartic acid coated iron oxide nanoprobes for PET/MRI imaging.

    PubMed

    Cowger, Taku; Xie, Jin

    2013-01-01

    Iron oxide nanoparticles, due to their exceptional magnetic property, biocompatibility, and biodegradability, have long been studied as contrast agents for magnetic resonance imaging (Xie et al., Curr Med Chem 16(10):1278-1294, 2009; Xie et al., Adv Drug deliv Rev 62(11):1064-1079, 2010). While previous applications mostly target reticuloendothelial system (RES) organs such as liver and lymph nodes, recent efforts have been made to impart targeting peptides or antibodies onto particle surface to enable site-specific targeting after systemic administration (Xie et al., Adv Drug Deliv Rev 62(11):1064-1079, 2010; Cai and Chen, Small 3(11):1840-1854, 2007; Corot et al., Adv Drug Deliv Rev 58 (14):1471-1504, 2006; Xie et al., Acc Chem Res 44(10):883-892). Moreover, other imaging functionalities can be loaded onto nanoparticles to achieve multimodality imaging probes (Cai and Chen, Small 3(11):1840-1854, 2007; Lee et al., J Nucl Med Soc Nucl Med 49(8):1371-1379, 2008). In this protocol, we describe the procedure of constructing an iron oxide nanoparticle (IONP)-based probe with high affinity towards integrin αvβ3 for positron emission tomography (PET) and magnetic resonance imaging (MRI) dual modality imaging. The related characterizations and validation experiments, including particle concentration determination, Prussian blue staining, animal model preparation, and in vivo PET/MRI imaging will also be discussed.

  12. Iron Oxides

    SciTech Connect

    Qafoku, Nikolla; Amonette, James E.

    2016-09-19

    Abstract: Fe oxides are common clay-sized oxide, oxyhydroxide and hydroxide soil minerals. They are compounds of Fe, O, and H that have structures based on close-packed arrays of O. The octahedral and tetrahedral cavities within these arrays are filled with either Fe3+ or Fe2+ to form Fe(O/OH)6, FeO6, or FeO4 structural units. All of the naturally occurring Fe oxide minerals usually undergo some degree of isomorphous substitution of other metal ions for Fe in their structures. Relatively simple techniques may be used to identify Fe oxides in the field based on their typical colors and magnetic properties. In the laboratory, a variety of instrumental techniques can be used to confirm phase identity and to quantify amount. Of these, X-ray diffraction, infrared spectroscopy, electron microscopy, thermal analysis, and Mössbauer spectroscopy are the most commonly used techniques. As oxides, the functional groups on their surfaces may have positive, negative, or no charge depending on pH and on the concentration and nature of other ions in the contact solution. A net positive surface charge usually is observed in soils because Fe oxides have a point-of-zero-charge in the neutral or slightly basic pHs. The functional groups on the surface form complexes with cations and anions from the aqueous phase. Their sorption and electron-buffering properties significantly affect the geochemical cycles of almost all elements having agronomic or environmental significance.

  13. A facile and cost-effective method for separation of oil-water mixtures using polymer-coated iron oxide nanoparticles.

    PubMed

    Palchoudhury, Soubantika; Lead, Jamie R

    2014-12-16

    Catastrophic oil spills and oil from waste waters such as bilge and fracking waters pose major environmental concerns. The limitations of existing cleanup techniques for benign oil remediation has inspired a recent scientific impetus to develop oil-absorbing smart nanomaterials. Magnetic nanocomposites were here designed to allow easy recovery from various systems. In this study, sorption of reference MC252 oil with easy-to-synthesize and low-cost hydrophilic polyvinylpyrrolidone-coated iron oxide nanoparticles is reported for the first time. The one-step modified polyol synthesis in air directly generates water-soluble nanoparticles. Stable polyvinylpyrrolidone-coatings are known to minimize environmental alterations of nanoparticles from aggregation and other processes. Iron oxide provides effective magnetic actuation, while both PVP and iron oxide have low toxicity. These nanoparticles gave quantitative (near 100%) oil removal under optimized conditions. The facile synthesis and ease of use represents a significant improvement over existing techniques.

  14. Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chen, D.-X.; Sun, N.; Gu, H.-C.

    2009-09-01

    Superparamagnetic iron oxide particles in commercial products Resovist and SH U555C, used as magnetic resonance imaging contrast agents, are polydispersed and covered with a thick organic coating so that the average particle sizes were reported between 3 and 62nm with different definitions. It is unclear which size determines the transverse relaxation rate 1/T2 of water suspensions of such particles. Comparing the measured 1/T2 and average sizes of different definitions determined from magnetization curve, transmission electron microscopy image, x-ray diffraction, and dynamic light scattering, it is found that the 1/T2 behavior is basically determined by the diameter of bare single-crystal magnetic particles having the particle-volume-weighted average volume (about 14 or 9nm for Resovist or SH U555C) and is slightly influenced by their thick organic coating. This is explained by the low partial density of the coating substance and the overwhelming water occupation adjacent to magnetic particles.

  15. Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity.

    PubMed

    Mosaiab, Tamim; Jeong, Chan Jin; Shin, Gyo Jic; Choi, Kyung Ho; Lee, Sang Kug; Lee, Iksoo; In, Insik; Park, Sung Young

    2013-10-01

    This paper introduces a facile method to make highly stable and recyclable antimicrobial magnetic nanoparticles (NPs). Initially, magnetic iron oxide nanoparticles (IONPs) were coated with poly (vinyl pyrrolidone) conjugated catechol (PVP-CCDP). Afterward, silver nanoparticles (Ag(0)) were deposited onto PVP-CCDP coated IONPs using remain catechol. The prepared nanoparticles showed long term (~4 weeks) colloidal stability and redispersibility, respectively, against external magnetic field and over a broad range of pH (4-12). The NPs were characterized by UV-vis, SEM, XPS, and XRD measurements. TEM and DLS analyses showed that the mean particle size of PVP-CCDP coated IONPs/Ag(0) were about 72 nm. The recyclable magnetic NPs possessed a high antibacterial effect against the model microbes Staphylococcus aureus and Escherichia coli and could be separated easily using magnet following antibacterial test for repeated uses and maintained 100% antibacterial efficiency during three cycles. In MTT assay, the magnetic nanoparticles possessed no measureable cytotoxicity to live cells.

  16. Exposure to Iron Oxide Nanoparticles Coated with Phospholipid-Based Polymeric Micelles Induces Biochemical and Histopathological Pulmonary Changes in Mice

    PubMed Central

    Radu (Balas), Mihaela; Din (Popescu), Ioana Mihaela; Hermenean, Anca; Cinteză, Otilia Ludmila; Burlacu, Radu; Ardelean, Aurel; Dinischiotu, Anca

    2015-01-01

    The biochemical and histopathological changes induced by the exposure to iron oxide nanoparticles coated with phospholipid-based polymeric micelles (IONPs-PM) in CD-1 mice lungs were analyzed. After 2, 3, 7 and 14 days following the intravenous injection of IONPs-PM (5 and 15 mg Fe/kg bw), lactate dehydrogenase (LDH) activity, oxidative stress parameters and the expression of Bax, Bcl-2, caspase-3 and TNF-α were evaluated in lung tissue. An increase of catalase (CAT) and glutathione reductase (GR) activities on the second day followed by a decrease on the seventh day, as well as a decline of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity on the third and seventh day were observed in treated groups vs. controls. However, all these enzymatic activities almost fully recovered on the 14th day. The reduced glutathione (GSH) and protein thiols levels decreased significantly in nanoparticles-treated groups and remained diminished during the entire experimental period; by contrast malondialdehyde (MDA) and protein carbonyls increased between the 3rd and 14th day of treatment vs. control. Relevant histopathological modifications were highlighted using Hematoxylin and Eosin (H&E) staining. In addition, major changes in the expression of apoptosis markers were observed in the first week, more pronounced for the higher dose. The injected IONPs-PM generated a dose-dependent decrease of the mouse lung capacity, which counteracted oxidative stress, thus creating circumstances for morphopathological lesions and oxidation processes. PMID:26690409

  17. Treatment of heavy metals by iron oxide coated and natural gravel media in Sustainable urban Drainage Systems.

    PubMed

    Norris, M J; Pulford, I D; Haynes, H; Dorea, C C; Phoenix, V R

    2013-01-01

    Sustainable urban Drainage Systems (SuDS) filter drains are simple, low-cost systems utilized as a first defence to treat road runoff by employing biogeochemical processes to reduce pollutants. However, the mechanisms involved in pollution attenuation are poorly understood. This work aims to develop a better understanding of these mechanisms to facilitate improved SuDS design. Since heavy metals are a large fraction of pollution in road runoff, this study aimed to enhance heavy metal removal of filter drain gravel with an iron oxide mineral amendment to increase surface area for heavy metal scavenging. Experiments showed that amendment-coated and uncoated (control) gravel removed similar quantities of heavy metals. Moreover, when normalized to surface area, iron oxide coated gravels (IOCGs) showed poorer metal removal capacities than uncoated gravel. Inspection of the uncoated microgabbro gravel indicated that clay particulates on the surface (a natural product of weathering of this material) augmented heavy metal removal, generating metal sequestration capacities that were competitive compared with IOCGs. Furthermore, when the weathered surface was scrubbed and removed, metal removal capacities were reduced by 20%. When compared with other lithologies, adsorption of heavy metals by microgabbro was 10-70% higher, indicating that both the lithology of the gravel, and the presence of a weathered surface, considerably influence its ability to immobilize heavy metals. These results contradict previous assumptions which suggest that gravel lithology is not a significant factor in SuDS design. Based upon these results, weathered microgabbro is suggested to be an ideal lithology for use in SuDS.

  18. The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles.

    PubMed

    Hauser, Anastasia K; Mathias, Ronita; Anderson, Kimberly W; Hilt, J Zach

    2015-06-15

    Iron oxide nanoparticles coated with dextran were synthesized via four variations on the co-precipitation method. The methods ranged from in situ formation of the nanoparticles within the dextran solution to the adsorption of dextran to the nanoparticle surface following nucleation and extensive washing. The timing of the addition of dextran into the reaction mixture was found to greatly influence the physical and chemical properties of the magnetic nanoparticles. Batches of dextran coated iron oxide nanoparticles were synthesized by each method in triplicate, and the nanoparticles were further crosslinked with epichlorohydrin. The properties of the nanoparticles such as size, percentage of dextran coating, stability in solution, crystallinity, and magnetic properties were evaluated. The simultaneous semi-two-step method injected the reducing agent and the dextran solution into the reaction vessel at the same time. This method resulted in the greatest batch-to-batch reproducibility of nanoparticle properties and the least variation in nanoparticles synthesized in the same batch. The two-step method resulted in the greatest variation of the characteristics examined between batches. The one-step method was synthesized with both five grams and one gram of dextran to investigate the effects of solution viscosity on the resulting nanoparticle characteristics. The one-step method with five grams of dextran resulted in nanoparticles with significantly smaller crystal sizes (5.4 ± 1.9 nm) and lower specific adsorption rate (SAR) values (138.4 ± 13.6 W/g) in an alternating magnetic field (58 kA/m, 292 kHz). However, this method resulted in nanoparticles that were very stable in PBS over 12 hours, which is most likely due to the greater dextran coating (60.0 ± 2.7 weight percent). For comparison, the simultaneous semi-two-step method generated nanoparticles 179.2 ± 18.3 nm in diameter (crystal size 12.1 ± 0.2 nm) containing 18.3 ± 1.2 weight percent dextran with a SAR

  19. The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles

    PubMed Central

    Hauser, Anastasia K.; Mathias, Ronita; Anderson, Kimberly W.; Hilt, J. Zach

    2015-01-01

    Iron oxide nanoparticles coated with dextran were synthesized via four variations on the co-precipitation method. The methods ranged from in situ formation of the nanoparticles within the dextran solution to the adsorption of dextran to the nanoparticle surface following nucleation and extensive washing. The timing of the addition of dextran into the reaction mixture was found to greatly influence the physical and chemical properties of the magnetic nanoparticles. Batches of dextran coated iron oxide nanoparticles were synthesized by each method in triplicate, and the nanoparticles were further crosslinked with epichlorohydrin. The properties of the nanoparticles such as size, percentage of dextran coating, stability in solution, crystallinity, and magnetic properties were evaluated. The simultaneous semi-two-step method injected the reducing agent and the dextran solution into the reaction vessel at the same time. This method resulted in the greatest batch-to-batch reproducibility of nanoparticle properties and the least variation in nanoparticles synthesized in the same batch. The two-step method resulted in the greatest variation of the characteristics examined between batches. The one-step method was synthesized with both five grams and one gram of dextran to investigate the effects of solution viscosity on the resulting nanoparticle characteristics. The one-step method with five grams of dextran resulted in nanoparticles with significantly smaller crystal sizes (5.4 ± 1.9 nm) and lower specific adsorption rate (SAR) values (138.4 ± 13.6 W/g) in an alternating magnetic field (58 kA/m, 292 kHz). However, this method resulted in nanoparticles that were very stable in PBS over 12 hours, which is most likely due to the greater dextran coating (60.0 ± 2.7 weight percent). For comparison, the simultaneous semi-two-step method generated nanoparticles 179.2 ± 18.3 nm in diameter (crystal size 12.1 ± 0.2 nm) containing 18.3 ± 1.2 weight percent dextran with a SAR

  20. Blocked-micropores, surface functionalized, bio-compatible and silica-coated iron oxide nanocomposites as advanced MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Darbandi, Masih; Laurent, Sophie; Busch, Martin; Li, Zi-An; Yuan, Ying; Krüger, Michael; Farle, Michael; Winterer, Markus; Vander Elst, Luce; Muller, Robert N.; Wende, Heiko

    2013-05-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. In this article, a systematic study of the design and development of surface-modification schemes for silica-coated iron oxide nanoparticles (IONP) via a one-pot, in situ method at room temperature is presented. Silica-coated IONP were prepared in a water-in-oil microemulsion, and subsequently the surface was modified via addition of organosilane reagents to the microemulsion system. The structure and the morphology of the as synthesized nanoparticles have been investigated by means of transmission electron microscopy (TEM) and measurement of N2 adsorption-desorption. Electron diffraction and high-resolution transmission electron microscopic (TEM) images of the nanoparticles showed the highly crystalline nature of the IONP structures. Nitrogen adsorption indicates microporous and blocked-microporous structures for the silica-coated and amine functionalized silica-coated IONP, respectively which could prove less cytotoxicity of the functionalized final product. Besides, the colloidal stability of the final product and the presence of the modified functional groups on top of surface layer have been proven by zeta-potential measurements. Owing to the benefit from the inner IONP core and the hydrophilic silica shell, the as-synthesized nanocomposites were exploited as an MRI contrast enhancement agent. Relaxometric results prove that the surface functionalized IONP have also signal enhancement properties. These surface functionalized nanocomposites are not only potential candidates for highly efficient contrast agents for MRI, but could also be used as ultrasensitive biological-magnetic labels, because they are in nanoscale size, having magnetic properties, blocked-microporous and are well dispersible in biological environment.

  1. Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent

    PubMed Central

    Lee, Ha-Young; Lee, Sang-Hoon; Xu, Chenjie; Xie, Jin; Lee, Jin-Hyung; Wu, Bing; Koh, Ai Leen; Wang, Xiaoying; Sinclair, Robert; Wang, Shan X; Nishimura, Dwight G; Biswal, Sandip; Sun, Shouheng; Cho, Sun Hang; Chen, Xiaoyuan

    2010-01-01

    The purpose of this study was to synthesize biocompatible polyvinylpyrrolidone (PVP)-coated iron oxide (PVP-IO) nanoparticles and to evaluate their efficacy as a magnetic resonance imaging (MRI) contrast agent. The PVP-IO nanoparticles were synthesized by a thermal decomposition method and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and a superconducting quantum interface device (SQUID). The core size of the particles is about 8–10 nm and the overall size is around 20–30 nm. The measured r2 (reciprocal of T2 relaxation time) and r2∗ (reciprocal of T2∗ relaxation time) are 141.2 and 338.1 (s mM)−1, respectively. The particles are highly soluble and stable in various buffers and in serum. The macrophage uptake of PVP-IO is comparable to that of Feridex as measured by a Prussian blue iron stain and phantom study. The signal intensity of a rabbit liver was effectively reduced after intravenous administration of PVP-IO. Therefore PVP-IO nanoparticles are potentially useful for T2-weighted MR imaging. PMID:21394237

  2. Superparamagnetic iron oxide nanoparticles coated with different polymers and their MRI contrast effects in the mouse brains

    NASA Astrophysics Data System (ADS)

    Xie, Songbo; Zhang, Baolin; Wang, Lei; Wang, Jun; Li, Xuan; Yang, Gao; Gao, Fabao

    2015-01-01

    PEG and PEG/PEI modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by the thermal decomposition of iron (III) acetylacetonate (Fe(acac)3) in poly (ethylene glycol) (PEG) containing poly (ethylene imine) (PEI) (0 or 0.3 g). PEG/PEI-SPIONs were coated with Tween 80 (PEG/PEI/Tween 80-SPIONs). Fourier transform infrared spectroscopy (FTIR) analyses indicated that PEG, PEG/PEI and PEG/PEI/Tween 80 were attached to the surfaces of the SPIONs. The PEG-SPIONs, PEG/PEI-SPIONs and PEG/PEI/Tween 80-SPIONs performed excellent colloidal stability in the phosphate buffered saline (PBS), and in deionized water with the mean hydrodynamic sizes of 19.5, 21.0, 24.0 nm and the zeta potentials of -5.0, 35.0, 19.0 mV, respectively. All the SPIONs showed low cytotoxicity assessed by the MTT assay. In vivo magnetic resonance imaging (MRI) of the Kunming (KM) mouse brains were performed, the PEG-SPIONs, PEG/PEI-SPIONs and PEG/PEI/Tween 80-SPIONs exhibited vascular imaging effects in bulbus olfactorius, frontal cortex, temporal, thalamus and brain stem of the mouse brains after 24 h intravenous injection of the nanoparticles. The SPIONs have potentials as MRI contrast agents in the mouse brains.

  3. Remediation of fluoride from drinking water using magnetic iron oxide coated hydrotalcite/chitosan composite.

    PubMed

    Pandi, Kalimuthu; Periyasamy, Soodamani; Viswanathan, Natrayasamy

    2017-02-16

    The present study was performed to examine the probability of magnetic iron oxide fabricated hydrotalcite/chitosan (Fe3O4@HTCS) composite for the removal of excess fluoride content from drinking water. The developed Fe3O4@HTCS composite not only demonstrate the good separation ability but also display an extreme enhanced defluoridation capacity (DC) when compared to other base components and composite. The DCs of Fe3O4@HTCS composite, Fe3O4@HT composite, Fe3O4, HT and CS was found to be 5032, 3041, 1050, 1030 and 52mgF(-)/kg respectively. The structure and morphology of the prepared adsorbent and fluoride sorbed adsorbent was analysed using FTIR, SEM and EDAX with mapping techniques. The dependence of DC on various parameters like initial fluoride concentration, pH, contact time, interfering anions and temperature was studied by batch method. From isotherm modeling, the equilibrium data is well described by Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms. Thermodynamic parameters confirm the spontaneity and endothermic nature of the fluoride adsorption. The performance of Fe3O4@HTCS composite to field water sample designates its adaptable nature at field conditions.

  4. Reduction of polyethylenimine-coated iron oxide nanoparticles induced autophagy and cytotoxicity by lactosylation

    PubMed Central

    Du, Jiuju; Zhu, Wencheng; Yang, Li; Wu, Changqiang; Lin, Bingbing; Wu, Jun; Jin, Rongrong; Shen, Taipeng; Ai, Hua

    2016-01-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are excellent magnetic resonance contrast agents and surface engineering can expand their applications. When covered with amphiphilic alkyl-polyethyleneimine (PEI), the modified SPIO nanoparticles can be used as MRI visible gene/drug delivery carriers and cell tracking probes. However, the positively charged amines of PEI can also cause cytotoxicity and restricts their further applications. In this study, we used lactose to modify amphiphilic low molecular weight polyethylenimine (C12-PEI2K) at different lactosylation degree. It was found that the N-alkyl-PEI-lactobionic acid wrapped SPIO nanocomposites show better cell viability without compromising their labelling efficacy as well as MR imaging capability in RAW 264.7 cells, comparing to the unsubstituted ones. Besides, we found the PEI induced cell autophagy can be reduced via lactose modification, indicating the increased cell viability might rely on down-regulating autophagy. Thus, our findings provide a new approach to overcome the toxicity of PEI wrapped SPIO nanocomposites by lactose modification. PMID:27482464

  5. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture.

    PubMed

    Yu, Miao; Huang, Shaohui; Yu, Kevin Jun; Clyne, Alisa Morss

    2012-01-01

    Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles.

  6. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    PubMed

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation.

  7. A hybridized photocatalysis-microfiltration system with iron oxide-coated membranes for the removal of natural organic matter in water treatment: effects of iron oxide layers and colloids.

    PubMed

    Yao, Ping; Choo, Kwang-Ho; Kim, Moon-Hyeon

    2009-09-01

    A photocatalysis/microfiltration (MF) hybrid system, with the coating of a membrane using iron oxide particles (IOPs), was investigated with respect to natural organic matter (NOM) removal and membrane permeability during the treatment of various surface waters. A comparison of the performance between bare (uncoated) and IOP-coated membranes employed for the photocatalytic hybrid system was made. Due to the additional adsorption of NOM onto IOPs on the membrane surface, the IOP-coated membrane system always achieved greater DOC removal efficiencies during photocatalysis/MF. Particularly, the influence of colloidal particles that were present in different water sources with respect to membrane fouling was explored. Colloidal fouling occurred to both bare and IOP-coated membranes, but the interaction of colloids with IOP coating layers was in close association with the characteristics of colloids, such as size distribution, resulting in opposing fouling behaviors with varying water sources. The IOP-coated membrane was able to control fouling properly when a relatively large size of colloidal particles existed in raw water, but not for the case of small colloids. The IOP coat layer may become denser as small colloids penetrate into it, therefore leading to further fouling. The analysis of the hydraulic filtration resistances revealed that such fouling was virtually reversible in being removed by backwashing processes. Scanning electron microscopic observations, however, visualized the existence of several foulants remaining at the membrane surface after backwashing when feed water, containing a relatively large portion of small-sized colloids, was supplied.

  8. On the accessibility of surface-bound drugs on magnetic nanoparticles. Encapsulation of drugs loaded on modified dextran-coated superparamagnetic iron oxide by β-cyclodextrin.

    PubMed

    Sudha, Natesan; Yousuf, Sameena; Israel, Enoch V M V; Paulraj, Mosae Selvakumar; Dhanaraj, Premnath

    2016-05-01

    We report the loading of drugs on aminoethylaminodextran-coated iron oxide nanoparticles, their superparamagnetic behavior, loading of drugs on them, and the β-cyclodextrin-complex formation of the drugs on the surface of the nanoparticles. The magnetic behavior is studied using vibrating sample magnetometry and X-ray photoelectron spectroscopy is used to analyze the elemental composition of drug-loaded nanoparticles. Scanning electron microscopy shows ordered structures of drug-loaded nanoparticles. UV-visible absorption and fluorescence spectroscopy are used to study the binding of the surface-loaded drugs to β-cyclodextrin. All of the drugs form 1:1 host-guest complexes. The iodide ion quenching of fluorescence of free- and iron oxide-attached drugs are compared. The binding strengths of the iron oxide surface-loaded drugs-β-cyclodextrin binding are smaller than those of the free drugs.

  9. Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Roca, A. G.; Carmona, D.; Miguel-Sancho, N.; Bomatí-Miguel, O.; Balas, F.; Piquer, C.; Santamaría, J.

    2012-04-01

    We report here a detailed structural and magnetic study of different silica nanocapsules containing uniform and highly crystalline maghemite nanoparticles. The magnetic phase consists of 5 nm triethylene glycol (TREG)- or dimercaptosuccinic acid (DMSA)-coated maghemite particles. TREG-coated nanoparticles were synthesized by thermal decomposition. In a second step, TREG ligands were exchanged by DMSA. After the ligand exchange, the ζ potential of the particles changed from - 10 to - 40 mV, whereas the hydrodynamic size remained constant at around 15 nm. Particles coated by TREG and DMSA were encapsulated in silica following a sol-gel procedure. The encapsulation of TREG-coated nanoparticles led to large magnetic aggregates, which were embedded in coalesced silica structures. However, DMSA-coated nanoparticles led to small magnetic clusters inserted in silica spheres of around 100 nm. The final nanostructures can be described as the result of several competing factors at play. Magnetic measurements indicate that in the TREG-coated nanoparticles the interparticle magnetic interaction scenario has not dramatically changed after the silica encapsulation, whereas in the DMSA-coated nanoparticles, the magnetic interactions were screened due to the function of the silica template. Moreover, the analysis of the AC susceptibility suggests that our systems essentially behave as cluster spin glass systems.

  10. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting.

    PubMed

    Cole, Adam J; David, Allan E; Wang, Jianxin; Galbán, Craig J; Hill, Hannah L; Yang, Victor C

    2011-03-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, potentially enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140-190 nm) and relative PEG labeling (1.5% of surface amines - A5/D5, 0.4% - A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37 °C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 h) and D20 (11.75 h) showing much longer half-lives than D (0.12 h). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC(0-∞). Sustained tumor exposure over 24 h was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that a polyethylene glycol modified, cross-linked starch-coated MNP is a promising platform for enhanced magnetic tumor targeting, warranting further study in tumor models.

  11. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    USGS Publications Warehouse

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  12. Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state

    NASA Astrophysics Data System (ADS)

    Safi, M.; Sarrouj, H.; Sandre, O.; Mignet, N.; Berret, J.-F.

    2010-04-01

    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of cerium and iron oxide sub-10-nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), MW = 2000 g mol - 1). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease in mitochondrial activity at very high cerium concentrations (>1 g l - 1). We also observe that the citrate-coated particles are internalized/adsorbed by the cells in large amounts, typically 250 pg/cell after 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (<30 pg/cell). The strong uptake shown by the citrated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.

  13. Study on iron oxide nanoparticles coated with glucose-derived polymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Herea, D. D.; Chiriac, H.; Lupu, N.; Grigoras, M.; Stoian, G.; Stoica, B. A.; Petreus, T.

    2015-10-01

    This study reports an approach for a facile one-step synthesis of magnetic nanoparticles (MNPs) coated with glucose-derived polymers (GDP) through a mechanochemical hydrothermal process for biomedical applications. Polymer-coated magnetic nanoparticles (Fe2O3/Fe3O4), with sizes below 10 nm, exhibited superparamagnetic behavior, with a specific magnetization saturation value of about 40 emu/g, and a maximum specific absorption rate (SAR) of 30 W/g in AC magnetic fields. Depending on the intensity of the applied AC magnetic field, a temperature of 42 °C can be achieved in 4-17 min. The surface polymerized layer affords functional hydroxyl groups for binding to biomolecules containing carboxyl, thiol, or amino groups, thereby making the coated nanoparticles feasible for bio-conjugation. In vitro cytotoxicity evaluation pointed out that a relatively high concentration of polymer-coated magnetic nanoparticles (GDP-MNPs) did not induce severe cell alteration, suggesting a good biocompatibility.

  14. Role of solution chemistry in the retention and release of graphene oxide nanomaterials in uncoated and iron oxide-coated sand.

    PubMed

    Wang, Dengjun; Shen, Chongyang; Jin, Yan; Su, Chunming; Chu, Lingyang; Zhou, Dongmei

    2017-02-01

    Understanding the fate and transport including remobilization of graphene oxide nanomaterials (GONMs) in the subsurface would enable us to expedite their benign use and evaluate their environmental impacts and health risks. In this study, the retention and release of GONMs were investigated in water-saturated columns packed with uncoated sand (Un-S) or iron oxide-coated sand (FeS) at environmentally relevant solution chemistries (1-100mM KCl and 0.1-10mM CaCl2 at pH7 and 11). Our results showed that increasing ionic strength (IS) inhibited GONMs' transport, and the impact of K(+) was less than Ca(2+). The positively charged iron oxide coating on sand surfaces immobilized the negatively charged GONMs (pH7) in the primary minimum, yielding hyperexponential retention profiles particularly in Ca(2+). A stepwise decrease in pore-water IS caused detachment of previously retained GONMs. The mass of GONMs released during each detachment step correlated positively with the difference in secondary minimum depth (ΔΦmin2) at each IS, indicating that the released GONMs were retained in the secondary minimum. While most retained GONMs were re-entrained upon lowering pore-water IS in Un-S, decreasing IS only released limited GONMs in FeS, which were captured in the primary minimum. Introducing 1mM NaOH (pH11) released most retained GONMs in FeS; and average hydrodynamic diameters of the detached GONMs upon injecting NaOH were significantly smaller than those of GONMs in the influent and retentate, suggesting that NaOH induced GONMs disaggregation. Our findings advance current knowledge to better predict NMs' fate and transport under various solution chemistries such as during rainfall events or in the mixing zones between sea water and fresh water where transient IS changes drastically.

  15. Choose Your Cell Model Wisely: The In Vitro Nanoneurotoxicity of Differentially Coated Iron Oxide Nanoparticles for Neural Cell Labeling.

    PubMed

    Joris, Freya; Valdepérez, Daniel; Pelaz, Beatriz; Wang, Tianqiang; Doak, Shareen H; Manshian, Bella B; Soenen, Stefaan J; Parak, Wolfgang J; De Smedt, Stefaan C; Raemdonck, Koen

    2017-03-31

    Currently, there is a large interest in the labeling of neural stem cells (NSCs) with iron oxide nanoparticles (IONPs) to allow MRI-guided detection after transplantation in regenerative medicine. For such biomedical applications, excluding nanotoxicity is key. Nanosafety is primarily evaluated in vitro where an immortalized or cancer cell line of murine origin is often applied, which is not necessarily an ideal cell model. Previous work revealed clear neurotoxic effects of PMA-coated IONPs in distinct cell types that could potentially be applied for nanosafety studies regarding neural cell labeling. Here, we aimed to assess if DMSA-coated IONPs could be regarded as a safer alternative for this purpose and how the cell model impacted our nanosafety optimization study. Hereto, we evaluated cytotoxicity, ROS production, calcium levels, mitochondrial homeostasis and cell morphology in six related neural cell types, namely neural stem cells, an immortalized cell line and a cancer cell line from human and murine origin. The cell lines mostly showed similar responses to both IONPs, which were frequently more pronounced for the PMA-IONPs. Of note, ROS and calcium levels showed opposite trends in the human and murine NSCs, indicating the importance of the species. Indeed, the human cell models were overall more sensitive than their murine counterpart. Despite the clear cell type-specific nanotoxicity profiles, our multiparametric approach revealed that the DMSA-IONPs outperformed the PMA-IONPs in terms of biocompatibility in each cell type. However, major cell type-dependent variations in the observed effects additionally warrant the use of relevant human cell models.

  16. Contact potential induced enhancement of magnetization in polyaniline coated nanomagnetic iron oxides by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Sethulakshmi, N.; Sooraj, V.; Sajeev, U. S.; Nair, Swapna S.; Narayanan, T. N.; Joy, Lija K.; Joy, P. A.; Ajayan, P. M.; Anantharaman, M. R.

    2013-10-01

    The present work derives motivation from the so called surface/interfacial magnetism in core shell structures and commercial samples of Fe3O4 and γ Fe2O3 with sizes ranging from 20 to 30 nm were coated with polyaniline using plasma polymerization and studied. The High Resolution Transmission Electron Microscopy images indicate a core shell structure after polyaniline coating and exhibited an increase in saturation magnetization by 2 emu/g. For confirmation, plasma polymerization was performed on maghemite nanoparticles which also exhibited an increase in saturation magnetization. This enhanced magnetization is rather surprising and the reason is found to be an interfacial phenomenon resulting from a contact potential.

  17. Amino-polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles are suitable for monitoring of human mesenchymal stromal cells in vivo.

    PubMed

    Schulze, Frank; Dienelt, Anke; Geissler, Sven; Zaslansky, Paul; Schoon, Janosch; Henzler, Katja; Guttmann, Peter; Gramoun, Azza; Crowe, Lindsey A; Maurizi, Lionel; Vallée, Jean-Paul; Hofmann, Heinrich; Duda, Georg N; Ode, Andrea

    2014-11-12

    Mesenchymal stromal cells (MSCs) are promising candidates in regenerative cell-therapies. However, optimizing their number and route of delivery remains a critical issue, which can be addressed by monitoring the MSCs' bio-distribution in vivo using super-paramagnetic iron-oxide nanoparticles (SPIONs). In this study, amino-polyvinyl alcohol coated (A-PVA) SPIONs are introduced for cell-labeling and visualization by magnetic resonance imaging (MRI) of human MSCs. Size and surface charge of A-PVA-SPIONs differ depending on their solvent. Under MSC-labeling conditions, A-PVA-SPIONs have a hydrodynamic diameter of 42 ± 2 nm and a negative Zeta potential of 25 ± 5 mV, which enable efficient internalization by MSCs without the need to use transfection agents. Transmission X-ray microscopy localizes A-PVA-SPIONs in intracellular vesicles and as cytosolic single particles. After identifying non-interfering cell-assays and determining the delivered and cellular dose, in addition to the administered dose, A-PVA-SPIONs are found to be non-toxic to MSCs and non-destructive towards their multi-lineage differentiation potential. Surprisingly, MSC migration is increased. In MRI, A-PVA-SPION-labeled MSCs are successfully visualized in vitro and in vivo. In conclusion, A-PVA-SPIONs have no unfavorable influences on MSCs, although it becomes evident how sensitive their functional behavior is towards SPION-labeling. And A-PVA-SPIONs allow MSC-monitoring in vivo.

  18. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  19. Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages

    NASA Astrophysics Data System (ADS)

    Orlando, Antonina; Colombo, Miriam; Prosperi, Davide; Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela

    2015-09-01

    Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL-1, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.

  20. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles.

    PubMed

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-12-28

    The effect of nanoparticle size (30-120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T(2) relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics.

  1. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery.

    PubMed

    Unterweger, Harald; Tietze, Rainer; Janko, Christina; Zaloga, Jan; Lyer, Stefan; Dürr, Stephan; Taccardi, Nicola; Goudouri, Ourania-Menti; Hoppe, Alexander; Eberbeck, Dietmar; Schubert, Dirk W; Boccaccini, Aldo R; Alexiou, Christoph

    2014-01-01

    A highly selective and efficient cancer therapy can be achieved using magnetically directed superparamagnetic iron oxide nanoparticles (SPIONs) bearing a sufficient amount of the therapeutic agent. In this project, SPIONs with a dextran and cisplatin-bearing hyaluronic acid coating were successfully synthesized as a novel cisplatin drug delivery system. Transmission electron microscopy images as well as X-ray diffraction analysis showed that the individual magnetite particles were around 4.5 nm in size and monocrystalline. The small crystallite sizes led to the superparamagnetic behavior of the particles, which was exemplified in their magnetization curves, acquired using superconducting quantum interference device measurements. Hyaluronic acid was bound to the initially dextran-coated SPIONs by esterification. The resulting amide bond linkage was verified using Fourier transform infrared spectroscopy. The additional polymer layer increased the vehicle size from 22 nm to 56 nm, with a hyaluronic acid to dextran to magnetite weight ratio of 51:29:20. A maximum payload of 330 μg cisplatin/mL nanoparticle suspension was achieved, thus the particle size was further increased to around 77 nm with a zeta potential of -45 mV. No signs of particle precipitation were observed over a period of at least 8 weeks. Analysis of drug-release kinetics using the dialysis tube method revealed that these were driven by inverse ligand substitution and diffusion through the polymer shell as well as enzymatic degradation of hyaluronic acid. The biological activity of the particles was investigated in a nonadherent Jurkat cell line using flow cytometry. Further, cell viability and proliferation was examined in an adherent PC-3 cell line using xCELLigence analysis. Both tests demonstrated that particles without cisplatin were biocompatible with these cells, whereas particles with the drug induced apoptosis in a dose-dependent manner, with secondary necrosis after prolonged incubation. In

  2. Removal of chromium(VI) and dye Alizarin Red S (ARS) using polymer-coated iron oxide (Fe3O4) magnetic nanoparticles by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Hanif, Sara; Shahzad, Asma

    2014-06-01

    The present research was conducted with an aim to develop such adsorbent system: polymer-coated magnetic nanoparticles which can remove heavy metal and dye from water of different concentration. Synthesis of magnetic iron oxide nanoparticles for contaminated water purification has been one of the outcomes of application of rapidly growing field of Nanotechnology in Environmental Science. In the present study, the efficiency of magnetic nanoparticles for removal of Cr(VI) and dye (alizarin) from water solutions of known concentrations were evaluated. The nanoparticles were prepared by co-precipitation method and characterized by X-ray photoelectron spectroscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Polymer-coated magnetic iron oxide nanoparticles carrying functional groups on their surface were synthesized by different methods for permanent magnet-assisted removal of heavy metal (chromium) and dye (Alizarin Red S) from water. The characterization showed that synthesized nanoparticles were in the size range of 10-50 nm. The adsorption capacities of the Fe3O4 using polyMETAC-coated particles for dye (Alizarin Red S) removal were 80-96 % and chromium 62-91 %. The chromium concentration was determined after magnetic separation using atomic absorption spectrophotometer and dye concentration was estimated with UV-visible spectrophotometer. Nanoparticles of polymer coated showed the highest removal capacity from water for metal and dye. The developed adsorbents had higher capacity for removal of heavy metal ions and dye.

  3. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging.

    PubMed

    Xue, Sihan; Wang, Yao; Wang, Mengxing; Zhang, Lu; Du, Xiaoxia; Gu, Hongchen; Zhang, Chunfu

    2014-01-01

    In this study, a novel magnetic resonance imaging (MRI)/computed tomography (CT)/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs). Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs) directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2) markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/CT/fluorescence trimodal imaging.

  4. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging

    PubMed Central

    Xue, Sihan; Wang, Yao; Wang, Mengxing; Zhang, Lu; Du, Xiaoxia; Gu, Hongchen; Zhang, Chunfu

    2014-01-01

    In this study, a novel magnetic resonance imaging (MRI)/computed tomography (CT)/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs). Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs) directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2) markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/CT/fluorescence trimodal imaging. PMID:24904212

  5. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging.

    PubMed

    Mahmoudi, Morteza; Simchi, Abdolreza; Imani, Mohammad; Milani, Abbas S; Stroeve, Pieter

    2008-11-20

    Superparamagnetic iron oxide nanoparticles (SPION) with narrow size distribution and stabilized by polyvinyl alcohol (PVA) were synthesized. The particles were prepared by a coprecipitation technique using ferric and ferrous salts with a molar Fe3+/Fe2+ ratio of 2. Using a design of experiments (DOE) approach, the effect of different synthesis parameters (stirring rate and base molarity) on the structure, morphology, saturation magnetization, purity, size, and size distribution of the synthesized magnetite nanoparticles was studied by various analysis techniques including X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) with differential scanning calorimetry (DSC) measurements, vibrating-sample magnetometer (VSM), transmission electron microscopy (TEM), UV-visible, and Fourier transform infrared (FT-IR) spectrometer. PVA not only stabilized the colloid but also played a role in preventing further growth of SPION followed by the formation of large agglomerates by chemisorption on the surface of particles. A rich behavior in particle size, particle formation, and super paramagnetic properties is observed as a function of molarity and stirring conditions. The particle size and the magnetic properties as well as particle shape and aggregation (individual nanoparticles, magnetic beads, and magnetite colloidal nanocrystal clusters (CNCs) are found to be influenced by changes in the stirring rate and the base molarity. The formation of magnetic beads results in a decrease in the saturation magnetization, while CNCs lead to an increase in saturation magnetization. On the basis of the DOE methodology and the resulting 3-D response surfaces for particle size and magnetic properties, it is shown that optimum regions for stirring rate and molarity can be obtained to achieve coated SPION with desirable size, purity, magnetization, and shape.

  6. Cytotoxicity and drug release behavior of PNIPAM grafted on silica-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Lien, Yi-Hsin; Wu, Tzong-Ming; Wu, Jhao-Huei; Liao, Jiunn-Wang

    2011-10-01

    The nanoparticles containing thermosensitive and magnetic properties were investigated for their potential use as a novel drug carrier for targeted and controlled release drug delivery system. These thermosensitive and magnetic nanoparticles were prepared by grafting thermosensitive poly ( N-isopropylacrylamide) (PNIPAM) on the surface of silica (SiO2)-coated Fe3O4 nanoparticles with the particle size of 18.8 ± 1.6 nm. Adsorption and desorption behavior of bovine serum albumin (BSA) on the surface of PNIPAM-grafted SiO2/Fe3O4 nanoparticles was studied, and the results indicated that these nanoparticles were able to absorb protein at temperature above the lower critical solution temperature (LCST) and to be desorbed below the LCST. Cytotoxicity studies conducted on Chinese hamster ovary (CHO-K1) cells using methyl tetrazolium (MTT) assays revealed that cell viability of 1 mg/mL PNIPAM-grafted nanoparticles was slightly decreased after 24 h of incubation as compared to the lower concentration of nanoparticles. Furthermore, the concentration of 0.5 mg/mL PNIPAM-grafted nanoparticles was totally biocompatible for 48 h, but had low cytotoxicity after 72 h of incubation. These PNIPAM-grafted nanoparticles did not induce morphological change in their cellularity after exposure for 24 and 108 h. These results demonstrate that PNIPAM-grafted nanoparticles are biocompatible and have potential use as drug carriers.

  7. Platinum Attachments on Iron Oxide Nanoparticle Surfaces

    SciTech Connect

    Palchoudhury, Soubantika; Xu, Yaolin; An, Wei; Turner, C. H.; Bao, Yuping

    2010-04-30

    Platinum nanoparticles supported on metal oxide surfaces have shown great potential as heterogeneous catalysts to accelerate electrochemical processes, such as the oxygen reduction reaction in fuel cells. Recently, the use of magnetic supports has become a promising research topic for easy separation and recovery of catalysts using magnets, such as Pt nanoparticles supported on iron oxide nanoparticles. The attachment of Pt on iron oxide nanoparticles is limited by the wetting ability of the Pt (metal) on ceramic surfaces. A study of Pt nanoparticle attachment on iron oxide nanoparticle surfaces in an organic solvent is reported, which addresses the factors that promote or inhibit such attachment. It was discovered that the Pt attachment strongly depends on the capping molecules of the iron oxide seeds and the reaction temperature. For example, the attachment of Pt nanoparticles on oleic acid coated iron oxide nanoparticles was very challenging, because of the strong binding between the carboxylic groups and iron oxide surfaces. In contrast, when nanoparticles are coated with oleic acid/tri-n-octylphosphine oxide or oleic acid/oleylamine, a significant increase in Pt attachment was observed. Electronic structure calculations were then applied to estimate the binding energies between the capping molecules and iron ions, and the modeling results strongly support the experimental observations.

  8. Adaptive organic nanoparticles of a teflon-coated iron (III) porphyrin catalytically activate dioxygen for cyclohexene oxidation.

    PubMed

    Aggarwal, Amit; Singh, Sunaina; Samson, Jacopo; Drain, Charles Michael

    2012-07-26

    Self-organized organic nanoparticles (ONP) are adaptive to the environmental reaction conditions. ONP of fluorous alkyl iron(III) porphyrin catalytically oxidize cyclohexene to the allylic oxidation products. In contrast, the solvated metalloporphyrin yields both allylic oxidation and epoxidation products. The ONP system facilitates a greener reaction because about 89% reaction medium is water, molecular oxygen is used in place of synthetic oxidants, and the ambient reaction conditions used require less energy. The enhanced catalytic activity of these ONP is unexpected because the metalloporphyrins in the nanoaggregates are in the close proximity and the TON should diminish by self-oxidative degradation. The fluorous alkyl chain stabilizes the ONP toward self-oxidative degradation.

  9. Effects of Mesoporous Silica Coating and Post-Synthetic Treatment on the Transverse Relaxivity of Iron Oxide Nanoparticles

    PubMed Central

    Hurley, Katie R.; Lin, Yu-Shen; Zhang, Jinjin; Egger, Sam M.; Haynes, Christy L.

    2013-01-01

    Mesoporous silica nanoparticles have the capacity to load and deliver therapeutic cargo and incorporate imaging modalities, making them prominent candidates for theranostic devices. One of the most widespread imaging agents utilized in this and other theranostic platforms is nanoscale superparamagnetic iron oxide. Although several core-shell magnetic mesoporous silica nanoparticles presented in the literature have provided high T2 contrast in vitro and in vivo, there is ambiguity surrounding which parameters lead to enhanced contrast. Additionally, there is a need to understand the behavior of these imaging agents over time in biologically relevant environments. Herein, we present a systematic analysis of how the transverse relaxivity (r2) of magnetic mesoporous silica nanoparticles is influenced by nanoparticle diameter, iron oxide nanoparticle core synthesis, and the use of a hydrothermal treatment. This work demonstrates that samples which did not undergo a hydrothermal treatment experienced a drop in r2 (75% of original r2 within 8 days of water storage), while samples with hydrothermal treatment maintained roughly the same r2 for over 30 days in water. Our results suggest that iron oxide oxidation is the cause of the r2 loss, and this oxidation can be prevented both during synthesis and storage by the use of deoxygenated conditions during nanoparticle synthesis. The hydrothermal treatment also provides colloidal stability, even in acidic and highly salted solutions, and a resistance against acid degradation of the iron oxide nanoparticle core. The results of this study show the promise of multifunctional mesoporous silica nanoparticles but will also likely inspire further investigation into multiples types of theranostic devices, taking into consideration their behavior over time and in relevant biological environments. PMID:23814377

  10. In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: A potential MRI contrast agent useful for cell tracking

    NASA Astrophysics Data System (ADS)

    Tsai, Zei-Tsan; Wang, Jen-Fei; Kuo, Hsiao-Yun; Shen, Chia-Rui; Wang, Jiun-Jie; Yen, Tzu-Chen

    2010-01-01

    Iron oxide nanocrystals are of considerable interest in nanoscience and nanotechnology because of their nanoscale dimensions, nontoxic nature, and superior magnetic properties. Colloidal solutions of magnetic nanoparticles (ferrofluids) with a high magnetite content are highly desirable for most molecular imaging applications. In this paper, we present a method for in situ coating of superparamagnetic iron oxide (SPIO) with chitosan in order to increase the content of magnetite. Iron chloride salts (Fe 3+ and Fe 2+) were directly coprecipitated inside a porous matrix of chitosan by Co-60 γ-ray irradiation in an aqueous solution of acetic acid. Following sonication, iron oxide nanoparticles were formed inside the chitosan matrix at a pH value of 9.5 and a temperature of 50 °C. The [Fe 3+]:[Fe 2+]:[NH 4OH] molar ratio was 1.6:1:15.8. The final ferrofluid was formed with a pH adjustment to approximately 2.0/3.0, alongside with the addition of mannitol and lactic acid. We subsequently characterized the particle size, the zeta potential, the iron concentration, the magnetic contrast, and the cellular uptake of our ferrofluid. Results showed a z-average diameter of 87.2 nm, a polydispersity index (PDI) of 0.251, a zeta potential of 47.9 mV, and an iron concentration of 10.4 mg Fe/mL. The MRI parameters included an R1 value of 22.0 mM -1 s -1, an R2 value of 202.6 mM -1 s -1, and a R2/R1 ratio of 9.2. An uptake of the ferrofluid by mouse macrophages was observed. Altogether, our data show that Co-60 γ-ray radiation on solid chitosan may improve chitosan coating of iron oxide nanoparticles and tackle its aqueous solubility at pH 7. Additionally, our methodology allowed to obtain a ferrofluid with a higher content of magnetite and a fairly unimodal distribution of monodisperse clusters. Finally, MRI and cell experiments demonstrated the potential usefulness of this product as a potential MRI contrast agent that might be used for cell tracking.

  11. Bcl-2-functionalized ultrasmall superparamagnetic iron oxide nanoparticles coated with amphiphilic polymer enhance the labeling efficiency of islets for detection by magnetic resonance imaging

    PubMed Central

    Yang, Bin; Cai, Haolei; Qin, Wenjie; Zhang, Bo; Zhai, Chuanxin; Jiang, Biao; Wu, Yulian

    2013-01-01

    Based on their versatile, biocompatible properties, superparamagnetic iron oxide (SPIO) or ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are utilized for detecting and tracing cells or tumors in vivo. Here, we developed an innoxious and concise synthesis approach for a novel B-cell lymphoma (Bcl)-2 monoclonal antibody-functionalized USPIO nanoparticle coated with an amphiphilic polymer (carboxylated polyethylene glycol monooleyl ether [OE-PEG-COOH]). These nanoparticles can be effectively internalized by beta cells and label primary islet cells, at relatively low iron concentration. The biocompatibility and cytotoxicity of these products were investigated by comparison with the commercial USPIO product, FeraSpin™ S. We also assessed the safe dosage range of the product. Although some cases showed a hypointensity change at the site of transplant, a strong magnetic resonance imaging (MRI) was detectable by a clinical MRI scanner, at field strength of 3.0 Tesla, in vivo, and the iron deposition/attached in islets was confirmed by Prussian blue and immunohistochemistry staining. It is noteworthy that based on our synthesis approach, in future, we could exchange the Bcl-2 with other probes that would be more specific for the targeted cells and that would have better labeling specificity in vivo. The combined results point to the promising potential of the novel Bcl-2-functionalized PEG-USPIO as a molecular imaging agent for in vivo monitoring of islet cells or other cells. PMID:24204136

  12. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy.

    PubMed

    Tassa, Carlos; Shaw, Stanley Y; Weissleder, Ralph

    2011-10-18

    Advances in our understanding of the genetic basis of disease susceptibility coupled with prominent successes for molecular targeted therapies have resulted in an emerging strategy of personalized medicine. This approach envisions risk stratification and therapeutic selection based on an individual's genetic makeup and physiologic state (the latter assessed through cellular or molecular phenotypes). Molecularly targeted nanoparticles can play a key role in this vision through noninvasive assessments of molecular processes and specific cell populations in vivo, sensitive molecular diagnostics, and targeted delivery of therapeutics. A superparamagnetic iron oxide nanoparticle with a cross-linked dextran coating, or CLIO, is a powerful and illustrative nanoparticle platform for these applications. These structures and their derivatives support diagnostic imaging by magnetic resonance (MRI), optical, and positron emission tomography (PET) modalities and constitute a versatile platform for conjugation to targeting ligands. A variety of conjugation methods exist to couple the dextran surface to different functional groups; in addition, a robust bioorthogonal [4 + 2] cycloaddition reaction between 1,2,4,5-tetrazene (Tz) and trans-cyclooctene (TCO) can conjugate nanoparticles to targeting ligands or label pretargeted cells. The ready availability of conjugation methods has given rise to the synthesis of libraries of small molecule modified nanoparticles, which can then be screened for nanoparticles with specificity for a specific cell type. Since most nanoparticles display their targeting ligands in a multivalent manner, a detailed understanding of the kinetics and affinity of a nanoparticle's interaction with its target (as determined by surface plasmon resonance) can yield functionally important insights into nanoparticle design. In this Account, we review applications of the CLIO platform in several areas relevant to the mission of personalized medicine. We demonstrate

  13. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater.

    PubMed

    Hwang, Sangchul; Martinez, Diana; Perez, Priscilla; Rinaldi, Carlos

    2011-12-01

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP(Fe-surf)) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that ~8.7% of ENP(Fe-surf) applied were present in the effluent stream. The stable presence of ENP(Fe-surf) was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP(Fe-surf) deteriorated the effluent water quality at a statistically significant level (p < 0.05) with respect to soluble chemical oxygen demand, turbidity, and apparent color. This implied that ENP(Fe-surf) would be introduced into environmental receptors through the treated effluent and could potentially impact them.

  14. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: Synthesis and spectroscopic characterization of zincite-coated Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Habibi, Neda

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR).

  15. Lead isotopes in iron and manganese oxide coatings and their use as an exploration guide for concealed mineralization

    USGS Publications Warehouse

    Gulson, B.L.; Church, S.E.; Mizon, K.J.; Meier, A.L.

    1992-01-01

    Lead isotopes from Fe and Mn oxides that coat stream pebbles from around the Mount Emmons porphyry molybdenum deposit in Colorado were studied to assess the feasibility of using Pb isotopes to detect concealed mineral deposits. The Fe/Mn oxide coatings were analyzed to determine their elemental concentrations using ICP-AES. The Pb isotope compositions of solutions from a selected suite of samples were measured, using both thermal ionization and ICP mass spectrometry, to compare results determined by the two analytical methods. Heavy mineral concentrates from the same sites were also analyzed to compare the Pb isotope compositions of the Fe/Mn coatings with those found in panned concentrates. The Fe/Mn and 206Pb/204Pb ratios of the oxide coatings are related to the lithology of the host rocks; Fe/Mn oxide coatings on pebbles of black shale have higher Fe/Mn values than do the coatings on either sandstone or igneous rocks. The shale host rocks have a more radiogenic signature (e.g. higher 206Pb/ 204Pb) than the sandstone or igneous host rocks. The Pb isotope data from sandstone and igneous hosts can detect concealed mineralized rock on both a regional and local scale, even though there are contributions from: (1) metals from the main-stage molybdenite ore deposit; (2) metals from the phyllic alteration zone which has a more radiogenic Pb isotope signature reflecting hydrothermal leaching of Pb from the Mancos Shale; (3) Pb-rich base metal veins with a highly variable Pb isotope signature; and (4) sedimentary country rocks which have a more radiogenic Pb isotope signature. An investigation of within-stream variation shows that the Pb isotope signature of the molybdenite ore zone is retained in the Fe/Mn oxide coatings and is not camouflaged by contributions from Pb-rich base-metal veins that crop out upstream. In another traverse, the Pb isotope data from Fe/Mn oxide coatings reflect a complex mixing of Pb from the molybdenite ore zone and its hornfels margin, Pb

  16. Method of coating an iron-based article

    SciTech Connect

    Magdefrau, Neal; Beals, James T.; Sun, Ellen Y.; Yamanis, Jean

    2016-11-29

    A method of coating an iron-based article includes a first heating step of heating a substrate that includes an iron-based material in the presence of an aluminum source material and halide diffusion activator. The heating is conducted in a substantially non-oxidizing environment, to cause the formation of an aluminum-rich layer in the iron-based material. In a second heating step, the substrate that has the aluminum-rich layer is heated in an oxidizing environment to oxidize the aluminum in the aluminum-rich layer.

  17. In vivo Tracking of Mesenchymal Stem Cells Labeled with a Novel Chitosan-coated Superparamagnetic Iron Oxide Nanoparticles using 3.0T MRI

    PubMed Central

    Reddy, Alavala Matta; Shim, Hyung Jin; Ahn, Chiyoung; Lee, Hyo Sook; Suh, Yong Jae; Park, Eon Sub

    2010-01-01

    This study aimed to characterize and MRI track the mesenchymal stem cells labeled with chitosan-coated superparamagnetic iron oxide (Chitosan-SPIO). Chitosan-SPIO was synthesized from a mixture of FeCl2 and FeCl3. The human bone marrow derived mesenchymal stem cells (hBM-MSC) were labeled with 50 µg Fe/mL chitosan-SPIO and Resovist. The labeling efficiency was assessed by iron content, Prussian blue staining, electron microscopy and in vitro MR imaging. The labeled cells were also analyzed for cytotoxicity, phenotype and differentiation potential. Electron microscopic observations and Prussian blue staining revealed 100% of cells were labeled with iron particles. MR imaging was able to detect the labeled MSC successfully. Chitosan-SPIO did not show any cytotoxicity up to 200 µg Fe/mL concentration. The labeled stem cells did not exhibit any significant alterations in the surface markers expression or adipo/osteo/chondrogenic differentiation potential when compared to unlabeled control cells. After contralateral injection into rabbit ischemic brain, the iron labeled stem cells were tracked by periodical in vivo MR images. The migration of cells was also confirmed by histological studies. The novel chitosan-SPIO enables to label and track MSC for in vivo MRI without cellular alteration. PMID:20119572

  18. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-02-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core-shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals ( 11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core-shell nanoparticles ( 54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core-shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  19. Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration.

    PubMed

    Mak, Mark S H; Lo, Irene M C; Liu, Tongzhou

    2011-12-01

    A column study was conducted using a combination of zero-valent iron (Fe(0)) and iron oxide-coated sand (IOCS) for removing Cr(VI) and As(V) from groundwater. The removal efficiency and mechanism of Cr(VI) and As(V), the effects of humic acid (HA), and the various configurations of Fe(0) and IOCS were investigated. The results showed that the use of an Fe(0) and IOCS mixture in a completely mixed configuration can achieve the highest removal of both Cr(VI) and As(V), whilst the effects of HA were marginal in using these reactive materials. The solid phase analysis revealed the occurrence of the synergistic effect in these reactive materials as Fe(2+) can be adsorbed onto the IOCS and transform the iron oxides to magnetite, providing more reactive surface area for Cr(VI) reduction and reducing the passivation on the Fe(0). As(V) can then be removed by adsorption onto these iron corrosion products. HA can be adsorbed onto the IOCS so that the impacts of the deposition of HA aggregates on the Fe(0) surface can be reduced, thus enhancing the Fe(0) corrosion.

  20. Detection of viability of transplanted beta cells labeled with a novel contrast agent - polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles by magnetic resonance imaging.

    PubMed

    Zhang, Bo; Jiang, Biao; Chen, Ying; Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Hui; Zhai, Chuanxin; Wu, Yulian

    2012-01-01

    Islets can be visualized on MRI by labeling with superparamagnetic contrast agent during the transplantation procedure. However, whether the signal intensity reflects the cell number and cellular viability has not been determined. We used a self-synthesized novel superparamagnetic contrast agent -polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles (PVP-SPIO) - to label β-TC-6 cells (a mouse insulinoma cell line) or primary islets with commercial Feridex as a control. The labeling efficiency of two agents was compared by Prussian blue staining, intracellular iron content determination and MR scanning. Cells were exposed to hypoxia, high-glucose or exogenous H₂O₂ stimulation before/after PVP-SPIO labeling. Normal and injured cells were also transplanted into renal subcapsule. A clinically used 3.0 T MR scan was performed in vitro and 24 h post-transplantation to investigate the correlation between cellular viability and signal. Our PVP-SPIO displayed superior biocompatibility and magnetic properties. All of the cells could be labeled at 100 µg/ml iron concentration after 24 h incubation. At 100 µg/ml iron concentration, 1 × 10⁵ β cells labeled with PVP-SPIO could already be visualized in vitro by MRI, less than the detection threshold of Feridex. There existed a linear correlation between the number of labeled cells and R₂ value on the T₂ -weighted images. The signal intensity and the intracellular iron content declined along with the decreased viability of labeled cells. There was also a significant difference in signal intensity between injured and normal labeled cells after transplantation. From these results, we concluded that PVP-SPIO possessed superior cell labeling efficiency, and β cells could be labeled without compromising viability and function. The signal intensity on MRI might be a useful predictor to evaluate the number and the viability of PVP-SPIO-labeled cells.

  1. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles.

    PubMed

    Lin, Run; Li, Yuancheng; MacDonald, Tobey; Wu, Hui; Provenzale, James; Peng, Xingui; Huang, Jing; Wang, Liya; Wang, Andrew Y; Yang, Jianyong; Mao, Hui

    2017-02-01

    Detecting circulating tumor cells (CTCs) with high sensitivity and specificity is critical to management of metastatic cancers. Although immuno-magnetic technology for in vitro detection of CTCs has shown promising potential for clinical applications, the biofouling effect, i.e., non-specific adhesion of biomolecules and non-cancerous cells in complex biological samples to the surface of a device/probe, can reduce the sensitivity and specificity of cell detection. Reported herein is the application of anti-biofouling polyethylene glycol-block-allyl glycidyl ether copolymer (PEG-b-AGE) coated iron oxide nanoparticles (IONPs) to improve the separation of targeted tumor cells from aqueous phase in an external magnetic field. PEG-b-AGE coated IONPs conjugated with transferrin (Tf) exhibited significant anti-biofouling properties against non-specific protein adsorption and off-target cell uptake, thus substantially enhancing the ability to target and separate transferrin receptor (TfR) over-expressed D556 medulloblastoma cells. Tf conjugated PEG-b-AGE coated IONPs exhibited a high capture rate of targeted tumor cells (D556 medulloblastoma cell) in cell media (58.7±6.4%) when separating 100 targeted tumor cells from 1×10(5) non-targeted cells and 41 targeted tumor cells from 100 D556 medulloblastoma cells spiked into 1mL blood. It is demonstrated that developed nanoparticle has higher efficiency in capturing targeted cells than widely used micron-sized particles (i.e., Dynabeads(®)).

  2. Oxidation corrosion resistant superalloys and coatings

    NASA Technical Reports Server (NTRS)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1978-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  3. Oxidation corrosion resistant superalloys and coatings

    NASA Technical Reports Server (NTRS)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1980-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  4. Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition

    NASA Astrophysics Data System (ADS)

    Qin, Yunfeng; Qin, Zongyi; Liu, Yannan; Cheng, Miao; Qian, Pengfei; Wang, Qian; Zhu, Meifang

    2015-12-01

    Magnetic composite nanoparticles (MNPs) were prepared by anchoring iron oxide (Fe3O4) on the surface of carboxyl cellulose nanospheres through a facile chemical co-precipitation method. The as-prepared MNPs were characterized by atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction measurement, thermal gravity analysis and vibrating sample magnetometry. These MNPs were of a generally spherical shape with a narrow size distribution, and exhibited superparamagnetic behaviors with high saturation magnetization. High efficient removal of Navy blue in aqueous solution was demonstrated at room temperature in a Fenton-like system containing the MNPs and H2O2, which benefited from small particle size, large surface area, high chemical activity, and good dispersibility of the MNPs. The removal efficiency of Navy blue induced by the MNPs prepared at a weight ratio of cellulose to iron of 1:2 were 90.6% at the first minute of the degradation reaction, and 98.0% for 5 min. Furthermore, these MNPs could be efficiently recycled and reused by using an external magnetic field. The approach presented in this paper promotes the use of renewable natural resources as templates for the preparation and stabilization of various inorganic nanomaterials for the purpose of catalysis, magnetic resonance imaging, biomedical and other potential applications.

  5. Iron oxide surfaces

    NASA Astrophysics Data System (ADS)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  6. Adsorption of natural organic matter from waters by iron coated pumice.

    PubMed

    Kitis, M; Kaplan, S S; Karakaya, E; Yigit, N O; Civelekoglu, G

    2007-01-01

    Natural pumice particles were used as granular support media and coated with iron oxides to investigate their adsorptive natural organic matter (NOM) removal from waters. The impacts of natural pumice source, particle size fraction, pumice dose, pumice surface chemistry and specific surface area, and NOM source on the ultimate extent and rate of NOM removal were studied. All adsorption isotherm experiments were conducted employing the variable-dose completely mixed batch reactor bottle-point method. Iron oxide coating overwhelmed the surface electrical properties of the underlying pumice particles. Surface areas as high as 20.6m(2)g(-1) were achieved after iron coating of pumice samples, which are above than those of iron coated sand samples reported in the literature. For all particle size fractions, iron coating of natural pumices significantly increased their NOM uptakes both on an adsorbent mass- and surface area-basis. The smallest size fractions (<63 microm) of coated pumices generally exhibited the highest NOM uptakes. A strong linear correlation between the iron contents of coated pumices and their Freundlich affinity parameters (K(F)) indicated that the enhanced NOM uptake is due to iron oxides bound on pumice surfaces. Iron oxide coated pumice surfaces preferentially removed high UV-absorbing fractions of NOM, with UV absorbance reductions up to 90%. Control experiments indicated that iron oxide species bound on pumice surfaces are stable, and potential iron release to the solution is not a concern at pH values of typical natural waters. Based on high NOM adsorption capacities, iron oxide coated pumice may be a promising novel adsorbent in removing NOM from waters. Furthermore, due to preferential removal of high UV-absorbing NOM fractions, iron oxide coated pumice may also be effective in controlling the formation of disinfection by-products in drinking water treatment.

  7. Uptake And Intracellular Distribution Of Functionalized Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Panariti, A.; Lettiero, B.; Morjan, I.; Alexandreascu, R.; Wang, D.; Bucci, C.; Miserocchi, G.; Rivolta, I.

    2010-10-01

    Iron oxide Nanoparticles represents promising nanocarrier for magnetic resonance imaging (MRI), targeted drug and gene delivery. In our study we investigated the interaction between lung alveolar epithelial cells and iron oxide NPs coated with L-Dihydroxyphenylalanina (L-Dopa)-TRITC. Our data suggest that particles crossed the plasma membrane with an energy-dependent process.

  8. Evaluation of the cytotoxic effects of PLGA coated iron oxide nanoparticles as a carrier of 5- fluorouracil and mega-voltage X-ray radiation in DU145 prostate cancer cell line.

    PubMed

    Hajikarimi, Zahra; Khoei, Samideh; Khoee, Sepideh; Mahdavi, Seied Rabi

    2014-12-01

    The purpose of this study was to investigate the uptake and cytotoxic effects of magnetic poly lactic-co-glycolic acid (PLGA)-coated iron oxide nanoparticles as a carrier of 5-fluorouracil (5-FU) and X-ray on the level of proliferation capacity of DU145 prostate carcinoma cell line in monolayer culture. Following monolayer culture, DU 145 cells were treated with different concentrations of 5-FU or 5-FU loaded nanoparticles for 24 h and 2Gy X-ray (6 Mega-voltage (MV)). The rate of nanoparticles penetration was then measured using atomic adsorption spectroscopy (AAS). The cytotoxicity effect of these nanoparticles with/ without X-ray radiation was evaluated using colony formation assay. Spectroscopy results showed that iron content and therefore the cellular uptake of 5-FU loaded nanoparticles increased with increasing nanoparticle concentrations. Further, the proliferation capacity of the cells decreased with the increase of 5-FU and 5- FU loaded nanoparticle concentrations in combination with X-ray radiation. However the extent of reduction in colony number following treatment with 5-FU-loaded nanoparticles in combination with 2Gy of megavoltage X-ray radiation was significantly more than for free 5-FU. Thus, drug-loaded nanoparticles could deliver 5-FU more efficiently into the cells. PLGA coated iron oxide nanoparticles are therefore effective drug delivery vehicles for 5-FU. PLGA coated iron oxide nanoparticles are biocompatible and this coating is an appropriate surface that can penetrate into the cells.

  9. Implementation of the adsorbent iron-oxide-coated natural rock (IOCNR) on synthetic As(III) and on real arsenic-bearing sample with filter

    NASA Astrophysics Data System (ADS)

    Maji, Sanjoy Kumar; Kao, Yu-Hsuan; Liao, Pei-Yu; Lin, Yi-Jie; Liu, Chen-Wuing

    2013-11-01

    This study examined the As(III) adsorption efficiency on an iron-oxide based adsorbent, iron-oxide-coated natural rock (IONR), and proposes an in situ two-step mechanism, oxidation of As(III) to As(V) and its subsequent adsorption on IOCNR. In the batch study, within 6 h of contact time and at a dose of 13 g L-1, ∼98.5% As(III) (declined to ∼0.01 mg L-1) removal was achieved from the water medium, when the initial concentration was 0.6 mg L-1 at room temperature. The As(III) adsorptive capacity of IOCNR was calculated using the Langmuir isotherm 1.647 mg g-1. The effects of various parameters for As(III) adsorption, including contact time, dose, pH, initial As(III) concentrations, the presence of common cations and anions, along with some organic contaminants, were evaluated. Spontaneity and favorable adsorption of As(III) on IOCNR were evidenced from the negative Gibbs free energy changes and dimensionless equilibrium parameter. As(III) removal efficiency of the exhausted and NaOH-regenerated IOCNR decreased in the second-cycle operation. As(III) removal efficiency of IOCNR was comparable to that of the commercially available patented adsorbent LEWATIT FO36. The adsorptive behavior of IOCNR from real arsenic-bearing sample was also evaluated. Finally, small-scale household filter “SHITAL-2013” was designed and the effluent water quality was analyzed.

  10. Activation of Human Complement System by Dextran-Coated Iron Oxide Nanoparticles Is Not Affected by Dextran/Fe Ratio, Hydroxyl Modifications, and Crosslinking

    PubMed Central

    Wang, Guankui; Chen, Fangfang; Banda, Nirmal K.; Holers, V. Michael; Wu, LinPing; Moghimi, S. Moein; Simberg, Dmitri

    2016-01-01

    While having tremendous potential as therapeutic and imaging tools, the clinical use of engineered nanoparticles has been associated with serious safety concerns. Activation of the complement cascade and the release of proinflammatory factors C3a and C5a may contribute to infusion-related reactions, whereas opsonization with C3 fragments promotes rapid recognition and clearance of nanomaterials by mononuclear phagocytes. We used dextran-coated superparamagnetic iron oxide nanoparticles (SPIO), which are potent activators of the complement system, to study the role of nanoparticle surface chemistry in inciting complement in human serum. Using complement inhibitors and measuring levels of fluid phase markers (sC5b-9, C5a, and Bb), we found that the majority of human complement activation by SPIO is through the alternative pathways (AP). SPIO prepared with high dextran/iron ratio showed some complement activation via calcium-sensitive pathways, but the AP was responsible for the bulk of complement activation and amplification. Activation via the AP required properdin, the positive regulator of the alternative C3bBb convertase. Modification of sugar alcohols of dextran with alkylating, acylating, or crosslinking agents did not overcome complement activation and C3 opsonization. These data demonstrate that human complement activation is independent of dextran modification of SPIO and suggest a crucial role of the AP in immune recognition of nano-assemblies in human serum. PMID:27777575

  11. Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging.

    PubMed

    Li, Dan; Tang, Xin; Pulli, Benjamin; Lin, Chao; Zhao, Peng; Cheng, Jian; Lv, Zhongwei; Yuan, Xueyu; Luo, Qiong; Cai, Haidong; Ye, Meng

    2014-01-01

    Theranostic nanoparticles based on superparamagnetic iron oxide (SPIO) have a great promise for tumor diagnosis and gene therapy. However, the availability of theranostic nanoparticles with efficient gene transfection and minimal toxicity remains a big challenge. In this study, we construct an intelligent SPIO-based nanoparticle comprising a SPIO inner core and a disulfide-containing polyethylenimine (SSPEI) outer layer, which is referred to as a SSPEI-SPIO nanoparticle, for redox-triggered gene release in response to an intracellular reducing environment. We reveal that SSPEI-SPIO nanoparticles are capable of binding genes to form nano-complexes and mediating a facilitated gene release in the presence of dithiothreitol (5-20 mM), thereby leading to high transfection efficiency against different cancer cells. The SSPEI-SPIO nanoparticles are also able to deliver small interfering RNA (siRNA) for the silencing of human telomerase reverse transcriptase genes in HepG2 cells, causing their apoptosis and growth inhibition. Further, the nanoparticles are applicable as T2-negative contrast agents for magnetic resonance (MR) imaging of a tumor xenografted in a nude mouse. Importantly, SSPEI-SPIO nanoparticles have relatively low cytotoxicity in vitro at a high concentration of 100 μg/mL. The results of this study demonstrate the utility of a disulfide-containing cationic polymer-decorated SPIO nanoparticle as highly potent and low-toxic theranostic nano-system for specific nucleic acid delivery inside cancer cells.

  12. Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic Nanoparticles for Simultaneous Magnetic Resonance Imaging and Precise Cancer Cell Targeting.

    PubMed

    Luong, Duy; Sau, Samaresh; Kesharwani, Prashant; Iyer, Arun K

    2017-03-09

    The low therapeutic index of conventional chemotherapy and poor prognosis of patients diagnosed with metastatic cancers are prompting clinicians to adopt newer strategies to simultaneously detect cancer lesions at an early stage and to precisely deliver anticancer drugs to tumor sites. In this study, we employed a novel strategy to engineer a polyvalent theranostic nanocarrier consisting of superparamagnetic iron oxide nanoparticle core (SPIONs) decorated with folic acid-polyamidoamine dendrimers surface (FA-PAMAM). In addition, a highly potent hydrophobic anticancer agent 3,4-difluorobenzylidene-curcumin (CDF) was coloaded in the FA-PAMAM dendrimer to increase its solubility and assess its therapeutic potentials. The resulting targeted nanoparticles (SPIONs@FA-PAMAM-CDF) exhibited high MR contrast. When tested on folate receptor overexpressing ovarian (SKOV3) and cervical (HeLa) cancer cells, the CDF loaded targeted nanoformulations showed higher accumulation with a better anticancer activity as compared to the nontargeted counterparts, possibly due to multivalent folate receptor binding interaction with cells overexpressing the target. The results were corroborated by observation of a larger population of cells undergoing apoptosis due to upregulation of tumor suppressor phosphatase and tensis homologue (PTEN), caspase 3, and inhibition of NF-κB in groups treated with the targeted formulations, which further confirmed the ability of the multivalent theranostic nanoparticles for simultaneous imaging and therapy of cancers.

  13. IRON COATED URANIUM AND ITS PRODUCTION

    DOEpatents

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  14. FMN-coated fluorescent iron oxide nanoparticles for RCP-mediated targeting and labeling of metabolically active cancer and endothelial cells.

    PubMed

    Jayapaul, Jabadurai; Hodenius, Michael; Arns, Susanne; Lederle, Wiltrud; Lammers, Twan; Comba, Peter; Kiessling, Fabian; Gaetjens, Jessica

    2011-09-01

    Riboflavin is an essential vitamin for cellular metabolism and is highly upregulated in metabolically active cells. Consequently, targeting the riboflavin carrier protein (RCP) may be a promising strategy for labeling cancer and activated endothelial cells. Therefore, Ultrasmall SuperParamagnetic Iron Oxide nanoparticles (USPIO) were adsorptively coated with the endogenous RCP ligand flavin mononucleotide (FMN), which renders them target-specific and fluorescent. The core diameter, surface morphology and surface coverage of the resulting FMN-coated USPIO (FLUSPIO) were evaluated using a variety of physico-chemical characterization techniques (TEM, DLS, MRI and fluorescence spectroscopy). The biocompatibility of FLUSPIO was confirmed using three different cell viability assays (Trypan blue staining, 7-AAD staining and TUNEL). In vitro evaluation of FLUSPIO using MRI and fluorescence microscopy demonstrated high labeling efficiency of cancer cells (PC-3, DU-145, LnCap) and activated endothelial cells (HUVEC). Competition experiments (using MRI and ICP-MS) with a 10- and 100-fold excess of free FMN confirmed RCP-specific uptake of the FLUSPIO by PC-3 cells and HUVEC. Hence, RCP-targeting via FMN may be an elegant way to render nanoparticles fluorescent and to increase the labeling efficacy of cancer and activated endothelial cells. This was shown for FLUSPIO, which due to their high T(2)-relaxivity, are favorably suited for MR cell tracking experiments and cancer detection in vivo.

  15. Indium Sorption to Iron Oxides

    NASA Astrophysics Data System (ADS)

    White, S. J.; Sacco, S. A.; Hemond, H.; Hussain, F. A.; Runkel, R. L.; Walton-Day, K. E.; Kimball, B. A.; Shine, J. P.

    2014-12-01

    Indium is an increasingly important metal in semiconductors and electronics, and its use is growing rapidly as a semiconductive coating (as indium tin oxide) for liquid crystal displays (LCDs) and flat panel displays. It also has uses in important energy technologies such as light emitting diodes (LEDs) and photovoltaic cells. Despite its rapid increase in use, very little is known about the environmental behavior of indium, and concerns are being raised over the potential health effects of this emerging metal contaminant. One source of indium to the environment is acid mine drainage from the mining of lead, zinc, and copper sulfides. In our previous studies of a stream in Colorado influenced by acid mine drainage from lead and zinc mining activities, indium concentrations were found to be 10,000 times those found in uncontaminated rivers. However, the speciation and mobility of indium could not be reliably modeled because sorption constants to environmental sorbents have not been determined. In this study, we generate sorption constants for indium to ferrihydrite in the laboratory over a range of pHs, sorbent to sorbate ratios, and ionic strengths. Ferrihydrite is one of the most important sorbents in natural systems, and sorption to amorphous iron oxides such as ferrihydrite is thought to be one of the main removal mechanisms of metals from the dissolved phase in aqueous environments. Because of its relatively low solubility, we also find that indium hydroxide precipitation can dominate indium's partitioning at micromolar concentrations of indium. This precipitation may be important in describing indium's behavior in our study stream in Colorado, where modeling sorption to iron-oxides does not explain the complete removal of indium from the dissolved phase when the pH of the system is artificially raised to above 8. This study contributes much-needed data about indium's aqueous behavior, in order to better understand its fate, transport, and impacts in the

  16. Synthesis and dose interval dependent hepatotoxicity evaluation of intravenously administered polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticle on Wistar rats.

    PubMed

    Rajan, Balan; Sathish, Shanmugam; Balakumar, Subramanian; Devaki, Thiruvengadam

    2015-03-01

    Superparamagnetic iron oxide nanoparticles are being used in medical imaging, drug delivery, cancer therapy, and so on. However, there is a direct need to identify any nanotoxicity associated with these nanoparticles. However uncommon, drug-induced liver injury (DILI) is a major health concern that challenges pharmaceutical industry and drug regulatory agencies alike. In this study we have synthesized and evaluated the dose interval dependent hepatotoxicity of polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticles (PUSPIOs). To assess the hepatotoxicity of intravenously injected PUSPIOs, alterations in basic clinical parameters, hematological parameters, hemolysis assay, serum levels of liver marker enzymes, serum and liver lipid peroxidation (LPO) levels, enzymatic antioxidant levels, and finally histology of liver, kidney, spleen, lung, brain, and heart tissues were studied in control and experimental Wistar rat groups over a 30-day period. The results of our study showed a significant increase in the aspartate transaminase (AST) enzyme activity at a dose of 10mg/kg b.w. PUSPIOs twice a week. Besides, alanine transaminase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transferase (γGT) enzyme activity showed a slender increase when compared with control experimental groups. A significant increase in the serum and liver LPO levels at a dose of 10mg/kg b.w. PUSPIOs twice a week was also observed. Histological analyses of liver, kidney, spleen, lung, brain and heart tissue samples showed no obvious uncharacteristic changes. In conclusion, PUSPIOs were found to posses excellent biocompatibility and Wistar rats showed much better drug tolerance to the dose of 10mg/kg b.w. per week than the dose of 10mg/kg b.w. twice a week for the period of 30 days.

  17. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron...

  18. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models

    PubMed Central

    Sun, Zhizhi; Yathindranath, Vinith; Worden, Matthew; Thliveris, James A; Chu, Stephanie; Parkinson, Fiona E; Hegmann, Torsten; Miller, Donald W

    2013-01-01

    Background Aminosilane-coated iron oxide nanoparticles (AmS-IONPs) have been widely used in constructing complex and multifunctional drug delivery systems. However, the biocompatibility and uptake characteristics of AmS-IONPs in central nervous system (CNS)-relevant cells are unknown. The purpose of this study was to determine the effect of surface charge and magnetic field on toxicity and uptake of AmS-IONPs in CNS-relevant cell types. Methods The toxicity and uptake profile of positively charged AmS-IONPs and negatively charged COOH-AmS-IONPs of similar size were examined using a mouse brain microvessel endothelial cell line (bEnd.3) and primary cultured mouse astrocytes and neurons. Cell accumulation of IONPs was examined using the ferrozine assay, and cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results No toxicity was observed in bEnd.3 cells at concentrations up to 200 μg/mL for either AmS-IONPs or COOH-AmS-IONPs. AmS-IONPs at concentrations above 200 μg/mL reduced neuron viability by 50% in the presence or absence of a magnetic field, while only 20% reductions in viability were observed with COOH-AmS-IONPs. Similar concentrations of AmS-IONPs in astrocyte cultures reduced viability to 75% but only in the presence of a magnetic field, while exposure to COOH-AmS-IONPs reduced viability to 65% and 35% in the absence and presence of a magnetic field, respectively. Cellular accumulation of AmS-IONPs was greater in all cell types examined compared to COOH-AmS-IONPs. Rank order of cellular uptake for AmS-IONPs was astrocytes > bEnd.3 > neurons. Accumulation of COOH-AmS-IONPs was minimal and similar in magnitude in different cell types. Magnetic field exposure enhanced cellular accumulation of both AmS- and COOH-AmS-IONPs. Conclusion Both IONP compositions were nontoxic at concentrations below 100 μg/mL in all cell types examined. At doses above 100 μg/mL, neurons were more sensitive to Am

  19. Stabilizing Alginate Confinement and Polymer Coating of CO-Releasing Molecules Supported on Iron Oxide Nanoparticles To Trigger the CO Release by Magnetic Heating.

    PubMed

    Meyer, Hajo; Winkler, Felix; Kunz, Peter; Schmidt, Annette M; Hamacher, Alexandra; Kassack, Matthias U; Janiak, Christoph

    2015-12-07

    Maghemite (Fe2O3) iron oxide nanoparticles (IONPs) were synthesized, modified with covalent surface-bound CO-releasing molecules of a tri(carbonyl)-chlorido-phenylalaninato-ruthenium(II) complex (CORM), and coated with a dextran polymer. The time- and temperature-dependent CO release from this CORM-3 analogue was followed by a myoglobin assay. A new measurement method for the myoglobin assay was developed, based on confining "water-soluble" polymer-coated Dextran500k@CORM@IONP particles in hollow spheres of nontoxic and easily prepared calcium alginate. Dropping a mixture of Dextran500k@CORM@IONP and sodium alginate into a CaCl2 solution leads to stable hollow spheres of Ca(2+) cross-linked alginate which contain the Dextran500k@CORM@IONP particles. This "alginate-method" (i) protects CORM-3 analogues from rapid CO-displacement reactions with a protein, (ii) enables a spatial separation of the CORM from its surrounding myoglobin assay with the alginate acting as a CO-permeable membrane, and (iii) allows the use of substances with high absorptivity (such as iron oxide nanoparticles) in the myoglobin assay without interference in the optical path of the UV cell. Embedding the CORM@IONP nanoparticles in the alginate vessel represents a compartmentation of the reactive component and allows for close contact with, yet facile separation from, the surrounding myoglobin assay. The half-life of the CO release from Dextran500k@CORM@IONP particles surrounded by alginate was determined to be 890 ± 70 min at 20 °C. An acceleration of the CO release occurs at higher temperature with a half-life of 172 ± 27 min at 37 °C and 45 ± 7 min at 50 °C. The CO release can be triggered in an alternating current magnetic field (31.7 kA m(-1), 247 kHz, 39.9 mT) through local magnetic heating of the susceptible iron oxide nanoparticles. With magnetic heating at 20 °C in the bulk solution, the half-life of CO release from Dextran500k@CORM@IONP particles decreased to 155 ± 18 min

  20. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including...

  1. In vitro and ex vivo evaluation of silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biomedical photoacoustic contrast agent

    NASA Astrophysics Data System (ADS)

    Alwi, Rudolf; Telenkov, Sergey A.; Mandelis, Andreas; Leshuk, Timothy; Gu, Frank; Oladepo, Sulayman; Michaelian, Kirk; Dickie, Kristopher

    2013-03-01

    The employment of contrast agents in photoacoustic imaging has gained significant attention within the past few years for their biomedical applications. In this study, the use of silica-coated superparamagnetic iron oxide (Fe3O4) nanoparticles (SPION) was investigated as a contrast agent in biomedical photoacoustic imaging. SPIONs have been widely used as Food-and-Drug-Administration (FDA)-approved contrast agents for magnetic resonance imaging (MRI) and are known to have an excellent safety profile. Using our frequency-domain photoacoustic correlation technique ("the photoacoustic radar") with modulated laser excitation, we examined the effects of nanoparticle size, concentration and biological medium (e.g. serum, sheep blood) on its photoacoustic response in turbid media (intralipid solution). Maximum detection depth and minimum measurable SPION concentration were determined experimentally. The detection was performed using a single element transducer. The nanoparticle-induced optical contrast ex vivo in dense muscular tissues (avian pectus) was evaluated using a phased array photoacoustic probe and the strong potential of silicacoated SPION as a possible photoacoustic contrast agent was demonstrated. This study opens the way for future clinical applications of nanoparticle-enhanced photoacoustic imaging in cancer therapy.

  2. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    PubMed Central

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo. PMID:26728448

  3. The capture and destruction of Escherichia coli from simulated urban runoff using conventional bioretention media and iron oxide-coated sand.

    PubMed

    Zhang, Lan; Seagren, Eric A; Davis, Allen P; Karns, Jeffrey S

    2010-08-01

    The performance, sustainability, and mechanisms of bacterial removal from stormwater runoff by bioretention systems are poorly understood. The potential for removal of microorganisms in bioretention systems was evaluated using column studies and simulated urban stormwater runoff. Conventional bioretention media (CBM) removed 82% of Escherichia coli O157:H7 strain B6914 cells; iron-oxide coated sand (IOCS) significantly enhanced capture, with 99% efficiency. This improvement possibly was because of the greater positive surface charge and roughness, of the IOCS. Trapped strain B6914 cells decayed more rapidly in CBM, however, with more than 99.98% die-off within one week compared with the IOCS in which approximately 48% of trapped cells survived. Predation and competition from native microorganisms in CBM were verified to play a dominant role in rapid destruction of trapped strain B6914. In particular, protozoan grazing appeared to play an important role, with the die-off of trapped B6914 increasing with increasing concentrations of protozoa.

  4. Partial PEGylation of superparamagnetic iron oxide nanoparticles thinly coated with amine-silane as a source of ultrastable tunable nanosystems for biomedical applications.

    PubMed

    Cano, Manuel; Núñez-Lozano, Rebeca; Lumbreras, Rocío; González-Rodríguez, Verena; Delgado-García, Alberto; Jiménez-Hoyuela, José Manuel; de la Cueva-Méndez, Guillermo

    2017-01-05

    The development of superparamagnetic iron oxide nanoparticle (SPION)-based diagnostic and therapeutic nanosystems holds a promise of revolutionizing biomedicine, helping to solve important unmet clinical needs. Such potential will only be fulfilled if appropriate methods for SPION production and for their subsequent tailoring to specific applications are established, something that remains challenging. Here, we report a simple and low cost method to fabricate structurally and colloidally ultrastable, water soluble SPIONs. We used thermal decomposition to produce SPIONs of the highest quality, which were then thinly coated with an amine-silane derivative by ligand exchange, conferring hydrophilicity and great structural stability on the nanoparticles. Subsequent partial covalent occupancy of surface amine groups with polyethyleneglycol (PEG) was carried out to give them excellent colloidal stability, whilst still leaving reactive anchoring points for further functionalization. The correct composition and physicochemical properties of our PEGylated SPIONs and their precursors were confirmed using a broad range of analytical techniques, and we also demonstrated the biocompatible character of the resulting nanoparticles, as well as their suitability as T2 MRI contrast agents in vivo. Finally, using a near infra-red fluorophore, we also confirmed that these SPIONs are amenable to further tuning, to adapt them to a wide range of applications or to optimize their performance in particular settings. In summary, our work provides a novel and robust method for the production of SPIONs that can be used as a tunable platform for the development of smart diagnostic and therapeutic nanosystems.

  5. CD163-Macrophages Are Involved in Rhabdomyolysis-Induced Kidney Injury and May Be Detected by MRI with Targeted Gold-Coated Iron Oxide Nanoparticles

    PubMed Central

    Rubio-Navarro, Alfonso; Carril, Mónica; Padro, Daniel; Guerrero-Hue, Melanie; Tarín, Carlos; Samaniego, Rafael; Cannata, Pablo; Cano, Ainhoa; Villalobos, Juan Manuel Amaro; Sevillano, Ángel Manuel; Yuste, Claudia; Gutiérrez, Eduardo; Praga, Manuel; Egido, Jesús; Moreno, Juan Antonio

    2016-01-01

    Macrophages play an important role in rhabdomyolysis-acute kidney injury (AKI), although the molecular mechanisms involved in macrophage differentiation are poorly understood. We analyzed the expression and regulation of CD163, a membrane receptor mainly expressed by anti-inflammatory M2 macrophages, in rhabdomyolysis-AKI and developed targeted probes for its specific detection in vivo by MRI. Intramuscular injection of glycerol in mice promoted an early inflammatory response, with elevated proportion of M1 macrophages, and partial differentiation towards a M2 phenotype in later stages, where increased CD163 expression was observed. Immunohistological studies confirmed the presence of CD163-macrophages in human rhabdomyolysis-AKI. In cultured macrophages, myoglobin upregulated CD163 expression via HO-1/IL-10 axis. Moreover, we developed gold-coated iron oxide nanoparticles vectorized with an anti-CD163 antibody that specifically targeted CD163 in kidneys from glycerol-injected mice, as determined by MRI studies, and confirmed by electron microscopy and immunological analysis. Our findings are the first to demonstrate that CD163 is present in both human and experimental rhabdomyolysis-induced AKI, suggesting an important role of this molecule in this pathological condition. Therefore, the use of probes targeting CD163-macrophages by MRI may provide important information about the cellular composition of renal lesion in rhabdomyolysis. PMID:27162559

  6. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    NASA Astrophysics Data System (ADS)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  7. Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapour synthesis are electively internalized in a pancreatic adenocarcinoma cell line expressing GLUT1 transporter.

    PubMed

    Barbaro, Daniele; Di Bari, Lorenzo; Gandin, Valentina; Evangelisti, Claudio; Vitulli, Giovanni; Schiavi, Eleonora; Marzano, Cristina; Ferretti, Anna M; Salvadori, Piero

    2015-01-01

    Iron oxide nanoparticles (IONP) can have a variety of biomedical applications due to their visualization properties through Magnetic Resonance Imaging (MRI) and heating with radio frequency or alternating magnetic fields. In the oncological field, coating IONP with organic compounds to provide specific features and to achieve the ability of binding specific molecular targets appears to be very promising. To take advantage of the high avidity of tumor cells for glucose, we report the development of very small glucose-coated IONP (glc-IONP) by employing an innovative technique, Metal Vapor Synthesis (MVS). Moreover, we tested the internalization of our gl-IONP on a tumor line, BxPC3, over-expressing GLUT 1 transporter. Both glc-IONP and polyvinylpyrrolidone-IONP (PVP-IONP), as control, were prepared with MVS and were tested on BxPC3 at various concentrations. To evaluate the role of GLUT-1 transporter, we also investigated the effect of adding a polyclonal anti-GLUT1 antibody. After proper treatment, the iron value was assessed by atomic absorption spectrometer, reported in mcg/L and expressed in mg of protein. Our IONP prepared with MVS were very small and homogeneously distributed in a narrow range (1.75-3.75 nm) with an average size of 2.7 nm and were super-paramagnetic. Glc-IONP were internalized by BxPC3 cells in a larger amount than PVP-IONP. After 6h of treatment with 50 mcg/mL of IONPs, the content of Fe was 1.5 times higher in glc-IONP-treated cells compared with PVP-IONP-treated cells. After 1h pre-treatment with anti-GLUT1, a reduction of 41% cellular accumulation of glc-IONP was observed. Conversely, the uptake of PVP-IONPs was reduced only by 14% with antibody pretreatment. In conclusion, MVS allowed us to prepare small, homogeneous, super-paramagnetic glc-IONP, which are electively internalized by a tumor line over-expressing GLUT1. Our glc-IONP appear to have many requisites for in vivo use.

  8. HIGH-TEMPERATURE OXIDATION PROTECTIVE COATINGS FOR VANADIUM-BASE ALLOYS

    DTIC Science & Technology

    SILICIDES , SILICON COATINGS , THIN FILM STORAGE DEVICES, TITANIUM ALLOYS, VAPOR PLATING, YTTRIUM COMPOUNDS, ZINC ALLOYS, ZINC COATINGS ....ANTIOXIDANTS, *METAL COATINGS , *REFRACTORY COATINGS , *VANADIUM ALLOYS, ALUMINUM ALLOYS, CERAMIC COATINGS , CHROMIUM ALLOYS, CLADDING, FLAME SPRAYING...HIGH TEMPERATURE, INTERMETALLIC COMPOUNDS, IODINE COMPOUNDS, IRON ALLOYS, MAGNESIUM ALLOYS, NICKEL ALLOYS, NICKEL COMPOUNDS, NIOBIUM ALLOYS, OXIDES

  9. Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2016-11-01

    Enshrined in this review are the biogenic fabrication and applications of coated and uncoated iron and iron oxide nanoparticles. Depending on their magnetic properties, they have been used in the treatment of cancer, drug delivery system, MRI, and catalysis and removal of pesticides from potable water. The polymer-coated iron and iron oxide nanoparticles are made biocompatible, and their slow release makes them more effective and lasting. Their cytotoxicity against microbes under aerobic/anaerobic conditions has also been discussed. The magnetic moment of superparamagnetic iron oxide nanoparticles changes with their interaction with biomolecules as a consequence of which their size decreases. Their biological efficacy has been found to be dependent on the shape, size, and concentration of these nanoparticles.

  10. Iron Oxide as an MRI Contrast Agent for Cell Tracking

    PubMed Central

    Korchinski, Daniel J.; Taha, May; Yang, Runze; Nathoo, Nabeela; Dunn, Jeff F.

    2015-01-01

    Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation. PMID:26483609

  11. AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to As sequestration onto zero-valent iron-coated sand.

    PubMed

    Wan, Junfeng; Klein, Jonathan; Simon, Stephane; Joulian, Catherine; Dictor, Marie-Christine; Deluchat, Véronique; Dagot, Christophe

    2010-09-01

    The combined processes of biological As(III) oxidation and removal of As(III) and As(V) by zero-valent iron were investigated with synthetic water containing high As(III) concentration (10 mg L(-1)). Two up-flow fixed-bed reactors (R1 and R2) were filled with 2 L of sieved sand (d = 3 ± 1 mm) while zero-valent iron powder (d = 76 μm; 1% (w/w) of sand) was mixed evenly with sand in R2. Thiomonas arsenivorans was inoculated in the two reactors. The pilot unit was studied for 33 days, with HRT of 4 and 1 h. The maximal As(III) oxidation rate was 8.36 mg h(-1) L(-1) in R1 and about 45% of total As was removed in R2 for an HRT of 1 h. A first order model fitted well with the As(III) concentration evolution at the different levels in R1. At the end of the pilot monitoring, batch tests were conducted with support collected at different levels in R1. They showed that bacterial As(III) oxidation rate was correlated with the axial length of reactor, which could be explained by biomass distribution in reactor or by bacterial activity. In opposition, As(III) oxidation rate was not stable in R2 due to the simultaneous bacterial As(III) oxidation and chemical removal by zero-valent iron and its oxidant products. However, a durable removal of total As was realized and zero-valent iron was not saturated by As over 33 days in R2. Furthermore, the influence of zero-valent iron and its oxidant corrosion products on the evolution of As(III)-oxidizing bacteria diversity was highlighted by the molecular fingerprinting method of PCR-DGGE using aoxB gene as a functional marker of aerobic As(III) oxidizers.

  12. Water oxidation: High five iron

    NASA Astrophysics Data System (ADS)

    Lloret-Fillol, Julio; Costas, Miquel

    2016-03-01

    The oxidation of water is essential to the sustainable production of fuels using sunlight or electricity, but designing active, stable and earth-abundant catalysts for the reaction is challenging. Now, a complex containing five iron atoms is shown to efficiently oxidize water by mimicking key features of the oxygen-evolving complex in green plants.

  13. Profiling iron corrosion coating on iron grains in a zerovalent iron system under the influence of dissolved oxygen.

    PubMed

    Zhang, Tian C; Huang, Yong H

    2006-07-01

    Rapid oxidation of Fe(0) by O(2) occurred when Fe(0) grains were bathed in 0.54 mM FeCl(2) solution saturated with dissolved oxygen (DO), forming a substantial corrosion coating on Fe(0) grains. A sonication method was developed to strip the corrosion coating off the iron grains layer by layer. The transformation of the constituents and the morphology of the corrosion coating along its depth and over reaction time were investigated with composition analysis, X-ray diffraction and scanning electron microscopy. Results indicate that the sonication method could consistently recover >90% iron oxides produced by the Fe(0)-DO redox reaction. Magnetite (Fe(3)O(4)) and lepidocrocite (gamma-FeOOH) were identified as the corrosion products. Initially, lepidocrocite was the preferential product in the presence of DO. As the oxide coating thickened, the inner layer transformed to magnetite, which retained as the only stable corrosion product once DO was depleted. The study confirms the phase transformations between gamma-FeOOH and Fe(3)O(4) within a stratified corrosion coating. The sonication technique exemplifies a new approach for investigating more complicated processes in Fe(0)/oxides/contaminants systems.

  14. Magnetic characteristics of iron-modified oxide layers on titanium

    NASA Astrophysics Data System (ADS)

    Rudnev, V. S.; Adigamova, M. V.; Lukiyanchuk, I. V.; Tkachenko, I. A.; Morozova, V. P.; Ustinov, A. Yu.; Kharitonskii, P. V.; Frolov, A. M.

    2014-12-01

    Iron-modified TiO2 coatings on titanium exhibiting ferromagnetic properties are formed by combining plasma electrolytic oxidation (PEO) and impregnation with subsequent annealing. It is found that iron is contained in the composition of dispersed particles with sizes of 1-10 μm distributed over the surface of the coatings. It is shown that the coercive force of the coating on titanium samples is 20-70 Oe. The composition, structure, and magnetic properties of the samples with coatings prepared via direct PEO and by combining PEO and impregnation are compared. It is concluded that impregnation and annealing procedures can be used to impart ferromagnetic properties to PEO coatings with different compositions, e.g., protective coatings and coatings applied in catalysis or medicine.

  15. Oxide coating development

    SciTech Connect

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  16. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron (III) oxide (CAS Reg. No. 1309-37-1, red-brown to black trigonal crystals). (b) In accordance with §...

  17. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron (III) oxide (CAS Reg. No. 1309-37-1, red-brown to black trigonal crystals). (b) In accordance with §...

  18. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron (III) oxide (CAS Reg. No. 1309-37-1, red-brown to black trigonal crystals). (b) In accordance with §...

  19. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  20. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  1. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  2. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  3. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform...

  4. Oxidation protection coatings for polymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.; Banks, B. A. (Inventor)

    1985-01-01

    A polymeric substrate is coated with a metal oxide film to provide oxidation protection in low Earth orbital environments. The film contains about 4 volume percent polymer to provide flexibility. A coil of polymer material moves through an ion beam as it is fed between reels. The ion beam first cleans the polymer material surface and then sputters the film material from a target onto this surface.

  5. Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery

    NASA Astrophysics Data System (ADS)

    Lo, Yu-Lun; Chou, Han-Lin; Liao, Zi-Xian; Huang, Shih-Jer; Ke, Jyun-Han; Liu, Yu-Sheng; Chiu, Chien-Chih; Wang, Li-Fang

    2015-04-01

    MicroRNA-128 (miR-128) is an attractive therapeutic molecule with powerful glioblastoma regulation properties. However, miR-128 lacks biological stability and leads to poor delivery efficacy in clinical applications. In our previous study, we demonstrated two effective transgene carriers, including polyethylenimine (PEI)-decorated superparamagnetic iron oxide nanoparticles (SPIONs) as well as chemically-conjugated chondroitin sulfate-PEI copolymers (CPs). In this contribution, we report optimized conditions for coating CPs onto the surfaces of SPIONs, forming CPIOs, for magneto-gene delivery systems. The optimized weight ratio of the CPs and SPIONs is 2 : 1, which resulted in the formation of a stable particle as a good transgene carrier. The hydrodynamic diameter of the CPIOs is ~136 nm. The gel electrophoresis results demonstrate that the weight ratio of CPIO/DNA required to completely encapsulate pDNA is >=3. The in vitro tests of CPIO/DNA were done in 293 T, CRL5802, and U87-MG cells in the presence and absence of an external magnetic field. The magnetofection efficiency of CPIO/DNA was measured in the three cell lines with or without fetal bovine serum (FBS). CPIO/DNA exhibited remarkably improved gene expression in the presence of the magnetic field and 10% FBS as compared with a gold non-viral standard, PEI/DNA, and a commercial magnetofection reagent, PolyMag/DNA. In addition, CPIO/DNA showed less cytotoxicity than PEI/DNA and PolyMag/DNA against the three cell lines. The transfection efficiency of the magnetoplex improved significantly with an assisted magnetic field. In miR-128 delivery, a microRNA plate array and fluorescence in situ hybridization were used to demonstrate that CPIO/pMIRNA-128 indeed expresses more miR-128 with the assisted magnetic field than without. In a biodistribution test, CPIO/Cy5-DNA showed higher accumulation at the tumor site where an external magnet is placed nearby.MicroRNA-128 (miR-128) is an attractive therapeutic molecule

  6. Role of solution chemistry on the deposition and release of graphene oxide nanoparticles in uncoated and iron oxide-coated sand

    EPA Science Inventory

    Upon increasing production and use of graphene oxide nanoparticles (GONPs), concerns agitate over their potential impacts and risks to the environment, ecosystem, and human health. An improved understanding of the fate and transport including remobilization of GONPs in the subsur...

  7. Role of solution chemistry in the retention and release of graphene oxide nanomaterials in uncoated and iron oxide-coated sand

    EPA Science Inventory

    Upon increasing production and use of graphene oxide nanoparticles (GONPs), concerns agitate over their potential impacts and risks to the environment, ecosystem, and human health. An improved understanding of the fate and transport including remobilization of GONPs in the subsur...

  8. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  9. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  10. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  11. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  12. Nanometer-sized ceria-coated silica-iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES.

    PubMed

    Dados, A; Paparizou, E; Eleftheriou, P; Papastephanou, C; Stalikas, C D

    2014-04-01

    A slurry suspension sampling technique is developed and optimized for the rapid microextraction of heavy metals and analysis using nanometer-sized ceria-coated silica-iron oxide particles and inductively coupled plasma optical emission spectrometry (ICP-OES). Magnetic-silica material is synthesized by a co-precipitation and sol-gel method followed by ceria coating through a precipitation. The large particles are removed using a sedimentation-fractionation procedure and a magnetic homogeneous colloidal suspension of ceria-modified iron oxide-silica is produced for microextraction. The nanometer-sized particles are separated from the sample solution magnetically and analyzed with ICP-OES using a slurry suspension sampling approach. The ceria-modified iron oxide-silica does not contain any organic matter and this probably justifies the absence of matrix effect on plasma atomization capacity, when increased concentrations of slurries are aspirated. The As, Be, Mo, Cr, Cu, Pb, Hg, Sb, Se and V can be preconcentrated by the proposed method at pH 6.0 while Mn, Cd, Co and Ni require a pH ≥ 8.0. Satisfactory values are obtained for the relative standard deviations (2-6%), recoveries (88-102%), enrichment factors (14-19) and regression correlation coefficients as well as detectability, at sub-μg L(-1) levels. The applicability of magnetic ceria for the microextraction of metal ions in combination with the slurry introduction technique using ICP is substantiated by the analysis of environmental water and urine samples.

  13. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    PubMed

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction.

  14. VEGF-Iron Oxide Conjugate for Dual MR and PET Imaging of Breast Cancer Angiogenesis

    DTIC Science & Technology

    2007-09-01

    iron oxide nanoparticles conjugated with macrocyclic chelating agent DOTA for 64Cu-labeling and cyclic RGD peptide for integrin alpha (v)beta(3...Nanoparticles We have developed two types of novel superparamagentic iron oxide nanoparticles (USPIO), namely, PVP -IO and PASP-IO...Polyvinylpyrrolidone ( PVP )-coated iron oxide ( PVP -IO) nanoparticles were synthesized by a one-step thermal decomposition method (Fig. 3). The overall size of the

  15. Biocompatible multishell architecture for iron oxide nanoparticles.

    PubMed

    Wotschadlo, Jana; Liebert, Tim; Clement, Joachim H; Anspach, Nils; Höppener, Stephanie; Rudolph, Tobias; Müller, Robert; Schacher, Felix H; Schubert, Ulrich S; Heinze, Thomas

    2013-01-01

    The coating of super-paramagnetic iron oxide nanoparticles (SPIONs) with multiple shells is demonstrated by building a layer assembled from carboxymethyldextran and poly(diallydimethylammonium chloride). Three shells are produced stepwise around aggregates of SPIONs by the formation of a polyelectrolyte complex. A growing particle size from 96 to 327 nm and a zeta potential in the range of +39 to -51 mV are measured. Microscopic techniques such as TEM, SEM, and AFM exemplify the core-shell structures. Magnetic force microscopy and vibrating sample magnetometer measurements confirm the architecture of the multishell particles. Cell culture experiments show that even nanoparticles with three shells are still taken up by cells.

  16. The character of fracture of iron based thermal coating during fretting

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Zh G.; Kovalevskiy, E. A.; Khimich, M. A.

    2016-04-01

    The character of destruction of thermal coatings during fretting has been investigated. An iron based plasma coating has been tested with oscillation amplitude from 30 to 200 microns. The tests were conducted in air. It has been determined that the main factor influencing the rate of the wear of the coating during fretting corrosion is the size of the coating area involved into the wear process. The coating exhibits high wear resistance when the amplitude of the oscillation is commensurate with the size of the sprayed particles. During destruction of the coating the leading role belongs to fatigue-oxidation processes. The wear of the coating acquires a catastrophic character when coating macro defects - pores and interlayer boundaries - are involved into the wear process.

  17. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    DOEpatents

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  18. Tannin biosynthesis of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Herrera-Becerra, R.; Rius, J. L.; Zorrilla, C.

    2010-08-01

    In this work, iron oxide nanoparticles synthesized with gallic acid and tannic acid are characterized using High-Resolution Transmission Electron Microscopy (HRTEM). Its size, form, and structure are compared with nanoparticles obtained previously using alfalfa biomass in order to find a simpler, consistent, and environmentally friendly method in the production of iron oxide nanoparticles.

  19. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron (III) oxide (CAS Reg. No. 1309-37-1, red-brown to black trigonal crystals). (b) In accordance with § 186.1(b)(1), the ingredient...

  20. Preparation of concave magnetoplasmonic core-shell supraparticles of gold-coated iron oxide via ion-reducible layer-by-layer method for surface enhanced Raman scattering.

    PubMed

    Lee, Dong Kyu; Song, Younseong; Tran, Van Tan; Kim, Jeonghyo; Park, Enoch Y; Lee, Jaebeom

    2017-03-23

    Preparation of suprastructure assemblies with unique colloidal and optical properties remains challenging. Non-uniform covering of magnetic nanoparticles (NPs) with an external inert Au shell has been attempted to protect the magnetic core against oxidation as well as to produce multifunctional supraparticles (SPs) possessing respective optical and magnetic properties. In this study, a concave Au NP coating was deposited on magnetic nanoparticles (MNPs) with precise control of the shell thickness and roughness through a layer-by-layer (LbL) assisted ionic reduction method termed ion-reducible LbL (IR-LbL) method. Surface enhanced Raman spectra were obtained using graphene quantum dots (GQDs) on the magnetically aligned structure of the prepared core-shell SPs. It is probable that this synthesis method and the generated SPs are essential for characterizing the merge of electronics and magnetism in the nano-regime and may be applicable for further electronics, magnetic storage, and biomedical applications.

  1. Nitrite reduction and formation of corrosion coatings in zerovalent iron systems.

    PubMed

    Huang, Yong H; Zhang, Tian C

    2006-08-01

    Batch tests were conducted to investigate nitrite reduction in a zerovalent iron (Fe0) system under various conditions. Nitrite at 1.4 mM initial concentration was slowly reduced to nitrogen gas in the first stage (days 1-6), which was mediated by an amorphous, Fe(II)-rich iron oxide coating. The second stage (days 7-14) featured a rapid reduction of nitrite to both ammonia and nitrogen gas and the formation of a more crystalline, magnetite form iron oxide coating. Water reduction by Fe0 occurred concurrently with nitrite reduction from the beginning and contributed significantly to the overall iron corrosion. Nitrite at 14 mM was found to passivate the surface of Fe0 grains with respect to nitrite reduction. Adding aqueous Fe2+ significantly accelerated reduction of nitrite by Fe0 to nitrogen gas with lepidocrocite as the main iron corrosion product. Substantially, though still substoichiometrically, 0.55 mol of Fe2+ were concomitantly consumed per 1.0 mol nitrite reduction, indicating that Fe0 was the main electron source. In the presence of Fe2+, nitrite reduction out-competed water reduction in terms of contributing to the overall iron corrosion. Results of this study help understand complicated interactions between water reduction and nitrite reduction, the roles of surface-bound Fe2+, and the evolution of the iron corrosion coating.

  2. Stem cell tracking using iron oxide nanoparticles.

    PubMed

    Bull, Elizabeth; Madani, Seyed Yazdan; Sheth, Roosey; Seifalian, Amelia; Green, Mark; Seifalian, Alexander M

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI) and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.

  3. Iron oxide and gold nanoparticles in cancer therapy

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  4. Reflection spectra and magnetochemistry of iron oxides and natural surfaces

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1978-01-01

    The magnetic properties and spectral characteristics of iron oxides are distinctive. Diagnostic features in reflectance spectra (0.5 to 2.4 micron) for alpha Fe2O3, gamma Fe2O3, and FeOOH include location of Fe3(+) absorption features, intensity ratios at various wavelengths, and the curve shape between 1.2 micron and 2.4 micron. The reflection spectrum of natural rock surfaces are seldom those of the bulk rock because of weathering effects. Coatings are found to be dominated by iron oxides and clay. A simple macroscopic model of rock spectra (based on concepts of stains and coatings) is considered adequate for interpretation of LANDSAT data. The magnetic properties of materials associated with specific spectral types and systematic changes in both spectra and magnetic properties are considered.

  5. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Douziech-Eyrolles, Laurence; Marchais, Hervé; Hervé, Katel; Munnier, Emilie; Soucé, Martin; Linassier, Claude; Dubois, Pierre; Chourpa, Igor

    2007-01-01

    During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug. PMID:18203422

  6. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    PubMed

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  7. Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content

    PubMed Central

    Wabler, Michele; Zhu, Wenlian; Hedayati, Mohammad; Attaluri, Anilchandra; Zhou, Haoming; Mihalic, Jana; Geyh, Alison; DeWeese, Theodore L.; Ivkov, Robert; Artemov, Dmitri

    2015-01-01

    Purpose Magnetic iron oxide nanoparticles (MNPs) are used as contrast agents for magnetic resonance imaging (MRI) and hyperthermia for cancer treatment. The relationship between MRI signal intensity and cellular iron concentration for many new formulations, particularly MNPs having magnetic properties designed for heating in hyperthermia, is lacking. In this study, we examine the correlation between MRI T2 relaxation time and iron content in cancer cells loaded with various MNP formulations. Materials and methods Human prostate carcinoma DU-145 cells were loaded with starch-coated bionised nanoferrite (BNF), iron oxide (Nanomag® D-SPIO), Feridex™, and dextran-coated Johns Hopkins University (JHU) particles at a target concentration of 50 pg Fe/cell using poly-D-lysine transfection reagent. T2-weighted MRI of serial dilutions of these labelled cells was performed at 9.4 T and iron content quantification was performed using inductively coupled plasma mass spectrometry (ICP-MS). Clonogenic assay was used to characterise cytotoxicity. Results No cytotoxicity was observed at twice the target intracellular iron concentration (~100 pg Fe/cell). ICP-MS revealed highest iron uptake efficiency with BNF and JHU particles, followed by Feridex and Nanomag-D-SPIO, respectively. Imaging data showed a linear correlation between increased intracellular iron concentration and decreased T2 times, with no apparent correlation among MNP magnetic properties. Conclusions This study demonstrates that for the range of nanoparticle concentrations internalised by cancer cells the signal intensity of T2-weighted MRI correlates closely with absolute iron concentration associated with the cells. This correlation may benefit applications for cell-based cancer imaging and therapy including nanoparticle-mediated drug delivery and hyperthermia. PMID:24773041

  8. When Density Functional Approximations Meet Iron Oxides.

    PubMed

    Meng, Yu; Liu, Xing-Wu; Huo, Chun-Fang; Guo, Wen-Ping; Cao, Dong-Bo; Peng, Qing; Dearden, Albert; Gonze, Xavier; Yang, Yong; Wang, Jianguo; Jiao, Haijun; Li, Yongwang; Wen, Xiao-Dong

    2016-10-11

    Three density functional approximations (DFAs), PBE, PBE+U, and Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE), were employed to investigate the geometric, electronic, magnetic, and thermodynamic properties of four iron oxides, namely, α-FeOOH, α-Fe2O3, Fe3O4, and FeO. Comparing our calculated results with available experimental data, we found that HSE (a = 0.15) (containing 15% "screened" Hartree-Fock exchange) can provide reliable values of lattice constants, Fe magnetic moments, band gaps, and formation energies of all four iron oxides, while standard HSE (a = 0.25) seriously overestimates the band gaps and formation energies. For PBE+U, a suitable U value can give quite good results for the electronic properties of each iron oxide, but it is challenging to accurately get other properties of the four iron oxides using the same U value. Subsequently, we calculated the Gibbs free energies of transformation reactions among iron oxides using the HSE (a = 0.15) functional and plotted the equilibrium phase diagrams of the iron oxide system under various conditions, which provide reliable theoretical insight into the phase transformations of iron oxides.

  9. Multifunctional silica-coated iron oxide nanoparticles: a facile four-in-one system for in situ study of neural stem cell harvesting.

    PubMed

    Peng, Yung-Kang; Lui, Cathy N P; Lin, Tsen-Hsuan; Chang, Chen; Chou, Pi-Tai; Yung, Ken K L; Tsang, S C Edman

    2014-01-01

    Neural stem cells (NSCs), which generate the main phenotypes of the nervous system, are multipotent cells and are able to differentiate into multiple cell types via external stimuli from the environment. The extraction, modification and re-application of NSCs have thus attracted much attention and raised hopes for novel neural stem cell therapies and regenerative medicine. However, few studies have successfully identified the distribution of NSCs in a live brain and monitored the corresponding extraction processes both in vitro and in vivo. To address those difficulties, in this study multi-functional uniform nanoparticles comprising an iron oxide core and a functionalized silica shell (Fe(3)O(4)@SiO(2)(FITC)-CD133, FITC: a green emissive dye, CD133: anti-CD133 antibody) have been strategically designed and synthesized for use as probe nanocomposites that provide four-in-one functionality, i.e., magnetic agitation, dual imaging (both magnetic resonance and optical) and specific targeting. It is shown that these newly synthesized Fe(3)O(4)@SiO(2)(FITC)-CD133 particles have clearly demonstrated their versatility in various applications. (1) The magnetic core enables magnetic cell collection and T(2) magnetic resonance imaging. (2) The fluorescent FITC embedded in the silica framework enables optical imaging. (3) CD133 anchored on the outermost surface is demonstrated to be capable of targeting neural stem cells for cell collection and bimodal imaging.

  10. Synthesis of dual-functional targeting probes for cancer theranostics based on iron oxide nanoparticles coated by centipede-like polymer connected with pH-responsive anticancer drug.

    PubMed

    Zhao, Haochen; Li, Zhiping; Yang, Bohan; Wang, Jingyuan; Li, Yapeng

    2015-01-01

    A tumor-targeted and pH-responsive drug release system based on superparamagnetic iron oxide nanoparticles (IONPs) coated by poly(ethylene glycol) (PEG) and dodecylamine (DDA)-modified polyitaconic acid (PIA) connecting with bortezomib (BTZ) (PIA-PEG-DDA-BTZ@IOs) has been constructed and characterized. The anticancer drug BTZ was first conjugated using dopamine as the linker via catechol borate ester bond, which is acid cleavable and used as an ideal pH-responsive drug release system. The IONPs were then coated by PIA-PEG-DDA-BTZ to form micelles with good biocompatibility. The conjugates were further designed to target liver cancer cells overexpressing vascular endothelial growth factor (VEGF) by the targeting molecule anti-vascular endothelial growth factor (anti-VEGF). The magnetic resonance imaging showed that the targeting capability of IONPs-anti-VEGF conjugates to Hep G2 cells was more significant than that of non-anti-VEGF IONPs. From the above, this kind of novel dual-functional targeting probe could provide a new idea for the diagnosis and treatment of cancer.

  11. On the formation of iron(III) oxides via oxidation of iron(II)

    SciTech Connect

    Bongiovanni, R.; Pelizzetti, E.; Borgarello, E.; Meisel, D.

    1994-09-01

    Formation of iron oxides in aqueous salt solutions is reviewed. The discussion is focused on the oxidation of iron(II) and the following hydrolysis process that leads to the formation of a solid phase from homogeneous solutions. Results from our own studies on the kinetics of the oxidation reactions and the ensuing growth processes are presented.

  12. Size-dependent magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  13. Role of nanocrystalline cerium oxide coatings on austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying

    Protective nanocrystalline cerium oxide coating has been applied to ASTM grade 304L and 304 austenitic stainless steels to improve its oxidation resistance at elevated temperatures. Experimentally, the selected alloy was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. It was found that the oxidation resistances of 304L and 304 stainless steels were significantly improved. A comparison of the oxidation rates indicated that the nanocrystalline cerium oxide coating reduced the rate of oxidation by more than two orders of magnitude. Nevertheless, a comprehensive understanding of the mechanisms responsible for the reduction in the oxidation rate is not clear. Consequently, this work is aimed at investigating the mechanisms involved during scale growth in the presence or absence of nanocrystalline coatings. For this purpose, density functional theory was carried out in order to predict oxygen and iron diffusion microscopic activation energies and reveal the intrinsic characteristics of nanocrystalline coatings. A numerical simulation of corrosion process has also been conducted to predict the corrosion rates of alloys with and without coatings. Hence, the results from simulations are compared with the experimental outcome, and possible explanations are given to account for the reduction in the exhibited oxidation rates. The simulation results will provide a highly valuable tool for the realization of functional nanostructures and architectures "by design", particularly in the development of novel coatings, and a new approach of life assessment.

  14. Water soluble dendronized iron oxide nanoparticles.

    PubMed

    Daou, T J; Pourroy, G; Greneche, J M; Bertin, A; Felder-Flesch, D; Begin-Colin, S

    2009-06-21

    The grafting of pegylated dendrons on 9(2) nm and 39(5) nm iron oxide nanoparticles in water, through a phosphonate group as coupling agent has been successfully achieved and its mechanism investigated, with a view to produce biocompatible magnetic nano-objects for biomedical applications. Grafting has been demonstrated to occur by interaction of negatively charged phosphonate groups with positively charged groups and hydroxyl at the iron oxide surface. The isoelectric point of the suspension of dendronized iron oxide nanoparticles is shifted towards lower pH as the amount of dendron increases. It reaches 4.7 for the higher grafting rate and for both particle size. Thus, the grafting of molecules using a phosphonate group allows stabilizing electrostatically the suspensions at physiological pH, a prerequisite for biomedical applications. Moreover the grafting step has been shown to preserve the magnetic properties of iron oxide nanoparticles due to super-super exchange interactions through the phosphonate group.

  15. Method for depositing an oxide coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1982-01-01

    A metal oxide coating is plated onto a metal substrate at the cathode from an acid solution which contains an oxidizing agent. The process is particularly useful for producing solar panels. Conventional plating at the cathode avoids the presence of oxidizing agents. Coatings made in accordance with the invention are stable both at high temperatures and while under the influence of high photon flux in the visible range.

  16. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    PubMed Central

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  17. Microstructure development and high-temperature oxidation of silicide coatings for refractory niobium alloys

    NASA Astrophysics Data System (ADS)

    Novak, Mark David

    Niobium alloys are candidate thermostructural materials in hypersonic flight applications because of excellent mechanical properties at elevated temperature; however, their susceptibility to oxidation requires the use of coatings. Multiphase silicide coatings containing iron, chromium, niobium, and silicon have historically been successful in protecting niobium in oxidizing environments, although little scientific understanding of this coating system is provided in publically available literature. Research efforts in process development, microstructural characterization, oxidation testing, and thermodynamic modeling have led to clarification of the coating microstructure, microstructural evolution, and the performance of the coating in oxidizing environments. These research efforts have led to strategies for improving coating performance, including surface planarization and modifying the coating with a dispersion of submicron alumina particles.

  18. Coating of Sulfonic Silica onto Magnetite from Marina Beach Iron sand, Semarang, Indonesia

    NASA Astrophysics Data System (ADS)

    Azmiyawati, C.; Suyati, L.; Taslimah; Anggraeni, R. D.

    2017-02-01

    The mineral iron oxide is the main component of sand iron that are abundant in nature. Mineral iron oxide not yet widely applied into more useful products. The main component of iron ore is magnetite. Magnetite can be used as a basic ingredient in the manufacture of magnetite-modified silica adsorbent sulfonate. In this research, the adsorbent made from sulfonic functionalized silica-coated magnetic particle has been successfully produced, with the magnetite was obtained from iron sand at Marina Beach, Semarang Indonesia. This adsorbent was then used as a metal ion preconcentration media. From the research that it was found that the sulfonic has been bound to the silica marked by the emergence of element S on EDX. Whilst, the evidence that silica has coated on the magnetite could be seen from the SEM images which showed the morphology of sulfonic functionalized silica-coated magnetic particles were larger than the sulfonic functionalized silica without magnetite. From the DSC results showed that the addition of magnetite on sulfonic functionalized silica did not change the heat resistance of the sulfonic functionalized silica. Based on the XRD patterns show that magnetite sulfonate silica was formed.

  19. Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique

    PubMed Central

    2012-01-01

    Background In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs). The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (λ = 248 nm, τFWHM≅25 ns, ν = 10 Hz) was used for the growth of the hybrid, iron oxide NPs-dextran thin films. Results Dextran coated iron oxide nanoparticles thin films were indexed into the spinel cubic lattice with a lattice parameter of 8.36 Å. The particle sized calculated was estimated at around 7.7 nm. The XPS shows that the binding energy of the Fe 2p3/2 of two thin films of dextran coated iron oxide is consistent with Fe3+ oxides. The atomic percentage of the C, O and Fe are 66.71, 32.76 and 0.53 for the films deposited from composite targets containing 1 wt.% maghemite and 64.36, 33.92 and 1.72 respectively for the films deposited from composite targets containing 5 wt.% maghemite. In the case of cells cultivated on dextran coated 5% maghemite γ-Fe2O3, the number of cells and the level of F-actin were lower compared to the other two types of thin films and control. Conclusions The dextran-iron oxide continuous thin films obtained by MAPLE technique from composite targets containing 10 wt.% dextran as well as 1 and 5 wt.% iron oxide nanoparticles synthesized by co-precipitation method presented granular surface morphology. Our data proved a good viability of Hep G2 cells grown on dextran coated maghemite thin films. Also, no changes in cells morphology were noticed under phase contrast microscopy. The data strongly suggest the potential use of iron oxide-dextran nanocomposites as a potential marker for biomedical applications. PMID:22410001

  20. Synthesis and Corrosion Study of Zirconia-Coated Carbonyl Iron Particles

    SciTech Connect

    Shen, R.; Shafrir, S.N.; Miao, C.; Wang, M.; Lambropoulos, J.C.; Jacobs, S.D.; Yang, H.

    2010-01-07

    This paper describes the surface modification of micrometer-sized magnetic carbonyl iron particles (CI) with zirconia from zirconium(IV) butoxide using a sol–gel method. Zirconia shells with various thicknesses and different grain sizes and shapes are coated on the surface of CI particles by changing the reaction conditions, such as the amounts of zirconia sol, nitric acid, and CI particles. A silica adhesive layer made from 3-aminopropyl trimethoxysilane (APTMS) can be introduced first onto the surface of CI particles in order to adjust both the size and the shape of zirconia crystals, and thus the roughness of the coating. The microanalyses on these coated particles are studied by field-emission scanning electron microscopy (FE-SEM) and X-ray-diffraction (XRD). Accelerated acid corrosion and air oxidation tests indicate that the coating process dramatically improved oxidation and acid corrosion resistances, which are critical issues in various applications of CI magnetic particles.

  1. Arsenic removal from water using iron-coated seaweeds.

    PubMed

    Vieira, Bárbara R C; Pintor, Ariana M A; Boaventura, Rui A R; Botelho, Cidália M S; Santos, Sílvia C R

    2017-05-01

    Arsenic is a semi-metal element that can enter in water bodies and drinking water supplies from natural deposits and from mining, industrial and agricultural practices. The aim of the present work was to propose an alternative process for removing As from water, based on adsorption on a brown seaweed (Sargassum muticum), after a simple and inexpensive treatment: coating with iron-oxy (hydroxides). Adsorption equilibrium and kinetics were studied and modeled in terms of As oxidation state (III and V), pH and initial adsorbate concentration. Maximum adsorption capacities of 4.2 mg/g and 7.3 mg/g were obtained at pH 7 and 20 °C for arsenite and arsenate, respectively. When arsenite was used as adsorbate, experimental evidences pointed to the occurrence of redox reactions involving As(III) oxidation to As(V) and Fe(III) reduction to Fe(II), with As(V) uptake by the adsorbent. The proposed adsorption mechanism was then based on the assumption that arsenate was the adsorbed arsenic species. The most relevant drawback found in the present work was the considerable leaching of iron to the solution. Arsenite removal from a mining-influenced water by adsorption plus precipitation was studied and compared to a traditional process of coagulation/flocculation. Both kinds of treatment provided practically 100% of arsenite removal from the contaminated water, leading at best in 12.9 μg/L As after the adsorption and precipitation assays and 14.2 μg/L after the coagulation/flocculation process.

  2. The Irony of Iron – Biogenic Iron Oxides as an Iron Source to the Ocean

    PubMed Central

    Emerson, David

    2016-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157

  3. The Irony of Iron - Biogenic Iron Oxides as an Iron Source to the Ocean.

    PubMed

    Emerson, David

    2015-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity.

  4. Exploring Microbial Iron Oxidation in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    Iron is one of the most abundant elements on earth and is essential for life. Because of its importance, iron cycling and its interaction with other chemical and microbial processes has been the focus of many studies. Iron-oxidizing bacteria (FeOB) have been detected in a wide variety of environments. Among those is the rhizosphere of wetland plants roots which release oxygen into the soil creating suboxic conditions required by these organisms. It has been reported that in these rhizosphere microbial iron oxidation proceeds up to four orders of magnitude faster than strictly abiotic oxidation. On the roots of these wetland plants iron plaques are formed by microbial iron oxidation which are involved in the sequestering of heavy metals as well organic pollutants, which of great environmental significance.Despite their important role being catalysts of iron-cycling in wetland environments, little is known about the diversity and distribution of iron-oxidizing bacteria in various environments. This study aimed at developing a PCR-DGGE assay enabling the detection of iron oxidizers in wetland habitats. Gradient tubes were used to enrich iron-oxidizing bacteria. From these enrichments, a clone library was established based on the almost complete 16s rRNA gene using the universal bacterial primers 27f and 1492r. This clone library consisted of mainly α- and β-Proteobacteria, among which two major clusters were closely related to Gallionella spp. Specific probes and primers were developed on the basis of this 16S rRNA gene clone library. The newly designed Gallionella-specific 16S rRNA gene primer set 122f/998r was applied to community DNA obtained from three contrasting wetland environments, and the PCR products were used in denaturing gradient gel electrophoresis (DGGE) analysis. A second 16S rRNA gene clone library was constructed using the PCR products from one of our sampling sites amplified with the newly developed primer set 122f/998r. The cloned 16S rRNA gene

  5. Iron coated pottery granules for arsenic removal from drinking water.

    PubMed

    Dong, Liangjie; Zinin, Pavel V; Cowen, James P; Ming, Li Chung

    2009-09-15

    A new media, iron coated pottery granules (ICPG) has been developed for As removal from drinking water. ICPG is a solid phase media that produces a stable Fe-Si surface complex for arsenic adsorption. Scanning electron microscopy (SEM) was used to document the physical attributes (grain size, pore size and distribution, surface roughness) of the ICPG media. Several advantages of the ICPG media such as (a) its granular structure, (b) its ability to absorb As via the F(0) coating on the granules' surface; (c) the inexpensive preparation process for the media from clay material make ICPG media a highly effective media for removing arsenic at normal pH. A column filtration test demonstrated that within the stability region (flow rate lower than 15L/h, EBCT >3 min), the concentration of As in the influent was always lower than 50 microg/L. The 2-week system ability test showed that the media consistently removed arsenic from test water to below the 5 microg/L level. The average removal efficiencies for total arsenic, As(III), and As(V) for a 2-week test period were 98%, 97%, and 99%, respectively, at an average flow rate of 4.1L/h and normal pH. Measurements of the Freundlich and Langmuir isotherms at normal pH show that the Freundlich constants of the ICPG are very close to those of ferric hydroxide, nanoscale zero-valent iron and much higher than those of nanocrystalline titanium dioxide. The parameter 1/n is smaller than 0.55 indicating a favorable adsorption process [K. Hristovski, A. Baumgardner, P. Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media, J. Hazard. Mater. 147 (2007) 265-274]. The maximum adsorption capacity (q(e)) of the ICPG from the Langmuir isotherm is very close to that of nanoscale zero-valent indicating that zero-valent iron is involved in the process of the As removal from the water. The results of the toxicity characteristic leaching procedure (TCLP

  6. Oxidation/vaporization of silicide coated columbium base alloys

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  7. Iron aluminide alloy coatings and joints, and methods of forming

    DOEpatents

    Wright, Richard N.; Wright, Julie K.; Moore, Glenn A.

    1994-01-01

    A method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600.degree. C. to less than the melting point of the lower melting point body; d) applying pressure on the juxtaposed surfaces; and e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  8. Iron aluminide alloy coatings and joints, and methods of forming

    DOEpatents

    Wright, R.N.; Wright, J.K.; Moore, G.A.

    1994-09-27

    Disclosed is a method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: (a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; (b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; (c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600 C to less than the melting point of the lower melting point body; (d) applying pressure on the juxtaposed surfaces; and (e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  9. Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study.

    PubMed

    Boutry, Sébastien; Brunin, Stéphanie; Mahieu, Isabelle; Laurent, Sophie; Vander Elst, Luce; Muller, Robert N

    2008-01-01

    Small particles of iron oxide (SPIO) and ultrasmall particles of iron oxide (USPIO), inducing a strong negative contrast on T(2) and T(2)*-weighted MR images, are the most commonly used systems for the magnetic labeling of cultured cells and their subsequent detection by magnetic resonance imaging (MRI). The purpose of this work is to study the influence of iron incubation concentration, nanoparticle size and nanoparticle coating on the magnetic labeling and the viability of non-phagocytic adherent cells in culture. The magnetic labeling of 3T6 fibroblasts was studied by T(2)-weighted MRI at 4.7 T and by dosing-or cytochemical revealing-of iron through methods based on Perl's Prussian blue staining. Cells were incubated for 48 h with increasing iron concentrations of SPIO (25-1000 microg Fe/ml Endorem. Sinerem, a USPIO (20-40 nm) coated with neutral dextran, and Resovist (65 nm), a SPIO bearing an anionic carboxydextran coating, were compared with Endorem (dextran-coated, 80-150 nm) as magnetic tags. The iron loading of marrow stromal cell primary cultures (MSCs) isolated from rat femurs was compared with that of 3T6 fibroblasts. The SPIO-labeling of cells with Endorem was found to be dependent on the iron incubation concentration. MSCs, more sparsely distributed in the culture, exhibited higher iron contents than more densely populated 3T6 fibroblast cultures. A larger iron loading was achieved with Resovist than with Endorem, which in turn was more efficient than Sinerem as a magnetic tag. The magnetic labeling of cultured non-phagocytic adherent cells with iron oxide nanoparticles was thus found to be dependent on the relative concentration of the magnetic tag and of the cells in culture, on the nanoparticle size, and on the coating type. The viability of cells, estimated by methods assessing cell membrane permeability, was not affected by magnetic labeling in the conditions used in this work.

  10. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  11. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  12. Iron oxides in human spleen.

    PubMed

    Kopáni, Martin; Miglierini, Marcel; Lančok, Adriana; Dekan, Július; Čaplovicová, Mária; Jakubovský, Ján; Boča, Roman; Mrazova, Hedviga

    2015-10-01

    Iron is an essential element for fundamental cell functions and a catalyst for chemical reactions. Three samples extracted from the human spleen were investigated by scanning (SEM) and transmission electron microscopy (TEM), Mössbauer spectrometry (MS), and SQUID magnetometry. The sample with diagnosis of hemosiderosis (H) differs from that referring to hereditary spherocytosis and the reference sample. SEM reveals iron-rich micrometer-sized aggregate of various structures-tiny fibrils in hereditary spherocytosis sample and no fibrils in hemochromatosis. Hematite and magnetite particles from 2 to 6 μm in TEM with diffraction in all samples were shown. The SQUID magnetometry shows different amount of diamagnetic, paramagnetic and ferrimagnetic structures in the tissues. The MS results indicate contribution of ferromagnetically split sextets for all investigated samples. Their occurrence indicates that at least part of the sample is magnetically ordered below the critical temperature. The iron accumulation process is different in hereditary spherocytosis and hemosiderosis. This fact may be the reason of different iron crystallization.

  13. Refractory Oxide Coatings on Sic Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Jacobson, Nathan S.; Miller, Robert A.

    1994-01-01

    Silicon carbide with a refractory oxide coating is potentially a very attractive ceramic system. It offers the desirable mechanical and physical properties of SiC and the environmental durability of a refractory oxide. The development of a thermal shock resistant plasma-sprayed mullite coating on SiC is discussed. The durability of the mullite/SiC in oxidizing, reducing, and molten salt environments is discussed. In general, this system exhibits better behavior than uncoated SiC. Areas for further developments are discussed.

  14. Plasma-Sprayed Photocatalytic Zinc Oxide Coatings

    NASA Astrophysics Data System (ADS)

    Navidpour, A. H.; Kalantari, Y.; Salehi, M.; Salimijazi, H. R.; Amirnasr, M.; Rismanchian, M.; Azarpour Siahkali, M.

    2017-03-01

    Fabrication of semiconductor coatings with photocatalytic action for photodegradation of organic pollutants is highly desirable. In this research, pure zinc oxide, which is well known for its promising photocatalytic activity, was deposited on stainless-steel plates by plasma spraying. The phase composition and microstructure of the deposited films were studied by x-ray diffraction analysis and scanning electron microscopy, respectively. Despite the low-energy conditions of the plasma spraying process, the zinc oxide coatings showed good mechanical integrity on the substrate. Their photocatalytic activity was evaluated using aqueous solution of methylene blue at concentration of 5 mg L-1. The results showed the potential of the plasma spraying technique to deposit zinc oxide coatings with photocatalytic action under ultraviolet illumination. Ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy confirmed that the plasma spraying method could deposit zinc oxide films with higher photoabsorption ability relative to the initial powder.

  15. Dual mode nanoparticles: CdS coated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Radwan, F. N.; Carroll, K. J.; Carpenter, E. E.

    2010-05-01

    Reverse micelles can be used in a sequential fashion to make core-shell nanoparticles. Using this technique it is possible to make a magnetic quantum dot, by coating an iron core with a cadmium sulfide shell. Transmission electron microscopy indicated core-shell morphology and narrow size distribution of the obtained particles. Collectively, x-ray powder diffraction and x-ray photoelectron spectroscopy verified the presence of cadmium sulfide on the surface of the nanoparticles. Optical properties of the coated particles were demonstrated using fluorescence spectroscopy. A vibrating sample magnetometer was used to determine magnetic properties. Dual mode cadmium sulfide coated iron core-shell nanoparticles make unique candidates for the use in biomedical applications.

  16. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOEpatents

    Shen, Ming-Shing; Yang, Ralph T.

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  17. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  18. Engineered Iron/Iron Oxide Functionalized Membranes for Selenium and Other Toxic Metal Removal from Power Plant Scrubber Water.

    PubMed

    Gui, Minghui; Papp, Joseph K; Colburn, Andrew S; Meeks, Noah D; Weaver, Benjamin; Wilf, Ilan; Bhattacharyya, Dibakar

    2015-08-15

    The remediation of toxic metals from water with high concentrations of salt has been an emerging area for membrane separation. Cost-effective nanomaterials such as iron and iron oxide nanoparticles have been widely used in reductive and oxidative degradation of toxic organics. Similar procedures can be used for redox transformations of metal species (e.g. metal oxyanions to elemental metal), and/or adsorption of species on iron oxide surface. In this study, iron-functionalized membranes were developed for reduction and adsorption of selenium from coal-fired power plant scrubber water. Iron-functionalized membranes have advantages over iron suspension as the membrane prevents particle aggregation and dissolution. Both lab-scale and full-scale membranes were prepared first by coating polyvinylidene fluoride (PVDF) membranes with polyacrylic acid (PAA), followed by ion exchange of ferrous ions and subsequent reduction to zero-valent iron nanoparticles. Water permeability of membrane decreased as the percent PAA functionalization increased, and the highest ion exchange capacity (IEC) was obtained at 20% PAA with highly pH responsive pores. Although high concentrations of sulfate and chloride in scrubber water decreased the reaction rate of selenium reduction, this was shown to be overcome by integration of nanofiltration (NF) and iron-functionalized membranes, and selenium concentration below 10 μg/L was achieved.

  19. Defluoridation by Bacteriogenic Iron Oxides: Sorption Studies

    NASA Astrophysics Data System (ADS)

    Evans, K.; Ferris, F.

    2009-05-01

    At concentrations above 1 mg/L, fluoride in drinking water can lead to dental and skeletal fluorosis, a disease that causes mottling of the teeth, calcification of ligaments, crippling bone deformities and many other physiological disorders that can, ultimately, lead to death. Conservative estimates are that fluorosis afflicts tens of millions of people worldwide. As there is no treatment for fluorosis, prevention is the only means of controlling the disease. While numerous defluoridation techniques have been explored, no single method has been found to be both effective and inexpensive enough to implement widely. Our research began in India, with a large-scale geochemical study of the groundwater in a fluoride-contaminated region of Orissa. Having developed a better understanding of the geochemical relationships that exist between fluoride and other parameters present in an affected area, as well as the complex relationships that arise among those parameters that can impact the presence of fluoride, we began investigating certain remediation scenarios involving iron oxides. A common approach to remediation involves the partitioning of fluoride from groundwater by sorption onto a variety of materials, one of the most effective of which is iron oxide whose surface area acts as a scavenger for fluoride. In the presence of iron oxidizing bacteria, the oxidation rate of iron has been shown to be ˜6 times greater than in their absence; fluoride should, therefore, be removed from an aqueous environment by bacteriogenic iron oxides (BIOS) much more quickly than by abiotic iron oxides. Most recently, sorption studies have been conducted using both BIOS and synthetic hydrous ferric oxides in order to compare the behavior between biotic and abiotic sorbents. These studies have provided sorption isotherms that allow comparison of fluoride removed by sorption to BIOS versus synthetic iron oxides. Sorption affinity constants have also been determined, which allow for the

  20. Molecular Level Coating for Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)

    2000-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  1. Molecular Level Coating of Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)

    2002-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  2. Polymeric coatings eliminate the bactericidal effects of Nanoscale zero-valent iron to Escherichia coli

    NASA Astrophysics Data System (ADS)

    Lowry, G. V.; Gregory, K.; Li, Z.

    2009-12-01

    Nanoscale zero-valent iron (NZVI) particles that are used in aquifer remediation may come in contact with subsurface bacteria, and may adversely affect subsurface bacteria. Studies showed that NZVI is toxic toward E. coli at concentrations as low as a few mg/L. However, NZVI particles used in remediation are coated with polymers or natural organic matter (NOM). It is unclear how these surface coatings may affect the bactericidal properties of NZVI. The objectives of this study were to assess the effect that (i) coatings (both anthropogenic and natural) and (ii) particle oxidative state have on the bactericidal properties of NZVI on a gram-negative bacteria, Escherichia coli. Bacteria (106 cells/L) were exposed to 100 mg/L of bare or coated NZVI for 60 minutes under either aerobic or anaerobic conditions. Bacteria were plated at specified times over 60 minutes to determine the number of viable bacteria in the reactor. Bare NZVI was cytotoxic at only 100 mg/L NZVI with over 5 log kill after 60 minutes of exposure. Exposure under aerobic conditions resulted in less than 1 log kill. The lower bactericidal effects were due to rapid oxidation of the iron to Fe(II) and Fe(III) mineral phases that are not toxic. All organic coatings on NZVI decreased or eliminated NZVI cytotoxicity when exposed at the same NZVI concentrations as in the bare case. The decrease in bactericidal effects of coated NZVI over bare NZVI was due to electrosteric repulsions afforded by the coatings that inhibited contact of NZVI with the bacteria. The inhibition of attachment to bacteria was confirmed with TEM and with NZVI sedimentation studies. Application of coatings may be considered as a means of decreasing the effects of NZVI on subsurface bacteria in field application.

  3. Scandium oxide antireflection coatings for superluminescent LEDs

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Zanzucchi, P. J.; Andrews, J. T.; Kane, J.; Depiano, E.

    1986-01-01

    For an employment of laser diodes as superluminescent LEDs (SLDs) or amplifiers, the facets of the diodes must be coated with antireflection films. In the work reported, scandium oxide was evaporated from an e-beam source onto Supersil II fused silica substrates. The obtained samples were used for measurements of absorption and reflectivity. Results of index measurements on e-beam evaporated films are presented. It is shown that excellent coatings with reflectivities of 0.00025 can be obtained using these films. Attention is given to the refractive indices for scandium oxide films as a function of wavelength, the power output vs current for laser before coating and after coating with Sc2O3.

  4. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... effect. (2) Authorization and compliance with this use shall not be construed as waiving any of...

  5. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... effect. (2) Authorization and compliance with this use shall not be construed as waiving any of...

  6. Colloidal stability, surface characterisation and intracellular accumulation of Rhodium(II) citrate coated superparamagnetic iron oxide nanoparticles in breast tumour: a promising platform for cancer therapy

    NASA Astrophysics Data System (ADS)

    da Silva Nunes, Eloiza; Carneiro, Marcella Lemos Brettas; de Oliveira, Ricardo Guirelli Simões; Báo, Sônia Nair; de Souza, Aparecido Ribeiro

    2013-06-01

    The colloidal stability of a rhodium(II) citrate, Rh2(H2cit)4, coating on the surface of maghemite (γ-Fe2O3) nanoparticles was studied and compared in different dispersion media. The adsorption of Rh2(H2cit)4 at the water-maghemite interface was evaluated as a function of pH and complex concentration. A slight pH-dependent adsorption of the complex was observed with a maximum at pH 3. The colloidal stability of the functionalised nanoparticles with different amounts of Rh2(H2cit)4 as a function of pH was evaluated using dynamic light scattering measurements. The particles have a mean magnetic core size of 5.6 nm and the hydrodynamic diameters are approximately 60 nm, which remained unchanged in the pH range in which the samples were a stable sol. The tolerance to different dispersion media, which were deionised water, saline, phosphate-buffered saline (PBS), foetal bovine serum (FBS) and NaCl solutions with different concentrations, was investigated. At moderate ionic strength, the colloidal stability of the dispersions was similar in saline and in PBS compared to the stability of dispersions diluted in water. Moreover, the intracellular accumulation of nanoparticles in 4T1 breast tumour was examined by ultrastructural analysis performed by transmission electron microscopy. The rhodium(II) citrate-coated nanoparticles were found mostly in the cytoplasm and nucleus. Thus, we suggest that these SPIO nanoparticles functionalized with Rh2(H2Cit)4 can be potential tools for anticancer therapy.

  7. Chemical design of biocompatible iron oxide nanoparticles for medical applications.

    PubMed

    Ling, Daishun; Hyeon, Taeghwan

    2013-05-27

    Iron oxide nanoparticles are one of the most versatile and safe nanomaterials used in medicine. Recent progress in nanochemistry enables fine control of the size, crystallinity, uniformity, and surface properties of iron oxide nanoparticles. In this review, the synthesis of chemically designed biocompatible iron oxide nanoparticles with improved quality and reduced toxicity is discussed for use in diverse biomedical applications.

  8. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  9. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  10. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  11. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  12. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  13. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  14. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  15. In Vivo Clearance and Toxicity of Monodisperse Iron Oxide Nanocrystals

    PubMed Central

    Gu, Luo; Fang, Ronnie H.; Sailor, Michael J.; Park, Ji-Ho

    2012-01-01

    Thermal decomposition of organometallic precursors have been found to generate highly crystalline iron oxide (IO) nanocrystals that display superior MR contrast and lower polydispersity than IO nanocrystals synthesized by aqueous precipitation. In the present study, the in vivo characteristics of IO nanocrystals prepared by the thermal decomposition route and then coated with a phospholipid containing a pendant poly(ethylene glycol) chain are examined. The size and surface chemistry of the IO nanocrystal influences the biodistibution, the rate of biodegradation and bioclearance, and the biodegradation products. We conclude that the in vivo fate of PEGylated monodisperse IO nanocrystals and the iron, phospholipid, and oleic acid biodegradation products may influence the cellular environments in the organs and blood that can determine their safety in the body. PMID:22646927

  16. Mixed oxide coatings for optics.

    PubMed

    Stenzel, Olaf; Wilbrandt, Steffen; Schürmann, Mark; Kaiser, Norbert; Ehlers, Henrik; Mende, Mathias; Ristau, Detlev; Bruns, Stefan; Vergöhl, Michael; Stolze, Markus; Held, Mario; Niederwald, Hansjörg; Koch, Thomas; Riggers, Werner; Burdack, Peer; Mark, Günter; Schäfer, Rolf; Mewes, Stefan; Bischoff, Martin; Arntzen, Markus; Eisenkrämer, Frank; Lappschies, Marc; Jakobs, Stefan; Koch, Stephan; Baumgarten, Beate; Tünnermann, Andreas

    2011-03-20

    Material mixtures offer new possibilities for synthesizing coating materials with tailored optical and mechanical properties. We present experimental results on mixtures of HfO2, ZrO2, and Al2O3, pursuing applications in UV coating technology, while the mixtures are prepared by magnetron sputtering, ion beam sputtering, plasma ion-assisted deposition (PIAD), and electron beam evaporation without assistance. The properties investigated include the refractive index, optical gap, thermal shift, and mechanical stress. The first high reflectors for UV applications have been deposited by PIAD.

  17. Ferrous iron oxidation by anoxygenic phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Widdel, Friedrich; Schnell, Sylvia; Heising, Silke; Ehrenreich, Armin; Assmus, Bernhard; Schink, Bernhard

    1993-04-01

    NATURAL oxidation of ferrous to ferric iron by bacteria such as Thiobacillus ferrooxidans or Gallionella ferruginea1, or by chemical oxidation2,3 has previously been thought always to involve molecular oxygen as the electron acceptor. Anoxic photochemical reactions4-6 or a photobiological process involving two photosystems7-9 have also been discussed as mechanisms of ferrous iron oxidation. The knowledge of such processes has implications that bear on our understanding of the origin of Precambrian banded iron formations10-14. The reducing power of ferrous iron increases dramatically at pH values higher than 2-3 owing to the formation of ferric hydroxy and oxyhydroxy compounds1,2,15 (Fig. 1). The standard redox potential of Fe3+/Fe2+ (E0 = +0.77 V) is relevant only under acidic conditions. At pH 7.0, the couples Fe(OH)3/Fe2+ (E'0 = -0.236V) or Fe(OH)3 + HCO-3FeCO3 (E'0 = +0.200 V) prevail, matching redox potentials measured in natural sediments9,16,17. It should thus be possible for Fe(n) around pH 7.0 to function as an electron donor for anoxygenic photosynthesis. The midpoint potential of the reaction centre in purple bacteria is around +0.45 V (ref. 18). Here we describe purple, non-sulphur bacteria that can indeed oxidize colourless Fe(u) to brown Fe(in) and reduce CO2 to cell material, implying that oxygen-independent biological iron oxidation was possible before the evolution of oxygenic photosynthesis.

  18. Failure analysis of blistered organic coatings on gray iron castings

    NASA Astrophysics Data System (ADS)

    Tianen, Matthew N.

    This study investigates the blistering failure of a two part coating consisting of talc-filled polyester resin and polyurethane primer on large gray iron castings. Surface metallography was performed and failed coating was characterized by scanning electron microscopy. Corrosion products were found inside of coating blisters. The proposed blistering mechanism is osmosis as a result of soluble species produced by the corrosion. It was believed that excessively thin primer layers resulted in a poor barrier to permeation of water, leading to blisters, and that a basecoat containing a corrosion inhibitor like zinc phosphate would reduce blistering. These hypotheses were tested with designed experiments using environmental testing in humidity and submersion environments. Thicker primer layers resulted in significant reductions in blistering and prolonged the time required before blister formation. A basecoat containing zinc phosphate was not found to be effective at reducing blistering in this coating system.

  19. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    PubMed Central

    Pöttler, Marina; Staicu, Andreas; Zaloga, Jan; Unterweger, Harald; Weigel, Bianca; Schreiber, Eveline; Hofmann, Simone; Wiest, Irmi; Jeschke, Udo; Alexiou, Christoph; Janko, Christina

    2015-01-01

    Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA), or with dextran (SEONDEX). Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system. PMID:26540051

  20. Mixed Hemi/Ad-Micelle Sodium Dodecyl Sulfate-Coated Magnetic Iron Oxide Nanoparticles for the Efficient Removal and Trace Determination of Rhodamine-B and Rhodamine-6G.

    PubMed

    Ranjbari, Elias; Hadjmohammadi, Mohammad Reza; Kiekens, Filip; De Wael, Karolien

    2015-08-04

    Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g(-1), respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L(-1) of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL(-1). Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.

  1. Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Strawbridge, R. R.; Gibson, U. J.; Zeng, Q.; Pierce, Z. E.; Savellano, M.; Tate, J. A.; Ogden, J. A.; Baker, I.; Ivkov, R.; Foreman, A. R.

    2007-02-01

    The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. Methods: MTG-B murine breast cancer cells (1 x 106) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm3 +/- 50 mm3. Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle

  2. Superparamagnetic iron oxide polyacrylic acid coated γ-Fe{sub 2}O{sub 3} nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice

    SciTech Connect

    Iversen, Nina K.; Frische, Sebastian; Thomsen, Karen; Laustsen, Christoffer; Pedersen, Michael; Hansen, Pernille B.L.; Bie, Peter; Fresnais, Jérome; Berret, Jean-Francois; Baatrup, Erik; Wang, Tobias

    2013-01-15

    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated γ-Fe{sub 2}O{sub 3} NPs (10 mg kg{sup −1}) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1 h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid–base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46 ± 0.02 and 7.41 ± 0.02 in mice 0.5 h after injections of saline or NP, and did not change over the next 12 h. In addition, the injections of NP did not affect arterial PCO{sub 2} or [HCO{sub 3}{sup −}] either. Twenty-four and 96 h after NP injections, the GFR averaged 0.35 ± 0.04 and 0.35 ± 0.01 ml min{sup −1} g{sup −1}, respectively, values which were statistically comparable with controls (0.29 ± 0.02 and 0.33 ± 0.1 ml{sup –1} min{sup –1} 25 g{sup –1}). Mean arterial blood pressure (MAP) decreased 12–24 h after NP injections (111.1 ± 11.5 vs 123.0 ± 6.1 min{sup −1}) associated with a decreased contractility of small mesenteric arteries revealed by myography to characterize endothelial function. In conclusion, our study demonstrates that accumulation of superparamagnetic iron oxide nanoparticles does not affect kidney function in healthy mice but temporarily decreases blood pressure. -- Highlights: ► PAA coated γ-Fe{sub 2}O{sub 3} nanoparticles were injected intravenously into healthy mice. ► We examine the distribution and physiological effects of

  3. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.

    PubMed

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles.

  4. Antifouling properties of zinc oxide nanorod coatings.

    PubMed

    Al-Fori, Marwan; Dobretsov, Sergey; Myint, Myo Tay Zar; Dutta, Joydeep

    2014-01-01

    In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10 mM) of zinc precursors. These coatings were tested for 5 h under artificial sunlight (1060 W m(-2) or 530 W m(-2)) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn(2+) ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions.

  5. Field and laboratory investigations of inactivation of viruses (PRD1 and MS2) attached to iron oxide-coated quartz san

    USGS Publications Warehouse

    Ryan, Joseph N.; Harvey, Ronald W.; Metge, David W.; Elimelech, Menachem; Navigato, Theresa; Pieper, Ann P.

    2002-01-01

    Field and laboratory experiments were conducted to investigate inactivation of viruses attached to mineral surfaces. In a natural gradient transport field experiment, bacteriophage PRD1, radiolabeled with 32P, was injected into a ferric oxyhydroxide-coated sand aquifer with bromide and linear alkylbenzene sulfonates. In a zone of the aquifer contaminated by secondary sewage infiltration, small fractions of infective and 32P-labeled PRD1 broke through with the bromide tracer, followed by the slow release of 84% of the 32P activity and only 0.011% of the infective PRD1. In the laboratory experiments, the inactivation of PRD1, labeled with 35S (protein capsid), and MS2, dual radiolabeled with 35S (protein capsid) and 32P (nucleic acid), was monitored in the presence of groundwater and sediment from the contaminated zone of the field site. Release of infective viruses decreased at a much faster rate than release of the radiolabels, indicating that attached viruses were undergoing surface inactivation. Disparities between 32P and35S release suggest that the inactivated viruses were released in a disintegrated state. Comparison of estimated solution and surface inactivation rates indicates solution inactivation is ∼3 times as fast as surface inactivation. The actual rate of surface inactivation may be substantially underestimated owing to slow release of inactivated viruses.

  6. Mobilization of natural colloids from an iron oxide-coated sand aquifer--Effect of pH and ionic strength

    USGS Publications Warehouse

    Bunn, Rebecca A.; Magelky, Robin D.; Joseph N. Ryan,; Elimelech, Menachem

    2002-01-01

    Field and laboratory column experiments were performed to assess the effect of elevated pH and reduced ionic strength on the mobilization of natural colloids in a ferric oxyhydroxide-coated aquifer sediment. The field experiments were conducted as natural gradient injections of groundwater amended by sodium hydroxide additions. The laboratory experiments were conducted in columns of undisturbed, oriented sediments and disturbed, disoriented sediments. In the field, the breakthrough of released colloids coincided with the pH pulse breakthrough and lagged the bromide tracer breakthrough. The breakthrough behavior suggested that the progress of the elevated pH front controlled the transport of the mobilized colloids. In the laboratory, about twice as much colloid release occurred in the disturbed sediments as in the undisturbed sediments. The field and laboratory experiments both showed that the total mass of colloid release increased with increasing pH until the concurrent increase in ionic strength limited release. A decrease in ionic strength did not mobilize significant amounts of colloids in the field. The amount of colloids released normalized to the mass of the sediments was similar for the field and the undisturbed laboratory experiments.

  7. Nitric oxide and plant iron homeostasis.

    PubMed

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes.

  8. Formulations for iron oxides dissolution

    DOEpatents

    Horwitz, Earl P.; Chiarizia, Renato

    1992-01-01

    A mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  9. The responses of immune cells to iron oxide nanoparticles.

    PubMed

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping

    2016-04-01

    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications.

  10. Health effects of selected nanoparticles in vivo: liver function and hepatotoxicity following intravenous injection of titanium dioxide and Na-oleate-coated iron oxide nanoparticles in rodents.

    PubMed

    Volkovova, Katarina; Handy, Richard D; Staruchova, Marta; Tulinska, Jana; Kebis, Anton; Pribojova, Jana; Ulicna, Olga; Kucharská, Jarmila; Dusinska, Maria

    2015-05-01

    The study determined the effect of intravenous administration of acutely toxic or sub-lethal doses of Na-oleate-coated Fe3O4 (OC-Fe3O4) nanoparticles (NPs) on liver structure and function in Wistar rats, compared to titanium dioxide (TiO2) NPs and saline-injected controls. The acute study, using a modified OECD 425 progressive dosing procedure, found LD50 values of 59.22 and 36.42 mg/kg for TiO2 and OC-Fe3O4 NPs, respectively. In the sub-lethal study, rats were either injected with saline (negative controls), a sub-lethal reference (0.592 mg/kgTiO2 NPs, equal to 1% of LD50 on a body weight basis) or OC-Fe3O4 NPs in doses equivalent to 0.1, 1 or 10% of the LD50, respectively (corresponding to 0.0364, 0.364 and 3.64 mg Fe3O4/kg body weight). Animals were sampled 24 h, 1, 2 and 4 weeks post-injection for adverse effects. Mitochondrial respiration was significantly increased 2 weeks after injection of 10% OC-Fe3O4 NPs compared to controls, but the effect was transient. Cholesterol and triacylglycerol concentrations in the liver tissue did not increase in any treatment. There were some disturbances to antioxidant enzymes after OC-Fe3O4 NPs treatment in the livers of animals 1 week post-exposure; with the most sensitive changes occurring in glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities. Lipidosis and mild necrosis with changes in sinusoid space were also observed in histological sections of the liver. Overall, these data suggest that the liver likely retains functional integrity with acute and sub-lethal doses of OC-Fe3O4 NPs, albeit with some stimulation of redox defences and evidence of some tissue injury.

  11. Pilot demonstration of cerium oxide coated anodes

    SciTech Connect

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  12. Surface Hydrophilicity and Functional Group-Driven Iron(III) Hydroxide Nucleation on Organic-Coated Substrates in Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Ray, J.; Lee, B.; Baltrusaitis, J.; Jun, Y.

    2012-12-01

    Homogeneous and heterogeneous iron hydroxide nanoparticle nucleation can occur continuously in both natural and complex aqueous systems. Iron oxide nanoparticles can act as sinks and/or carriers for heavy metal contaminants; therefore, it is important to develop a better understanding of factors affecting their formation. Organic coatings are ubiquitous in aqueous environments where they can exist on mineral surfaces (e.g., biofilm), as nanoparticle surface coatings (e.g., natural organic matter), or be introduced as coagulants in water treatment systems. These surface coatings could influence the formation of iron oxide nanoparticles and thus, the mobility of aqueous contaminants. Therefore, to better understand the fate and transport of contaminants in complex aqueous environments, we need more accurate information about mechanisms governing heterogeneous and homogeneous nucleation and growth of iron(III) hydroxide nanoparticles in the presence of organic surface coatings. In this work, we used a unique measurement technique allowing for simultaneous small-angle X-ray scattering (SAXS) and grazing incidence (GISAXS) analysis to monitor nanoparticle nucleation in solution and at substrate surfaces. Clean quartz, and polyaspartate- and alginate-coated substrates were chosen as model substrates to represent mineral coatings, engineered organic coatings and natural organic coatings. Polyaspartate was determined to be the most negatively charged substrate and quartz to be the least negatively charged substrate; however, after 2 h of reaction, the total nanoparticle volume calculations—determined from GISAXS—indicate that precipitation of positively-charged iron(III) hydroxide nanoparticles is 10 times higher on the quartz substrate than on the polyaspartate substrate. This implies that electrostatics do not govern iron(III) hydroxide nucleation. Furthermore, homogeneous nucleation approximately 250 μm above the substrate surface was highest in the presence of the

  13. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications

    PubMed Central

    Nadeem, Muhammad; Ahmad, Munir; Akhtar, Muhammad Saeed; Shaari, Amiruddin; Riaz, Saira; Naseem, Shahzad; Masood, Misbah; Saeed, M. A.

    2016-01-01

    The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery. PMID:27348436

  14. Oxidation Potentials in Iron and Steel Making

    NASA Astrophysics Data System (ADS)

    Matousek, J. W.

    2013-11-01

    The state of oxidation of a pyrometallurgical process given by the partial pressure of oxygen and the temperature (the oxidation potential) is one of the important properties monitored and controlled in the smelting and refining of iron and the nonferrous metals. Solid electrolyte sensors based on ZrO2 and a reference electrode such as Cr/Cr2O3 to measure the oxygen pressure found early application in the steel industry, followed soon after in copper, nickel, lead, and zinc smelting. Similar devices are installed in automobile postcombustion/exhaust trains as part of emission control systems. The current discussion reviews this technology as applied in the primary steps of iron and steel making and refining.

  15. Method for preparing hydrous iron oxide gels and spherules

    DOEpatents

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  16. Optical properties of iron oxides

    NASA Astrophysics Data System (ADS)

    Musfeldt, Janice

    2012-02-01

    Magnetoelectric coupling in materials like multiferroics, dilute magnetic semiconductors, and topological insulators has attracted a great deal of attention, although most work has been done in the static limit. Optical spectroscopy offers a way to investigate the dynamics of charge-spin coupling, an area where there has been much less effort. Using these techniques, we discovered that charge fluctuation in LuFe2O4, the prototypical charge ordered multiferroic, has an onset well below the charge ordering transition, supporting the ``order by fluctuation'' mechanism for the development of charge order superstructure. Bragg splitting and large magneto-optical contrast suggest a low temperature monoclinic distortion that can be driven by both temperature and magnetic field. At the same time, dramatic splitting of the LuO2 layer phonon mode is attributed to charge-rich/poor proximity effects, and its temperature dependence reveals the antipolar nature of the W layer pattern. Using optical techniques, we also discovered that α-Fe2O3, a chemically-similar parent compound and one of the world's oldest and most iconic antiferromagnetic materials, appears more red in applied magnetic field than in zero field conditions. This effect is driven by a field-induced reorientation of magnetic order. The oscillator strength lost in the color band is partially transferred to the magnon side band, a process that also reveals a new exciton pattern induced by the modified exchange coupling. Analysis of the exciton pattern exposes C2/c monoclinic symmetry in the high field phase of hematite. Taken together, these findings advance our understanding of iron-based materials under extreme conditions. [4pt] Collaborators include: X. S. Xu, P. Chen, Q. -C. Sun, T. V. Brinzari (Tennessee); S. McGill (NHMFL); J. De Groot, M. Angst, R. P. Hermann (Julich); A. D. Christianson, B. C. Sales, D. Mandrus (ORNL); A. P. Litvinchuk (Houston); J. -W. Kim (Ames); Z. Islam (Argonne); N. Lee, S. -W. Cheong

  17. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  18. Oxidation-Resistant Coating For Bipolar Lead/Acid Battery

    NASA Technical Reports Server (NTRS)

    Bolstad, James J.

    1993-01-01

    Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.

  19. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental Study

    SciTech Connect

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an iron coating method has great potential to be a cost effective and simple groundwater remediation technique, especially in rural and remote areas where groundwater is used as the main source of drinking water. The in situ arsenic removal technique was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions., Its effectiveness was then evaluated in an actual high-arsenic groundwater environment. The mechanism of arsenic removal by the iron coating was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, an electron microprobe, and Fourier transformation infrared spectroscopy. A 4-step alternative cycle aquifer iron coating method was developed. A continuous injection of 5 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 hours can create a uniform coating of crystalline goethite on the surface of quartz sand in the columns without causing clogging. At a flow rate of 0.45 cm/min of the injection reagents (vi), the time for arsenic (as Na2HAsO4) to pass through the iron-coated quartz sand column was approximately 35 hours, which was much longer than that for tracer fluorescein sodium (approximately 2 hours). The retardation factor of arsenic was 23, and its adsorption capacity was 0.11 mol As per mol Fe, leading to an excellent arsenic removal. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As (V) and Fe (II) reagents. When the arsenic content in the groundwater was 233 μg/L, the aqueous phase arsenic was completely removed with an arsenic adsorption of 0.05 mol As per mol Fe. Arsenic fixation resulted from a process of adsorption/co-precipitation, in which arsenic and iron likely formed the arsenic-bearing iron mineral phases with poor crystallinity by way of bidentate binuclear complexes. Thus, the high arsenic removal efficiency of the technique likely resulted from the

  20. Effect of hydrion evolution by polylactic-co-glycolic acid coating on degradation rate of pure iron.

    PubMed

    Wu, Jingyao; Lu, Xi; Tan, Lili; Zhang, Bingchun; Yang, Ke

    2013-10-01

    For biodegradable iron coronary stents, the major problem is the low degradation rate in body environment. In this study, a new strategy was proposed to increase the degradation rate of iron in vitro. The hydrion evolution was intended to be introduced into the degradation system to increase the degradation rate. To realize this strategy, polylactic-co-glycolic acid (PLGA) was coated onto the surface of pure iron. The degradation process and mechanism of pure iron coated with PLGA were investigated. The results showed that iron coated with PLGA exhibited higher degradation rate in the static immersion test all along. With the degradation of PLGA, the oligomers of PLGA could release abundant H(+) which could dissolve the ferrous oxide to make the electrolyte and oxygen to reach the surface of iron again and simultaneity trigger the hydrion evolution at the middle stage of the degradation. The study also revealed that the solution ions failed to permeate the PLGA coating and the deposition of calcium and phosphorus in the degradation layer was inhibited which further enhanced the degradation.

  1. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  2. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation

    SciTech Connect

    Klein, Stefanie; Sommer, Anja; Distel, Luitpold V.R.; Neuhuber, Winfried; Kryschi, Carola

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.

  3. Nitric oxide releasing iron oxide magnetic nanoparticles for biomedical applications: cell viability, apoptosis and cell death evaluations

    NASA Astrophysics Data System (ADS)

    de Lima, R.; de Oliveira, J. L.; Ludescher, A.; Molina, M. M.; Itri, R.; Seabra, A. B.; Haddad, P. S.

    2013-04-01

    Nitric oxide (NO) is involved in several physiological and pathophysiological processes, such as control of vascular tone and immune responses against microbes. Thus, there is great interest in the development of NO-releasing materials to carry and deliver NO for biomedical applications. Magnetic iron oxide nanoparticles have been used in important pharmacological applications, including drug-delivery. In this work, magnetic iron oxide nanoparticles were coated with thiol-containing hydrophilic ligands: mercaptosuccinic acid (MSA) and dimercaptosuccinic acid (DMSA). Free thiol groups on the surface of MSA- or DMSA- coated nanoparticles were nitrosated, leading to the formation of NO-releasing iron oxide nanoparticles. The cytotoxicity of MSA- or DMSA-coated magnetic nanoparticles (MNP) (thiolated nanoparticles) and nitrosated MSA- or nitrosated DMSA- coated MNPs (NO-releasing nanoparticles) were evaluated towards human lymphocytes. The results showed that MNP-MSA and MNP-DMSA have low cytotoxicity effects. On the other hand, NO-releasing MNPs were found to increase apoptosis and cell death compared to free NO-nanoparticles. Therefore, the cytotoxicity effects observed for NO-releasing MNPs may result in important biomedical applications, such as the treatment of tumors cells.

  4. Manganese oxide supported on gold/iron as a water-oxidizing catalyst in artificial photosynthetic systems.

    PubMed

    Najafpour, Mohammad Mahdi; Hosseini, Seyedeh Maedeh; Zand, Zahra

    2016-05-31

    Herein, we reported that KMnO4 with iron nanoparticles coated with gold layers was a promising catalyst for water oxidation. The compound was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic absorption spectroscopy and electrochemistry. The new compound was a conductive, recyclable, highly dispersible, magnetically separable, environmentally friendly, and nano-sized catalyst for water oxidation via cerium(iv) ammonium nitrate or Ru(bpy)3(3+) and electrochemical water oxidation. The turnover frequency of Mn oxide/gold/iron for water oxidation via cerium(iv) ammonium nitrate is 0.4 mmol O2 per mol Mn per second, which shows that this catalyst is among the best Mn-based catalysts for water oxidation. We also showed a strategy for placing this catalyst on the surface of an electrode without adding any other compounds.

  5. Analysis of Bacterial Deposition on Metal (Hydr)oxide-Coated Sand Filter Media.

    PubMed

    Truesdail; Lukasik; Farrah; Shah; Dickinson

    1998-07-15

    The aim of this study was to investigate the importance of surface potential in microbial deposition onto modified granular surfaces. Recent experimental and theoretical work has indicated that surfaces coated with metal oxides and hydroxide rich oxide/hydroxide mixtures ((hydr)oxides) have the potential to increase the capture efficiencies of commercial filtration systems. This study quantitatively compared different metal (hydr)oxide coatings in their abilities to enhance bacterial deposition. Specifically, the deposition rates of bacterial strains Streptococcus faecalis, Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli were compared for Ottawa sand and surface coatings consisting of aluminum (hydr)oxide, iron (hydr)oxide, and mixed iron and aluminum (hydr)oxide. The metal-(hydr)oxide-modified granular media enhanced bacterial deposition relative to the noncoated Ottawa sand. The electropositive surfaces, the aluminum and the mixed (hydr)oxides, had similar average kinetic rate constants, five times larger than the rate constants observed for the untreated Ottawa sand. The measured kinetic rate constants for the positively charged systems of aluminum (hydr)oxide and mixed (hydr)oxide collectors suggested that the overall rate of deposition was limited by the transport of bacteria to the granular surface rather than the rate of attachment. For systems where the collector surfaces were negatively charged, as in the cases of Ottawa sand and the iron (hydr)oxide coating, large energy barriers to attachment were predicted from DLVO theory but these barriers did not totally inhibit bacterial deposition. The deposition results could not be fully explained by DLVO theory and suggested the importance of other factors such as collector charge heterogeneity, motility, and bacterial surface appendages in enhanced deposition. Copyright 1998 Academic Press.

  6. Macroscopic and microscopic biodistribution of intravenously administered iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Misra, Adwiteeya; Petryk, Alicia A.; Strawbridge, Rendall R.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONP) are being developed for use as a cancer treatment. They have demonstrated efficacy when used either as a monotherapy or in conjunction with conventional chemotherapy and radiation. The success of IONP as a therapeutic tool depends on the delivery of a safe and controlled cytotoxic thermal dose to tumor tissue following activation with an alternating magnetic field (AMF). Prior to clinical approval, knowledge of IONP toxicity, biodistribution and physiological clearance is essential. This preliminary time-course study determines the acute toxicity and biodistribution of 110 nm dextran-coated IONP (iron) in mice, 7 days post systemic, at doses of 0.4, 0.6, and 1.0 mg Fe/ g mouse bodyweight. Acute toxicity, manifested as changes in the behavior of mice, was only observed temporarily at 1.0 mg Fe/ g mouse bodyweight, the highest dose administered. Regardless of dose, mass spectrometry and histological analysis demonstrated over 3 mg Fe/g tissue in organs within the reticuloendotheilial system (i.e. liver, spleen, and lymph nodes). Other organs (brain, heart, lungs, and kidney) had less than 0.5 mg Fe/g tissue with iron predominantly confined to the organ vasculature.

  7. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers

    PubMed Central

    Wahajuddin; Arora, Sumit

    2012-01-01

    A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite) or Fe3O4 (magnetite) particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to be resolved before they can be moved from bench top to bedside. PMID:22848170

  8. Electromagnetic properties of ice-coated iron whiskers

    NASA Astrophysics Data System (ADS)

    Jazbi, B.; Hoyle, F.; Wickramasinghe, N. C.

    1990-12-01

    In their recent papers, Hoyle and Wickramasinghe (1988, 1989) and Hoyle et al. (1990) argued that iron whiskers condensing in supernovae could be expelled from entire galaxies to become dispersed over cosmological distance scales and to generate a cosmic microwave background by thermalizing optical and NIR radiation from stellar sources. In this paper, the effect of H2O-ice mantles on infinitely long cylindrical metallic whiskers is investigated using the rigorous Kerker-Matijevic (1961) formulae. It is shown that ice coating does not significantly alter the cosmologically relevant properties of uncoated metallic whiskers.

  9. Catechol versus bisphosphonate ligand exchange at the surface of iron oxide nanoparticles: towards multi-functionalization

    NASA Astrophysics Data System (ADS)

    Guénin, Erwann; Lalatonne, Yoann; Bolley, Julie; Milosevic, Irena; Platas-Iglesias, Carlos; Motte, Laurence

    2014-11-01

    We report an investigation of the ligand exchange at the surface of iron oxide nanoparticles in water. For this purpose we compared two strong chelating agents on the iron oxide surface containing catechol and bisphosphonate moieties. Interactions between the coating agents (catechol/bisphosphonate) and the nanoparticle's surface were studied by FTIR and DFT calculations. Ligand exchange experiments were performed using sonication and the exchange yield was characterized by FTIR and EDX. This methodology allowed introducing bisphosphonates with various functionalities (alkyne or biotin) permitting multi-functionalization.

  10. Phase Formation Behavior in Ultrathin Iron Oxide.

    PubMed

    Jõgi, Indrek; Jacobsson, T Jesper; Fondell, Mattis; Wätjen, Timo; Carlsson, Jan-Otto; Boman, Mats; Edvinsson, Tomas

    2015-11-17

    Nanostructured iron oxides, and especially hematite, are interesting for a wide range of applications ranging from gas sensors to renewable solar hydrogen production. A promising method for deposition of low-dimensional films is atomic layer deposition (ALD). Although a potent technique, ALD of ultrathin films is critically sensitive to the substrate and temperature conditions where initial formation of islands and crystallites influences the properties of the films. In this work, deposition at the border of the ALD window forming a hybrid ALD/pulsed CVD (pCVD) deposition is utilized to obtain a deposition less sensitive to the substrate. A thorough analysis of iron oxide phases formation on two different substrates, Si(100) and SiO2, was performed. Films between 3 and 50 nm were deposited and analyzed with diffraction techniques, high-resolution Raman spectroscopy, and optical spectroscopy. Below 10 nm nominal film thickness, island formation and phase dependent particle crystallization impose constraints for deposition of phase pure iron oxides on non-lattice-matching substrates. Films between 10 and 20 nm thickness on SiO2 could effectively be recrystallized into hematite whereas for the corresponding films on Si(100), no recrystallization occurred. For films thicker than 20 nm, phase pure hematite can be formed directly with ALD/pCVD with very low influence of the substrate on either Si or SiO2. For more lattice matched substrates such as SnO2:F, Raman spectroscopy indicated formation of the hematite phase already for films with 3 nm nominal thickness and clearly for 6 nm films. Analysis of the optical properties corroborated the analysis and showed a quantum confined blue-shift of the absorption edge for the thinnest films.

  11. Mineral resource of the month: iron oxide pigments

    USGS Publications Warehouse

    ,

    2008-01-01

    The article discusses iron oxide pigments, which have been used as colorants since human began painting as they resist color change due to sunlight exposure, have good chemical resistance and are stable under normal ambient conditions. Cyprus, Italy and Spain are among the countries that are known for the production of iron oxide pigments. Granular forms of iron oxides and nano-sized materials are cited as developments in the synthetic iron oxide pigment industry which are being used in computer disk drives and nuclear magnetic resonance imaging.

  12. Sodium sulfur container with chromium/chromium oxide coating

    DOEpatents

    Ludwig, Frank A.; Higley, Lin R.

    1981-01-01

    A coating of chromium/chromium oxide is disclosed for coating the surfaces of electrically conducting components of a sodium sulfur battery. This chromium/chromium oxide coating is placed on the surfaces of the electrically conducting components of the battery which are in contact with molten polysulfide and sulfur reactants during battery operation.

  13. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  14. Modified iron oxide nanomaterials: Functionalization and application

    NASA Astrophysics Data System (ADS)

    Bagheri, Samira; Julkapli, Nurhidayatullaili Muhd

    2016-10-01

    Iron oxide magnetic nanoparticles have aroused the interest of researchers of materials' chemistry due to its exceptional properties such as decent magnetic, electric, catalytic, biocompatibility, and low toxicity. However, these magnetic nanoparticles are predisposed towards aggregation and forming larger particles, due to its strong anisotropic dipolar interactions, particularly in the aqueous phase, consequently depriving them of dispersibility and particular properties, ultimately degrading their performance. Hence, this review focuses on modified magnetic nanoparticles that are stable, easily synthesized, possess a high surface area and could be facile-separated via magnetic forces, and are of low toxicity and costs for applications such as catalyst/catalyst support, food security, biomedical, and pollutant remediation.

  15. Superparamagnetic iron oxide nanoparticles (SPIONs) for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Garg, Vijayendra K.; Kuzmann, Erno; Sharma, Virender K.; Kumar, Arun; Oliveira, Aderbal C.

    2016-10-01

    Studies of superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively carried out. Since the earlier work on Mössbauer studies on SPIONs in 1970s, many biomedical applications and their uses in innovative methods to produce new materials with improved performance have appeared. Applications of SPIONs in environmental remediation are also forthcoming. Several different methods of synthesis and coating of the magnetic particles have been described in the literature, and Mössbauer spectroscopy has been an important tool in the characterization of these materials. It is quite possible that the interpretation of the Mössbauer spectra might not be entirely correct because the possible presence of maghemite in the end product of SPIONs might not have been taken into consideration. Nanotechnology is an emerging field that covers a wide range of new technologies under development in nanoscale (1 to 100 nano meters) to produce new products and methodology.

  16. Thermal and magnetic properties of iron oxide colloids: influence of surfactants

    NASA Astrophysics Data System (ADS)

    Soares, Paula I. P.; Lochte, Frederik; Echeverria, Coro; Pereira, Laura C. J.; Coutinho, Joana T.; Ferreira, Isabel M. M.; Novo, Carlos M. M.; Borges, João P. M. R.

    2015-10-01

    Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41-45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles’ average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe3O4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe3O4 samples do not reduce cell viability. However, oleic acid Fe3O4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature.

  17. A Diatom Ferritin Optimized for Iron Oxidation but Not Iron Storage*

    PubMed Central

    Pfaffen, Stephanie; Bradley, Justin M.; Abdulqadir, Raz; Firme, Marlo R.; Moore, Geoffrey R.; Le Brun, Nick E.; Murphy, Michael E. P.

    2015-01-01

    Ferritin from the marine pennate diatom Pseudo-nitzschia multiseries (PmFTN) plays a key role in sustaining growth in iron-limited ocean environments. The di-iron catalytic ferroxidase center of PmFTN (sites A and B) has a nearby third iron site (site C) in an arrangement typically observed in prokaryotic ferritins. Here we demonstrate that Glu-44, a site C ligand, and Glu-130, a residue that bridges iron bound at sites B and C, limit the rate of post-oxidation reorganization of iron coordination and the rate at which Fe3+ exits the ferroxidase center for storage within the mineral core. The latter, in particular, severely limits the overall rate of iron mineralization. Thus, the diatom ferritin is optimized for initial Fe2+ oxidation but not for mineralization, pointing to a role for this protein in buffering iron availability and facilitating iron-sparing rather than only long-term iron storage. PMID:26396187

  18. Ceramic coating system or water oxidation environments

    DOEpatents

    Hong, Glenn T.

    1996-01-01

    A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.

  19. Pack cementation diffusion coatings for iron-base alloys

    SciTech Connect

    Rapp, R.A.

    1995-02-01

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels. The Cr-Si ferrite layers have proven to be very resistant to high temperature cyclic oxidation and to pitting in aqueous solutions. The process has been patented, and is being transferred for industrial application, e.g. for water walls of utility boilers, etc. In the proposed extension of this project, the use of mixed pure metal powders in the pack will be extended to achieve similar ferrite Fe-Cr-Al coatings with excellent oxidation resistance, with the eventual transfer of the technology to industry. In other recent studies, Ni-base alloy rods were aluminized by the halide-activated pack cementation process to bring their average composition to that for the ORNL-developed Ni{sub 3}Al, for use as a welding rod. A similar effort to develop a welding rod for the ORNL Fe{sub 3}Al alloy did not yield reproducible coating compositions or growth kinetics. The continued effort to produce Duriron-type (Fe-18Si-5Cr) coatings on steels was not successful. Literature for the intrinsic diffusion coefficients suggests that this task cannot be achieved.

  20. Insight into the evolution of the iron oxidation pathways.

    PubMed

    Ilbert, Marianne; Bonnefoy, Violaine

    2013-02-01

    Iron is a ubiquitous element in the universe. Ferrous iron (Fe(II)) was abundant in the primordial ocean until the oxygenation of the Earth's atmosphere led to its widespread oxidation and precipitation. This change of iron bioavailability likely put selective pressure on the evolution of life. This element is essential to most extant life forms and is an important cofactor in many redox-active proteins involved in a number of vital pathways. In addition, iron plays a central role in many environments as an energy source for some microorganisms. This review is focused on Fe(II) oxidation. The fact that the ability to oxidize Fe(II) is widely distributed in Bacteria and Archaea and in a number of quite different biotopes suggests that the dissimilatory Fe(II) oxidation is an ancient energy metabolism. Based on what is known today about Fe(II) oxidation pathways, we propose that they arose independently more than once in evolution and evolved convergently. The iron paleochemistry, the phylogeny, the physiology of the iron oxidizers, and the nature of the cofactors of the redox proteins involved in these pathways suggest a possible scenario for the timescale in which each type of Fe(II) oxidation pathways evolved. The nitrate dependent anoxic iron oxidizers are likely the most ancient iron oxidizers. We suggest that the phototrophic anoxic iron oxidizers arose in surface waters after the Archaea/Bacteria-split but before the Great Oxidation Event. The neutrophilic oxic iron oxidizers possibly appeared in microaerobic marine environments prior to the Great Oxidation Event while the acidophilic ones emerged likely after the advent of atmospheric O(2). This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

  1. VAPOR PHASE MERCURY SORPTION BY ORGANIC-SULFIDE COATED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Tetra sulfide silane coated iron-copper nano-particle aggregates are found to be potentially very high capacity sorbents for vapor phase mercury capture. High equilibrium capacities were obtained for the silane coated iron copper nano-aggregate sorbent at 70 oC and 120 oC. Even a...

  2. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer

    NASA Astrophysics Data System (ADS)

    Marcu, A.; Pop, S.; Dumitrache, F.; Mocanu, M.; Niculite, C. M.; Gherghiceanu, M.; Lungu, C. P.; Fleaca, C.; Ianchis, R.; Barbut, A.; Grigoriu, C.; Morjan, I.

    2013-09-01

    Present work was focused on producing improved iron oxide nanoparticles for targeted drug delivery in breast cancer. Nanometric-sized iron oxide particles were synthesized by laser pyrolysis and were morphologically/structurally characterized. These new nanoparticles were compared with some commercial, chemically prepared iron oxide ones. Cytotoxicity and the anti-proliferation effects of nanoparticles were tested in vitro on the breast adenocarcinoma cell line MCF-7. Nanoparticles were further coated with the antracyclinic antibiotic Violamycine B1 and tested for the anti-tumor effect on MCF-7 cells. The nanoparticles produced by us seem more effective in vitro than the commercial ones, with respect to cellular uptake and VB1 delivery. Violamycine B1 bound on nanoparticles is as efficient as the free form, but is better delivered into tumor cells.

  3. Functionalized graphene and graphene oxide solution via polyacrylate coating.

    PubMed

    Saha, Arindam; Basiruddin, S K; Ray, S C; Roy, S S; Jana, Nikhil R

    2010-12-01

    Water soluble graphene with various chemical- and biofunctionalities is essential for their different applications. However, exfoliated graphenes are insoluble in water and water soluble graphene oxide precipitate if they are chemically reduced to graphene. We have developed a polyacrylate coating method for graphene oxide and then chemically reduced it into graphene. We found that polyacrylate coating can improve the colloidal stability of both graphene and graphene oxide. The coated graphene has been characterized using XPS, FTIR, XRD and micro-Raman spectroscopy. The primary amine present on the coating backbone has been used to derive glucose functionalized water soluble graphene. Various other functional graphenes can be anticipated from the polyacrylate coated graphene.

  4. Diffusion Barriers to Increase the Oxidative Life of Overlay Coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Lei, Jih-Fen

    1999-01-01

    Currently, most blades and vanes in the hottest section of aero gas turbine engines require some type of coating for oxidation protection. Newly developed single crystal superalloys have the mechanical potential to operate at increasingly higher component temperatures. However, at these elevated temperatures, coating/substrate interdiffusion can shorten the protective life of the coating. Diffusion barriers between overlay coatings and substrates are being examined to extend the protective life of the coating. A previously- developed finite-difference diffusion model has been modified to predict the oxidative life enhancement due to use of a diffusion barrier. The original diffusion model, designated COSIM, simulates Al diffusion in the coating to the growing oxide scale as well as Al diffusion into the substrate. The COSIM model incorporates an oxide growth and spalling model to provide the rate of Al consumption during cyclic oxidation. Coating failure is predicted when the Al concentration at the coating surface drops to a defined critical level. The modified COSIM model predicts the oxidative life of an overlay coating when a diffusion barrier is present eliminating diffusion of Al from the coating into the substrate. Both the original and the modified diffusion models have been used to predict the effectiveness of a diffusion barrier in extending the protective life of a NiCrAl overlay coating undergoing cyclic oxidation at 1100 C.

  5. Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.

    PubMed

    Emerson, David; Scott, Jarrod J; Benes, Joshua; Bowden, William B

    2015-12-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long -149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides.

  6. Microbial Iron Oxidation in the Arctic Tundra and Its Implications for Biogeochemical Cycling

    PubMed Central

    Scott, Jarrod J.; Benes, Joshua; Bowden, William B.

    2015-01-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. PMID:26386054

  7. Inhibition of pyrite oxidation by surface coating: a long-term field study.

    PubMed

    Kang, Chan-Ung; Jeon, Byong-Hun; Park, Seong-Sook; Kang, Jin-Soo; Kim, Kang-Ho; Kim, Dong-Kwan; Choi, Ui-Kyu; Kim, Sun-Joon

    2016-10-01

    Pyrite and other iron sulfides are readily oxidized by dissolved oxygen in aqueous phase, producing acidity and Fe(2+), which causes significant environmental problems. Applications of surface coating agents (Na2SiO3 and KH2PO4) were conducted at Boeun (Chungbuk, South Korea) outcrop site, and their efficiencies to inhibit the oxidation of sulfide minerals were monitored for a long-term period (449 days). The rock sample showed positive Net Acid Production Potential (NAPP = 20.23) and low Net Acid Generation pH (NAGpH = 2.42) values, suggesting that the rock sample was categorized in the potential acid-forming group. For the monitored time period (449 days), field study results showed that the application of Na2SiO3 effectively inhibited the pyrite oxidation as compared to KH2PO4. Na2SiO3 as a surface coating agent maintained pH 5-6 and reduced oxidation of pyrite surface up to 99.95 and 97.70 % indicated by Fe(2+) and SO4 (2-) release, respectively. The scanning electron microscope and energy-dispersive X-ray spectrometer analysis indicated that the morphology of rock surface was completely changed attributable to formation of iron silicate coating. The experimental results suggested that the treatment with Na2SiO3 was highly effective and it might be applicable on field for inhibition of iron sulfide oxidation.

  8. TRACE ELEMENT BINDING DURING STRUCTURAL TRANSFORMATION IN IRON OXIDES

    EPA Science Inventory

    Iron (hydr)oxides often control the mobility of inorganic contaminants in soils and sediments. A poorly ordered form of ferrihydrite is commonly produced during rapid oxidation of ferrous iron at sharp redox fronts encountered during discharge of anoxic/suboxic waters into terre...

  9. Modified Nanoemulsions with Iron Oxide for Magnetic Resonance Imaging

    PubMed Central

    Fan, Yongyi; Guo, Rui; Shi, Xiangyang; Allen, Steven; Cao, Zhengyi; Baker, James R.; Wang, Su He

    2016-01-01

    A nanoemulsion (NE) is a surfactant-based, oil-in-water, nanoscale, high-energy emulsion with a mean droplet diameter of 400–600 nm. When mixed with antigen and applied nasally, a NE acts as a mucosal adjuvant and induces mucosal immune responses. One possible mechanism for the adjuvant effect of this material is that it augments antigen uptake and distribution to lymphoid tissues, where the immune response is generated. Biocompatible iron oxide nanoparticles have been used as a unique imaging approach to study the dynamics of cells or molecular migration. To study the uptake of NEs and track them in vivo, iron oxide nanoparticles were synthesized and dispersed in soybean oil to make iron oxide-modified NEs. Our results show that iron oxide nanoparticles can be stabilized in the oil phase of the nanoemulsion at a concentration of 30 µg/μL and the iron oxide-modified NEs have a mean diameter of 521 nm. In vitro experiments demonstrated that iron oxide-modified NEs can affect uptake by TC-1 cells (a murine epithelial cell line) and reduce the intensity of magnetic resonance (MR) images by shortening the T2 time. Most importantly, in vivo studies demonstrated that iron oxide-modified NE could be detected in mouse nasal septum by both transmission electron microscopy and MR imaging. Altogether these experiments demonstrate that iron oxide-modified NE is a unique tool that can be used to study uptake and distribution of NEs after nasal application. PMID:28335351

  10. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1994-01-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide

  11. Synthesis and characterization of platinum decorated iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Palchoudhury, Soubantika

    This dissertation focuses on the development of a bifunctional nanoparticle system that can potentially offer simultaneous imaging and therapy in the future. Recently, small platinum (Pt) nanoparticles (< 5 nm) have shown great potential in therapeutic applications, such as DNA dissociation, radiation therapy, and oxidative stress treatment. Therefore, the small Pt nanoparticles of size comparable to DNA grooves are chosen as potential therapeutic components in this research. However, such small sized Pt nanoparticles tends to aggregate, and are difficult to target. Therefore, this research reports the synthesis, characterization, and DNA interaction of small Pt decorated iron oxide nanoparticles. The iron oxide carriers provide stability to the small Pt nanoparticles, and can potentially serve as MRI contrast agents. The hypothesis of this research is that the Pt nanoparticles supported on iron oxide nanoparticle surfaces can effectively interact with DNA molecules similar to the free Pt nanoparticles. A reproducible synthetic technique was first developed to prepare iron oxide nanoparticles with excellent size control and narrow size distribution. Subsequently, two different approaches were utilized to produce multiple small Pt nanoparticle attached iron oxide nanoparticles. The first route involved attachment of Pt nanoparticles onto iron oxide seeds of various shapes in an organic solvent, followed by an aqueous phase transfer. Here, the shape of the nanoparticles was controlled to facilitate heterogeneous nucleation of Pt nanoparticles. The protective biocompatible polymer coating (polyacrylic acid) in this method could prevent interaction of the Pt nanoparticles with undesirable biomolecules. Several non-spherical iron oxide nanoparticles were explored, including whiskers, worms, plates, and flowers. In the second method, an aqueous phase ligand exchange process was performed first, prior to the deposition of multiple Pt nanoparticles. This facile method

  12. Overlay coating degradation by simultaneous oxidation and coating/substrate interdiffusion. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1983-01-01

    Degradation of NiCrAlZr overlay coatings on various NiCrAl substrates was examined after cyclic oxidation. Concentration/distance profiles were measured in the coating and substrate after various oxidation exposures at 1150 C. For each stubstrate, the Al content in the coating decreased rapidly. The concentration/distance profiles, and particularly that for Al, reflected the oxide spalling resistance of each coated substrate. A numerical model was developed to simulate diffusion associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Input to the numerical model consisted of the Cr and Al content of the coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the Cr and Al concentrations in the coating and substrate after any number of oxidation/thermal cycles. The numerical model also predicts coating failure based on the ability of the coating to supply sufficient Al to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles. The model was subsequently used to identify the most critical system parameters affecting coating life.

  13. Ecological succession among iron-oxidizing bacteria.

    PubMed

    Fleming, Emily J; Cetinić, Ivona; Chan, Clara S; Whitney King, D; Emerson, David

    2014-04-01

    Despite over 125 years of study, the factors that dictate species dominance in neutrophilic iron-oxidizing bacterial (FeOB) communities remain unknown. In a freshwater wetland, we documented a clear ecological succession coupled with niche separation between the helical stalk-forming Gallionellales (for example, Gallionella ferruginea) and tubular sheath-forming Leptothrix ochracea. Changes in the iron-seep community were documented using microscopy and cultivation-independent methods. Quantification of Fe-oxyhydroxide morphotypes by light microscopy was coupled with species-specific fluorescent in situ hybridization (FISH) probes using a protocol that minimized background fluorescence caused by the Fe-oxyhydroxides. Together with scanning electron microscopy, these techniques all indicated that Gallionellales dominated during early spring, with L. ochracea becoming more abundant for the remainder of the year. Analysis of tagged pyrosequencing reads of the small subunit ribosomal RNA gene (SSU rRNA) collected during seasonal progression supported a clear Gallionellales to L. ochracea transition, and community structure grouped according to observed dominant FeOB forms. Axis of redundancy analysis of physicochemical parameters collected from iron mats during the season, plotted with FeOB abundance, corroborated several field and microscopy-based observations and uncovered several unanticipated relationships. On the basis of these relationships, we conclude that the ecological niche of the stalk-forming Gallionellales is in waters with low organic carbon and steep redoxclines, and the sheath-forming L. ochracea is abundant in waters that contain high concentrations of complex organic carbon, high Fe and Mn content and gentle redoxclines. Finally, these findings identify a largely unexplored relationship between FeOB and organic carbon.

  14. Ecological succession among iron-oxidizing bacteria

    PubMed Central

    Fleming, Emily J; Cetinić, Ivona; Chan, Clara S; Whitney King, D; Emerson, David

    2014-01-01

    Despite over 125 years of study, the factors that dictate species dominance in neutrophilic iron-oxidizing bacterial (FeOB) communities remain unknown. In a freshwater wetland, we documented a clear ecological succession coupled with niche separation between the helical stalk-forming Gallionellales (for example, Gallionella ferruginea) and tubular sheath-forming Leptothrix ochracea. Changes in the iron-seep community were documented using microscopy and cultivation-independent methods. Quantification of Fe-oxyhydroxide morphotypes by light microscopy was coupled with species-specific fluorescent in situ hybridization (FISH) probes using a protocol that minimized background fluorescence caused by the Fe-oxyhydroxides. Together with scanning electron microscopy, these techniques all indicated that Gallionellales dominated during early spring, with L. ochracea becoming more abundant for the remainder of the year. Analysis of tagged pyrosequencing reads of the small subunit ribosomal RNA gene (SSU rRNA) collected during seasonal progression supported a clear Gallionellales to L. ochracea transition, and community structure grouped according to observed dominant FeOB forms. Axis of redundancy analysis of physicochemical parameters collected from iron mats during the season, plotted with FeOB abundance, corroborated several field and microscopy-based observations and uncovered several unanticipated relationships. On the basis of these relationships, we conclude that the ecological niche of the stalk-forming Gallionellales is in waters with low organic carbon and steep redoxclines, and the sheath-forming L. ochracea is abundant in waters that contain high concentrations of complex organic carbon, high Fe and Mn content and gentle redoxclines. Finally, these findings identify a largely unexplored relationship between FeOB and organic carbon. PMID:24225888

  15. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    SciTech Connect

    Que, Jr., Lawrence

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  16. Formation process of in situ oxide coatings with high porosity using one-step plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Xiwen; Chen, Li; Qin, Honglei; Wu, Mingyue; Yan, Zongcheng

    2016-03-01

    Porous oxide films prepared via plasma electrolytic oxidation are ideal in situ catalysts. However, such films have low porosity. To overcome this limitation, we proposed a promising approach that controls discharge events. The treatments were performed in two kinds of alkaline-silicate solutions namely KOH-enriched solution and Na2SiO3-enriched solution. The coatings prepared in the former electrolyte exhibited superior growth behaviors and catalytic structures. Due to the strong corrosive of KOH-enriched electrolyte, the growth of the film was suppressed, and the sparks were maintained small and evenly distributed throughout the process. Such layers showed high porosity and were evenly covered by nanoparticles. The coating porosity increased with increasing time, and the film treated for 60 min exhibited a high porosity of 33.3 ± 1.7%. Moreover, an oxide film with an outer dendritic and inner porous structure was formed within 120 min. The energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy characterizations indicated that the coatings were mainly composed of aluminum oxide and that the doped iron oxide was enriched on the top surface of the coating. Finally, the formation mechanisms of the coating and nanoparticles were discussed with consideration of the dynamic equilibrium theory.

  17. Iron oxide nanoparticle enhancement of radiation cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mazur, Courtney M.; Tate, Jennifer A.; Strawbridge, Rendall R.; Gladstone, David J.; Hoopes, P. Jack

    2013-02-01

    Iron oxide nanoparticles (IONPs) have been investigated as a promising means for inducing tumor cell-specific hyperthermia. Although the ability to generate and use nanoparticles that are biocompatible, tumor specific, and have the ability to produce adequate cytotoxic heat is very promising, significant preclinical and clinical development will be required for clinical efficacy. At this time it appears using IONP-induced hyperthermia as an adjunct to conventional cancer therapeutics, rather than as an independent treatment, will provide the initial IONP clinical treatment. Due to their high-Z characteristics, another option is to use intracellular IONPs to enhance radiation therapy without excitation with AMF (production of heat). To test this concept IONPs were added to cell culture media at a concentration of 0.2 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for either 48 or 72 hours. Extracellular iron was then removed and all cells were irradiated at 4 Gy. Although samples incubated with IONPs for 48 hrs did not demonstrate enhanced post-irradiation cytotoxicity as compared to the non-IONP-containing cells, cells incubated with IONPs for 72 hours, which contained 40% more Fe than 48 hr incubated cells, showed a 25% decrease in clonogenic survival compared to their non-IONP-containing counterparts. These results suggest that a critical concentration of intracellular IONPs is necessary for enhancing radiation cytotoxicity.

  18. Oxidation inhibits iron-induced blood coagulation.

    PubMed

    Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw

    2013-01-01

    Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood.

  19. Microbially Induced Iron Oxidation: What, Where, How

    SciTech Connect

    SCHIERMEYER,ELISA M.; PROVENCIO,PAULA P.; NORTHUP,DIANA E.

    2000-08-15

    From the results of the different bacterial cells seen, it is fairly certain that Gallionella is present because of the bean-shaped cells and twisted stalks found with the TEM. The authors cannot confirm, though, what other iron-oxidizing genera exist in the tubes, since the media was only preferential and not one that isolated a specific genus of bacteria. Based on the environment in which they live and the source of the water, they believe their cultures contain Gallionella, Leptothrix, and possibly Crenothrix and Sphaerotilus. They believe the genus Leptothrix rather than Sphaerotilus exist in the tubes because the water source was fresh, unlike the polluted water in which Sphaerotilus are usually found. The TEM preparations worked well. The cryogenic method rapidly froze the cells in place and allowed them to view their morphology. The FAA method, as stated previously, was the best of the three methods because it gave the best contrast. The gluteraldehyde samples did not come out as well. It is possible that the gluteraldehyde the authors prepared was still too concentrated and did not mix well. Although these bacteria were collected from springs and then cultured in an environment containing a presumably pure iron-bearing metal, it seems the tube already containing Manganese Gradient Medium could be used with a piece of metal containing these bacteria. A small piece of corroding metal could then be inserted into the test tube and cultured to study the bacteria.

  20. Multifunctional iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bloemen, M.; Denis, C.; Van Stappen, T.; De Meester, L.; Geukens, N.; Gils, A.; Verbiest, T.

    2015-03-01

    Multifunctional nanoparticles have attracted a lot of attention since they can combine interesting properties like magnetism, fluorescence or plasmonic effects. As a core material, iron oxide nanoparticles have been the subject of intensive research. These cost-effective and non-toxic particles are used nowadays in many applications. We developed a heterobifunctional PEG ligand that can be used to introduce functional groups (carboxylic acids) onto the surface of the NP. Via click chemistry, a siloxane functionality was added to this ligand, for a subsequent covalent ligand exchange reaction. The functionalized nanoparticles have an excellent colloidal stability in complex environments like buffers and serum or plasma. Antibodies were coupled to the introduced carboxylic acids and these NP-antibody bioconjugates were brought into contact with Legionella bacteria for magnetic separation experiments.

  1. Multiple hearth furnace for reducing iron oxide

    DOEpatents

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  2. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  3. Surface modification of iron oxide nanoparticles and their conjuntion with water soluble polymers for biomedical application

    NASA Astrophysics Data System (ADS)

    Thanh Huong, Nguyen; Thi Kieu Giang, Lam; Thanh Binh, Nguyen; Minh, Le Quoc

    2009-09-01

    Superparamagnetic iron oxide nanoparticles (SPION) coated with suitable bio-compatible substances have been used in biomedicine, particularly in magnetic resonance imaging (MRI), tissue engineering, and hyperthermia and drug delivery. In this study, we describe the synthesis of SPION and its surface modification for in-vitro experiments. The particle diameter and structure were estimated by FESEM, TEM, XRD analyses. The saturation magnetization was characterized. SPION with a mean size of 12 nm have been prepared under N2 atmosphere, with support of natural polymeric starch, by controlling chemical coprecipitation of magnetite phase from aqueous solutions containing suitable salts ratios of Fe2+ and Fe3+. The surface of SPION-nanoparticles was treated with a coordinatable agent for higher dispersion ability in water and remaining the superparamagnetic behavior. The prepared iron oxide nanoparticles were coated with starch, dextran, PEG or MPEG to extend the application potential in the quite different engineering field of nano biomedicine.

  4. Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging.

    PubMed

    Schlorf, Thomas; Meincke, Manuela; Kossel, Elke; Glüer, Claus-Christian; Jansen, Olav; Mentlein, Rolf

    2010-12-23

    Superparamagnetic iron-oxide particles (SPIO) are used in different ways as contrast agents for magnetic resonance imaging (MRI): Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite), different coatings (none, dextran, carboxydextran, polystyrene) and different hydrodynamic diameters (20-850 nm) for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC), which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe(3)O(4) particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.

  5. Effects of iron chelators, iron salts, and iron oxide nanoparticles on the proliferation and the iron content of oligodendroglial OLN-93 cells.

    PubMed

    Hohnholt, Michaela; Geppert, Mark; Dringen, Ralf

    2010-08-01

    The oligodendroglial cell line OLN-93 was used as model system to investigate the consequences of iron deprivation or iron excess on cell proliferation. Presence of ferric or ferrous iron chelators inhibited the proliferation of OLN-93 cells in a time and concentration dependent manner, while the application of a molar excess of ferric ammonium citrate (FAC) prevented the inhibition of proliferation by the chelator deferoxamine. Proliferation of OLN-93 cells was not affected by incubation with 300 microM iron that was applied in the form of FAC, FeCl(2), ferrous ammonium sulfate or iron oxide nanoparticles, although the cells efficiently accumulated iron during exposure to each of these iron sources. The highest specific iron content was observed for cells that were exposed to the nanoparticles. These data demonstrate that the proliferation of OLN-93 cells depends strongly on the availability of iron and that these cells efficiently accumulate iron from various extracellular iron sources.

  6. Chemical composition, electrochemical, and morphological properties of iron phosphate conversion coatings

    SciTech Connect

    Warburton, Y.J.; Gibbon, D.L.; Jackson, K.M.; Gate, L.F.; Rodnyansky, A.; Warburton, P.R.

    1999-09-01

    Iron phosphate conversion coatings are used widely in the pretreatment industry to enhance paint adherence to metal substrates and therefore improve corrosion resistance. However, very limited nonproprietary literature describing the properties of iron phosphate coating is available, as compared to volumes dedicated to zinc phosphate coating. The present study described chemical, electrochemical, and morphological characterizations of iron phosphate coating using x-ray photoelectron spectroscopy (XPS), potentiodynamic scans, and scanning electron microscopy (SEM). For the samples under investigation, the mode of operation of iron phosphate coating was to promote paint adhesion, and the coating itself did not impart significant corrosion protection to the metal substrate. It also was shown that the Fe/P ratio in the phosphate coating ranged from 1:2 to 1:1. When tested in pH 7 buffered phosphate solution, the phosphate coating displayed a passivation region, which also possessed the highest impedance value. The phosphate coating was found to comprise two layers: a dense, adherent layer and a loose, granular top layer. For samples with coating weights of 20 mg/ft{sup 2} to 30 mg/ft{sup 2} (0.22 g/m{sup 2} to 0.32 g/m{sup 2}), the corresponding coating thickness was {approximately} 0.1 {micro}m to 0.3 {micro}m.

  7. Studies of the kinetics and mechanisms of perfluoroether reactions on iron and oxidized iron surfaces

    NASA Technical Reports Server (NTRS)

    Napier, Mary E.; Stair, Peter C.

    1992-01-01

    Polymeric perfluoroalkylethers are being considered for use as lubricants in high temperature applications, but have been observed to catalytically decompose in the presence of metals. X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) were used to explore the decomposition of three model fluorinated ethers on clean polycrystalline iron surfaces and iron surfaces chemically modified with oxygen. Low temperature adsorption of the model fluorinated ethers on the clean, oxygen modified and oxidized iron surfaces was molecular. Thermally activated defluorination of the three model compounds was observed on the clean iron surface at remarkably low temperatures, 155 K and below, with formation of iron fluoride. Preferential C-F bond scission occurred at the terminal fluoromethoxy, CF3O, of perfluoro-1-methoxy-2-ethoxy ethane and perfluoro-1-methoxy-2-ethoxy propane and at CF3/CF2O of perfluoro-1,3-diethoxy propane. The reactivity of the clean iron toward perfluoroalkylether decomposition when compared to other metals is due to the strength of the iron fluoride bond and the strong electron donating ability of the metallic iron. Chemisorption of an oxygen overlayer lowered the reactivity of the iron surface to the adsorption and decomposition of the three model fluorinated ethers by blocking active sites on the metal surface. Incomplete coverage of the iron surface with chemisorbed oxygen results in a reaction which resembles the defluorination reaction observed on the clean iron surface. Perfluoro-1-methoxy-2-ethoxy ethane reacts on the oxidized iron surface at 138 K, through a Lewis acid assisted cleavage of the carbon oxygen bond, with preferential attack at the terminal fluoromethoxy, CF3O. The oxidized iron surface did not passivate, but became more reactive with time. Perfluoro-1-methoxy-2-ethoxy propane and perfluoro-1,3-diethoxy propane desorbed prior to the observation of decomposition on the oxidized iron surface.

  8. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    SciTech Connect

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  9. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    NASA Astrophysics Data System (ADS)

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R.; Bohidar, H. B.

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe3O4)) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe3O4 and CA-Fe3O4/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, CA-Fe3O4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe3O4) and 189.51 nm (CA-Fe3O4) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe2O3/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL-1 with a low detection limit of 0.32 ng mL-1, sensitivity 0.03 Ω/ng ml-1 cm-2, and reproducibility more than 11 times.

  10. Aqueous Aggregation Behavior of Engineered Superparamagnetic Iron Oxide Nanoparticles: Effects of Oxidative Surface Aging.

    PubMed

    Li, Wenlu; Lee, Seung Soo; Mittelman, Anjuliee M; Liu, Di; Wu, Jiewei; Hinton, Carl H; Abriola, Linda M; Pennell, Kurt D; Fortner, John D

    2016-12-06

    For successful aqueous-based applications, it is necessary to fundamentally understand and control nanoparticle dispersivity and stability over a range of dynamic conditions, including variable ionic strengths/types, redox chemistries, and surface ligand reactivity/degradation states (i.e., surface aging). Here, we quantitatively describe the behavior of artificially aged, oleic acid (OA) bilayer coated iron oxide nanoparticles (IONPs) under different scenarios. Hydrogen peroxide (H2O2), used here as a model oxidant under both dark and light ultraviolet (UVA) conditions, was employed to "age" materials, to varying degrees, without increasing ionic strength. Short-term stability experiments indicate that OA-IONPs, while stable in the dark, are effectively destabilized when exposed to UVA/H2O2/•OH based oxidation processes. Compared to bicarbonate, phosphate (1.0 mM) has a net stabilizing effect on OA-IONPs under oxidative conditions, which can be attributed to (surface-based) functional adsorption. Corresponding aggregation kinetics in the presence of monovalent (Na(+)) and divalent cations (Ca(2+)) show that attachment efficiencies (α) are strongly dependent on the cation concentrations/types and degree of surface aging. Taken together, our findings directly highlight the need to understand the critical role of particle surface transformation(s), via oxidative aging, among other routes, with regard to the ultimate stability and environmental fate of surface functionalized engineered nanoparticles.

  11. Investigation of oxidation process of mechanically activated ultrafine iron powders

    NASA Astrophysics Data System (ADS)

    Lysenko, E. N.; Nikolaev, E. V.; Vlasov, V. A.; Zhuravkov, S. P.

    2016-02-01

    The oxidation of mechanically activated ultrafine iron powders was studied using X- ray powder diffraction and thermogravimetric analyzes. The powders with average particles size of 100 nm were made by the electric explosion of wire, and were subjected to mechanical activation in planetary ball mill for 15 and 40 minutes. It was shown that a certain amount of FeO phase is formed during mechanical activation of ultrafine iron powders. According to thermogravimetric analysis, the oxidation process of non-milled ultrafine iron powders is a complex process and occurs in three stages. The preliminary mechanical activation of powders considerably changes the nature of the iron powders oxidation, leads to increasing in the temperature of oxidation onset and shifts the reaction to higher temperatures. For the milled powders, the oxidation is more simple process and occurs in a single step.

  12. Nitric Oxide Improves Internal Iron Availability in Plants1

    PubMed Central

    Graziano, Magdalena; Beligni, María Verónica; Lamattina, Lorenzo

    2002-01-01

    Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 μm Fe-EDTA in the nutrient solution. S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 μm Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant. PMID:12481068

  13. Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application

    PubMed Central

    2012-01-01

    Background Iron oxide nanoparticles (IONPs) have increasing applications in biomedicine, however fears over long term stability of polymer coated particles have arisen. Gold coating IONPs results in particles of increased stability and robustness. The unique properties of both the iron oxide (magnetic) and gold (surface plasmon resonance) result in a multimodal platform for use as MRI contrast agents and as a nano-heater. Results Here we synthesize IONPs of core diameter 30 nm and gold coat using the seeding method with a poly(ethylenimine) intermediate layer. The final particles were coated in poly(ethylene glycol) to ensure biocompatibility and increase retention times in vivo. The particle coating was monitored using FTIR, PCS, UV–vis absorption, TEM, and EDX. The particles appeared to have little cytotoxic effect when incubated with A375M cells. The resultant hybrid nanoparticles (HNPs) possessed a maximal absorbance at 600 nm. After laser irradiation in agar phantom a ΔT of 32°C was achieved after only 90 s exposure (50 μgmL-1). The HNPs appeared to decrease T2 values in line with previously clinically used MRI contrast agent Feridex®. Conclusions The data highlights the potential of these HNPs as dual function MRI contrast agents and nano-heaters for therapies such as cellular hyperthermia or thermo-responsive drug delivery. PMID:22731703

  14. Internal oxidation of laminated ternary Ru-Ta-Zr coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yung-I.; Lu, Tso-Shen

    2015-10-01

    Researchers have observed the internal oxidation phenomenon in binary alloy coatings when developing refractory alloy coatings for protective purposes by conducting annealing at high temperatures and in oxygen-containing atmospheres. The coatings were assembled using cyclical gradient concentration deposition during cosputtering by employing a substrate holder rotating at a slow speed. The internally oxidized zone demonstrated a laminated structure, comprising alternating oxygen-rich and oxygen-deficient layers stacked in a general orientation. In the current study, Ru-Ta-Zr coatings were prepared with various stacking sequences during cosputtering. The Ru-Ta-Zr coatings were annealed at 600 °C in an atmosphere continuously purged with 1% O2-99% Ar mixed gas for 30 min. A transmission electron microscope was used to examine the periods of the laminated layers and crystallinity of the annealed coatings. Depth profiles produced using an Auger electron spectroscope and X-ray photoelectron spectroscope were used to certify the periodic variation of the related constituents and chemical states of the elements, respectively. The results indicate that the internally oxidized ternary coatings are stacked of Ru-, Ta2O5-, and ZrO2-dominant sublayers and that the stacking sequences of the sublayers affect the crystalline structure of the coatings. Zr is oxidized preferentially in the Ru-Ta-Zr coatings, increasing the surface hardness of the oxidized coatings.

  15. Overlay coating degradation by simultaneous oxidation and coating/substrate interdiffusion

    SciTech Connect

    Nesbitt, J.A.

    1984-08-01

    This paper describes a numerical model which simulates diffusion, associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Such nickel-chromium-aluminum overlays are used in high temperature turbine applications. Inputs to the model were the chromium and aluminum content of coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the chromium and aluminum concentrations in the coating and substrate after any number of oxidation/thermal cycles. The model also predicts coating failure based on the ability of the coating to supply sufficient aluminum to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles.

  16. Application of novel iron core/iron oxide shell nanoparticles to sentinel lymph node identification

    NASA Astrophysics Data System (ADS)

    Cousins, Aidan; Howard, Douglas; Henning, Anna M.; Nelson, Melanie R. M.; Tilley, Richard D.; Thierry, Benjamin

    2015-12-01

    Current `gold standard' staging of breast cancer and melanoma relies on accurate in vivo identification of the sentinel lymph node. By replacing conventional tracers (dyes and radiocolloids) with magnetic nanoparticles and using a handheld magnetometer probe for in vivo identification, it is believed the accuracy of sentinel node identification in nonsuperficial cancers can be improved due to increased spatial resolution of magnetometer probes and additional anatomical information afforded by MRI road-mapping. By using novel iron core/iron oxide shell nanoparticles, the sensitivity of sentinel node mapping via MRI can be increased due to an increased magnetic saturation compared to traditional iron oxide nanoparticles. A series of in vitro magnetic phantoms (iron core vs. iron oxide nanoparticles) were prepared to simulate magnetic particle accumulation in the sentinel lymph node. A novel handheld magnetometer probe was used to measure the relative signals of each phantom, and determine if clinical application of iron core particles can improve in vivo detection of the sentinel node compared to traditional iron oxide nanoparticles. The findings indicate that novel iron core nanoparticles above a certain size possess high magnetic saturation, but can also be produced with low coercivity and high susceptibility. While some modification to the design of handheld magnetometer probes may be required for particles with large coercivity, use of iron core particles could improve MRI and magnetometer probe detection sensitivity by up to 330 %.

  17. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  18. Dielectric coating of iron particles by electrostatic colloidal deposition

    NASA Astrophysics Data System (ADS)

    Kim, Daniel

    Iron is a soft magnetic material widely used in electric motors, generators, and transformers because they demand high permeability and low core loss. The main goal of this project is to develop a commercially viable coating of iron powders for press-and-sinter processing that would enable higher firing temperatures to anneal out magnetic defects, while maintaining high electrical resistivity (˜10,000 muO-cm) and high iron density (>90 %). An alumina-modified colloidal silica (LUDOX CL), was used in early work to make Fe (-)/SiO2 (+) in a wet-pressed route. The highest relative density and resistivity measurements for a wet-pressing route were 87 % and 7300 +/- 1000 muO-cm respectively. Dry-pressed route is favorable over wet-pressed route because it can be commercially viable. About 100-fold increase in resistivity (860,000 muO-cm) was obtained compared to the wet-pressed route, with only a small decrease in density (1 - 2 %). A study was conducted to explore the separate, and possibly interactive, effects of micro-alumina particulate (Sumitomo AKP-50, 0.2 mum) and lubricant (Kenolube, a proprietary metal soap-wax composite lube). Reducing the LUDOX CL, high shear mixing using a coffee grinder, and multimodal packing were studied to improve density. Only 10 % reduction of LUDOX CL dropped the resistivity by over two orders of magnitude with the same relative density. High shear mixing and multimodal packing had little effects to increase density. An unmodified colloidal silica (LUDOX TM) was also explored to make Fe (+) /SiO2 (-) and resistivity of 120,000 muO-cm and 80 % density were obtained. Addition of cationic polyelectrolyte, polydiallyldimethyl-ammonium chloride (PDADMAC) was studied to provide stronger adhesion between LUDOX TM and surface of iron particles. Reducing the amount of LUDOX TM in PDADMAC showed relative density greater than 90 % but resistivity measurements were less than 1500 iU-cm.

  19. Oxidative Stress and the Homeodynamics of Iron Metabolism

    PubMed Central

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  20. Erosion resistance of arc-sprayed coatings to iron ore at 25 and 315 °C

    NASA Astrophysics Data System (ADS)

    Dallaire, S.; Levert, H.; Legoux, J.-G.

    2001-06-01

    Iron ore pellets are sintered and reduced in large continuous industrial oil-fired furnaces. From the furnace, powerful fans extract large volumes of hot gas. Being exposed to gas-borne iron ore particles and temperatures ranging between 125 and 328 °C, fan components are rapidly eroded. Extensive part repair or replacement is required for maintaining a profitable operation. The arc spraying technique has been suggested for repair provided it could produce erosion-resistant coatings. Conventional and cored wires (1.6 mm diameter) were arc sprayed using various spray parameters to produce 250 to 300 µm thick coatings. Arc-sprayed coatings and reference specimens were erosion tested at 25 and 315 °C and impact angles of 25 and 90° in a laboratory gas-blast erosion rig. This device was designed to impact materials with coarse (32 to 300 µm) iron ore particles at a speed of 100 m/s. The coating volume loss due to erosion was measured with a laser profilometer built by National Research Council Canada several years ago. Few arc-sprayed coatings exhibited erosion resistance comparable with structural steel at low impact angles. Erosion of arc-sprayed coatings and reference specimens dramatically increases at 315 °C for both 25° and 90° impact angles. Erosion-enhanced oxidation was found to be responsible for the increase in volume loss above room temperature. Though arc spraying can be appropriate for on-site repair, the development of more erosion-resistant coatings is required for intermediate temperatures.

  1. Oxidation state of iron in plagioclase from lunar basalts.

    NASA Technical Reports Server (NTRS)

    Hafner, S. S.; Virgo, D.; Warburton, D.

    1971-01-01

    Determination of the oxidation state of iron in the plagioclase from the coarse-grained basalts 10044 and 12021, using Mossbauer spectroscopy. The location of iron in the crystal structure was also investigated. The spectra show that iron is in the high-spin ferrous state, and they located at least two distinct positions with different coordination numbers. Some excess resonant absorption is probably due to Fe(3+), although the Fe(3+) doublet could not be positively resolved.

  2. Magnetic Characterization of Iron Oxide Cross Linked Hydro gels

    NASA Astrophysics Data System (ADS)

    Senaratne, U.; Powell, N.; Kroll, E.; Tsoi, G.; Naik, R.; Naik, V.; Vaishnava, P. P.; Wenger, L. E.

    2004-03-01

    Magnetic hydro gels have potential applications in drug delivery, cells sorting, sensors, and actuating technologies. Iron oxide alginate nanocomposites were synthesized following the method of Kroll et al^1 by cross linking sodium alginate with Fe^2+ and Fe^3+ in methanol: water. The ion-cross linked alginate hydro gels are oxidized in an alkaline solution. The resulting hydro gel consists of iron oxide cross linked alginate. The alginate hydro gels are inert to the reaction conditions and therefore the reaction sequence can be repeated. The multiple loadings result in an increase in the amount of iron oxide and the size of the iron oxide nanoparticles in the cross linked hydro gels. The third and sixth loaded iron oxide alginate hydro gels were dried and characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and Superconducting Quantum Interference Device (SQUID) magnetometry. The XRD patterns have characteristic features of γ- Fe_2O3 or Fe_3O4 phases. The average particle size, calculated from the XRD peaks, for third loaded iron oxide alginate was 2 nm. The zero-field-cooled and field-cooled SQUID measurements show the iron oxide nanoparticles are superparamagnetic with blocking temperature (T_B) of approximately 35 K. Above the blocking temperature, the inverse susceptibility versus temperature relationship does not follow the Curie-Weiss law, indicating strong inter-particle interactions. The M vs. H data above the blocking temperature was fitted with a modified Langevin function to obtain additional information about the iron oxide particle size. Details of the relationship between coercive field and temperature as well as the particle size distribution obtained from XRD and TEM measurements will be presented. *Research supported by NSF grant # DGE ˜980720 **Supported by NSF REU grant # EEC-0097736 ^1E. Kroll, F.M. Winnik, and R.F. Ziolo, Chem. Mater, 8, 1594 (1996).

  3. Immobilisation of arsenic by iron(II)-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Kappler, A.; Hohmann, C.; Winkler, E.; Muehe, M.; Morin, G.

    2008-12-01

    Arsenic-contaminated groundwater is an environmental problem that affects about 1-2% of the world's population. As arsenic-contaminated water is also used for irrigating rice fields, the uptake of arsenic via rice is in some cases even higher than via drinking water. Arsenic is often of geogenic origin and in many cases bound to iron(III) minerals. Microbial iron(III) reduction leads to dissolution of Fe(III) minerals and thus the arsenic bound to these minerals is released to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation followed by iron(III) mineral formation. Here, we present work on arsenic co-precipitation and immobilization by anaerobic and aerobic iron(II)-oxidizing bacteria. Co-precipitation batch experiments with pure cultures of nitrate-dependent, phototrophic, and microaerophilic Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation. Iron and arsenic speciation and redox state are determined by X- ray diffraction and synchrotron-based X-ray absorption methods (EXAFS, XANES). Microcosm experiments are set-up either with liquid media or with rice paddy soil amended with arsenic. Rice paddy soil from arsenic contaminated rice fields in China that include a natural population of Fe(II)-oxidizing microorganisms is used as inoculum. Dissolved and solid-phase arsenic and iron are quantified, Arsenic speciation is determined and the iron minerals are identified. Additionally, Arsenic uptake into the rice plant is quantified and a gene expression pattern in rice (Oryza sativa cv Gladia) is determined by microarrays as a response to the presence of Fe(II)-oxidizing bacteria.

  4. Role of iron in asbestos-body-induced oxidant radical generation.

    PubMed

    Governa, M; Amati, M; Fontana, S; Visona I; Botta, G C; Mollo, F; Bellis, D; Bo, P

    1999-11-12

    Asbestos bodies (AB) were harvested from human lung tissue digests and isolated from uncoated asbestos fibers. Samples containing 1000 AB were added to a reactive solution to investigate the ability of AB to oxidize deoxy-D-ribose and generate reactive oxygen species (ROS) in the presence of ascorbate and hydrogen peroxide as determined by formation of thiobarbituric acid (TBA)-reactive products. Three types of asbestos fibers were tested for comparison, since they are known to be able to produce ROS. The absorbance values measured with 1000 AB were significantly higher than those observed with 1000 fibers of the three types of asbestos. Since in our reaction system the only source of transition metals was the iron-rich AB, data suggest iron derived from the ferritin coating of AB was involved in oxidant generation. Addition of iron to AB enhanced TBA-reactive product formation, while chelation of Fe with deferoxamine reduced this reaction. Hydroxyl radical scavengers 1,3-dimethyl-2-thiourea (DMTU) and mannitol (MN) also effectively blocked TBA-reactive product generation. Data indicate the importance of Fe in AB-induced oxidant damage. With the addition of polymorphonuclear leukocytes (PMN) to AB, incubation in the reactive solution gave very high amounts of TBA-reactive products, but using a reactive solution devoid of ascorbate, very low amounts of TBA-reactive products were generated. In the latter condition, the superoxide of cell membranes probably reduced and removed iron from AB-coating ferritin, but less effectively than ascorbate. Further after the possible reoxidation of Fe2+, Fe3+ could be coordinated by lactoferrin. Since such availability of reductant is never approached in living systems, the iron in the AB coating is unlikely to function as a catalyst of Fenton-type reactions in vivo.

  5. Internal oxidation of laminated Nb-Ru coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yung-I.; Chu, Hsiu-Nuan; Kai, Wu

    2016-12-01

    A direct current magnetron cosputtering system was used to deposit Nb-Ru coatings with various chemical compositions onto silicon wafers. The Nb-Ru coatings exhibited distinct nanolaminated structures because of the cyclical gradient concentration deposition. The oxidized Nb-Ru coatings formed oxide and metal multilayers when they experienced internal oxidation at 400-600 °C in a 1% O2-99% Ar atmosphere. A two-stage parabolic-rate law was obeyed for the Nb0.49Ru0.51 coatings oxidized at 350-550 °C in 1% O2-99% Ar. The activation energies in the two-stage oxidation, dominated by oxygen dissolution and oxide formation, were calculated at 88 and 127 kJ/mol, respectively.

  6. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    PubMed Central

    2008-01-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed. PMID:21749733

  7. Coatings for directional eutectics. [cyclic furnace oxidation tests

    NASA Technical Reports Server (NTRS)

    Jackson, M. R.; Rairden, J. R.; Hampton, L. V.

    1974-01-01

    Coating compositions were evaluated for oxidation protection of directionally solidified composite alloy NiTaC-13. These coatings included three NiCrAlY compositions (30-5-1, 25-10-1 and 20-15-1), two FeCrAlY compositions (30-5-1 and 25-10-1), a CoCrAlY composition (25-10-1), and one duplex coating, Ni-35Cr + Al. Duplicate pin samples of each composition were evaluated using two cyclic furnace oxidation tests of 100 hours at 871 C and 500 hours at 1093 C. The two best coatings were Ni-20Cr-15Al-lY and Ni-35Cr + Al. The two preferred coatings were deposited on pins and were evaluated in detail in .05 Mach cyclic burner rig oxidation to 1093 C. The NiCrAlY coating was protective after 830 hours of cycling, while the duplex coating withstood 630 hours. Test bars were coated and cycled for up to 500 hours. Tensile tests indicated no effect of coatings on strength. In 871 C air stress rupture, a degradation was observed for coated relative to bare material. The cycled NiCrAlY coating offered excellent protection with properties superior to the bare cycled NiTaC-13 in 1093 C air stress rupture.

  8. Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications

    PubMed Central

    Armijo, Leisha M.; Brandt, Yekaterina I.; Mathew, Dimple; Yadav, Surabhi; Maestas, Salomon; Rivera, Antonio C.; Cook, Nathaniel C.; Withers, Nathan J.; Smolyakov, Gennady A.; Adolphi, Natalie; Monson, Todd C.; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek

    2012-01-01

    Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia—an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m), which is very close to the typical values of 100 kHz and 20 mT used in medical treatments.

  9. Investigation of Amorphous/Nanocrystalline Iron-Based Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Königstein, T.

    2017-02-01

    Because of their favorable thermophysical properties, good machinability and low material costs, iron-based coatings which exhibit a highly amorphous/nanocrystalline microstructure are currently in the focus of research. Considering the crystallization temperature of the material, iron-based coatings might be the next generation of thermal barrier coatings (TBCs) for low-temperature systems, reducing thermal losses. The objective of this research project is the development of highly amorphous, iron-based coatings. For this purpose, amorphous feedstock materials with different chromium contents have been developed and characterized regarding their microstructures, phase compositions, crystallization temperatures and amorphous content. The results show that the amorphous content is reduced with increasing particle size and chromium content. The coatings were deposited by air plasma spraying (APS) and high-velocity oxygen fuel spraying (HVOF). It is shown that all coatings exhibit amorphous structures. HVOF coatings show a smaller amount of amorphous content compared to the feedstock materials, indicating crystallization occurring in not fully melted particles or insufficient rapid cooling. The APS process can increase the amount of amorphous content compared to the feedstock material, as shown for x Cr = 15%. All coatings proof good thermal shock behavior. Lowest thermal diffusivity values were determined for APS coatings, which confirms the potential of iron-based TBCs.

  10. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles

    PubMed Central

    Zeng, Q.; Baker, I.; Loudis, J. A.; Liao, Y.F.; Hoopes, P.J.

    2014-01-01

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl3 within a NaBH4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe3O4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe3O4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization (MS) of Fe/Fe3O4 particles (100–190 emu/g) can be twice as high, and the coercivity (HC) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe3O4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles. PMID:25301983

  11. Evaluation of iron oxide nanoparticle biocompatibility.

    PubMed

    Hanini, Amel; Schmitt, Alain; Kacem, Kamel; Chau, François; Ammar, Souad; Gavard, Julie

    2011-01-01

    Nanotechnology is an exciting field of investigation for the development of new treatments for many human diseases. However, it is necessary to assess the biocompatibility of nanoparticles in vitro and in vivo before considering clinical applications. Our characterization of polyol-produced maghemite γ-Fe(2)O(3) nanoparticles showed high structural quality. The particles showed a homogeneous spherical size around 10 nm and could form aggregates depending on the dispersion conditions. Such nanoparticles were efficiently taken up in vitro by human endothelial cells, which represent the first biological barrier to nanoparticles in vivo. However, γ-Fe(2)O(3) can cause cell death within 24 hours of exposure, most likely through oxidative stress. Further in vivo exploration suggests that although γ-Fe(2)O(3) nanoparticles are rapidly cleared through the urine, they can lead to toxicity in the liver, kidneys and lungs, while the brain and heart remain unaffected. In conclusion, γ-Fe(2)O(3) could exhibit harmful properties and therefore surface coating, cellular targeting, and local exposure should be considered before developing clinical applications.

  12. Iron oxide-based nanomagnets in nanomedicine: fabrication and applications

    PubMed Central

    Meng Lin, Meng; Kim, Hyung-Hwan; Kim, Hyuck; Muhammed, Mamoun; Kyung Kim, Do

    2010-01-01

    Iron oxide-based nanomagnets have attracted a great deal of attention in nanomedicine over the past decade. Down to the nanoscale, superparamagnetic iron oxide nanoparticles can only be magnetized in the presence of an external magnetic field, which makes them capable of forming stable colloids in a physio-biological medium. Their superparamagnetic property, together with other intrinsic properties, such as low cytotoxicity, colloidal stability, and bioactive molecule conjugation capability, makes such nanomagnets ideal in both in-vitro and in-vivo biomedical applications. In this review, a chemical, physical, and biological synthetic approach to prepare iron oxide-based nanomagnets with different physicochemical properties was illustrated and compared. The growing interest in iron oxide-based nanomagnets with multifunctionalities was explored in cancer diagnostics and treatment, focusing on their combined roles in a magnetic resonance contrast agent, hyperthermia, and magnetic force assisted drug delivery. Iron oxides as magnetic carriers in gene therapy were reviewed with a focus on the sophisticated design and construction of magnetic vectors. Finally, the iron oxide-based nanomagnet also represents a very promising tool in particle/cell interfacing in controlling cellular functionalities, such as adhesion, proliferation, differentiation, and cell patterning, in stem cell therapy and tissue engineering applications. PMID:22110854

  13. Development of a facile and effective electrochemical strategy for preparation of iron oxides (Fe3O4 and γ-Fe2O3) nanoparticles from aqueous and ethanol mediums and in situ PVC coating of Fe3O4 superparamagnetic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Karimzadeh, Isa; Dizaji, Hamid Rezagholipour; Aghazadeh, Mustafa

    2016-10-01

    To attain reliable and high performance in biomedical applications, magnetic particles with regular spherical shape, narrow size distributions, high-saturation magnetization, and good dispersion in liquid media is very important. Therefore, the synthesis of monodispersed, water-dispersible, and regular spherical superparamagnetic iron oxides nanoparticles (SPIONs) with high saturation magnetization will be of great importance. Here we report a facile, fact and simple electrochemical tactic for preparation of SPIONs and their one step in situ surface engineering in both aqueous and ethanol mediums. In this platform, optimum and simple electrochemical conditions were first constructed for preparation of Fe3O4 and γ-Fe2O3 nanoparticles in both ethanol and aqueous mediums, and monodispersed nanoparticles with superparamagnetic properties were prepared. The field emission scanning and transmission electron microscopy (FE-SEM and TEM) observations revealed that the electrodeposited nanoparticles have roughly spherical and homogeneous shape with narrow size distribution. Then, Fe3O4 nanoparticles were coated by polyvinyl chloride (PVC) during deposition process. The PVC coating on SPIONs surface was confirmed by Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), differential scanning calorimetry (DSC), and thermogravimetric (TG) analyses. Results of vibrating sample magnetometer (VSM) indicated that the prepared SPIONs exhibit superparamagnetic behavior including negligible remnant magnetization and negligible coercivity, and high saturation magnetization at room temperature. PVC coated SPIONs exhibited saturation magnetization value of 43.72 emu/g, and negligible remnant magnetization and coercivity (Mr~0.15 emu/g and Ce~0.5 Oe, respectively). Based on the obtained results, it was concluded this electrochemical strategy can be introduced as a novel and clean platform for preparation of variety polymer and drug coated/loaded SPIONs for

  14. Infrared nanosecond pulsed laser irradiation of stainless steel: Micro iron-oxide zones generation

    NASA Astrophysics Data System (ADS)

    Ortiz-Morales, M.; Frausto-Reyes, C.; Soto-Bernal, J. J.; Acosta-Ortiz, S. E.; Gonzalez-Mota, R.; Rosales-Candelas, I.

    2014-07-01

    Nanosecond-pulsed, infrared (1064 nm) laser irradiation was used to create periodic metal oxide coatings on the surface of two samples of commercial stainless steel at ambient conditions. A pattern of four different metal oxide zones was created using a galvanometer scanning head and a focused laser beam over each sample. This pattern is related to traverse direction of the laser beam scanning. Energy-dispersive X-ray spectroscopy (EDS) was used to find the elemental composition and Raman spectroscopy to characterize each oxide zone. Pulsed laser irradiation modified the composition of the stainless steel samples, affecting the concentration of the main components within each heat affected zone. The Raman spectra of the generated oxides have different intensity profiles, which suggest different oxide phases such as magnetite and maghemite. In addition, these oxides are not sensible to the laser power of the Raman system, as are the iron oxide powders reported in the literature. These experiments show that it is possible to generate periodic patterns of various iron oxide zones by laser irradiation, of stainless steel at ambient conditions, and that Raman spectroscopy is a useful punctual technique for the analysis and inspection of small oxide areas.

  15. Infrared nanosecond pulsed laser irradiation of stainless steel: micro iron-oxide zones generation.

    PubMed

    Ortiz-Morales, M; Frausto-Reyes, C; Soto-Bernal, J J; Acosta-Ortiz, S E; Gonzalez-Mota, R; Rosales-Candelas, I

    2014-07-15

    Nanosecond-pulsed, infrared (1064 nm) laser irradiation was used to create periodic metal oxide coatings on the surface of two samples of commercial stainless steel at ambient conditions. A pattern of four different metal oxide zones was created using a galvanometer scanning head and a focused laser beam over each sample. This pattern is related to traverse direction of the laser beam scanning. Energy-dispersive X-ray spectroscopy (EDS) was used to find the elemental composition and Raman spectroscopy to characterize each oxide zone. Pulsed laser irradiation modified the composition of the stainless steel samples, affecting the concentration of the main components within each heat affected zone. The Raman spectra of the generated oxides have different intensity profiles, which suggest different oxide phases such as magnetite and maghemite. In addition, these oxides are not sensible to the laser power of the Raman system, as are the iron oxide powders reported in the literature. These experiments show that it is possible to generate periodic patterns of various iron oxide zones by laser irradiation, of stainless steel at ambient conditions, and that Raman spectroscopy is a useful punctual technique for the analysis and inspection of small oxide areas.

  16. Functionalized graphene and graphene oxide solution via polyacrylate coating

    NASA Astrophysics Data System (ADS)

    Saha, Arindam; Basiruddin, Sk; Ray, S. C.; Roy, S. S.; Jana, Nikhil R.

    2010-12-01

    Water soluble graphene with various chemical- and biofunctionalities is essential for their different applications. However, exfoliated graphenes are insoluble in water and water soluble graphene oxide precipitate if they are chemically reduced to graphene. We have developed a polyacrylate coating method for graphene oxide and then chemically reduced it into graphene. We found that polyacrylate coating can improve the colloidal stability of both graphene and graphene oxide. The coated graphene has been characterized using XPS, FTIR, XRD and micro-Raman spectroscopy. The primary amine present on the coating backbone has been used to derive glucose functionalized water soluble graphene. Various other functional graphenes can be anticipated from the polyacrylate coated graphene.Water soluble graphene with various chemical- and biofunctionalities is essential for their different applications. However, exfoliated graphenes are insoluble in water and water soluble graphene oxide precipitate if they are chemically reduced to graphene. We have developed a polyacrylate coating method for graphene oxide and then chemically reduced it into graphene. We found that polyacrylate coating can improve the colloidal stability of both graphene and graphene oxide. The coated graphene has been characterized using XPS, FTIR, XRD and micro-Raman spectroscopy. The primary amine present on the coating backbone has been used to derive glucose functionalized water soluble graphene. Various other functional graphenes can be anticipated from the polyacrylate coated graphene. Electronic supplementary information (ESI) available: Details of XPS, XRD, AFM and FTIR of polymer coated GO and G and results of fluorescence quenching experiments. See DOI: 10.1039/c0nr00376j

  17. The convenient preparation of stable aryl-coated zerovalent iron nanoparticles

    PubMed Central

    Guselnikova, Olga A; Galanov, Andrey I; Gutakovskii, Anton K

    2015-01-01

    Summary A novel approach for the in situ synthesis of zerovalent aryl-coated iron nanoparticles (NPs) based on diazonium salt chemistry is proposed. Surface-modified zerovalent iron NPs (ZVI NPs) were prepared by simple chemical reduction of iron(III) chloride aqueous solution followed by in situ modification using water soluble arenediazonium tosylate. The resulting NPs, with average iron core diameter of 21 nm, were coated with a 10 nm thick organic layer to provide long-term protection in air for the highly reactive zerovalent iron core up to 180 °C. The surface-modified iron NPs possess a high grafting density of the aryl group on the NPs surface of 1.23 mmol/g. FTIR spectroscopy, XRD, HRTEM, TGA/DTA, and elemental analysis were performed in order to characterize the resulting material. PMID:26171295

  18. Iron, oxidative stress, and redox signaling in the cardiovascular system.

    PubMed

    Gudjoncik, Aurélie; Guenancia, Charles; Zeller, Marianne; Cottin, Yves; Vergely, Catherine; Rochette, Luc

    2014-08-01

    The redox state of the cell is predominantly dependent on an iron redox couple and is maintained within strict physiological limits. Iron is an essential metal for hemoglobin synthesis in erythrocytes, for oxidation-reduction reactions, and for cellular proliferation. The maintenance of stable iron concentrations requires the coordinated regulation of iron transport into plasma from dietary sources in the duodenum, from recycled senescent red cells in macrophages, and from storage in hepatocytes. The absorption of dietary iron, which is present in heme or nonheme form, is carried out by mature villus enterocytes of the duodenum and proximal jejunum. Multiple physiological processes are involved in maintaining iron homeostasis. These include its storage at the intracellular and extracellular level. Control of iron balance in the whole organism requires communication between sites of uptake, utilization, and storage. Key protein transporters and the molecules that regulate their activities have been identified. In this field, ferritins and hepcidin are the major regulator proteins. A variety of transcription factors may be activated depending on the level of oxidative stress, leading to the expression of different genes. Major preclinical and clinical trials have shown advances in iron-chelation therapy for the treatment of iron-overload disease as well as cardiovascular and chronic inflammatory diseases.

  19. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile

    PubMed Central

    Coricovac, Dorina-Elena; Moacă, Elena-Alina; Pinzaru, Iulia; Cîtu, Cosmin; Soica, Codruta; Mihali, Ciprian-Valentin; Păcurariu, Cornelia; Tutelyan, Victor A.; Tsatsakis, Aristidis; Dehelean, Cristina-Adriana

    2017-01-01

    The use of magnetic iron oxide nanoparticles in biomedicine has evolved intensely in the recent years due to the multiple applications of these nanomaterials, mainly in domains like cancer. The aim of the present study was: (i) to develop biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles as future theranostic tools for skin pathology and (ii) to test their effects in vitro on human keratinocytes (HaCat cells) and in vivo by employing an animal model of acute dermal toxicity. Biocompatible colloidal suspensions were obtained by coating the magnetic iron oxide nanoparticles resulted during the solution combustion synthesis with a double layer of oleic acid, as innovative procedure in increasing bioavailability. The colloidal suspensions were characterized in terms of dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro effects of these suspensions were tested by means of Alamar blue assay and the noxious effects at skin level were measured using non-invasive methods. The in vitro results indicated a lack of toxicity on normal human cells induced by the iron oxide nanoparticles colloidal suspensions after an exposure of 24 h to different concentrations (5, 10, and 25 μg·mL−1). The dermal acute toxicity test showed that the topical applications of the colloidal suspensions on female and male SKH-1 hairless mice were not associated with significant changes in the quality of barrier skin function.

  20. Are iron oxide nanoparticles safe? Current knowledge and future perspectives.

    PubMed

    Valdiglesias, Vanessa; Fernández-Bertólez, Natalia; Kiliç, Gözde; Costa, Carla; Costa, Solange; Fraga, Sonia; Bessa, Maria Joao; Pásaro, Eduardo; Teixeira, João Paulo; Laffon, Blanca

    2016-12-01

    Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure.

  1. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Tefft, Brandon J.; Uthamaraj, Susheil; Harburn, J. Jonathan; Klabusay, Martin; Dragomir-Daescu, Dan; Sandhu, Gurpreet S.

    2015-01-01

    Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering. PMID:26554870

  2. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents.

    PubMed

    Wei, He; Bruns, Oliver T; Kaul, Michael G; Hansen, Eric C; Barch, Mariya; Wiśniowska, Agata; Chen, Ou; Chen, Yue; Li, Nan; Okada, Satoshi; Cordero, Jose M; Heine, Markus; Farrar, Christian T; Montana, Daniel M; Adam, Gerhard; Ittrich, Harald; Jasanoff, Alan; Nielsen, Peter; Bawendi, Moungi G

    2017-02-28

    Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI contrast agents used in the clinic. GBCAs have shown efficacy and are safe to use with most patients; however, some GBCAs have a small risk of adverse effects, including nephrogenic systemic fibrosis (NSF), the untreatable condition recently linked to gadolinium (Gd) exposure during MRI with contrast. In addition, Gd deposition in the human brain has been reported following contrast, and this is now under investigation by the US Food and Drug Administration (FDA). To address a perceived need for a Gd-free contrast agent with pharmacokinetic and imaging properties comparable to GBCAs, we have designed and developed zwitterion-coated exceedingly small superparamagnetic iron oxide nanoparticles (ZES-SPIONs) consisting of ∼3-nm inorganic cores and ∼1-nm ultrathin hydrophilic shell. These ZES-SPIONs are free of Gd and show a high T1 contrast power. We demonstrate the potential of ZES-SPIONs in preclinical MRI and magnetic resonance angiography.

  3. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    PubMed Central

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with d-mannose, or coated with poly-l-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles. PMID:27217748

  4. Oxidation-Induced Degradable Nanogels for Iron Chelation

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-02-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells.

  5. Oxidation-Induced Degradable Nanogels for Iron Chelation

    PubMed Central

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-01-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174

  6. Photocatalysis over titania on iron oxide

    NASA Astrophysics Data System (ADS)

    Kim, Kwi Cheol; Han, Chong Soo

    2006-03-01

    Photocatalytic activity of TiO{2} deposited on spherical sub micron-sized Fe{2}O{3} particle was investigated under ultraviolet or visible light. The Fe{2}O{3} particles were prepared using a spray pyrolysis of aqueous Fe(NO{3})3 solution in air flow. TiO{2} was deposited on Fe{2}O{3} particle by irradiation of ultraviolet or visible light to the suspension of Fe{2}O{3} particle and a TiO{2} precursor. When TiO{2} was formed under visible light (TiO{2}/Fe{2}O{3}-VIS), there were reasonable trends in the phase shift of PAS signal and EDX signal of Ti. However, there was no trend for the case of ultra violet irradiation (TiO{2}/Fe{2}O{3}-UV). TiO{2}/Fe{2}O{3}-VIS showed higher rates of decomposition of organic compound, of decrease in contact angle of water drop, and of decrease in the number of E. coli under visible light than TiO{2}/Fe{2}O{3}-UV or TiO{2} film. From the results, it was suggested that TiO{2}/Fe{2}O{3}-VIS had a regular thin layer of TiO{2} compared to TiO{2}/Fe{2}O{3}-UV and the photo-generated carrier(s) in iron oxide migrated to the surface of TiO{2} in the case of TiO{2}/Fe{2}O{3}-VIS.

  7. High-temperature oxidation/corrosion of iron-based superalloys

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.; Smeggil, J. G.; Bailey, R. S.; Schuster, J. C.; Nowotny, H.

    1987-01-01

    The oxidation and sulfidation of several novel iron-base superalloys were evaluated in high-temperature cyclic tests. The experimental austenitic alloys examined were modifications of NASAUT-4GA which were developed for Stirling-engine application. The weight gains and resulting surface scales were measured and analyzed. Mixed oxide scales were found to form on all specimens exposed above 871 C. The build-up of these scales led to a depletion of Mn and Cr in a zone adjacent to the oxides. In addition, the initial oxidation of the Fe-rich alloy was inhibited by a thin but tenacious Si layer which formed at the interface between oxides and the parent layer. Sulfidation tests using Na2SO4 coatings resulted in the formation of a protective spinel and alpha-Fe2O3 phases. Preferential attack of the carbide phase by hydrogen was not observed after 350 h at 871 C.

  8. Modeling Oxidation Induced Stresses in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Freborg, A. M.; Petrus, G. J.; Brindley, William J.

    1998-01-01

    The use of thermal barrier coatings (TBC's) in gas turbines has increased dramatically in recent years, due mainly to the need for component protection from ever increasing service temperatures. Oxidation of the bond coat has been identified as an important contributing factor to spallation of the ceramic top coat during service. Additional variables found to influence TBC thermal cycle life include bond coat coefficient of thermal expansion, creep behavior of both the ceramic and bond coat layers, and modulus of elasticity. The purpose of this work was to characterize the effects of oxidation on the stress states within the TBC system, as well as to examine the interaction of oxidation with other factors affecting TBC life.

  9. Fluorophore Conjugated Iron Oxide Nanoparticle Labeling and Analysis of Engrafting Human Hematopoietic Stem Cells

    PubMed Central

    Maxwell, Dustin J.; Bonde, Jesper; Hess, David A.; Hohm, Sarah A.; Lahey, Ryan; Creer, Michael H.; Piwnica-Worms, David; Nolta, Jan A.

    2010-01-01

    The use of nanometer-sized iron oxide particles combined with molecular imaging techniques enable dynamic studies of homing and trafficking of human hematopoietic stem cells (HSC). Identifying clinically applicable strategies for loading nanoparticles into primitive HSC requires strictly defined culture conditions to maintain viability without inducing terminal differentiation. In the current study, fluorescent molecules were covalently linked to dextran-coated iron oxide nanoparticles (Feridex) to characterize human HSC labeling to monitor the engraftment process. Conjugating fluorophores to the dextran coat for FACS purification eliminated spurious signals from non-sequestered nanoparticle contaminants. A short-term defined incubation strategy was developed which allowed efficient labeling of both quiescent and cycling HSC, with no discernable toxicity in vitro or in vivo. Transplantation of purified primary human cord blood lineage-depleted and CD34+ cells into immunodeficient mice allowed detection of labeled human HSC in the recipient bones. Flow cytometry was used to precisely quantitate the cell populations that had sequestered the nanoparticles, and to follow their fate post-transplantation. Flow cytometry endpoint analysis confirmed the presence of nanoparticle-labeled human stem cells in the marrow. The use of fluorophore-labeled iron oxide nanoparticles for fluorescence imaging in combination with flow cytometry allows evaluation of labeling efficiencies and homing capabilities of defined human HSC subsets. PMID:18055451

  10. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface

  11. Controlled oxidation of iron nanoparticles in chemical vapour synthesis

    NASA Astrophysics Data System (ADS)

    Ruusunen, Jarno; Ihalainen, Mika; Koponen, Tarmo; Torvela, Tiina; Tenho, Mikko; Salonen, Jarno; Sippula, Olli; Joutsensaari, Jorma; Jokiniemi, Jorma; Lähde, Anna

    2014-02-01

    In the present study, iron oxide nanoparticles (primary particle size of 80-90 nm) with controlled oxidation state were prepared via an atmospheric pressure chemical vapour synthesis (APCVS) method. Iron pentacarbonyl [Fe(CO)5], a precursor material, was thermally decomposed to iron in the APCVS reactor. Subsequently, the iron was oxidized with controlled amount of oxygen in the reactor to produce nearly pure magnetite or haematite particles depending on the oxygen concentration. Size, morphology and crystal structure of the synthesized nanoparticles were studied with scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). In addition, thermodynamic equilibrium calculations and computational fluid dynamics model were used to predict the oxidation state of the iron oxides and the reaction conditions during mixing. Aggregates of crystalline particles were formed, determined as magnetite at the oxygen volumetric fraction of 0.1 % and haematite at volumetric fraction of 0.5 %, according to the XRD. The geometric mean electrical mobility diameter of the aggregates increased from 110 to 155 nm when the volumetric fraction of oxygen increased from 0.1 to 0.5 %, determined using the SMPS. The aggregates were highly sintered based on TEM analyses. As a conclusion, APCVS method can be used to produce nearly pure crystalline magnetite or haematite nanoparticles with controlled oxidation in a continuous one-stage gas-phase process.

  12. Synthesis of phase pure praseodymium barium copper iron oxide.

    PubMed

    Konne, Joshua L; Davis, Sean A; Glatzel, Stefan; Hall, Simon R

    2013-06-18

    The control of crystallization of praseodymium barium copper iron oxide, an intermediate temperature solid oxide fuel cell cathode material, has been demonstrated for the first time using a biotemplated sol-gel synthesis technique. The results obtained showed significant improvement in purity, synthesis time, surface area and simplicity over that previously reported.

  13. The Oxidation Of Iron In A Gel Using Consumer Chemicals

    ERIC Educational Resources Information Center

    Wright, Stephen W.; Folger, Marsha R.; Quinn, Ryan P.; Sauls, Frederick C.; Krone, Diane

    2005-01-01

    An experiment is conducted for the oxidation of iron in a gel using consumer chemicals, which is pertinent to the students' understanding of redox chemistry and of the relative oxidation potentials of various metals. The experiment can be carried out with consumer chemicals that might be purchased at a supermarket and commonly found in the home.

  14. Improved transmittance measurement with a magnesium oxide coated integrating sphere

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Spisz, E. W.

    1972-01-01

    Simple and convenient technique has been found for extending transmittance measurement capability of conventional magnesium oxide coated integrating sphere system at low (near ultraviolet) wavelengths. Technique can be used to determine effect of contaminants on window materials and can also be used for measurements on thermal control coatings and telescope mirrors.

  15. Evaluation of Oxidation Damage in Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1996-01-01

    A method based on the technique of dilatometry has been established to quantitatively evaluate the interfacial damage due to the oxidation in a thermal barrier coating system. Strain isolation and adhesion coefficients have been proposed to characterize the thermal barrier coating (TBC) performance based on its thermal expansion behavior. It has been found that, for a thermal barrier coating system consisting of ZrO2-8%Y2O3/FeCrAlY/4140 steel substrate, the oxidation of the bond coat and substrate significantly reduced the ceramic coating adherence, as inferred from the dilatometry measurements. The in-situ thermal expansion measurements under 30 deg C to 700 deg C thermal cycling in air showed that the adhesion coefficient, A(sub i) decreased by 25% during the first 35 oxidation cycles. Metallography showed that delamination occurred at both the ceramic/bond coat and bond coat/substrate interfaces. In addition, the strain isolation effect has been improved by increasing the FeCrAlY bond coat thickness. The strain isolation coefficient, Si, increased from about 0.04 to 0.25, as the bond coat thickness changed from 0.1 mm to 1.0 mm. It may be possible to design optimum values of strain isolation and interface adhesion coefficients to achieve the best TBC performance.

  16. Coatings for directional eutectics. [for corrosion and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Felten, E. J.; Strangman, T. E.; Ulion, N. E.

    1974-01-01

    Eleven coating systems based on MCrAlY overlay and diffusion aluminide prototypes were evaluated to determine their capability for protecting the gamma/gamma prime-delta directionally solidified eutectic alloy (Ni-20Cb-6Cr-2.5Al) in gas turbine engine applications. Furnace oxidation and hot corrosion, Mach 0.37 burner-rig, tensile ductility, stress-rupture and thermomechanical fatigue tests were used to evaluate the coated gamma/gamma prime-delta alloy. The diffusion aluminide coatings provided adequate oxidation resistance at 1144 K (1600 F) but offered very limited protection in 114 K (1600 F) hot corrosion and 1366 K (2000 F) oxidation tests. A platinum modified NiCrAlY overlay coating exhibited excellent performance in oxidation testing and had no adverse effects upon the eutectic alloy.

  17. Mn(II) removal from groundwater with manganese oxide-coated filter media.

    PubMed

    Piispanen, Jutta K; Sallanko, Jarmo T

    2010-11-01

    Removing soluble manganese from groundwater requires a strong chemical oxidant, such as ozone or potassium permanganate, or raising the pH to alkaline value (over pH 9). Biological or adsorption processes can also be applied. Filter media naturally or industrially coated with manganese oxide are effective in adsorptive manganese removal. In this work, a layer of commercial manganese oxide coated medium was added to the top of an experimental sand/anthracite filter column to improve manganese removal. The coated layer was ca 28 cm thick (20% of the total filter depth) and the sand layer was 110 cm thick. The coated layer enhanced the manganese removal markedly. Manganese removal increased by over 91%, and < 0.02 mg/L of manganese remained in the treated water. Also iron removal was enhanced. Filters with added coated layer recovered faster than reference filter from filter backwashes. Sodium hypochlorite feed, which was tested in regeneration of the filter medium, had a slight negative effect on the filter performance.

  18. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    NASA Astrophysics Data System (ADS)

    Gui, Minghui; Smuleac, Vasile; Ormsbee, Lindell E.; Sedlak, David L.; Bhattacharyya, Dibakar

    2012-05-01

    The potential for using hydroxyl radical (OH•) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H2O2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80-100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H2O2 by NP surface generated OH• were investigated. Depending on the ratio of iron and H2O2, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  19. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core–PNIPAM Shell Nanoparticles

    PubMed Central

    2015-01-01

    Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. “Grafting-to” and “grafting-from” methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction. PMID:26270412

  20. Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems.

    PubMed

    Tombácz, Etelka; Turcu, Rodica; Socoliuc, Vlad; Vékás, Ladislau

    2015-12-18

    Recent developments in nanotechnology and application of magnetic nanoparticles, in particular in magnetic iron oxide nanosystems, offer exciting possibilities for nanomedicine. Facile and precise synthesis procedures, high magnetic response, tunable morphologies and multiple bio-functionalities of single- and multi-core magnetic particles designed for nanomedicine applications are thoroughly appraised. This review focuses on the structural and magnetic characterization of the cores, the synthesis of single- and multicore iron oxide NPs, especially the design of the latter, as well as their protection, stabilization and functionalization by desired coating in order to protect against the corrosion of core, to prevent non-specific protein adsorption and particle aggregation in biological media, and to provide binding sites for targeting and therapeutic agents.

  1. Template assisted self-assembly of iron oxide nanoparticles: An x-ray structural analysis

    SciTech Connect

    Mishra, D.; Zabel, H.; Ulyanov, S. V.; Romanov, V. P.; Uzdin, V. M.

    2014-02-07

    We have fabricated by e-beam lithography periodic arrays of rectangular shaped trenches of different widths into Si substrates. The trenches were filled with iron oxide nanoparticles, 20 nm in diameter, by spin-coating them onto the Si substrate. The trenches have the purpose to assist the self-assembly of the iron oxide nanoparticles. Using x-ray scattering techniques, we have analyzed the structure factor of the trenches before and after filling in order to determine the filling factor. We present a theoretical analysis of the x-ray scattering function within the distorted-wave Born approximation and we present a quantitative comparison between theory and experiment.

  2. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide.

    PubMed

    Lim, Dong-Kwon; Barhoumi, Aoune; Wylie, Ryan G; Reznor, Gally; Langer, Robert S; Kohane, Daniel S

    2013-09-11

    We report plasmonic gold nanoshells and nanorods coated with reduced graphene oxide that produce an enhanced photothermal effect when stimulated by near-infrared (NIR) light. Electrostatic interactions between nanosized graphene oxide and gold nanoparticles followed by in situ chemical reduction generated reduced graphene oxide-coated nanoparticles; the coating was demonstrated using Raman and HR-TEM. Reduced graphene oxide-coated gold nanoparticles showed enhanced photothermal effect compared to noncoated or nonreduced graphene oxide-coated gold nanoparticles. Reduced graphene oxide-coated gold nanoparticles killed cells more rapidly than did noncoated or nonreduced graphene oxide-coated gold nanoparticles.

  3. Effect of green tea on iron status and oxidative stress in iron-loaded rats.

    PubMed

    Ounjaijean, S; Thephinlap, C; Khansuwan, U; Phisalapong, C; Fucharoen, S; Porter, J B; Srichairatanakool, S

    2008-07-01

    Plasma non-transferrin bound iron (NTBI) is potentially toxic and contributes to the generation of reactive oxygen species (ROS), consequently leading to tissue damage and organ dysfunction. Iron chelators and antioxidants are used for treatment of thalassemia patients. Green tea (GT) contains catechins derivatives that have many biological activities. The purpose of this study was to investigate the iron-chelating and free-radical scavenging capacities of green tea extract in vivo. Rats were injected ip with ferric citrate together with orally administered GT extract (GTE) for 4 months. Blood was collected monthly for measurement of iron overload and oxidative stress indicators. Plasma iron (PI) and total iron-binding capacity (TIBC) were quantified using bathophenanthroline method. Plasma NTBI was assayed with NTA chelation/HPLC. Plasma malonyldialdehyde (MDA) was determined by using the TBARS method. Erythrocyte oxidative stress was assessed using flow cytometry. Levels of PI, TIBC, NTBI and MDA, and erythrocyte ROS increased in the iron-loaded rats. Intervention with GT extract markedly decreased the PI and TIBC concentrations. It also lowered the transferrin saturation and effectively inhibited formation of NTBI. It also decreased the levels of erythrocyte ROS in week 4, 12 and 16. Therefore, green tea extract can decrease iron in plasma as well as eliminate lipid peroxidation in plasma, and destroy formation of erythrocyte ROS in the rats challenged with iron. The bifunctional effects could be beneficial in alleviating the iron and oxidative stress toxicity. In prospective, these GTE activities should be further examined in thalassemic animals or humans.

  4. Effects of surface chemistry and size on iron oxide nanoparticle delivery of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Shen, Christopher

    The discovery of RNA interference and the increasing understanding of disease genetics have created a new class of potential therapeutics based on oligonucleotides. This therapeutic class includes antisense molecules, small interfering RNA (siRNA), and microRNA modulators such as antagomirs (antisense directed against microRNA) and microRNA mimics, all of which function by altering gene expression at the translational level. While these molecules have the promise of treating a host of diseases from neurological disorders to cancer, a major hurdle is their inability to enter cells on their own, where they may render therapeutic effect. Nanotechnology is the engineering of materials at the nanometer scale and has gained significant interest for nucleic acid delivery due to its biologically relevant length-scale and amenability to multifunctionality. While a number of nanoparticle vehicles have shown promise for oligonucleotide delivery, there remains a lack of understanding of how nanoparticle coating and size affect these delivery processes. This dissertation seeks to elucidate some of these factors by evaluating oligonucleotide delivery efficiencies of a panel of iron oxide nanoparticles with varying cationic coatings and sizes. A panel of uniformly-sized nanoparticles was prepared with surface coatings comprised of various amine groups representing high and low pKas. A separate panel of nanoparticles with sizes of 40, 80, 150, and 200 nm but with the same cationic coating was also prepared. Results indicated that both nanoparticle surface coating and nanoparticle hydrodynamic size affect transfection efficiency. Specific particle coatings and sizes were identified that gave superior performance. The intracellular fate of iron oxide nanoparticles was also tracked by electron microscopy and suggests that they function via the proton sponge effect. The research presented in this dissertation may aid in the rational design of improved nanoparticle delivery vectors for

  5. Transmission electron microscopy of carbon-coated and iron-doped titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Anjum, Dalaver H.; Memon, Nasir K.; Ismail, Mohamed; Hedhili, Mohamed N.; Sharif, Usman; Chung, Suk Ho

    2016-09-01

    We present a study on the properties of iron (Fe)-doped and carbon (C)-coated titania (TiO2) nanoparticles (NPs) which has been compiled by using x-ray diffraction (XRD), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). These TiO2 NPs were prepared by using the flame synthesis method. This method allows the simultaneous C coating and Fe doping of TiO2 NPs. XRD investigations revealed that the phase of the prepared NPs was anatase TiO2. Conventional TEM analysis showed that the average size of the TiO2 NPs was about 65 nm and that the NPs were uniformly coated with the element C. Furthermore, from the x-ray energy dispersive spectrometry analysis, it was found that about 8 at.% Fe was present in the synthesized samples. High-resolution TEM (HRTEM) revealed the graphitized carbon structure of the layer surrounding the prepared TiO2 NPs. HRTEM analysis further revealed that the NPs possessed the crystalline structure of anatase titania. Energy-filtered TEM (EFTEM) analysis showed the C coating and Fe doping of the NPs. The ratio of L3 and L2 peaks for the Ti-L23 and Fe-L23 edges present in the core loss electron energy loss spectroscopy (EELS) revealed a +4 oxidation state for the Ti and a +3 oxidation state for the Fe. These EELS results were further confirmed with XPS analysis. The electronic properties of the samples were investigated by applying Kramers-Kronig analysis to the low-loss EELS spectra acquired from the prepared NPs. The presented results showed that the band gap energy of the TiO2 NPs decreased from an original value of 3.2 eV to about 2.2 eV, which is quite close to the ideal band gap energy of 1.65 eV for photocatalysis semiconductors. The observed decrease in band gap energy of the TiO2 NPs was attributed to the presence of Fe atoms at the lattice sites of the anatase TiO2 lattice. In short, C-coated and Fe-doped TiO2 NPs were synthesized with a rather cost-effective and comparatively easily scalable method. The

  6. HIGH TEMPERATURE OXIDATION PERFORMANCE OF ALUMINIDE COATINGS

    SciTech Connect

    Pint, B.A.; Zhang, Y.; Haynes, J.A.; Wright, I.G.

    2003-04-22

    In order to determine the potential benefits and limitations of aluminide coatings, coatings made by chemical vapor deposition (CVD) on Fe- and Ni-base alloy substrates are being evaluated in various high-temperature environments. Testing of coatings on representative ferritic (Fe-9Cr-1Mo) and austenitic (type 304L stainless steel) alloys has found that high frequency thermal cycling (1h cycle time) can significantly degrade the coating. Based on comparison with similar specimens with no thermal cycling or a longer cycle time (100h), this degradation was not due to Al loss from the coating but most likely because of the thermal expansion mismatch between the coating and the substrate. Several coated Ni-base alloys were tested in a high pressure (20atm) steam-CO2 environment for the ZEST (zero-emission steam turbine) program. Coated specimens showed less mass loss than the uncoated specimens after 1000h at 900 C and preliminary characterization examined the post-test coating structure and extent of attack.

  7. Nickel Oxide, Ceramic Insulated, High Temperature Coating.

    DTIC Science & Technology

    1987-01-27

    coating comprising an MCrAIY layer 22, a ceramic ronments. Aluminide coatings , (a nickel, cobalt, alumi...resistant layered Aluminide and MCrAIY, wherein M is a metal coating as recited in claim 1. wherein the thickness of selected from the group...MCrAIY layer is in the range of: 20% to coating as recitei in claim 17, wherein the thickness of 40% Cr, 5% to 15% AI; 0% to 1% Y; and the balance 55 said aluminide layer is in the range of one to five mils. being M. * 6O

  8. Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays.

    PubMed

    Cheng, J; Huang, T; Zheng, Y F

    2015-03-01

    Pure iron has been proven to be a potential biodegradable metal, but its degradation rate was too slow. To accelerate its biodegradation, micro-patterned Au disc films were deposited on the surface of pure iron by vacuum sputtering. The influence of Au disc films on the degradation of pure iron matrix in vitro was investigated in the present study. Electrochemical measurement results indicated that the corrosion current density of pure iron coated with micro-patterned Au disc films in Hank's solution was 4 times larger than that of the uncoated one, while the difference between the influences of micro-patterned Au discs with different diameters on the corrosion rate of pure iron was insignificant. Immersion test indicated that the corrosion depth for pure iron coated with Au disc films was about three times as that of bare pure iron. Both electrochemical test and immersion test revealed that the corrosion of pure iron matrix coated with Au disc array became more uniform.

  9. A chameleon catalyst for nonheme iron-promoted olefin oxidation.

    PubMed

    Iyer, Shyam R; Javadi, Maedeh Moshref; Feng, Yan; Hyun, Min Young; Oloo, Williamson N; Kim, Cheal; Que, Lawrence

    2014-11-18

    We report the chameleonic reactivity of two nonheme iron catalysts for olefin oxidation with H2O2 that switch from nearly exclusive cis-dihydroxylation of electron-poor olefins to the exclusive epoxidation of electron-rich olefins upon addition of acetic acid. This switching suggests a common precursor to the nucleophilic oxidant proposed to Fe(III)-η(2)-OOH and electrophilic oxidant proposed to Fe(V)(O)(OAc), and reversible coordination of acetic acid as a switching pathway.

  10. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI

    PubMed Central

    Lodhia, J; Mandarano, G; Ferris, NJ; Eu, P; Cowell, SF

    2010-01-01

    Contrast agents, such as iron oxide, enhance MR images by altering the relaxation times of tissues in which the agent is present. They can also be used to label targeted molecular imaging probes. Unfortunately, no molecular imaging probe is currently available on the clinical MRI market. A promising platform for MRI contrast agent development is nanotechnology, where superparamagnetic iron oxide nanoparticles (SPIONS) are tailored for MR contrast enhancement, and/or for molecular imaging. SPIONs can be produced using a range of methods and the choice of method will be influenced by the characteristics most important for a particular application. In addition, the ability to attach molecular markers to SPIONS heralds their application in molecular imaging. There are many reviews on SPION synthesis for MRI; however, these tend to be targeted to a chemistry audience. The development of MRI contrast agents attracts experienced researchers from many fields including some researchers with little knowledge of medical imaging or MRI. This situation presents medical radiation practitioners with opportunities for involvement, collaboration or leadership in research depending on their level of commitment and their ability to learn. Medical radiation practitioners already possess a large portion of the understanding, knowledge and skills necessary for involvement in MRI development and molecular imaging. Their expertise in imaging technology, patient care and radiation safety provides them with skills that are directly applicable to research on the development and application of SPIONs and MRI. In this paper we argue that MRI SPIONs, currently limited to major research centres, will have widespread clinical use in the future. We believe that knowledge about this growing area of research provides an opportunity for medical radiation practitioners to enhance their specialised expertise to ensure best practice in a truly multi-disciplinary environment. This review outlines how and

  11. A pentanuclear iron catalyst designed for water oxidation.

    PubMed

    Okamura, Masaya; Kondo, Mio; Kuga, Reiko; Kurashige, Yuki; Yanai, Takeshi; Hayami, Shinya; Praneeth, Vijayendran K K; Yoshida, Masaki; Yoneda, Ko; Kawata, Satoshi; Masaoka, Shigeyuki

    2016-02-25

    Although the oxidation of water is efficiently catalysed by the oxygen-evolving complex in photosystem II (refs 1 and 2), it remains one of the main bottlenecks when aiming for synthetic chemical fuel production powered by sunlight or electricity. Consequently, the development of active and stable water oxidation catalysts is crucial, with heterogeneous systems considered more suitable for practical use and their homogeneous counterparts more suitable for targeted, molecular-level design guided by mechanistic understanding. Research into the mechanism of water oxidation has resulted in a range of synthetic molecular catalysts, yet there remains much interest in systems that use abundant, inexpensive and environmentally benign metals such as iron (the most abundant transition metal in the Earth's crust and found in natural and synthetic oxidation catalysts). Water oxidation catalysts based on mononuclear iron complexes have been explored, but they often deactivate rapidly and exhibit relatively low activities. Here we report a pentanuclear iron complex that efficiently and robustly catalyses water oxidation with a turnover frequency of 1,900 per second, which is about three orders of magnitude larger than that of other iron-based catalysts. Electrochemical analysis confirms the redox flexibility of the system, characterized by six different oxidation states between Fe(II)5 and Fe(III)5; the Fe(III)5 state is active for oxidizing water. Quantum chemistry calculations indicate that the presence of adjacent active sites facilitates O-O bond formation with a reaction barrier of less than ten kilocalories per mole. Although the need for a high overpotential and the inability to operate in water-rich solutions limit the practicality of the present system, our findings clearly indicate that efficient water oxidation catalysts based on iron complexes can be created by ensuring that the system has redox flexibility and contains adjacent water-activation sites.

  12. A pentanuclear iron catalyst designed for water oxidation

    NASA Astrophysics Data System (ADS)

    Okamura, Masaya; Kondo, Mio; Kuga, Reiko; Kurashige, Yuki; Yanai, Takeshi; Hayami, Shinya; Praneeth, Vijayendran K. K.; Yoshida, Masaki; Yoneda, Ko; Kawata, Satoshi; Masaoka, Shigeyuki

    2016-02-01

    Although the oxidation of water is efficiently catalysed by the oxygen-evolving complex in photosystem II (refs 1 and 2), it remains one of the main bottlenecks when aiming for synthetic chemical fuel production powered by sunlight or electricity. Consequently, the development of active and stable water oxidation catalysts is crucial, with heterogeneous systems considered more suitable for practical use and their homogeneous counterparts more suitable for targeted, molecular-level design guided by mechanistic understanding. Research into the mechanism of water oxidation has resulted in a range of synthetic molecular catalysts, yet there remains much interest in systems that use abundant, inexpensive and environmentally benign metals such as iron (the most abundant transition metal in the Earth’s crust and found in natural and synthetic oxidation catalysts). Water oxidation catalysts based on mononuclear iron complexes have been explored, but they often deactivate rapidly and exhibit relatively low activities. Here we report a pentanuclear iron complex that efficiently and robustly catalyses water oxidation with a turnover frequency of 1,900 per second, which is about three orders of magnitude larger than that of other iron-based catalysts. Electrochemical analysis confirms the redox flexibility of the system, characterized by six different oxidation states between FeII5 and FeIII5; the FeIII5 state is active for oxidizing water. Quantum chemistry calculations indicate that the presence of adjacent active sites facilitates O-O bond formation with a reaction barrier of less than ten kilocalories per mole. Although the need for a high overpotential and the inability to operate in water-rich solutions limit the practicality of the present system, our findings clearly indicate that efficient water oxidation catalysts based on iron complexes can be created by ensuring that the system has redox flexibility and contains adjacent water-activation sites.

  13. Improved biocompatibility of thrombo-resistant iron-polysaccharides multilayer coatings on nitinols.

    PubMed

    Ma, Yan; Liu, Meng; Yue, Xiuli; Zha, Zhengbao; Dai, Zhifei

    2010-01-01

    Biocompatibility of two multilayer coatings of (Fe3+/Hep)10 and (Fe3+/DS/Fe3+/Hep)5 was comparatively analyzed with respect to protein adsorption, leukocyte adhesion and cell-material interaction. Both of them showed significantly high albumin-to-fibrinogen adsorption ratio, suggesting good biocompatibility. Furthermore, the (Fe3+/DS/Fe3+/Hep)5 coating was found to exhibit the lowest non-specific protein adsorption due to the incorporation of dextran sulfate. Compared with uncoated Nitinol surfaces, iron-polysaccharide multilayer coating presented no deformation of leukocytes, indicating no signs of inflammatory reactions. Cell growth, cell adhesion and cell metabolic activity were all in good condition, verifying both (Fe3+/Hep)10 and (Fe3+/DS/Fe3+/Hep)5 coatings had good cytocompatibility. Therefore, iron-polysaccharides multilayer coatings had greatly improved the biocompatibility of Nitinols.

  14. Size-dependent cytotoxicity and inflammatory responses of PEGylated silica-iron oxide nanocomposite size series

    NASA Astrophysics Data System (ADS)

    Injumpa, Wishulada; Ritprajak, Patcharee; Insin, Numpon

    2017-04-01

    Iron oxides nanoparticles have been utilized in biological systems and biomedical applications for many years because they are relatively safe and stable comparing to other magnetic nanomaterials. In some applications, iron oxide nanoparticles were modified with silica in order to be more stable in biological systems and able to be functionalized with various functional groups. Moreover, poly(ethylene glycol) (PEG) was one on the most used polymer to graft onto the nanoparticles in order to increase their biocompatibility, dispersibility and stability in aqueous solutions. Therefore, the nanocomposites comprising iron oxide nanoparticles, silica, and PEG could become multifunctional carriers combining superparamagnetic character, multi-functionality and high stability in biological environments. Herein, we reported the preparation of the nanocomposites and effects of their sizes on cytotoxicity and inflammatory responses. The PEGylated silica-iron oxide nanocomposites were prepared by coating of poly(poly(ethylene glycol) monomethyl ether methacrylate) (PPEGMA) on magnetic nanoparticle-silica nanocomposites via Atom Transfer Radical Polymerization (ATRP). The iron oxide nanoparticles were synthesized using a thermal decomposition method. The silica shells were then coated on iron oxides nanoparticles using reverse microemulsion and sol-gel methods. The size series of the nanocomposites with the diameter of 24.86±4.38, 45.24±5.00, 98.10±8.88 and 202.22±6.70 nm as measured using TEM were obtained. Thermogravimetric analysis (TGA) was used for the determination of % weight of PPEGMA on the nanocomposites showing the weight loss of ranging from 65% for smallest particles to 30% for largest particles. The various sizes (20, 40, 100, 200 nm) and concentrations (10, 100, 1000 μg/mL) of the nanocomposites were tested for their cytotoxicity in fibroblast and macrophage cell lines using MTT assay. The different sizes did not affect cell viability of fibroblast, albeit

  15. In Situ Probing Nucleation, Growth, and Aggregation of Iron Oxides in Geochemical Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Jun, Y.; Hu, Y.; Ray, J. R.

    2012-12-01

    Nucleation, growth, and aggregation of iron oxide nanoparticles can significantly alter the fate of organic and inorganic contaminants in geochemical aquatic systems. This talk will address how we can improve our understanding of nucleation, growth, and aggregation of iron oxide nanoparticles by providing more accurate quantitative and qualitative empirical information. In this study, a novel environmental setup—which allows time-resolved simultaneous measurements of small angle x-ray scattering (SAXS) and grazing incidence small-angle scattering (GISAXS) in the presence of bulk solution—was utilized for real-time monitoring of nanoparticle formation at water-mineral interfaces. This setup enabled us to probe the size, shape, and location of iron oxide nanoparticles on the substrate and in solution without dehydration of samples. Experiments were conducted with 10-4 M ferric ions in the presence of environmentally important and abundant anions (nitrate, chlorite, sulfate) and cations (aluminum) at pH = 3.7 ± 0.1. The substrates used were geologically ubiquitous media such as quartz, mica, and organic polymer-coated surfaces. Once ferric solutions were introduced, the homogeneous and heterogeneous nucleation of iron oxides occurred and the size and volume evolution of nanoparticles were monitored. To complement these observations, atomic force microscopy, high-resolution transmission electron microscopy, high-resolution x-ray diffraction, contact angle analysis, dynamic light scattering, and electrophoretic mobility analysis were utilized. Based on in situ measurements of initial nuclei evolution at aqueous interfaces, this approach provided new, important information for upscaling such as size, volume, surface area, and location (i.e., in solution vs. on mineral surfaces) of iron oxides precipitates formed in the presence of organic matter and different substrate morphological and chemical properties. Using this quantitative information, we identified the

  16. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-05-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples are exposed in air at 800 °C for 3000 h and oxidation rates are measured and oxide scale microstructures are investigated. Area-specific resistances (ASR) in air at 850 °C of coated and uncoated samples are also measured. A dual layered oxide scale formed on all coated samples. The outer layer consisted of Co, Mn, Fe and Cr oxide and the inner layer consisted of Cr oxide. The CeO2 was present as discrete particles in the outer oxide layer after exposure. The Cr oxide layer thicknesses and oxidations rates were significantly reduced for Co/CeO2 coated samples compared to for Co coated and uncoated samples. The ASR of all Crofer 22H samples increased significantly faster than of Crofer 22 APU samples which was likely due to the presence of SiO2 in the oxide/metal interface of Crofer 22H.

  17. Mechanical behavior of segmented oxide protected coatings

    SciTech Connect

    Patten, J.W.; Prater, J.T.; Hays, D.D.; Moss, R.W.

    1980-04-01

    Mechanically and thermally induced fractures were examined in sputtered coatings consisting of a NiCrAlY underlayer, either a thin or a thick transition layer graded from NiCrAlY to ZrO/sub 2/, and an outer ZrO/sub 2/ layer. A pronounced columnar (fibrous) microstructure was obtained, although the columnar boundaries in the ZrO/sub 2/ layers and in the thick transition layers were much more open than in the NiCrAlY, effectively producing a more segmented structure. Fractures in the coatings with thick transition layers always followed the columnar boundaries and did not affect coating adherence. Fractures in the coatings with thin transition layers were similar except that fractures in the transition layer and parallel to the layer plane were observed in addition to the columnar fractures and would be expected to result in loss of coating adherence.

  18. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chamorro, Susana; Gutiérrez, Lucía; Vaquero, María Pilar; Verdoy, Dolores; Salas, Gorka; Luengo, Yurena; Brenes, Agustín; José Teran, Francisco

    2015-05-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.

  19. Characterization of iron oxide layers using Auger electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Bizjak, Milan; Zalar, Anton; Panjan, Peter; Zorko, Benjamin; Praček, Borut

    2007-02-01

    Metals can form several kinds of oxides. Iron forms wustite (FeO), magnetite (FeO + Fe 2O 3 or Fe 3O 4) and haematite (Fe 2O 3). Iron oxides, especially magnetite, are used for insulation between the lamellas of an electromotor made of electromagnetic sheet. In this work, iron oxide layers were characterized on industrial samples of electromagnetic sheet by AES depth profile analysis, and iron oxides with known chemical composition were used as reference samples, i.e. a magnetite mineral and a standard haematite reference sample. The magnetite mineral was chosen because it can be found in nature in a very pure form. The selection of reference samples was also verified on samples with an oxide layer of known composition, which were prepared by sputter deposition. The composition of the sputtered oxide layers was analysed by the weight-gain method and Rutherford backscattering without the use of standard reference materials (SRM), and the results were then compared with those obtained by AES depth profile analysis.

  20. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells

    PubMed Central

    Wu, Xinying; Tan, Yanbin; Mao, Hui; Zhang, Minming

    2010-01-01

    Iron oxide nanoparticles (IONPs) have been employed for hyperthermia treatments, stem cell therapies, cell labeling, and imaging modalities. The biocompatibility and cytotoxic effects of iron oxide nanoparticles when used in biomedical applications, however, are an ongoing concern. Endothelial cells have a critical role in this research dealing with tumors, cardiovascular disease and inflammation. However, there is little information dealing with the biologic effects of IONPs on the endothelial cell. This paper deals with the influence of dextran and citric acid coated IONPs on the behavior and function of human umbilical vein endothelial cells (HUVECs). After exposing endothelial cells to IONPs, dose-dependent effects on HUVECs viability, cytoskeleton and function were determined. Both citric acid and dextran coated particles appeared to be largely internalized by HUVECs through endocytosis and contribute to eventual cell death possibly by apoptosis. Cytoskeletal structures were greatly disrupted, as evidenced by diminished vinculin spots, and disorganized actin fiber and tubulin networks. The capacity of HUVECs to form a vascular network on Matrigel™ diminished after exposure to IONPs. Cell migration/invasion were inhibited significantly even at very low iron concentrations (0.1 mM). The results of this study indicate the great importance of thoroughly understanding nanoparticle-cell interactions, and the potential to exploit this understanding in tumor therapy applications involving IONPs as thermo/chemoembolization agents. PMID:20957160

  1. Investigation of anodic oxide coatings on zirconium after heat treatment

    NASA Astrophysics Data System (ADS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-08-01

    Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500-800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment.

  2. Virus-Templated Near-Amorphous Iron Oxide Nanotubes.

    PubMed

    Shah, Sachin N; Khan, Abid A; Espinosa, Ana; Garcia, Miguel A; Nuansing, Wiwat; Ungureanu, Mariana; Heddle, Jonathan G; Chuvilin, Andrey L; Wege, Christina; Bittner, Alexander M

    2016-06-14

    We present a simple synthesis of iron oxide nanotubes, grown under very mild conditions from a solution containing Fe(II) and Fe(III), on rod-shaped tobacco mosaic virus templates. Their well-defined shape and surface chemistry suggest that these robust bionanoparticles are a versatile platform for synthesis of small, thin mineral tubes, which was achieved efficiently. Various characterization tools were used to explore the iron oxide in detail: Electron microscopy (SEM, TEM), magnetometry (SQUID-VSM), diffraction (XRD, TEM-SAED), electron spectroscopies (EELS, EDX, XPS), and X-ray absorption (XANES with EXAFS analysis). They allowed determination of the structure, crystallinity, magnetic properties, and composition of the tubes. The protein surface of the viral templates was crucial to nucleate iron oxide, exhibiting analogies to biomineralization in natural compartments such as ferritin cages.

  3. Manganese- and iron-dependent marine methane oxidation.

    PubMed

    Beal, Emily J; House, Christopher H; Orphan, Victoria J

    2009-07-10

    Anaerobic methanotrophs help regulate Earth's climate and may have been an important part of the microbial ecosystem on the early Earth. The anaerobic oxidation of methane (AOM) is often thought of as a sulfate-dependent process, despite the fact that other electron acceptors are more energetically favorable. Here, we show that microorganisms from marine methane-seep sediment in the Eel River Basin in California are capable of using manganese (birnessite) and iron (ferrihydrite) to oxidize methane, revealing that marine AOM is coupled, either directly or indirectly, to a larger variety of oxidants than previously thought. Large amounts of manganese and iron are provided to oceans from rivers, indicating that manganese- and iron-dependent AOM have the potential to be globally important.

  4. Generation of drugs coated iron nanoparticles through high energy ball milling

    NASA Astrophysics Data System (ADS)

    Radhika Devi, A.; Chelvane, J. A.; Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh; Murty, B. S.

    2014-03-01

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  5. Generation of drugs coated iron nanoparticles through high energy ball milling

    SciTech Connect

    Radhika Devi, A.; Murty, B. S.; Chelvane, J. A.; Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  6. Arsenate adsorption onto iron oxide amended rice husk char.

    PubMed

    Cope, Christopher O; Webster, Damon S; Sabatini, David A

    2014-08-01

    In this study, rice husks were charred at 550 °C in a partially sealed ceramic vessel for 30minutes to create a high specific surface area (SSA) rice husk char (RHC). The RHC was then amended with iron oxides using dissolved ferric nitrate, Fe(NO3)3⋅9H2O, to provide a surface chemistry conducive to arsenic adsorption. The 550 °C iron oxide amended rice husk char's (550 IOA-RHC's) SSA was nearly 2.5 orders of magnitude higher and the arsenate adsorptive level was nearly 2 orders of magnitude higher than those reported for iron oxide amended sand, thus indicating a positive relationship between post-amendment SSA and arsenate adsorptive levels. Rice husks were then charred at temperatures ranging from 450 °C to 1050 °C to create an even higher SSA material, which might further increase arsenate adsorptive levels. The 950 °C RHC was chosen for amendment due to its high SSA and feasibility of being produced in the field. Once amended, the 950 °C iron oxide amended rice husk char (950 IOA-RHC) improved the arsenate adsorption capacity by thus confirming a positive relationship, though not a linear relationship, between post-amendment SSA and arsenic adsorptive capacity. Further study demonstrated that post-amendment mesoporous volume and mesoporous surface area appear to be better indicators of arsenic adsorptive capacity than SSA or iron content.

  7. Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles.

    PubMed

    Palma, Susana I C J; Marciello, Marzia; Carvalho, Alexandra; Veintemillas-Verdaguer, Sabino; Morales, Maria del Puerto; Roque, Ana C A

    2015-01-01

    Oleic acid coated iron oxide nanoparticles synthesized by thermal decomposition in organic medium are highly monodisperse but at the same time are unsuitable for biological applications. Ligand-exchange reactions are useful to make their surface hydrophilic. However, these could alter some structural and magnetic properties of the modified particles. Here we present a comprehensive study and comparison of the effects of employing either citric acid (CA) or meso-2,3-dimercaptosuccinic acid (DMSA) ligand-exchange protocols for phase transfer of monodisperse hydrophobic iron oxide nanoparticles produced by thermal decomposition of Fe(acac)3 in benzyl ether. We show the excellent hydrodynamic size distribution and colloidal stability of the hydrophilic particles obtained by the two protocols and confirm that there is a certain degree of oxidation caused by the ligand-exchange. CA revealed to be more aggressive towards the iron oxide surface than DMSA and greatly reduced the saturation magnetization values and initial susceptibility of the resulting particles compared to the native ones. Besides being milder and more straightforward to perform, the DMSA ligand exchange protocol produces MNP chemically more versatile for further functionalization possibilities. This versatility is shown through the covalent linkage of gum Arabic onto MNP-DMSA using carboxyl and thiol based chemical routes and yielding particles with comparable properties.

  8. Oxidation resistant coatings for CoSb3

    NASA Astrophysics Data System (ADS)

    Zawadzka, K.; Godlewska, E.; Mars, K.; Nocun, M.

    2012-06-01

    Doped cobalt antimonides, are used as components of thermoelectric devices at temperatures not exceeding 450 °C because of poor thermal and chemical stability. In absence of oxygen they degrade by sublimation of antimony, while in air they easily oxidize to form volatile antimony oxides and non-volatile thick double oxide scales [1]. In both cases, protective coatings are indispensable to ensure safe performance of thermoelectric devices over extended times. The most promising solution, reported so far, is a thick aerogel coating, which practically stops antimony loss by sublimation. The assessment of coating effectiveness is generally based on thermogravimetric tests in vacuum, so permeability of oxygen and protection from oxidation cannot be evaluated. The paper presents investigations on the development of protective coatings, which would prevent oxidation of CoSb3. Two types of coatings were applied: magnetron sputtered Cr-Si thin layers [2] and thick enamel layers. Testing involved interrupted oxidation in air for 20-80 h at 500 °C and 600 °C. The Cr-Si thin layers appeared oxygen-tight at 500 °C while the enamel layers - even at 600 °C.

  9. Porcelain enamelled absorbers, coated by spectral selective tin oxide

    SciTech Connect

    Simonis, F.; Faber, A.J.; Hoogendoorn, C.J.

    1987-02-01

    The use of porcelain enamelled absorbers in flat plate collectors features longevity thanks to the durability and thermal stability of the enamel finish. The porcelain enamel can be made spectral selective by coating with doped tin oxide or indium oxide. The application procedure involves an enamelling step followed by a pyrosol process with tin or indium compounds. The optical properties of tin oxide coated enamel yield values of 0.90-0.92 absorptance and 0.13-0.18 hemispherical emittance. The temperature dependence of the emittance is very small. The thermal stability has been proved up to 400/sup 0/C in air.

  10. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    SciTech Connect

    Somorjai, G.A.; Leygraf, C.H.

    1984-07-17

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  11. Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery

    PubMed Central

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics, an area used to combine therapeutics and diagnostics. The recent applications of NPs in miRNA delivery are also reviewed. PMID:24396508

  12. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  13. Structural changes in iron-cobalt oxide nanosystems

    NASA Astrophysics Data System (ADS)

    Nishchev, K. N.; Golub'ev, M. A.; Maksimov, Yu. V.; Beglov, V. I.; Kyashkin, V. M.; Panov, A. A.

    2015-05-01

    The structure of binary iron-cobalt oxide nanosystems—precursors of bimetallic catalysts—is studied by Mössbauer spectroscopy, X-ray diffraction, and small-angle X-ray scattering. The oxide system under study represents a promising material for creating new metallic nanocatalysts for ammonia synthesis. The structural evolution in the composition range 100Fe/0Co-5Fe/95Co is found to correspond to the transition from fine-grained α-Fe2O3 to mixed iron-cobalt spinels of various compositions and degrees of dispersity.

  14. Recovery of iron oxide from coal fly ash

    DOEpatents

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  15. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  16. Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics.

    PubMed

    Santhosh, Poornima Budime; Ulrih, Nataša Poklar

    2013-08-09

    Iron-oxide nanoparticles of small dimensions that have superparamagnetic properties show immense potential to revolutionize the future of cancer theranostics, the combinatorial diagnosis and therapeutic approach towards cancer. Superparamagnetic iron-oxide nanoparticles (SPIONs) have unique magnetic properties, due to which they show excellent tumor-targeting efficiency, and this paves the way for effective personalized cancer treatment. The aim of this review is to focus on the ability of SPIONs to perform multiple roles in the field of cancer biology, such as in diagnosis, monitoring, targeting and therapy. Also, other topics are discussed, including the synthesis of SPIONs, the challenges and recent advances.

  17. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles.

    PubMed

    Laurent, Sophie; Dutz, Silvio; Häfeli, Urs O; Mahmoudi, Morteza

    2011-08-10

    Due to their unique magnetic properties, excellent biocompatibility as well as multi-purpose biomedical potential (e.g., applications in cancer therapy and general drug delivery), superparamagnetic iron oxide nanoparticles (SPIONs) are attracting increasing attention in both pharmaceutical and industrial communities. The precise control of the physiochemical properties of these magnetic systems is crucial for hyperthermia applications, as the induced heat is highly dependent on these properties. In this review, the limitations and recent advances in the development of superparamagnetic iron oxide nanoparticles for hyperthermia are presented.

  18. High specificity targeting and detection of human neuroblastoma using multifunctional anti-GD2 iron-oxide nanoparticles

    PubMed Central

    Baiu, Dana C.; Artz, Nathan S.; McElreath, Meghan R.; Menapace, Bryan D.; Hernando, Diego; Reeder, Scott B.; Grüttner, Cordula; Otto, Mario

    2015-01-01

    Aim To develop biocompatible, tumor-specific multifunctional iron oxide nanoconstructs targeting neuroblastoma, an aggressive pediatric malignancy. Materials & methods Clinical-grade humanized monoclonal antibody (hu14.18K322A), designed to target GD2 antigen on neuroblastoma with reduced non-specific immune interactions, was conjugated to hydroxyethyl starch-coated iron oxide nanoparticles. Targeting capability in vitro and in vivo was assessed by immunofluorescence, electron microscopy, analytical spectrophotometry, histochemistry and magnetic resonance R2* relaxometry. Results The biocompatible nanoconstructs demonstrated high tumor-specificity in vitro and in vivo, and low background uptake in a mouse flank xenograft model. Specific accumulation in tumors enabled particle visualization and quantification by magnetic resonance R2* mapping. Conclusions Our findings support the further development towards clinical application of this anti-GD2 iron-oxide nanoconstruct as diagnostic and therapeutic scaffold for neuroblastoma and potentially other GD2 positive malignancies. PMID:26420448

  19. Evaluation of Zinc-Coated Ductile Iron Pipe

    SciTech Connect

    Shipilov, Sergei A.; Unocic, Kinga A.; Pint, Bruce A.

    2016-09-30

    Oak Ridge National Laboratory (ORNL) received $1m in funding from the U.S. Bureau of Reclamation in order to evaluate the performance of zinc-coated ductile iron pipe (DIP) in highly- and severely-corrosive soils. The project started in May 2016 and a final report will be issued March 31, 2017. The project is being led by the Corrosion Science and Technology Group in the Materials Science and Technology Division at ORNL. This interim report is based on the work performed by an ORNL multidisciplinary team in the last two months. The project has been broken down into four tasks. The first task is to characterize commercially available DIP. Specimens from the three major U.S. DIP manufacturers were purchased for this study via third party vendors and are being characterized. The second task is to evaluate available data on DIP corrosion in soils. The largest data set was collected by the National Bureau of Standards (now NIST) from 1910-1952 and included 95 different kinds of soil at 128 sites across the country. Because of the large amount of data and limited agreement on what defines “corrosive” soil, staff from the Computational Sciences and Engineering Division have been consulted and are currently analyzing the data using existing algorithms to look for trends between the corrosion rates and the various soil characteristics such as resistivity and pH. The third task is to develop a long-term test plan to evaluate DIP and the fourth task is to develop an accelerated test procedure to reduce the time required to evaluate soil corrosion by 1-2 orders of magnitude. By developing a better understanding of what makes a soil corrosive, including the chemical and physical properties, it may be possible to model the long-term behavior of DIP. A full report on the work will be submitted by the March 2017 deadline. It appears that a sustained, multi-year effort in this area would be of great benefit to the Bureau of Reclamation, to the DIP industry and to the country

  20. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    EPA Science Inventory

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  1. Influence of carbonyl iron particle coating with silica on the properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Małecki, P.; Królewicz, M.; Hiptmair, F.; Krzak, J.; Kaleta, J.; Major, Z.; Pigłowski, J.

    2016-10-01

    In this paper, the influence of encapsulating carbonyl iron particles with various silica coatings on the properties of magnetorheological elastomers (MREs) was investigated. A soft styrene-ethylene-butylene-styrene thermoplastic elastomer was used as the composite’s polymer matrix. Spherical carbonyl iron powder (CIP) acted as the ferromagnetic filler. In order to improve the metal-polymer interaction, carbonyl iron particles were coated with two types of single and six types of double silica layers. The first layer was created through a TMOS or TEOS hydrolysis whereas the second one was composed of organosilanes. The mechanical properties of MREs containing 38.5 vol% of CIP were analysed under dynamic loading conditions. To investigate the magnetorheological effect in these composites, a 430 mT magnetic field, generated by an array of permanent magnets, was applied during testing. The results revealed that the magnetomechanical response of the MREs differs substantially, depending on the kind of particle coating.

  2. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    NASA Astrophysics Data System (ADS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-10-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION.

  3. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gabbasov, Raul; Polikarpov, Michael; Cherepanov, Valery; Chuev, Michael; Mischenko, Iliya; Lomov, Andrey; Wang, Andrew; Panchenko, Vladislav

    2015-04-01

    Water soluble magnetite iron oxide nanoparticles with oleic polymer coating and average diameters in the range of 5-25 nm, previously determined by TEM, were characterized using Mössbauer, magnetization and X-ray diffraction measurements. Comparative analysis of the results demonstrated a large diversity of magnetic relaxation regimes. Analysis showed the presence of an additional impurity component in the 25 nm nanoparticles, with principally different magnetic nature at the magnetite core. In some cases, X-ray diffraction measurements were unable to estimate the size of the magnetic core and Mössbauer data were necessary for the correct interpretation of the experimental results.

  4. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia.

    PubMed

    Gonzales-Weimuller, Marcela; Zeisberger, Matthias; Krishnan, Kannan M

    2009-07-01

    Using the thermal decomposition of organometallics method we have synthesized high-quality, iron oxide nanoparticles of tailorable size up to ~15nm and transferred them to a water phase by coating with a biocompatible polymer. The magnetic behavior of these particles was measured and fit to a log-normal distribution using the Chantrell method and their polydispersity was confirmed to be very narrow. By performing calorimetry measurements with these monodisperse particles we have unambiguously demonstrated, for the first time, that at a given frequency, heating rates of superparamagnetic particles are dependent on particle size, in agreement with earlier theoretical predictions.

  5. Iron oxides, dissolved silica, and regulation of marine phosphate concentration

    NASA Astrophysics Data System (ADS)

    Planavsky, N.; Reinhard, C.; Lyons, T.

    2008-12-01

    Phosphorous concentrations in iron oxide-rich sediments reflect orthophosphate levels in the water column from which iron oxides precipitated. Sediment P/Fe ratios are also strongly influenced by the concentrations of dissolved species that inhibit orthophosphate-to-ferrihydrite sorption, most notably silica. It may, therefore, be possible to use P/Fe ratios in iron oxide-rich sediments to estimate past dissolved P concentrations, if one considers the evolution of the silica cycle. A compilation of Fe and P data in iron oxide-rich sediments through time reveals an increase in P/Fe ratios after the Jurassic. We propose that this trend indicates evolution of the iron-oxide phosphate removal mechanism caused by decreasing levels of sorption inhibition by dissolved silica. The large difference in P/Fe ratios in Cenozoic versus older iron-oxide rich sediments can be linked with Si drawdown caused by the proliferation of siliceous plankton in the Cretaceous. There is also a late Mesozoic or Cenozoic increase in V/Fe ratios, which provides additional evidence for lower ferrihydrite anion sorption efficiency prior to diatom radiation. P/Fe ratios in iron oxide-rich sediments from the early and middle Phanerozoic are comparable to the ratios in iron formations previously presented as evidence for an early Precambrian phosphate crisis (Bjerrum and Canfield, 2002, Nature, 417:159-162). Given the compelling evidence for higher Si concentrations in the Precambrian compared to the Phanerozoic and dissolved P concentrations comparable to modern levels throughout the Phanerozoic, the presented trend of P/Fe ratios suggests dissolved P concentrations were higher in Precambrian than Phanerozoic oceans. High dissolved P levels in the Precambrian may have been linked to inhibited carbonate fluorapatite (CFA) formation as a result of persistently high levels of carbonate supersaturation. Carbonate ion substitution into CFA scales with the ambient carbonate ion activity and increases

  6. Deposition rates of oxidized iron on Mars

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1993-01-01

    The reddened oxidized surface of Mars is indicative of temporal interactions between the Martian atmosphere and its surface. During the evolution of the Martian regolith, primary ferromagnesian silicate and sulfide minerals in basaltic rocks apparently have been oxidized to secondary ferric-bearing assemblages. To evaluate how and when such oxidized deposits were formed on Mars, information about the mechanisms and rates of chemical weathering of Fe(2+)-bearing minerals has been determined. In this paper, mechanisms and rates of deposition of ferric oxide phases on the Martian surface are discussed.

  7. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  8. Iron as a catalyst of human low-density lipoprotein oxidation: Critical factors involved in its oxidant properties.

    PubMed

    Lapenna, Domenico; Ciofani, Giuliano; Obletter, Gabriele

    2017-05-01

    Iron-induced human LDL oxidation, which is relevant to atherosclerosis, has not yet been properly investigated. We addressed such issue using iron(II) and (III) basically in the presence of phosphates, which are present in vivo and influence iron oxidative properties, at pH 4.5 and 7.4, representative, respectively, of the lysosomal and plasma environment. In 10mM phosphate buffered saline (PBS), iron(II) induces substantial LDL oxidation at pH 4.5 at low micromolar concentrations, while at pH 7.4 has low oxidative effects; iron(III) promotes small LDL oxidation only at pH 4.5. In 10mM sodium acetate/NaCl buffer, pH 4.5, iron-induced LDL oxidation is far higher than in PBS, highlighting the relevance of phosphates in the inhibitory modulation of iron-induced LDL oxidation. LDL oxidation is related to iron binding to the protein and lipid moiety of LDL, and requires the presence of iron(II) bound to LDL together with iron(III). Chemical modification of LDL carboxyl groups, which could bind iron especially at pH 4.5, decreases significantly iron binding to LDL and iron-induced LDL oxidation. Hydroxyl radical scavengers are ineffective on iron-induced LDL oxidation, which is inhibited by metal chelation, scavengers of alkoxyl/peroxyl radicals, or removal of LDL lipid hydroperoxides (LOOH). Overall, substantial human LDL oxidation is induced LOOH-dependently by iron(II) at pH 4.5 even in the presence of phosphates, suggesting the occurrence of iron(II)-induced LDL oxidation in vivo within lysosomes, where pH is about 4.5, iron(II) and phosphates coexist, plasma with its antioxidants is absent, and glutathione peroxidase is poorly expressed resulting in LOOH accumulation.

  9. Distribution Behavior of Phosphorus and Metallization of Iron Oxide in Carbothermic Reduction of High-Phosphorus Iron Ore

    NASA Astrophysics Data System (ADS)

    Cha, Ji-Whoe; Kim, Dong-Yuk; Jung, Sung-Mo

    2015-10-01

    Distribution behavior of phosphorus and metallization of iron ore in the carbothermic reduction of high-phosphorus iron ore were investigated. Reduction degree of the iron oxide was evaluated by quadruple mass spectrometry connected to thermogravimetric analysis. The distribution of some elements including phosphorus was examined by electron probe micro-analyzer mapping analyses. The reduction behavior of high-phosphorus iron ore was evaluated as a function of reduction temperature, C/O molar ratio, and CaO addition. High reduction temperature accelerated the reduction of both iron oxide and hydroxylapatite, and high C/O molar ratio also promotes both of them. Those were contradictory to the targets of higher reduction degree of iron oxide and of lower one of hydroxylapatite. It was confirmed that appropriate amount of CaO addition could enhance the reduction of iron oxide, and regulate the reduction of hydroxylapatite.

  10. Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Wu, Shen; Sun, Aizhi; Zhai, Fuqiang; Wang, Jin; Zhang, Qian; Xu, Wenhuan; Logan, Philip; Volinsky, Alex A.

    2012-03-01

    This paper focuses on novel iron-based soft magnetic composites synthesis utilizing high thermal stability silicone resin to coat iron powder. The effect of an annealing treatment on the magnetic properties of synthesized magnets was investigated. The coated silicone insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Silicone uniformly coated the powder surface, resulting in a reduction of the imaginary part of the permeability, thereby increasing the electrical resistivity and the operating frequency of the synthesized magnets. The annealing treatment increased the initial permeability, the maximum permeability, and the magnetic induction, and decreased the coercivity. Annealing at 580 °C increased the maximum permeability by 72.5%. The result of annealing at 580 °C shows that the ferromagnetic resonance frequency increased from 2 kHz for conventional epoxy resin coated samples to 80 kHz for the silicone resin insulated composites.

  11. Development of RF sputtered chromium oxide coating for wear application

    NASA Technical Reports Server (NTRS)

    Bhushan, B.

    1979-01-01

    The radio frequency sputtering technique was used to deposite a hard refractory, chromium oxide coating on an Inconel X-750 foil 0.1 mm thick. Optimized sputtering parameters for a smooth and adherent coating were found to be as follows: target-to-substrate spacing, 41.3 mm; argon pressure, 5-10 mTorr; total power to the sputtering module, 400 W (voltage at the target, 1600 V), and a water-cooled substrate. The coating on the annealed foil was more adherent than that on the heat-treated foil. Substrate biasing during the sputter deposition of Cr2O3 adversely affected adherence by removing naturally occurring interfacial oxide layers. The deposited coatings were amorphous and oxygen deficient. Since amorphous materials are extremely hard, the structure was considered to be desirable.

  12. Oxidation resistant slurry coating for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Rybicki, G. C. (Inventor)

    1985-01-01

    An oxidation resistant coating is produced on carbon-base materials, and the same processing step effects an infiltration of the substrate with silicon containing material. The process comprises making a slurry of nickel and silicon powders in a nitrocellulose lacquer, spraying onto the graphite or carbon-carbon substrate, and sintering in vacuum to form a fused coating that wets and covers the surface as well as penetrates into the pores of the substrate. Optimum wetting and infiltration occurs in the range of Ni-60 w/o Si to Ni-90 w/o Si with deposited thicknesses of 25-100 mg/sq. cm. Sintering temperatures of about 1200 C to about 1400 C are used, depending on the melting point of the specific coating composition. The sintered coating results in Ni-Si intermetallic phases and SiC, both of which are highly oxidation resistant.

  13. Investigation of the oxide adhesion and growth characteristics on platinum-modified aluminide coatings. Master's thesis

    SciTech Connect

    Farrell, M.S.

    1986-09-01

    The operating environment for superalloy blades and vanes in gas turbine engines has necessitated the developed of alloy coatings to achieve satisfactory resistance of the metal to oxidation and hot corrosion. Aluminide coatings were initially developed to meet this need. Recently it was shown that platinum additions significantly improve the oxidation resistance of these aluminide coatings. The effects of pre-aluminizing surface smoothness and coating structure for both platinum modified and unmodified aluminide coatings on IN-738 in a cyclic oxidation environment at 1100 C were examined. Weight change measurements were used to determine the coating oxide scale adherence characteristics and to quantify the cyclic oxidation behavior of the various coating structures.

  14. Iron Partitioning and Oxidation State in Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Piet, H.; Badro, J.; Nabiei, F.; Dennenwaldt, T.; Shim, S. H. D.; Cantoni, M.; Hébert, C.; Gillet, P.

    2015-12-01

    Valence state and concentrations of iron in lower mantle phases have strong effects on their chemical and physical properties. Experimental studies have reported stark differences in iron partitioning between bridgmanite (Brg) and ferropericlase (Fp) for San Carlos olivine [1] and pyrolite [2] systems. We recently performed experiments at lower mantle conditions for an Al-rich olivine system [3] and observed an iron enrichment of the silicate phase very similar to that in pyrolite. Mössbauer studies [4] have shown that in the presence of aluminum non negligible amounts of Fe3+ could be incorporated in bridgmanite explaining the observed iron enrichment. Non negligible amounts of Fe3+ in the lower mantle could influence transport properties of the phases [5]. The evaluation of ferrous and ferric iron concentrations in lower mantle mineral assemblages is then key to a thorough understanding of geophysical observations and associated mantle dynamics. We used electron energy loss spectroscopy technique to quantify the proportions of Fe2+ and Fe3+ iron in Brg and Fp phases previously synthesized from Al-rich olivine composition [3]. The oxidation state of iron in the lower mantle will be discussed as well as ensuing implications on transport properties for relevant lower mantle compositions. References [1] Sakai et al., 2009 [2] Prescher et al., 2014 [3] Piet et al., submitted [4] McCammon et al., 1996 [5] Xu et al., 1998

  15. Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells

    NASA Astrophysics Data System (ADS)

    Hohnholt, Michaela C.; Dringen, Ralf

    2011-12-01

    Magnetic iron oxide nanoparticles (IONP) are currently used for various neurobiological applications. To investigate the consequences of a treatment of brain cells with such particles, we have applied dimercaptosuccinate (DMSA)-coated IONP that had an average hydrodynamic diameter of 60 nm to oligodendroglial OLN-93 cells. After exposure to 4 mM iron applied as DMSA-IONP, these cells increased their total specific iron content within 8 h 600-fold from 7 to 4,200 nmol/mg cellular protein. The strong iron accumulation was accompanied by a change in cell morphology, although the cell viability was not compromized. DMSA-IONP treatment caused a concentration-dependent increase in the iron-dependent formation of reactive oxygen species and a decrease in the specific content of the cellular antioxidative tripeptide glutathione. During a 16 h recovery phase in IONP-free culture medium following exposure to DMSA-IONP, OLN-93 cells maintained their high iron content and replenished their cellular glutathione content. These data demonstrate that viable OLN-93 cells have a remarkable potential to deal successfully with the consequences of an accumulation of large amounts of iron after exposure to DMSA-IONP.

  16. Uptake and metabolism of iron oxide nanoparticles in brain cells.

    PubMed

    Petters, Charlotte; Irrsack, Ellen; Koch, Michael; Dringen, Ralf

    2014-09-01

    Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.

  17. From iron coordination compounds to metal oxide nanoparticles

    PubMed Central

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2 IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles. PMID:28144555

  18. Behavior of iron aluminides in oxidizing and sulfidizing environments

    SciTech Connect

    Tortorelli, P.F.; DeVan, J.H.; DiStefano, J.R.

    1989-01-01

    To date, use of iron aluminides based on Fe/sub 3/Al (less than or equal to30 at. % Al) or FeAl (30--50 at. % Al) for structural applications has been limited by their low ductility and poor fracture toughness at room temperature and inadequate strength above 600/degree/C. However, in recent years, a renewed effort has been devoted to the development of ductile iron aluminides with increased strength, particularly in view of their good potential for use in hostile environments. While it is expected that such aluminides will be able to form oxide scales for corrosion protection in oxidizing high temperature environments, resistance to degradation in oxidizing salt or oxidizing/sulfidizing gas environments has not been adequately addressed as a function of compositional and microstructural changes. This paper reviews and extends results for iron aluminides exposed to an oxidizing/sulfidizing gas and presents the first data for corrosion of this class of materials by an aggressive oxidizing molten nitrate salt of 48.5NaNO/sub 3/--50.5KNO/sub 3/--1Na/sub 2/O/sub 2/. 14 refs., 11 figs.

  19. Different effect of hydrogelation on antifouling and circulation properties of dextran-iron oxide nanoparticles.

    PubMed

    Karmali, Priya Prakash; Chao, Ying; Park, Ji-Ho; Sailor, Michael J; Ruoslahti, Erkki; Esener, Sadik C; Simberg, Dmitri

    2012-03-05

    Premature recognition and clearance of nanoparticulate imaging and therapeutic agents by macrophages in the tissues can dramatically reduce both the nanoparticle half-life and delivery to the diseased tissue. Grafting nanoparticles with hydrogels prevents nanoparticulate recognition by liver and spleen macrophages and greatly prolongs circulation times in vivo. Understanding the mechanisms by which hydrogels achieve this "stealth" effect has implications for the design of long-circulating nanoparticles. Thus, the role of plasma protein absorption in the hydrogel effect is not yet understood. Short-circulating dextran-coated iron oxide nanoparticles could be converted into stealth hydrogel nanoparticles by cross-linking with 1-chloro-2,3-epoxypropane. We show that hydrogelation did not affect the size, shape and zeta potential, but completely prevented the recognition and clearance by liver macrophages in vivo. Hydrogelation decreased the number of hydroxyl groups on the nanoparticle surface and reduced the binding of the anti-dextran antibody. At the same time, hydrogelation did not reduce the absorption of cationic proteins on the nanoparticle surface. Specifically, there was no effect on the binding of kininogen, histidine-rich glycoprotein, and protamine sulfate to the anionic nanoparticle surface. In addition, hydrogelation did not prevent activation of plasma kallikrein on the metal oxide surface. These data suggest that (a) a stealth hydrogel coating does not mask charge interactions with iron oxide surface and (b) the total blockade of plasma protein absorption is not required for maintaining iron oxide nanoparticles' long-circulating stealth properties. These data illustrate a novel, clinically promising property of long-circulating stealth nanoparticles.

  20. CoxFe1-x oxide coatings on metallic interconnects for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Shen, Fengyu; Lu, Kathy

    2016-10-01

    In order to improve the performance of Cr-containing steel as an interconnect material for solid oxide fuel cells, CoFe alloy coatings with Co:Fe ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 are deposited by electrodeposition and then oxidized to CoxFe1-x oxide coatings with a thickness of ∼6 μm as protective layers on the interconnect. The area specific resistance of the coated interconnect increases with the Fe content. Higher Co content oxide coatings are more effective in limiting the growth of the chromia scale while all coatings are effective in inhibiting Cr diffusion and evaporation. With the Co0.8Fe0.2 oxide coated interconnect, the electrochemical performance of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode is improved. Only 1.54 atomic percentage of Cr is detected on the surface of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode while no Cr is detected 0.66 μm or more into the cathode. CoxFe1-x oxide coatings are promising candidates for solid oxide fuel cell interconnects with the advantage of using existing cathode species for compatibility and performance enhancement.

  1. Preparing oxidizer coated metal fuel particles

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Simmons, G. M. (Inventor)

    1974-01-01

    A solid propellant composition of improved efficiency is described which includes an oxidizer containing ammonium perchlorate, and a powered metal fuel, preferably aluminum or beryllium, in the form of a composite. The metal fuel is contained in the crystalline lattice framework of the oxidizer, as well as within the oxidizer particles, and is disposed in the interstices between the oxidizer particles of the composition. The propellant composition is produced by a process comprising the crystallization of ammonium perchlorate in water, in the presence of finely divided aluminum or beryllium. A suitable binder is incorporated in the propellant composition to bind the individual particles of metal with the particles of oxidizer containing occluded metal.

  2. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  3. Effects of oxidation on tensile deformation of iron nanowires: Insights from reactive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Aral, Gurcan; Wang, Yun-Jiang; Ogata, Shigenobu; van Duin, Adri C. T.

    2016-10-01

    The influence of oxidation on the mechanical properties of nanostructured metals is rarely explored and remains poorly understood. To address this knowledge gap, in this work, we systematically investigate the mechanical properties and changes in the metallic iron (Fe) nanowires (NWs) under various atmospheric conditions of ambient dry O2 and in a vacuum. More specifically, we focus on the effect of oxide shell layer thickness over Fe NW surfaces at room temperature. We use molecular dynamics (MD) simulations with the variable charge ReaxFF force field potential model that dynamically handles charge variation among atoms as well as breaking and forming of the chemical bonds associated with the oxidation reaction. The ReaxFF potential model allows us to study large length scale mechanical atomistic deformation processes under the tensile strain deformation process, coupled with quantum mechanically accurate descriptions of chemical reactions. To study the influence of an oxide layer, three oxide shell layer thicknesses of ˜4.81 Å, ˜5.33 Å, and ˜6.57 Å are formed on the pure Fe NW free surfaces. It is observed that the increase in the oxide layer thickness on the Fe NW surface reduces both the yield stress and the critical strain. We further note that the tensile mechanical deformation behaviors of Fe NWs are dependent on the presence of surface oxidation, which lowers the onset of plastic deformation. Our MD simulations show that twinning is of significant importance in the mechanical behavior of the pure and oxide-coated Fe NWs; however, twin nucleation occurs at a lower strain level when Fe NWs are coated with thicker oxide layers. The increase in the oxide shell layer thickness also reduces the external stress required to initiate plastic deformation.

  4. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  5. Oxidation-resistant interfacial coatings for continuous fiber ceramic composites

    SciTech Connect

    Stinton, D.P.; Besmann, T.M.; Bleier, A.; Shanmugham, S.; Liaw, P.K.

    1995-08-01

    Continuous fiber ceramic composites mechanical behavior are influenced by the bonding characteristics between the fiber and the matrix. Finite modeling studies suggest that a low-modulus interfacial coating material will be effective in reducing the residual thermal stresses that are generated upon cooling from processing temperatures. Nicalon{trademark}/SiC composites with carbon, alumina and mullite interfacial coatings were fabricated with the SiC matrix deposited using a forced-flow, thermal gradient chemical vapor infiltration process. Composites with mullite interfacial coatings exhibited considerable fiber pull-out even after oxidation and have potential as a composite system.

  6. Size-Tunable Synthesis of Stable Superparamagnetic Iron Oxide Nanoparticles for Potential Biomedical Applications

    PubMed Central

    Yu, Faquan; Yang, Victor C.

    2009-01-01

    Dextran-coated superparamagnetic nanoparticles (MNPs) have widespread biomedical applications. The superparamagnetic behavior, specifically regulated size, and smooth morphology are crucial requirements for essentially all of these applications. Presented herein is an innovative double-coating strategy that would allow for a size-controlled synthesis of MNPs. Small monocrystalline iron oxide nanoparticles (MIONs) were first synthesized, which served as the source of superparamagnetic properties. These MIONs were then treated in an acetate buffer containing biocompatible dextran polymer. Under such an environment, the colloidal MIONs would be quickly agglomerated by the acetate ions, and the formed coalescent body of MION would then be stabilized simultaneously by coating with dextran. By regulating the MION or dextran concentration as well as the thermal incubation time, the sizes of these first formed nanoparticles (termed 1st-NPs) could be readily controlled. A second dextran coating step was further applied to smoothen the 1st-NPs in attaining a final product (termed 2nd-NPs). The 2nd-NPs exhibited robustly storage stability due to the additional coating shell. Results successfully confirmed the plausibility of this approach, as these MNPs displayed not only a smooth outline and a narrow size distribution, but also the essential superparamagnetic behavior and a significantly prolonged stability upon storage. PMID:19402138

  7. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  8. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  9. Method of forming oxide coatings. [for solar collector heating panels

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  10. Simultaneous reductive dissolution of iron oxide and oxidation of iodide in ice.

    NASA Astrophysics Data System (ADS)

    Kim, Kitae; Choi, Wonyong

    2015-04-01

    Iron is an important trace element controlling the metabolism and growth of all kinds of living species. Especially, the bio-availability of iron has been regarded as the limiting factor for primary productivity in HNLC (High Nutrients Low Chlorophyll) regions including Southern ocean. The dissolution of iron oxide provides enhanced the bio-availability of iron for phytoplankton growth. The halogen chemistry in polar regions is related to various important environmental processes such as Antarctic Ozone Depletion Event(ODE), mercury depletion, oxidative processes in atmosphere, and the formation of CCN (Cloud Condensation Nuclei). In this study, we investigated the reductive dissolution of iron oxide particles to produce Fe(II)aq and simultaneous oxidation of I- (iodide) to I3- (tri-iodide) in ice phase under UV irradiation or dark condition. The reductive generation of Fe(II)aq from iron oxides and oxidation of iodide to I3- were negligible in water but significantly accelerated in frozen solution both in the presence and absence of light. The enhanced reductive generation of Fe(II)aq and oxidative formation of I3- in ice were observed regardless of the various types of iron oxides [hematite (α-Fe2O3) maghemite (γ- Fe2O3), goethite (α-FeOOH), lepidocrocite (γ-FeOOH) and, magnetite (Fe3O4)]. We explained that the enhanced redox production of Fe(II)aq and I3- in ice is contributed to the freeze concentration of iodides, protons, and dissolved oxygen in the unfrozen solution. When the concentration of both iodides and protons were raised by 10-fold each, the formation of Fe(II)aq in water under UV irradiation was approached to those in ice. The outdoor experiments were carried out under ambient solar radiation in winter season of mid-latitude (Pohang, Korea: 36°N latitude) and also confirmed that the production of Fe(II)aq via reductive dissolution of iron oxide and I3- generation via I- oxidation were enhanced in frozen solution. These results suggest that iron

  11. Reversible immobilization of BSA on Cu-chelated PAMAM dendrimer modified iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Demir, M.; Şenel, M.; Baykal, A.

    2014-09-01

    In this study, polyamidoamine (PAMAM) dendrimer coated superparamagnetite nanoparticles were synthesized by growing of PAMAM on amino-silane coated iron oxide nanoparticles. The PAMAM modified superparamagnetite nanoparticles were used as reversible protein immobilization host materials. During the reversible immobilization studies the effect of different metal ions such as; Cu+2, Zn+2, Co+2, Ni+2 on immobilization efficiency of BSA were evaluated. The maximum BSA adsorption capacity of the PAMAM-MNP- Cu+2 beads was observed to be 52.84 mg/g (BSA/PAMAM-MNP) at pH 7.0. Various characteristics of immobilized BSA such as; effect of generation, effect of pH, BSA concentration, temperature, salt concentration and reusability of PAMAM-MNP were evaluated.

  12. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  13. Effects of Coating Materials and Mineral Additives on Nitrate Reduction by Zerovalent Iron

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Jeong, H. Y.; Lee, S.; Kang, N.; Choi, H. J.; Park, M.

    2015-12-01

    In efforts to facilitate nitrate removal, a variety of coating materials and mineral additives were assessed for their effects on the nitrate reduction by zerovalent iron (ZVI). Coated ZVIs were prepared by reacting Fe particles with Cr(III), Co(II), Ni(II), Cu(II), and S(-II) solutions under anoxic conditions, with the resultant materials named Cr/Fe, Co/Fe, Ni/Fe, Cu/Fe, and FeS/Fe, respectively. The mineral additives used, synthesized or purchased, included goethite, magnetite, and hydrous ferric oxide (HFO). Kinetic experiments were performed using air-tight serum vials containing 1.0 g Fe (uncoated or coated forms) in 15 mL of 100 mg NO3×N/L solutions with pH buffered at 7.0. To monitor the reaction progress, the solution phase was analyzed for NO3-, NO2-, and NH4+ on an ion chromatography, while the headspace was analyzed for H2, N2, and O2 on a gas chromatography. By uncoated Fe, ca. 60% of nitrate was reductively transformed for 3.6 h, with NH4+ being the predominant product. Compared with uncoated one, Cr/Fe, Co/Fe, and Cu/Fe showed faster removal rates of nitrate. The observed reactivity enhancement was thought to result from additional reduction of nitrate by H atoms adsorbed on the surface of Cr, Co, or Cu metal. In contrast, both Ni/Fe and FeS/Fe showed slower removal of nitrate than uncoated Fe. In both cases, the coating, which highly disfavors the adsorption of nitrate, would form on the Fe surface. When goethite, HFO, and magnetite were amended, the nitrate reduction by Fe was significantly increased, with the effect being most evident with HFO. Although not capable of reducing nitrate, the mineral additives would serve as crystal nuclei for the corrosion products of Fe, thus making the development of passivation layers on the Fe surface less. In the future, we will perform a kinetic modeling of the experimental data to assess the relative contribution of multiple reaction paths in the nitrate reduction by Fe.

  14. Deep reduction behavior of iron oxide and its effect on direct CO oxidation

    NASA Astrophysics Data System (ADS)

    Dong, Changqing; Liu, Xinglei; Qin, Wu; Lu, Qiang; Wang, Xiaoqiang; Shi, Simo; Yang, Yongping

    2012-01-01

    Reduction of metal oxide oxygen carrier has been attractive for direct CO oxidation and CO2 separation. To investigate the reduction behaviors of iron oxide prepared by supporting Fe2O3 on γ-Al2O3 and its effect on CO oxidation, fluidized-bed combustion experiments, thermogravimetric analyzer (TGA) experiments, and density functional theory (DFT) calculations were carried out. Gas yield (γCO2) increases significantly with the increase of temperature from 693 K to 1203 K, while carbon deposition decreases with the increase of temperature from 743 K to 1203 K, where temperature is a very important factor for CO oxidation by iron oxide. Further, it were quantitatively detected that the interaction between CO and Fe2O3, breakage of O-Fe bonds and formation of new C-O bonds, and effect of reduction degree were quantitatively detected. Based on adsorptions under different temperatures and reducing processes from Fe3+ into Fe2+, Fe+ and then into Fe, it was found that Fe2+ → Fe+ was the reaction-controlling step and the high oxidation state of iron is active for CO oxidation, where efficient partial reduction of Fe2O3 into FeO rather than complete reduction into iron may be more energy-saving for CO oxidation.

  15. Development of Oxidation Protection Coatings for Gamma Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Wallace, T. A.; Bird, R. K.; Sankaran, S. N.

    2003-01-01

    Metallic material systems play a key role in meeting the stringent weight and durability requirements for reusable launch vehicle (RLV) airframe hot structures. Gamma titanium aluminides (gamma-TiAl) have been identified as high-payoff materials for high-temperature applications. The low density and good elevated temperature mechanical properties of gamma-TiAl alloys make them attractive candidates for durable lightweight hot structure and thermal protection systems at temperatures as high as 871 C. However, oxidation significantly degrades gamma-TiAl alloys under the high-temperature service conditions associated with the RLV operating environment. This paper discusses ongoing efforts at NASA Langley Research Center to develop durable ultrathin coatings for protecting gamma-TiAl alloys from high-temperature oxidation environments. In addition to offering oxidation protection, these multifunctional coatings are being engineered to provide thermal control features to help minimize heat input into the hot structures. This paper describes the coating development effort and discusses the effects of long-term high-temperature exposures on the microstructure of coated and uncoated gamma-TiAl alloys. The alloy of primary consideration was the Plansee alloy gamma-Met, but limited studies of the newer alloy gamma-Met-PX were also included. The oxidation behavior of the uncoated materials was evaluated over the temperature range of 704 C to 871 C. Sol-gel-based coatings were applied to the gamma-TiAl samples by dipping and spraying, and the performance evaluated at 871 C. Results showed that the coatings improve the oxidation resistance, but that further development is necessary.

  16. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics

    SciTech Connect

    Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C.; Shen Rui; Yang Hong; Jacobs, Stephen D.

    2009-12-10

    We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was {approx}50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. ''Free'' nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a period of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

  17. Magnetically triggered clustering of biotinylated iron oxide nanoparticles in the presence of streptavidinylated enzymes

    NASA Astrophysics Data System (ADS)

    Hodenius, Michael; Hieronymus, Thomas; Zenke, Martin; Becker, Christiane; Elling, Lothar; Bornemann, Jörg; Wong, John E.; Richtering, Walter; Himmelreich, Uwe; De Cuyper, Marcel

    2012-09-01

    This work deals with the production and characterization of water-compatible, iron oxide based nanoparticles covered with functional poly(ethylene glycol) (PEG)-biotin surface groups (SPIO-PEG-biotin). Synthesis of the functionalized colloids occurred by incubating the oleate coated particles used as precursor magnetic fluid with anionic liposomes containing 14 mol% of a phospholipid-PEG-biotin conjugate. The latter was prepared by coupling dimyristoylphosphatidylethanolamine (DC14:0PE) to activated α-biotinylamido-ω -N-hydroxy-succinimidcarbonyl-PEG (NHS-PEG-biotin). Physical characterization of the oleate and PEG-biotin iron oxide nanocolloids revealed that they appear as colloidal stable clusters with a hydrodynamic diameter of 160 nm and zeta potentials of - 39 mV (oleate coated particles) and - 14 mV (PEG-biotin covered particles), respectively, as measured by light scattering techniques. Superconducting quantum interference device (SQUID) measurements revealed specific saturation magnetizations of 62-73 emu g-1 Fe3O4 and no hysteresis was observed at 300 K. MR relaxometry at 3 T revealed very high r2 relaxivities and moderately high r1 values. Thus, both nanocolloids can be classified as small, superparamagnetic, negative MR contrast agents. The capacity to functionalize the particles was illustrated by binding streptavidin alkaline phosphatase (SAP). It was found, however, that these complexes become highly aggregated after capturing them on the magnetic filter device during high-gradient magnetophoresis, thereby reducing the accessibility of the SAP.

  18. Magnetically triggered clustering of biotinylated iron oxide nanoparticles in the presence of streptavidinylated enzymes.

    PubMed

    Hodenius, Michael; Hieronymus, Thomas; Zenke, Martin; Becker, Christiane; Elling, Lothar; Bornemann, Jörg; Wong, John E; Richtering, Walter; Himmelreich, Uwe; De Cuyper, Marcel

    2012-09-07

    This work deals with the production and characterization of water-compatible, iron oxide based nanoparticles covered with functional poly(ethylene glycol) (PEG)-biotin surface groups (SPIO-PEG-biotin). Synthesis of the functionalized colloids occurred by incubating the oleate coated particles used as precursor magnetic fluid with anionic liposomes containing 14 mol% of a phospholipid-PEG-biotin conjugate. The latter was prepared by coupling dimyristoylphosphatidylethanolamine (DC(14:0)PE) to activated α-biotinylamido-ω -N-hydroxy-succinimidcarbonyl-PEG (NHS-PEG-biotin). Physical characterization of the oleate and PEG-biotin iron oxide nanocolloids revealed that they appear as colloidal stable clusters with a hydrodynamic diameter of 160 nm and zeta potentials of - 39 mV (oleate coated particles) and - 14 mV (PEG-biotin covered particles), respectively, as measured by light scattering techniques. Superconducting quantum interference device (SQUID) measurements revealed specific saturation magnetizations of 62-73 emu g(-1) Fe(3)O(4) and no hysteresis was observed at 300 K. MR relaxometry at 3 T revealed very high r(2) relaxivities and moderately high r(1) values. Thus, both nanocolloids can be classified as small, superparamagnetic, negative MR contrast agents. The capacity to functionalize the particles was illustrated by binding streptavidin alkaline phosphatase (SAP). It was found, however, that these complexes become highly aggregated after capturing them on the magnetic filter device during high-gradient magnetophoresis, thereby reducing the accessibility of the SAP.

  19. Developmental and Reproductive Effects of Iron Oxide Nanoparticles in Arabidopsis thaliana.

    PubMed

    Bombin, Sergey; LeFebvre, Mitchell; Sherwood, Jennifer; Xu, Yaolin; Bao, Yuping; Ramonell, Katrina M

    2015-10-13

    Increasing use of iron oxide nanoparticles in medicine and environmental remediation has led to concerns regarding exposure of these nanoparticles to the public. However, limited studies are available to evaluate their effects on the environment, in particular on plants and food crops. Here, we investigated the effects of positive (PC) and negative (NC) charged iron oxide (Fe₂O₃) nanoparticles (IONPs) on the physiology and reproductive capacity of Arabidopsis thaliana at concentrations of 3 and 25 mg/L. The 3 mg/L treated plants did not show evident effects on seeding and root length. However, the 25 mg/L treatment resulted in reduced seedling (positive-20% and negative-3.6%) and root (positive-48% and negative-negligible) length. Interestingly, treatment with polyethylenimine (PEI; IONP-PC coating) also resulted in reduced root length (39%) but no change was observed with polyacrylic acid (PAA; IONP-NC coating) treatment alone. However, treatment with IONPs at 3 mg/L did lead to an almost 5% increase in aborted pollen, a 2%-6% reduction in pollen viability and up to an 11% reduction in seed yield depending on the number of treatments. Interestingly, the treated plants did not show any observable phenotypic changes in overall size or general plant structure, indicating that environmental nanoparticle contamination could go dangerously unnoticed.

  20. Developmental and Reproductive Effects of Iron Oxide Nanoparticles in Arabidopsis thaliana

    PubMed Central

    Bombin, Sergey; LeFebvre, Mitchell; Sherwood, Jennifer; Xu, Yaolin; Bao, Yuping; Ramonell, Katrina M.

    2015-01-01

    Increasing use of iron oxide nanoparticles in medicine and environmental remediation has led to concerns regarding exposure of these nanoparticles to the public. However, limited studies are available to evaluate their effects on the environment, in particular on plants and food crops. Here, we investigated the effects of positive (PC) and negative (NC) charged iron oxide (Fe2O3) nanoparticles (IONPs) on the physiology and reproductive capacity of Arabidopsis thaliana at concentrations of 3 and 25 mg/L. The 3 mg/L treated plants did not show evident effects on seeding and root length. However, the 25 mg/L treatment resulted in reduced seedling (positive-20% and negative-3.6%) and root (positive-48% and negative-negligible) length. Interestingly, treatment with polyethylenimine (PEI; IONP-PC coating) also resulted in reduced root length (39%) but no change was observed with polyacrylic acid (PAA; IONP-NC coating) treatment alone. However, treatment with IONPs at 3 mg/L did lead to an almost 5% increase in aborted pollen, a 2%–6% reduction in pollen viability and up to an 11% reduction in seed yield depending on the number of treatments. Interestingly, the treated plants did not show any observable phenotypic changes in overall size or general plant structure, indicating that environmental nanoparticle contamination could go dangerously unnoticed. PMID:26473847

  1. Iron binary and ternary coatings with molybdenum and tungsten

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, Gulmira; Ved, Maryna; Sakhnenko, Nikolay; Karakurkchi, Anna; Yermolenko, Iryna

    2016-10-01

    Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.

  2. Functional metal oxide coatings by molecule-based thermal and plasma chemical vapor deposition techniques.

    PubMed

    Mathur, S; Ruegamer, T; Donia, N; Shen, H

    2008-05-01

    Deposition of thin films through vaccum processes plays an important role in industrial processing of decorative and functional coatings. Many metal oxides have been prepared as thin films using different techniques, however obtaining compositionally uniform phases with a control over grain size and distribution remains an enduring challenge. The difficulties are largely related to complex compositions of functional oxide materials, which makes a control over kinetics of nucleation and growth processes rather difficult to control thus resulting in non-uniform material and inhomogeneous grain size distribution. Application of tailor-made molecular precursors in low pressure or plasma-enhanced chemical vapor deposition (CVD) techniques offers a viable solution for overcoming thermodynamic impediments involved in thin film growth. In this paper molecule-based CVD of functional coatings is demonstrated for iron oxide (Fe2O3, Fe3O4), vanadium oxide (V2O5, VO2) and hafnium oxide (HfO2) phases followed by the characterization of their microstructural, compositional and functional properties which support the advantages of chemical design in simplifying deposition processes and optimizing functional behavior.

  3. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.

    PubMed

    Kim, Hong-Seok; Ahn, Jun-Young; Kim, Cheolyong; Lee, Seockheon; Hwang, Inseong

    2014-10-01

    Effects of anions (NO3(-), HCO3(-), Cl(-), SO4(2-)) and humic acid on the reactivity and core/shell chemistries of polyacrylic acid-coated nanoscale zero-valent iron (PAA-NZVI) and inorganically modified NZVI (INORG-NZVI) particles were investigated. The reactivity tests under various ion concentrations (0.2-30mN) revealed the existence of a favorable molar ratio of anion/NZVI that increased the reactivity of NZVI particles. The presence of a relatively small amount of humic acid (0.5mgL(-1)) substantially decreased the INORG-NZVI reactivity by 76%, whereas the reactivity of PAA-NZVI decreased only by 12%. The XRD and TEM results supported the role of the PAA coating of PAA-NZVI in impeding the oxidation of the Fe(0) core by groundwater solutes. This protective role provided by the organic coating also resulted in a 2.3-fold increase in the trichloroethylene (TCE) reduction capacity of PAA-NZVI compared to that of INORG-NZVI in the presence of anions/humic acid. Ethylene and ethane were simultaneously produced as the major reduction products of TCE in both NZVI systems, suggesting that a hydrodechlorination occurred without the aid of metallic catalysts. The PAA coating, originally designed to improve the mobility of NZVI, enhanced TCE degradation performances of NZVI in the presence of anions and humic acid.

  4. Lubricative coatings of copper oxide for aerospace applications

    NASA Astrophysics Data System (ADS)

    Goto, Masahiro; Kasahara, Akira; Oishi, Tetsuo; Konishi, Youko; Tosa, Masahiro

    2003-08-01

    Lubricative coatings of copper oxide on a stainless-steel substrate were synthesized by a rf magnetron sputter deposition method with a different gas ratio of oxygen and argon in sputter plasma. The crystal structure of the coatings was analyzed with x-ray diffraction spectroscopy. The friction force of the coating films in atmospheric pressure and in an ultrahigh vacuum (UHV) was evaluated by a vacuum pin-on-disk tribometer with different ball probes. Friction coefficients (μ) as low as 0.03 and 0.05 for a stainless-steel ball were achieved in atmospheric pressure and in an UHV, respectively. A value of μ=0.04 was also realized for a silicon nitride ball both in atmospheric pressure and in an UHV. Surface energy was analyzed by a contact angle measuring method which reveals that the behavior of the frictional properties correspond with that of the surface energy. Since the coatings consist of oxide, they will be applicable to a low-frictional coating with resistance to oxidation for aerospace applications in a low Earth orbit environment.

  5. Apparatus for producing oxidation protection coatings for polymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J. (Inventor); Sovey, J. S. (Inventor); Banks, A. (Inventor)

    1986-01-01

    A polymeric substrate is coated with a metal oxide film to provide oxidation protection in low Earth orbital environments. The film contains about 4 volume percent polymer to provide flexibility. A coil of polymer materials moves through an ion beam as it is fed between reels. The ion beam first cleans the polymer material surface and then sputters the film material from a target onto this surface.

  6. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    PubMed

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte.

  7. Synthesis of transparent conducting oxide coatings

    DOEpatents

    Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

    2010-05-04

    A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

  8. Niobian iron oxides as heterogeneous Fenton catalysts for environmental remediation

    NASA Astrophysics Data System (ADS)

    Oliveira, Diana Q. L.; Oliveira, Luiz C. A.; Murad, Enver; Fabris, José D.; Silva, Adilson C.; de Menezes, Lucas Morais

    2010-01-01

    Heterogeneous Fenton or Fenton-like reagents consist of a mixture of an iron-containing solid matrix and a liquid medium with H2O2. The Fenton system is based on the reaction between Fe2 + and H2O2 to produce highly reactive intermediate hydroxyl radicals ( • OH), which are able to oxidize organic contaminants, whereas the Fenton-like reaction is based on the reaction between Fe3 + and H2O2. These heterogeneous systems offer several advantages over their homogeneous counterparts, such as no sludge formation, operation at near-neutral pH and the possibility of recycling the iron promoter. Some doping transition cations in the iron oxide structure are believed to enhance the catalytic efficiency for the oxidation of organic substrates in water. In this work, goethites synthesized in presence of niobium served as precursors for the preparation of magnetites (niobian magnetites) via chemical reduction with hydrogen at 400°C. These materials were used as Fenton-like catalysts. Both groups of (Nb, Fe)-oxide samples were characterized by 57Fe Mössbauer spectroscopy at 298 K. The results show that increasing niobium contents raise the catalytic potential for decomposition of methylene blue, which was, in this work, used as a model molecule for organic substrates in water.

  9. Oxidative effect of several intravenous iron complexes in the rat.

    PubMed

    Bailie, George R; Schuler, Catherine; Leggett, Robert E; Li, Hsin; Li, Hsin-Dat; Patadia, Hiten; Levin, Robert

    2013-06-01

    The objective of this study was to compare the oxidative stress induced in rat internal organs by the administration of the following clinically used intravenous (IV) iron (Fe) containing compounds: iron sucrose (IS), iron dextran (ID), ferric carboxymaltose and ferumoxytol. Groups of six adult rats received 1 mg/kg of each compound weekly for 5 doses. Seven days following the last dose, animals were euthanized and tissue samples of heart, lung, liver, and kidney were obtained, washed in warmed saline and frozen under liquid nitrogen and stored at -80 °C for analysis for nitrotyrosine (NT) and dinitro phenyl (DNP) as markers of oxidative stress. All tissues showed a similar pattern of oxidative stress. All Fe products stimulated an increase in the tissue concentration of both NT and DNP. In general, DNP was stimulated significantly less than NT except for IS. DNP was stimulated to an equal degree except for ID where NT was significantly higher than the NT concentrations in all other Fe compounds. ID produced over 10-fold the concentration of NT than any other Fe. IV Fe compounds present a risk of oxidative stress to a variety of internal organs. However, we found that IS was the least damaging and ID was the worst.

  10. Oxidation resistance of composite silicide coatings on niobium

    SciTech Connect

    Gloshko, P.I.; Kurtsev, N.F.; Lisichenko, V.I.; Nadtoka, V.N.; Petrenko, M.I.; Zmii, V.I.

    1986-07-01

    This paper reports the oxidation of NbSi/sub 2/-MoSi/sub 2/ composite silicide coatings produced by diffusive siliconizing of molybdenum films on a niobium surface. Molybdenum-coated niobium was siliconized and an x-ray microspectral analysis of the composite silicide coating showed the phase composition to be an ca 80-um-thick outer molybdenum disilicide film with a characteristic coarsely crystalline columnar structure, and inner ca 20-um film of niobium disilicide consisting of the tiny columnar crystals, and a substrate/coating interface comprising a thin, 2-3 um film of lower silicide, i.e., Nb/sub 5/Si/sub 3/. The average grain sizes, unit cell parameters, and x-ray determined densities of the Mo films obtained by various methods are shown.

  11. Cavitation erosio