Science.gov

Sample records for iron-porphyrin catalyzed reduction

  1. O2 reduction reaction by biologically relevant anionic ligand bound iron porphyrin complexes.

    PubMed

    Samanta, Subhra; Das, Pradip Kumar; Chatterjee, Sudipta; Sengupta, Kushal; Mondal, Biswajit; Dey, Abhishek

    2013-11-18

    Iron porphyrin complex with a covalently attached thiolate ligand and another with a covalently attached phenolate ligand has been synthesized. The thiolate bound complex shows spectroscopic features characteristic of P450, including the hallmark absorption spectrum of the CO adduct. Electrocatalytic O2 reduction by this complex, which bears a terminal alkyne group, is investigated by both physiabsorbing on graphite surfaces (fast electron transfer rates) and covalent attachment to azide terminated self-assembled monolayer (physiologically relevant electron transfer rates) using the terminal alkyne group. Analysis of the steady state electrochemical kinetics reveals that this catalyst can selectively reduce O2 to H2O with a second-order k(cat.) ~10(7) M(-1 )s(-1) at pH 7. The analogous phenolate bound iron porphyrin complex reduces O2 with a second-order rate constant of 10(5) M(-1) s(-1) under the same conditions. The anionic ligand bound iron porphyrin complexes catalyze oxygen reduction reactions faster than any known synthetic heme porphyrin analogues. The kinetic parameters of O2 reduction of the synthetic thiolate bound complex, which is devoid of any second sphere effects present in protein active sites, provide fundamental insight into the role of the protein environment in tuning the reactivity of thiolate bound iron porphyrin containing metalloenzymes. PMID:24171513

  2. The secondary coordination sphere and axial ligand effects on oxygen reduction reaction by iron porphyrins: a DFT computational study.

    PubMed

    Ohta, Takehiro; Nagaraju, Perumandla; Liu, Jin-Gang; Ogura, Takashi; Naruta, Yoshinori

    2016-09-01

    Oxygen reduction reaction (ORR) catalyzed by a bio-inspired iron porphyrin bearing a hanging carboxylic acid group over the porphyrin ring, and a tethered axial imidazole ligand was studied by DFT calculations. BP86 free energy calculations of the redox potentials and pK a's of reaction components involved in the proton coupled electron transfer (PCET) reactions of the ferric-hydroxo and -superoxo complexes were performed based on Born-Haber thermodynamic cycle in conjunction with a continuum solvation model. The comparison was made with iron porphyrins that lack either in the hanging acid group or axial ligand, suggesting that H-bond interaction between the carboxylic acid and iron-bound hydroxo, aquo, superoxo, and peroxo ligands (de)stabilizes the Fe-O bonding, resulting in the increase in the reduction potential of the ferric complexes. The axial ligand interaction with the imidazole raises the affinity of the iron-bound superoxo and peroxo ligands for proton. In addition, a low-spin end-on ferric-hydroperoxo intermediate, a key precursor for O-O cleavage, can be stabilized in the presence of axial ligation. Thus, selective and efficient ORR of iron porphyrin can be achieved with the aid of the secondary coordination sphere and axial ligand interactions. PMID:27501847

  3. Molecular Catalysis of O2 Reduction by Iron Porphyrins in Water: Heterogeneous versus Homogeneous Pathways.

    PubMed

    Costentin, Cyrille; Dridi, Hachem; Savéant, Jean-Michel

    2015-10-28

    Despite decades of active attention, important problems remain pending in the catalysis of dioxygen reduction by iron porphyrins in water in terms of selectivity and mechanisms. This is what happens, for example, for the distinction between heterogeneous and homogeneous catalysis for soluble porphyrins, for the estimation of H2O2/H2O product selectivity, and for the determination of the reaction mechanism in the two situations. With water-soluble iron tetrakis(N-methyl-4-pyridyl)porphyrin as an example, procedures are described that allow one to operate this distinction and determine the H2O2/H2O product ratio in each case separately. It is noteworthy that, despite the weak adsorption of the iron(II) porphyrin on the glassy carbon electrode, the contribution of the adsorbed complex to catalysis rivals that of its solution counterpart. Depending on the electrode potential, two successive catalytic pathways have been identified and characterized in terms of current-potential responses and H2O2/H2O selectivity. These observations are interpreted in the framework of the commonly accepted mechanism for catalytic reduction of dioxygen by iron porphyrins, after checking its compatibility with a change of oxygen concentration and pH. The difference in intrinsic catalytic reactivity between the catalyst in the adsorbed state and in solution is also discussed. The role of heterogeneous catalysis with iron tetrakis(N-methyl-4-pyridyl)porphyrin has been overlooked in previous studies because of its water solubility. The main objective of the present contribution is therefore to call attention, by means of this emblematic example, to such possibilities to reach a correct identification of the catalyst, its performances, and reaction mechanism. This is a question of general interest, so that reduction of dioxygen remains a topic of high importance in the context of contemporary energy challenges.

  4. Electrocatalytic Dioxygen Reduction by Carbon Electrodes Noncovalently Modified with Iron Porphyrin Complexes: Enhancements from a Single Proton Relay.

    PubMed

    Sinha, Soumalya; Aaron, Michael S; Blagojevic, Jovan; Warren, Jeffrey J

    2015-12-01

    Oxygen reduction in acidic aqueous solution mediated by a series of asymmetric iron (III)-tetra(aryl)porphyrins adsorbed to basal- and edge- plane graphite electrodes is investigated. The asymmetric iron porphyrin systems bear phenyl groups at three meso positions and either a 2-pyridyl, a 2-benzoic acid, or a 2-hydroxyphenyl group at the remaining meso position. The presence of the three unmodified phenyl groups makes the compounds insoluble in water, enabling catalyst retention during electrochemical experiments. Resonance Raman data demonstrate that catalyst layers are maintained, but can undergo modification after prolonged catalysis in the presence of O2 . The introduction of a single proton relay group at the fourth meso position makes the asymmetric iron porphyrins markedly more robust catalysts; these molecules support higher sustained current densities than the parent iron tetraphenylporphyrin. Iron porphyrins bearing a 2-pyridyl group are the most active catalysts and operate at stable current densities ≥1 mA cm(-2) for over 5 h. Comparative analysis of the catalysts with different proton relays also is reported. PMID:26459272

  5. Medium Effects are as Important as Catalyst Design for Selectivity in Electrocatalytic Oxygen Reduction by Iron-porphyrin Complexes

    SciTech Connect

    Rigsby, Matthew L.; Wasylenko, Derek J.; Pegis, Michael L.; Mayer, James M.

    2015-04-08

    Several substituted iron porphyrin com-plexes were evaluated for oxygen reduction reaction (ORR) electrocatalysis in different homogeneous and heterogeneous media. The selectivity for 4-electron re-duction to H2O vs. 2-electron reduction to H2O2 varies substantially from one medium to another for a given catalyst. In many cases, the influence of the medium in which the catalyst is evaluated has a larger effect on the observed selectivity than the factors attributable to chemical modification of the catalyst. For instance, introduction of potential proton relays has variable effects depending on the catalyst medium. Thus, comparisons of ORR selectivity results need to be interpreted with caution, as the catalysis is a property not just of the catalyst, but also of the larger mesoscale environment be-yond the catalyst. Still, in all the direct pairwise comparisons in the same medium, the catalysts with potential proton relays have similar or better selectivity for the preferred 4e– path. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  6. Selective four electron reduction of O2 by an iron porphyrin electrocatalyst under fast and slow electron fluxes.

    PubMed

    Samanta, Subhra; Sengupta, Kushal; Mittra, Kaustuv; Bandyopadhyay, Sabyasachi; Dey, Abhishek

    2012-08-01

    An iron porphyrin catalyst with four electron donor groups is reported. The porphyrin ligand bears a distal hydrogen bonding pocket which inverts the normal axial ligand binding selectivity exhibited by porphyrins bearing sterically crowded distal structures. This catalyst specifically reduces O(2) by four electrons under both fast and slow electron fluxes at pH 7.

  7. Second sphere control of redox catalysis: selective reduction of O2 to O2- or H2O by an iron porphyrin catalyst.

    PubMed

    Samanta, Subhra; Mittra, Kaustuv; Sengupta, Kushal; Chatterjee, Sudipta; Dey, Abhishek

    2013-02-01

    "Click" reaction has been utilized to synthesize porphyrin ligands possessing distal superstructures functionalized with ferrocenes, carboxylic acid esters, and phenols. Both structural and spectroscopic evidence indicate that hydrogen bonding interaction between the triazole residues resulting from the "click" reaction promotes axial ligand binding into the sterically demanding distal pocket in preference to the open proximal side. An iron porphyrin complex with four ferrocene groups is found to bind O(2) and quantitatively reduce it by one electron to O(2)(-) in apolar organic solvents. However the same complex electro-catalytically reduces O(2) by four electrons to H(2)O in aqueous medium under fast, moderate, and slow electron fluxes. This selectivity for O(2) reduction is governed by the reduction potential of the electron transfer site (i.e., ferrocene) which in turn is governed by the solvent. This catalyst mimics control of catalysis of an enzyme active site by a second sphere electron transfer residue which is often encountered in naturally occurring metallo-enzymes.

  8. Distant protonated pyridine groups in water-soluble iron porphyrin electrocatalysts promote selective oxygen reduction to water

    SciTech Connect

    Matson, Benjamin D.; Carver, Colin T.; Von Ruden, Amber L.; Yang, Jenny Y.; Raugei, Simone; Mayer, James M.

    2012-11-08

    Fe(III)-meso-tetra(pyridyl)porphines are selective electrocatalysts for the reduction of dioxygen to water in aqueous acidic solution. The 2-pyridyl derivatives, both the triflate and chloride salts, are more selective than the isomeric 4-pyridyl complexes. The improved selectivity of is ascribed to the inward-pointing pyridinium groups acting as intramolecular proton relays. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  9. Iron porphyrin polymer films: Materials for the modification of electrode surfaces and the detection of nitric oxide

    SciTech Connect

    McGuire, M.; Drew, S.M.

    1996-10-01

    We are currently investigating a new method for the detection and quantification of nitric oxide (NO) based on a carbon electrode chemically modified with an iron porphyrin polymer film. Commercially available vinyl-substituted iron porphyrin monomers can be polymerized directly onto electrode surfaces through a published electrochemical polymerization process. We are also developing a synthesis for a new vinyl-substituted monomer, iron 5,10,15-triphenyl-20-vinyl porphyrin chloride, in hopes of improving polymer film stability. The electrochemistry of NO is also being investigated at electrodes chemically modified with an iron porphyrin polymer film. We are studying the catalytic oxidation of iron porphyrin bound NO to nitrate by molecular oxygen. The reaction with molecular oxygen is preceded by a one electron reduction of the iron porphyrin-NO complex. If currents proportional to nitric oxide concentration can be measured, a new NO electrochemical sensor will be designed.

  10. Redox Reactions of Metalloporphyrins and their Role in Catalyzed Reduction of Carbon Dioxide

    SciTech Connect

    Neta, P.

    2002-09-01

    Pulse radiolysis and laser photolysis are used to study redox processes of metalloporphyrins and related complexes in order to evaluate these light absorbing molecules as sensitizers and intermediates in solar energy conversion schemes. The main thrust of the current studies is to investigate the role of reduced metalloporphyrins as intermediates in the catalyzed reduction of carbon dioxide. Studies involve cobalt and iron porphyrins, phthalocyanines, corroles, and corrins as homogeneous catalysts for reduction of carbon dioxide in solution. The main aim is to understand the mechanisms of these photochemical schemes in order to facilitate their potential utilization.

  11. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    SciTech Connect

    Klobukowski, Erik

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and

  12. Catalytic and Biocatalytic Iron Porphyrin Carbene Formation: Effects of Binding Mode, Carbene Substituent, Porphyrin Substituent, and Protein Axial Ligand

    PubMed Central

    2016-01-01

    Iron porphyrin carbenes (IPCs) are important intermediates in various chemical reactions catalyzed by iron porphyrins and engineered heme proteins, as well as in the metabolism of various xenobiotics by cytochrome P450. However, there are no prior theoretical reports to help understand their formation mechanisms and identify key information governing the binding mode, formation feasibility, and stability/reactivity. A systematic quantum chemical study was performed to investigate the effects of carbene substituent, porphyrin substituent, and axial ligand on IPC formation pathways. Results not only are consistent with available experimental data but also provide a number of unprecedented insights into electronic, steric, and H-bonding effects of various structural factors on IPC formation mechanisms. These results shall facilitate research on IPC and related systems for sustainable chemical catalysis and biocatalysis. PMID:26067900

  13. Nickel-Catalyzed Reductive Couplings.

    PubMed

    Wang, Xuan; Dai, Yijing; Gong, Hegui

    2016-08-01

    The Ni-catalyzed reductive coupling of alkyl/aryl with other electrophiles has evolved to be an important protocol for the construction of C-C bonds. This chapter first emphasizes the recent progress on the Ni-catalyzed alkylation, arylation/vinylation, and acylation of alkyl electrophiles. A brief overview of CO2 fixation is also addressed. The chemoselectivity between the electrophiles and the reactivity of the alkyl substrates will be detailed on the basis of different Ni-catalyzed conditions and mechanistic perspective. The asymmetric formation of C(sp(3))-C(sp(2)) bonds arising from activated alkyl halides is next depicted followed by allylic carbonylation. Finally, the coupling of aryl halides with other C(sp(2))-electrophiles is detailed at the end of this chapter. PMID:27573395

  14. Iron Porphyrins with Different Imidazole Ligands. A Theoretical Comparative Study

    PubMed Central

    Liao, Meng-Sheng; Huang, Ming-Ju; Watts, John D.

    2010-01-01

    A theoretical comparative study of a series of five- and six-coordinate iron porphyrins, FeP(L) and FeP(L)(O2), has been carried out using DFT methods, where P = porphine and L = imidazole (Im), 1-methylimidazole (1-MeIm), 2-methylimidazole (2-MeIm), 1,2-dimethylimidazole (1,2-Me2Im), 4-ethylimidazole (4-EtIm), or histidine (His). Two ligated “picket fence” iron porphyrins, FeTpivPP(2-MeIm) and FeTpivPP(2-MeIm)(O2), were also included in the study for comparison. A number of density functionals were employed in the computations in order to obtain reliable results. The performance of functionals and basis set effects were investigated in detail on FeP, FeP(Im), and FeP(Im)(O2), for which certain experimental information is available and there are some previous calculations in the literature for comparison. Many subtle distinctions in the effects of the different imidazole ligands on the structures and energetics of the deoxy- and oxy iron porphyrins are revealed. While FeP(2-MeIm) is identified to be high spin (S = 2), the ground state of FeP(1-MeIm) may be an admixture of a high-spin (S = 2) and an intermediate-spin (S = 1) state. The ground state of FeP(L)(O2) may be different with different L. A weaker Fe-L bond more likely leads to an open-shell singlet ground state for the oxy complex. The 2-methyl group in 2-MeIm, which increases steric contact between the ligand and the porphyrinato skeleton, weakens the Fe-O2 bond, and thus iron porphyrins with 2-MeIm mimic T-state (low affinity) hemoglobin. The calculated FeP(2-MeIm)–O2 bonding energy is comparable to the FeTpivPP(2-MeIm)–O2 one, in agreement with the fact that the “picket-fence” iron porphyrin binds O2 with affinity similar to that of myoglobin, but different from the result obtained by the CPMD scheme. Im and 4-EtIm closely resemble His, the biologically axial base, and so future computations on hemoprotein models can be simplified safely by using Im. PMID:20712371

  15. Palladium Catalyzed Reduction of Nitrobenzene.

    ERIC Educational Resources Information Center

    Mangravite, John A.

    1983-01-01

    Compares two palladium (Pd/C) reducing systems to iron/tin-hydrochloric acid (Fe/HCl and Sn/HCl) reductions and suggests an efficient, clean, and inexpensive procedures for the conversion of nitrobenzene to aniline. Includes laboratory procedures used and discussion of typical results obtained. (JN)

  16. Computation Sheds Insight into Iron Porphyrin Carbenes' Electronic Structure, Formation, and N-H Insertion Reactivity.

    PubMed

    Sharon, Dina A; Mallick, Dibyendu; Wang, Binju; Shaik, Sason

    2016-08-01

    Iron porphyrin carbenes constitute a new frontier of species with considerable synthetic potential. Exquisitely engineered myoglobin and cytochrome P450 enzymes can generate these complexes and facilitate the transformations they mediate. The current work harnesses density functional theoretical methods to provide insight into the electronic structure, formation, and N-H insertion reactivity of an iron porphyrin carbene, [Fe(Por)(SCH3)(CHCO2Et)](-), a model of a complex believed to exist in an experimentally studied artificial metalloenzyme. The ground state electronic structure of the terminal form of this complex is an open-shell singlet, with two antiferromagnetically coupled electrons residing on the iron center and carbene ligand. As we shall reveal, the bonding properties of [Fe(Por)(SCH3)(CHCO2Et)](-) are remarkably analogous to those of ferric heme superoxide complexes. The carbene forms by dinitrogen loss from ethyl diazoacetate. This reaction occurs preferentially through an open-shell singlet transition state: iron donates electron density to weaken the C-N bond undergoing cleavage. Once formed, the iron porphyrin carbene accomplishes N-H insertion via nucleophilic attack. The resulting ylide then rearranges, using an internal carbonyl base, to form an enol that leads to the product. The findings rationalize experimentally observed reactivity trends reported in artificial metalloenzymes employing iron porphyrin carbenes. Furthermore, these results suggest a possible expansion of enzymatic substrate scope, to include aliphatic amines. Thus, this work, among the first several computational explorations of these species, contributes insights and predictions to the surging interest in iron porphyrin carbenes and their synthetic potential. PMID:27347808

  17. Computation Sheds Insight into Iron Porphyrin Carbenes' Electronic Structure, Formation, and N-H Insertion Reactivity.

    PubMed

    Sharon, Dina A; Mallick, Dibyendu; Wang, Binju; Shaik, Sason

    2016-08-01

    Iron porphyrin carbenes constitute a new frontier of species with considerable synthetic potential. Exquisitely engineered myoglobin and cytochrome P450 enzymes can generate these complexes and facilitate the transformations they mediate. The current work harnesses density functional theoretical methods to provide insight into the electronic structure, formation, and N-H insertion reactivity of an iron porphyrin carbene, [Fe(Por)(SCH3)(CHCO2Et)](-), a model of a complex believed to exist in an experimentally studied artificial metalloenzyme. The ground state electronic structure of the terminal form of this complex is an open-shell singlet, with two antiferromagnetically coupled electrons residing on the iron center and carbene ligand. As we shall reveal, the bonding properties of [Fe(Por)(SCH3)(CHCO2Et)](-) are remarkably analogous to those of ferric heme superoxide complexes. The carbene forms by dinitrogen loss from ethyl diazoacetate. This reaction occurs preferentially through an open-shell singlet transition state: iron donates electron density to weaken the C-N bond undergoing cleavage. Once formed, the iron porphyrin carbene accomplishes N-H insertion via nucleophilic attack. The resulting ylide then rearranges, using an internal carbonyl base, to form an enol that leads to the product. The findings rationalize experimentally observed reactivity trends reported in artificial metalloenzymes employing iron porphyrin carbenes. Furthermore, these results suggest a possible expansion of enzymatic substrate scope, to include aliphatic amines. Thus, this work, among the first several computational explorations of these species, contributes insights and predictions to the surging interest in iron porphyrin carbenes and their synthetic potential.

  18. Mechanisms of bacterially catalyzed reductive dehalogenation

    SciTech Connect

    Picardal, F.W.

    1992-12-31

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using {sup 14}C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  19. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.

    PubMed

    Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel

    2015-12-15

    Recent attention aroused by the reduction of carbon dioxide has as main objective the production of useful products, the "solar fuels", in which solar energy would be stored. One route to this goal is the design of photochemical schemes that would operate this conversion using directly sun light energy. An indirect approach consists in first converting sunlight energy into electricity then using it to reduce CO2 electrochemically. Conversion of carbon dioxide into carbon monoxide is thus a key step through the classical dihydrogen-reductive Fischer-Tropsch chemistry. Direct and catalytic electrochemical CO2 reduction already aroused active interest during the 1980-1990 period. The new wave of interest for these matters that has been growing since 2012 is in direct conjunction with modern energy issues. Among molecular catalysts, electrogenerated Fe(0) porphyrins have proved to be particularly efficient and robust. Recent progress in this field has closely associated the search of more and more efficient catalysts in the iron porphyrin family with an unprecedentedly rigorous deciphering of mechanisms. Accordingly, the coupling of proton transfer with electron transfer and breaking of one of the two C-O bonds of CO2 have been the subjects of relentless scrutiny and mechanistic analysis with systematic investigation of the degree of concertedness of these three events. Catalysis of the electrochemical CO2-to-CO conversion has thus been a good testing ground for the mechanism diagnostic strategies and the all concerted reactivity model proposed then. The role of added Brönsted acids, both as H-bond providers and proton donors, has been elucidated. These efforts have been a preliminary to the inclusion of the acid functionalities within the catalyst molecule, giving rise to considerable increase of the catalytic efficiency. The design of more and more efficient catalysts made it necessary to propose "catalytic Tafel plots" relating the turnover frequency to the

  20. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.

    PubMed

    Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel

    2015-12-15

    Recent attention aroused by the reduction of carbon dioxide has as main objective the production of useful products, the "solar fuels", in which solar energy would be stored. One route to this goal is the design of photochemical schemes that would operate this conversion using directly sun light energy. An indirect approach consists in first converting sunlight energy into electricity then using it to reduce CO2 electrochemically. Conversion of carbon dioxide into carbon monoxide is thus a key step through the classical dihydrogen-reductive Fischer-Tropsch chemistry. Direct and catalytic electrochemical CO2 reduction already aroused active interest during the 1980-1990 period. The new wave of interest for these matters that has been growing since 2012 is in direct conjunction with modern energy issues. Among molecular catalysts, electrogenerated Fe(0) porphyrins have proved to be particularly efficient and robust. Recent progress in this field has closely associated the search of more and more efficient catalysts in the iron porphyrin family with an unprecedentedly rigorous deciphering of mechanisms. Accordingly, the coupling of proton transfer with electron transfer and breaking of one of the two C-O bonds of CO2 have been the subjects of relentless scrutiny and mechanistic analysis with systematic investigation of the degree of concertedness of these three events. Catalysis of the electrochemical CO2-to-CO conversion has thus been a good testing ground for the mechanism diagnostic strategies and the all concerted reactivity model proposed then. The role of added Brönsted acids, both as H-bond providers and proton donors, has been elucidated. These efforts have been a preliminary to the inclusion of the acid functionalities within the catalyst molecule, giving rise to considerable increase of the catalytic efficiency. The design of more and more efficient catalysts made it necessary to propose "catalytic Tafel plots" relating the turnover frequency to the

  1. Detection of alkylperoxo and ferryl, (Fe sup IV = O) sup 2+ , intermediates during the reaction of tert-butyl hydroperoxide with iron porphyrins in toluene solution

    SciTech Connect

    Arasasingham, R.D.; Cornman, C.R.; Balch, A.L. )

    1989-11-27

    PFe{sup II} and PFe{sup III}OH (P is a porphyrin dianion) catalyze the decomposition of tert-butyl hydroperoxide in toluene solution without appreciable attack on the porphyrin ligand. {sup 1}H NMR spectroscopic studies at low temperature ({minus}70{degree}C) give evidence for the formation of a high-spin, five-coordinate intermediate, PFe{sup III}OOC(CH{sub 3}){sub 3}. Organic products formed from this reaction are tert-butyl alcohol, di-tert-butyl peroxide, benzaldehyde, acetone, and benzyl-tert-butyl peroxide, which arise largely from a radical chain process initiated by the iron porphyrin but continuing without its intervention.

  2. Physicochemical peculiarities of iron porphyrin-containing electrodes in catalase- and peroxidase-type biomimetic sensors

    NASA Astrophysics Data System (ADS)

    Sardarly, N. A.; Nagiev, T. M.

    2009-08-01

    New catalase- and peroxidase-type iron porphyrin biomimetic electrodes have been developed for determining ultralow concentrations of H2O2 and C2H5OH in aqueous solutions. Their physicochemical features have been studied. A mechanism of catalase and peroxidase reactions was suggested. Biomimetic electrodes did not lose their activity for a long time under the action of the oxidant, intermediates, and the final products of the decomposition of H2O2. Potentiometric biomimetic sensors of catalase and peroxidase types have been designed and studied.

  3. Oxo-rhenium catalyzed reductive coupling and deoxygenation of alcohols.

    PubMed

    Kasner, Gabrielle R; Boucher-Jacobs, Camille; Michael McClain, J; Nicholas, Kenneth M

    2016-06-01

    Representative benzylic, allylic and α-keto alcohols are deoxygenated to alkanes and/or reductively coupled to alkane dimers by reaction with PPh3 catalyzed by (PPh3)2ReIO2 (1). The newly discovered catalytic reductive coupling reaction is a rare C-C bond-forming transformation of alcohols. PMID:27174412

  4. Nickel-Catalyzed Reductive Amidation of Unactivated Alkyl Bromides.

    PubMed

    Serrano, Eloisa; Martin, Ruben

    2016-09-01

    A user-friendly, nickel-catalyzed reductive amidation of unactivated primary, secondary, and tertiary alkyl bromides with isocyanates is described. This catalytic strategy offers an efficient synthesis of a wide range of aliphatic amides under mild conditions and with an excellent chemoselectivity profile while avoiding the use of stoichiometric and sensitive organometallic reagents. PMID:27357076

  5. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate.

    PubMed

    González-Cortés, Carolina; Salinas-Lara, Citlaltepetl; Gómez-López, Marcos Artemio; Tena-Suck, Martha Lilia; Pérez-De La Cruz, Verónica; Rembao-Bojórquez, Daniel; Pedraza-Chaverrí, José; Gómez-Ruiz, Celedonio; Galván-Arzate, Sonia; Ali, Syed F; Santamaría, Abel

    2008-01-01

    It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage.

  6. Metalloporphyrin solubility: a trigger for catalyzing reductive dechlorination of tetrachloroethylene.

    PubMed

    Dror, Ishai; Schlautman, Mark A

    2004-02-01

    Metalloporphyrins are well known for their electron-transfer roles in many natural redox systems. In addition, several metalloporphyrins and related tetrapyrrole macrocycles complexed with various core metals have been shown to catalyze the reductive dechlorination of certain organic compounds, thus demonstrating the potential for using naturally occurring metalloporphyrins to attenuate toxic and persistent chlorinated organic pollutants in the environment. However, despite the great interest in reductive dechlorination reactions and the wide variety of natural and synthetic porphyrins currently available, only soluble porphyrins, which comprise a small fraction of this particular family of organic macrocycles, have been used as electron-transfer shuttles in these reactions. Results from the present study clearly demonstrate that metalloporphyrin solubility is a key factor in their ability to catalyze the reductive dechlorination of tetrachloroethylene and its daughter compounds. Additionally, we show that certain insoluble and nonreactive metalloporphyrins can be activated as catalysts merely by changing solution conditions to bring about their dissolution. Furthermore, once a metalloporphyrin is fully dissolved and activated, tetrachloroethylene transformation proceeds rapidly, giving nonchlorinated and less toxic alkenes as the major reaction products. Results from the present study suggest that if the right environmental conditions exist or can be created, specific metalloporphyrins may provide a solution for cleaning up sites that are contaminated with chlorinated organic pollutants.

  7. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells.

    PubMed

    Rabaey, Korneel; Read, Suzanne T; Clauwaert, Peter; Freguia, Stefano; Bond, Philip L; Blackall, Linda L; Keller, Jurg

    2008-05-01

    Microbial fuel cells (MFCs) have the potential to combine wastewater treatment efficiency with energetic efficiency. One of the major impediments to MFC implementation is the operation of the cathode compartment, as it employs environmentally unfriendly catalysts such as platinum. As recently shown, bacteria can facilitate sustainable and cost-effective cathode catalysis for nitrate and also oxygen. Here we describe a carbon cathode open to the air, on which attached bacteria catalyzed oxygen reduction. The bacteria present were able to reduce oxygen as the ultimate electron acceptor using electrons provided by the solid-phase cathode. Current densities of up to 2.2 A m(-2) cathode projected surface were obtained (0.303+/-0.017 W m(-2), 15 W m(-3) total reactor volume). The cathodic microbial community was dominated by Sphingobacterium, Acinetobacter and Acidovorax sp., according to 16S rRNA gene clone library analysis. Isolates of Sphingobacterium sp. and Acinetobacter sp. were obtained using H(2)/O(2) mixtures. Some of the pure culture isolates obtained from the cathode showed an increase in the power output of up to three-fold compared to a non-inoculated control, that is, from 0.015+/-0.001 to 0.049+/-0.025 W m(-2) cathode projected surface. The strong decrease in activation losses indicates that bacteria function as true catalysts for oxygen reduction. Owing to the high overpotential for non-catalyzed reduction, oxygen is only to a limited extent competitive toward the electron donor, that is, the cathode. Further research to refine the operational parameters and increase the current density by modifying the electrode surface and elucidating the bacterial metabolism is warranted. PMID:18288216

  8. Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Alkyl Bromides: Et3N as the Terminal Reductant.

    PubMed

    Duan, Zhengli; Li, Wu; Lei, Aiwen

    2016-08-19

    Reductive cross-coupling has emerged as a direct method for the construction of carbon-carbon bonds. Most cobalt-, nickel-, and palladium-catalyzed reductive cross-coupling reactions to date are limited to stoichiometric Mn(0) or Zn(0) as the reductant. One nickel-catalyzed cross-coupling paradigm using Et3N as the terminal reductant is reported. By using this photoredox catalysis and nickel catalysis approach, a direct Csp(2)-Csp(3) reductive cross-coupling of aryl bromides with alkyl bromides is achieved under mild conditions without stoichiometric metal reductants. PMID:27472556

  9. Electrografting of 4-Nitrobenzenediazonium Ion at Carbon Electrodes: Catalyzed and Uncatalyzed Reduction Processes.

    PubMed

    Lee, Lita; Brooksby, Paula A; Hapiot, Philippe; Downard, Alison J

    2016-01-19

    Cyclic voltammograms for the reduction of aryldiazonium ions at glassy carbon electrodes are often, but not always, reported to show two peaks. The origin of this intriguing behavior remains controversial. Using 4-nitrobenzenediazonium ion (NBD), the most widely studied aryldiazonium salt, we make a detailed examination of the electroreduction processes in acetonitrile solution. We confirm that deposition of film can occur during both reduction processes. Film thickness measurements using atomic force microscopy reveal that multilayer films of very similar thickness are formed when reduction is carried out at either peak, even though the film formed at the more negative potential is significantly more blocking to solution redox probes. These and other aspects of the electrochemistry are consistent with the operation of a surface-catalyzed reduction step (proceeding at a clean surface only) followed by an uncatalyzed reduction at a more negative potential. The catalyzed reduction proceeds at both edge-plane and basal-plane graphite materials, suggesting that particular carbon surface sites are not required. The unusual aspect of aryldiazonium ion electrochemistry is that unlike other surface-catalyzed reactions, both processes are seen in a single voltammetric scan at an initially clean electrode because the conditions for observing the uncatalyzed reaction are produced by film deposition during the first catalyzed reduction step.

  10. Regeneration of anion exchange resins by catalyzed electrochemical reduction

    DOEpatents

    Gu, Baohua; Brown, Gilbert M.

    2002-01-01

    Anion exchange resins sorbed with perchlorate may be regenerated by a combination of chemical reduction of perchlorate to chloride using a reducing agent and an electrochemical reduction of the oxidized reducing agent. Transitional metals including Ti, Re, and V are preferred chemical reagents for the reduction of perchlorate to chloride. Complexing agents such as oxalate are used to prevent the precipitation of the oxidized Ti(IV) species, and ethyl alcohol may be added to accelerate the reduction kinetics of perchlorate. The regeneration may be performed by continuously recycling the regenerating solution through the resin bed and an electrochemical cell so that the secondary waste generation is minimized.

  11. Local Pathways in Coherent Electron Transport through Iron Porphyrin Complexes: A Challenge for First-Principles Transport Calculations

    SciTech Connect

    Herrmann, C.; Solomon, G.C.; Ratner, Mark A.

    2010-12-09

    We investigate the coherent electron transport properties of a selection of iron porphyrin complexes in their low-spin and high-spin states, binding the system to metallic electrodes with three different substitution patterns. We use a study of the local transmission through the complexes and their molecular orbitals to show the role of the various components of the molecular structure in mediating electron transport. While there are energies where the metal center and the axial ligands participate in transport, in the off-resonant energy range, these components simply form a scaffold, and the transport is dominated by transmission through the porphyrin macrocyle alone. This is still true when going from the low-spin to the high-spin state, except that now, an additional iron-centered MO contributes to transport in the formerly off-resonant region. It is found that while the choice of the exchange-correlation functional can strongly influence the quantitative results, our qualitative conclusions hold irrespective of the functional employed.

  12. Oxygen reduction on a graphite paste and a catalyst loaded graphite paste electrode

    SciTech Connect

    DiMarco, D.M.

    1980-03-01

    Oxygen reduction was studied in basic solution at a graphite paste electrode (GPE). The GPE was used as the disk of a rotating ring disk electrode (RRDE) and experiments were done using the voltage scan technique. The enhancements afforded by catalysts applied to the GPE were also studied. Oxygen reduction on a GPE was shown to be a two-electron process resulting in the formation of peroxide. The Tafel slope (plotted as potential versus log(i/sub l/ x i/(i/sub l/ - i))) was 180 mV. The presence of gold, silver, or platinum on the GPE shifted the oxygen reduction wave approximately 800 mV in the anodic direction. Comparison of the data on a metal catalyzed GPE to the solid metal electrode showed that the former electrode produced a greater fraction of peroxide as product than did the latter. Silver and gold catalyzed GPEs gave Tagel slopes of about 120 mV. The intermediate catalysis of iron and cobalt porphyrin was also examined. While the cobalt porphyrin catalyzed oxygen reduction at a more anodic potential than the iron porphyrin, the latter appeared more active in reacting the peroxide formed as the product of the disk reaction.

  13. Humic substances as a mediator for microbially catalyzed metal reduction

    USGS Publications Warehouse

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  14. Nickel-catalyzed C-N bond reduction of aromatic and benzylic quaternary ammonium triflates.

    PubMed

    Yi, Yuan-Qiu-Qiang; Yang, Wen-Cheng; Zhai, Dan-Dan; Zhang, Xiang-Yu; Li, Shuai-Qi; Guan, Bing-Tao

    2016-09-18

    A nickel-catalyzed, efficient C-N bond reduction of aromatic and benzylic ammonium triflates has been developed using sodium isopropoxide as a reducing agent. The high efficiency, mild conditions, and good compatibility with various substituents made this method an effective supplement to the current catalytic hydrogenation reactions. Combining this reductive deamination reaction with directed aromatic functionalization reactions, a powerful strategy for regioselective functionalization of arenes was demonstrated using dialkylamine groups as traceless directing groups. PMID:27530274

  15. Glutathione-supported arsenate reduction coupled to arsenolysis catalyzed by ornithine carbamoyl transferase

    SciTech Connect

    Nemeti, Balazs; Gregus, Zoltan

    2009-09-01

    Three cytosolic phosphorolytic/arsenolytic enzymes, (purine nucleoside phosphorylase [PNP], glycogen phosphorylase, glyceraldehyde-3-phosphate dehydrogenase) have been shown to mediate reduction of arsenate (AsV) to the more toxic arsenite (AsIII) in a thiol-dependent manner. With unknown mechanism, hepatic mitochondria also reduce AsV. Mitochondria possess ornithine carbamoyl transferase (OCT), which catalyzes phosphorolytic or arsenolytic citrulline cleavage; therefore, we examined if mitochondrial OCT facilitated AsV reduction in presence of glutathione. Isolated rat liver mitochondria were incubated with AsV, and AsIII formed was quantified. Glutathione-supplemented permeabilized or solubilized mitochondria reduced AsV. Citrulline (substrate for OCT-catalyzed arsenolysis) increased AsV reduction. The citrulline-stimulated AsV reduction was abolished by ornithine (OCT substrate inhibiting citrulline cleavage), phosphate (OCT substrate competing with AsV), and the OCT inhibitor norvaline or PALO, indicating that AsV reduction is coupled to OCT-catalyzed arsenolysis of citrulline. Corroborating this conclusion, purified bacterial OCT mediated AsV reduction in presence of citrulline and glutathione with similar responsiveness to these agents. In contrast, AsIII formation by intact mitochondria was unaffected by PALO and slightly stimulated by citrulline, ornithine, and norvaline, suggesting minimal role for OCT in AsV reduction in intact mitochondria. In addition to OCT, mitochondrial PNP can also mediate AsIII formation; however, its role in AsV reduction appears severely limited by purine nucleoside supply. Collectively, mitochondrial and bacterial OCT promote glutathione-dependent AsV reduction with coupled arsenolysis of citrulline, supporting the hypothesis that AsV reduction is mediated by phosphorolytic/arsenolytic enzymes. Nevertheless, because citrulline cleavage is disfavored physiologically, OCT may have little role in AsV reduction in vivo.

  16. Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets

    NASA Astrophysics Data System (ADS)

    Wang, Qiannan; Wang, Likai; Tang, Zhenghua; Wang, Fucai; Yan, Wei; Yang, Hongyu; Zhou, Weijia; Li, Ligui; Kang, Xiongwu; Chen, Shaowei

    2016-03-01

    Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, UV-visible absorption spectroscopy, thermogravimetric analysis and BET nitrogen adsorption/desorption. Electrochemical studies showed that the composites demonstrated apparent ORR activity in alkaline media, and the sample with a 30% Au mass loading was identified as the best catalyst among the series, with a performance comparable to that of commercial Pt/C, but superior to those of Au102 nanoclusters and carbon nanosheets alone, within the context of onset potential, kinetic current density, and durability. The results suggest an effective approach to the preparation of high-performance ORR catalysts based on gold nanoclusters supported on carbon nanosheets.Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as

  17. Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets.

    PubMed

    Wang, Qiannan; Wang, Likai; Tang, Zhenghua; Wang, Fucai; Yan, Wei; Yang, Hongyu; Zhou, Weijia; Li, Ligui; Kang, Xiongwu; Chen, Shaowei

    2016-03-28

    Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, UV-visible absorption spectroscopy, thermogravimetric analysis and BET nitrogen adsorption/desorption. Electrochemical studies showed that the composites demonstrated apparent ORR activity in alkaline media, and the sample with a 30% Au mass loading was identified as the best catalyst among the series, with a performance comparable to that of commercial Pt/C, but superior to those of Au102 nanoclusters and carbon nanosheets alone, within the context of onset potential, kinetic current density, and durability. The results suggest an effective approach to the preparation of high-performance ORR catalysts based on gold nanoclusters supported on carbon nanosheets. PMID:26940367

  18. Uniform colloids of ruthenium dioxide hydrate evolved by the surface-catalyzed reduction of ruthenium tetroxide

    SciTech Connect

    McMurray, H.N. )

    1993-07-29

    Hydrosols of ruthenium dioxide hydrate comprising substantially monodisperse, spherical, and pristine submicron particles have been synthesized by the reduction of aqueous ruthenium tetroxide. Subsequent to nucleation, colloidal particles grow spontaneously by heterogeneously catalyzing the reduction of ruthenium tetroxide by water. The kinetics of the growth process are described and a mechanism proposed whereby particles act as microelectrodes, coupling the anodic oxidation of water and the cathodic reduction of ruthenium tetroxide. Observed trends in particle size and size distribution are discussed in relation to the kinetic law of particle growth. 29 refs., 5 figs., 2 tabs.

  19. The kinetics and QSAR of abiotic reduction of mononitro aromatic compounds catalyzed by activated carbon.

    PubMed

    Gong, Wenwen; Liu, Xinhui; Gao, Ding; Yu, Yanjun; Fu, Wenjun; Cheng, Dengmiao; Cui, Baoshan; Bai, Junhong

    2015-01-01

    The kinetics of abiotic reduction of mono-nitro aromatic compounds (mono-NACs) catalyzed by activated carbon (AC) in an anaerobic system were examined. There were 6 types of substituent groups on nitrobenzene, including methyl, chlorine, amino, carboxyl, hydroxyl and cyanogen groups, at the ortho, meta or para positions. Our results showed that reduction followed pseudo-first order reaction kinetics, and that the rate constant (logkSA) varied widely, ranging between -4.77 and -2.82, depending upon the type and position of the substituent. A quantitative structure-activity relationship (QSAR) model using 15 theoretical molecular descriptors and partial-least-squares (PLS) regression was developed for the reduction rates of mono-NACs catalyzed by AC. The cross-validated regression coefficient (Qcum(2), 0.861) and correlation coefficient (R(2), 0.898) indicated significantly high robustness of the model. The VIP (variable importance in the projection) values of energy of the lowest unoccupied molecular orbital (ELUMO) and the maximum net atomic charge on the aromatic carbon bound to the nitro group (QC(-)) were 1.15 and 1.01, respectively. These values indicated that the molecular orbital energies and the atomic net charges might play important roles in the reduction of mono-NACs catalyzed by AC in anaerobic systems.

  20. Metal-Catalyzed β-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions.

    PubMed

    Streuff, Jan; Gansäuer, Andreas

    2015-11-23

    Transition-metal-catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β-unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today's developments.

  1. Nickel-Catalyzed Asymmetric Reductive Cross-Coupling between Heteroaryl Iodides and α-Chloronitriles.

    PubMed

    Kadunce, Nathaniel T; Reisman, Sarah E

    2015-08-26

    A Ni-catalyzed asymmetric reductive cross-coupling of heteroaryl iodides and α-chloronitriles has been developed. This method furnishes enantioenriched α,α-disubstituted nitriles from simple organohalide building blocks. The reaction tolerates a variety of heterocyclic coupling partners, including pyridines, pyrimidines, quinolines, thiophenes, and piperidines. The reaction proceeds under mild conditions at room temperature and precludes the need to pregenerate organometallic nucleophiles.

  2. Metal-Catalyzed β-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions.

    PubMed

    Streuff, Jan; Gansäuer, Andreas

    2015-11-23

    Transition-metal-catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β-unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today's developments. PMID:26471460

  3. Copper-Catalyzed Reductive N-Alkylation of Amides with N-Tosylhydrazones Derived from Ketones.

    PubMed

    Xu, Peng; Qi, Fu-Ling; Han, Fu-She; Wang, Yan-Hua

    2016-07-20

    A CuI-catalyzed reductive coupling of ketone-derived N-tosylhydrazones with amides is presented. Under the optimized conditions, an array of N-tosylhydrazones derived from aryl-alkyl and diaryl ketones could couple effectively with a wide variety of (hetero)aryl as well as aliphatic amides to afford the N-alkylated amides in high yields. The method represents the very few examples for reliably accessing secondary and tertiary amides through a reductive N-alkylation protocol. PMID:27346856

  4. Advances in potassium catalyzed NOx reduction by carbon materials: An overview

    SciTech Connect

    Bueno-Lopez, A.; Garcia-Garcia, A.; Illan-Gomez, M.J.; Linares-Solano, A.; de Lecea, C.S.M.

    2007-06-15

    The research work conducted in our group concerning the study of the potassium-catalyzed NOx reduction by carbon materials is presented. The importance of the different variables affecting the NOx-carbon reactions is discussed, e.g. carbon porosity, coal rank, potassium loading, influence of the binder used, and effect of the gas composition. The catalyst loading is the main feature affecting the selectivity for NOx reduction against O{sub 2} combustion. The NOx reduction without important combustion in O{sub 2} occurs between 350 and 475{sup o}C in the presence of the catalyst. The presence of H{sub 2}O in the gas mixture enhances NOx reduction at low carbon conversions, but as the reaction proceeds, it decreases as the selectivity does. The presence of CO{sub 2} diminishes the activity and selectivity of the catalyst. SO{sub 2} completely inhibits the catalytic activity of potassium due to sulfate formation.

  5. Studies on the electrochemical reduction of oxygen catalyzed by reduced graphene sheets in neutral media

    NASA Astrophysics Data System (ADS)

    Wu, Jiajia; Wang, Yi; Zhang, Dun; Hou, Baorong

    Reduced graphene sheets (RGSs) were prepared via chemical reduction of graphite oxide and their morphology was characterized by atomic force microscopy. The electrochemical reduction of oxygen (O 2) with RGSs was studied by cyclic, rotating disk electrode, and rotating ring-disk electrode voltammetry using the RGSs-modified glassy carbon (RGSs/GC) electrode in 3.5% NaCl solution. The results show that O 2 reduction undergoes three steps at the RGSs/GC electrode: electrochemical reduction of O 2 to H 2O 2 mediated by quinone-like groups on the RGSs surface, a direct 2-electron reduction of O 2, and reduction of the H 2O 2 produced to H 2O. The modification of RGSs results in an obvious positive shift of the peak potential and a larger current density. The kinetics study shows that the number of electrons transferred for O 2 reduction can reach to 3.0 at potentials of the first reduction step, indicating RGSs can effectively catalyze the disproportionation of H 2O 2. Such catalytic activity of RGSs enables a 4-electron reduction of O 2 at a relatively low overpotential in neutral media. RGSs are a potential electrode material for microbial fuel cells.

  6. Role of reductants in CuZSM-5 catalyzed NOx reduction

    SciTech Connect

    Bhore, N.A.; Dwyer, F.G.; Marler, D.O.; McWilliams, J.P.

    1993-12-31

    The implementation of clean burn engines is limited by technology to efficiently remove nitrogen oxides from the net oxidizing exhaust composition. High NO{sub x} conversions require the preferential reaction of reductants (hydrogen, carbon monoxide, olefins and paraffins) with nitrogen oxides over that of combustion. This study examines the role of these reactions over CuZM-5 catalyst in a simulated lean burn engine exhaust. By careful addition of a known amount of individual reductant over fresh and aged catalysts, the authors find that propylene is the primary-reductant for NO{sub x} conversion; hydrogen and carbon monoxide are not. For stoichiometric-burn engines, carbon monoxide and hydrogen are known to be primary reductants on three-way catalysts. Other light olefins such as isobutylene and ethylene are also effective in NO{sub x} reduction. Paraffins are much less effective. The efficacy of olefin reductant decreases on aging.

  7. Bridging organometallics and quantum chemical topology: Understanding electronic relocalisation during palladium-catalyzed reductive elimination.

    PubMed

    de Courcy, Benoit; Derat, Etienne; Piquemal, Jean-Philip

    2015-06-01

    This article proposes to bridge two fields, namely organometallics and quantum chemical topology. To do so, Palladium-catalyzed reductive elimination is studied. Such reaction is a classical elementary step in organometallic chemistry, where the directionality of electrons delocalization is not well understood. New computational evidences highlighting the accepted mechanism are proposed following a strategy coupling quantum theory of atoms in molecules and electron localization function topological analyses and enabling an extended quantification of donated/back-donated electrons fluxes along reaction paths going beyond the usual Dewar-Chatt-Duncanson model. Indeed, if the ligands coordination mode (phosphine, carbene) is commonly described as dative, it appears that ligands lone pairs stay centered on ligands as electrons are shared between metal and ligand with strong delocalization toward the latter. Overall, through strong trans effects coming from the carbon involved in the reductive elimination, palladium delocalizes its valence electrons not only toward phosphines but interestingly also toward the carbene. As back-donation increases during reductive elimination, one of the reaction key components is the palladium ligands ability to accept electrons. The rationalization of such electronic phenomena gives new directions for the design of palladium-catalyzed systems. PMID:25899703

  8. Bridging organometallics and quantum chemical topology: Understanding electronic relocalisation during palladium-catalyzed reductive elimination.

    PubMed

    de Courcy, Benoit; Derat, Etienne; Piquemal, Jean-Philip

    2015-06-01

    This article proposes to bridge two fields, namely organometallics and quantum chemical topology. To do so, Palladium-catalyzed reductive elimination is studied. Such reaction is a classical elementary step in organometallic chemistry, where the directionality of electrons delocalization is not well understood. New computational evidences highlighting the accepted mechanism are proposed following a strategy coupling quantum theory of atoms in molecules and electron localization function topological analyses and enabling an extended quantification of donated/back-donated electrons fluxes along reaction paths going beyond the usual Dewar-Chatt-Duncanson model. Indeed, if the ligands coordination mode (phosphine, carbene) is commonly described as dative, it appears that ligands lone pairs stay centered on ligands as electrons are shared between metal and ligand with strong delocalization toward the latter. Overall, through strong trans effects coming from the carbon involved in the reductive elimination, palladium delocalizes its valence electrons not only toward phosphines but interestingly also toward the carbene. As back-donation increases during reductive elimination, one of the reaction key components is the palladium ligands ability to accept electrons. The rationalization of such electronic phenomena gives new directions for the design of palladium-catalyzed systems.

  9. Simultaneous reduction of particulate matter and NO(x) emissions using 4-way catalyzed filtration systems.

    PubMed

    Swanson, Jacob J; Watts, Winthrop F; Newman, Robert A; Ziebarth, Robin R; Kittelson, David B

    2013-05-01

    The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device.

  10. Evidence by ESI-MS for NQO1-catalyzed reduction of estrogen ortho-quinones

    PubMed Central

    Gaikwad, Nilesh W.; Rogan, Eleanor G.; Cavalieri, Ercole L.

    2007-01-01

    Estrogen ortho-quinones have been implicated as ultimate carcinogenic metabolites of estrogens. The present conclusion that estrogen ortho-quinones are not substrates for NAD(P)H:quinone oxidoreductase (NQO1) stems from earlier reports. In this investigation, we were successful in circumventing the problem of nonenzymatic reduction of estrogen quinone by NAD(P)H, which led to the above conclusion, and for the first time show that NQO1 catalyzes the reduction of estrogen quinones. Mass spectrometric binding studies involving estradiol-3,4-quinone or menadione with NQO1 clearly support the formation of an enzyme-substrate physical complex. However, the NQO1 mass spectrum did not alter after addition of cholesterol, the control. Two different strategies were employed to ascertain the NQO1 activity in estrogen quinone reduction. First, the ping-pong mechanism of NQO1 catalysis was utilized to overcome the problem of nonenzymatic reduction of the substrate by NADH. Second, tetrahydrofolic acid, which has a lower reducing potential, was used as an alternate cofactor. Both of these methods confirmed the reduction of estradiol-3,4-quinone by NQO1, when assay mixtures were analyzed by UV or liquid chromatography-mass spectrometry. Furthermore, reduction of 9,10-phenanthrene quinone or menadione was observed using the reported assay conditions. Thus, clear evidence for the catalytic reduction of estrogen ortho-quinones by NQO1 has been obtained; its mechanism and implications are discussed. PMID:17893042

  11. Stereochemistry of reductions catalyzed by methyl-epimerizing ketoreductase domains of polyketide synthases.

    PubMed

    You, Young-Ok; Khosla, Chaitan; Cane, David E

    2013-05-22

    Ketoreductase (KR) domains from modular polyketide synthases (PKSs) catalyze the reduction of 2-methyl-3-ketoacyl acyl carrier protein (ACP) substrates and in certain cases epimerization of the 2-methyl group as well. The structural and mechanistic basis of epimerization is poorly understood, and only a small number of such KRs been studied. In this work, we studied three recombinant KR domains with putative epimerase activity: NysKR1 from module 1 of the nystatin PKS, whose stereospecificity can be predicted from both the protein sequence and the product structure; RifKR7 from module 7 of the rifamycin PKS, whose stereospecificity cannot be predicted from the protein sequence; and RifKR10 from module 10 of the rifamycin PKS, whose specificity is unclear from both the sequence and the structure. Each KR was individually incubated with NADPH and (2R)- or (2RS)-2-methyl-3-ketopentanoyl-ACP generated enzymatically in situ or via chemoenzymatic synthesis, respectively. Chiral GC-MS analysis revealed that each KR stereospecifically produced the corresponding (2S,3S)-2-methyl-3-hydroxypentanoyl-ACP in which the 2-methyl substituent had undergone KR-catalyzed epimerization. Thus, our results have led to the identification of a prototypical set of KR domains that generate (2S,3S)-2-methyl-3-hydroxyacyl products in the course of polyketide biosynthesis.

  12. Dimer Involvement and Origin of Crossover in Nickel-Catalyzed Aldehyde–Alkyne Reductive Couplings

    PubMed Central

    2015-01-01

    The mechanism of nickel(0)-catalyzed reductive coupling of aldehydes and alkynes has been studied. Extensive double-labeling crossover studies have been conducted. While previous studies illustrated that phosphine- and N-heterocyclic carbene-derived catalysts exhibited differing behavior, the origin of these effects has now been evaluated in detail. Many variables, including ligand class, sterics of the ligand and alkyne, temperature, and ring size being formed in intramolecular versions, all influence the extent of crossover observed. A computational evaluation of these effects suggests that dimerization of a key metallacyclic intermediate provides the origin of crossover. Protocols that proceed with crossover are typically less efficient than those without crossover given the thermodynamic stability and low reactivity of the dimeric metallacycles involved in crossover pathways. PMID:25401337

  13. Palladium(0)/NHC-Catalyzed Reductive Heck Reaction of Enones: A Detailed Mechanistic Study.

    PubMed

    Raoufmoghaddam, Saeed; Mannathan, Subramaniyan; Minnaard, Adriaan J; de Vries, Johannes G; Reek, Joost N H

    2015-12-14

    We have studied the mechanism of the palladium-catalyzed reductive Heck reaction of para-substituted enones with 4-iodoanisole by using N,N-diisopropylethylamine (DIPEA) as the reductant. Kinetic studies and in situ spectroscopic analysis have provided a detailed insight into the reaction. Progress kinetic analysis demonstrated that neither catalyst decomposition nor product inhibition occurred during the catalysis. The reaction is first order in the palladium and aryl iodide, and zero order in the activated alkene, N-heterocyclic carbene (NHC) ligand, and DIPEA. The experiments with deuterated solvent ([D7]DMF) and deuterated base ([D15]Et3N) supported the role of the amine as a reductant in the reaction. The palladium complex [Pd(0)(NHC)(1)] has been identified as the resting state. The kinetic experiments by stopped-flow UV/Vis also revealed that the presence of the second substrate, benzylideneacetone 1, slows down the oxidative addition of 4-iodoanisole through its competing coordination to the palladium center. The kinetic and mechanistic studies indicated that the oxidative addition of the aryl iodide is the rate-determining step. Various scenarios for the oxidative addition step have been analyzed by using DFT calculations (bp86/def2-TZVP) that supported the inhibiting effect of substrate 1 by formation of resting state [Pd(0)(NHC)(1)] species at the cost of further increase in the energy barrier of the oxidative addition step. PMID:26561034

  14. Capacity of reductants and chelators to prevent lipid oxidation catalyzed by fish hemoglobin.

    PubMed

    Maestre, Rodrigo; Pazos, Manuel; Iglesias, Jacobo; Medina, Isabel

    2009-10-14

    The efficiency of different reductants (reduced glutathione, ascorbic acid, and catalase) and metal chelators [ethylenediaminetetraacetic acid (EDTA), citric acid, sodium tripolyphosphate (STPP), and adenosine-5'-triphosphate (ATP)] to inhibit lipid oxidation promoted by fish hemoglobin was investigated. The inhibitory activity on hemoglobin-catalyzed lipid oxidation was also evaluated for grape oligomeric catechins (proanthocyanidins), which have both reducing and chelating properties. The antioxidant activity was studied in two different lipid oxidation models, liposomes and washed minced fish muscle. Grape proanthocyanidins were found to be significantly more effective than other reductants to prevent hemoglobin-mediated lipid oxidation in both liposomes and washed fish muscle. Reduced glutathione was also efficient to retard lipid oxidation at the same molarity in washed fish muscle, whereas catalase and ascorbic acid showed a lower antioxidant activity. Metal chelators were less active than reductants, and consequently, the former were necessarily evaluated at much higher concentration than grape proanthocyanidins and reducing compounds. STPP was found to be the iron chelator with the strongest efficiency to delay hemoglobin-mediated lipid oxidation followed by EDTA. Citric acid and ATP were ineffective in retarding lipid oxidation in both systems. Grape proanthocyanidins provided the most extensive protection to preserve hemoglobin at ferrous state in washed fish muscle. Our results draw attention to the greater capacity of reducing compounds to prevent fish hemoglobin-mediated lipid oxidation in comparison with iron chelators, suggesting that the free radical scavenging and/or reduction of ferrylHb species are crucial actions to avoid the pro-oxidant capacity of fish hemoglobin.

  15. Capacity of reductants and chelators to prevent lipid oxidation catalyzed by fish hemoglobin.

    PubMed

    Maestre, Rodrigo; Pazos, Manuel; Iglesias, Jacobo; Medina, Isabel

    2009-10-14

    The efficiency of different reductants (reduced glutathione, ascorbic acid, and catalase) and metal chelators [ethylenediaminetetraacetic acid (EDTA), citric acid, sodium tripolyphosphate (STPP), and adenosine-5'-triphosphate (ATP)] to inhibit lipid oxidation promoted by fish hemoglobin was investigated. The inhibitory activity on hemoglobin-catalyzed lipid oxidation was also evaluated for grape oligomeric catechins (proanthocyanidins), which have both reducing and chelating properties. The antioxidant activity was studied in two different lipid oxidation models, liposomes and washed minced fish muscle. Grape proanthocyanidins were found to be significantly more effective than other reductants to prevent hemoglobin-mediated lipid oxidation in both liposomes and washed fish muscle. Reduced glutathione was also efficient to retard lipid oxidation at the same molarity in washed fish muscle, whereas catalase and ascorbic acid showed a lower antioxidant activity. Metal chelators were less active than reductants, and consequently, the former were necessarily evaluated at much higher concentration than grape proanthocyanidins and reducing compounds. STPP was found to be the iron chelator with the strongest efficiency to delay hemoglobin-mediated lipid oxidation followed by EDTA. Citric acid and ATP were ineffective in retarding lipid oxidation in both systems. Grape proanthocyanidins provided the most extensive protection to preserve hemoglobin at ferrous state in washed fish muscle. Our results draw attention to the greater capacity of reducing compounds to prevent fish hemoglobin-mediated lipid oxidation in comparison with iron chelators, suggesting that the free radical scavenging and/or reduction of ferrylHb species are crucial actions to avoid the pro-oxidant capacity of fish hemoglobin. PMID:19736927

  16. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation

    PubMed Central

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon–carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  17. Practical carbon-carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation.

    PubMed

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon-carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  18. Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction.

    PubMed

    Panetier, Julien A; Letko, Christopher S; Tilley, T Don; Head-Gordon, Martin

    2016-01-12

    Localized orbital bonding analysis (LOBA) was employed to probe the oxidation state in cobalt-bis(diaryldithiolene)-catalyzed proton reduction in nonaqueous media. LOBA calculations provide both the oxidation state and chemically intuitive views of bonding in cobalt-bis(diaryldithiolene) species and therefore allow characterization of the role of the redox non-innocent dithiolene ligand. LOBA results show that the reduction of the monoanion species [1Br](-) is metal-centered and gives a cobalt(II) ion species, [1Br](2-), coordinated to two dianionic ene-1,2-dithiolates. This electronic configuration is in agreement with the solution magnetic moment observed for the analogous salt [1F](2-) (μeff = 2.39 μB). Protonation of [1Br](2-) yields the cobalt(III)-hydride [1Br(CoH)](-) species in which the Co-H bond is computed to be highly covalent (Löwdin populations close to 0.50 on cobalt and hydrogen atoms). Further reduction of [1Br(CoH)](-) forms a more basic cobalt(II)-H intermediate [1Br(CoH)](2-) (S = 0) from which protonation at sulfur gives a S-H bond syn to the Co-H bond. Formation of a cobalt-dihydrogen [1Br(CoH2)](-) intermediate is calculated to occur via a homocoupling (H(•) + H(•) → H2) step with a free energy of activation of 5.9 kcal/mol in solution (via C-PCM approach). PMID:26598074

  19. Kinetics of homogeneous and surface-catalyzed mercury(II) reduction by iron(II)

    USGS Publications Warehouse

    Amirbahman, Aria; Kent, Douglas B.; Curtis, Gary P.; Marvin-DiPasquale, Mark C.

    2013-01-01

    Production of elemental mercury, Hg(0), via Hg(II) reduction is an important pathway that should be considered when studying Hg fate in environment. We conducted a kinetic study of abiotic homogeneous and surface-catalyzed Hg(0) production by Fe(II) under dark anoxic conditions. Hg(0) production rate, from initial 50 pM Hg(II) concentration, increased with increasing pH (5.5–8.1) and aqueous Fe(II) concentration (0.1–1 mM). The homogeneous rate was best described by the expression, rhom = khom [FeOH+] [Hg(OH)2]; khom = 7.19 × 10+3 L (mol min)−1. Compared to the homogeneous case, goethite (α-FeOOH) and hematite (α-Fe2O3) increased and γ-alumina (γ-Al2O3) decreased the Hg(0) production rate. Heterogeneous Hg(0) production rates were well described by a model incorporating equilibrium Fe(II) adsorption, rate-limited Hg(II) reduction by dissolved and adsorbed Fe(II), and rate-limited Hg(II) adsorption. Equilibrium Fe(II) adsorption was described using a surface complexation model calibrated with previously published experimental data. The Hg(0) production rate was well described by the expression rhet = khet [>SOFe(II)] [Hg(OH)2], where >SOFe(II) is the total adsorbed Fe(II) concentration; khet values were 5.36 × 10+3, 4.69 × 10+3, and 1.08 × 10+2 L (mol min)−1 for hematite, goethite, and γ-alumina, respectively. Hg(0) production coupled to reduction by Fe(II) may be an important process to consider in ecosystem Hg studies.

  20. Reduction of CO2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine.

    PubMed

    Lim, Chern-Hooi; Holder, Aaron M; Hynes, James T; Musgrave, Charles B

    2014-11-12

    We use quantum chemical calculations to elucidate a viable mechanism for pyridine-catalyzed reduction of CO2 to methanol involving homogeneous catalytic steps. The first phase of the catalytic cycle involves generation of the key catalytic agent, 1,2-dihydropyridine (PyH2). First, pyridine (Py) undergoes a H(+) transfer (PT) to form pyridinium (PyH(+)), followed by an e(-) transfer (ET) to produce pyridinium radical (PyH(0)). Examples of systems to effect this ET to populate PyH(+)'s LUMO (E(0)(calc) ∼ -1.3 V vs SCE) to form the solution phase PyH(0) via highly reducing electrons include the photoelectrochemical p-GaP system (E(CBM) ∼ -1.5 V vs SCE at pH 5) and the photochemical [Ru(phen)3](2+)/ascorbate system. We predict that PyH(0) undergoes further PT-ET steps to form the key closed-shell, dearomatized (PyH2) species (with the PT capable of being assisted by a negatively biased cathode). Our proposed sequential PT-ET-PT-ET mechanism for transforming Py into PyH2 is analogous to that described in the formation of related dihydropyridines. Because it is driven by its proclivity to regain aromaticity, PyH2 is a potent recyclable organo-hydride donor that mimics important aspects of the role of NADPH in the formation of C-H bonds in the photosynthetic CO2 reduction process. In particular, in the second phase of the catalytic cycle, which involves three separate reduction steps, we predict that the PyH2/Py redox couple is kinetically and thermodynamically competent in catalytically effecting hydride and proton transfers (the latter often mediated by a proton relay chain) to CO2 and its two succeeding intermediates, namely, formic acid and formaldehyde, to ultimately form CH3OH. The hydride and proton transfers for the first of these reduction steps, the homogeneous reduction of CO2, are sequential in nature (in which the formate to formic acid protonation can be assisted by a negatively biased cathode). In contrast, these transfers are coupled in each of the two

  1. Concerted dismutation of chlorite ion: water-soluble iron-porphyrins as first generation model complexes for chlorite dismutase.

    PubMed

    Zdilla, Michael J; Lee, Amanda Q; Abu-Omar, Mahdi M

    2009-03-01

    Three iron-5,10,15,20-tetraarylporphyrins (Fe(Por-Ar4), Ar = 2,3,5,6-tetrafluro-N,N,N-trimethylanilinium (1), N,N,N-trimethylanilinium (2), and p-sulfonatophenyl (3)) have been investigated as catalysts for the dismutation of chlorite (ClO2-). Degradation of ClO2- by these catalysts occurs by two concurrent pathways. One leads to formation of chlorate (ClO3-) and chloride (Cl-), which is determined to be catalyzed by O=FeIV(Por) (Compound II) based on stopped-flow absorption spectroscopy, competition with 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonicacid), 18O-labeling studies, and kinetics. The second pathway is a concerted dismutation of chlorite to dioxygen (O2) and chloride. On the basis of isotope labeling studies using a residual gas analyzer, the mechanism is determined to be formation of O=FeIV(Por)*+ (Compound I) from oxygen atom transfer, and subsequent rebound with the resulting hypochlorite ion (ClO-) to give dioxygen and chloride. While the chlorate production pathway is dominant for catalysts 2 and 3, the O2-producing pathway is significant for catalyst 1. In addition to chlorite dismutation, complex 1 catalyzes hypochlorite disproportionation to chloride and dioxygen quantitatively.

  2. The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: Evolutionary implications

    PubMed Central

    Giuffrè, Alessandro; Stubauer, Gottfried; Sarti, Paolo; Brunori, Maurizio; Zumft, Walter G.; Buse, Gerhard; Soulimane, Tewfik

    1999-01-01

    We show that the heme-copper terminal oxidases of Thermus thermophilus (called ba3 and caa3) are able to catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O) under reducing anaerobic conditions. The rate of NO consumption and N2O production were found to be linearly dependent on enzyme concentration, and activity was abolished by enzyme denaturation. Thus, contrary to the eukaryotic enzyme, both T. thermophilus oxidases display a NO reductase activity (3.0 ± 0.7 mol NO/mol ba3 × min and 32 ± 8 mol NO/mol caa3 × min at [NO] ≈ 50 μM and 20°C) that, though considerably lower than that of bona fide NO reductases (300–4,500 mol NO/mol enzyme × min), is definitely significant. We also show that for ba3 oxidase, NO reduction is associated to oxidation of cytochrome b at a rate compatible with turnover, suggesting a mechanism consistent with the stoichiometry of the overall reaction. We propose that the NO reductase activity of T. thermophilus oxidases may depend on a peculiar CuB+ coordination, which may be revealed by the forthcoming three-dimensional structure. These findings support the hypothesis of a common phylogeny of aerobic respiration and bacterial denitrification, which was proposed on the basis of structural similarities between the Pseudomonas stutzeri NO reductase and the cbb3 terminal oxidases. Our findings represent functional evidence in support of this hypothesis. PMID:10611279

  3. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    SciTech Connect

    Schlautman, Mark A.

    2013-07-14

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not

  4. Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings.

    PubMed

    Jackson, Evan P; Malik, Hasnain A; Sormunen, Grant J; Baxter, Ryan D; Liu, Peng; Wang, Hengbin; Shareef, Abdur-Rafay; Montgomery, John

    2015-06-16

    The control of regiochemistry is a considerable challenge in the development of a wide array of catalytic processes. Simple π-components such as alkenes, alkynes, 1,3-dienes, and allenes are among the many classes of substrates that present complexities in regioselective catalysis. Considering an internal alkyne as a representative example, when steric and electronic differences between the two substituents are minimal, differentiating among the two termini of the alkyne presents a great challenge. In cases where the differences between the alkyne substituents are substantial, overcoming those biases to access the regioisomer opposite that favored by substrate biases often presents an even greater challenge. Nickel-catalyzed reductive couplings of unsymmetrical π-components make up a group of reactions where control of regiochemistry presents a challenging but important objective. In the course of our studies of aldehyde-alkyne reductive couplings, complementary solutions to challenges in regiocontrol have been developed. Through careful selection of the ligand and reductant, as well as the more subtle reaction variables such as temperature and concentration, effective protocols have been established that allow highly selective access to either regiosiomer of the allylic alcohol products using a wide range of unsymmetrical alkynes. Computational studies and an evaluation of reaction kinetics have provided an understanding of the origin of the regioselectivity control. Throughout the various procedures described, the development of ligand-substrate interactions plays an essential role, and the overall kinetic descriptions were found to differ between protocols. Rational alteration of the rate-determining step plays a key role in the regiochemistry reversal strategy, and in one instance, the two possible regioisomeric outcomes in a single reaction were found to operate by different kinetic descriptions. With this mechanistic information in hand, the empirical

  5. Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings

    PubMed Central

    Jackson, Evan P.; Malik, Hasnain A.; Sormunen, Grant J.; Baxter, Ryan D.; Liu, Peng; Wang, Hengbin; Shareef, Abdur-Rafay; Montgomery, John

    2015-01-01

    CONSPECTUS The control of regiochemistry is a considerable challenge in the development of a wide array of catalytic processes. Simple π-components such as alkenes, alkynes, 1,3-dienes, and allenes are among the many classes of substrates that present complexities in regioselective catalysis. Considering an internal alkyne as a representative example, when steric and electronic differences between the two substituents are minimal, differentiating among the two termini of the alkyne presents a great challenge. In cases where the differences between the alkyne substituents are substantial, overcoming those biases to access the regioisomer opposite that favored by substrate biases often presents an even greater challenge. Nickel-catalyzed reductive couplings of unsymmetrical π-components make up a group of reactions where control of regiochemistry presents a challenging but important objective. In the course of our studies of aldehyde-alkyne reductive couplings, complementary solutions to challenges in regiocontrol have been developed. Through careful selection of the ligand and reductant, as well as the more subtle reaction variables such as temperature and concentration, effective protocols have been established that allow highly selective access to either regiosiomer of the the allylic alcohol products using a wide range of unsymmetrical alkynes. Computational studies and an evaluation of reaction kinetics have provided an understanding of the origin of the regioselectivity control. Throughout the various procedures described, the development of ligand-substrate interactions play a key role, and the overall kinetic descriptions were found to differ between protocols. Rational alteration of the rate-determining step plays a key role in the regiochemistry reversal strategy, and in one instance, the two possible regioisomeric outcomes in a single reaction were found to operate by different kinetic descriptions. With this mechanistic information in hand, the

  6. Copper-catalyzed reductive cross-coupling of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides.

    PubMed

    Liu, Jing-Hui; Yang, Chu-Ting; Lu, Xiao-Yu; Zhang, Zhen-Qi; Xu, Ling; Cui, Mian; Lu, Xi; Xiao, Bin; Fu, Yao; Liu, Lei

    2014-11-17

    A copper-catalyzed reductive cross-coupling reaction of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides was developed. It provides a practical method for efficient and cost-effective construction of aryl-alkyl and alkyl-alkyl CC bonds with stereocontrol from readily available substrates. When used in an intramolecular fashion, the reaction enables convenient access to various substituted carbo- or heterocycles, such as 2,3-dihydrobenzofuran and benzochromene derivatives.

  7. Effect of mass transfer on the oxygen reduction reaction catalyzed by platinum dendrimer encapsulated nanoparticles.

    PubMed

    Dumitrescu, Ioana; Crooks, Richard M

    2012-07-17

    Here we report on the effect of the mass transfer rate (k(t)) on the oxygen reduction reaction (ORR) catalyzed by Pt dendrimer-encapsulated nanoparticles (DENs) comprised of 147 and 55 atoms (Pt(147) and Pt(55)). The experiments were carried out using a dual-electrode microelectrochemical device, which enables the study of the ORR under high k(t) conditions with simultaneous detection of H(2)O(2). At low k(t) (0.02 to 0.12 cm s(-1)) the effective number of electrons involved in ORR, n(eff), is 3.7 for Pt(147) and 3.4 for Pt(55). As k(t) is increased, the mass-transfer-limited current for the ORR becomes significantly lower than the value predicted by the Levich equation for a 4-electron process regardless of catalyst size. However, the percentage of H(2)O(2) detected remains constant, such that n(eff) barely changes over the entire k(t) range explored (0.02 cm s(-1)). This suggests that mass transfer does not affect n(eff), which has implications for the mechanism of the ORR on Pt nanoparticles. Interestingly, there is a significant difference in n(eff) for the two sizes of Pt DENs (n(eff) = 3.7 and 3.5 for Pt(147) and Pt(55), respectively) that cannot be assigned to mass transfer effects and that we therefore attribute to a particle size effect.

  8. Z-Selective Olefin Synthesis via Iron-Catalyzed Reductive Coupling of Alkyl Halides with Terminal Arylalkynes

    PubMed Central

    2015-01-01

    Selective catalytic synthesis of Z-olefins has been challenging. Here we describe a method to produce 1,2-disubstituted olefins in high Z selectivity via reductive cross-coupling of alkyl halides with terminal arylalkynes. The method employs inexpensive and nontoxic catalyst (iron(II) bromide) and reductant (zinc). The substrate scope encompasses primary, secondary, and tertiary alkyl halides, and the reaction tolerates a large number of functional groups. The utility of the method is demonstrated in the synthesis of several pharmaceutically relevant molecules. Mechanistic study suggests that the reaction proceeds through an iron-catalyzed anti-selective carbozincation pathway. PMID:25831473

  9. Z-Selective Olefin Synthesis via Iron-Catalyzed Reductive Coupling of Alkyl Halides with Terminal Arylalkynes.

    PubMed

    Cheung, Chi Wai; Zhurkin, Fedor E; Hu, Xile

    2015-04-22

    Selective catalytic synthesis of Z-olefins has been challenging. Here we describe a method to produce 1,2-disubstituted olefins in high Z selectivity via reductive cross-coupling of alkyl halides with terminal arylalkynes. The method employs inexpensive and nontoxic catalyst (iron(II) bromide) and reductant (zinc). The substrate scope encompasses primary, secondary, and tertiary alkyl halides, and the reaction tolerates a large number of functional groups. The utility of the method is demonstrated in the synthesis of several pharmaceutically relevant molecules. Mechanistic study suggests that the reaction proceeds through an iron-catalyzed anti-selective carbozincation pathway.

  10. Rh-Catalyzed reductive Mannich-type reaction and its application towards the synthesis of (±)-ezetimibe

    PubMed Central

    Isoda, Motoyuki; Sato, Kazuyuki; Kunugi, Yurika; Tokonishi, Satsuki; Tarui, Atsushi; Minami, Hideki

    2016-01-01

    Summary An effective synthesis for syn-β-lactams was achieved using a Rh-catalyzed reductive Mannich-type reaction. A rhodium–hydride complex (Rh–H) derived from diethylzinc (Et2Zn) and a Rh catalyst was used for the 1,4-reduction of an α,β-unsaturated ester to give a Reformatsky-type reagent, which in turn, reacted with an imine to give the syn-β-lactam. Additionally, the reaction was applied to the synthesis of (±)-ezetimibe, a potent β-lactamic cholesterol absorption inhibitor. PMID:27559413

  11. Synthesis of ethers by GaBr3 -catalyzed reduction of carboxylic acid esters and lactones by siloxanes.

    PubMed

    Biermann, Ursula; Metzger, Jürgen O

    2014-02-01

    Ethers were synthesized by reduction of the respective esters catalyzed by gallium bromide (GaBr3 ) and using siloxanes, preferentially 1,1,3,3-tetramethyldisiloxane, as reductant. Methyl oleate, triglycerides, that is, tributyrine and glyceryl triundec-10-enoate as well as γ- and δ-lactones were converted into the respective ethers in high to moderate yields. γ-Lactones were reduced with high selectivity in the presence of a methyl ester functionality. The reduction has been carried out at room temperature or moderately elevated temperature of up to 60 °C using stoichiometric amounts of the reductant and 0.005-0.01 equiv of GaBr3 as catalyst per ester functionality without any solvent added. After a reaction time of 1-4 h the conversion of the substrate was 100 %. The product was separated from polymeric siloxanes formed as coupled product by simple distillation. PMID:24488681

  12. Synthesis of ethers by GaBr3 -catalyzed reduction of carboxylic acid esters and lactones by siloxanes.

    PubMed

    Biermann, Ursula; Metzger, Jürgen O

    2014-02-01

    Ethers were synthesized by reduction of the respective esters catalyzed by gallium bromide (GaBr3 ) and using siloxanes, preferentially 1,1,3,3-tetramethyldisiloxane, as reductant. Methyl oleate, triglycerides, that is, tributyrine and glyceryl triundec-10-enoate as well as γ- and δ-lactones were converted into the respective ethers in high to moderate yields. γ-Lactones were reduced with high selectivity in the presence of a methyl ester functionality. The reduction has been carried out at room temperature or moderately elevated temperature of up to 60 °C using stoichiometric amounts of the reductant and 0.005-0.01 equiv of GaBr3 as catalyst per ester functionality without any solvent added. After a reaction time of 1-4 h the conversion of the substrate was 100 %. The product was separated from polymeric siloxanes formed as coupled product by simple distillation.

  13. Redox-activity and self-organization of iron-porphyrin monolayers at a copper/electrolyte interface

    NASA Astrophysics Data System (ADS)

    Phan, Thanh Hai; Wandelt, Klaus

    2015-03-01

    The electrochemical behaviour and molecular structure of a layer of water-soluble 5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)-porphyrin-Fe(III) pentatosylate, abbreviated as FeTMPyP, on a chloride modified Cu(100) electrode surface were investigated by means of cyclic voltammetry (CV) and in-situ electrochemical scanning tunneling microscopy. Voltammetric results of HOPG in an electrolyte containing FeTMPyP molecules indicate three distinguishable redox steps involving both the central iron metal and the π-conjugated ring system. However, only the first two reduction steps are observable within the narrow potential window of CVs of Cu(100) measured in the same electrolyte. In the potential range below the first reduction peak, at which the [FeIIITMPyP]5+ molecules are reduced to the corresponding [FeIITMPyP]4+ species, in-situ scanning tunneling microscopy (STM) images revealed, for the first time, a highly ordered adlayer of this reduced porphyrin species on the chloride terminated Cu(100) surface. The ordered adlayer exhibits a (quasi)square unit cell with the lattice vectors |a → 2| = |b → 2| = 1 . 53 ± 0 . 1 nm and an angle of 93° ± 2° between them. A model is proposed based on the STM observation illustrating the arrangement of the [FeIITMPyP]4+ molecules at the electrolyte/copper interface.

  14. Ph(i-PrO)SiH2: An Exceptional Reductant for Metal-Catalyzed Hydrogen Atom Transfers.

    PubMed

    Obradors, Carla; Martinez, Ruben M; Shenvi, Ryan A

    2016-04-13

    We report the discovery of an outstanding reductant for metal-catalyzed radical hydrofunctionalization reactions. Observations of unexpected silane solvolysis distributions in the HAT-initiated hydrogenation of alkenes reveal that phenylsilane is not the kinetically preferred reductant in many of these transformations. Instead, isopropoxy(phenyl)silane forms under the reaction conditions, suggesting that alcohols function as important silane ligands to promote the formation of metal hydrides. Study of its reactivity showed that isopropoxy(phenyl)silane is an exceptionally efficient stoichiometric reductant, and it is now possible to significantly decrease catalyst loadings, lower reaction temperatures, broaden functional group tolerance, and use diverse, aprotic solvents in iron- and manganese-catalyzed hydrofunctionalizations. As representative examples, we have improved the yields and rates of alkene reduction, hydration, hydroamination, and conjugate addition. Discovery of this broadly applicable, chemoselective, and solvent-versatile reagent should allow an easier interface with existing radical reactions. Finally, isotope-labeling experiments rule out the alternative hypothesis of hydrogen atom transfer from a redox-active β-diketonate ligand in the HAT step. Instead, initial HAT from a metal hydride to directly generate a carbon-centered radical appears to be the most reasonable hypothesis. PMID:26984323

  15. Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B{sub 12} in homogeneous and heterogeneous systems

    SciTech Connect

    Burris, D.R.; Smith, M.H.; Delcomyn, C.A.; Roberts, A.L.

    1996-10-01

    The reduction of tetrachloroethylene (PCE) and trichloroethylene (TCE) catalyzed by vitamin B{sub 12} was examined in homogeneous and heterogeneous (B{sub 12} bound to agarose) batch systems using titanium(III) citrate as the bulk reductant. The solution and surface-mediated reaction rates at similar B{sub 12} loadings were comparable, indicating that binding vitamin B{sub 12} to a surface did not lower catalytic activity. No loss in PCE reducing activity was observed with repeated usage of surface-bound vitamin B{sub 12}. Carbon mass recoveries were 81-84% for PCE reduction and 89% for TCE reduction, relative to controls. In addition to sequential hydrogenolysis, a second competing reaction mechanism for the reduction of PCE and TCE by B{sub 12}, reductive {beta}-elimination, is proposed to account for the observation of acetylene as a significant reaction intermediate. Reductive {beta}-elimination should be considered as a potential pathway in other reactive systems involving the reduction of vicinal polyhaloethenes. Surface-bound catalysts such as vitamin B{sub 12} may have utility in the engineered degradation of aqueous phase chlorinated ethenes. 19 refs., 6 figs., 1 tab.

  16. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III).

    PubMed

    Pérez-De La Cruz, V; González-Cortés, C; Galván-Arzate, S; Medina-Campos, O N; Pérez-Severiano, F; Ali, S F; Pedraza-Chaverrí, J; Santamaría, A

    2005-01-01

    Oxidative/nitrosative stress is involved in NMDA receptor-mediated excitotoxic brain damage produced by the glutamate analog quinolinic acid. The purpose of this work was to study a possible role of peroxynitrite, a reactive oxygen/nitrogen species, in the course of excitotoxic events evoked by quinolinic acid in the brain. The effects of Fe(TPPS) (5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III)), an iron porphyrinate and putative peroxynitrite decomposition catalyst, were tested on lipid peroxidation and mitochondrial function in brain synaptic vesicles exposed to quinolinic acid, as well as on peroxynitrite formation, nitric oxide synthase and superoxide dismutase activities, lipid peroxidation, caspase-3-like activation, DNA fragmentation, and GABA levels in striatal tissue from rats lesioned by quinolinic acid. Circling behavior was also evaluated. Increasing concentrations of Fe(TPPS) reduced lipid peroxidation and mitochondrial dysfunction induced by quinolinic acid (100 microM) in synaptic vesicles in a concentration-dependent manner (10-800 microM). In addition, Fe(TPPS) (10 mg/kg, i.p.) administered 2 h before the striatal lesions, prevented the formation of peroxynitrite, the increased nitric oxide synthase activity, the decreased superoxide dismutase activity and the increased lipid peroxidation induced by quinolinic acid (240 nmol/microl) 120 min after the toxin infusion. Enhanced caspase-3-like activity and DNA fragmentation were also reduced by the porphyrinate 24 h after the injection of the excitotoxin. Circling behavior from quinolinic acid-treated rats was abolished by Fe(TPPS) six days after quinolinic acid injection, while the striatal levels of GABA, measured one day later, were partially recovered. The protective effects that Fe(TPPS) exerted on quinolinic acid-induced lipid peroxidation and mitochondrial dysfunction in synaptic vesicles suggest a primary action of the porphyrinate as an antioxidant molecule. In vivo findings

  17. Single-Molecule Imaging of Iron-Phthalocyanine-Catalyzed Oxygen Reduction Reaction by in Situ Scanning Tunneling Microscopy.

    PubMed

    Gu, Jing-Ying; Cai, Zhen-Feng; Wang, Dong; Wan, Li-Jun

    2016-09-27

    We report herein an in situ electrochemical scanning tunneling microscopy (ECSTM) investigation of iron-phthalocyanine (FePc)-catalyzed oxygen reduction reaction (ORR). A highly ordered FePc adlayer is revealed on a Au(111) electrode. The center ions in the FePc adlayer show uniform high contrast in an oxygen-saturated electrolyte, which is attributed to the formation of an FePc-O2 complex. In situ STM results reveal the sharp contrast change upon shifting the electrode potential to trigger the ORR. Theoretical simulation has supplied further evidence for the contrast difference of the adsorbed FePc species. PMID:27508323

  18. Single-Molecule Imaging of Iron-Phthalocyanine-Catalyzed Oxygen Reduction Reaction by in Situ Scanning Tunneling Microscopy.

    PubMed

    Gu, Jing-Ying; Cai, Zhen-Feng; Wang, Dong; Wan, Li-Jun

    2016-09-27

    We report herein an in situ electrochemical scanning tunneling microscopy (ECSTM) investigation of iron-phthalocyanine (FePc)-catalyzed oxygen reduction reaction (ORR). A highly ordered FePc adlayer is revealed on a Au(111) electrode. The center ions in the FePc adlayer show uniform high contrast in an oxygen-saturated electrolyte, which is attributed to the formation of an FePc-O2 complex. In situ STM results reveal the sharp contrast change upon shifting the electrode potential to trigger the ORR. Theoretical simulation has supplied further evidence for the contrast difference of the adsorbed FePc species.

  19. Diastereoselective B(C6F5)3-Catalyzed Reductive Carbocyclization of Unsaturated Carbohydrates.

    PubMed

    Bender, Trandon A; Dabrowski, Jennifer A; Zhong, Hongyu; Gagné, Michel R

    2016-08-19

    A B(C6F5)3-catalyzed method for the selective conversion of unsaturated carbohydrates to cyclopentanes and cyclopropanes is disclosed. Catalyst activation of tertiary silanes generates the ion pair [(C6F5)3B-H][ROSi2] whose components synergistically activate C-O bonds for diastereoselective C-C bond formation. Sila-THF cations are invoked as key intermediates facilitating carbocyclizations. Complex chiral synthons are thereby obtained in a single pot.

  20. Selective 4e-/4H+ O2 reduction by an iron(tetraferrocenyl)porphyrin complex: from proton transfer followed by electron transfer in organic solvent to proton coupled electron transfer in aqueous medium.

    PubMed

    Mittra, Kaustuv; Chatterjee, Sudipta; Samanta, Subhra; Dey, Abhishek

    2013-12-16

    An iron porphyrin catalyst bearing four ferrocenes and a hydrogen bonding distal pocket is found to catalyze 4e(-)/4H(+) oxygen reduction reaction (ORR) in organic solvent under homogeneous conditions in the presence of 2-3 equiv of Trifluoromethanesulphonic acid. Absorption spectroscopy, electron paramagnetic resonance (EPR), and resonance Raman data along with H2O2 assay indicate that one out of the four electrons necessary to reduce O2 to H2O is donated by the ferrous porphyrin while three are donated by the distal ferrocene residues. The same catalyst shows 4e(-)/4H(+) reduction of O2 in an aqueous medium, under heterogeneous conditions, over a wide range of pH. Both the selectivity and the rate of ORR are found to be pH independent in an aqueous medium. The ORR proceeds via a proton transfer followed by electron transfer (PET) step in an organic medium and while a 2e(-)/1H(+) proton coupled electron transfer (PCET) step determines the electrochemical potential of ORR in an aqueous medium.

  1. Nanoparticle-catalyzed reductive bleaching for fabricating turn-off and enzyme-free amplified colorimetric bioassays.

    PubMed

    Li, Wei; Qiang, Weibing; Li, Jie; Li, Hui; Dong, Yifan; Zhao, Yaju; Xu, Danke

    2014-01-15

    Nanoparticle-catalyzed reductive bleaching reactions of colored substrates are emerging as a class of novel indicator reactions for fabricating enzyme-free amplified colorimetric biosensing (turn-off mode), which are exactly opposite to the commonly used oxidative coloring processes of colorless substrates in traditional enzyme-catalyzed amplified colorimetric bioassays (turn-on mode). In this work, a simple theoretical analysis shows that the sensitivity of this colorimetric bioassay can be improved by increasing the amplification factor (kcatΔt), or enhancing the binding affinity between analyte and receptor (Kd), or selecting the colored substrates with high extinction coefficients (ε). Based on this novel strategy, we have developed a turn-off and cost-effective amplified colorimetric thrombin aptasensor. This aptasensor made full use of sandwich binding of two affinity aptamers for increased specificity, magnetic particles for easy separation and enrichment, and gold nanoparticle (AuNP)-catalyzed reductive bleaching reaction to generate the amplified colorimetric signal. With 4-nitrophenol (4-NP) as the non-dye colored substrate, colorimetric bioassay of thrombin was achieved by the endpoint method with a detection limit of 91pM. In particular, when using methylene blue (MB) as the substrate, for the first time, a more convenient and efficient kinetic-based colorimetric thrombin bioassay was achieved without the steps of acidification termination and magnetic removal of particles, with a low detection limit of 10pM, which was superior to the majority of the existing colorimetric thrombin aptasensors. The proposed colorimetric protocol is expected to hold great promise in field analysis and point-of-care applications.

  2. Borane-Catalyzed Reductive α-Silylation of Conjugated Esters and Amides Leaving Carbonyl Groups Intact.

    PubMed

    Kim, Youngchan; Chang, Sukbok

    2016-01-01

    Described herein is the development of the B(C6F5)3-catalyzed hydrosilylation of α,β-unsaturated esters and amides to afford synthetically valuable α-silyl carbonyl products. The α-silylation occurs chemoselectively, thus leaving the labile carbonyl groups intact. The reaction features a broad scope of both acyclic and cyclic substrates, and the synthetic utility of the obtained α-silyl carbonyl products is also demonstrated. Mechanistic studies revealed two operative steps: fast 1,4-hydrosilylation of conjugated carbonyls and then slow silyl group migration of a silyl ether intermediate. PMID:26549843

  3. Highly enantioselective reductive cyclization of acetylenic aldehydes via rhodium catalyzed asymmetric hydrogenation.

    PubMed

    Rhee, Jong Uk; Krische, Michael J

    2006-08-23

    Catalytic hydrogenation of acetylenic aldehydes 1a-12a using chirally modified cationic rhodium catalysts enables highly enantioselective reductive cyclization to afford cyclic allylic alcohols 1b-12b. Using an achiral hydrogenation catalyst, the chiral racemic acetylenic aldehydes 13a-15a engage in highly syn-diastereoselective reductive cyclizations to afford cyclic allylic alcohols 13b-15b. Ozonolysis of cyclization products 7b and 9b allows access to optically enriched alpha-hydroxy ketones 7c and 9c. Reductive cyclization of enyne 7a under a deuterium atmosphere provides the monodeuterated product deuterio-7b, consistent with a catalytic mechanism involving alkyne-carbonyl oxidative coupling followed by hydrogenolytic cleavage of the resulting oxametallacycle. These hydrogen-mediated transformations represent the first examples of the enantioselective reductive cyclization of acetylenic aldehydes. PMID:16910650

  4. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.

    PubMed

    Sarkar, Binoy; Naidu, Ravi; Krishnamurti, Gummuluru S R; Megharaj, Mallavarapu

    2013-01-01

    Unlike lower valent iron (Fe), the potential role of lower valent manganese (Mn) in the reduction of hexavalent chromium (Cr(VI)) in soil is poorly documented. In this study, we report that citrate along with Mn(II) and clay minerals (montmorillonite and kaolinite) reduce Cr(VI) both in aqueous phase and in the presence of dissolved organic carbon (SDOC) extracted from a forest soil. The reduction was favorable at acidic pH (up to pH 5) and followed the pseudo-first-order kinetic model. The citrate (10 mM) + Mn(II) (182.02 μM) + clay minerals (3% w/v) system in SDOC accounted for complete reduction of Cr(VI) (192.32 μM) in about 72 h at pH 4.9. In this system, citrate was the reductant, Mn(II) was a catalyst, and the clay minerals acted as an accelerator for both the reductant and catalyst. The clay minerals also serve as a sink for Cr(III). This study reveals the underlying mechanism of the Mn(II)-induced reduction of Cr(VI) by organic ligand in the presence of clay minerals under certain environmental conditions.

  5. Kinetic modeling of inherent mineral catalyzed NO reduction by biomass char.

    PubMed

    Wu, X Y; Song, Q; Zhao, H B; Zhang, Z H; Yao, Q

    2014-04-01

    The evolution of rice straw char reactivity during reaction with NO was examined in differential reactor at 900 and 1000 °C. Original and acid-washed rice straw chars were used. Surface area and mineral content of char samples with different conversion were analyzed. The reactivity of the acid-washed char increased until conversion Xchar = 20%, remained constant, and then decreased continuously to zero. The reactivity of the original char decreased continuously to zero throughout the reaction, with a faster decrease at 1000 °C. Mineral transformation during original char reaction was obvious. Concentration of acid-soluble K decreased about 56% and 90% at 900 and 1000 °C. Ca and Mg released little to gas phase, but reacted with SiO2 in a small amount. The evolution of the acid-washed char reactivity correlated well with the development of surface area and was well predicted by random pore model. The reactivity of the original char depended not only on the development of surface area, but also on transformation of inherent minerals, mainly K. A two-reaction model was built which well predicted inherent K transformation. A modified random pore model was developed, which successfully simulated inherent mineral catalyzed char-NO reaction. PMID:24588459

  6. Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhou, Jing; Lv, Weixin; Fang, Hailin; Wang, Wei

    2016-01-01

    Sn/f-Cu electrode has been prepared by electrodeposition Sn on a Cu foam substrate in aqueous plating solution, which has been used as the cathode for electrochemical reduction of carbon dioxide (CO2) in aqueous KHCO3 solution. Here, we have explored the effects of the deposition time and the electrolysis potential on the Faradaic efficiency for producing formate. The results demonstrate that maximum Faradaic efficiency of 83.5% is obtained at -1.8 V vs. Ag/AgCl when the Sn/f-Cu electrode is prepared by electrodeposition for 35 min. The Sn/f-Cu electrode exhibits excellent catalytic activity for CO2 reduction compared with the Cu foam electrode and the Sn plate electrode. The average current density and the production rate of formate for the Sn/f-Cu electrode are more than twice those for the Sn plate electrode during electrochemical reduction of CO2.

  7. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    PubMed

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed. PMID:26189442

  8. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    PubMed

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed.

  9. Nickel-Catalyzed Cross-Electrophile Coupling with Organic Reductants in Non-Amide Solvents.

    PubMed

    Anka-Lufford, Lukiana L; Huihui, Kierra M M; Gower, Nicholas J; Ackerman, Laura K G; Weix, Daniel J

    2016-08-01

    Cross-electrophile coupling of aryl halides with alkyl halides has thus far been primarily conducted with stoichiometric metallic reductants in amide solvents. This report demonstrates that the use of tetrakis(dimethylamino)ethylene (TDAE) as an organic reductant enables the use of non-amide solvents, such as acetonitrile or propylene oxide, for the coupling of benzyl chlorides and alkyl iodides with aryl halides. Furthermore, these conditions work for several electron-poor heterocycles that are easily reduced by manganese. Finally, we demonstrate that TDAE addition can be used as a control element to 'hold' a reaction without diminishing yield or catalyst activity. PMID:27273457

  10. Iron-catalyzed reductive magnesiation of oxetanes to generate (3-oxidopropyl)magnesium reagents.

    PubMed

    Sugiyama, Yu-ki; Heigozono, Shiori; Okamoto, Sentaro

    2014-12-19

    In the presence of FeCl(n)-(bisphosphine) or FeCl(n)-(2-iminomethylpyridine) (n = 2 or 3), 2-substituted oxetanes reacted with Grignard reagents undergoing reductive magnesiation at the 2-position to afford substituted 3-oxidopropylmagnesium compounds, which are useful nucleophiles in reactions with a variety of electrophiles. PMID:25467856

  11. Iron cation catalyzed reduction of N2O by CO: gas-phase temperature dependent kinetics.

    PubMed

    Melko, Joshua J; Ard, Shaun G; Fournier, Joseph A; Li, Jun; Shuman, Nicholas S; Guo, Hua; Troe, Jürgen; Viggiano, Albert A

    2013-07-21

    The ion-molecule reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2, which catalyze the reaction CO + N2O → CO2 + N2, have been studied over the temperature range 120-700 K using a variable temperature selected ion flow tube apparatus. Values of the rate constants for the former two reactions were experimentally derived as k2 (10(-11) cm(3) s(-1)) = 2.0(±0.3) (T/300)(-1.5(±0.2)) + 6.3(±0.9) exp(-515(±77)/T) and k3 (10(-10) cm(3) s(-1)) = 3.1(±0.1) (T/300)(-0.9(±0.1)). Characterizing the energy parameters of the reactions by density functional theory at the B3LYP/TZVP level, the rate constants are modeled, accounting for the intermediate formation of complexes. The reactions are characterized by nonstatistical intrinsic dynamics and rotation-dependent competition between forward and backward fluxes. For Fe(+) + N2O, sextet-quartet switching of the potential energy surfaces is quantified. The rate constant for the clustering reaction FeO(+) + N2O + He → FeO(N2O)(+) + He was also measured, being k4 (10(-27) cm(6) s(-1)) = 1.1(±0.1) (T/300)(-2.5(±0.1)) in the low pressure limit, and analyzed in terms of unimolecular rate theory.

  12. Platinum-catalyzed reduction of amides with hydrosilanes bearing dual Si-H groups: a theoretical study of the reaction mechanism.

    PubMed

    Nakatani, Naoki; Hasegawa, Jun-ya; Sunada, Yusuke; Nagashima, Hideo

    2015-11-28

    A platinum-catalyzed amide reduction through hydrosilylation with 1,2-bis(dimethylsilyl)benzene (BDSB) was investigated on a theoretical basis. While the platinum-catalyzed hydrosilylation of alkenes is well known, that of carbonyl groups rarely occurs. The only exception involves the use of bifunctional hydrosilanes having dual, closely located Si-H groups, which accelerate the hydrosilylation of carbonyl groups, leading to successful reduction of amides to amines under mild conditions. In the present study, we determined through density functional theory calculations that the platinum-catalyzed hydrosilylation of the C=O bond proceeds via a Pt(IV)-disilyl-dihydride intermediate with an associated activation energy of 29.6 kcal mol(-1). Although it was believed that the hydrosilylation of carbonyl groups does not occur via the classical Chalk-Harrod cycle, the computational results support a mechanism involving the insertion of the amide C=O bond into a Pt-H bond. This insertion readily occurs because a Pt-H bond in the Pt(IV)-disilyl-dihydride intermediate is highly activated due to the strong σ-donating interaction of the silyl groups. The modified Chalk-Harrod mechanism that occurs preferentially in rhodium-catalyzed hydrosilylation as well as the ionic outer sphere mechanism associated with iridium-catalyzed amide reduction were both safely ruled out as mechanisms for this platinum-catalyzed amide reduction, because of the unexpectedly large activation barrier (>40 kcal mol(-1)) for the Si-O bond formation. PMID:26497866

  13. Strategic use of nickel(0)-catalyzed enyne-epoxide reductive coupling towards the synthesis of (−)-cyatha-3,12-diene

    PubMed Central

    Sparling, Brian A.; Simpson, Graham L.; Jamison, Timothy F.

    2009-01-01

    Various situations are explored in which the nickel(0)-catalyzed enyne-epoxide reductive coupling was utilized to access key intermediates towards the total synthesis of (−)-cyatha-3,12-diene (1). Enantioenriched 3,5-dien-1-ols with a variety of functionality were obtained in a straightforward manner from easily accessible 1,3-enynes and terminal epoxides. PMID:20161213

  14. Asymmetric synthesis of tetrahydroquinolin-3-ols via CoCl2-catalyzed reductive cyclization of nitro cyclic sulfites with NaBH4.

    PubMed

    Jagdale, Arun R; Reddy, R Santhosh; Sudalai, Arumugam

    2009-02-19

    A new method for the construction of chiral 3-substituted tetrahydroquinoline derivatives based on asymmetric dihydroxylation and CoCl(2)-catalyzed reductive cyclization of nitro cyclic sulfites with NaBH(4) has been described with high optical purities. This method has been successfully applied in the formal synthesis of PNU 95666E and anachelin H chromophore.

  15. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

    PubMed Central

    Liu, Wenqin; Shi, Jian; Zhu, Lijun; Dong, Lingna; Luo, Feifei; Zhao, Min; Wang, Ying; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2015-01-01

    Oxymatrine (OMT) is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT), and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs) and human intestinal microsomes (HIMs) and the cytochrome P450 (CYP) isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT. PMID:26586934

  16. Gold nanoparticle-catalyzed reduction in a model system: Quantitative determination of reactive heterogeneity of a supported nanoparticle surface

    SciTech Connect

    Nigra, Michael M.; Arslan, Ilke; Katz, Alexander

    2012-11-01

    Kinetic poisoning experiments employing organic ligands were conducted using a gold nanoparticle–catalyzed reaction consisting of the reduction of resazurin to resorufin. The kinetic contributions of three distinct types of sites along with the number density of each of these site types during reaction were determined. The calculated number densities of each of the three types of sites, hypothesized to be corners, edges, and terraces, correlates well with atomic-resolution micrographs of the supported gold nanoparticles, obtained using aberration-corrected transmission electron microscopy and with predictions based on geometric models of idealized gold nanoparticles. The most active sites comprising 1% of the surface atoms exhibit at least 30% of the total activity of the catalyst for resazurin reduction. The selective mechanical blocking of surface sites on nanoparticles, particularly undercoordinated sites, paves the way for novel approaches utilizing organic ligands to quantify the activity of different active sites and control catalysis on metal surfaces. This work was supported in part by the Laboratory Directed Research and Development program at the Pacific Northwest National Laboratory (PNNL). The aberration-corrected electron microscopy was performed in the William R. Wiley Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at PNNL and funded by BER. PNNL is operated by Battelle for the U.S. DOE under contract DE-AC05-76RL01830.

  17. An Inner-Sphere Mechanism for Molecular Oxygen Reduction Catalyzed by Copper Amine Oxidases

    PubMed Central

    Mukherjee, Arnab; Smirnov, Valeriy V.; Lanci, Michael P.; Brown, Doreen E.; Shepard, Eric M.; Dooley, David M.; Roth, Justine P.

    2008-01-01

    Copper and topaquinone (TPQ) containing amine oxidases utilize O2 for the metabolism of biogenic amines while concomitantly generating H2O2 for use by the cell. The mechanism of O2 reduction has been the subject of long-standing debate due to the obscuring influence of a proton-coupled electron transfer between the tyrosine-derived TPQ and copper, a rapidly established equilibrium precluding assignment of the enzyme in its reactive form. Here we show that substrate-reduced pea seedling amine oxidase (PSAO) exists predominantly in the CuI, TPQ semiquinone state. A new mechanistic proposal for O2 reduction is advanced on the basis of thermodynamic considerations together with kinetic studies (at varying pH, temperature and viscosity), the identification of steady-state intermediates and the analysis of competitive oxygen kinetic isotope effects: 18O KIEs, [kcat/KM(16,16O2)]/[kcat/KM(16,18O2)]. The 18O KIE = 1.0136 ± 0.0013 at pH 7.2 is independent of temperature from 5 to 47°C and insignificantly changed to 1.0122 ± 0.0020 upon raising the pH to 9, thus indicating the absence of kinetic complexity. Using density functional methods, the effect is found to be precisely in the range expected for reversible O2 binding to CuI to afford a superoxide, [CuII(η1-O2)−I]+, intermediate. Electron transfer from the TPQ semiquinone follows in the first irreversible step to form a peroxide, CuII(η1-O2)−II, intermediate driving the reduction of O2. The similar 18O KIEs reported for copper amine oxidases from other sources raise the possibility that all enzymes react by related inner-sphere mechanisms although additional experiments are needed to test this proposal. PMID:18582059

  18. Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells.

    PubMed

    Narayanamoorthy, B; Datta, K K R; Eswaramoorthy, M; Balaji, S

    2012-07-25

    A novel Pt nanoparticle (Pt NP) embedded aminoclay/Nafion (Pt/AC/N) nanocomposite catalyst film was prepared for oxygen reduction reaction by sol-gel method. The prepared nanocomposite films were surface characterized using XRD and TEM and thermal stability was studied by TGA. The prepared film has firmly bound Pt NP and could exhibit an improved electro-reduction activity compared to vulcan carbon/Nafion supported Pt NP (Pt/VC/N). Moreover, the Pt/AC/N film possessed good stability in the acidic environment. The limiting current density of the Pt/AC/N film with 35.4 μg/cm(2) of Pt loading was found to be 4.2 mA/cm(2), which is 30% higher than that of the Pt/VC/N. The maximum H2O2 intermediate formation was found to be ∼1.6% and the reaction found to follow a four electron transfer mechanism. Accelerated durability test for 2000 potential cycles showed that ca. 78% of initial limiting current was retained. The results are encouraging for possible use of the Pt/AC/N as the free-standing electrocatalyst layer for polymer electrolyte membrane fuel cells.

  19. Stereoselective Synthesis of Trisubstituted Alkenes through Sequential Iron-Catalyzed Reductive anti-Carbozincation of Terminal Alkynes and Base-Metal-Catalyzed Negishi Cross-Coupling.

    PubMed

    Cheung, Chi Wai; Hu, Xile

    2015-12-01

    The stereoselective synthesis of trisubstituted alkenes is challenging. Here, we show that an iron-catalyzed anti-selective carbozincation of terminal alkynes can be combined with a base-metal-catalyzed cross-coupling to prepare trisubstituted alkenes in a one-pot reaction and with high regio- and stereocontrol. Cu-, Ni-, and Co-based catalytic systems are developed for the coupling of sp-, sp(2) -, and sp(3) -hybridized carbon electrophiles, respectively. The method encompasses a large substrate scope, as various alkynyl, aryl, alkenyl, acyl, and alkyl halides are suitable coupling partners. Compared with conventional carbometalation reactions of alkynes, the current method avoids pre-made organometallic reagents and has a distinct stereoselectivity.

  20. A cytochrome C oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux.

    PubMed

    Collman, James P; Devaraj, Neal K; Decréau, Richard A; Yang, Ying; Yan, Yi-Long; Ebina, Wataru; Eberspacher, Todd A; Chidsey, Christopher E D

    2007-03-16

    We studied the selectivity of a functional model of cytochrome c oxidase's active site that mimics the coordination environment and relative locations of Fe(a3), Cu(B), and Tyr(244). To control electron flux, we covalently attached this model and analogs lacking copper and phenol onto self-assembled monolayer-coated gold electrodes. When the electron transfer rate was made rate limiting, both copper and phenol were required to enhance selective reduction of oxygen to water. This finding supports the hypothesis that, during steady-state turnover, the primary role of these redox centers is to rapidly provide all the electrons needed to reduce oxygen by four electrons, thus preventing the release of toxic partially reduced oxygen species. PMID:17363671

  1. Photoassisted reduction of molecular oxygen to hydrogen peroxide catalyzed by oxoalkoxomolybdenum(V) porphyrin

    SciTech Connect

    Ledon, H.J.; Bonnet, M.; Galland, D.

    1981-10-07

    Formation of the oxomolybdenum (IV) porphyrin O = M/sub 0//sup IV/(TPP)-OCH/sub 3/(2), by photoinduced hemolysis of the Mo-OCH/sub 3/ bond was confirmed by EPR spectroscopy and spin-trapping experiments. When an oxygen-free benzene solution of 0 = M/sub 0//sup V/(TPP)-OCH/sub 3/(1) was irradiated directly in the cavity of an EPR spectrometer, the intensity of the characteristic nine-line spectra of 1 slowly diminished with time but again was fully restored when the cell was open to air and one drop of methanol was added, confirming the formation of a diamagnetic molybdoporphyrin complex upon irradiation. The reoxidation of O = Mo/sup IV/(TPP)(2) in a benzene-methanol mixture was monitored by uv-visible spectrometry, which showed the reaction to follow strict second-order kinetics. This second dependence on molybdenum suggests a two-electron reduction of molecular oxygen to hydrogen peroxide which was actually identified in separate experiments. In order to evaluate the efficiency and possible uses of the photoreduction of 1, a catalytic cycle was devised by coupling the reactions described. The results of these studies clearly established the ability of molybdenum porphyrins to harvest solar energy to produce reactive intermediates by redox processes.

  2. The kinetics behavior of the reduction of formaldehyde catalyzed by Alcohol Dehydrogenase (ADH) and partial uncompetitive substrate inhibition by NADH.

    PubMed

    Wen, Nuan; Liu, Wenfang; Hou, Yanhui; Zhao, Zhiping

    2013-05-01

    Alcohol dehydrogenase (ADH) catalyzes the final step in the biosynthesis of methanol from CO2. Here, we report the steady-state kinetics for ADH, using a homogeneous enzyme preparation with formaldehyde as the substrate and nicotinamide adenine dinucleotide (NADH) as the cofactor. When changing NADH concentrations with the fixed concentrations of HCHO (more or less than NADH), kinetic studies revealed a particular zigzag phenomenon for the first time. Increasing formaldehyde concentration can weaken substrate inhibition and improve catalytic efficiency. The kinetic mechanism of ADH was analyzed using the secondary fitting method. The double reciprocal plots (1/v∼1/[HCHO] and 1/[NADH]) strongly demonstrated that the substrate inhibition by NADH was uncompetitive versus formaldehyde and partial. In the direction of formaldehyde reduction, ADH has an ordered kinetic mechanism with formaldehyde adding to enzyme first and product methanol released last. The second reactant NADH can combine with the enzyme-methanol complex and then methanol dissociates from it at a slower rate than from enzyme-methanol. The reaction velocity depends on the relative rates of the alternative pathways. The addition of NADH also accelerates the releasing of methanol. As a result, substrate inhibition and activation occurred intermittently, and the zigzag double reciprocal plot (1/v∼1/[NADH]) was obtained.

  3. Photochemical CO2 Reduction Catalyzed by Phenanthroline Extended Tetramesityl Porphyrin Complexes Linked with a Rhenium(I) Tricarbonyl Unit.

    PubMed

    Matlachowski, Corinna; Braun, Beatrice; Tschierlei, Stefanie; Schwalbe, Matthias

    2015-11-01

    A series of heterodinuclear complexes (M-1-Re) based on a phenanthroline (phen) extended tetramesityl porphyrin ligand (H2-1) has been prepared. The phen moiety of this ligand selectively coordinates a Re(I) tricarbonyl chloride unit, whereas the metal in the porphyrin moiety has been varied: namely, Cu, Pd, Zn, Co, or Fe was used. These dinuclear complexes were fully characterized by standard analytical methods. Additionally, a crystal structure of Cu-1-Re·5.5(C7H8)·0.5(C6H6) could be obtained, and extended time-resolved emission lifetime measurements were conducted. Furthermore, their ability to catalyze the photochemical reduction of CO2 to CO was investigated. Light-driven CO2 reduction experiments were performed in dimethylformamide (DMF) using triethylamine (TEA) as the sacrificial electron donor. The TONs (turnover numbers) of CO were determined and revealed a surprising catalytic activity that is obviously independent from the redox activity of the porphyrin metal. We have recently shown that the parent M-1 compounds are active photocatalysts, but the catalytic activity was dependent on the redox activity of the porphyrin metal. In the case of the new heterodinuclear complexes M-1-Re reported in this study, the catalytic active center seems to be the Re(I) moiety and not the porphyrin. Surprisingly, Zn-1-Re proved to be the most active compound in this series showing a TONCO of 13 after 24 h of illumination using a >375 nm cutoff filter while all other compounds showed minimal activity under this condition. PMID:26478946

  4. ANME-2D Archaea Catalyze Methane Oxidation in Deep Subsurface Sediments Independent of Nitrate Reduction

    NASA Astrophysics Data System (ADS)

    Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Ise, K.; Thomas, B. C.; Banfield, J. F.

    2015-12-01

    -reducing/oxidizing archaeon Ferroglobus placidus. Thus, we suggest that ANME2-D may couple methane oxidation to reduction of ferric iron minerals in the sediment and may be generally important as a link between the iron and methane cycles in deep subsurface environments. Such information has important implications for modeling the global carbon cycle.

  5. The Study of NADPH-Dependent Flavoenzyme-Catalyzed Reduction of Benzo[1,2-c]1,2,5-oxadiazole N-Oxides (Benzofuroxans)

    PubMed Central

    Šarlauskas, Jonas; Misevičienė, Lina; Marozienė, Audronė; Karvelis, Laimonas; Stankevičiūtė, Jonita; Krikštopaitis, Kastis; Čėnas, Narimantas; Yantsevich, Aleksey; Laurynėnas, Audrius; Anusevičius, Žilvinas

    2014-01-01

    The enzymatic reactivity of a series of benzo[1,2-c]1,2,5-oxadiazole N-oxides (benzofuroxans; BFXs) towards mammalian single-electron transferring NADPH:cytochrome P-450 reductase (P-450R) and two-electron (hydride) transferring NAD(P)H:quinone oxidoreductase (NQO1) was examined in this work. Since the =N+ (→O)O− moiety of furoxan fragments of BFXs bears some similarity to the aromatic nitro-group, the reactivity of BFXs was compared to that of nitro-aromatic compounds (NACs) whose reduction mechanisms by these and other related flavoenzymes have been extensively investigated. The reduction of BFXs by both P-450R and NQO1 was accompanied by O2 uptake, which was much lower than the NADPH oxidation rate; except for annelated BFXs, whose reduction was followed by the production of peroxide. In order to analyze the possible quantitative structure-activity relationships (QSARs) of the enzymatic reactivity of the compounds, their electron-accepting potency and other reactivity indices were assessed by quantum mechanical methods. In P-450R-catalyzed reactions, both BFXs and NACs showed the same reactivity dependence on their electron-accepting potency which might be consistent with an “outer sphere” electron transfer mechanism. In NQO1-catalyzed two-electron (hydride) transferring reactions, BFXs acted as more efficient substrates than NACs, and the reduction efficacy of BFXs by NQO1 was in general higher than by single-electron transferring P-450R. In NQO1-catalyzed reactions, QSARs obtained showed that the reduction efficacy of BFXs, as well as that of NACs, was determined by their electron-accepting potency and could be influenced by their binding mode in the active center of NQO1 and by their global softness as their electronic characteristic. The reductive conversion of benzofuroxan by both flavoenzymes yielded the same reduction product of benzofuroxan, 2,3-diaminophenazine, with the formation of o-benzoquinone dioxime as a putative primary reductive

  6. Diastereoselective Synthesis of syn-β-Lactams Using Rh-Catalyzed Reductive Mannich-Type Reaction of α,β-Unsaturated Esters.

    PubMed

    Isoda, Motoyuki; Sato, Kazuyuki; Funakoshi, Masato; Omura, Keiko; Tarui, Atsushi; Omote, Masaaki; Ando, Akira

    2015-08-21

    The combination of Et2Zn and RhCl(PPh3)3 led to the facile generation of a rhodium-hydride complex (Rh-H) that catalyzed the 1,4-reduction of α,β-unsaturated esters. The resulting rhodium enolate performed as a Reformatsky-type reagent and reacted with various imines to give syn-β-lactams in good to excellent yields with high diastereoselectivity. PMID:26203668

  7. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.

    PubMed

    Brown, Katherine A; Harris, Derek F; Wilker, Molly B; Rasmussen, Andrew; Khadka, Nimesh; Hamby, Hayden; Keable, Stephen; Dukovic, Gordana; Peters, John W; Seefeldt, Lance C; King, Paul W

    2016-04-22

    The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3 The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3.

  8. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.

    PubMed

    Brown, Katherine A; Harris, Derek F; Wilker, Molly B; Rasmussen, Andrew; Khadka, Nimesh; Hamby, Hayden; Keable, Stephen; Dukovic, Gordana; Peters, John W; Seefeldt, Lance C; King, Paul W

    2016-04-22

    The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3 The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3. PMID:27102481

  9. Nickel-Catalyzed Reductive Cross-Coupling of Benzyl Chlorides with Aryl Chlorides/Fluorides: A One-Pot Synthesis of Diarylmethanes.

    PubMed

    Zhang, Jie; Lu, Gusheng; Xu, Jin; Sun, Hongmei; Shen, Qi

    2016-06-17

    The first nickel-catalyzed, magnesium-mediated reductive cross-coupling between benzyl chlorides and aryl chlorides or fluorides is reported. A variety of diarylmethanes can be prepared in good to excellent yields in a one-pot manner using easy-to-access mixed PPh3/NHC Ni(II) complexes of Ni(PPh3)(NHC)Br2 (NHC = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, IPr, 1a; 1,3-di-tert-butylimidazol-2-ylidene, ItBu, 1b) as catalyst precursors. Activation of polychloroarenes or chemoselective cross-coupling based on the difference in catalytic activity between 1a and 1b is used to construct oligo-diarylmethane motifs. PMID:27268781

  10. Palladium catalyzed coupling reactions: mechanism of reductive elimination. Progress report, October 1, 1979-September 30, 1980. [Ethane elimination

    SciTech Connect

    Stille, J.K.

    1980-09-01

    The 1,1-reductive elimination of ethane from three cis-bis(phosphine)-dimethylpalladium complexes, L/sub 2/Pd(CH/sub 3/)/sub 2/ (L = PPh/sub 3/, PPh/sub 2/,CH/sub 3/ and L/sub 2/ = Ph/sub 2/PCH/sub 2/CH/sub 2/PPh/sub 2/), and three trans analogs (L = PPh/sub 3/, PPh/sub 2/CH/sub 3/ and L/sub 2/ = 2,11-bis(diphenylphosphinomethyl)benzo(c)phenanthrene (TRANSPHOS)) was carried out. The three cis complexes underwent reductive elimination in the presence of coordinating solvents (DMSO, DMF, and THF). The trans complexes which could isomerize to cis (L = PPh/sub 3/, PPh/sub 2/CH/sub 3/) did so in polar solvents and then underwent reductive elimination. TRANSPHOS dimethylpalladium would not undergo reductive elimination of ethane. The eliminations from the cis isomers were intramolecular and displayed first order kinetics. Although TRANSPHOS dimethylpalladium(II) would not undergo a 1,1-reductive elimination of ethane, the addition of CD/sub 3/I to a DMSO solution of this complex at 25/sup 0/C rapidly produced CD/sub 3/-CH/sub 3/, implicating a transient palladium(IV) intermediate. E- and Z-bromostyrylbis(diphenylmethylphosphine)palladium(0) react with methyl lithium in THF at ambient temperature to give the E- and Z- propenylbenzenes, respectively. At -78/sup 0/C, the intermediate E- and Z-styrylmethylbis(diphenylmethylphosphine)palladium(II) complexes (9a,b) can be isolated. On raising the temperature of solutions of 9a,b in THF, E- and Z-propenylbenzenes are produced. The reductive elimination reaction is intramolecular and first order in dialkylpalladium(II) complex.

  11. Oxygen reduction reaction catalyzed by platinum nanonetwork prepared by template free one step synthesis for polymer electrolyte membrane fuel cells

    SciTech Connect

    Narayanamoorthy, B.; Kumar, B.V.V.S. Pavan; Eswaramoorthy, M.; Balaji, S.

    2014-07-01

    Highlights: • Supportless Pt nanonetwork (Pt NN) synthesized by novel template free one step method as per our earlier reported procedure. • Electrocatalytic activity of Pt NN studied taking oxygen reduction reaction in acid medium. • Kinetic and thermodynamic parameters were deduced under hydrodynamic conditions. • ORR mechanistic pathway was proposed based on kinetic rate constants. • ADT analysis found enhanced stability (5000 cycles) for Pt NN than Pt NN/VC and reported Pt/C. - Abstract: The reduction reaction of molecular oxygen (ORR) was investigated using supportless Pt nanonetwork (Pt NN) electrocatalyst in sulfuric acid medium. Pt NN was prepared by template free borohydride reduction. The transmission electron microscope images revealed a network like nano-architecture having an average cluster size of 30 nm. The electrochemical characterization of supportless and Vulcan carbon supported Pt NN (Pt NN/VC) was carried out using rotating disc and ring disc electrodes at various temperatures. Kinetic and thermodynamic parameters were estimated under hydrodynamic conditions and compared with Pt NN/VC and reported Pt/C catalysts. The accelerated durability test revealed that supportless Pt NN is quite stable for 5000 potential cycles with 22% reduction in electrochemical surface area (ECSA). While the initial limiting current density has in fact increased by 11.6%, whereas Pt NN/VC suffered nearly 55% loss in ECSA and 13% loss in limiting current density confirming an enhanced stability of supportless Pt NN morphology for ORR compared to conventional Pt/C ORR catalysts in acid medium.

  12. A General and Selective Rhodium-Catalyzed Reduction of Amides, N-Acyl Amino Esters, and Dipeptides Using Phenylsilane.

    PubMed

    Das, Shoubhik; Li, Yuehui; Lu, Liang-Qiu; Junge, Kathrin; Beller, Matthias

    2016-05-17

    This article describes a selective reduction of functionalized amides, including N-acyl amino esters and dipeptides, to the corresponding amines using simple [Rh(acac)(cod)]. The catalyst shows excellent chemoselectivity in the presence of different sensitive functional moieties. PMID:26991132

  13. Selective reduction of carbon dioxide to bis(silyl)acetal catalyzed by a PBP-supported nickel complex.

    PubMed

    Ríos, Pablo; Curado, Natalia; López-Serrano, Joaquín; Rodríguez, Amor

    2016-02-01

    The selective reduction of CO2 to the formaldehyde level remains an important challenge and to date only a few catalysts have been developed for this reaction. Herein, we report an efficient catalyst that consists of a bis(phosphino)boryl nickel hydride complex in combination with B(C6F5)3, for the highly selective hydrosilation of CO2 to bis(silyl)acetal derivatives.

  14. Electrochemiluminescent quenching of quantum dots for ultrasensitive immunoassay through oxygen reduction catalyzed by nitrogen-doped graphene-supported hemin.

    PubMed

    Deng, Shengyuan; Lei, Jianping; Huang, Yin; Cheng, Yan; Ju, Huangxian

    2013-06-01

    A hemin functionalized graphene sheet was prepared via the noncovalent assembly of hemin on nitrogen-doped graphene. The graphene sheet could act as an oxygen reduction catalyst to produce sensitive electrochemiluminescent (ECL) quenching of quantum dots (QDs) due to the annihilation of dissolved oxygen, the ECL coreactant, by its electrocatalytic reduction. With the use of the catalyst with high loading of hemin as a signal tag of the secondary antibody, a novel ultrasensitive immunoassay method for biomarker detection was proposed. In an air-saturated pH 8.0 buffer, the immunosensor constructed by a stepwise immobilization of bidentate-chelated CdTe QDs and capture antibody showed an intensive cathodic ECL irradiation, which could be scavenged upon the formation of the catalyst-bound sandwich immunocomplex. With the use of the carcinoembryonic antigen as a model analyte, the immunoassay method showed a linear range from 0.1 pg mL(-1) to 10 ng mL(-1) and a detection limit of 24 fg mL(-1). The immunosensor exhibited good stability, acceptable fabrication reproducibility, and practicability. The electrocatalytic reduction-based ECL quenching strategy provided a powerful avenue for the design of the ultrasensitive detection method, showing great promise for clinical application. PMID:23659573

  15. Pd-Catalyzed oxidative isomerization of propargylic acetates: highly efficient access to α-acetoxyenones via alkenyl Csp(2)-O bond-forming reductive elimination from Pd(IV).

    PubMed

    Li, Jun; Yang, Wenjie; Yan, Fachao; Liu, Qing; Wang, Ping; Li, Yueyun; Zhao, Yi; Dong, Yunhui; Liu, Hui

    2016-08-23

    A Pd(ii)/(iv)-catalyzed oxidative isomerization of propargylic acetates developed for the synthesis of polysubstituted alkenyl acetates is described. The reductive elimination of alkenyl Csp(2)-OAc bonds from Pd(IV) intermediates is achieved. Mechanistic studies indicate that the reaction mechanism consists of trans acetoxypalladation of a triple bond, isomerization, oxidative addition with PhI(OAc)2 and alkenyl C-OAc bond reductive elimination. PMID:27500292

  16. Two-electron carbon dioxide reduction catalyzed by rhenium(I) bis(imino)acenaphthene carbonyl complexes.

    PubMed

    Portenkirchner, Engelbert; Kianfar, Elham; Sariciftci, Niyazi Serdar; Knör, Günther

    2014-05-01

    Rhenium(I) carbonyl complexes carrying substituted bis(arylimino)acenaphthene ligands (BIAN-R) have been tested as potential catalysts for the two-electron reduction of carbon dioxide. Cyclic voltammetric studies as well as controlled potential electrolysis experiments were performed using CO2-saturated solutions of the complexes in acetonitrile and acetonitrile-water mixtures. Faradaic efficiencies of more than 30 % have been determined for the electrocatalytic production of CO. The effects of ligand substitution patterns and water content of the reaction medium on the catalytic performance of the new catalysts are discussed.

  17. Reduction of the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) catalyzed by oxygen sensitive nitro reductase enzymes

    SciTech Connect

    Shah, M.M.; Spain, J.C.

    1995-12-01

    Reduction of nitroaromatic compounds by nitroreductase enzymes generally leads to the formation of the corresponding amines. However, we recently found that the incubation of the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) with ferredoxin-NADP oxidoreductase, an oxygen sensitive nitroreductase from spinach in the presence of NADPH led to the elimination of the nitramine nitro group from tetryl and the formation of N-methylpicramide (NMP). Other oxygen sensitive nitroreductase enzymes including glutathione reductase, xanthine oxidase, and cytochrome c reductase were also able to release nitrite from tetryl. Nitrite was not eliminated from tetryl by an oxygen insensitive nitrobenzene reductase. For every mole of tetryl reduced, one mole each of nitrite and NMP were produced. The rate of nitrite elimination was inhibited under aerobic conditions. Subsequent oxygen uptake studies suggested that under aerobic conditions, molecular oxygen was reduced by FNR and tetryl served as the redox mediator. Our results suggest that under aerobic conditions; tetryl is reduced to the nitroanion radical by the enzyme and this radical is involved in the reduction of molecular oxygen.

  18. Molybdenum reduction to molybdenum blue in Serratia sp. Strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme.

    PubMed

    Shukor, M Y; Halmi, M I E; Rahman, M F A; Shamaan, N A; Syed, M A

    2014-01-01

    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m ) of the Mo-reducing enzyme was 5.47 M(-1) s(-1). The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.

  19. Molybdenum Reduction to Molybdenum Blue in Serratia sp. Strain DRY5 Is Catalyzed by a Novel Molybdenum-Reducing Enzyme

    PubMed Central

    Shukor, M. Y.; Halmi, M. I. E.; Rahman, M. F. A.; Shamaan, N. A.; Syed, M. A.

    2014-01-01

    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a Vmax for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent Km for NADH was 0.79 mM. At 5 mM NADH, the apparent Vmax and apparent Km values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (kcat/Km) of the Mo-reducing enzyme was 5.47 M−1 s−1. The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction. PMID:24724104

  20. Lewis acid-induced change from four- to two-electron reduction of dioxygen catalyzed by copper complexes using scandium triflate.

    PubMed

    Kakuda, Saya; Rolle, Clarence J; Ohkubo, Kei; Siegler, Maxime A; Karlin, Kenneth D; Fukuzumi, Shunichi

    2015-03-11

    Mononuclear copper complexes, [(tmpa)Cu(II)(CH3CN)](ClO4)2 (1, tmpa = tris(2-pyridylmethyl)amine) and [(BzQ)Cu(II)(H2O)2](ClO4)2 (2, BzQ = bis(2-quinolinylmethyl)benzylamine)], act as efficient catalysts for the selective two-electron reduction of O2 by ferrocene derivatives in the presence of scandium triflate (Sc(OTf)3) in acetone, whereas 1 catalyzes the four-electron reduction of O2 by the same reductant in the presence of Brønsted acids such as triflic acid. Following formation of the peroxo-bridged dicopper(II) complex [(tmpa)Cu(II)(O2)Cu(II)(tmpa)](2+), the two-electron reduced product of O2 with Sc(3+) is observed to be scandium peroxide ([Sc(III)(O2(2-))](+)). In the presence of 3 equiv of hexamethylphosphoric triamide (HMPA), [Sc(III)(O2(2-))](+) was oxidized by [Fe(bpy)3](3+) (bpy = 2,2-bipyridine) to the known superoxide species [(HMPA)3Sc(III)(O2(•-))](2+) as detected by EPR spectroscopy. A kinetic study revealed that the rate-determining step of the catalytic cycle for the two-electron reduction of O2 with 1 is electron transfer from Fc* to 1 to give a cuprous complex which is highly reactive toward O2, whereas the rate-determining step with 2 is changed to the reaction of the cuprous complex with O2 following electron transfer from ferrocene derivatives to 2. The explanation for the change in catalytic O2-reaction stoichiometry from four-electron with Brønsted acids to two-electron reduction in the presence of Sc(3+) and also for the change in the rate-determining step is clarified based on a kinetics interrogation of the overall catalytic cycle as well as each step of the catalytic cycle with study of the observed effects of Sc(3+) on copper-oxygen intermediates.

  1. Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron.

    PubMed

    Jones, Rose M; Johnson, D Barrie

    2015-01-01

    A novel acidophilic member of the phylum Actinobacteria was isolated from an acidic stream draining an abandoned copper mine in north Wales. The isolate (PY-F3) was demonstrated to be a heterotroph that catalyzed the oxidation of ferrous iron (but not of sulfur or hydrogen) under aerobic conditions, and the reduction of ferric iron under micro-aerobic and anaerobic conditions. PY-F3 formed long entangled filaments of cells (>50 μm long) during active growth phases, though these degenerated into smaller fragments and single cells in late stationary phase. Although isolate PY-F3 was not observed to grow below pH 2.0 and 10 °C, harvested biomass was found to oxidize ferrous iron at relatively fast rates at pH 1.5 and 5 °C. Phylogenetic analysis, based on comparisons of 16S rRNA gene sequences, showed that isolate PY-F3 has 91-93% gene similarity to those of the four classified genera and species of acidophilic Actinobacteria, and therefore is a representative of a novel genus. The binomial Acidithrix ferrooxidans is proposed for this new species, with PY-F3 as the designated type strain (=DSM 28176(T), =JCM 19728(T)).

  2. Electrocatalytic O2 reduction reaction by synthetic analogues of cytochrome P450 and myoglobin: in-situ resonance Raman and dynamic electrochemistry investigations.

    PubMed

    Chatterjee, Sudipta; Sengupta, Kushal; Samanta, Subhra; Das, Pradip Kumar; Dey, Abhishek

    2013-09-01

    Bioinspired electrodes have been constructed by physiabsorption of two air stable iron porphyrin complexes, one bearing an imidazole coordination and the other bearing a thiolate coordination. To control the electron transfer (ET) rate to these O2 reducing electrocatalysts, the complexes were immobilized on edge plane graphite electrode and alkyl thiol self-assembled monolayer (SAM) modified Au electrodes with varying chain lengths of the thiols. Catalyst immobilized SAM modified surfaces were characterized using surface enhanced resonance Raman spectroscopy (SERRS), and their electrocatalytic O2 reduction properties were investigated using rotating ring disc electrochemistry (RRDE). While the imidazole bound complex showed increase in partially reduced oxygen species (PROS) on decreasing ET rate, the thiolate bound complex showed the opposite trend, that is, the value of PROS reduced on decreasing the ET rate. SERRS coupled to rotating disc electrochemistry (SERRS-RDE) technique helps gain insight into the O2 reduction mechanism. The results obtained indicate that while the imidazole bound iron porphyrin complex reduces O2 through an inner sphere mechanism using a high-spin (HS) Fe(II) species, the thiolate ligated complex shows an inner sphere as well as outer sphere mechanism using a HS Fe(II) and low-spin (LS) Fe(II) species, respectively. The PROS formation by a HS Fe(II) species of this thiolate bound complex increases with decreasing ET rates while that of a LS Fe(II) species decreases with decreasing ET rates. PMID:23961832

  3. An efficient and practical synthesis of [2-11C]indole via superfast nucleophilic [11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    SciTech Connect

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; Schueller, Michael; Kim, Dohyun; Nauth, Alexander; Weber, Carina; Kim, Sung Won; Hooker, Jacob M.; Ma, Ling; Qu, Wenchao

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1-11C]acetonitrile ([11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1-11C]propanenitrile ([11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2-11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening of basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2-11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.

  4. An efficient and practical synthesis of [2-11C]indole via superfast nucleophilic [11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE PAGES

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; Schueller, Michael; Kim, Dohyun; Nauth, Alexander; Weber, Carina; Kim, Sung Won; Hooker, Jacob M.; Ma, Ling; et al

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1-11C]acetonitrile ([11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1-11C]propanenitrile ([11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2-11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening of basicity, temperature and stoichiometry was required tomore » overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2-11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  5. Online capillary solid-phase microextraction coupled liquid chromatography-mass spectrometry for analysis of chiral secondary alcohol products in yeast catalyzed stereoselective reduction cell culture.

    PubMed

    Cheng, Cheanyeh; Nian, Yu-Chuan

    2015-02-01

    An online solid-phase microextraction coupled liquid chromatography-electrospray ionization-ion trap mass spectrometry was developed for the analysis of trace R- and S-4-phenyl-2-butanol (R- and S-pbol) in salt rich cell culture of Saccharomyces cerevisiae catalyzed stereoselective reduction of 4-pheny-2-butanone (pbone). A Supel-Q PLOT capillary column was used for the extraction and deionized distilled water was used as the extraction mobile phase. The extraction flow rate and extraction time were at 0.1 mL min(-1) and 0.95 min, respectively. The three target analytes, pbone, R-pbol, and S-4-pbol, were desorbed and eluted by the mobile phase of water/methanol/isopropanol (55/25/20, v/v/v) with a flow rate of 0.5 mL min(-1) and analyzed by a chiral column. The mass spectrometric detection of the three target analytes was in positive ion mode with the signal [M+Na](+). The matrix-matched external standard calibration curves with linear concentration range between 0 and 50 μg mL(-1) were used for quantitative analysis. The linear regression correlation coefficients (r(2)) of the standard calibration curves were between 0.9950 and 0.9961. The yeast mediated reduction was performed with a recation culture of yeast incubation culture/glycerol (70/30, v/v) for 4 days. This biotransformation possessed 82.3% yield and 92.9% S-enantomeric excess. The limit of detection (LOD)/limit of quantification (LOQ) for pbone, R-pbol, and S-pbol was 0.02/0.067, 0.01/0.033, and 0.01/0.033 μg mL(-1), respectively. The intra-day and inter-day precisions from repeated measurements were 10.8-21.1% and 11.6-18.7%, respectively. The analysis accuracy from spike recovery was 84-91%.

  6. A general and efficient approach to aryl thiols: CuI-catalyzed coupling of aryl iodides with sulfur and subsequent reduction.

    PubMed

    Jiang, Yongwen; Qin, Yuxia; Xie, Siwei; Zhang, Xiaojing; Dong, Jinhua; Ma, Dawei

    2009-11-19

    A CuI-catalyzed coupling reaction of aryl iodides and sulfur powder takes place in the presence of K(2)CO(3) at 90 degrees C. The coupling mixture is directly treated with NaBH(4) or triphenylphosphine to afford aryl thiols in good to excellent yields. A wide range of substituted aryl thiols that bear methoxy, hydroxyl, carboxylate, amido, keto, bromo, and fluoro groups can be assembled through this procedure. PMID:19835369

  7. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    PubMed

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  8. O2 and H2O2 transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations.

    PubMed

    Li, Yuhang; Zhong, Guoyu; Yu, Hao; Wang, Hongjuan; Peng, Feng

    2015-09-14

    It is highly challenging but extremely desirable to develop carbon catalysts with high oxygen reduction reaction (ORR) activity and stability in acidic medium for commercial application. In this paper, based on density functional theory (DFT) calculations with long range interaction correction and solvation effects, the elementary transformations of all the probable intermediates in the ORR and the hydrogen peroxide reduction reaction (HPRR) over graphitic nitrogen-doped carbon nanotubes (NCNTs) in acidic medium were evaluated, and it was found that all the rate determining steps are related to the bonding hydroxyl group because of the strong interaction between the hydroxyl group and carbon. Thus, it is hard for the direct four-electron ORR and the two-electron HPRR to proceed. Together with hydrogen peroxide disproportionation (HPD), a mixed mechanism for the ORR in acidic electrolyte was proposed, where the two-electron and three-electron ORRs and HPD dominate the electrode reaction. The experimental result for the ORR catalyzed by NCNTs in acidic electrolyte also well illustrated the rationality of the theoretical calculations. This study not only gives new insights into the effect of graphitic nitrogen doping on the ORR catalyzed by carbon, but also provides a guide to design carbon catalysts with high ORR activity in acidic electrolyte.

  9. Alkyne-aldehyde reductive C-C coupling through ruthenium-catalyzed transfer hydrogenation: direct regio- and stereoselective carbonyl vinylation to form trisubstituted allylic alcohols in the absence of premetallated reagents.

    PubMed

    Leung, Joyce C; Patman, Ryan L; Sam, Brannon; Krische, Michael J

    2011-10-24

    Nonsymmetric 1,2-disubstituted alkynes engage in reductive coupling to a variety of aldehydes under the conditions of ruthenium-catalyzed transfer hydrogenation by employing formic acid as the terminal reductant and delivering the products of carbonyl vinylation with good to excellent levels of regioselectivity and with complete control of olefin stereochemistry. As revealed in an assessment of the ruthenium counterion, iodide plays an essential role in directing the regioselectivity of C-C bond formation. Isotopic labeling studies corroborate reversible catalytic propargyl C-H oxidative addition in advance of the C-C coupling, and demonstrate that the C-C coupling products do not experience reversible dehydrogenation by way of enone intermediates. This transfer hydrogenation protocol enables carbonyl vinylation in the absence of stoichiometric metallic reagents. PMID:21953608

  10. Alkyne–Aldehyde Reductive C–C Coupling through Ruthenium-Catalyzed Transfer Hydrogenation: Direct Regio- and Stereoselective Carbonyl Vinylation to Form Trisubstituted Allylic Alcohols in the Absence of Premetallated Reagents

    PubMed Central

    Leung, Joyce C.; Patman, Ryan L.; Sam, Brannon

    2011-01-01

    Nonsymmetric 1,2-disubstituted alkynes engage in reductive coupling to a variety of aldehydes under the conditions of ruthenium-catalyzed transfer hydrogenation by employing formic acid as the terminal reductant and delivering the products of carbonyl vinylation with good to excellent levels of regioselectivity and with complete control of olefin stereochemistry. As revealed in an assessment of the ruthenium counterion, iodide plays an essential role in directing the regioselectivity of C–C bond formation. Isotopic labeling studies corroborate reversible catalytic propargyl C–H oxidative addition in advance of the C–C coupling, and demonstrate that the C–C coupling products do not experience reversible dehydrogenation by way of enone intermediates. This transfer hydrogenation protocol enables carbonyl vinylation in the absence of stoichiometric metallic reagents. PMID:21953608

  11. Surface-Plasmon-Enhanced Photodriven CO2 Reduction Catalyzed by Metal-Organic-Framework-Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers.

    PubMed

    Zhang, Huabin; Wang, Tao; Wang, Junjie; Liu, Huimin; Dao, Thang Duy; Li, Mu; Liu, Guigao; Meng, Xianguang; Chang, Kun; Shi, Li; Nagao, Tadaaki; Ye, Jinhua

    2016-05-01

    Highly efficient utilization of solar light with an excellent reduction capacity is achieved for plasmonic Fe@C nanostructures. By carbon layer coating, the optimized catalyst exhibits enhanced selectivity and stability applied to the solar-driven reduction of CO2 into CO. The surface-plasmon effect of iron particles is proposed to excite CO2 molecules, and thereby facilitates the final reaction activity. PMID:27001900

  12. Surface-Plasmon-Enhanced Photodriven CO2 Reduction Catalyzed by Metal-Organic-Framework-Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers.

    PubMed

    Zhang, Huabin; Wang, Tao; Wang, Junjie; Liu, Huimin; Dao, Thang Duy; Li, Mu; Liu, Guigao; Meng, Xianguang; Chang, Kun; Shi, Li; Nagao, Tadaaki; Ye, Jinhua

    2016-05-01

    Highly efficient utilization of solar light with an excellent reduction capacity is achieved for plasmonic Fe@C nanostructures. By carbon layer coating, the optimized catalyst exhibits enhanced selectivity and stability applied to the solar-driven reduction of CO2 into CO. The surface-plasmon effect of iron particles is proposed to excite CO2 molecules, and thereby facilitates the final reaction activity.

  13. Reduction in (pro-)inflammatory responses of lung cells exposed in vitro to diesel exhaust treated with a non-catalyzed diesel particle filter

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Müller, Loretta L.; Heeb, Norbert V.; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Increasingly stringent regulation of particulate matter emissions from diesel vehicles has led to the widespread use of diesel particle filters (DPFs), the effect of which on exhaust toxicity is so far poorly understood. We exposed a cellular model of the human respiratory epithelium at the air-liquid interface to non-catalyzed wall-flow DPF-filtered diesel exhaust and compared the resulting biological responses to the ones observed upon exposure to unfiltered exhaust. Filtered diesel exhaust acted highly oxidative, even though to a lesser extent than unfiltered exhaust (quantification of total reduced glutathione), and both exhaust types triggered comparable responses to oxidative stress (measurement of heme-oxygenase 1 (HMOX1) and superoxide-dismutase (SOD1) gene expression). Further, diesel exhaust filtration significantly reduced pro-inflammatory responses (measurement of tumor necrosis factor (TNF) and interleukin-8 (IL-8) gene expression and quantification of the secretion of their gene products TNF-α and IL-8). Because inflammatory processes are central to the onset of adverse respiratory health effects caused by diesel exhaust inhalation, our results imply that DPFs may make a valuable contribution to the detoxification of diesel vehicle emissions. The induction of significant oxidative stress by filtered diesel exhaust however, also implies that the non-particulate exhaust components also need to be considered for lung cell risk assessment.

  14. Role of a distal pocket in the catalytic O2 reduction by cytochrome c oxidase models immobilized on interdigitated array electrodes

    PubMed Central

    Collman, James P.; Decréau, Richard A.; Lin, Hengwei; Hosseini, Ali; Yang, Ying; Dey, Abhishek; Eberspacher, Todd A.

    2009-01-01

    Five iron porphyrins with different superstructures were immobilized on self-assembled-monolayer (SAM)-coated interdigitated-array (IDAs) gold–platinum electrodes. The selectivity of the catalysts i.e., limited formation of partially reduced oxygen species (PROS) in the electrocatalytic reduction of dioxygen, is a function of 2 rates: (i) the rate of electron transfer from the electrode to the catalyst, which is controlled by the length, and conjugation of the linker from the catalyst to the electrode and (ii) the rate of bound oxygen (superoxide) hydrolysis, which correlates with the presence of a water cluster in the gas-binding pocket influencing the rate of oxygen binding; these factors are controlled by the nature of the porphyrin superstructure. The structurally biomimetic Tris-imidazole model is the most selective. PMID:19380725

  15. Safe and Selective Nitro Group Reductions Catalyzed by Sustainable and Recyclable Fe/ppm Pd Nanoparticles in Water at Room Temperature.

    PubMed

    Feng, Jie; Handa, Sachin; Gallou, Fabrice; Lipshutz, Bruce H

    2016-07-25

    As a result of a unique synergy between ligand-free Fe/ppm Pd nanoparticles and PEG-containing designer surfactants, a facile and selective reduction of nitro-containing aromatics and heteroaromatics can be effected in water at room temperature in the presence of NaBH4 . This new nanotechnology involves low catalyst loadings, is highly chemoselective, and tolerates a wide variety of functional groups. The process, which includes recycling of the entire aqueous medium, offers a general, environmentally responsible, and notably safe approach to highly valued reductions of nitro-containing compounds. PMID:27305385

  16. Safe and Selective Nitro Group Reductions Catalyzed by Sustainable and Recyclable Fe/ppm Pd Nanoparticles in Water at Room Temperature.

    PubMed

    Feng, Jie; Handa, Sachin; Gallou, Fabrice; Lipshutz, Bruce H

    2016-07-25

    As a result of a unique synergy between ligand-free Fe/ppm Pd nanoparticles and PEG-containing designer surfactants, a facile and selective reduction of nitro-containing aromatics and heteroaromatics can be effected in water at room temperature in the presence of NaBH4 . This new nanotechnology involves low catalyst loadings, is highly chemoselective, and tolerates a wide variety of functional groups. The process, which includes recycling of the entire aqueous medium, offers a general, environmentally responsible, and notably safe approach to highly valued reductions of nitro-containing compounds.

  17. Catalyzed Ceramic Burner Material

    SciTech Connect

    Barnes, Amy S., Dr.

    2012-06-29

    period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  18. Palladium-catalyzed synthesis of ammonium sulfinates from aryl halides and a sulfur dioxide surrogate: a gas- and reductant-free process.

    PubMed

    Emmett, Edward J; Hayter, Barry R; Willis, Michael C

    2014-09-15

    Sulfonyl-derived functional groups populate a broad range of useful molecules and materials, and despite a variety of preparative methods being available, processes which introduce the most basic sulfonyl building block, sulfur dioxide, using catalytic methods, are rare. Described herein is a simple reaction system consisting of the sulfur dioxide surrogate DABSO, triethylamine, and a palladium(0) catalyst for effective convertion of a broad range of aryl and heteroaryl halides into the corresponding ammonium sulfinates. Key features of this gas- and reductant-free reaction include the low loadings of palladium (1 mol%) and ligand (1.5 mol%) which can be employed, and the use of isopropyl alcohol as both a solvent and formal reductant. The ammonium sulfinate products are converted in situ into a variety of sulfonyl-containing functional groups, including sulfones, sulfonyl chlorides, and sulfonamides.

  19. TcO(PnA.O-1-(2-nitroimidazole)) [BMS-181321], a new technetium-containing nitroimidazole complex for imaging hypoxia: synthesis, characterization, and xanthine oxidase-catalyzed reduction.

    PubMed

    Linder, K E; Chan, Y W; Cyr, J E; Malley, M F; Nowotnik, D P; Nunn, A D

    1994-01-01

    A technetium(V)oxo nitroimidazole complex that shows promise for imaging regional hypoxia in vivo, [BMS-181321, TcO(PnAO-1-(2-nitroimidazole))] (1) was prepared from 3,3,9,9-tetramethyl-1-(2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane -2,10-dione dioxime, a 2-nitroimidazole-containing derivative of propyleneamine oxime (PnAO). The 99Tc complex [99Tc]Oxo[[3,3,9,9-tetramethyl-1-(2-nitro-1H-imidazol-1-yl)-4,8- diazaundecane-2,10-dione dioximato]-(3-)-N,N',N'',N''']technetium (V) was synthesized both from pertechnetate and [TcO(Eg)2]- (Eg = ethylene glycol). A new synthetic route to TcO(PnAO) (2) is also described. 99TcO(PnAO-1-(2-nitroimidazole)) was characterized by 1H NMR, IR, and UV/vis spectroscopy, HPLC, FAB mass spectrometry, and X-ray crystallography. Electrochemistry of 1 reveals that the nitro redox chemistry found in the ligand is maintained upon coordination to technetium but shifts to a slightly more positive potential. Using chiral HPLC (Chiracel OD), 99mTc (1) was resolved into its two enantiomers. However, the two isomers were found to racemize quickly (t1/2 < 2 min) in the presence of water. Localization of 1 is believed to be mediated by enzymatically catalyzed reduction of the nitroimidazole group, so the in vitro reaction of 99Tc(1) with the nitroreductase enzyme xanthine oxidase (XOD) was studied. XOD catalyzed the quantitative reduction of the nitroimidazole group on the molecule under anaerobic conditions in the presence of hypoxanthine. No reaction was noted using a non-nitro-containing complex (2). The rate of reduction of the Tc-nitroimidazole complex (1.5 +/- 0.16 nmol/min per unit XOD) was faster than that observed previously for the nitroimidazole BATOs (BATO = boronic acid adduct of technetium dioxime) and was about two-thirds that of fluoromisonidazole, a compound that has proven useful for imaging hypoxia in humans when labeled with 18F. These data suggest that BMS-181321 (1) has the potential to be recognized by nitroreductase enzymes in

  20. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Naraginti, Saraschandra; Sivakumar, A.

    2014-07-01

    The present study reports a simple and robust method for synthesis of silver and gold nanoparticles using Coleus forskohlii root extract as reducing and stabilizing agent. Stable silver nanoparticles (AgNPs) and gold nanopoarticles (AuNPs) were formed on treatment of an aqueous silver nitrate (AgNO3) and chloroauric acid (HAuCl4) solutions with the root extract. The nanoparticles obtained were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). UV-Vis and TEM analysis indicate that with higher quantities of root extract, the interaction is enhanced leading to size reduction of spherical metal nanoparticles. XRD confirms face-centered cubic phase and the diffraction peaks can be attributed to (1 1 1), (2 0 0), (2 2 2) and (3 1 1) planes for these nanoparticles. These synthesized Ag and Au nanoparticles were found to exhibit excellent bactericidal activity against clinically isolated selected pathogens such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The synthesized AgNPs were also found to function as an efficient green catalyst in the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride, which was apparent from the periodical color change from bright yellow to colorless, after the addition of AgNPs.

  1. Ice crystals growth driving assembly of porous nitrogen-doped graphene for catalyzing oxygen reduction probed by in situ fluorescence electrochemistry

    NASA Astrophysics Data System (ADS)

    Wang, Jiong; Wang, Huai-Song; Wang, Kang; Wang, Feng-Bin; Xia, Xing-Hua

    2014-10-01

    In recent years, doped carbonaceous materials as alternative catalysts for oxygen reduction reaction (ORR) have received considerable attention due to the low cost and high CO tolerance capability. Different theoretical studies have suggested that oxygen is reduced in a rapid sequence intermediated by diverse oxygen-containing reactive intermediates (ORI). However, due to the short lifetimes of the possible ORI, direct experimental evidence is very difficult to be obtained. Here, we report the synthesis of an ultralight and porous nitrogen-doped graphene (NG) by annealing graphite oxide (GO)-melamine scaffold shaped in ice template. The resultant NG exhibits excellent electrocatalytic activity toward 4e-reduction of oxygen with the onset potential as low as -0.05 V vs. Ag/AgCl in alkaline media. Using this material as model study, sensitive in situ fluorescence spectroelectrochemistry is applied to demonstrate the presence the reactive ORI. The global ORR pathway is unraveled as stepwise electron transfer involving hydroxyl radical as the important intermediate via both inner- and outer-sphere process. This result would likely provide a new insight into the further understanding of ORR mechanism on those intrinsic carbonaceous materials.

  2. Ice crystals growth driving assembly of porous nitrogen-doped graphene for catalyzing oxygen reduction probed by in situ fluorescence electrochemistry

    PubMed Central

    Wang, Jiong; Wang, Huai-Song; Wang, Kang; Wang, Feng-Bin; Xia, Xing-Hua

    2014-01-01

    In recent years, doped carbonaceous materials as alternative catalysts for oxygen reduction reaction (ORR) have received considerable attention due to the low cost and high CO tolerance capability. Different theoretical studies have suggested that oxygen is reduced in a rapid sequence intermediated by diverse oxygen-containing reactive intermediates (ORI). However, due to the short lifetimes of the possible ORI, direct experimental evidence is very difficult to be obtained. Here, we report the synthesis of an ultralight and porous nitrogen-doped graphene (NG) by annealing graphite oxide (GO)-melamine scaffold shaped in ice template. The resultant NG exhibits excellent electrocatalytic activity toward 4e-reduction of oxygen with the onset potential as low as −0.05 V vs. Ag/AgCl in alkaline media. Using this material as model study, sensitive in situ fluorescence spectroelectrochemistry is applied to demonstrate the presence the reactive ORI. The global ORR pathway is unraveled as stepwise electron transfer involving hydroxyl radical as the important intermediate via both inner- and outer-sphere process. This result would likely provide a new insight into the further understanding of ORR mechanism on those intrinsic carbonaceous materials. PMID:25335571

  3. Surface-enhanced Raman scattering studies of the reduction of p-nitroaniline catalyzed by a nanonized Ag porous-glass hybrid composite

    NASA Astrophysics Data System (ADS)

    Huang, Genin Gary; Sou, Nga-Lai; Hung, Mei-Jou

    2016-09-01

    Nanonized noble metal composites have been known for their excellent catalytic properties. However, the mechanism and intermediates formed on the surfaces of nanocatalysts during catalysis are speculated with mostly insufficient evidence. In this study, to obtain further understanding of the roles of noble metal nanocatalysts in a catalytic reaction, surface-enhanced Raman scattering (SERS) was used to monitor the surfaces of silver (Ag) nanocatalysts. Furthermore, UV-Vis spectrometry was used to trace the concentration variations of reactants and products in bulk solutions, thereby correlating the variations of the Ag nanocatalyst surfaces with those in the bulk solutions. Nanonized Ag porous-glass hybrid composites were prepared by reducing naked Ag nanoparticles on porous-glass filter plates and were used as catalysts for nitroanilines reduction. The complete process was monitored using SERS and UV-Vis spectrometry simultaneously. The results indicated that the reactant and product molecules adsorbed on the Ag nanocatalysts can reach equilibrium, and the equilibrium is affected by the reaction conditions, including reducing agent concentration, pH of the reaction system, and temperature. In addition, the reduction of reactants in the bulk solutions is also related to the behavior of Ag nanocatalyst surfaces. Furthermore, Ag nanocatalysts can act as electron relays even if their surfaces are occupied by reactants and products. Analyzing the collected SERS and UV-Vis spectra can provide a new insight into Ag nanoparticle catalysis, and the role of Ag nanocatalysts can be further comprehended.

  4. Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy

    DOE PAGES

    Zhang, Jiawei; Winget, Sarah A.; Wu, Yiren; Su, Dong; Sun, Xiaojun; Xie, Zhao -Xiong; Qin, Dong

    2016-01-26

    In this paper, we report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic acid (AA), NaOH, and poly(vinylpyrrolidone) (PVP) at room temperature. Initially, the Au atoms derived from the reduction of Au3+ by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concave cuboctahedramore » embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H2O2 because of the protection by a complete Au shell. These two unique attributes enable in-situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene (trans-DMAB) intermediate and the subsequent oxidation of 4-ATP back to trans-DMAB upon the introduction of H2O2.« less

  5. Ag@Au Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy.

    PubMed

    Zhang, Jiawei; Winget, Sarah A; Wu, Yiren; Su, Dong; Sun, Xiaojun; Xie, Zhao-Xiong; Qin, Dong

    2016-02-23

    We report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic acid (AA), NaOH, and poly(vinylpyrrolidone) (PVP) at room temperature. Initially, the Au atoms derived from the reduction of Au(3+) by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concave cuboctahedra embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H2O2 because of the protection by a complete Au shell. These two unique attributes enable in situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene (trans-DMAB) intermediate and the subsequent oxidation of 4-ATP back to trans-DMAB upon the introduction of H2O2.

  6. Surface-enhanced Raman scattering studies of the reduction of p-nitroaniline catalyzed by a nanonized Ag porous-glass hybrid composite.

    PubMed

    Huang, Genin Gary; Sou, Nga-Lai; Hung, Mei-Jou

    2016-09-01

    Nanonized noble metal composites have been known for their excellent catalytic properties. However, the mechanism and intermediates formed on the surfaces of nanocatalysts during catalysis are speculated with mostly insufficient evidence. In this study, to obtain further understanding of the roles of noble metal nanocatalysts in a catalytic reaction, surface-enhanced Raman scattering (SERS) was used to monitor the surfaces of silver (Ag) nanocatalysts. Furthermore, UV-Vis spectrometry was used to trace the concentration variations of reactants and products in bulk solutions, thereby correlating the variations of the Ag nanocatalyst surfaces with those in the bulk solutions. Nanonized Ag porous-glass hybrid composites were prepared by reducing naked Ag nanoparticles on porous-glass filter plates and were used as catalysts for nitroanilines reduction. The complete process was monitored using SERS and UV-Vis spectrometry simultaneously. The results indicated that the reactant and product molecules adsorbed on the Ag nanocatalysts can reach equilibrium, and the equilibrium is affected by the reaction conditions, including reducing agent concentration, pH of the reaction system, and temperature. In addition, the reduction of reactants in the bulk solutions is also related to the behavior of Ag nanocatalyst surfaces. Furthermore, Ag nanocatalysts can act as electron relays even if their surfaces are occupied by reactants and products. Analyzing the collected SERS and UV-Vis spectra can provide a new insight into Ag nanoparticle catalysis, and the role of Ag nanocatalysts can be further comprehended. PMID:27179295

  7. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene.

    PubMed

    Fisher, K; Dilworth, M J; Kim, C H; Newton, W E

    2000-03-21

    Altered MoFe proteins of Azotobacter vinelandii Mo-nitrogenase, with amino acid substitutions in the FeMo-cofactor environment, were used to probe interactions among C(2)H(2), C(2)H(4), CO, and H(2). The altered MoFe proteins used were the alpha-195(Asn) or alpha-195(Gln) MoFe proteins, which have either asparagine or glutamine substituting for alpha-histidine-195, and the alpha-191(Lys) MoFe protein, which has lysine substituting for alpha-glutamine-191. On the basis of K(m) determinations, C(2)H(2) was a particularly poor substrate for the nitrogenase containing the alpha-191(Lys) MoFe protein. Using C(2)D(2), a correlation was shown between the stereospecificity of proton addition to give the products, cis- and trans-C(2)D(2)H(2), and the propensity of nitrogenase to produce ethane. The most extensive loss of stereospecificity occurred with nitrogenases containing either the alpha-195(Asn) or the alpha-191(Lys) MoFe proteins, which also exhibited the highest rate of ethane production from C(2)H(2). These data are consistent with the presence of a common ethylenic intermediate on the enzyme, which is responsible for both ethane production and loss of proton-addition stereochemistry. C(2)H(4) was not a substrate of the nitrogenase with the alpha-191(Lys) MoFe protein and was a poor substrate of the nitrogenases incorporating either the wild-type or the alpha-195(Gln) MoFe protein, both of which had a low V(max) and high K(m) (120 kPa). Ethylene was a somewhat better substrate for the nitrogenase with the alpha-195(Asn) MoFe protein, which exhibited a K(m) of 48 kPa and a specific activity for C(2)H(6) formation from C(2)H(4) 10-fold higher than the others. Neither the wild-type nitrogenase nor the nitrogenase containing the alpha-195(Asn) MoFe protein produced cis-C(2)D(2)H(2) when turned over under trans-C(2)D(2)H(2). These results suggest that the C(2)H(4)-reduction site is affected by substitution at residue alpha-195, although whether the effect is related to

  8. Structure of coenzyme F420H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O.

    PubMed

    Seedorf, Henning; Hagemeier, Christoph H; Shima, Seigo; Thauer, Rudolf K; Warkentin, Eberhard; Ermler, Ulrich

    2007-03-01

    The di-iron flavoprotein F(420)H(2) oxidase found in methanogenic Archaea catalyzes the four-electron reduction of O(2) to 2H(2)O with 2 mol of reduced coenzyme F(420)(7,8-dimethyl-8-hydroxy-5-deazariboflavin). We report here on crystal structures of the homotetrameric F(420)H(2) oxidase from Methanothermobacter marburgensis at resolutions of 2.25 A, 2.25 A and 1.7 A, respectively, from which an active reduced state, an inactive oxidized state and an active oxidized state could be extracted. As found in structurally related A-type flavoproteins, the active site is formed at the dimer interface, where the di-iron center of one monomer is juxtaposed to FMN of the other. In the active reduced state [Fe(II)Fe(II)FMNH(2)], the two irons are surrounded by four histidines, one aspartate, one glutamate and one bridging aspartate. The so-called switch loop is in a closed conformation, thus preventing F(420) binding. In the inactive oxidized state [Fe(III)FMN], the iron nearest to FMN has moved to two remote binding sites, and the switch loop is changed to an open conformation. In the active oxidized state [Fe(III)Fe(III)FMN], both irons are positioned as in the reduced state but the switch loop is found in the open conformation as in the inactive oxidized state. It is proposed that the redox-dependent conformational change of the switch loop ensures alternate complete four-electron O(2) reduction and redox center re-reduction. On the basis of the known Si-Si stereospecific hydride transfer, F(420)H(2) was modeled into the solvent-accessible pocket in front of FMN. The inactive oxidized state might provide the molecular basis for enzyme inactivation by long-term O(2) exposure observed in some members of the FprA family. PMID:17480207

  9. Hollow-shell-structured nanospheres: a recoverable heterogeneous catalyst for rhodium-catalyzed tandem reduction/lactonization of ethyl 2-acylarylcarboxylates to chiral phthalides.

    PubMed

    Liu, Rui; Jin, Ronghua; An, Juzeng; Zhao, Qiankun; Cheng, Tanyu; Liu, Guohua

    2014-05-01

    Chiral organorhodium-functionalized hollow-shell-structured nanospheres were prepared by immobilization of a chiral N-sulfonylated diamine-based organorhodium complex within an ethylene-bridged organosilicate shell. Structural analysis and characterization reveal its well-defined single-site rhodium active center, and transmission electron microscopy images reveal a uniform dispersion of hollow-shell-structured nanospheres. As a heterogenous catalyst, it exhibits excellent catalytic activity and enantioselectivity in synthesis of chiral phthalides by a tandem reduction/lactonization of ethyl 2-acylarylcarboxylates in aqueous medium. The high catalytic performance is attributed to the synergistic effect of the high hydrophobicity and the confined chiral organorhodium catalytic nature. The organorhodium-functionalized nanospheres could be conveniently recovered and reused at least 10 times without loss of catalytic activity. This feature makes it an attractive catalyst in environmentally friendly organic reactions. The results of this study offer a new approach to immobilize chiral organometal functionalities within the hollow-shell-structured nanospheres to prepare materials with high activity in heterogeneous asymmetric catalysis.

  10. Identification and Environmental Distribution of dcpA, Which Encodes the Reductive Dehalogenase Catalyzing the Dichloroelimination of 1,2-Dichloropropane to Propene in Organohalide-Respiring Chloroflexi

    PubMed Central

    Padilla-Crespo, Elizabeth; Yan, Jun; Swift, Cynthia; Wagner, Darlene D.; Chourey, Karuna; Hettich, Robert L.; Ritalahti, Kirsti M.

    2014-01-01

    Dehalococcoides mccartyi strains KS and RC grow with 1,2-dichloropropane (1,2-D) as an electron acceptor in enrichment cultures derived from hydrocarbon-contaminated and pristine river sediments, respectively. Transcription, expression, enzymatic, and PCR analyses implicated the reductive dehalogenase gene dcpA in 1,2-D dichloroelimination to propene and inorganic chloride. Quantitative real-time PCR (qPCR) analyses demonstrated a D. mccartyi cell increase during growth with 1,2-D and suggested that both D. mccartyi strains carried a single dcpA gene copy per genome. D. mccartyi strain RC and strain KS produced 1.8 × 107 ± 0.1 × 107 and 1.4 × 107 ± 0.5 × 107 cells per μmol of propene formed, respectively. The dcpA gene was identified in 1,2-D-to-propene-dechlorinating microcosms established with sediment samples collected from different geographical locations in Europe and North and South America. Clone library analysis revealed two distinct dcpA phylogenetic clusters, both of which were captured by the dcpA gene-targeted qPCR assay, suggesting that the qPCR assay is useful for site assessment and bioremediation monitoring at 1,2-D-contaminated sites. PMID:24242248

  11. High-performance of bare and Ti-doped α-MnO2 nanoparticles in catalyzing the Oxygen Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Pargoletti, E.; Cappelletti, G.; Minguzzi, A.; Rondinini, S.; Leoni, M.; Marelli, M.; Vertova, A.

    2016-09-01

    Nanostructured MnO2 has unique electrocatalytic properties towards the Oxygen Reduction Reaction (ORR, the main cathodic reaction in metal-air devices), representing an excellent alternative to the expensive platinum. Herein, we report the hydrothermal synthesis of bare and 5% Ti-doped α-MnO2 nanoparticles using two different oxidizing agents, namely ammonium persulfate for MH_N samples and potassium permanganate for MH_K ones. The physico-chemical characterizations show that oxidant cations induce different structural, morphological and surface properties of the final powders. Hence, correlations between the different α-MnO2 characteristics and their electrocatalytic performances towards the ORR are drawn, highlighting the diverse effect even on the kinetic point of view. The ORR activity in alkaline media is examined by means of Staircase - Linear Sweep Voltammetry (S-LSV), using Gas Diffusion Electrode (GDE) as the air-cathode. The presence of these nanoparticles in the GDEs leads to a significant shift of the ORR onset potential (∼100 mV) towards less cathodic values, underlining the electrocatalytic efficiency of all the nanopowders. Furthermore, high exchange current densities (j0) are determined for GDEs with Ti-doped MnO2, comparable to the well-performing Pd45Pt5Sn50, and making it a promising material for the ORR.

  12. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    DOE PAGES

    Zhang, Sen; Hao, Yizhou; Su, Dong; Doan-Nguyen, Vicky V. T.; Wu, Yaoting; Li, Jing; Sun, Shouheng; Murray, Christopher B.

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mgPt at 0.9 Vmore » (vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mgPt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less

  13. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    SciTech Connect

    Zhang, Sen; Hao, Yizhou; Su, Dong; Doan-Nguyen, Vicky V. T.; Wu, Yaoting; Li, Jing; Sun, Shouheng; Murray, Christopher B.

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mgPt at 0.9 V (vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mgPt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.

  14. Reduction of nitroaromatic compounds mediated by Streptomyces sp. exudates.

    PubMed Central

    Glaus, M A; Heijman, C G; Schwarzenbach, R P; Zeyer, J

    1992-01-01

    Exudates from Streptomyces griseoflavus Tü 2484 effectively mediated electron transfer between hydrogen sulfide and various nitrobenzenes. In general, pseudo-first-order kinetics were observed, except for the initial phase of the reaction at higher pH values. Under fixed pH and Dh conditions, linear free energy relationships were found between the logarithms of the reaction rate constants and the one-electron reduction potentials of the nitroaromatic compounds. No competition was observed between various compounds. Comparison of the results of this study with the results of experiments conducted with model quinones and an iron porphyrin suggest that the secondary metabolites cinnaquinone and dicinnaquinone, excreted by strain Tü 2484 on the order of 100 mg/liter, are responsible for the catalytic activity of the exudate. Further support for this hypothesis comes from the facts that the catalytic activity of the exudate became prominent only after the growth phase of the microorganisms and that the mediating substances have a molecular weight of less than 3,000. PMID:1622270

  15. Catalyzed oxidation for nanowire growth

    NASA Astrophysics Data System (ADS)

    Tai, Kaiping; Sun, Ke; Huang, Bo; Dillon, Shen J.

    2014-04-01

    A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600 °C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.

  16. Catalyzed oxidation for nanowire growth.

    PubMed

    Tai, Kaiping; Sun, Ke; Huang, Bo; Dillon, Shen J

    2014-04-11

    A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600 °C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.

  17. Reductive dechlorination of atrazine catalyzed by metalloporphyrins.

    PubMed

    Nelkenbaum, Elza; Dror, Ishai; Berkowitz, Brian

    2009-03-01

    Atrazine (2-chloro-4-(ethylamine)-6-(isopropylamine)-s-triazine) is a widely used herbicide which is considered a persistent groundwater contaminant. Its selective transformation mediated by cobalt or nickel porphyrins was studied in aqueous solutions at room temperature and ambient pressure. Several metalloporphyrins were examined as catalysts for the reaction and all yielded the same reaction, transforming atrazine solely to the seldomly reported form 2,4-bis(ethylamine)-6-methyl-s-triazine. The reaction involves dechlorination and migration of a methyl group to yield a symmetric product. Nickel 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP) was activated by nanosized zero-valent iron (nZVI) while cobalt porphyrins (TMPyP, 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine-(TP(OH)P) and 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)tetrakis (benzenesulfonic acid)-(TBSP)) were activated by titanium(III) citrate as the electron donor. The effect of pH on atrazine transformation was demonstrated for the catalytic system of TP(OH)P-Co/Ti(III) citrate. Finally, a comparison of the reactivities of cobalt TMPyP and TP(OH)P was given and the differences discussed.

  18. Electrogenic steps in the redox reactions catalyzed by photosynthetic reaction-centre complex from Rhodopseudomonas viridis.

    PubMed

    Dracheva, S M; Drachev, L A; Konstantinov, A A; Semenov AYu; Skulachev, V P; Arutjunjan, A M; Shuvalov, V A; Zaberezhnaya, S M

    1988-01-15

    Electrogenic and redox events in the reaction-centre complexes from Rhodopseudomonas viridis have been studied. In contrast to the previous points of view it is shown that all the four hemes of the tightly bound cytochrome c have different Em values (-60, +20, +310 and +380 mV). The first three hemes reveal alpha absorption maxima at 554 nm, 552 nm and 556 nm respectively. The 380-mV heme displays a split alpha band with a maximum at 559 nm and a shoulder at 552 nm. Such a splitting is due to non-degenerated Qx and Qy transitions in the iron-porphyrin ring as demonstrated by magnetic circular dichroism spectra. Fast kinetic measurements show that, at redox potentials when only high-potential hemes c-559 and c-556 are reduced, heme c-559 appears to be the electron donor to P-960+ (tau = 0.32 microsecond) whereas heme c-556 serves to rereduce c-559 (tau = 2.5 microsecond). Upon reduction of the third heme (c-552), the P-960+ reduction rate increases twofold (tau = 0.17 microsecond) and all photoinduced redox events within the cytochrome appear to be complete in less than 1 microsecond after the flash. The following sequence of the redox centers is tentatively suggested: c-554, c-556, c-552, c-559, P-960. To study electrogenesis, the reaction-centre complexes from Rps. viridis were incorporated into asolectin liposomes, and fast kinetics of laser flash-induced electric potential difference has been measured in proteoliposomes adsorbed on a phospholipid-impregnated film. The electrical difference induced by a single 15-ns flash was found to be as high as 100 mV. The photoelectric response has been found to involve four electrogenic stages associated with (I) QA reduction by P-960; (II) reduction of P-960+ by heme c-559; (III) reduction of c-559 by c-556 and (IV) protonation of Q2-B. The relative contributions of stages I, II, III and IV are found to be equal to 70%, 15%, 5% and 10%, respectively, of the overall electrogenic process. At the same time, the first three

  19. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  20. Catalyzed sodium chlorate candles

    NASA Technical Reports Server (NTRS)

    Malich, C. W.; Wydeven, T.

    1972-01-01

    The catalytic effect of cobalt powder on chlorate decomposition has been confirmed. Catalysis is enhanced by oxidation of the metal during burning. Catalysts other than cobalt compounds should also be effective; the complete elimination of fuel has shown that the oxidation of cobalt during decomposition is not a vital factor in the improved performance of catalyzed candles.

  1. Microbial reductive dehalogenation.

    PubMed Central

    Mohn, W W; Tiedje, J M

    1992-01-01

    A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic communities that catalyze reductive dehalogenation appear to differ in many respects. A large number of pure cultures which catalyze reductive dehalogenation of aliphatic compounds are known, in contrast to only a few organisms which catalyze reductive dehalogenation of aromatic compounds. Desulfomonile tiedjei DCB-1 is an anaerobe which dehalogenates aromatic compounds and is physiologically and morphologically unusual in a number of respects, including the ability to exploit reductive dehalogenation for energy metabolism. When possible, we use D. tiedjei as a model to understand dehalogenating organisms in the above-mentioned undefined systems. Aerobes use reductive dehalogenation for substrates which are resistant to known mechanisms of oxidative attack. Reductive dehalogenation, especially of aliphatic compounds, has recently been found in cell-free systems. These systems give us an insight into how and why microorganisms catalyze this activity. In some cases transition metal complexes serve as catalysts, whereas in other cases, particularly with aromatic substrates, the catalysts appear to be enzymes. Images PMID:1406492

  2. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  3. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal.

    PubMed

    Zhang, Yanzhou; Li, Xunhang; Hao, Zhikui; Xi, Ruchun; Cai, Yujie; Liao, Xiangru

    2016-01-01

    For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP. PMID:27362423

  4. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal

    PubMed Central

    Zhang, Yanzhou; Li, Xunhang; Hao, Zhikui; Xi, Ruchun; Cai, Yujie; Liao, Xiangru

    2016-01-01

    For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP. PMID:27362423

  5. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems

    PubMed Central

    2015-01-01

    Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe–Nx sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e– × 2e– mechanism in alkaline media on the primary Fe2+–N4 centers and the dual-site 2e– × 2e– mechanism in acid media with the significant role of the surface bound coexisting Fe/FexOy nanoparticles (NPs) as the secondary active sites. PMID:24817921

  6. Tomato metabolism and porphyrin-catalyzed oxidation of pyriproxyfen.

    PubMed

    Fukushima, Masao; Fujisawa, Takuo; Katagi, Toshiyuki

    2005-06-29

    Investigation of the metabolism of [(14)C]pyriproxyfen [4-phenoxyphenyl (R,S)-2-(2-pyridyloxy)propyl ether] in tomato fruits (Lycopersicon esculentum Mill. cv. Ponterosa) was conducted by topical application of acetonitrile solution or emulsifiable concentration formulation three times at 35, 21, and 7 days before harvest. Most of the radioactivity remained on the fruit surface or in the plant tissues as intact pyriproxyfen with minor metabolites formed via hydroxylation at the 4'-position of the phenoxy ring or cleavage of ether linkages. The biomimic chemical oxidation model using iron porphyrin as a catalyst and hydrogen peroxide was found to well reproduce the primary metabolites detected in the metabolism study. The electrophilic reaction indices obtained by AM1 molecular orbital calculations supposing involvement of cytochrome P-450 were successfully applied to evaluate the potentially higher reactive sites in pyriproxyfen.

  7. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  8. Mechanistic study of iron(III) [tetrakis(pentafluorophenyl)porphyrin triflate (F(20)TPP)Fe(OTf) catalyzed cyclooctene epoxidation by hydrogen peroxide.

    PubMed

    Stephenson, Ned A; Bell, Alexis T

    2007-03-19

    We have recently proposed a mechanism for the epoxidation of cyclooctene by H2O2 catalyzed by iron(III) [tetrakis(pentafluorophenyl)]porphyrin chloride, (F20TPP)FeCl, in solvent containing methanol [Stephenson, N. A.; Bell, A.T. Inorg. Chem. 2006, 45, 2758-2766]. In that study, we found that catalysis did not occur unless (F20TPP)FeCl first dissociated, a process facilitated by the solvation of the Cl- anion by methanol and the coordination of methanol to the (F20TPP)Fe+ cation. Methanol as well as other alcohols was also found to facilitate the heterolytic cleavage of the O-O bond of H2O2 coordinated to the (F20TPP)Fe+ cation via a generalized acid mechanism. In the present study, we have shown that catalytic activity of the (F20TPP)Fe+ cation can be achieved in aprotic solvent by displacing the tightly bound chloride anion with a weakly bound triflate anion. By working in an aprotic solvent, acetonitrile, it was possible to determine the rate of heterolytic O-O bond cleavage in coordinated H2O2 unaffected by the interaction of the peroxide with methanol. A mechanism is proposed for this system and is shown to be valid over a range of reaction conditions. The mechanisms for cyclooctene epoxidation and H2O2 decomposition for the aprotic and protic solvent systems are similar with the only difference being the mechanism of proton-transfer prior to heterolytic cleavage of the oxygen-oxygen bond of coordinated hydrogen peroxide. Comparison of the rate parameters indicates that the utilization of hydrogen peroxide for cyclooctene epoxidation is higher in a protic solvent than in an aprotic solvent and results in a smaller extent of porphyrin degradation due to free radical attack. It was also shown that water can coordinate to the iron porphyrin cation in aprotic systems resulting in catalyst deactivation; this effect was not observed when methanol was present, since methanol was found to displace all of the coordinated water.

  9. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: A critical review

    NASA Astrophysics Data System (ADS)

    Macalady, Donald L.; Tratnyek, Paul G.; Grundl, Timothy J.

    1986-02-01

    This review is predicated upon the need for a detailed process-level understanding of factors influencing the reduction of anthropogenic organic chemicals in natural aquatic systems. In particular, abiotic reductions of anthropogenic organic chemicals are reviewed. The most important reductive reaction is alkyl dehalogenation (replacement of chloride with hydrogen) which occurs in organisms, sediments, sewage sludge, and reduced iron porphyrin model systems. An abiotic mechanism involving a free radical intermediate has been proposed. The abstraction of vicinal dihalides (also termed dehalogenation) is another reduction that may have an abiotic component in natural systems. Reductive dehalogenation of aryl halides has recently been reported and further study of this reaction is needed. Several other degradation reactions of organohalides that occur in anaerobic environments are mentioned, the most important of which is dehydrohalogenation. The reduction of nitro groups to amines has also been thoroughly studied. The reactions can occur abiotically, and are affected by the redox conditions of the experimental system. However, a relationship between nitro-reduction rate and measured redox potential has not been clearly established. Reductive dealkylation of the N- and O-heteroatom of hydrocarbon pollutants has been observed but not investigated in detail. Azo compounds can be reduced to their hydrazo derivatives and a thorough study of this reaction indicates that it can be caused by extracellular electron transfer agents. Quinone-hydroquinone couples are important reactive groups in humic materials and similar structures in resazurin and indigo carmine make them useful as models for environmental redox conditions. The interconversion of sulfones, sulfoxides, and sulfides is a redox process and is implicated in the degradation of several pesticides though the reactions need more study. Two reductive heterocyclic cleavage reactions are also mentioned. Finally, several

  10. In situ measurements of microbially-catalyzed nitrification and nitrate reduction rates in an ephemeral drainage channel receiving water from coalbed natural gas discharge, Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Harris, S.H.; Smith, R.L.

    2009-01-01

    Nitrification and nitrate reduction were examined in an ephemeral drainage channel receiving discharge from coalbed natural gas (CBNG) production wells in the Powder River Basin, Wyoming. CBNG co-produced water typically contains dissolved inorganic nitrogen (DIN), primarily as ammonium. In this study, a substantial portion of discharged ammonium was oxidized within 50??m of downstream transport, but speciation was markedly influenced by diel fluctuations in dissolved oxygen (> 300????M). After 300??m of transport, 60% of the initial DIN load had been removed. The effect of benthic nitrogen-cycling processes on stream water chemistry was assessed at 2 locations within the stream channel using acrylic chambers to conduct short-term (2-6??h), in-stream incubations. The highest ambient DIN removal rates (2103????mol N m- 2 h- 1) were found at a location where ammonium concentrations > 350????M. This occurred during light incubations when oxygen concentrations were highest. Nitrification was occurring at the site, however, net accumulation of nitrate and nitrite accounted for < 12% of the ammonium consumed, indicating that other ammonium-consuming processes were also occurring. In dark incubations, nitrite and nitrate consumption were dominant processes, while ammonium was produced rather than consumed. At a downstream location nitrification was not a factor and changes in DIN removal rates were controlled by nitrate reduction, diel fluctuations in oxygen concentration, and availability of electron donor. This study indicates that short-term adaptation of stream channel processes can be effective for removing CBNG DIN loads given sufficient travel distances, but the long-term potential for nitrogen remobilization and nitrogen saturation remain to be determined.

  11. NEW CORDIERITE DIESEL PARTICULATE FILTERS FOR CATALYZED AND NON-CATALYZED APPLICATIONS

    SciTech Connect

    Merkel, G; Cutler, W; Tao, T Chiffey, A; Phillips, P; Twigg, M; Walker, A

    2003-08-24

    Cordierite diesel particulate filters provide an economical approach to diesel emissions control. However, further reduction in the pressure drop of catalyzed and non-catalyzed cordierite filters is desirable. In order to derive a fundamental understanding of the relationship between clean and sootloaded pressure drop and the pore microstructure of the ceramic, and to optimize the microstructure for filter performance, cordierite filters have been fabricated spanning an extended range in porosity, pore size distribution, and pore connectivity. Analysis of the results has been applied to the development of several new cordierite diesel particulate filters that possess a unique combination of high filtration efficiency, high strength, and very low clean and soot-loaded pressure drop. Furthermore, catalyst systems have been developed that result in a minimal pressure drop increase of the catalyzed filter. Optimization of porosity and cell geometry has enabled fabrication o f filters with either high or low thermal mass appropriate to the regeneration strategy employed for a given engine management system.

  12. The structure-function relationship and reduction potentials of high oxidation states of myoglobin and peroxidase.

    PubMed

    He, B; Sinclair, R; Copeland, B R; Makino, R; Powers, L S; Yamazaki, I

    1996-02-20

    In these studies, we substitute electron-withdrawing (diacetyl) or -donating (diethyl) groups at the 2- and 4-positions of the heme in sperm whale Mb and HRP, and examine the structural and biochemical consequences. X-ray absorption spectroscopy shows that increased electron density at the heme results in an increased iron-pyrrole nitrogen average distance in both HRP and Mb, while decreased electron density results in shorter average distances. In HRP, the proximal ligand is constrained by a H-bonding network, and axial effects are manifested entirely at the distal site. Conversely, in Mb, where the proximal ligand is less constrained, axial effects are seen at the proximal side. In HRP, electron density at the heme iron depends linearly on pK3, a measure of the basicity of the porphyrin pyrrole nitrogens [Yamada, H., Makino, R., & Yamazaki, I. (1975) Arch. Biochem. Biophys. 169, 344-353]. Using diethyl substitution (pK3 = 5.8) and diacetyl substitution (pK3 = 3.3) in HRP and Mb, we measured the one-electron reduction potentials (E(O)') of HRP compounds I and II and ferryl Mb. Compound I showed a decreased E(O)' with increasing electron density at the heme (pK3), similar to E(O)' of ferric HRP. E(O)' of HRP compound II and ferryl Mb showed an opposite dependence. This behavior of E(O)', while initially surprising, can be explained by the apparent net positive charge on the iron porphyrin in each oxidation state of the hemoproteins.

  13. Solvent-free lipase-catalyzed preparation of diacylglycerols.

    PubMed

    Weber, Nikolaus; Mukherjee, Kumar D

    2004-08-25

    Various methods have been applied for the enzymatic preparation of diacylglycerols that are used as dietary oils for weight reduction in obesity and related disorders. Interesterification of rapeseed oil triacylglycerols with commercial preparations of monoacylglycerols, such as Monomuls 90-O18, Mulgaprime 90, and Nutrisoft 55, catalyzed by immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) in vacuo at 60 degrees C led to extensive (from 60 to 75%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with Nutrisoft, catalyzed by Lipozyme RM in vacuo at 60 degrees C, also led to extensive (from 60 to 70%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme RM and lipases from Thermomyces lanuginosus (Lipozyme TL IM) and Candida antarctica (lipase B, Novozym 435), also provided diacylglycerols, however, to a lower extent (40-45%). Glycerolysis of rapeseed oil triacylglycerols with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme TL and Novozym 435, led to diacylglycerols to the extent of reduction of its activity. The products of esterification of rapeseed oil fatty acids with Monomuls and glycerol yielded upon short-path vacuum distillation residues (diacylglycerol oils) containing 66-70% diacylglycerols.

  14. Palladium-Catalyzed Arylation of Fluoroalkylamines

    PubMed Central

    Brusoe, Andrew T.; Hartwig, John F.

    2015-01-01

    We report the synthesis of fluorinated anilines by palladium-catalyzed coupling of fluoroalkylamines with aryl bromides and aryl chlorides. The products of these reactions are valuable because anilines typically require the presence of an electron-withdrawing substituent on nitrogen to suppress aerobic or metabolic oxidation, and the fluoroalkyl groups have steric properties and polarity distinct from those of more common electron-withdrawing amide and sulfonamide units. The fluoroalkylaniline products are unstable under typical conditions for C–N coupling reactions (heat and strong base). However, the reactions conducted with the weaker base KOPh, which has rarely been used in cross-coupling to form C–N bonds, occurred in high yield in the presence of a catalyst derived from commercially available AdBippyPhos and [Pd(allyl)Cl]2. Under these conditions, the reactions occur with low catalyst loadings (<0.50 mol % for most substrates) and tolerate the presence of various functional groups that react with the strong bases that are typically used in Pd-catalyzed C–N cross-coupling reactions of aryl halides. The resting state of the catalyst is the phenoxide complex, (BippyPhosPd(Ar)OPh); due to the electron-withdrawing property of the fluoroalkyl substituent, the turnover-limiting step of the reaction is reductive elimination to form the C–N bond. PMID:26065341

  15. Silanediol-Catalyzed Chromenone Functionalization.

    PubMed

    Hardman-Baldwin, Andrea M; Visco, Michael D; Wieting, Joshua M; Stern, Charlotte; Kondo, Shin-Ichi; Mattson, Anita E

    2016-08-01

    Promising levels of enantiocontrol are observed in the silanediol-catalyzed addition of silyl ketene acetals to benzopyrylium triflates. This rare example of enantioselective, intermolecular chromenone functionalization with carbonyl-containing nucleophiles has potential applications in the synthesis of bioactive chromanones and tetrahydroxanthones. PMID:27453257

  16. Iodine-Catalyzed Polysaccharide Esterification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  17. Pd-catalyzed steroid reactions.

    PubMed

    Czajkowska-Szczykowska, Dorota; Morzycki, Jacek W; Wojtkielewicz, Agnieszka

    2015-05-01

    We review the most important achievements of the last decade in the field of steroid synthesis in the presence of palladium catalysts. Various palladium-catalyzed cross-coupling reactions, including Heck, Suzuki, Stille, Sonogashira, Negishi and others, are exemplified with steroid transformations.

  18. Comparing Ru and Fe-catalyzed olefin metathesis.

    PubMed

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts.

  19. Selective Metal-Free Hydrosilylation of CO2 Catalyzed by Triphenylborane in Highly Polar, Aprotic Solvents.

    PubMed

    Mukherjee, Debabrata; Sauer, Daniel F; Zanardi, Alessandro; Okuda, Jun

    2016-06-01

    Triphenylborane (BPh3 ) in highly polar, aprotic solvents catalyzes hydrosilylation of CO2 effectively under mild conditions to provide silyl formates with high chemoselectivity (>95 %) and without over-reduction. This system also promotes reductive hydrosilylation of tertiary amides as well as dehydrogenative coupling of silane with alcohols. PMID:27028161

  20. Gold-Catalyzed Synthesis of Heterocycles

    NASA Astrophysics Data System (ADS)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  1. Method for catalyzing oxidation/reduction reactions of simple molecules

    SciTech Connect

    Bicker, D.; Bonaventura, J.

    1988-06-14

    A method for oxidizing carbon monoxide to carbon dioxide is described comprising: (1) contacting, together, carbon monoxide, a nitrogen-containing chelating agent and water; wherein the chelating agent is at least one member selected from the group consisting of methmeoglobin bound to a support, ferric hemoglobin bound to a support, iron-containing porphyrins bound to a support, and sperm whale myoglobin bound to a support, wherein the support is glass, a natural fiber, a synthetic fiber, a gel, charcoal, carbon ceramic material, a metal oxide, a synthetic polymer, a zeolite, a silica compound of an alumina compound; and (2) obtaining carbon dioxide.

  2. Enzyme-catalyzed biocathode in a photoelectrochemical biofuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Hu, Donghua; Zhang, Xiaohuan; Wang, Kunqi; Wang, Bin; Sun, Bo; Qiu, Zhidong

    2014-12-01

    A novel double-enzyme photoelectrochemical biofuel cell (PEBFC) has been developed by taking glucose dehydrogenase (GDH) and horseradish peroxidase (HRP) as the enzyme of the photoanode and biocathode to catalyze the oxidation of glucose and the reduction of oxygen. A H2-mesoporphyrin IX is used as a dye for a TiO2 film electrode to fabricate a photoanode. The horseradish peroxidase (HRP) is immobilized on a glassy carbon (GC) electrode to construct a biocathode which is used to catalyze the reduction of oxygen in the PEBFC for the first time. The biocathode exhibits excellent electrocatalytic activity in the presence of O2. The performances of the PEBFC are obtained by current-voltage and power-voltage curves. The short-circuit current density (Isc), the open-circuit voltage (Voc), maximum power density (Pmax), fill factor (FF) and energy conversion efficiency (η) are 439 μA cm-2, 678 mV, 79 μW cm-2, 0.39 and 0.016%, respectively, and the incident photon-to-collected electron conversion efficiency (IPCE) is 32% at 350 nm. The Isc is higher than that of the PEBFC with Pt cathode, and the Voc is higher than that of the dye-sensitized solar cell or the enzyme-catalyzed biofuel cell operating individually, which demonstrates that the HRP is an efficient catalyst for the biocathode in the PEBFC.

  3. Mechanism of Boron-Catalyzed N-Alkylation of Amines with Carboxylic Acids.

    PubMed

    Zhang, Qi; Fu, Ming-Chen; Yu, Hai-Zhu; Fu, Yao

    2016-08-01

    Mechanistic study has been carried out on the B(C6F5)3-catalyzed amine alkylation with carboxylic acid. The reaction includes acid-amine condensation and amide reduction steps. In condensation step, the catalyst-free mechanism is found to be more favorable than the B(C6F5)3-catalyzed mechanism, because the automatic formation of the stable B(C6F5)3-amine complex deactivates the catalyst in the latter case. Meanwhile, the catalyst-free condensation is constituted by nucleophilic attack and the indirect H2O-elimination (with acid acting as proton shuttle) steps. After that, the amide reduction undergoes a Lewis acid (B(C6F5)3)-catalyzed mechanism rather than a Brønsted acid (B(C6F5)3-coordinated HCOOH)-catalyzed one. The B(C6F5)3)-catalyzed reduction includes twice silyl-hydride transfer steps, while the first silyl transfer is the rate-determining step of the overall alkylation catalytic cycle. The above condensation-reduction mechanism is supported by control experiments (on both temperature and substrates). Meanwhile, the predicted chemoselectivity is consistent with the predominant formation of the alkylation product (over disilyl acetal product). PMID:27441997

  4. Designing 'Totem' C2 -Symmetrical Iron Porphyrin Catalysts for Stereoselective Cyclopropanations.

    PubMed

    Carminati, Daniela Maria; Intrieri, Daniela; Caselli, Alessandro; Le Gac, Stéphane; Boitrel, Bernard; Toma, Lucio; Legnani, Laura; Gallo, Emma

    2016-09-12

    The catalytic activity of the iron(III) C2 chiral porphyrin Fe(2)(OMe) in alkene cyclopropanation is herein reported. The catalyst promoted the reaction of differently substituted styrenes with diazo derivatives with trans-diastereoselectivities and enantioselectivities up to 99:1 and 87 %, respectively. In addition, high TON and TOF values (up to 10 000 and 120 000 h(-1) , respectively) were observed indicating good activity and stability of the catalyst in optimized experimental conditions. The study of the cyclopropanation reaction revealed that the porphyrin skeleton is composed of two 'totem' parts which were independently responsible for the observed enantio- and diastereoselectivities. To further our research we also investigated the catalytic role of the methoxy axial ligand coordinated to the iron atom. The molecular structure of Fe(2)(OMe) was optimized by DFT calculations which were also employed to achieve a better understanding of the mechanistic details of the carbene transfer reaction. PMID:27555480

  5. Transient Raman observations of heme vibrational dynamics in five-coordinate iron porphyrins

    NASA Astrophysics Data System (ADS)

    Loparo, Joseph J.; Cheatum, Christopher M.; Ondrias, Mark R.; Simpson, M. Cather

    2003-01-01

    Transient resonance Raman spectroscopy has been used to study vibrational dynamics in five-coordinate, high-spin Fe II octaethyl porphyrin with a 2-methyl imidazole axial ligand. Vibrational populations of the porphyrin ground electronic state were probed by examining Stokes and anti-Stokes Raman scattering as a function of incident laser flux using ˜10 nanosecond pulses in resonance with the Soret electronic transition. Within a single pulse, each molecule goes through several excitation-decay cycles, building up a non-equilibrium, excited vibrational energy distribution that is exquisitely sensitive to the vibrational mode lifetimes and to the incident laser flux. A kinetic model illustrates these ideas and provides strong support for the interpretation of the results. The flux dependence of the Raman intensities, positions and linewidths suggests that ν3 and ν4 act as "bottleneck" vibrational states, while νCH and ν7 couple more effectively to the environment.

  6. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  7. Antibody-mediated reduction of {alpha}-ketoamides

    DOEpatents

    Schultz, P.G.; Gallop, M.A.

    1998-06-09

    Monoclonal antibodies raised against a 4-nitrophenyl phosphonate hapten catalyze the stereospecific reduction of an {alpha}-ketoamide to the corresponding {alpha}-hydroxyamide in the presence of an appropriate reducing agent.

  8. Antibody-mediated reduction of .alpha.-ketoamides

    DOEpatents

    Schultz, Peter G.; Gallop, Mark A.

    1998-01-01

    Monoclonal antibodies raised against a 4-nitrophenyl phosphonate hapten catalyze the stereospecific reduction of an .alpha.-ketoamide to the corresponding .alpha.-hydroxyamide in the presence of an appropriate reducing agent.

  9. Copper(I)-Catalyzed Allylic Substitutions with a Hydride Nucleophile.

    PubMed

    Nguyen, T N Thanh; Thiel, Niklas O; Pape, Felix; Teichert, Johannes F

    2016-05-20

    An easily accessible copper(I)/N-heterocyclic carbene (NHC) complex enables a regioselective hydride transfer to allylic bromides, an allylic reduction. The resulting aryl- and alkyl-substituted branched α-olefins, which are valuable building blocks for synthesis, are obtained in good yields and regioselectivity. A commercially available silane, (TMSO)2Si(Me)H, is employed as hydride source. This protocol offers a unified alternative to the established metal-catalyzed allylic substitutions with carbon nucleophiles, as no adaption of the catalyst to the nature of the nucleophile is required. PMID:27151495

  10. Comparing Ru and Fe-catalyzed olefin metathesis.

    PubMed

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. PMID:24821502

  11. Nickel-Catalyzed Negishi Cross-Coupling of Bromodifluoroacetamides.

    PubMed

    Tarui, Atsushi; Shinohara, Saori; Sato, Kazuyuki; Omote, Masaaki; Ando, Akira

    2016-03-01

    A nickel-catalyzed Negishi coupling of bromodifluoroacetamides with arylzinc reagents has been developed. This reaction allows access to difluoromethylated aromatic compounds containing a variety of aryl groups and amide moieties. Furthermore, highly effective transformation of the functionalized difluoromethyl group (-CF2CONR(1)R(2)) was realized via microwave-assisted reduction under mild conditions. The notable features of this strategy are its generality and its use of a low-cost nickel catalyst and ligand; thus, this reaction provides a facile method for applications in drug discovery and development. PMID:26910536

  12. Copper-Catalyzed Azide–Alkyne Click Chemistry for Bioconjugation

    PubMed Central

    Presolski, Stanislav I.; Hong, Vu Phong; Finn, M.G.

    2012-01-01

    The copper-catalyzed azide-alkyne cycloaddition reaction is widely used for the connection of molecular entities of all sizes. A protocol is provided here for the process with biomolecules. Ascorbate is used as reducing agent to maintain the required cuprous oxidation state. Since these convenient conditions produce reactive oxygen species, five equivalents of a copper-binding ligand is used with respect to metal. The ligand both accelerates the reaction and serves as a sacrificial reductant, protecting the biomolecules from oxidation. A procedure is also described for testing the efficiency of the reaction under desired conditions for purposes of optimization, before expensive biological reagents are used. PMID:22844652

  13. Rhenium-catalyzed deoxydehydration of diols and polyols.

    PubMed

    Dethlefsen, Johannes R; Fristrup, Peter

    2015-03-01

    The substitution of platform chemicals of fossil origin by biomass-derived analogues requires the development of chemical transformations capable of reducing the very high oxygen content of biomass. One such reaction, which has received increasing attention within the past five years, is the rhenium-catalyzed deoxydehydration (DODH) of a vicinal diol into an alkene; this is a model system for abundant polyols like glycerol and sugar alcohols. The present contribution includes a review of early investigations of stoichiometric reactions involving rhenium, diols, and alkenes followed by a discussion of the various catalytic systems that have been developed with emphasis on the nature of the reductant, the substrate scope, and mechanistic investigations.

  14. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed.

  15. Gold-catalyzed naphthalene functionalization

    PubMed Central

    Rivilla, Iván

    2011-01-01

    Summary The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO2Et (R = H, Me) from N2C(R)CO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C–H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  16. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  17. Rh-Catalyzed Five-Membered Heterocycle Synthesis

    NASA Astrophysics Data System (ADS)

    Kathiravan, Subban; Nicholls, Ian A.

    The following sections are included: * Introduction * Rhodium-catalyzed nitrogen containing five-membered heterocycle synthesis * Rhodium-catalyzed oxygen containing five-membered heterocycle synthesis * Rhodium-catalyzed sulfur containing five-membered heterocycle synthesis * Rhodium-catalyzed phosphorous containing five-membered heterocycle synthesis * Rhodium-catalyzed silicon containing five-membered heterocycle synthesis * Rhodium-catalyzed synthesis of bis-heterocycles * Conclusions and outlook * References

  18. Hydrophobic properties of polytetrafluoroethylene thin films fabricated at various catalyzer temperatures through catalytic chemical vapor deposition using a tungsten catalyzer.

    PubMed

    Cha, Jeong Ok; Yeo, Seung Jun; Pode, Ramchandra; Ahn, Jeung Sun

    2011-07-01

    Using the catalytic chemical vapor deposition (Cat-CVD) method, polytetrafluoroethylene (PTFE) thin films were fabricated on Si(100) substrates at various catalyzer temperatures, using a tungsten catalyzer, and Fourier transform infrared (FTIR) spectroscopy and X-ray photoemission spectroscopy (XPS) were used to confirm the fabrication of the films. An atomic-force microscope (AFM) and a scanning electron microscope (SEM) were employed to study the correlation between the wettability and surface morphology of the samples. It was found that the wettability of the PTFE thin films fabricated via Cat-CVD is strongly correlated with the sizes of the film surfaces' nanoprotrusions, and that superhydrophobic PTFE thin-film surfaces can be easily achieved by controlling the sizes of the nanoprotrusions through the catalyzer temperature. The comparison of the wettability values and surface morphologies of the films confirmed that nanoscale surface roughness enhances the hydrophobic properties of PTFE thin films. Further, the detailed analysis of the films' surface morphologies from their AFM images with the use of the Wenzel and Cassie models confirmed that the nanoscale surface roughness enhanced the hydrophobic property of the PTFE films. Further, the variations of the wettability of the PTFE thin films prepared via Cat-CVD are well explained by the Cassie model. It seems that the increase in the trapping air and the reduction of the liquid-solid contact area are responsible for the superhydrophobicity of the PTFE thin films prepared via Cat-CVD. PMID:22121615

  19. Access to 4-alkylaminopyridazine derivatives via nitrogen-assisted regioselective Pd-catalyzed reactions.

    PubMed

    Blaise, Emilie; Kümmerle, Arthur E; Hammoud, Hassan; de Araújo-Júnior, João Xavier; Bihel, Frédéric; Bourguignon, Jean-Jacques; Schmitt, Martine

    2014-11-01

    3-Substituted, 6-substituted, and unsymmetrical 3,6-disubstituted 4-alkylaminopyridazines were prepared from a sequence of three chemo- and regioselective reactions combining amination and palladium-catalyzed cross-coupling reactions, such as reductive dehalogenation and Suzuki-Miyaura reactions. Extension of the methodology to Sonogashira reaction yielded a novel class of 3-substituted pyrrolopyridazines. PMID:25310174

  20. Palladium-catalyzed directing group-assisted C8-triflation of naphthalenes.

    PubMed

    Yang, Zhi-Wei; Zhang, Qi; Jiang, Yuan-Ye; Li, Lei; Xiao, Bin; Fu, Yao

    2016-05-10

    The transition-metal-catalyzed direct triflation of naphthyl amides and naphthyl ketones has been accomplished for the first time. Benzophenone (BP) was found to be a suitable ligand for the cross-coupling reactions. Density functional theory (DFT) calculations revealed that excessive amounts of HOTf inhibit the reductive elimination of the C-F bond to realize the unusual reductive elimination of the C-OTf bond. PMID:27117543

  1. Transition metal-catalyzed functionalization of pyrazines.

    PubMed

    Nikishkin, Nicolai I; Huskens, Jurriaan; Verboom, Willem

    2013-06-14

    Transition metal-catalyzed reactions are generally used for carbon-carbon bond formation on pyrazines and include, but are not limited to, classical palladium-catalyzed reactions like Sonogashira, Heck, Suzuki, and Stille reactions. Also a few examples of carbon-heteroatom bond formation in pyrazines are known. This perspective reviews recent progress in the field of transition metal-catalyzed cross-coupling reactions on pyrazine systems. It deals with the most important C-C- and C-X-bond formation methodologies.

  2. Gold-Catalyzed Highly Selective Photoredox C(sp(2) )-H Difluoroalkylation and Perfluoroalkylation of Hydrazones.

    PubMed

    Xie, Jin; Zhang, Tuo; Chen, Fei; Mehrkens, Nina; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K

    2016-02-18

    The first gold-catalyzed photoredox C(sp(2) )-H difluoroalkylation and perfluoroalkylation of hydrazones with readily available RF -Br reagents is reported. The resulting gem-difluoromethylated and perfluoroalkylated hydrazones are highly functionalized, versatile molecules. A mild reduction of the coupling products can efficiently produce gem-difluoromethylated β-amino phosphonic acids and β-amino acid derivatives. In mechanistic studies, a difluoroalkyl radical intermediate was detected by an EPR spin-trapping experiment, indicating that a gold-catalyzed radical pathway is operating. PMID:26800002

  3. Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation*

    PubMed Central

    Moran, Joseph; Krische, Michael J.

    2013-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C–C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  4. Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation().

    PubMed

    Moran, Joseph; Krische, Michael J

    2012-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C-C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  5. Primary-tertiary diamine-catalyzed Michael addition of ketones to isatylidenemalononitrile derivatives.

    PubMed

    Kumar, Akshay; Chimni, Swapandeep Singh

    2014-01-01

    Simple primary-tertiary diamines easily derived from natural primary amino acids were used to catalyze the Michael addition of ketones with isatylidenemalononitrile derivatives. Diamine 1a in combination with D-CSA as an additive provided Michael adducts in high yield (up to 94%) and excellent enantioselectivity (up to 99%). The catalyst 1a was successfully used to catalyze the three-component version of the reaction by a domino Knoevenagel-Michael sequence. The Michael adduct 4a was transformed into spirooxindole 6 by a reduction with sodium borohydride in a highly enantioselective manner.

  6. Nickel-Catalyzed Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings

    PubMed Central

    2016-01-01

    The cross-coupling of sp3-hybridized organoboron reagents via photoredox/nickel dual catalysis represents a new paradigm of reactivity for engaging alkylmetallic reagents in transition-metal-catalyzed processes. Reported here is an investigation into the mechanistic details of this important transformation using density functional theory. Calculations bring to light a new reaction pathway involving an alkylnickel(I) complex generated by addition of an alkyl radical to Ni(0) that is likely to operate simultaneously with the previously proposed mechanism. Analysis of the enantioselective variant of the transformation reveals an unexpected manifold for stereoinduction involving dynamic kinetic resolution (DKR) of a Ni(III) intermediate wherein the stereodetermining step is reductive elimination. Furthermore, calculations suggest that the DKR-based stereoinduction manifold may be responsible for stereoselectivity observed in numerous other stereoconvergent Ni-catalyzed cross-couplings and reductive couplings. PMID:25836634

  7. Rhodium-catalyzed acyloxy migration of propargylic esters in cycloadditions, inspiration from the recent "gold rush".

    PubMed

    Shu, Xing-Zhong; Shu, Dongxu; Schienebeck, Casi M; Tang, Weiping

    2012-12-01

    Transition metal-catalyzed acyloxy migration of propargylic esters offers versatile entries to allene and vinyl carbene intermediates for various fascinating subsequent transformations. Most π-acidic metals (e.g. gold and platinum) are capable of facilitating these acyloxy migration events. However, very few of these processes involve redox chemistry, which are well-known for most other transition metals such as rhodium. The coupling of acyloxy migration of propargylic esters with oxidative addition, migratory insertion, and reductive elimination may lead to ample new opportunities for the design of new reactions. This tutorial review summarizes recent developments in Rh-catalyzed 1,3- and 1,2-acyloxy migration of propargylic esters in a number of cycloaddition reactions. Related Au- and Pt-catalyzed cycloadditions involving acyloxy migration are also discussed.

  8. A Link between Protein Structure and Enzyme Catalyzed Hydrogen Tunneling

    NASA Astrophysics Data System (ADS)

    Bahnson, Brian J.; Colby, Thomas D.; Chin, Jodie K.; Goldstein, Barry M.; Klinman, Judith P.

    1997-11-01

    We present evidence that the size of an active site side chain may modulate the degree of hydrogen tunneling in an enzyme-catalyzed reaction. Primary and secondary kH/kT and kD/kT kinetic isotope effects have been measured for the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase at 25 degrees C. As reported in earlier studies, the relationship between secondary kH/kT and kD/kT isotope effects provides a sensitive probe for deviations from classical behavior. In the present work, catalytic efficiency and the extent of hydrogen tunneling have been correlated for the alcohol dehydrogenase-catalyzed hydride transfer among a group of site-directed mutants at position 203. Val-203 interacts with the opposite face of the cofactor NAD+ from the alcohol substrate. The reduction in size of this residue is correlated with diminished tunneling and a two orders of magnitude decrease in catalytic efficiency. Comparison of the x-ray crystal structures of a ternary complex of a high-tunneling (Phe-93 --> Trp) and a low-tunneling (Val-203 --> Ala) mutant provides a structural basis for the observed effects, demonstrating an increase in the hydrogen transfer distance for the low-tunneling mutant. The Val-203 --> Ala ternary complex crystal structure also shows a hyperclosed interdomain geometry relative to the wild-type and the Phe-93 --> Trp mutant ternary complex structures. This demonstrates a flexibility in interdomain movement that could potentially narrow the distance between the donor and acceptor carbons in the native enzyme and may enhance the role of tunneling in the hydride transfer reaction.

  9. Iron catalyzed asymmetric oxyamination of olefins.

    PubMed

    Williamson, Kevin S; Yoon, Tehshik P

    2012-08-01

    The regioselective and enantioselective oxyamination of alkenes with N-sulfonyl oxaziridines is catalyzed by a novel iron(II) bis(oxazoline) complex. This process affords oxazolidine products that can be easily manipulated to yield highly enantioenriched free amino alcohols. The regioselectivity of this process is complementary to that obtained from the analogous copper(II)-catalyzed reaction. Thus, both regioisomers of enantioenriched 1,2-aminoalcohols can be obtained using oxaziridine-mediated oxyamination reactions, and the overall sense of regiochemistry can be controlled using the appropriate choice of inexpensive first-row transition metal catalyst. PMID:22793789

  10. Attractor Explosions and Catalyzed Vacuum Decay

    SciTech Connect

    Green, Daniel; Silverstein, Eva; Starr, David

    2006-05-05

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new endpoint for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  11. Peroxidase catalyzed polymerization of phenol

    SciTech Connect

    Vasudevan, P.T.; Li, L.O.

    1996-07-01

    The effect of horseradish peroxidase (HRP) and H{sub 2}O{sub 2} concentrations on the removal efficiency of phenol, defined as the percentage of phenol removed from solution as a function of time, has been investigated. When phenol and H{sub 2}O{sub 2} react with an approximately one-to-one stoichiometry, the phenol is almost completely precipitated within 10 min. The reaction is inhibited at higher concentrations of H{sub 2}O{sub 2}. The removal efficiency increases with an increase in the concentration of HRP, but an increase in the time of treatment cannot be used to offset the reduction in removal efficiency at low concentrations of the enzyme, because of inactivation of the enzyme. One molecule of HRP is needed to remove approximately 1100 molecules of phenol when the reaction is conducted at pH 8.0 and at ambient temperature. 9 refs., 5 figs.

  12. Iron catalyzed coal liquefaction process

    DOEpatents

    Garg, Diwakar; Givens, Edwin N.

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  13. Quinone-Catalyzed Selective Oxidation of Organic Molecules.

    PubMed

    Wendlandt, Alison E; Stahl, Shannon S

    2015-12-01

    Quinones are common stoichiometric reagents in organic chemistry. Para-quinones with high reduction potentials, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry, or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in copper amine oxidases and mediate the efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed by electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and has important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  14. Olefin hydroaryloxylation catalyzed by pincer-iridium complexes.

    PubMed

    Haibach, Michael C; Guan, Changjian; Wang, David Y; Li, Bo; Lease, Nicholas; Steffens, Andrew M; Krogh-Jespersen, Karsten; Goldman, Alan S

    2013-10-01

    Aryl alkyl ethers, which are widely used throughout the chemical industry, are typically produced via the Williamson ether synthesis. Olefin hydroaryloxylation potentially offers a much more atom-economical alternative. Known acidic catalysts for hydroaryloxylation, however, afford very poor selectivity. We report the organometallic-catalyzed intermolecular hydroaryloxylation of unactivated olefins by iridium "pincer" complexes. These catalysts do not operate via the hidden Brønsted acid pathway common to previously developed transition-metal-based catalysts. The reaction is proposed to proceed via olefin insertion into an iridium-alkoxide bond, followed by rate-determining C-H reductive elimination to yield the ether product. The reaction is highly chemo- and regioselective and offers a new approach to the atom-economical synthesis of industrially important ethers and, potentially, a wide range of other oxygenates. PMID:24028199

  15. Rhodium-Catalyzed Regiodivergent Hydrothiolation of Allyl Amines and Imines.

    PubMed

    Kennemur, Jennifer L; Kortman, Gregory D; Hull, Kami L

    2016-09-14

    The regiodivergent Rh-catalyzed hydrothiolation of allyl amines and imines is presented. Bidentate phosphine ligands with larger natural bite angles (βn ≥ 99°), for example, DPEphos, dpph, or L1, promote a Markovnikov-selective hydrothiolation in up to 88% yield and >20:1 regioselectivity. Conversely, when smaller bite angle ligands (βn ≤ 86°), for example, dppbz or dppp, are employed, the anti-Markovnikov product is formed in up to 74% yield and >20:1 regioselectivity. Initial mechanistic investigations are performed and are consistent with an oxidative addition/olefin insertion/reductive elimination mechanism for each regioisomeric pathway. We hypothesize that the change in regioselectivity is an effect of diverging coordination spheres to favor either Rh-S or Rh-H insertion to form the branched or linear isomer, respectively. PMID:27547858

  16. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  17. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  18. Iridium-catalyzed enantioselective polyene cyclization.

    PubMed

    Schafroth, Michael A; Sarlah, David; Krautwald, Simon; Carreira, Erick M

    2012-12-19

    A highly enantioselective polycyclization method has been developed using the combination of Lewis acid activation with iridium-catalyzed allylic substitution. This strategy relies on direct use of branched, racemic allylic alcohols and furnishes a diverse and unique set of carbo- and heteropolycyclic ring systems in good yields and ≥99% ee. PMID:23193947

  19. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  20. Rhodium-catalyzed restructuring of carbon frameworks.

    PubMed

    Murakami, Masahiro

    2010-10-01

    Metal-catalyzed reactions involving an elementary step which cleaves a carbon-carbon bond provide unique organic transformations. Restructuring reactions recently developed in our laboratory, through which the carbon framework of a starting substance is restructured into a totally different carbon framework, are discussed, with the possibility of applying such methods to the synthesis of natural products.

  1. Data, Leadership, and Catalyzing Culture Change

    ERIC Educational Resources Information Center

    Benson, R. Todd; Trower, Cathy A.

    2012-01-01

    It is crucial to understand today's tenure-track workers so that colleges and universities can continue to attract and retain a large subset of them by understanding and supporting their satisfaction and success at work. In this article, the authors talk about data, leadership, and catalyzing culture change. They discuss data use in the academy…

  2. Zinc-catalyzed depolymerization of artificial polyethers.

    PubMed

    Enthaler, Stephan; Weidauer, Maik

    2012-02-13

    Recycling polymers: In the present study, the efficient zinc-catalyzed depolymerization of a variety of artificial polyethers has been investigated. Chloroesters were obtained as the depolymerization products, which are suitable precursors for new polymers. By using straightforward zinc salts, extraordinary catalyst activities and selectivities were feasible (see scheme). PMID:22253040

  3. Mechanochemical ruthenium-catalyzed olefin metathesis.

    PubMed

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid. PMID:25668586

  4. Catalyzing curriculum evolution in graduate science education.

    PubMed

    Gutlerner, Johanna L; Van Vactor, David

    2013-05-01

    Strategies in life science graduate education must evolve in order to train a modern workforce capable of integrative solutions to challenging problems. Our institution has catalyzed such evolution through building a postdoctoral Curriculum Fellows Program that provides a collaborative and scholarly education laboratory for innovation in graduate training.

  5. Copper-Catalyzed Borylcupration of Allenylsilanes.

    PubMed

    Yuan, Weiming; Song, Liu; Ma, Shengming

    2016-02-24

    A highly regio- and stereoselective copper-catalyzed borylcupration of 1,2-allenylsilanes affords an unexpected regioreversed allylic boronate bearing an extra C-Si bond at the 3-position, with a thermodynamically disfavored Z geometry. Such stereodefined allylic boronates containing an extra alkenyl silane moiety are very useful organodimetallic reagents for organic synthesis. PMID:26821774

  6. Mechanochemical ruthenium-catalyzed olefin metathesis.

    PubMed

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid.

  7. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  8. Gold(I)-catalyzed enantioselective cycloaddition reactions.

    PubMed

    López, Fernando; Mascareñas, José L

    2013-10-30

    In recent years there have been extraordinary developments of gold(I)-catalyzed enantioselective processes. This includes progress in the area of cycloaddition reactions, which are of particular interest due to their potential for the rapid construction of optically active cyclic products. In this article we will summarize some of the most remarkable examples, emphasizing reaction mechanisms and key intermediates involved in the processes.

  9. Iridium-catalyzed enantioselective polyene cyclization.

    PubMed

    Schafroth, Michael A; Sarlah, David; Krautwald, Simon; Carreira, Erick M

    2012-12-19

    A highly enantioselective polycyclization method has been developed using the combination of Lewis acid activation with iridium-catalyzed allylic substitution. This strategy relies on direct use of branched, racemic allylic alcohols and furnishes a diverse and unique set of carbo- and heteropolycyclic ring systems in good yields and ≥99% ee.

  10. C-O hydrogenolysis catalyzed by Pd-PMHS nanoparticles in the company of chloroarenes.

    PubMed

    Rahaim, Ronald J; Maleczka, Robert E

    2011-02-18

    Catalytic Pd(OAc)(2) and polymethylhydrosiloxane (PMHS), in conjunction with aqueous KF, and a catalytic amount of an aromatic chloride, effects the chemo-, regio-, and stereoselective deoxygenation of benzylic oxygenated substrates at room temperature in THF. Preliminary mechanistic experiments suggest the process to involve palladium-nanoparticle-catalyzed hydrosilylation followed by C-O reduction. The chloroarene additive appears to facilitate the hydrogenolysis process through the slow controlled release of HCl.

  11. A Stereoselective Synthesis of Digitoxin and Digitoxigen Monoand Bisdigitoxoside from Digitoxigenin via a Palladium Catalyzed Glycosylation

    PubMed Central

    Zhou, Maoquan; O’Doherty, George A.

    2008-01-01

    A convergent and stereocontrolled route to trisaccharide natural product digitoxin has been developed. The route is amenable to the preparation of both the digitoxigen mono-and bisdigitoxoside. This route featured the iterative application of the palladium catalyzed glycosylation reaction, reductive 1,3-transposition, diastereoselective dihydroxylation and regioselective protection. The natural product digitoxin was fashioned in 15 steps starting from digitoxigenin 2 and pyranone 8a or 18 steps from achiral acylfuran. PMID:16956221

  12. Microwave-enhanced transition metal-catalyzed decoration of 2(1H)-pyrazinone scaffolds.

    PubMed

    Kaval, Nadya; Bisztray, Katalin; Dehaen, Wim; Kappe, C Oliver; Van der Eycken, Erik

    2003-01-01

    The 2(1H)-pyrazinones have been demonstrated to be versatile building blocks for the synthesis of biologically active compounds. Here, an efficient method is described for the decoration of these interesting scaffolds. Microwave-assisted palladium catalyzed reactions allow the easy introduction of different substituents at the C3- and even at the rather unreactive C5-position of the pyrazinones. Stille, Suzuki, Heck, Sonogashira reactions, in addition to reductive dechlorinations, and cyanation reactions are investigated.

  13. Ru-Catalyzed Benzannulation Leads to Luminescent Boron-Containing Polycyclic Aromatic Hydrocarbons.

    PubMed

    Hertz, Valentin M; Lerner, Hans-Wolfram; Wagner, Matthias

    2015-11-01

    A series of boron-containing polycyclic aromatic hydrocarbons (PAHs) have been synthesized through the Ru-catalyzed cyclization of aryl ene-ynes. The benchtop-stable products show deep blue photoluminescence. Reversible electrochemical reduction is possible at moderate electrode potentials (about -2.0 V vs FcH/FcH(+)); some of the compounds also underwent reversible oxidation. The systematic expansion of the PAH scaffolds permitted the analysis of even subtle structure-property relationships. PMID:26468670

  14. Enantioselective synthesis of α-aminosilanes by copper-catalyzed hydroamination of vinylsilanes.

    PubMed

    Niljianskul, Nootaree; Zhu, Shaolin; Buchwald, Stephen L

    2015-01-26

    The synthesis of α-aminosilanes by a highly enantio- and regioselective copper-catalyzed hydroamination of vinylsilanes is reported. The system employs Cu-DTBM-SEGPHOS as the catalyst, diethoxymethylsilane as the stoichiometric reductant, and O-benzoylhydroxylamines as the electrophilic nitrogen source. This hydroamination reaction is compatible with differentially substituted vinylsilanes, thus providing access to amino acid mimics and other valuable chiral organosilicon compounds.

  15. Enantioselective synthesis of α-aminosilanes by copper-catalyzed hydroamination of vinylsilanes.

    PubMed

    Niljianskul, Nootaree; Zhu, Shaolin; Buchwald, Stephen L

    2015-01-26

    The synthesis of α-aminosilanes by a highly enantio- and regioselective copper-catalyzed hydroamination of vinylsilanes is reported. The system employs Cu-DTBM-SEGPHOS as the catalyst, diethoxymethylsilane as the stoichiometric reductant, and O-benzoylhydroxylamines as the electrophilic nitrogen source. This hydroamination reaction is compatible with differentially substituted vinylsilanes, thus providing access to amino acid mimics and other valuable chiral organosilicon compounds. PMID:25475991

  16. Enantioselective Synthesis of α-Aminosilanes by Copper-Catalyzed Hydroamination of Vinylsilanes**

    PubMed Central

    Niljianskul, Nootaree; Zhu, Shaolin; Buchwald, Stephen L.

    2015-01-01

    The synthesis of α-aminosilanes by a highly enantio- and regioselective copper-catalyzed hydroamination of vinylsilanes is reported. The system employs Cu-DTBM-SEG-PHOS as the catalyst, diethoxymethylsilane as the stoichiometric reductant, and O-benzoylhydroxylamines as the electrophilic nitrogen source. This hydroamination reaction is compatible with differentially substituted vinylsilanes, thus providing access to amino acid mimics and other valuable chiral organosilicon compounds. PMID:25475991

  17. From a Sequential to a Concurrent Reaction in Aqueous Medium: Ruthenium-Catalyzed Allylic Alcohol Isomerization and Asymmetric Bioreduction.

    PubMed

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Liardo, Elisa; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2016-07-18

    The ruthenium-catalyzed redox isomerization of allylic alcohols was successfully coupled with the enantioselective enzymatic ketone reduction (mediated by KREDs) in a concurrent process in aqueous medium. The overall transformation, formally the asymmetric reduction of allylic alcohols, took place with excellent conversions and enantioselectivities, under mild reaction conditions, employing commercially and readily available catalytic systems, and without external coenzymes or cofactors. Optimization resulted in a multistep approach and a genuine cascade reaction where the metal catalyst and biocatalyst coexist from the beginning.

  18. Palladium-Catalyzed Environmentally Benign Acylation.

    PubMed

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-01

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone. PMID:27377566

  19. Heterogeneously-Catalyzed Conversion of Carbohydrates

    NASA Astrophysics Data System (ADS)

    Vigier, Karine De Oliveira; Jérôme, François

    Polyfunctionality of carbohydrates and their low solubility in conventional organic solvents make rather complex their conversion to higher value added chemicals. Therefore, innovative processes are now strongly needed in order to increase the selectivity of these reactions. Here, we report an overview of the different heterogeneously-catalyzed processes described in the literature. In particular, hydrolysis, dehydration, oxidation, esterification, and etherification of carbohydrates are presented. We shall discuss the main structural parameters that need to be controlled and that permit the conversion of carbohydrates to bioproducts with good selectivity. The conversion of monosaccharides and disaccharides over solid catalysts, as well as recent advances in the heterogeneously-catalyzed conversion of cellulose, will be presented.

  20. Cold fusion catalyzed by muons and electrons

    SciTech Connect

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  1. Antiproton catalyzed microfission/fusion propulsion

    NASA Technical Reports Server (NTRS)

    Chiang, Pi-Ren; Lewis, Raymond A.; Smith, Gerald A.; Newton, Richard; Dailey, James; Werthman, W. Lance; Chakrabarti, Suman

    1994-01-01

    Inertial confinement fusion (ICF) utilizing an antiproton catalyzed hybrid fission/fusion target is discussed as a potential energy source for interplanetary propulsion. A proof-of-principle experiment underway at Phillips Laboratory, Kirtland AFB and antiproton trapping experiments at CERN, Geneva, Switzerland, are presented. The ICAN propulsion concept is described and results of performance analyses are reviewed. Future work to further define the ICAN concept is outlined.

  2. Gold(I)-catalyzed enantioselective cycloaddition reactions

    PubMed Central

    2013-01-01

    Summary In recent years there have been extraordinary developments of gold(I)-catalyzed enantioselective processes. This includes progress in the area of cycloaddition reactions, which are of particular interest due to their potential for the rapid construction of optically active cyclic products. In this article we will summarize some of the most remarkable examples, emphasizing reaction mechanisms and key intermediates involved in the processes. PMID:24204438

  3. Desaturation reactions catalyzed by soluble methane monooxygenase.

    PubMed

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  4. Fe-catalyzed etching of graphene layers

    NASA Astrophysics Data System (ADS)

    Cheng, Guangjun; Calizo, Irene; Hight Walker, Angela; PML, NIST Team

    We investigate the Fe-catalyzed etching of graphene layers in forming gas. Fe thin films are deposited by sputtering onto mechanically exfoliated graphene, few-layer graphene (FLG), and graphite flakes on a Si/SiO2 substrate. When the sample is rapidly annealed in forming gas, particles are produced due to the dewetting of the Fe thin film and those particles catalyze the etching of graphene layers. Monolayer graphene and FLG regions are severely damaged and that the particles catalytically etch channels in graphite. No etching is observed on graphite for the Fe thin film annealed in nitrogen. The critical role of hydrogen indicates that this graphite etching process is catalyzed by Fe particles through the carbon hydrogenation reaction. By comparing with the etched monolayer and FLG observed for the Fe film annealed in nitrogen, our Raman spectroscopy measurements identify that, in forming gas, the catalytic etching of monolayer and FLG is through carbon hydrogenation. During this process, Fe particles are catalytically active in the dissociation of hydrogen into hydrogen atoms and in the production of hydrogenated amorphous carbon through hydrogen spillover.

  5. Transition-Metal-Catalyzed Bioorthogonal Cycloaddition Reactions.

    PubMed

    Yang, Maiyun; Yang, Yi; Chen, Peng R

    2016-02-01

    In recent years, bioorthogonal reactions have emerged as a powerful toolbox for specific labeling and visualization of biomolecules, even within the highly complex and fragile living systems. Among them, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is one of the most widely studied and used biocompatible reactions. The cytotoxicity of Cu(I) ions has been greatly reduced due to the use of Cu(I) ligands, which enabled the CuAAC reaction to proceed on the cell surface, as well as within an intracellular environment. Meanwhile, other transition metals such as ruthenium, rhodium and silver are now under development as alternative sources for catalyzing bioorthogonal cycloadditions. In this review, we summarize the development of CuAAC reaction as a prominent bioorthogonal reaction, discuss various ligands used in reducing Cu(I) toxicity while promoting the reaction rate, and illustrate some of its important biological applications. The development of additional transition metals in catalyzing cycloaddition reactions will also be briefly introduced. PMID:27572985

  6. Imidazole catalyzes chlorination by unreactive primary chloramines.

    PubMed

    Roemeling, Margo D; Williams, Jared; Beckman, Joseph S; Hurst, James K

    2015-05-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated--loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case N-α-acetylhistidine chloramine (NAHCl) did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl(+)) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl(+)). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second-order reaction to give 3'-monochloro and 3',5'-dichloro products. Equilibrium constants for the transchlorination reactions HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants on [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl(+); consistent with this interpretation, MeIm markedly catalyzed

  7. Imidazole catalyzes chlorination by unreactive primary chloramines

    PubMed Central

    Roemeling, Margo D.; Williams, Jared; Beckman, Joseph S.; Hurst, James K.

    2015-01-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically-derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated—loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case NAHCl did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl+) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl+). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second order reaction to give 3′-monochloro and 3′,5′-dichloro products. Equilibrium constants for the transchlorination reactions: HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants upon [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl+; consistent with this interpretation, MeIm markedly catalyzed fluorescein chlorination by HOCl

  8. Rhodium-Catalyzed Acyloxy Migration of Propargylic Esters in Cycloadditions, Inspiration from Recent “Gold Rush”

    PubMed Central

    Shu, Xing-Zhong; Shu, Dongxu; Schienebeck, Casi M.

    2012-01-01

    Transition metal-catalyzed acyloxy migration of propargylic esters offers versatile entries to allene and vinyl carbene intermediates for various fascinating subsequent transformations. Most π-acidic metals (e.g. gold and platinum) are capable of facilitating these acyloxy migration events. However, very few of these processes involve redox chemistry, which are well-known for most other transition metals such as rhodium. The coupling of acyloxy migration of propargylic esters with oxidative addition, migratory insertion, and reductive elimination may lead to ample new opportunities for the design of new reactions. This tutorial review summarizes recent developments in Rh-catalyzed 1,3- and 1,2-acyloxy migration of propargylic esters in a number of cycloaddition reactions. Related Au- and Pt-catalyzed cycloadditions involving acyloxy migration are also discussed. PMID:22895533

  9. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines.

    PubMed

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan

    2015-05-26

    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect. PMID:25877865

  10. Mechanistic Insights into the Palladium-Catalyzed Aziridination of Aliphatic Amines by C-H Activation.

    PubMed

    Smalley, Adam P; Gaunt, Matthew J

    2015-08-26

    Detailed kinetic studies and computational investigations have been performed to elucidate the mechanism of a palladium-catalyzed C-H activation aziridination. A theoretical rate law has been derived that matches with experimental observations and has led to an improvement in the reaction conditions. Acetic acid was found to be beneficial in controlling the formation of an off-cycle intermediate, allowing a decrease in catalyst loading and improved yields. Density functional theory (DFT) studies were performed to examine the selectivities observed in the reaction. Evidence for electronic-controlled regioselectivity for the cyclopalladation step was obtained by a distortion-interaction analysis, whereas the aziridination product was justified through dissociation of acetic acid from the palladium(IV) intermediate preceding the product-forming reductive elimination step. The understanding of this reaction mechanism under the synthesis conditions should provide valuable assistance in the comprehension and design of palladium-catalyzed reactions on similar systems. PMID:26247373

  11. Labeling Live Cells by Copper-Catalyzed Alkyne-Azide Click Chemistry

    PubMed Central

    Hong, Vu; Steinmetz, Nicole F.; Manchester, Marianne

    2010-01-01

    The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, optimized for biological molecules in aqueous buffers, has been shown to rapidly label mammalian cells in culture with no loss in cell viability. Metabolic uptake and display of the azide derivative of N-acetylmannosamine developed by Bertozzi, followed by CuAAC ligation using sodium ascorbate and the ligand tris(hydroxypropyltriazolyl)methylamine (THPTA), gave rise to abundant covalent attachment of dye-alkyne reactants. THPTA serves both to accelerate the CuAAC reaction and to protect the cells from damage by oxidative agents produced by the Cu-catalyzed reduction of oxygen by ascorbate, which is required to maintain the metal in the active +1 oxidation state. This procedure extends the application of this fastest of azide-based bioorthogonal reactions to the exterior of living cells. PMID:20886827

  12. Mechanistic Insights into the Palladium-Catalyzed Aziridination of Aliphatic Amines by C-H Activation.

    PubMed

    Smalley, Adam P; Gaunt, Matthew J

    2015-08-26

    Detailed kinetic studies and computational investigations have been performed to elucidate the mechanism of a palladium-catalyzed C-H activation aziridination. A theoretical rate law has been derived that matches with experimental observations and has led to an improvement in the reaction conditions. Acetic acid was found to be beneficial in controlling the formation of an off-cycle intermediate, allowing a decrease in catalyst loading and improved yields. Density functional theory (DFT) studies were performed to examine the selectivities observed in the reaction. Evidence for electronic-controlled regioselectivity for the cyclopalladation step was obtained by a distortion-interaction analysis, whereas the aziridination product was justified through dissociation of acetic acid from the palladium(IV) intermediate preceding the product-forming reductive elimination step. The understanding of this reaction mechanism under the synthesis conditions should provide valuable assistance in the comprehension and design of palladium-catalyzed reactions on similar systems.

  13. A recyclable and reusable supported Cu(I) catalyzed azide-alkyne click polymerization

    PubMed Central

    Wu, Haiqiang; Li, Hongkun; Kwok, Ryan T. K.; Zhao, Engui; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong

    2014-01-01

    The azide–alkyne click polymerization (AACP) has emerged as a powerful tool for the synthesis of functional polytriazoles. While, for the Cu(I)-catalyzed AACP, the removal of the catalytic Cu(I) species from the resulting polytriazoles is difficult, and the research on the recyclability and reusability of the catalyst remains intact. Herein, we reported the first example of using recyclable and reusable supported Cu(I) catalyst of CuI@A-21 for the AACP. CuI@A-21 could not only efficiently catalyze the AACP but also be reused for at least 4 cycles. Moreover, pronounced reduction of copper residues in the products was achieved. Apart from being a green and cost-effective polymer synthesis strategy, this method will also broaden the application of AACP in material and biological sciences and provide guidelines for other polymerizations with metal catalysts. PMID:24875854

  14. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines.

    PubMed

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan

    2015-05-26

    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect.

  15. Electron pathways in catalase and peroxidase enzymic catalysis. Metal and macrocycle oxidations of iron porphyrins and chlorins

    SciTech Connect

    Hanson, L.K.; Chang, C.K.; Davis, M.S.; Fajer, J.

    1981-02-11

    Charge iterative extended Hueckel calculations are presented for compound II, the one-electron oxidation intermediate of horseradish peroxidase (HRP), and for compounds I, the two-electron oxidation transients of HRP and catalase (CAT) observed in the catalytic cycles of the hydroperoxidase enzymes. Compound II is described in terms of a ferryl configuration (O = Fe/sup IV/), and compounds I are described as ferrylporphyrin ..pi..-cation radicals. The validity of the iron ..pi..-cation calculations is supported by favorable comparison of parallel computations for porphyrin ..pi.. cations of diamagnetic metals with new and previously reported ESR results for radicals of zinc tetrabenz-, meso-tetramethyl, (/sup 14/N and /sup 15/N) tetraphenyl-, and magnesium (/sup 1/H and /sup 2/H) octaethylporphyrins. The calculated electronic configurations and unpaired spin density profiles for the ferryl ..pi.. cations satisfactorily account for the physical properties reported for compounds I of HRP (in the native protoporphyrin IX form or reconstituted with deuteroporphyrin), chloroperoxidase, and CAT. The ground states of the ..pi.. cations, a/sub 1u/ or a/sub 2u/, are determined by peripheral substitution and axial ligation, and the axial ligand of CAT I is predicted to differ from that of HRP I. The combination of model studies and calculations suggests that /sup 2/H, /sup 13/C, and /sup 15/N NMR studies of isotopically substituted proto and deutero HRP I would confirm the electronic profiles predicted. /sup 15/N NMR in particular would clearly discriminate between a/sub 1u/ and a/sub 2u/ configurations. As an additional test of the ferryl ..pi..-cation hypothesis, calculations are presented for a proposed ferrylchlorin ..pi.. cation of Neurospora crassa catalase, which contains an iron chlorin prosthetic group. Compound I of this unusual heme is predicted to occupy an a/sub 2/ ground state with the spin distribution and optical spectra reported here for synthetic chlorin radicals.

  16. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    SciTech Connect

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; Hunter, Seth C.; Neese, Frank; Xue, Zi-Ling

    2015-10-02

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm–1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm–1, E = 0.1(2) cm–1 and D = 13.4(6) cm–1, E = 0.3(6) cm–1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm–1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX63- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies eλX (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. Furthermore, D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed.

  17. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab Initio Studies of Zero-Field Splittings.

    PubMed

    Stavretis, Shelby E; Atanasov, Mihail; Podlesnyak, Andrey A; Hunter, Seth C; Neese, Frank; Xue, Zi-Ling

    2015-10-19

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H₂TPP = tetraphenylporphyrin) have been directly determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm⁻¹, E = 0.1(2) cm⁻¹ and D = 13.4(6) cm⁻¹, E = 0.3(6) cm⁻¹ for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the ⁶A₁ ground state. D was calculated from wave functions of the electronic multiplets spanned by the d⁵ configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX₆³⁻ complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e(λ)(X) (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed. PMID:26428688

  18. Stable and catalytically active iron porphyrin-based porous organic polymer: Activity as both a redox and Lewis acid catalyst

    PubMed Central

    Oveisi, Ali R.; Zhang, Kainan; Khorramabadi-zad, Ahmad; Farha, Omar K.; Hupp, Joseph T.

    2015-01-01

    A new porphyrin-based porous organic polymer (POP) with BET surface area ranging from 780 to 880 m2/g was synthesized in free-base form via the reaction of meso-tetrakis(pentafluorophenyl) porphyrin and a rigid trigonal building block, hexahydroxytriphenylene. The material was then metallated with Fe(III) imparting activity for Lewis acid catalysis (regioselective methanolysis ring-opening of styrene oxide), oxidative cyclization catalysis (conversion of bis(2-hydroxy-1-naphthyl)methanes to the corresponding spirodienone), and a tandem catalytic processes: an in situ oxidation-cyclic aminal formation-oxidation sequence, which selectively converts benzyl alcohol to 2-phenyl-quinazolin-4(3H)-one. Notably, the catalyst is readily recoverable and reusable, with little loss in catalytic activity. PMID:26177563

  19. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    DOE PAGES

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; Hunter, Seth C.; Neese, Frank; Xue, Zi-Ling

    2015-10-02

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm–1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm–1, E = 0.1(2) cm–1 and D = 13.4(6) cm–1, E = 0.3(6) cm–1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm–1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X =more » F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX63- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies eλX (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. Furthermore, D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed.« less

  20. Hydroxylation and dealkylation reactions catalyzed by hemoglobin.

    PubMed

    Mieyal, J J; Starke, D W

    1994-01-01

    Red blood cells contain many enzymes that are akin to those that catalyze xenobiotic metabolism in liver and other tissues. An obvious exception is the cytochrome P-450 system that is found in virtually all other tissues. In vitro studies, however, have shown that hemoglobin can be a broad monooxygenase catalyst, exhibiting the properties of a monooxygenase enzyme. Thus, catalysis by Hb displays typical Michaelis-Menten kinetics, dependence on the native protein, coupling to NADPH-dependent flavoprotein reductases, and inhibition by carbon monoxide. The reconstituted system containing Hb along with P-450 reductase utilizes NADPH and O2 to catalyze typical monooxygenase reactions, including O- and N-demethylations as well as aromatic and aliphatic hydroxylations, and the catalytic cycle appears to mimic the typical P-450 mechanism. Turnover numbers for aniline hydroxylation are similar for Hb and P-450 reconstituted systems, whereas P-450 systems are more effective for other reactions. Catalysis by Hb seems to be restricted to the beta-heme sites of the tetramer, reflecting more facile substrate access. Overall the similarities and differences between Hb and P-450 provide an opportunity to examine the basis for their differential monooxygenase or peroxidase/peroxygenase activities in a comparative manner. Hb may be especially useful in delineating the early events in the respective reaction schemes, because it can be studied in various stable redox/ligand states, including the oxyferrous form. Similar hemoglobin-catalyzed oxidative biotransformations occur within intact erythrocytes, but apparent turnover numbers are much lower than those with the reconstituted Hb system, suggesting different mechanisms of catalysis. Although Hb-mediated oxidase activity in erythrocytes is low relative to other sites of xenobiotic metabolism, it may contribute to in situ activation of xenobiotics leading to oxidative stress, disruption of sulfhydryl homeostasis in the erythrocytes

  1. Asymmetric petasis reactions catalyzed by chiral biphenols.

    PubMed

    Lou, Sha; Schaus, Scott E

    2008-06-01

    Chiral biphenols catalyze the enantioselective Petasis reaction of alkenyl boronates, secondary amines, and ethyl glyoxylate. The reaction requires the use of 15 mol % of (S)-VAPOL as the catalyst, alkenyl boronates as nucleophiles, ethyl glyoxylate as the aldehyde component, and 3 A molecular sieves as an additive. The chiral alpha-amino ester products are obtained in good yields (71-92%) and high enantiomeric ratios (89:11-98:2). Mechanistic investigations indicate single ligand exchange of acyclic boronate with VAPOL and tetracoordinate boronate intermediates. PMID:18459782

  2. Ligand Intermediates in Metal-Catalyzed Reactions

    SciTech Connect

    Gladysz, John A.

    1999-07-31

    The longest-running goal of this project has been the synthesis, isolation, and physical chemical characterization of homogeneous transition metal complexes containing ligand types believed to be intermediates in the metal-catalyzed conversion of CO/H{sub 2}, CO{sub 2}, CH{sub 4}, and similar raw materials to organic fuels, feedstocks, etc. In the current project period, complexes that contain unusual new types of C{sub x}(carbide) and C{sub x}O{sub y} (carbon oxide) ligands have been emphasized. A new program in homogeneous fluorous phase catalysis has been launched as described in the final report.

  3. Metal-Catalyzed Cross-Coupling Reactions for Indoles

    NASA Astrophysics Data System (ADS)

    Li, Jie Jack; Gribble, Gordon W.

    Metal-catalyzed cross-coupling reactions for indoles are reviewed. Palladium-catalyzed cross-coupling reactions are the most widely explored and applied of all metal-catalyzed cross-coupling reactions. Applications of Kumada coupling, Negishi coupling, Suzuki coupling, Stille coupling, Sonogashira reaction, the Heck reaction, carbonylation, and C-N bond formation reactions in indoles are summarized. In addition, other transition metal-catalyzed cross-coupling reactions using copper, rhodium, iron, and nickel in indole synthesis are also discussed.

  4. New concept for muon catalyzed fusion reactor

    SciTech Connect

    Tajima, T.; Eliezer, S.; Kulsrud, R.M.

    1988-12-27

    A new concept for a muon catalyzed pure fusion reactor is considered. To our best knowledge this constitutes a first plausible configuration to make energy gain without resorting to fissile matter breeding by fusion neutrons, although a number of crucial physical and engineering questions as well as details have yet to be resolved. A bundle of DT ice ribbons (with a filling factor f) is immersed in the magnetic field. The overall magnetic field in the mirror configuration confines pions created by the injected high energy deuterium (or tritium) beam. The DT materials is long enough to be inertially confined along the axis of mirror. The muon catalyzed mesomolecule formation and nuclear fusion take place in the DT target, leaving ..cap alpha../sup + +/ and occasionally (..cap alpha mu..)/sup +/ (muon sticking). The stuck muons are stripped fast enough in the target, while they are accelerated by ion cyclotron resonance heating when they circulate in the vaccum (or dilute plasma). The ribbon is (eventually) surrounded and pressure-confined by this coronal plasma, whereas the corona is magnetically confined. The overall bundle of ribbons (a pellet) is inertially confined. This configuration may also be of use for stripping stuck muons via the plasma mechanism of Menshikov and Ponomarev.

  5. Catalyzed D-D stellarator reactor

    DOE PAGES

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, FR = 0.9 to 1.15, <β> ≈ 8.0% to 11.5%, Zeff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, Bm ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  6. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.

    PubMed

    Li, Yan-Yun; Yu, Shen-Luan; Shen, Wei-Yi; Gao, Jing-Xing

    2015-09-15

    Chiral alcohols are important building blocks in the pharmaceutical and fine chemical industries. The enantioselective reduction of prochiral ketones catalyzed by transition metal complexes, especially asymmetric transfer hydrogenation (ATH) and asymmetric hydrogenation (AH), is one of the most efficient and practical methods for producing chiral alcohols. In both academic laboratories and industrial operations, catalysts based on noble metals such as ruthenium, rhodium, and iridium dominated the asymmetric reduction of ketones. However, the limited availability, high price, and toxicity of these critical metals demand their replacement with abundant, nonprecious, and biocommon metals. In this respect, the reactions catalyzed by first-row transition metals, which are more abundant and benign, have attracted more and more attention. As one of the most abundant metals on earth, iron is inexpensive, environmentally benign, and of low toxicity, and as such it is a fascinating alternative to the precious metals for catalysis and sustainable chemical manufacturing. However, iron catalysts have been undeveloped compared to other transition metals. Compared with the examples of iron-catalyzed asymmetric reduction, cobalt- and nickel-catalyzed ATH and AH of ketones are even seldom reported. In early 2004, we reported the first ATH of ketones with catalysts generated in situ from iron cluster complex and chiral PNNP ligand. Since then, we have devoted ourselves to the development of ATH and AH of ketones with iron, cobalt, and nickel catalysts containing novel chiral aminophosphine ligands. In our study, the iron catalyst containing chiral aminophosphine ligands, which are expected to control the stereochemistry at the metal atom, restrict the number of possible diastereoisomers, and effectively transfer chiral information, are successful catalysts for enantioselective reduction of ketones. Among these novel chiral aminophosphine ligands, 22-membered macrocycle P2N4

  7. Manganese Catalyzed C-H Halogenation.

    PubMed

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  8. Waste Reduction.

    ERIC Educational Resources Information Center

    Bray, Marilyn; And Others

    1996-01-01

    Presents activities that focus on waste reduction in the school and community. The ideas are divided into grade level categories. Sample activities include Techno-Trash, where children use tools to take apart broken appliances or car parts, then reassemble them or build new creations. Activities are suggested for areas including language arts and…

  9. Key geochemical factors regulating Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Taillefert, Martial

    2014-05-01

    The reduction of Mn(IV) oxides coupled to the anaerobic oxidation of NH4+ has been proposed for more than a decade to contribute to the fixed nitrogen pool in marine sediments, yet the existence of this process is still under debate. In this study, surface sediments from an intertidal salt marsh were incubated with MnO2 in the presence of elevated concentrations of NH4+ to test the hypothesis that the reduction of Mn(IV) oxides catalyzes anaerobic NH4+ oxidation to NO2- or NO3-. Geochemical factors such as the ratio of Mn(IV) to NH4+, the type of Mn(IV) oxides (amorphous or colloidal MnO2), and the redox potential of the sediment significantly affect the activity of anaerobic nitrification. Incubations show that the net production of NO3- is stimulated under anaerobic conditions with external addition of colloidal but not amorphous MnO2 and is facilitated by the presence of high concentrations of NH4+. Mass balance calculations demonstrate that anaerobic NH4+ oxidation contributes to the net consumption of NH4+, providing another piece of evidence for the occurrence of Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments. Finally, anaerobic nitrification is stimulated by the amendment of small concentrations of NO3- or the absence of sulfate reduction, suggesting that moderately reducing conditions favor anaerobic NH4+ oxidation. Overall, these findings suggest that Mn(IV)-catalyzed anaerobic nitrification in suboxic sediments with high N/Mn concentration ratios and highly reactive manganese oxides may be an important source of NO2- and NO3- for subsequent marine nitrogen loss via denitrification or anammox.

  10. Acid-Catalyzed Isomerization of Carvone to Carvacrol

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Mattingly, Shawn P.

    2005-01-01

    The acid-catalyzed isomerization of carvone to carvacrol, first reported by Ritter and Ginsburg, is especially well suited with a permanent-magnet FT instrument. The acid-catalyzed isomerization of carvone to carvacrol produced a 61% yield after a three hour reflux with 30% aqueous sulfuric acid.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  12. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  13. Self-Catalyzed Carbon Dioxide Adsorption by Metal-Organic Chains on Gold Surfaces

    SciTech Connect

    Feng, Min; Sun, Hao; Zhao, Jin; Petek, Hrvoje

    2014-08-26

    Efficient capture of CO2 by chemical means requires a microscopic understanding of the interactions of the molecule-substrate bonding and adsorption-induced collective phenomena. By molecule-resolved imaging with scanning tunneling microscopy (STM), we investigate self-catalyzed CO2 adsorption on one-dimensional (1D) substrates composed of self-assembled metal-organic chains (MOCs) supported on gold surfaces. CO2 adsorption turns on attractive interchain interactions, which induce pronounced surface structural changes; the initially uniformly dispersed chains gather into close packed bundles, which are held together by highly ordered, single molecule wide CO2 ranks. CO2 molecules create more favorable adsorption sites for further CO2 adsorption by mediating the interchain attraction, thereby self-catalyzing their capture. The release of CO2 molecules by thermal desorption returns the MOCs to their original structure, indicating that the CO2 capture and release are reversible processes. The real space microscopic characterization of the self-catalyzed CO2 adsorption on 1D substrates could be exploited as platform for design of molecular materials for CO2 capture and reduction.

  14. RNA-Catalyzed RNA Ligation on an External RNA Template

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Joyce, Gerald F.

    2002-01-01

    Variants of the hc ligase ribozyme, which catalyzes ligation of the 3' end of an RNA substrate to the 5' end of the ribozyme, were utilized to evolve a ribozyme that catalyzes ligation reactions on an external RNA template. The evolved ribozyme catalyzes the joining of an oligonucleotide 3'-hydroxyl to the 5'-triphosphate of an RNA hairpin molecule. The ribozyme can also utilize various substrate sequences, demonstrating a largely sequence-independent mechanism for substrate recognition. The ribozyme also carries out the ligation of two oligonucleotides that are bound at adjacent positions on a complementary template. Finally, it catalyzes addition of mononucleoside '5-triphosphates onto the '3 end of an oligonucleotide primer in a template-dependent manner. The development of ribozymes that catalyze polymerase-type reactions contributes to the notion that an RNA world could have existed during the early history of life on Earth.

  15. A new approach to ferrocene derived alkenes via copper-catalyzed olefination

    PubMed Central

    Muzalevskiy, Vasily M; Shastin, Aleksei V; Demidovich, Alexandra D; Shikhaliev, Namiq G; Magerramov, Abel M; Khrustalev, Victor N; Rakhimov, Rustem D; Vatsadze, Sergey Z

    2015-01-01

    Summary A new approach to ferrocenyl haloalkenes and bis-alkenes was elaborated. The key procedure involves copper catalyzed olefination of N-unsubstituted hydrazones, obtained from ferrocene-containing carbonyl compounds and hydrazine, with polyhaloalkanes. The procedure is simple, cheap and could be applied for the utilization of environmentally harmful polyhalocarbons. The cyclic voltammetry study of the representative examples of the synthesized ferrocenyl alkenes shows the strong dependence of the cathodic behavior on the amount of vinyl groups: while for the monoalkene containing molecules no reduction is seen, the divinyl products are reduced in several steps. PMID:26664627

  16. Ruthenium-Catalyzed Methylation of Amines with Paraformaldehyde in Water under Mild Conditions.

    PubMed

    van der Waals, Dominic; Heim, Leo E; Gedig, Christian; Herbrik, Fabian; Vallazza, Simona; Prechtl, Martin H G

    2016-09-01

    Methylated amines are highly important for a variety of pharmaceutical and agrochemical applications. Existing routes for their formation result in the production of large amounts of waste or require high reaction temperatures, both of which impact the ecological and economical footprint of the methodologies. Herein, we report the ruthenium-catalyzed reductive methylation of a range of aliphatic amines, using paraformaldehyde as both substrate and hydrogen source, in combination with water. This reaction proceeds under mild aqueous reaction conditions. Additionally the use of a secondary phase for catalyst retention and recycling has been investigated with promising results.

  17. Copper-catalyzed intermolecular trifluoromethylarylation of alkenes: mutual activation of arylboronic acid and CF3+ reagent.

    PubMed

    Wang, Fei; Wang, Dinghai; Mu, Xin; Chen, Pinhong; Liu, Guosheng

    2014-07-23

    A novel copper-catalyzed intermolecular trifluoromethylarylation of alkenes is developed using less active ether-type Togni's reagent under mild reaction conditions. Various alkenes and diverse arylboronic acids are compatible with these conditions. Preliminary mechanistic studies reveal that a mutual activation process between arylboronic acid and CF3(+) reagent is essential. In addition, the reaction might involve a rate-determining transmetalation, and the final aryl C-C bond is derived from reductive elimination of the aryl(alkyl)Cu(III) intermediate. PMID:24983408

  18. On the radical nature of iron-catalyzed cross-coupling reactions.

    PubMed

    Hedström, Anna; Izakian, Zakieh; Vreto, Irma; Wallentin, Carl-Johan; Norrby, Per-Ola

    2015-04-01

    The radical nature of iron-catalyzed cross-coupling between Grignard reagents and alkyl halides has been studied by using a combination of competitive kinetic experiments and DFT calculations. In contrast to the corresponding coupling with aryl halides, which commences through a classical two-electron oxidative addition/reductive elimination sequence, the presented data suggest that alkyl halides react through an atom-transfer-initiated radical pathway. Furthermore, a general iodine-based quenching methodology was developed to enable the determination of highly accurate concentrations of Grignard reagents, a capability that facilitates and increases the information output of kinetic investigations based on these substrates. PMID:25703202

  19. Cleavage of C-O bonds in lignin model compounds catalyzed by methyldioxorhenium in homogeneous phase.

    PubMed

    Harms, Reentje G; Markovits, Iulius I E; Drees, Markus; Herrmann, H C Mult Wolfgang A; Cokoja, Mirza; Kühn, Fritz E

    2014-02-01

    Methyldioxorhenium (MDO)-catalyzed C-O bond cleavage of a variety of lignin β-O-4-model compounds yields phenolic and aldehydic compounds in homogeneous phase under mild reaction conditions. MDO is in situ generated by reduction of methyltrioxorhenium (MTO) and is remarkably stable under the applied reaction conditions allowing its reuse for least five times without significant activity loss. Based on the observed and isolated intermediates, 17 O- and 2 H-isotope labeling experiments, DFT calculations, and several spectroscopic studies, a reaction mechanism is proposed.

  20. Peroxygenase-Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol.

    PubMed

    Ni, Yan; Fernández-Fueyo, Elena; Gomez Baraibar, Alvaro; Ullrich, René; Hofrichter, Martin; Yanase, Hideshi; Alcalde, Miguel; van Berkel, Willem J H; Hollmann, Frank

    2016-01-11

    Peroxygenases catalyze a broad range of (stereo)selective oxyfunctionalization reactions. However, to access their full catalytic potential, peroxygenases need a balanced provision of hydrogen peroxide to achieve high catalytic activity while minimizing oxidative inactivation. Herein, we report an enzymatic cascade process that employs methanol as a sacrificial electron donor for the reductive activation of molecular oxygen. Full oxidation of methanol is achieved, generating three equivalents of hydrogen peroxide that can be used completely for the stereoselective hydroxylation of ethylbenzene as a model reaction. Overall we propose and demonstrate an atom-efficient and easily applicable alternative to established hydrogen peroxide generation methods, which enables the efficient use of peroxygenases for oxyfunctionalization reactions.

  1. Catalyzed modified clean fractionation of switchgrass.

    PubMed

    Cybulska, Iwona; Brudecki, Grzegorz P; Hankerson, Brett R; Julson, James L; Lei, Hanwu

    2013-01-01

    Switchgrass was used as a lignocellulosic feedstock for second generation ethanol production, after pretreatment using sulfuric acid-catalyzed modified clean fractionation based on NREL's (National Renewable Energy Laboratory) original procedure. Optimization of temperature, catalyst concentration and solvent composition was performed using Response Surface Methodology, and 59.03 ± 7.01% lignin recovery, 84.85 ± 1.34% glucose, and 44.11 ± 3.44% aqueous fraction xylose yields were obtained at 140.00 °C, 0.46% w/w catalyst concentration, 36.71% w/w ethyl acetate concentration, and 25.00% w/w ethanol concentration. The cellulose fraction did not inhibit the fermentation performance of Saccharomyces cerevisiae and resulted in an ethanol yield of 89.60 ± 2.1%.

  2. Efficient antibody-catalyzed oxygenation reaction

    SciTech Connect

    Hsieh, L.C.; Stephans, J.C.; Schultz, P.G. )

    1994-03-09

    Biological oxygen-transfer reactions are essential for the biosynthesis of steroids and neurotransmitters, the degradation of endogenous substances, and the detoxification of xenobiotics. The monooxygenase enzymes responsible for these transformations require biological cofactors such as flavin, heme and non-heme iron, copper, or pterin and typically utilize NADPH for cofactor regeneration. We now report an antibody-catalyzed sulfide oxygenation reaction mediated by the chemical cofactor sodium periodate, with turnover numbers similar to those of the corresponding enzymatic reactions. Sodium periodate NaIO[sub 4]O was chosen as the oxidant, since sulfoxide formation occurs under mild aqueous conditions with minimal overoxidation to the sulfone. Furthermore, compared to the flavin and heme cofactors required by the monooxygenase enzymes, NaIO[sub 4] is very inexpensive, obviating the need for cofactor recycling. Overall, these results raise the possibility of using antibodies as catalysts for regio- and stereoselective sulfide oxidations. 18 refs., 1 fig.

  3. Fabrication of catalyzed ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  4. Enzyme-catalyzed degradation of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Kotchey, Gregg P.

    Carbon nanotubes and graphene, the nanoscale sp 2 allotropes of carbon, have garnered widespread attention as a result of their remarkable electrical, mechanical, and optical properties and the promise of new technologies that harness these properties. Consequently, these carbon nanomaterials (CNMs) have been employed for diverse applications such as electronics, sensors, composite materials, energy conversion devices, and nanomedicine. The manufacture and eventual disposal of these products may result in the release of CNMs into the environment and subsequent exposure to humans, animals, and vegetation. Given the possible pro-inflammatory and toxic effects of CNMs, much attention has been focused on the distribution, toxicity, and persistence of CNMs both in living systems and the environment. This dissertation will guide the reader though recent studies aimed at elucidating fundamental insight into the persistence of CNMs such as carbon nanotubes (CNTs) and graphene derivatives (i.e., graphene oxide and reduced graphene oxide). In particular, in-testtube oxidation/degradation of CNMs catalyzed by peroxidase enzymes will be examined, and the current understanding of the mechanisms underlying these processes will be discussed. Finally, an outlook of the current field including in vitro and in vivo biodegradation experiments, which have benefits in terms of human health and environmental safety, and future directions that could have implications for nanomedical applications such as imaging and drug delivery will be presented. Armed with an understanding of how and why CNMs undergo enzyme-catalyzed oxidation/biodegradation, researchers can tailor the structure of CNMs to either promote or inhibit these processes. For example, in nanomedical applications such as drug delivery, the incorporation of carboxylate functional groups could facilitate biodegradation of the nanomaterial after delivery of the cargo. Also, the incorporation of CNMs with defect sites in consumer

  5. A reductive coupling strategy towards ripostatin A.

    PubMed

    Schleicher, Kristin D; Jamison, Timothy F

    2013-01-01

    Synthetic studies on the antibiotic natural product ripostatin A have been carried out with the aim to construct the C9-C10 bond by a nickel(0)-catalyzed coupling reaction of an enyne and an epoxide, followed by rearrangement of the resulting dienylcyclopropane intermediate to afford the skipped 1,4,7-triene. A cyclopropyl enyne fragment corresponding to C1-C9 has been synthesized in high yield and demonstrated to be a competent substrate for the nickel(0)-catalyzed coupling with a model epoxide. Several synthetic approaches toward the C10-C26 epoxide have been pursued. The C13 stereocenter can be set by allylation and reductive decyanation of a cyanohydrin acetonide. A mild, fluoride-promoted decarboxylation enables construction of the C15-C16 bond by an aldol reaction. The product of this transformation is of the correct oxidation state and potentially three steps removed from the targeted epoxide fragment.

  6. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  7. A stereoselective synthesis of digitoxin and digitoxigen mono- and bisdigitoxoside from digitoxigenin via a palladium-catalyzed glycosylation.

    PubMed

    Zhou, Maoquan; O'Doherty, George A

    2006-09-14

    A convergent and stereocontrolled route to trisaccharide natural product digitoxin has been developed. The route is amenable to the preparation of both the digitoxigen mono- and bisdigitoxoside. This route featured the iterative application of the palladium-catalyzed glycosylation reaction, reductive 1,3-transposition, diastereoselective dihydroxylation, and regioselective protection. The natural product digitoxin was fashioned in 15 steps starting from digitoxigenin 2 and pyranone 8a or 18 steps from achiral acylfuran. PMID:16956221

  8. Uranium isotopes fingerprint biotic reduction

    SciTech Connect

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  9. Uranium isotopes fingerprint biotic reduction

    DOE PAGES

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  10. Uranium isotopes fingerprint biotic reduction.

    PubMed

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-05-01

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  11. Uranium isotopes fingerprint biotic reduction

    PubMed Central

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  12. Metal ion-catalyzed nucleic acid alkylation and fragmentation.

    PubMed

    Browne, Kenneth A

    2002-07-10

    Nucleic acid microarrays are a growing technology in which high densities of known sequences are attached to a substrate in known locations (addressed). Hybridization of complementary sequences leads to a detectable signal such as an electrical impulse or fluorescence. This combination of sequence addressing, hybridization, and detection increases the efficiency of a variety of genomic disciplines including those that profile genetic expression, search for single nucleotide polymorphisms (SNPs), or diagnose infectious diseases by sequencing portions of microbial or viral genomes. Incorporation of reporter molecules into nucleic acids is essential for the sensitive detection of minute amounts of nucleic acids on most types of microarrays. Furthermore, polynucleic acid size reduction increases hybridization because of increased diffusion rates and decreased competing secondary structure of the target nucleic acids. Typically, these reactions would be performed as two separate processes. An improvement to past techniques, termed labeling-during-cleavage (LDC), is presented in which DNA or RNA is alkylated with fluorescent tags and fragmented in the same reaction mixture. In model studies with 26 nucleotide-long RNA and DNA oligomers using ultraviolet/visible and fluorescence spectroscopies as well as high-pressure liquid chromatography and mass spectrometry, addition of both alkylating agents (5-(bromomethyl)fluorescein, 5- or 6-iodoacetamidofluorescein) and select metal ions (of 21 tested) to nucleic acids in aqueous solutions was critical for significant increases in both labeling and fragmentation, with >or=100-fold increases in alkylation possible relative to metal ion-free reactions. Lanthanide series metal ions, Pb(2+), and Zn(2+) were the most reactive ions in terms of catalyzing alkylation and fragmentation. While oligonucleotides were particularly susceptible to fragmentation at sites containing phosphorothioate moieties, labeling and cleavage reactions

  13. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    PubMed

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  14. One-shot access to α,β-difunctionalized azepenes and dehydropiperidines by reductive cross-coupling of α-selenonyl-β-selenyl enamides with organic bromides.

    PubMed

    Beng, Timothy K; Silaire, Ann Wens V; Alwali, Amir; Bassler, Daniel P

    2015-08-01

    The synthesis of α- and α,β-functionalized azepenes and dehydropiperidines from readily prepared α-selenonyl eneformamides or enecarbamates has been achieved through Fe-catalyzed α-substitutive deselenonation, β-regioselective lithiation/trapping, and Co-catalyzed reductive cross-coupling protocols.

  15. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains.

    PubMed

    Mayorquín-Torres, Martha C; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2015-09-01

    Palladium-catalyzed cross coupling of 4-methoxycarbonyl phenyboronic acid with acetylated bile acids in which the carboxyl functions was activated by formation of a mixed anhydride with pivalic anhydride afforded the cross coupled compounds, which were converted in novel side chain modified bile acids by one pot carbonyl reduction/removal of the protecting acetyl groups by Wolff-Kishner reduction. Unambiguous assignments of the NMR signals and crystal characterization of the heretofore unknown compounds are provided.

  16. Contribution of flavin covalent linkage with histidine 99 to the reaction catalyzed by choline oxidase.

    PubMed

    Quaye, Osbourne; Cowins, Sharonda; Gadda, Giovanni

    2009-06-19

    The FAD-dependent choline oxidase has a flavin cofactor covalently attached to the protein via histidine 99 through an 8alpha-N(3)-histidyl linkage. The enzyme catalyzes the four-electron oxidation of choline to glycine betaine, forming betaine aldehyde as an enzyme-bound intermediate. The variant form of choline oxidase in which the histidine residue has been replaced with asparagine was used to investigate the contribution of the 8alpha-N(3)-histidyl linkage of FAD to the protein toward the reaction catalyzed by the enzyme. Decreases of 10-fold and 30-fold in the k(cat)/K(m) and k(cat) values were observed as compared with wild-type choline oxidase at pH 10 and 25 degrees C, with no significant effect on k(cat)/K(O) using choline as substrate. Both the k(cat)/K(m) and k(cat) values increased with increasing pH to limiting values at high pH consistent with the participation of an unprotonated group in the reductive half-reaction and the overall turnover of the enzyme. The pH independence of both (D)(k(cat)/K(m)) and (D)k(cat), with average values of 9.2 +/- 3.3 and 7.4 +/- 0.5, respectively, is consistent with absence of external forward and reverse commitments to catalysis, and the chemical step of CH bond cleavage being rate-limiting for both the reductive half-reaction and the overall enzyme turnover. The temperature dependence of the (D)k(red) values suggests disruption of the preorganization in the asparagine variant enzyme. Altogether, the data presented in this study are consistent with the FAD-histidyl covalent linkage being important for the optimal positioning of the hydride ion donor and acceptor in the tunneling reaction catalyzed by choline oxidase.

  17. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  18. From a Sequential to a Concurrent Reaction in Aqueous Medium: Ruthenium-Catalyzed Allylic Alcohol Isomerization and Asymmetric Bioreduction.

    PubMed

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Liardo, Elisa; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2016-07-18

    The ruthenium-catalyzed redox isomerization of allylic alcohols was successfully coupled with the enantioselective enzymatic ketone reduction (mediated by KREDs) in a concurrent process in aqueous medium. The overall transformation, formally the asymmetric reduction of allylic alcohols, took place with excellent conversions and enantioselectivities, under mild reaction conditions, employing commercially and readily available catalytic systems, and without external coenzymes or cofactors. Optimization resulted in a multistep approach and a genuine cascade reaction where the metal catalyst and biocatalyst coexist from the beginning. PMID:27258838

  19. Palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate: A practical synthesis of unsymmetrical ureas

    PubMed Central

    Vinogradova, Ekaterina V.; Fors, Brett P.; Buchwald, Stephen L.

    2012-01-01

    An efficient method for palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate is reported. The protocol allows for the synthesis of unsymmetrical N,N'-di- and N,N,N'-trisubstituted ureas in one pot, and is tolerant of a wide range of functional groups. Insight into the mechanism of aryl isocyanate formation is gleaned through studies of the transmetallation and reductive elimination steps of the reaction, including the first demonstration of reductive elimination from an arylpalladium isocyanate complex to produce an aryl isocyanate. PMID:22716197

  20. Selective reduction.

    PubMed

    Evans, Mark I; Krivchenia, Eric L; Gelber, Shari E; Wapner, Ronald J

    2003-03-01

    Multifetal pregnancy reduction continues to be controversial. Attitudes about MFPR have not, in our experience, followed a simple "pro-choice/pro-life" dichotomy. As far back as the mid to late 1980s, opinions about the subject were varied. Even then, when much less was known about the subject, opinions did not always parallel the usual pro-choice/theological boundaries. We believe that the real debate over the next 5 to 10 years will not be whether or not MFPR should be performed with triplets or more. The fact is that MFPR does improve those outcomes. A serious debate will emerge over whether or not it is appropriate to offer MFPR routinely for twins, even natural ones, for whom the outcome is commonly considered "good enough." Our data suggest that reduction of twins to a singleton improves the outcome of the remaining fetus. No consensus on appropriateness of routine 2-1 reductions is ever likely to emerge. The ethical issues surrounding MFPR will always be controversial. Over the years, much has been written on the subject. Opinions will always vary from outraged condemnation to complete acceptance. No short paragraph could do justice to the subject other than to state that most proponents do not believe this is a frivolous procedure but do believe in the principle of proportionality ie, therapy to achieve the most good for the least harm). Over the past 15 years, MFPR has become a well-established and integral part of infertility therapy and attempts to deal with the sequelae of aggressive infertility management. In the mid 1980s, the risks and benefits of the procedure could only be guessed. We now have clear and precise data on the risks and benefits of the procedure and an understanding that the risks increase substantially with the starting and finishing number of fetuses in multifetal pregnancies. The collaborative loss rate numbers (ie, 4.5% for triplets, 8% for quadruplets. 11% for quintuplets, and 15% for sextuplets or more) seem reasonable to present

  1. UDP-glucuronosyltransferases 1A6 and 1A10 catalyze reduced menadione glucuronidation

    SciTech Connect

    Nishiyama, Takahito; Ohnuma, Tomokazu; Inoue, Yuu; Kishi, Takehiko; Ogura, Kenichiro; Hiratsuka, Akira

    2008-06-27

    Menadione (2-methyl-1,4-naphthoquine), also known as vitamin K3, has been widely used as a model compound in the field of oxidative stress-related research. The metabolism of menadione has been studied, and it is known that menadione undergoes a two-electron reduction by NAD(P)H:Quinone oxidoreductase 1 (NQO1) after which the reduced form of menadione (2-methyl-1,4-naphthalenediol, menadiol) is glucuronidated and excreted in urine. To investigate which human UDP-glucuronosyltransferase (UGT) isoforms participate in the glucuronidation of menadiol reduced by NQO1 from menadione, we first constructed heterologously expressed NQO1 in Sf9 cells and tested the menadiol glucuronidating activity of 16 human recombinant UGT isoforms. Of the 16 UGT isoforms, UGTs 1A6, 1A7, 1A8, 1A9, and 1A10 catalyzed menadiol glucuronidation, and, of these, UGTs 1A6 and 1A10 catalyzed menadiol glucuronidation at much higher rates than the other UGTs. Menadiol was regioselectively glucuronidated in the manner of 4-position > 1-position by UGTs 1A7, 1A8, 1A9, and 1A10. In contrast to these UGTs, only UGT1A6 exhibited 1-menadiol-preferential glucuronidating activity. The results suggest possible detoxification pathways for quinones via NQO1 reduction followed by UGT glucuronidation.

  2. In situ Regeneration of NADH via Lipoamide Dehydrogenase-catalyzed Electron Transfer Reaction Evidenced by Spectroelectrochemistry

    SciTech Connect

    Tam, Tsz Kin; Chen, Baowei; Lei, Chenghong; Liu, Jun

    2012-08-01

    NAD/NADH is a coenzyme found in all living cells, carrying electrons from one reaction to another. We report on characterizations of in situ regeneration of NADH via lipoamide dehydrogenase (LD)-catalyzed electron transfer reaction to regenerate NADH using UV-vis spectroelectrochemistry. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) of NADH regeneration were measured as 0.80 {+-} 0.15 mM and 1.91 {+-} 0.09 {micro}M s-1 in a 1-mm thin-layer spectroelectrochemical cell using gold gauze as the working electrode at the applied potential -0.75 V (vs. Ag/AgCl). The electrocatalytic reduction of the NAD system was further coupled with the enzymatic conversion of pyruvate to lactate by lactate dehydrogenase to examine the coenzymatic activity of the regenerated NADH. Although the reproducible electrocatalytic reduction of NAD into NADH is known to be difficult compared to the electrocatalytic oxidation of NADH, our spectroelectrochemical results indicate that the in situ regeneration of NADH via LD-catalyzed electron transfer reaction is fast and sustainable and can be potentially applied to many NAD/NADH-dependent enzyme systems.

  3. Horseradish peroxidase catalyzed hydroxylations: mechanistic studies.

    PubMed

    Dordick, J S; Klibanov, A M; Marletta, M A

    1986-05-20

    The hydroxylation of phenol to hydroquinone and catechol in the presence of dihydroxyfumaric acid and oxygen catalyzed by horseradish peroxidase was studied under conditions where the product yield was high and the side reactions were minimal. The reaction is partially uncoupled with a molar ratio of dihydroxyfumaric acid consumed to hydroxylated products of 12:1. Hydrogen peroxide does not participate in the reaction as evidenced by the lack of effect of catalase and by the direct addition of hydrogen peroxide. Conversely, superoxide and hydroxyl radicals are involved as their scavengers are potent inhibitors. Experiments were all consistent with the involvement of compound III (oxygenated ferrous complex) of peroxidase in the reaction. Compound III is stable in the presence of phenol alone but decomposes rapidly in the presence of both phenol and dihydroxyfumaric acid with the concomitant formation of product. Therefore, phenol and dihydroxyfumaric acid must be present with compound III in order for the hydroxylation reaction to occur. A mechanism consistent with the experimental results is proposed. PMID:3718931

  4. Peptide Bond Formation Mechanism Catalyzed by Ribosome

    PubMed Central

    Świderek, Katarzyna; Marti, Sergio; Tuñón, Iñaki; Moliner, Vicent; Bertran, Juan

    2015-01-01

    In this paper we present a study of the peptide bond formation reaction catalyzed by ribosome. Different mechanistic proposals have been explored by means of Free Energy Perturbation methods within hybrid QM/MM potentials, where the chemical system has been described by the M06-2X functional and the environment by means of the AMBER force field. According to our results, the most favourable mechanism in the ribosome would proceed through an eight-membered ring transition state, involving a proton shuttle mechanism through the hydroxyl group of the sugar and a water molecule. This transition state is similar to that described for the reaction in solution (J. Am. Chem. Soc. 2013, 135, 8708–8719) but the reaction mechanisms are noticeable different. Our simulations reproduce the experimentally determined catalytic effect of ribosome that can be explained by the different behaviour of the two environments. While the solvent reorganizes during the chemical process involving an entropic penalty, the ribosome is preorganized in the formation of the Michaelis complex and does not suffer important changes along the reaction, dampening the charge redistribution of the chemical system. PMID:26325003

  5. Thioglycoside hydrolysis catalyzed by {beta}-glucosidase

    SciTech Connect

    Shen Hong; Byers, Larry D.

    2007-10-26

    Sweet almond {beta}-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the K{sub m} values for the S- and O-glycosides are similar, the k{sub cat} values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k{sub cat}/K{sub m} for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pK{sub a} 4.5) and a protonated group (pK{sub a} 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active {beta}-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.

  6. Biotransformations catalyzed by the genus rhodococcus

    SciTech Connect

    Warhurst, A.M.; Fewson, C.A. . Dept. of Biochemistry)

    1994-01-01

    Rhodococci display a diverse range of metabolic capabilities and they are a ubiquitous feature of many environments. They are able to degrade short-chain, long-chain, and halogenated hydrocarbons, and numerous aromatic compounds, including halogenated and other substituted aromatics, heteroaromatics, hydroaromatics, and polycyclic aromatic hydrocarbons. They possess a wide variety of pathways for degrading and modifying aromatic compounds, including dioxygenase and monooxygenase ring attack, and cleavage of catechol by both ortho- and meta-routes, and some strains posses a modified 3-oxoadipate pathway. Biotransformations catalyzed by rhodococci include steroid modification, enantioselective synthesis, and the transformation of nitriles to amides and acids. Tolerance of rhodococci to starvation, their frequent lack of catabolite repression, and their environmental persistence make them excellent candidates for bioremediation treatments. Some strains can produce poly(3-hydroxyalkanoate)s, others can accumulate cesium, and still others are the source of useful enzymes such as phenylalanine dehydrogenase and endoglycosidases. Other actual or potential applications of rhodococci include desulfurization of coal, bioleaching, use of their surfactants in enhancement of oil recovery and as industrial dispersants, and the construction of biosensors.

  7. DFT studies on the palladium-catalyzed dearomatization reaction between naphthalene allyl chloride and allyltributylstannane.

    PubMed

    Cao, Wei; Tian, Dongxu; Han, Dongxue

    2015-10-01

    The Pd-catalyzed dearomatization of naphthalene allyl chloride with allyltributylstannane has been investigated using density functional theory (DFT) calculations at the B3LYP level. The calculations indicate that the (ŋ(1)-allyl)(ŋ(3)-allyl)Pd(PH3) complex is responsible for the formation of ortho-dearomatized product. Moreover it is easy to produce the ortho-dearomatized product when reductive elimination starts from (ŋ(3)-allylnaphthalene)(ŋ(1)-allyl)Pd complex 7, while it is easy to form the para-dearomatized product when reductive elimination starts from (ŋ(3)-allylnaphthalene)(ŋ(1)-allyl)Pd complex 9. The Stille coupling products can't be produced due to high reaction energy barrier. Graphical Abstract Two mechanisms of dearomatization are investigated by DFT, and (ŋ(1)-allyl)(ŋ(3)-allyl)Pd(PH3) complexes are the main intermediates for ortho-dearomatized product.

  8. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    DOE PAGES

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpinmore » moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.« less

  9. Pd-catalyzed arylation of chlorotrifluoroethylene using arylboronic acids.

    PubMed

    Yamamoto, Tetsuya; Yamakawa, Tetsu

    2012-07-01

    The palladium-catalyzed cross-coupling of chlorotrifluoroethylene and arylboronic acids proceeds in the presence of a base and H(2)O to provide α,β,β-trifluorostyrene derivatives in satisfactory yields. PMID:22691065

  10. Hydrolase-catalyzed biotransformations in deep eutectic solvents.

    PubMed

    Gorke, Johnathan T; Srienc, Friedrich; Kazlauskas, Romas J

    2008-03-14

    Hydrolases show good catalytic activity in deep eutectic solvents, despite the presence of urea, which can denature enzymes, or alcohols, which can interfere with hydrolase-catalyzed reactions. PMID:18309428

  11. Copper-catalyzed trifluoromethylthiolation of primary and secondary alkylboronic acids.

    PubMed

    Shao, Xinxin; Liu, Tianfei; Lu, Long; Shen, Qilong

    2014-09-19

    A Cu-catalyzed trifluoromethylthiolation of primary and secondary alkylboronic acids with an electrophilic trifluoromethylthiolating reagent is described. Tolerance for a variety of functional groups was observed. PMID:25198142

  12. Recent developments in gold-catalyzed cycloaddition reactions.

    PubMed

    López, Fernando; Mascareñas, José L

    2011-01-01

    In the last years there have been extraordinary advances in the development of gold-catalyzed cycloaddition processes. In this review we will summarize some of the most remarkable examples, and present the mechanistic rational underlying the transformations.

  13. Transition-metal-catalyzed carbon-heteroatom three-component cross-coupling reactions: a new concept for carbothiolation of alkynes.

    PubMed

    Kuniyasu, Hitoshi; Kurosawa, Hideo

    2002-06-17

    The deep-seated understanding of flexible ligand behavior of thiolate on transition-metals has paved the way to achieve metal-catalyzed carbothiolations of terminal alkynes. The strategy of the reaction is quite simple: 1) generation of the complex with C-Pt-S fragments formed after the Pd-catalyzed C-S bond-forming cross-coupling reaction, 2) insertion of an alkyne into Pt-S bond to form the complex with a C-Pt-C fragment, and 3) C-C bond-forming reductive elimination.

  14. Two Metals Are Better Than One in the Gold Catalyzed Oxidative Heteroarylation of Alkenes

    PubMed Central

    Tkatchouk, Ekaterina; Mankad, Neal P.; Benitez, Diego; Goddard, William A.; Toste, F. Dean

    2011-01-01

    We present a detailed study of the mechanism for oxidative heteroarylation, based on DFT calculations and experimental observations. We propose binuclear Au(II)-Au(II) complexes to be key intermediates in the mechanism for gold catalyzed oxidative heteroarylation. The reaction is thought to proceed via a gold redox cycle involving initial oxidation of Au(I) to binuclear Au(II)-Au(II) complexes by Selectfluor, followed by heteroauration and reductive elimination. While it is tempting to invoke a transmetalation/reductive elimination mechanism similar to that proposed for other transition metal complexes, experimental and DFT studies suggest that the key C-C bond forming reaction occurs via a bimolecular reductive elimination process (devoid of transmetalation). In addition, the stereochemistry of the elimination step was determined experimentally to proceed with complete retention. Ligand and halide effects played an important role in the development and optimization of the catalyst; our data provides an explanation for the ligand effects observed experimentally, useful for future catalyst development. Cyclic voltammetry data is presented that supports redox synergy of the Au···Au aurophilic interaction. The monometallic reductive elimination from mononuclear Au(III) complexes is also studied from which we can predict a ~15 kcal/mol advantage for bimetallic reductive elimination. PMID:21861448

  15. Nitroreductase catalyzed biotransformation of CL-20.

    PubMed

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2004-09-10

    Previously, we reported that a salicylate 1-monooxygenase from Pseudomonas sp. ATCC 29352 biotransformed CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane) (C(6)H(6)N(12)O(12)) and produced a key metabolite with mol. wt. 346 Da corresponding to an empirical formula of C(6)H(6)N(10)O(8) which spontaneously decomposed in aqueous medium to produce N(2)O, NH(4)(+), and HCOOH [Appl. Environ. Microbiol. (2004)]. In the present study, we found that nitroreductase from Escherichia coli catalyzed a one-electron transfer to CL-20 to form a radical anion (CL-20(-)) which upon initial N-denitration also produced metabolite C(6)H(6)N(10)O(8). The latter was tentatively identified as 1,4,5,8-tetranitro-1,3a,4,4a,5,7a,8,8a-octahydro-diimidazo[4,5-b:4',5'-e]pyrazine [IUPAC] which decomposed spontaneously in water to produce glyoxal (OHCCHO) and formic acid (HCOOH). The rates of CL-20 biotransformation under anaerobic and aerobic conditions were 3.4+/-0.2 and 0.25+/-0.01 nmol min(-1)mg of protein(-1), respectively. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.8 nitrite ions, 3.3 molecules of nitrous oxide, 1.6 molecules of formic acid, 1.0 molecule of glyoxal, and 1.3 ammonium ions. Carbon and nitrogen products gave mass-balances of 60% and 81%, respectively. A comparative study between native-, deflavo-, and reconstituted-nitroreductase showed that FMN-site was possibly involved in the biotransformation of CL-20. PMID:15313201

  16. Conservation Kickstart- Catalyzing Conservation Initiatives Worldwide

    NASA Astrophysics Data System (ADS)

    Treinish, G.

    2014-12-01

    Adventurers and Scientists for Conservation (ASC) is a nonprofit organization that collects environmental data to catalyze conservation initiatives worldwide. Adventure athletes have the skills and motivation to reach the most remote corners of the world. ASC utilizes those skills to provide the scientific community with data while providing the outdoor community with purpose beyond the personal high of reaching a summit or rowing across an ocean. We carefully select projects, choosing partnerships that will maximize the impact of ASC volunteers. Each project must have a clear path to a tangible conservation outcome and demonstrate a clear need for our brand of volunteers. We partner with government agencies, universities, and independant reseachers to kickstart data collection efforts around the world. Last year, through a partnership with the Olympic National Forest, 20 volunteers from the Seattle area set up and monitored camera traps in an effort to survey for costal Pacific marten. Our work led to the species' listing as "critically imperiled" with NatureServe. A partnership with the inaugural Great Pacific Race, engaging trans-Pacific rowing teams, searched for microplastics in the Pacific Ocean as part of our ongoing microplastics campaign. In a multi-year partnership with the American Prairie Reserve (APR), ASC volunteer crews live and work on the Reserve collecting wildlife data year round. The data we obtain directly informs the Reserve's wildlife management decisions. On this project, our crews have safely and effectively navigated temperature extremes from -30 degrees to 100+ degrees while traveling in a remote location. We are currently scouting projects in the Okavango Delta of Botswana and the rainforest of Suriname where we will be able to cover large amounts of area in a short periord of time. ASC is at the crossroads of the adventure and coservation science communities. Our approach of answering specific questions by using highly skilled and

  17. Effect of phosphate and sulfate on Ni repartitioning during Fe(II)-catalyzed Fe(III) oxide mineral recrystallization

    NASA Astrophysics Data System (ADS)

    Hinkle, Margaret A. G.; Catalano, Jeffrey G.

    2015-09-01

    Dissolved Fe(II) activates coupled oxidative growth and reductive dissolution of Fe(III) oxide minerals, causing recrystallization and the repartitioning of structurally-compatible trace metals. Phosphate and sulfate, two ligands common to natural aquatic systems, alter Fe(II) adsorption onto Fe(III) oxides and affect Fe(III) oxide dissolution and precipitation. However, the effect of these oxoanions on trace metal repartitioning during Fe(II)-catalyzed Fe(III) oxide recrystallization is unclear. The effects of phosphate and sulfate on Ni adsorption and Ni repartitioning during Fe(II)-catalyzed Fe(III) oxide recrystallization were investigated as such repartitioning may be affected by both Fe(II)-oxoanion and metal-oxoanion interactions. In most systems examined, phosphate alters Ni repartitioning during Fe(II)-catalyzed recrystallization to a larger extent than sulfate. Phosphate substantially enhances Ni adsorption onto hematite but decreases (nearly inhibiting) Fe(II)-catalyzed Ni incorporation into and release from this mineral. In the goethite system, however, phosphate suppresses Ni release but enhances Ni incorporation in the presence of aqueous Fe(II). In contrast, sulfate has little effect on macroscopic Ni adsorption and release of Ni from Fe(III) oxides, but substantially enhances Ni incorporation into goethite. This demonstrates that phosphate and sulfate have unique, mineral-specific interactions with Ni during Fe(II)-catalyzed Fe(III) oxide recrystallization. This research suggests that micronutrient bioavailability at redox interfaces in hematite-dominated systems may be especially suppressed by phosphate, while both oxoanions likely have limited effects in goethite-rich soils or sediments. Phosphate may also exert a large control on contaminant fate at redox interfaces, increasing Ni retention on iron oxide surfaces. These results further indicate that trace metal retention by iron oxides during lithification and later repartitioning during

  18. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups.

    PubMed

    Saadi, Jakub; Bentz, Christoph; Redies, Kai; Lentz, Dieter; Zimmer, Reinhold; Reissig, Hans-Ulrich

    2016-01-01

    Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II) back to palladium(0) which is apparently achieved by the present triethylamine. PMID:27559374

  19. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups

    PubMed Central

    Saadi, Jakub; Bentz, Christoph; Redies, Kai; Lentz, Dieter; Zimmer, Reinhold

    2016-01-01

    Summary Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II) back to palladium(0) which is apparently achieved by the present triethylamine. PMID:27559374

  20. Combined Catalyzed Soot Filter and SCR Catalyst System for Diesel Engine Emission Reduction

    SciTech Connect

    Kakwani, R.M.

    2000-08-20

    Substantially reduces particulate emission for diesel vehicles Up to 90% effective against carbonaceous particulate matter Significantly reduces CO and HC Filter regenerates at normal diesel operation temperatures Removable design for easy cleaning and maintenance.

  1. Iridium-catalyzed reductive carbon-carbon bond cleavage reaction on a curved pyridylcorannulene skeleton.

    PubMed

    Tashiro, Shohei; Yamada, Mihoko; Shionoya, Mitsuhiko

    2015-04-27

    The cleavage of CC bonds in π-conjugated systems is an important method for controlling their shape and coplanarity. An efficient way for the cleavage of an aromatic CC bond in a typical buckybowl corannulene skeleton is reported. The reaction of 2-pyridylcorannulene with a catalytic amount of IrCl3 ⋅n H2 O in ethylene glycol at 250 °C resulted in a structural transformation from the curved corannulene skeleton to a strain-free flat benzo[ghi]fluoranthene skeleton through a site-selective CC cleavage reaction. This cleavage reaction was found to be driven by both the coordination of the 2-pyridyl substituent to iridium and the relief of strain in the curved corannulene skeleton. This finding should facilitate the design of carbon nanomaterials based on CC bond cleavage reactions.

  2. Reductive deconstruction of organosolv lignin catalyzed by zeolite supported nickel nanoparticles

    SciTech Connect

    Kasakov, Stanislav; Shi, Hui; Camaioni, Donald M.; Zhao, Chen; Barath, Eszter; Jentys, Andreas; Lercher, Johannes A.

    2015-11-01

    Mechanistic aspects of deconstruction and hydrodeoxygenation of organosolv lignin using supported Ni catalysts with (Ni/HZSM-5 and Ni/HBEA) and without Brønsted acid sites (Ni/SiO2) are reported. Lignin was deconstructed and converted to saturated cyclic hydrocarbons ranging from C5 to C14. In the one-stage reaction, full conversion with total yield of 70 ± 5 wt.% saturated hydrocarbons was achieved at 593 K and 20 bar H2. The organosolv lignin used consists of seven to eight monolignol subunits and has an average molecular weight of ca. 1200 g mol-1. The monolignols were mainly guaiacyl, syringyl and phenylcoumaran, randomly interconnected through β-O-4, 4-O-5, β-1, 5-5’ and β-β ether bonds. In situ IR spectroscopy was used to follow the changes in lignin constituents during reaction. The proposed reaction pathways for the catalytic transformation of this organosolv lignin to alkanes start with the hydrogenolysis of aryl alkyl ether bonds, followed by hydrogenation of the aromatic compounds on Ni to cyclic alcohols. Oxygen is removed from the alcohols via dehydration on Brønsted acid sites to yield cyclic alkenes that are further hydrogenated to alkanes. Formation of condensation products may occur via intermolecular recombination of aromatic monomers or alkylation of aromatic compounds by alkenes. The financial support from TUM-PNNL cooperation project “Development of new methods for in situ characterization in liquid phase reactions” (CN-177939) is highly appreciated. The work by S.K., H.S., and J.A.L was partially supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  3. Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions.

    PubMed

    Nishibayashi, Yoshiaki

    2015-10-01

    This paper describes our recent progress in catalytic nitrogen fixation by using transition-metal-dinitrogen complexes as catalysts. Two reaction systems for the catalytic transformation of molecular dinitrogen into ammonia and its equivalent such as silylamine under ambient reaction conditions have been achieved by the molybdenum-, iron-, and cobalt-dinitrogen complexes as catalysts. Many new findings presented here may provide new access to the development of economical nitrogen fixation in place of the Haber-Bosch process. PMID:26131967

  4. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    SciTech Connect

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy’s (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (i) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (ii) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (iii) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  5. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION.

    SciTech Connect

    FRANCIS, A.J.; DODGE, C.J.

    2006-11-16

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  6. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    SciTech Connect

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  7. Theoretical study on the mechanism of Ni-catalyzed alkyl-alkyl Suzuki cross-coupling.

    PubMed

    Li, Zhe; Jiang, Yuan-Ye; Fu, Yao

    2012-04-01

    Ni-catalyzed cross-coupling of unactivated secondary alkyl halides with alkylboranes provides an efficient way to construct alkyl-alkyl bonds. The mechanism of this reaction with the Ni/L1 (L1=trans-N,N'-dimethyl-1,2-cyclohexanediamine) system was examined for the first time by using theoretical calculations. The feasible mechanism was found to involve a Ni(I)-Ni(III) catalytic cycle with three main steps: transmetalation of [Ni(I)(L1)X] (X=Cl, Br) with 9-borabicyclo[3.3.1]nonane (9-BBN)R(1) to produce [Ni(I)(L1)(R(1))], oxidative addition of R(2) X with [Ni(I)(L1)(R(1))] to produce [Ni(III)(L1)(R(1))(R(2))X] through a radical pathway, and C-C reductive elimination to generate the product and [Ni(I)(L1)X]. The transmetalation step is rate-determining for both primary and secondary alkyl bromides. KOiBu decreases the activation barrier of the transmetalation step by forming a potassium alkyl boronate salt with alkyl borane. Tertiary alkyl halides are not reactive because the activation barrier of reductive elimination is too high (+34.7 kcal mol(-1)). On the other hand, the cross-coupling of alkyl chlorides can be catalyzed by Ni/L2 (L2=trans-N,N'-dimethyl-1,2-diphenylethane-1,2-diamine) because the activation barrier of transmetalation with L2 is lower than that with L1. Importantly, the Ni(0)-Ni(II) catalytic cycle is not favored in the present systems because reductive elimination from both singlet and triplet [Ni(II)(L1)(R(1))(R(2))] is very difficult.

  8. Metal-Catalyzed Carboxylation of Organic (Pseudo)halides with CO2

    PubMed Central

    2016-01-01

    The recent years have witnessed the development of metal-catalyzed reductive carboxylation of organic (pseudo)halides with CO2 as C1 source, representing potential powerful alternatives to existing methodologies for preparing carboxylic acids, privileged motifs in a myriad of pharmaceuticals and molecules displaying significant biological properties. While originally visualized as exotic cross-coupling reactions, a close look into the literature data indicates that these processes have become a fertile ground, allowing for the utilization of a variety of coupling partners, even with particularly challenging substrate combinations. As for other related cross-electrophile scenarios, the vast majority of reductive carboxylation of organic (pseudo)halides are characterized by their simplicity, mild conditions, and a broad functional group compatibility, suggesting that these processes could be implemented in late-stage diversification. This perspective describes the evolution of metal-catalyzed reductive carboxylation of organic (pseudo)halides from its inception in the pioneering stoichiometric work of Osakada to the present. Specific emphasis is devoted to the reactivity of these coupling processes, with substrates ranging from aryl-, vinyl-, benzyl- to unactivated alkyl (pseudo)halides. Despite the impressive advances realized, a comprehensive study detailing the mechanistic intricacies of these processes is still lacking. Some recent empirical evidence reveal an intriguing dichotomy exerted by the substitution pattern on the ligands utilized; still, however, some elementary steps within the catalytic cycle of these reactions remain speculative, in many instances invoking a canonical cross-coupling process. Although tentative, we anticipate that these processes might fall into more than one distinct mechanistic category depending on the substrate utilized, suggesting that investigations aimed at unraveling the mechanistic underpinnings of these processes will likely

  9. Mechanistic Imperatives for Deprotonation of Carbon Catalyzed by Triosephosphate Isomerase: Enzyme-Activation by Phosphite Dianion.

    PubMed

    Zhai, Xiang; Malabanan, M Merced; Amyes, Tina L; Richard, John P

    2014-04-01

    The mechanistic imperatives for catalysis of deprotonation of α-carbonyl carbon by triosephosphate isomerase (TIM) are discussed. There is a strong imperative to reduce the large thermodynamic barrier for deprotonation of carbon to form an enediolate reaction intermediate; and, a strong imperative for specificity in the expression of the intrinsic phosphodianion binding energy at the transition state for the enzyme-catalyzed reaction. Binding energies of 2 and 6 kcal/mol, respectively, have been determined for formation of phosphite dianion complexes to TIM and to the transition state for TIM-catalyzed deprotonation of the truncated substrate glycolaldehyde [T. L. Amyes, J. P. Richard, Biochemistry 2007, 46, 5841]. We propose that the phosphite dianion binding energy, which is specifically expressed at the transition state complex, is utilized to stabilize a rare catalytically active loop-closed form of TIM. The results of experiments to probe the role of the side chains of Ile172 and Leu232 in activating the loop-closed form of TIM for catalysis of substrate deprotonation are discussed. Evidence is presented that the hydrophobic side chain of Ile172 assists in activating TIM for catalysis of substrate deprotonation through an enhancement of the basicity of the carboxylate side-chain of Glu167. Our experiments link the two imperatives for TIM-catalyzed deprotonation of carbon by providing evidence that the phosphodianion binding energy is utilized to drive an enzyme conformational change, which results in a reduction in the thermodynamic barrier to deprotonation of the carbon acid substrate at TIM compared with the barrier for deprotonation in water. The effects of a P168A mutation on the kinetic parameters for the reactions of whole and truncated substrates are discussed.

  10. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Sibirev, N. V.; Berdnikov, Y.; Gomes, U. P.; Ercolani, D.; Zannier, V.; Sorba, L.

    2016-09-01

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.

  11. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires.

    PubMed

    Dubrovskii, V G; Sibirev, N V; Berdnikov, Y; Gomes, U P; Ercolani, D; Zannier, V; Sorba, L

    2016-09-16

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.

  12. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires.

    PubMed

    Dubrovskii, V G; Sibirev, N V; Berdnikov, Y; Gomes, U P; Ercolani, D; Zannier, V; Sorba, L

    2016-09-16

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires. PMID:27501469

  13. Structural basis of enzymatic benzene ring reduction.

    PubMed

    Weinert, Tobias; Huwiler, Simona G; Kung, Johannes W; Weidenweber, Sina; Hellwig, Petra; Stärk, Hans-Joachim; Biskup, Till; Weber, Stefan; Cotelesage, Julien J H; George, Graham N; Ermler, Ulrich; Boll, Matthias

    2015-08-01

    In chemical synthesis, the widely used Birch reduction of aromatic compounds to cyclic dienes requires alkali metals in ammonia as extremely low-potential electron donors. An analogous reaction is catalyzed by benzoyl-coenzyme A reductases (BCRs) that have a key role in the globally important bacterial degradation of aromatic compounds at anoxic sites. Because of the lack of structural information, the catalytic mechanism of enzymatic benzene ring reduction remained obscure. Here, we present the structural characterization of a dearomatizing BCR containing an unprecedented tungsten cofactor that transfers electrons to the benzene ring in an aprotic cavity. Substrate binding induces proton transfer from the bulk solvent to the active site by expelling a Zn(2+) that is crucial for active site encapsulation. Our results shed light on the structural basis of an electron transfer process at the negative redox potential limit in biology. They open the door for biological or biomimetic alternatives to a basic chemical synthetic tool.

  14. Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene

    DOE PAGES

    Xu, Songchen; Boschen, Jeffery S.; Biswas, Abhranil; Kobayashi, Takeshi; Pruski, Marek; Windus, Theresa L.; Sadow, Aaron D.

    2015-08-17

    An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ³-N,Si,C-PhB(OxMe²)(OxMe²SiHPh)ImMes}Rh(H)CO][HB(C₆F₅)₃] (2, OxMe² = 4,4-dimethyl-2-oxazoline; ImMes = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(OxMe²)₂ImMes}RhH(SiH2Ph)CO (1) and B(C6F5)3. The unusual oxazoline-coordinated silylene structure in 2 is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(OxMe²)₂ImMes}RhH(SiHPh)CO][HB(C₆F₅)₃] generated by H abstraction. Complex 2 catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced by the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenationmore » of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C₆F₅)₃ catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH₃ as the reducing agent.« less

  15. Evidence for Coupled Motion and Hydrogen Tunneling the Reaction Catalyzed by Glutamate Mutase:†

    PubMed Central

    Cheng, Mou-Chi; Marsh, E. Neil G.

    2008-01-01

    Glutamate mutase is one of a group of adenosylcobalamin-dependent enzymes that catalyze unusual isomerizations that proceed through organic radical intermediates generated by homolytic fission of coenzyme's unique cobalt-carbon bond. These enzymes are part of a larger family of enzymes that catalyze radical chemistry in which a key step is the abstraction of a hydrogen atom from an otherwise inert substrate. To gain insight into the mechanism of hydrogen transfer we previously used pre-steady state, rapid quench techniques to measure the α-secondary tritium kinetic and equilibrium isotope effects associated with the formation of 5’-deoxyadenosine when glutamate mutase was reacted with [5’-3H]-adenosylcobalamin and L-glutamate. We showed that both the kinetic and equilibrium isotope effects are large and inverse, 0.76 and 0.72 respectively. We have now repeated these measurements using glutamate deuterated in the position of hydrogen abstraction. The effect of introducing a primary deuterium kinetic isotope effect on the hydrogen transfer step is to reduce the magnitude of the secondary kinetic isotope effect to a value close to unity, 1.05 ± 0.08, whereas the equilibrium isotope effect is unchanged. The significant reduction in the secondary kinetic isotope effect is consistent with motions of the 5’-hydrogen atoms being coupled in the transition state to the motion of the hydrogen undergoing transfer, in a reaction that involves a large degree of quantum tunneling. PMID:17223710

  16. The oxidation of chiral alcohols catalyzed by catalase in organic solvents

    SciTech Connect

    Magner, E.; Klibanov, A.M.

    1995-04-20

    The catalytic properties of bovine liver catalase have been investigated in organic solvents. In tetrahydrofuran, dioxane, and acetone (all containing 1% to 3% of water), the enzyme breaks down tert-butyl hydroperoxide several fold faster than in pure water. Furthermore, the rate of catalase-catalyzed production of tert-butanol from tert-butyl hydroperoxide increases more than 400-fold upon transition from aqueous buffer to ethanol as the reaction medium. The mechanistic rationale for this striking effect is that in aqueous buffer the rate-limiting step of the enzymatic process involves the reduction of catalase`s compound 1 by tert-butyl hydroperoxide. In ethanol, an additional step in the reaction scheme becomes available in which ethanol, greatly outcompeting the hydroperoxide, is oxidized by compound 1 regenerating the free enzyme. In solvents, such as acetonitrile or tetrahydrofuran, which themselves are not oxidizable by compound 1, catalase catalyzes the oxidation of numerous primary and secondary alcohols with tert-butyl hydroperoxide to the corresponding aldehydes or ketones. The enzymatic oxidation of some chiral alcohols (2,3-butanediol, citronellol, and menthol) under these conditions occurs enantioselectively. Examination of the enantioselectivity for the oxidation of 2,3-butanediol in a series of organic solvents reveals a considerable solvent dependence.

  17. Palladium-catalyzed C-H functionalization of acyldiazomethane and tandem cross-coupling reactions.

    PubMed

    Ye, Fei; Qu, Shuanglin; Zhou, Lei; Peng, Cheng; Wang, Chengpeng; Cheng, Jiajia; Hossain, Mohammad Lokman; Liu, Yizhou; Zhang, Yan; Wang, Zhi-Xiang; Wang, Jianbo

    2015-04-01

    Palladium-catalyzed C-H functionalization of acyldiazomethanes with aryl iodides has been developed. This reaction is featured by the retention of the diazo functionality in the transformation, thus constituting a novel method for the introduction of diazo functionality to organic molecules. Consistent with the experimental results, the density functional theory (DFT) calculation indicates that the formation of Pd-carbene species in the catalytic cycle through dinitrogen extrusion from the palladium ethyl diazoacetate (Pd-EDA) complex is less favorable. The reaction instead proceeds through Ag2CO3 assisted deprotonation and subsequently reductive elimination to afford the products with diazo functionality remained. This C-H functionalization transformation can be further combined with the recently evolved palladium-catalyzed cross-coupling reaction of diazo compounds with aryl iodides to develop a tandem coupling process for the synthesis of α,α-diaryl esters. DFT calculation supports the involvement of Pd-carbene as reactive intermediate in the catalytic cycle, which goes through facile carbene migratory insertion with a low energy barrier (3.8 kcal/mol). PMID:25794590

  18. Palladium-catalyzed C-H functionalization of acyldiazomethane and tandem cross-coupling reactions.

    PubMed

    Ye, Fei; Qu, Shuanglin; Zhou, Lei; Peng, Cheng; Wang, Chengpeng; Cheng, Jiajia; Hossain, Mohammad Lokman; Liu, Yizhou; Zhang, Yan; Wang, Zhi-Xiang; Wang, Jianbo

    2015-04-01

    Palladium-catalyzed C-H functionalization of acyldiazomethanes with aryl iodides has been developed. This reaction is featured by the retention of the diazo functionality in the transformation, thus constituting a novel method for the introduction of diazo functionality to organic molecules. Consistent with the experimental results, the density functional theory (DFT) calculation indicates that the formation of Pd-carbene species in the catalytic cycle through dinitrogen extrusion from the palladium ethyl diazoacetate (Pd-EDA) complex is less favorable. The reaction instead proceeds through Ag2CO3 assisted deprotonation and subsequently reductive elimination to afford the products with diazo functionality remained. This C-H functionalization transformation can be further combined with the recently evolved palladium-catalyzed cross-coupling reaction of diazo compounds with aryl iodides to develop a tandem coupling process for the synthesis of α,α-diaryl esters. DFT calculation supports the involvement of Pd-carbene as reactive intermediate in the catalytic cycle, which goes through facile carbene migratory insertion with a low energy barrier (3.8 kcal/mol).

  19. Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene.

    PubMed

    Xu, Songchen; Boschen, Jeffery S; Biswas, Abhranil; Kobayashi, Takeshi; Pruski, Marek; Windus, Theresa L; Sadow, Aaron D

    2015-09-28

    An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ(3)-N,Si,C-PhB(Ox(Me2))(Ox(Me2)SiHPh)Im(Mes)}Rh(H)CO][HB(C6F5)3] (, Ox(Me2) = 4,4-dimethyl-2-oxazoline; Im(Mes) = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(Ox(Me2))2Im(Mes)}RhH(SiH2Ph)CO () and B(C6F5)3. The unusual oxazoline-coordinated silylene structure in is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(Ox(Me2))2Im(Mes)}RhH(SiHPh)CO][HB(C6F5)3] generated by H abstraction. Complex catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced by the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenation of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C6F5)3 catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH3 as the reducing agent. PMID:26278517

  20. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  1. Density functional theory investigation on Pd-catalyzed cross-coupling of azoles with aryl thioethers.

    PubMed

    Yang, Yi-Meng; Dang, Zhi-Min; Yu, Hai-Zhu

    2016-05-11

    In the present study, a density functional theory (DFT) study has been carried out on the Pd-catalyzed coupling of azoles with aryl thioethers. Our effort is mainly put into identifying the most feasible catalytic cycle, and especially the origin of chemoselectivity for the exclusive aromatic Csp(2)-S bond activation (in the presence of an alkyl Csp(3)-S bond). The coupling mainly consists of three steps: C-S activation, NaO(t)Bu mediated C-H palladation, and reductive elimination. The Csp(2)-S activation is favored over Csp(3)-S activation, and thus di(hetero)aryls are the predicted products. This conclusion well reproduces Wang's recent experimental observations. The rate- and chemoselectivity determining steps of the C-H/Csp(2)-S activation mechanism are C-H palladation and C-S activation steps, respectively. Analyzing the origin of chemoselectivity, we found that the easiness of Pd catalyzed C-S activation is independent of the C-S bond strengths in thioether substrates. By contrast, d-π* backdonation in Csp(2)-S-Pd intermediates is the main driving force for the favorable Csp(2)-S activation (over the Csp(3)-S activation). PMID:27097907

  2. Copper-catalyzed azide alkyne cycloaddition polymer networks

    NASA Astrophysics Data System (ADS)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo

  3. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides.

    PubMed

    Shaughnessy, Kevin H

    2015-05-22

    Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  4. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    SciTech Connect

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpin moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.

  5. Theoretical study of water cluster catalyzed decomposition of formic acid.

    PubMed

    Inaba, Satoshi

    2014-04-24

    We have performed a number of quantum chemical simulations to examine water cluster catalyzed decomposition of formic acid. The decomposition of formic acid consists of two competing pathways, dehydration, and decarboxylation. We use the Gaussian 4 method of the Gaussian09 software to locate and optimize a transition state of the decomposition reaction and obtain the activation energy. The decomposition starts by transferring a proton of a formic acid to a water molecule. The de Broglie wavelength of a proton is similar to the width of the potential barrier of the decomposition reaction at low temperature. The tunneling, in which a proton penetrates the potential barrier, enhances the decomposition rate. Water molecules serve as the catalyst in the decomposition and reduce the activation energy. The relay of a proton from a water molecule to a neighboring water molecule is accomplished with little change of the geometry of a molecule, resulting in the reduction of the activation energy. Two water molecules are actively involved in the decomposition reaction to reduce the activation energy. We have also examined the effect of water clusters with three, four, and five water molecules on the decomposition reaction. The noncovalent distance between a hydrogen atom of a water molecule and an oxygen atom of a neighboring water molecule decreases in a water cluster due to the cooperative many-body interactions. A water molecule in a water cluster becomes a better proton donor as well as a better proton acceptor. The activation energy of the decomposition is further decreased by the catalytic effect of a water cluster. We calculate the reaction rate using the transition state theory corrected by the tunneling effect of a proton. The calculated reaction rate of the decarboxylation is smaller than that of the dehydration when less than three water molecules are included in the simulation. However, the major product of the decomposition of a formic acid becomes carbon dioxide

  6. Slow Reductive Elimination from Arylpalladium Parent Amido Complexes

    PubMed Central

    Klinkenberg, Jessica L.; Hartwig, John F.

    2010-01-01

    We report reductive eliminations of primary arylamines from a series of bisphosphine-ligated arylpalladium(II) parent amido complexes that counter several established trends. In contrast to arylamido and alkylamido complexes of the aromatic bisphosphines DPPF and BINAP, parent amido complexes, do not form or undergo reductive elimination of monoarylamines. However, arylpalladium parent amido complexes ligated by the alkylbisphosphine CyPF-t-Bu form in good yield and undergo reductive elimination. Despite the basicity of parent amido ligand and the typically faster reductive elimination from complexes containing more basic amido ligands, the CyPF-t-Bu-ligated arylpalladium parent amido complexes undergo reductive elimination much more slowly than the analogous complexes containing arylamido or alkylamido ligands. Moreover, the parent amido complexes form more rapidly and are more stable thermodynamically in a series of exchange processes than the arylamido complexes. Computational studies support the overriding influence of steric effects on the stability and reactivity of the parent amido complex. The slow rate of reductive elimination causes the arylpalladium amido complex to be the resting state of the coupling of aryl halides with ammonia catalyzed by CyPF-t-Bu-ligated palladium, and this resting state contrasts the Pd(0) or arylpalladium(II) resting states of reactions of aryl halides with amines catalyzed by most palladium complexes. PMID:20695642

  7. Proline catalyzed α-aminoxylation reaction in the synthesis of biologically active compounds.

    PubMed

    Kumar, Pradeep; Dwivedi, Namrata

    2013-02-19

    The search for new and efficient ways to synthesize optically pure compounds is an active area of research in organic synthesis. Asymmetric catalysis provides a practical, cost-effective, and efficient method to create a variety of complex natural products containing multiple stereocenters. In recent years, chemists have become more interested in using small organic molecules to catalyze organic reactions. As a result, organocatalysis has emerged both as a promising strategy and as an alternative to catalysis with expensive proteins or toxic metals. One of the most successful and widely studied secondary amine-based organocatalysts is proline. This small molecule can catalyze numerous reactions such as the aldol, Mannich, Michael addition, Robinson annulation, Diels-Alder, α-functionalization, α-amination, and α-aminoxylation reactions. Catalytic and enantioselective α-oxygenation of carbonyl compounds is an important reaction to access a variety of useful building blocks for bioactive molecules. Proline catalyzed α-aminoxylation using nitrosobenzene as oxygen source, followed by in situ reduction, gives enantiomerically pure 1,2-diol. This molecule can then undergo a variety of organic reactions. In addition, proline organocatalysis provides access to an assortment of biologically active natural products including mevinoline (a cholesterol lowering drug), tetrahydrolipstatin (an antiobesity drug), R(+)-α-lipoic acid, and bovidic acid. In this Account, we present an iterative organocatalytic approach to synthesize both syn- and anti-1,3-polyols, both enantio- and stereoselectively. This method is primarily based on proline-catalyzed sequential α-aminoxylation and Horner-Wadsworth-Emmons (HWE) olefination of aldehyde to give a γ-hydroxy ester. In addition, we briefly illustrate the broad application of our recently developed strategy for 1,3-polyols, which serve as valuable, enantiopure building blocks for polyketides and other structurally diverse and

  8. Heavy atom isotope effects on the reaction catalyzed by the oxalate decarboxylase from Bacillus subtilis.

    PubMed

    Reinhardt, Laurie A; Svedruzic, Drazenka; Chang, Christopher H; Cleland, W Wallace; Richards, Nigel G J

    2003-02-01

    Oxalate decarboxylase (OxDC) catalyzes a remarkable transformation in which the C-C bond in oxalate is cleaved to give carbon dioxide and formate. Like the native OxDC isolated from Aspergillus niger, the recombinant, bacterial OxDC from Bacillus subtilis contains Mn(II) in its resting state and requires catalytic dioxygen for activity. The most likely mechanism for OxDC-catalyzed C-C bond cleavage involves the participation of free radical intermediates, although this hypothesis remains to be unequivocally demonstrated. Efforts to delineate the catalytic mechanism have been placed on a firm foundation by the high-resolution crystal structure of recombinant, wild type B. subtilis OxDC (Anand et al., Biochemistry 2002, 41, 7659-7669). We now report the results of heavy-atom kinetic isotope effect measurements for the OxDC-catalyzed decarboxylation of oxalate, in what appear to be the first detailed studies of the mechanism employed by OxDC. At pH 4.2, the OxDC-catalyzed formation of formate and CO(2) have normal (13)C isotope effects of 1.5% +/- 0.1% and 0.5% +/- 0.1%, respectively, while the (18)O isotope effect on the formation of formate is 1.1% +/- 0.2% normal. Similarly at pH 5.7, the production of formate and CO(2) exhibits normal (13)C isotope effects of 1.9% +/- 0.1% and 0.8% +/- 0.1%, respectively, and the (18)O isotope effect on the formation of formate is 1.0% +/- 0.2% normal. The (18)O isotope effect on the formation of CO(2), however, 0.7% +/- 0.2%, is inverse at pH 5.7. These results are consistent with a multistep model in which a reversible, proton-coupled, electron transfer from bound oxalate to the Mn-enzyme gives an oxalate radical, which decarboxylates to yield a formate radical anion. Subsequent reduction and protonation of this intermediate then gives formate.

  9. Nickel-Catalyzed Aromatic C-H Functionalization.

    PubMed

    Yamaguchi, Junichiro; Muto, Kei; Itami, Kenichiro

    2016-08-01

    Catalytic C-H functionalization using transition metals has received significant interest from organic chemists because it provides a new strategy to construct carbon-carbon bonds and carbon-heteroatom bonds in highly functionalized, complex molecules without pre-functionalization. Recently, inexpensive catalysts based on transition metals such as copper, iron, cobalt, and nickel have seen more use in the laboratory. This review describes recent progress in nickel-catalyzed aromatic C-H functionalization reactions classified by reaction types and reaction partners. Furthermore, some reaction mechanisms are described and cutting-edge syntheses of natural products and pharmaceuticals using nickel-catalyzed aromatic C-H functionalization are presented. PMID:27573407

  10. Recent advances in copper-catalyzed asymmetric coupling reactions

    PubMed Central

    2015-01-01

    Summary Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds. PMID:26734106

  11. Muon-catalyzed fusion theory: Introduction and review

    SciTech Connect

    Cohen, J.S.

    1989-01-01

    Muon-catalyzed fusion ({mu}CF) has proved to be a fruitful subject for basic physics research as well as a source of cold nuclear fusion. Experiments have demonstrated that over 100 fusions per muon can be catalyzed by formation of the dt{mu} molecule in mixtures of deuterium and tritium. After a brief review of the subject's history, the dt{mu} catalysis cycle and the principal relations used in its analysis are described. Some of the important processes in the {mu}CF cycle are then discussed. Finally, the status of current research is appraised. 52 refs., 7 figs.

  12. Coalification by clay-catalyzed oligomerization of plant monomers

    SciTech Connect

    Orchin, M.; Wilson, R.M.

    1990-01-01

    The main objective of this research program is to devise laboratory methods to mimic the processes by which plants synthesize lignans, lignins and the processes by which these materials are transformed further by geochemical reactions catalyzed by certain clays to coal-like materials. We believe that the radical cation Diels-Alder reaction is one of the principal routes which transforms simple plant materials to coal-like substances and that such reactions may be catalyzed by clays that occur in the environment of the decaying plant materials. Progress is described.

  13. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    SciTech Connect

    Qinhua Huang

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I{sub 2}, ICl, PhSeCl, PhSCl and p-O{sub 2}NC{sub 6}H{sub 4}SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that

  14. Iron‐ and Cobalt‐Catalyzed Synthesis of Carbene Phosphinidenes

    PubMed Central

    Pal, Kuntal; Hemming, Oliver B.; Day, Benjamin M.; Pugh, Thomas; Evans, David J.

    2015-01-01

    Abstract In the presence of stoichiometric or catalytic amounts of [M{N(SiMe3)2}2] (M=Fe, Co), N‐heterocyclic carbenes (NHCs) react with primary phosphines to give a series of carbene phosphinidenes of the type (NHC)⋅PAr. The formation of (IMe4)⋅PMes (Mes=mesityl) is also catalyzed by the phosphinidene‐bridged complex [(IMe4)2Fe(μ‐PMes)]2, which provides evidence for metal‐catalyzed phosphinidene transfer. PMID:26643712

  15. Copper-Catalyzed Carbonylative Coupling of Cycloalkanes and Amides.

    PubMed

    Li, Yahui; Dong, Kaiwu; Zhu, Fengxiang; Wang, Zechao; Wu, Xiao-Feng

    2016-06-13

    Carbonylation reactions are a most powerful method for the synthesis of carbonyl-containing compounds. However, most known carbonylation procedures still require noble-metal catalysts and the use of activated compounds and good nucleophiles as substrates. Herein, we developed a copper-catalyzed carbonylative transformation of cycloalkanes and amides. Imides were prepared in good yields by carbonylation of a C(sp(3) )-H bond of the cycloalkane with the amides acting as weak nucleophiles. Notably, this is the first report of copper-catalyzed carbonylative C-H activation. PMID:27167881

  16. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    PubMed Central

    Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar

    2014-01-01

    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642

  17. Recent advances in copper-catalyzed asymmetric coupling reactions.

    PubMed

    Zhou, Fengtao; Cai, Qian

    2015-01-01

    Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C-C, C-N, C-O and other carbon-heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C-C and carbon-heteroatom bonds. PMID:26734106

  18. Heterocycle Formation via Palladium-Catalyzed C–H Functionalization

    PubMed Central

    Mei, Tian-Sheng; Kou, Lei; Ma, Sandy; Engle, Keary M.; Yu, Jin-Quan

    2016-01-01

    Heterocyclic compounds are ubiquitous in natural products, pharmaceuticals, and agrochemicals. Therefore, the design of novel protocols to construct heterocycles more efficiently is a major area of focus in the organic chemistry. In the past several years, cyclization reactions based upon palladium-catalyzed C–H activation have received substantial attention due to their capacity for expediting heterocycle synthesis. This review discusses strategies for heterocycle synthesis via palladium-catalyzed C–H bond activation and highlights recent examples from the literature. PMID:27397938

  19. Molecular Mechanism by which One Enzyme Catalyzes Two Reactions

    NASA Astrophysics Data System (ADS)

    Nishimasu, Hiroshi; Fushinobu, Shinya; Wakagi, Takayoshi

    Unlike ordinary enzymes, fructose-1,6-bisphosphate (FBP) aldolase/phosphatase (FBPA/P) catalyzes two distinct reactions : (1) the aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate to FBP, and (2) the dephosphorylation of FBP to fructose-6-phosphate. We solved the crystal structures of FBPA/P in complex with DHAP (its aldolase form) and FBP (its phosphatase form). The crystal structures revealed that FBPA/P exhibits the dual activities through a dramatic conformational change in the active-site architecture. Our findings expand the conventional concept that one enzyme catalyzes one reaction.

  20. Peroxygenase-Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol.

    PubMed

    Ni, Yan; Fernández-Fueyo, Elena; Gomez Baraibar, Alvaro; Ullrich, René; Hofrichter, Martin; Yanase, Hideshi; Alcalde, Miguel; van Berkel, Willem J H; Hollmann, Frank

    2016-01-11

    Peroxygenases catalyze a broad range of (stereo)selective oxyfunctionalization reactions. However, to access their full catalytic potential, peroxygenases need a balanced provision of hydrogen peroxide to achieve high catalytic activity while minimizing oxidative inactivation. Herein, we report an enzymatic cascade process that employs methanol as a sacrificial electron donor for the reductive activation of molecular oxygen. Full oxidation of methanol is achieved, generating three equivalents of hydrogen peroxide that can be used completely for the stereoselective hydroxylation of ethylbenzene as a model reaction. Overall we propose and demonstrate an atom-efficient and easily applicable alternative to established hydrogen peroxide generation methods, which enables the efficient use of peroxygenases for oxyfunctionalization reactions. PMID:26607550

  1. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation.

    PubMed

    Bower, John F; Krische, Michael J

    2011-01-01

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds. PMID:21822399

  2. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria.

    PubMed Central

    Fry, B; Gest, H; Hayes, J M

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments. PMID:11536596

  3. SO2-catalyzed steam pretreatment enhances the strength and stability of softwood pellets.

    PubMed

    Tooyserkani, Zahra; Kumar, Linoj; Sokhansanj, Shahab; Saddler, Jack; Bi, Xiaotao T; Lim, C Jim; Lau, Anthony; Melin, Staffan

    2013-02-01

    Densification can partially resolve the logistical challenges encountered when large volumes of biomass are required for bioconversion processes to benefit from economies-of-scale. Despite the higher bulk density of pellets, their lower mechanical strength and sensitivity to moisture are still recurring issues hindering long term transportation and storage. In this study, we have evaluated the potential benefits of SO(2)-catalyzed steam treatment to achieve both the needed size reduction prior to pelletization while improving the stability of the produced pellets. This pretreatment substantially reduced the particle size of the woodchips eliminating any further grinding. The treated pellets had a higher density and exhibited a two-time higher mechanical strength compared to untreated pellets. Despite a higher moisture adsorption capacity, treated pellets remained intact even under highly humid conditions. The high heating values, low ash content and good overall carbohydrate recovery of treated pellets indicated their potential suitability for both biochemical and thermochemical applications.

  4. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    PubMed Central

    Bower, John F.; Krische, Michael J.

    2011-01-01

    The formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C–C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile–nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C–H bonds. PMID:21822399

  5. Surface-catalyzed air oxidation reactions of hydrazines: Tubular reactor studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine, symmetrical dimethylhydrazine, trimethylhydrazine and tetramethylhydrazine were investigated in a metal-powder packed turbular flow reactor at 55 plus or minus 3 C. Hydrazine was completely reacted on all surfaces studied. The major products of monomethylhydrazine (MMH) oxidation were methanol, methane and methyldiazene. The di-, tri- and tetra-methyl hydrazines were essentially unreactive under these conditions. The relative catalytic reactivities toward MMH are: Fe greater than Al2O3 greater than Ti greater than Zn greater than 316 SS greater than Cr greater than Ni greater than Al greater than 304L SS. A kinetic scheme and mechanism involving adsorption, oxidative dehydrogenation and reductive elimination reactions on a metal oxide surface are proposed.

  6. Menadione-catalyzed luminol chemiluminescent assay for viability of Mycobacterium bovis.

    PubMed

    Yamashoji, Shiro

    2002-01-01

    Stable luminol chemiluminescence was observed 10 min after the addition of menadione to a suspension of Mycobacterium bovis homogenized in Middlebrook 7H9 broth base including OADC enrichment. The chemiluminescence intensity was proportional to the absorbance of the bacterial suspension at 600 nm in a range of 0.005 to 0.15. Luminol chemiluminescence disappeared after 10 min incubation of M. bovis at over 60% of ethanol or 4 days of cultivation of M. bovis in the presence of 40 microg/ml of streptomycin. The bacterium showing the disappearance of chemiluminescence could not grow after being washed, suggesting that the inhibition concentration of the antimicrobials can be estimated on the basis of the disappearance of chemiluminescence. Menadione-catalyzed luminol chemiluminescent assay was rapid and sensitive in comparison to turbidimetry, tetrazolium (WST-8) reduction assay, and the assay using the Mycobacteria growth indicator tube (MGIT).

  7. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments.

  8. Enhanced catalytic degradation process of o-nitrochlorobenzene by palladium-catalyzed fe0 particles.

    PubMed

    Xu, Xin-hua; Zhou, Hong-yi; Zhou, Mi; Wang, Da-hui

    2005-01-01

    Over Pd/Fe bimetallic catalyst, o-nitrochlorobenzene (o-NCB), at a concentration of 20 mg/L in aqueous solutions, is rapidly converted to o-chloroaniline (o-CAN) first, and then quickly dechlorinated to aniline(AN) and Cl-, without other intermediate reaction products. The aminated and dechlorinated reactions are believed to take place on the surface site of the Pd/Fe. The o-NCB removal efficiency and the next dechlorination rate increase with an increase of bulk loading of palladium and catalysts addition due to the increase of both the surface loading of palladium and the total surface area. These results indicate that reduction, amination and dechlorination of o-NCB by palladium-catalyzed Fe0 particles, can be designed for remediation of contaminated groundwater.

  9. Effects of Molecular Oxygen, Solvent, and Light on Iridium-Photoredox/Nickel Dual-Catalyzed Cross-Coupling Reactions.

    PubMed

    Oderinde, Martins S; Varela-Alvarez, Adrian; Aquila, Brian; Robbins, Daniel W; Johannes, Jeffrey W

    2015-08-01

    In order to achieve reproducibility during iridium-photoredox and nickel dual-catalyzed sp(3)-sp(2) carbon-carbon bond-forming reactions, we investigated the role that molecular oxygen (O2), solvent and light-source (CF lamp or blue LED) play in a variety of Ir-photoredox mediated transformations. The presence of O2 was discovered to be important for catalyst activation when air-stable Ni(II) precatalysts were used in DMF under CF lamp irradiation; however, O2 was not required for catalysis when conducted with Ni(COD)2 in the same reaction system. O2 is believed to promote rapid reduction of the Ni(II) precatalyst by Ir(II) to Ni(0). In addition to O2, the effects that solvent and light-source have on the dual-catalyzed decarboxylative cross-coupling reactions will be discussed. These findings have enabled us to develop a more robust dual-catalyzed decarboxylative cross-coupling protocol.

  10. 1,4-Naphthoquinones and Others NADPH-Dependent Glutathione Reductase-Catalyzed Redox Cyclers as Antimalarial Agents

    PubMed Central

    Belorgey, Didier; Lanfranchi, Don Antoine; Davioud-Charvet, Elisabeth

    2013-01-01

    The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in development arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages. PMID:23116403

  11. Chemo- and Diastereoselectivities in the Electrochemical Reduction of Maleimides

    PubMed Central

    Rix, Kathryn; Kelsall, Geoffrey H; Hellgardt, Klaus; Hii, King Kuok (Mimi)

    2015-01-01

    The electrochemical cathodic reduction of cyclic imides (maleimides) to succinimides can be achieved chemoselectively in the presence of alkene, alkyne, and benzyl groups. The efficiency of the system was demonstrated by using a 3D electrode in a continuous flow reactor. The reduction of 3,4-dimethylmaleimides to the corresponding succinimides proceeds with a 3:2 diastereomeric ratio, which is independent of the nitrogen substituent and electrode surface area. The stereoselectivity of the process was rationalized by using DFT calculations, involving an acid-catalyzed tautomerization of a half-enol occurring through a double hydrogen-transfer mechanism. PMID:25572428

  12. Pd-catalyzed synthesis of symmetrical and unsymmetrical siloxanes.

    PubMed

    Kurihara, Yu; Yamanoi, Yoshinori; Nishihara, Hiroshi

    2013-12-14

    A palladium-catalyzed arylation of hydrosiloxanes was developed for the synthesis of symmetrical and unsymmetrical siloxanes. Reactive functional moieties such as hydroxy or cyano groups were able to tolerate the reaction conditions and several novel unsymmetrical siloxanes were synthesized in moderate to high yield.

  13. Metalloradical-catalyzed aliphatic carbon-carbon activation of cyclooctane.

    PubMed

    Chan, Yun Wai; Chan, Kin Shing

    2010-05-26

    The aliphatic carbon-carbon activation of c-octane was achieved via the addition of Rh(ttp)H to give Rh(ttp)(n-octyl) in good yield under mild reaction conditions. The aliphatic carbon-carbon activation was Rh(II)(ttp)-catalyzed and was very sensitive to porphyrin sterics.

  14. Nickel, Manganese, Cobalt, and Iron-Catalyzed Deprotonative Arene Dimerization

    PubMed Central

    Truong, Thanh; Alvarado, Joseph; Tran, Ly Dieu; Daugulis, Olafs

    2010-01-01

    A number of first-row transition metal salts catalyze deprotonative dimerization of acidic arenes. Under the atmosphere of oxygen, nickel, manganese, cobalt, and iron chlorides have been shown to dimerize five- and six-membered ring heterocycles as well as electron-poor arenes. Both tetramethylpiperidide and dicyclohexylamide bases can be employed; however, the former afford slightly higher yields. PMID:20192197

  15. Ruthenium-catalyzed C–H activation of thioxanthones

    PubMed Central

    Wagner, Danny

    2015-01-01

    Summary Thioxanthones – being readily available in one step from thiosalicylic acid and arenes – were used in ruthenium-catalyzed C–H-activation reaction to produce 1-mono- or 1,8-disubstituted thioxanthones in good to excellent yields. Scope and limitation of this reaction are presented. PMID:25977717

  16. Boric acid catalyzed chemoselective esterification of alpha-hydroxycarboxylic acids.

    PubMed

    Houston, Todd A; Wilkinson, Brendan L; Blanchfield, Joanne T

    2004-03-01

    Boric acid catalyzes the selective esterification of alpha-hydroxycarboxylic acids without causing significant esterification to occur with other carboxylic acids. The procedure is simple, high-yielding, and applicable to the esterification of alpha-hydroxy carboxylates in the presence of other carboxylic acids including beta-hydroxyacids within the same molecule. [reaction: see text

  17. Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.

    ERIC Educational Resources Information Center

    Polichnowski, S. W.

    1986-01-01

    Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)

  18. Rh-Catalyzed arylation of fluorinated ketones with arylboronic acids.

    PubMed

    Dobson, Luca S; Pattison, Graham

    2016-09-25

    The Rh-catalyzed arylation of fluorinated ketones with boronic acids is reported. This efficient process allows access to fluorinated alcohols in high yields under mild conditions. Competition experiments suggest that difluoromethyl ketones are more reactive than trifluoromethyl ketones in this process, despite their decreased electronic activation, an effect we postulate to be steric in origin.

  19. Metal-Catalyzed Cleavage of tRNA[superscript Phe

    ERIC Educational Resources Information Center

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.

    2008-01-01

    This laboratory project is one component of a semester-long advanced biochemistry laboratory course that uses several complementary techniques to study tRNA[superscript Phe] conformational changes induced by ligand binding. In this article we describe a set of experiments in which students assay metal-catalyzed hydrolysis of tRNA[superscript Phe]…

  20. Ligand-Controlled Regiodivergent Copper-Catalyzed Alkylboration of Alkenes.

    PubMed

    Su, Wei; Gong, Tian-Jun; Lu, Xi; Xu, Meng-Yu; Yu, Chu-Guo; Xu, Zheng-Yang; Yu, Hai-Zhu; Xiao, Bin; Fu, Yao

    2015-10-26

    A novel copper-catalyzed regiodivergent alkylboration of alkenes with bis(pinacolato)diboron and alkyl halides has been developed. The regioselectivity of the alkylboration was controlled by subtle differences in the ligand structure. The reaction thus enables the practical, regiodivergent synthesis of two different alkyl boronic esters with complex structures from a single alkene. PMID:26338141

  1. Palladium-Catalyzed Enantioselective 1,1-Fluoroarylation of Aminoalkenes

    PubMed Central

    2016-01-01

    The development of an enantioselective palladium-catalyzed 1,1-fluoroarylation of unactivated aminoalkenes is described. The reaction uses arylboronic acids as the arene source and Selectfluor as the fluorine source to generate benzylic fluorides in good yields with excellent enantioselectivities. This transformation, likely proceeding through an oxidative Heck mechanism, affords 1,1-difunctionalized alkene products. PMID:26378886

  2. Endo-Selective Pd-Catalyzed Silyl Methyl Heck Reaction

    PubMed Central

    2015-01-01

    A palladium (Pd)-catalyzed endo-selective Heck reaction of iodomethylsilyl ethers of phenols and aliphatic alkenols has been developed. Mechanistic studies reveal that this silyl methyl Heck reaction operates via a hybrid Pd-radical process and that the silicon atom is crucial for the observed endo selectivity. The obtained allylic silyloxycycles were further oxidized into (Z)-alkenyldiols. PMID:25494921

  3. Ruthenium-catalyzed tandem olefin metathesis-oxidations.

    PubMed

    Scholte, Andrew A; An, Mi Hyun; Snapper, Marc L

    2006-10-12

    [reaction: see text] The utility of Grubbs' 2nd generation metathesis catalyst has been expanded by the development of two tandem olefin metathesis/oxidation protocols. These ruthenium-catalyzed processes provide cis-diols or alpha-hydroxy ketones from simple olefinic starting materials.

  4. Development of a Lewis Base Catalyzed Selenocyclization Reaction

    ERIC Educational Resources Information Center

    Collins, William

    2009-01-01

    The concept of Lewis base activation of selenium Lewis acids has been effectively reduced to practice in the Lewis base catalyzed selenofunctionalization of unactivated olefins. In this reaction, the weakly acidic species, "N"-phenylselenyl succinimide, is cooperatively activated by the addition of a "soft" Lewis base donor (phosphine sulfides,…

  5. Acid-catalyzed dehydrogenation of amine-boranes

    DOEpatents

    Stephens, Frances Helen; Baker, Ralph Thomas

    2010-01-12

    A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.

  6. Aluminum Monohydride Catalyzed Selective Hydroboration of Carbonyl Compounds.

    PubMed

    Jakhar, Vineet Kumar; Barman, Milan Kr; Nembenna, Sharanappa

    2016-09-16

    The well-defined aluminum monohydride compound [{(2,4,6-Me3-C6H2)NC(Me)}2(Me)(H)]AlH·(NMe2Et) (1) catalyzes hydroboration of a wide range of aldehydes and ketones under mild reaction conditions. Moreover, compound 1 displayed chemoselective hydroboration of aldehydes over ketones at rt. PMID:27571142

  7. Copper-catalyzed intermolecular asymmetric propargylic dearomatization of indoles.

    PubMed

    Shao, Wen; Li, He; Liu, Chuan; Liu, Chen-Jiang; You, Shu-Li

    2015-06-22

    The first copper-catalyzed intermolecular dearomatization of indoles by an asymmetric propargylic substitution reaction was developed. This method provides a highly efficient synthesis of versatile furoindoline and pyrroloindoline derivatives containing a quaternary carbon stereogenic center and a terminal alkyne moiety with up to 86 % yield and 98 % ee. PMID:25968474

  8. Gold-catalyzed propargylic substitutions: Scope and synthetic developments

    PubMed Central

    Debleds, Olivier; Gayon, Eric; Vrancken, Emmanuel

    2011-01-01

    Summary This personal account summarizes our recent developments in gold-catalyzed direct substitutions on propargylic (allylic, benzylic) alcohols, with various nucleophiles (and bi-nucleophiles) based on the σ- and/or π-acidity of gold(III) complexes. Synthetic developments are also briefly described. PMID:21804883

  9. Palladium-Catalyzed N-Arylation of 2-Aminothiazoles

    PubMed Central

    McGowan, Meredeth A.; Henderson, Jaclyn L.

    2012-01-01

    A method for the Pd-catalyzed coupling of 2-aminothiazole derivatives with aryl bromides and triflates is described. Significantly, for this class of nucleophiles, the coupling exhibits a broad substrate scope and proceeds with a reasonable catalyst loading. Furthermore, an interesting effect of acetic acid as an additive is uncovered that facilitates catalyst activation. PMID:22394197

  10. Iron(II)-catalyzed autoxidation of a macrocyclic cobalt(II) complex

    SciTech Connect

    Marchaj, A.; Bakac, A.; Espenson, H. )

    1993-05-26

    The otherwise very slow reduction of O[sub 2] by Co(tim)[sup 2][sup +] (tim = 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene) in acidic aqueous media is efficiently catalyzed by iron(II) ions. The rate law shows first-order dependences on Co(tim)[sup 2][sup +], O[sub 2], and Fe[sup 2][sup +] but remains independent of halide and hydrogen ion concentrations. The catalytic autoxidation yields Co(tim)[sup 3][sup +] and involves the four-electron reduction of O[sub 2] as indicated by the stoichiometry, which is independent of the reagent in excess. Moreover, the reduction of oxygen to water clearly bypasses the stage in which Co(tim)[sup 2][sup +] would reduce hydrogen peroxide, since this independently known reaction leads to other products. The small deviations from the exact model proposed, more evident at the 340-nm isosbestic point for Co(tim)[sup 2][sup +] and Co(tim)[sup 3][sup +], arise from a minor side reaction. The chemistry of the system is consistent with the formation of [(tim)CoOOFe[sup 4][sup +

  11. Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions.

    PubMed

    Tanriver, Gamze; Dedeoglu, Burcu; Catak, Saron; Aviyente, Viktorya

    2016-06-21

    Remarkable progress in the area of asymmetric organocatalysis has been achieved in the last decades. Cinchona alkaloids and their derivatives have emerged as powerful organocatalysts owing to their reactivities leading to high enantioselectivities. The widespread usage of cinchona alkaloids has been attributed to their nontoxicity, ease of use, stability, cost effectiveness, recyclability, and practical utilization in industry. The presence of tunable functional groups enables cinchona alkaloids to catalyze a broad range of reactions. Excellent experimental studies have extensively contributed to this field, and highly selective reactions were catalyzed by cinchona alkaloids and their derivatives. Computational modeling has helped elucidate the mechanistic aspects of cinchona alkaloid catalyzed reactions as well as the origins of the selectivity they induce. These studies have complemented experimental work for the design of more efficient catalysts. This Account presents recent computational studies on cinchona alkaloid catalyzed organic reactions and the theoretical rationalizations behind their effectiveness and ability to induce selectivity. Valuable efforts to investigate the mechanisms of reactions catalyzed by cinchona alkaloids and the key aspects of the catalytic activity of cinchona alkaloids in reactions ranging from pharmaceutical to industrial applications are summarized. Quantum mechanics, particularly density functional theory (DFT), and molecular mechanics, including ONIOM, were used to rationalize experimental findings by providing mechanistic insights into reaction mechanisms. B3LYP with modest basis sets has been used in most of the studies; nonetheless, the energetics have been corrected with higher basis sets as well as functionals parametrized to include dispersion M05-2X, M06-2X, and M06-L and functionals with dispersion corrections. Since cinchona alkaloids catalyze reactions by forming complexes with substrates via hydrogen bonds and long

  12. Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions.

    PubMed

    Tanriver, Gamze; Dedeoglu, Burcu; Catak, Saron; Aviyente, Viktorya

    2016-06-21

    Remarkable progress in the area of asymmetric organocatalysis has been achieved in the last decades. Cinchona alkaloids and their derivatives have emerged as powerful organocatalysts owing to their reactivities leading to high enantioselectivities. The widespread usage of cinchona alkaloids has been attributed to their nontoxicity, ease of use, stability, cost effectiveness, recyclability, and practical utilization in industry. The presence of tunable functional groups enables cinchona alkaloids to catalyze a broad range of reactions. Excellent experimental studies have extensively contributed to this field, and highly selective reactions were catalyzed by cinchona alkaloids and their derivatives. Computational modeling has helped elucidate the mechanistic aspects of cinchona alkaloid catalyzed reactions as well as the origins of the selectivity they induce. These studies have complemented experimental work for the design of more efficient catalysts. This Account presents recent computational studies on cinchona alkaloid catalyzed organic reactions and the theoretical rationalizations behind their effectiveness and ability to induce selectivity. Valuable efforts to investigate the mechanisms of reactions catalyzed by cinchona alkaloids and the key aspects of the catalytic activity of cinchona alkaloids in reactions ranging from pharmaceutical to industrial applications are summarized. Quantum mechanics, particularly density functional theory (DFT), and molecular mechanics, including ONIOM, were used to rationalize experimental findings by providing mechanistic insights into reaction mechanisms. B3LYP with modest basis sets has been used in most of the studies; nonetheless, the energetics have been corrected with higher basis sets as well as functionals parametrized to include dispersion M05-2X, M06-2X, and M06-L and functionals with dispersion corrections. Since cinchona alkaloids catalyze reactions by forming complexes with substrates via hydrogen bonds and long

  13. Cascade reactions catalyzed by metal organic frameworks.

    PubMed

    Dhakshinamoorthy, Amarajothi; Garcia, Hermenegildo

    2014-09-01

    Cascade or tandem reactions where two or more individual reactions are carried out in one pot constitute a clear example of process intensification, targeting the maximization of spatial and temporal productivity with mobilization of minimum resources. In the case of catalytic reactions, cascade processes require bi-/multifunctional catalysts that contain different classes of active sites. Herein, we show that the features and properties of metal-organic frameworks (MOFs) make these solids very appropriate materials for the development of catalysts for cascade reactions. Due to composition and structure, MOFs can incorporate different types of sites at the metal nodes, organic linkers, or at the empty internal pores, allowing the flexible design and synthesis of multifunctional catalysts. After some introductory sections on the relevance of cascade reactions from the point of view of competitiveness, sustainability, and environmental friendliness, the main part of the text provides a comprehensive review of the literature reporting the use of MOFs as heterogeneous catalysts for cascade reactions including those that combine in different ways acid/base, oxidation/reduction, and metal-organic centers. The final section summarizes the current state of the art, indicating that the development of a first commercial synthesis of a high-added-value fine chemical will be a crucial milestone in this area.

  14. Copper-Catalyzed Cascade Substitution/Cyclization of N-Isocyanates: A Synthesis of 1-Aminobenzimidazolones.

    PubMed

    An, Jing; Alper, Howard; Beauchemin, André M

    2016-07-15

    A copper-catalyzed cascade reaction of in situ generated nitrogen-substituted isocyanates (N-isocyanates) and 2-iodoanilines has been developed. The cascade relies on the base-catalyzed substitution of masked N-isocyanates, followed by Cu(I)-catalyzed coupling to afford a variety of 1-aminobenzimidazolones in moderate to excellent yields. This is the first example of a transition-metal-catalyzed cascade reaction involving N-isocyanate intermediates. PMID:27341005

  15. Copper-Catalyzed Cascade Substitution/Cyclization of N-Isocyanates: A Synthesis of 1-Aminobenzimidazolones.

    PubMed

    An, Jing; Alper, Howard; Beauchemin, André M

    2016-07-15

    A copper-catalyzed cascade reaction of in situ generated nitrogen-substituted isocyanates (N-isocyanates) and 2-iodoanilines has been developed. The cascade relies on the base-catalyzed substitution of masked N-isocyanates, followed by Cu(I)-catalyzed coupling to afford a variety of 1-aminobenzimidazolones in moderate to excellent yields. This is the first example of a transition-metal-catalyzed cascade reaction involving N-isocyanate intermediates.

  16. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    ERIC Educational Resources Information Center

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  17. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    ERIC Educational Resources Information Center

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)

  18. Synthesis of hindered biphenyls by sequential non-transition metal-catalyzed reaction/palladium-catalyzed cross-couplings.

    PubMed

    He, Ping; Dong, Cheng-Guo; Hu, Qiao-Sheng

    2008-03-17

    The sequential reaction of 1,2-dihalobenzenes with aryl lithiums followed by palladium-catalyzed cross-coupling reactions with Grignard reagents and arylboronic acids is described. This sequential reaction provides a convenient and expeditious access to tri-ortho substituted biaryl derivatives.

  19. Green Reductive Homocoupling of Bromobenzene

    ERIC Educational Resources Information Center

    Ballard, C. Eric

    2011-01-01

    Although transition-metal-catalyzed reactions are important in contemporary organic chemistry, relatively few resources for the second-year organic chemistry curriculum discuss the subject. The inquiry-based experiment described here, an iron-catalyzed preparation of biphenyl from bromobenzene, introduces this topic. The reaction uses an…

  20. Aldehyde Reduction by Cytochrome P450

    PubMed Central

    Amunom, Immaculate; Srivastava, Sanjay; Prough, Russell A.

    2011-01-01

    This protocol describes the procedure for measuring the relative rates of metabolism of the α,β-unsaturated aldehydes, 9-anthracene aldehyde (9-AA) and 4-hydroxy-trans-2-nonenal (4-HNE); specifically the aldehyde reduction reactions of cytochrome P450s (CYPs). These assays can be performed using either liver microsomal or other tissue fractions, spherosome preparations of recombinant CYPs, or recombinant CYPs from other sources. The method used here to study the reduction of a model α,β-unsaturated aldehyde, 9-AA, by CYPs was adapted from the assay used to investigate 9-anthracene oxidation as reported by Marini et al. (Marini et al., 2003). For experiments measuring reduction of the endogenous aldehyde, 4-HNE, the substrate was incubated with CYP in the presence of oxygen and NADPH and the metabolites were separated by High Pressure Liquid Chromatograpy (HPLC), using an adaptation of the method of Srivastava et al. (Srivastava et al., 2010). For study of 9-AA and 4-HNE reduction, the first step involves incubation of the substrate with the CYP in appropriate media, followed by quantification of metabolites through either spectrofluorimetry or analysis by HPLC coupled with a radiometric assay, respectively. Metabolite identification can be achieved by HPLC GC-mass spectrometric analysis. Inhibitors of cytochrome P450 function can be utilized to show the role of the hemoprotein or other enzymes in these reduction reactions. The reduction reactions for CYP’s were not inhibited by either anaerobiosis or inclusion of CO in the gaseous phase of the reaction mixture. These character of these reactions are similar to those reported for some cytochrome P450-catalyzed azo reduction reactions. PMID:21553396

  1. Organic radicals for the enhancement of oxygen reduction reaction in Li-O2 batteries.

    PubMed

    Tesio, A Y; Blasi, D; Olivares-Marín, M; Ratera, I; Tonti, D; Veciana, J

    2015-12-25

    We examine for the first time the ability of inert carbon free-radicals as soluble redox mediators to catalyze and enhance the oxygen reduction reaction in a (TEGDME)-based electrolyte. We demonstrate that the tris(2,4,6-trichlorophenyl)methyl (TTM) radical is capable of chemically favoring the oxygen reduction reaction improving significantly the Li-O2 battery performance. PMID:26488114

  2. The Origin and Evolution of Ribonucleotide Reduction

    PubMed Central

    Lundin, Daniel; Berggren, Gustav; Logan, Derek T.; Sjöberg, Britt-Marie

    2015-01-01

    Ribonucleotide reduction is the only pathway for de novo synthesis of deoxyribonucleotides in extant organisms. This chemically demanding reaction, which proceeds via a carbon-centered free radical, is catalyzed by ribonucleotide reductase (RNR). The mechanism has been deemed unlikely to be catalyzed by a ribozyme, creating an enigma regarding how the building blocks for DNA were synthesized at the transition from RNA- to DNA-encoded genomes. While it is entirely possible that a different pathway was later replaced with the modern mechanism, here we explore the evolutionary and biochemical limits for an origin of the mechanism in the RNA + protein world and suggest a model for a prototypical ribonucleotide reductase (protoRNR). From the protoRNR evolved the ancestor to modern RNRs, the urRNR, which diversified into the modern three classes. Since the initial radical generation differs between the three modern classes, it is difficult to establish how it was generated in the urRNR. Here we suggest a model that is similar to the B12-dependent mechanism in modern class II RNRs. PMID:25734234

  3. A reductive coupling strategy towards ripostatin A

    PubMed Central

    Schleicher, Kristin D

    2013-01-01

    Summary Synthetic studies on the antibiotic natural product ripostatin A have been carried out with the aim to construct the C9−C10 bond by a nickel(0)-catalyzed coupling reaction of an enyne and an epoxide, followed by rearrangement of the resulting dienylcyclopropane intermediate to afford the skipped 1,4,7-triene. A cyclopropyl enyne fragment corresponding to C1−C9 has been synthesized in high yield and demonstrated to be a competent substrate for the nickel(0)-catalyzed coupling with a model epoxide. Several synthetic approaches toward the C10−C26 epoxide have been pursued. The C13 stereocenter can be set by allylation and reductive decyanation of a cyanohydrin acetonide. A mild, fluoride-promoted decarboxylation enables construction of the C15−C16 bond by an aldol reaction. The product of this transformation is of the correct oxidation state and potentially three steps removed from the targeted epoxide fragment. PMID:23946853

  4. Kinetics and thermodynamics of peroxidase- and laccase-catalyzed oxidation of N-substituted phenothiazines and phenoxazines.

    PubMed

    Kulys, J; Krikstopaitis, K; Ziemys, A

    2000-06-01

    Steady-state and single-turnover kinetics for the oxidation of the N-substituted phenothiazines (PTs) and phenoxazines (POs) catalyzed by fungal Coprinus cinereus peroxidase and Polyporus pinsitus laccase were investigated at pH 4-10. In the case of peroxidase, an apparent bimolecular rate constant (expressed as k(cat)/K(m)) varied from 1 x10(7)M(-1)s(-1) to 2.6 x 108 M(-1)s(-1) at pH 7.0. The constants for PO oxidation were higher in comparison to PT. pH dependence revealed two or three ionizable groups with pKa values of 4.9-5.7 and 7.7-9.7 that significantly affected the activity of peroxidase. Single-turnover experiments showed that the limiting step of PT oxidation was reduction of compound II and second-order rate constants were obtained which were consistent with the constants at steady-state conditions. Laccase-catalyzed PT and PO oxidation rates were lower; apparent bimolecular rate constants varied from 1.8x 10(5) M(-1) s(-1) to 2.0 x 10(7) M(-1) s(-1) at pH 5.3. PO constants were higher in comparison to PT, as was the case with peroxidase. The dependence of the apparent bimolecular constants of compound II or copper type 1 reduction, in the case of peroxidase or laccase, respectively, was analyzed in the framework of the Marcus outer-sphere electron-transfer theory. Peroxidase-catalyzed reactions with PT, as well as PO, fitted the same hyperbolic dependence with a maximal oxidation rate of 1.6 x 10(8)M(-1)s(-1) and a reorganization energy of 0.30 eV. The respective parameters for laccase were 5.0 x 10(7) M(-1) s(-1) and 0.29 eV.

  5. Brønsted Acid-Catalyzed Transfer Hydrogenation of Imines and Alkenes Using Cyclohexa-1,4-dienes as Dihydrogen Surrogates.

    PubMed

    Chatterjee, Indranil; Oestreich, Martin

    2016-05-20

    Cyclohexa-1,4-dienes are introduced to Brønsted acid-catalyzed transfer hydrogenation as an alternative to the widely used Hantzsch dihydropyridines. While these hydrocarbon-based dihydrogen surrogates do offer little advantage over established protocols in imine reduction as well as reductive amination, their use enables the previously unprecedented transfer hydrogenation of structurally and electronically unbiased 1,1-di- and trisubstituted alkenes. The mild procedure requires 5.0 mol % of Tf2NH, but the less acidic sulfonic acids TfOH and TsOH work equally well. PMID:27181437

  6. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine.

    PubMed

    McCue, Jeffrey M; Driscoll, William J; Mueller, Gregory P

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  7. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    SciTech Connect

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-11-01

    Cholera toxin catalyzes transfer of radiolabel from (/sup 32/P)NAD/sup +/ to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and (/sup 32/P)NAD/sup +/ caused radiolabeling of purified microtubule and intermediate filament proteins.

  8. Transition-metal-catalyzed C-S bond coupling reaction.

    PubMed

    Lee, Chin-Fa; Liu, Yi-Chen; Badsara, Satpal Singh

    2014-03-01

    Sulfur-containing molecules such as thioethers are commonly found in chemical biology, organic synthesis, and materials chemistry. While many reliable methods have been developed for preparing these compounds, harsh reaction conditions are usually required in the traditional methods. The transition metals have been applied in this field, and the palladium-catalyzed coupling of thiols with aryl halides and pseudo halides is one of the most important methods in the synthesis of thioethers. Other metals have also been used for the same purpose. Here, we summarize recent efforts in metal-catalyzed C-S bond cross-coupling reactions, focusing especially on the coupling of thiols with aryl- and vinyl halides based on different metals.

  9. GaCl3-catalyzed allenyne cycloisomerizations to allenenes.

    PubMed

    Lee, Sang Ick; Sim, So Hee; Kim, Soo Min; Kim, Kwang; Chung, Young Keun

    2006-09-01

    Cycloisomerizations of allenynes to allenenes have been studied in the presence of catalytic amounts of [Au(PPh3)]SbF6 in dichloromethane or GaCl3 in toluene. Both catalytic systems are quite effective for terminal 1,6-allenynes. However, they showed different reactivities toward allenynes with di-substituents at the allenic terminal carbon. For the GaCl3-catalyzed reactions, allenenes were obtained in reasonable to high yields. However, for a Au(I)-catalyzed reaction, a triene was obtained in a poor yield. Thus, GaCl3 serves as an effective catalyst for the cycloisomerization of allenynes bearing a terminal alkyne to give cyclic allenenes in reasonable to high yields. PMID:16930081

  10. Palladium-Catalyzed Arylation of Alkyl Sulfenate Anions.

    PubMed

    Jia, Tiezheng; Zhang, Mengnan; Jiang, Hui; Wang, Carol Y; Walsh, Patrick J

    2015-11-01

    A unique palladium-catalyzed arylation of alkyl sulfenate anions is introduced that affords aryl alkyl sulfoxides in high yields. Due to the base sensitivity of the starting sulfoxides, sulfenate anion intermediates, and alkyl aryl sulfoxide products, the use of a mild method to generate alkyl sulfenate anions was crucial to the success of this process. Thus, a fluoride triggered elimination strategy was employed with alkyl 2-(trimethylsilyl)ethyl sulfoxides to liberate the requisite alkyl sulfenate anion intermediates. In the presence of palladium catalysts with bulky monodentate phosphines (SPhos and Cy-CarPhos) and aryl bromides or chlorides, alkyl sulfenate anions were readily arylated. Moreover, the thermal fragmentation and the base promoted elimination of alkyl sulfoxides was overridden. The alkyl sulfenate anion arylation exhibited excellent chemoselectivity in the presence of functional groups, such as anilines and phenols, which are also known to undergo palladium catalyzed arylation reactions.

  11. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    SciTech Connect

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  12. Stereoselectivity in (Acyloxy)borane-Catalyzed Mukaiyama Aldol Reactions.

    PubMed

    Lee, Joshua M; Zhang, Xin; Norrby, Per-Ola; Helquist, Paul; Wiest, Olaf

    2016-07-01

    The origin of diastereo- and enantioselectivity in a Lewis acid-catalyzed Mukaiyama aldol reaction is investigated using a combination of dispersion corrected DFT calculations and transition state force fields (TSFF) developed using the quantum guided molecular mechanics (Q2MM) method. The reaction proceeds via a closed transition structure involving a nontraditional hydrogen bond that is 3.3 kJ/mol lower in energy than the corresponding open transition structure. The correct prediction of the diastereoselectivity of a Mukaiyama aldol reaction catalyzed by the conformationally flexible Yamamoto chiral (acyloxy) borane (CAB) requires extensive conformational sampling at the transition structure, which is achieved using a Q2MM-derived TSFF, followed by DFT calculations of the low energy conformational clusters. Finally, a conceptual model for the rationalization of the observed diastereo- and enantioselectivity of the reaction using a closed transition state model is proposed. PMID:27247023

  13. Actinide-Catalyzed Intermolecular Addition of Alcohols to Carbodiimides.

    PubMed

    Batrice, Rami J; Kefalidis, Christos E; Maron, Laurent; Eisen, Moris S

    2016-02-24

    The unprecedented actinide-catalyzed addition of alcohols to carbodiimides is presented. This represents a rare example of thorium-catalyzed transformations of an alcoholic substrate and the first example of uranium complexes showing catalytic reactivity with alcohols. Using the uranium and thorium amides U[N(SiMe3)2]3 and [(Me3Si)2N]2An[κ(2)-(N,C)-CH2Si(CH3)2N(SiMe3)] (An = Th or U), alcohol additions to unsaturated carbon-nitrogen bonds are achieved in short reaction times with excellent selectivities and high to excellent yields. Computational studies, supported by experimental thermodynamic data, suggest plausible models of the profile of the reaction which allow the system to overcome the high barrier of scission of the actinide-oxygen bond. Accompanied by experimentally determined kinetic parameters, a plausible mechanism is proposed for the catalytic cycle. PMID:26844823

  14. Effect of urate on the lactoperoxidase catalyzed oxidation of adrenaline.

    PubMed

    Løvstad, Rolf A

    2004-12-01

    Lactoperoxidase is an iron containing enzyme, which is an essential component of the defense system of mammalian secretary fluids. The enzyme readily oxidizes adrenaline and other catecholamines to coloured aminochrome products. A Km-value of 1.21 mM and a catalytic constant (k = Vmax/[Enz]) of 15.5 x 10(3) min(-1) characterized the reaction between lactoperoxidase and adrenaline at pH 7.4. Urate was found to activate the enzyme catalyzed oxidation of adrenaline in a competitive manner, the effect decreasing with increasing adrenaline concentration. Lactoperoxidase was able to catalyze the oxidation of urate. However, urate was a much poorer substrate than adrenaline, and it seems unlikely that urate activates by functioning as a free, redox cycling intermediate between enzyme and adrenaline. The activation mechanism probably involves an urate-lactoperoxidase complex.

  15. Copper-Catalyzed Intramolecular Oxidative Amination of Unactivated Internal Alkenes.

    PubMed

    Xiong, Peng; Xu, Fan; Qian, Xiang-Yang; Yohannes, Yared; Song, Jinshuai; Lu, Xin; Xu, Hai-Chao

    2016-03-18

    A copper-catalyzed oxidative amination of unactivated internal alkenes has been developed. The Wacker-type oxidative alkene amination reaction is traditionally catalyzed by a palladium through a mechanism involving aminopalladation and β-hydride elimination. Replacing the precious and scarce palladium with a cheap and abundant copper for this transformation has been challenging because of the difficulty associated with the aminocupration of internal alkenes. The combination of a simple copper salt, without additional ligand, as the catalyst and Dess-Martin periodinane as the oxidant, promotes efficiently the oxidative amination of allylic carbamates and ureas bearing di- and trisubstituted alkenes leading to oxazolidinones and imidazolidinones. Preliminary mechanistic studies suggested a hybrid radical-organometallic mechanism involving an amidyl radical cyclization to form the key C-N bond.

  16. The catalyzing role of PPDK in Giardia lamblia.

    PubMed

    Feng, Xian-Min; Cao, Li-Jing; Adam, Rodney D; Zhang, Xi-Chen; Lu, Si-Qi

    2008-03-01

    Giardia lamblia is an early branching eukaryotic microorganism that derives its metabolic energy primarily from anaerobic glycolysis. In most organisms, glycolysis is catalyzed by pyruvate kinase (PK), allowing the generation of two ATP molecules from one molecule of pyruvate. Giardia has both PK and pyrophosphate-dependent pyruvate phosphate dikinase (PPDK), which catalyzes the generation of five ATP molecules from pyruvate by pyrophosphate-dependent glycolysis and offers a potential selective advantage. In order to evaluate the importance of pyrophosphate-dependent glycolysis, we used ribozyme-mediated cleavage of the PPDK transcript to decrease PPDK transcript levels to 20% of normal. The accompanying decrease in PPDK enzyme activity decreased ATP levels to 3% of normal and increased glycogen deposition, confirming the importance pyrophosphate-mediated glycolysis that was previously suggested by cell lysate studies. PPDK is not found in vertebrates, so specific inhibitors may be useful for treatment of infections caused by anaerobic protists that depend on pyrophosphate-dependent glycolysis.

  17. Cross-ligation and exchange reactions catalyzed by hairpin ribozymes.

    PubMed Central

    Komatsu, Y; Koizumi, M; Sekiguchi, A; Ohtsuka, E

    1993-01-01

    The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site. Images PMID:8441626

  18. Copper-catalyzed divergent kinetic resolution of racemic allylic substrates.

    PubMed

    Pineschi, Mauro; Di Bussolo, Valeria; Crotti, Paolo

    2011-10-01

    When a racemic mixture is fully consumed the products may still be enantiomerically enriched. In particular, the regiodivergent kinetic resolution is a process in which a single chiral catalyst or reagent reacts with a racemic substrate to form regioisomers possessing an opposite configuration on the newly-formed stereogenic centers. This review reports the major advances in the field of the copper-catalyzed regiodivergent and stereodivergent kinetic resolution of allylic substrates with organometallic reagents. The chiral recognition matching phenomena found with particular allylic substrates with the absolute configuration of the chiral catalyst allows in some cases an excellent control of the regio- and stereoselectivity, sheding some light on the so-called "black-box" mechanism of a copper-catalyzed asymmetric allylic alkylation. PMID:21837639

  19. Iron-catalyzed diboration and carboboration of alkynes.

    PubMed

    Nakagawa, Naohisa; Hatakeyama, Takuji; Nakamura, Masaharu

    2015-03-01

    An iron-catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis-1,2-diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron-catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates.

  20. Scandium(III)-catalyzed enantioselective allylation of isatins using allylsilanes.

    PubMed

    Hanhan, Nadine V; Tang, Yng C; Tran, Ngon T; Franz, Annaliese K

    2012-05-01

    The scandium(III)-catalyzed enantioselective Hosomi-Sakurai allylation of isatins with various substituted allylic silanes is described. A catalyst loading as low as 0.05 mol % is utilized at room temperature to afford the 3-allyl-3-hydroxy-2-oxindoles in excellent yields and enantioselectivity up to 99% ee, including a demonstration of a gram-scale reaction. The effects of additives and varying silyl groups were explored to demonstrate the scope and application.

  1. Gold-catalyzed homogeneous oxidative cross-coupling reactions.

    PubMed

    Zhang, Guozhu; Peng, Yu; Cui, Li; Zhang, Liming

    2009-01-01

    Oxidizing gold? A gold(I)/gold(III) catalytic cycle is essential for the first oxidative cross-coupling reaction in gold catalysis. By using Selectfluor for gold(I) oxidation, this chemistry reveals the synthetic potential of incorporating gold(I)/gold(III) catalytic cycles into contemporary gold chemistry and promises a new area of gold research by merging powerful gold catalysis and oxidative metal-catalyzed cross-coupling reactions.

  2. Metal-catalyzed annulation reactions for π-conjugated polycycles.

    PubMed

    Jin, Tienan; Zhao, Jian; Asao, Naoki; Yamamoto, Yoshinori

    2014-03-24

    The progress of the metal-catalyzed annulation reactions toward construction of various π-conjugated polycyclic cores with high conjugation extension is described. This article gives a brief overview of various annulation reactions promoted by metal catalysts including C-H bond functionalization, [2+2+2] cycloaddition, cascade processes, ring closing metathesis, electrophilic aromatization, and various cross-coupling reactions. A variety of conjugated polycycles with planar, bowl-shaped, and helical structures have been constructed in high efficiency and selectivity.

  3. Gold-catalyzed oxidative cycloadditions to activate a quinoline framework.

    PubMed

    Huple, Deepak B; Ghorpade, Satish; Liu, Rai-Shung

    2013-09-23

    Going for gold! Gold-catalyzed reactions of 3,5- and 3,6-dienynes with 8-alkylquinoline oxides results in an oxidative cycloaddition with high stereospecificity (see scheme; EWG = electron-withdrawing group); this process involves a catalytic activation of a quinoline framework. The reaction mechanism involves the intermediacy of α-carbonyl pyridinium ylides (I) in a concerted [3+2]-cycloaddition with a tethered alkene.

  4. Tandem Difluoroalkylation-Arylation of Enamides Catalyzed by Nickel.

    PubMed

    Gu, Ji-Wei; Min, Qiao-Qiao; Yu, Ling-Chao; Zhang, Xingang

    2016-09-26

    A nickel-catalyzed three-component reaction for the synthesis of difluoroalkylated compounds through tandem difluoroalkylation-arylation of enamides has been developed. The reaction tolerates a variety of arylboronic acids and widely available difluoroalkyl bromides, and even the relatively inert substrate chlorodifluoroacetate. The significant advantages of this protocol are the low-cost nickel catalyst, synthetic convenience, excellent functional-group compatibility and high reaction efficiency. PMID:27605485

  5. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    PubMed Central

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  6. Palladium Catalyzed Intramolecular Acylcyanation of Alkenes Using α-Iminonitriles

    PubMed Central

    Rondla, Naveen R.; Ogilvie, Jodi M.; Pan, Zhongda

    2014-01-01

    Reported here is a palladium catalyzed intramolecular acylcyanation of alkenes using α-iminonitriles. Through this method, highly functionalized indanones are synthesized in moderate to high yields using Pd(PPh3)4, without need for any additional ligands, and a common Lewis acid (ZnCl2). Additionally, the reaction tolerates substitution at various positions on the aromatic ring including electron donating, and electron withdrawing groups. PMID:24980625

  7. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    PubMed

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer.

  8. Copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols.

    PubMed

    Lei, Jian; Liu, Xiaowu; Zhang, Shaolin; Jiang, Shuang; Huang, Minhao; Wu, Xiaoxing; Zhu, Qiang

    2015-04-27

    An efficient copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols with Togni's reagent has been developed. This strategy, accompanied by a double-bond migration, leads to various branched CF3-substituted alcohols by using readily available trisubstituted cyclic/acyclic alcohols as substrates. Moreover, for alcohols in which β-H elimination is prohibited, CF3-containing oxetanes are isolated as the sole product. PMID:25810003

  9. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions.

  10. Biaryl Phosphine Ligands in Palladium-Catalyzed Amination

    PubMed Central

    Surry, David S.

    2012-01-01

    Palladium-catalyzed amination of aryl halides has undergone rapid development in the last 12 years. This has been largely driven by implementation of new classes of ligands. Biaryl phosphines have proven to provide especially active catalysts in this context. This review discusses the applications that these catalysts have found in C-N cross-coupling in heterocycle synthesis, pharmaceuticals, materials science and natural product synthesis. PMID:18663711

  11. Lactoperoxidase-catalyzed activation of carcinogenic aromatic and heterocyclic amines.

    PubMed

    Gorlewska-Roberts, Katarzyna M; Teitel, Candee H; Lay, Jackson O; Roberts, Dean W; Kadlubar, Fred F

    2004-12-01

    Lactoperoxidase, an enzyme secreted from the human mammary gland, plays a host defensive role through antimicrobial activity. It has been implicated in mutagenic and carcinogenic activation in the human mammary gland. The potential role of heterocyclic and aromatic amines in the etiology of breast cancer led us to examination of the lactoperoxidase-catalyzed activation of the most commonly studied arylamine carcinogens: 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP), benzidine, 4-aminobiphenyl (ABP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). In vitro activation was performed with lactoperoxidase (partially purified from bovine milk or human milk) in the presence of hydrogen peroxide and calf thymus DNA. Products formed during enzymatic activation were monitored by HPLC with ultraviolet and radiometric detection. Two of these products were characterized as hydrazo and azo derivatives by means of mass spectrometry. The DNA binding level of 3H- and 14C-radiolabeled amines after peroxidase-catalyzed activation was dependent on the hydrogen peroxide concentration, and the highest levels of carcinogen binding to DNA were observed at 100 microM H2O2. Carcinogen activation and the level of binding to DNA were in the order of benzidine > ABP > IQ > MeIQx > PhIP. One of the ABP adducts was identified, and the level at which it is formed was estimated to be six adducts/10(5) nucleotides. The susceptibility of aromatic and heterocyclic amines for lactoperoxidase-catalyzed activation and the binding levels of activated products to DNA suggest a potential role of lactoperoxidase-catalyzed activation of carcinogens in the etiology of breast cancer.

  12. The gravitino-stau scenario after catalyzed big bang nucleosynthesis

    SciTech Connect

    Kersten, Joern; Schmidt-Hoberg, Kai E-mail: kai.schmidt-hoberg@ph.tum.de

    2008-01-15

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m{sub 1/2}. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.

  13. Synthesis of Aryldifluoroamides by Copper-Catalyzed Cross-Coupling.

    PubMed

    Arlow, Sophie I; Hartwig, John F

    2016-03-24

    A copper-catalyzed coupling of aryl, heteroaryl, and vinyl iodides with α-silyldifluoroamides is reported. The reaction forms α,α-difluoro-α-aryl amides from electron-rich, electron-poor, and sterically hindered aryl iodides in high yield and tolerates a variety of functional groups. The aryldifluoroamide products can be transformed further to provide access to a diverse array of difluoroalkylarenes, including compounds of potential biological interest. PMID:26929068

  14. Copper bronze catalyzed Heck reaction in ionic liquids.

    PubMed

    Calò, Vincenzo; Nacci, Angelo; Monopoli, Antonio; Ieva, Eliana; Cioffi, Nicola

    2005-02-17

    Heck reaction of aryl iodides and activated aryl bromides catalyzed by copper bronze in tetrabutylammonium bromide as solvent and tetrabutylammonium acetate as base was developed. The effective catalysts are Cu nanoparticles deriving from the reaction of iodobenzene with copper bronze. These nanoparticles are very stable in tetraalkylammonium salts, are easily recycled, and can be stored for months without a loss of catalytic efficiency. [reaction: see text

  15. Rh catalyzed olefination and vinylation of unactivated acetanilides.

    PubMed

    Patureau, Frederic W; Glorius, Frank

    2010-07-28

    In the catalyzed oxidative olefination of acetanilides (oxidative-Heck coupling), Rh offers great advantages over more common Pd catalysts. Lower catalyst loadings, large functional group tolerance (in particular to halides), and higher reactivity of electron-neutral olefins (styrenes) are some of the attractive features. Most interestingly, even ethylene reacts to yield the corresponding acetanilido-styrene. Moreover, the Cu(II) oxidant can also be utilized in catalytic amounts with air serving as the terminal oxidant. PMID:20593901

  16. Gold-catalyzed cyclization of allenyl acetal derivatives

    PubMed Central

    Vasu, Dhananjayan; Pawar, Samir Kundlik

    2013-01-01

    Summary The gold-catalyzed transformation of allenyl acetals into 5-alkylidenecyclopent-2-en-1-ones is described. The outcome of our deuterium labeling experiments supports a 1,4-hydride shift of the resulting allyl cationic intermediates because a complete deuterium transfer is observed. We tested the reaction on various acetal substrates bearing a propargyl acetate, giving 4-methoxy-5-alkylidenecyclopent-2-en-1-ones 4 via a degradation of the acetate group at the allyl cation intermediate. PMID:24062838

  17. Bi(OTf)3-Catalyzed Multicomponent α-Amidoalkylation Reactions.

    PubMed

    Schneider, Angelika E; Manolikakes, Georg

    2015-06-19

    A bismuth(III) triflate catalyzed three-component synthesis of α-substituted amides starting from amides, aldehydes, and (hetero)arenes is reported. The reaction has a broad substrate scope, encompassing formaldehyde as well as aryl and alkyl aldehydes. Low catalyst loadings are required, and water is formed as the only side product. The scope and limitation of this method will be discussed. PMID:25996906

  18. Synthesis of Graphite Encapsulated Metal Nanoparticles and Metal Catalyzed Nanotubes

    NASA Technical Reports Server (NTRS)

    vanderWal, R. L.; Dravid, V. P.

    1999-01-01

    This work focuses on the growth and inception of graphite encapsulated metal nanoparticles and metal catalyzed nanotubes using combustion chemistry. Deciphering the inception and growth mechanism(s) for these unique nanostructures is essential for purposeful synthesis. Detailed knowledge of these mechanism(s) may yield insights into alternative synthesis pathways or provide data on unfavorable conditions. Production of these materials is highly desirable given many promising technological applications.

  19. Copper-Catalyzed Perfluoroalkylthiolation of Alkynes with Perfluoroalkanesulfenamides.

    PubMed

    Tlili, Anis; Alazet, Sébastien; Glenadel, Quentin; Billard, Thierry

    2016-07-11

    Copper-catalyzed direct perfluoroalkylthiolation of alkynes by using the corresponding perfluoroalkanesulfenamide reagent is reported. The selective mono- and bis-perfluoroalkylthiolation of alkynes can be conducted under very mild conditions (no base, room temperature) in very good to excellent yields. This approach, which uses a low toxicity, inexpensive copper catalyst that incorporates a commercially available ligand, is applied in the absence of any additional base. Preliminary mechanistic investigations shed some light on the nature of the unprecedented reactivity observed. PMID:27334703

  20. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions. PMID:26699516

  1. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents.

    PubMed

    Shrestha, Bijay; Giri, Ramesh

    2015-01-01

    We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N',N'-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  2. Iron-catalyzed aromatic amination for nonsymmetrical triarylamine synthesis.

    PubMed

    Hatakeyama, Takuji; Imayoshi, Ryuji; Yoshimoto, Yuya; Ghorai, Sujit K; Jin, Masayoshi; Takaya, Hikaru; Norisuye, Kazuhiro; Sohrin, Yoshiki; Nakamura, Masaharu

    2012-12-19

    Novel iron-catalyzed amination reactions of various aryl bromides have been developed for the synthesis of diaryl- and triarylamines. The key to the success of this protocol is the use of in situ generated magnesium amides in the presence of a lithium halide, which dramatically increases the product yield. The present method is simple and free of precious and expensive metals and ligands, thus providing a facile route to triarylamines, a recurrent core unit in organic electronic materials as well as pharmaceuticals.

  3. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    PubMed

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer. PMID:27218801

  4. Carrier gas effects on aluminum-catalyzed nanowire growth

    NASA Astrophysics Data System (ADS)

    Ke, Yue; Hainey, Mel, Jr.; Won, Dongjin; Weng, Xiaojun; Eichfeld, Sarah M.; Redwing, Joan M.

    2016-04-01

    Aluminum-catalyzed silicon nanowire growth under low-pressure chemical vapor deposition conditions requires higher reactor pressures than gold-catalyzed growth, but the reasons for this difference are not well understood. In this study, the effects of reactor pressure and hydrogen partial pressure on silicon nanowire growth using an aluminum catalyst were studied by growing nanowires in hydrogen and hydrogen/nitrogen carrier gas mixtures at different total reactor pressures. Nanowires grown in the nitrogen/hydrogen mixture have faceted catalyst droplet tips, minimal evidence of aluminum diffusion from the tip down the nanowire sidewalls, and significant vapor-solid deposition of silicon on the sidewalls. In comparison, wires grown in pure hydrogen show less well-defined tips, evidence of aluminum diffusion down the nanowire sidewalls at increasing reactor pressures and reduced vapor-solid deposition of silicon on the sidewalls. The results are explained in terms of a model wherein the hydrogen partial pressure plays a critical role in aluminum-catalyzed nanowire growth by controlling hydrogen termination of the silicon nanowire sidewalls. For a given reactor pressure, increased hydrogen partial pressures increase the extent of hydrogen termination of the sidewalls which suppresses SiH4 adsorption thereby reducing vapor-solid deposition of silicon but increases the surface diffusion length of aluminum. Conversely, lower hydrogen partial pressures reduce the hydrogen termination and also increase the extent of SiH4 gas phase decomposition, shifting the nanowire growth window to lower growth temperatures and silane partial pressures.

  5. Anisotropic Morphological Changes in Goethite during Fe(2+)-Catalyzed Recrystallization.

    PubMed

    Joshi, Prachi; Gorski, Christopher A

    2016-07-19

    When goethite is exposed to aqueous Fe(2+), rapid and extensive Fe atom exchange can occur between solid-phase Fe(3+) and aqueous Fe(2+) in a process referred to as Fe(2+)-catalyzed recrystallization. This process can lead to the structural incorporation or release of trace elements, which has important implications for contaminant remediation and nutrient biogeochemical cycling. Prior work found that the process did not cause major changes to the goethite structure or morphology. Here, we further investigated if and how goethite morphology and aggregation behavior changed temporally during Fe(2+)-catalyzed recrystallization. On the basis of existing literature, we hypothesized that Fe(2+)-catalyzed recrystallization of goethite would not result in changes to individual particle morphology or interparticle interactions. To test this, we reacted nanoparticulate goethite with aqueous Fe(2+) at pH 7.5 over 30 days and used transmission electron microscopy (TEM), cryogenic TEM, and (55)Fe as an isotope tracer to observe changes in particle dimensions, aggregation, and isotopic composition over time. Over the course of 30 days, the goethite particles substantially recrystallized, and the particle dimensions changed anisotropically, resulting in a preferential increase in the mean particle width. The temporal changes in goethite morphology could not be completely explained by a single mineral-transformation mechanism but rather indicated that multiple transformation mechanisms occurred concurrently. Collectively, these results demonstrate that the morphology of goethite nanoparticles does change during recrystallization, which is an important step toward identifying the driving force(s) of recrystallization.

  6. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    PubMed

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  7. Protection of Wood from Microorganisms by Laccase-Catalyzed Iodination

    PubMed Central

    Engel, J.; Thöny-Meyer, L.; Schwarze, F. W. M. R.; Ihssen, J.

    2012-01-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I−) to iodine (I2) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  8. Stau-catalyzed big-bang nucleosynthesis reactions

    SciTech Connect

    Kamimura, Masayasu; Kino, Yasushi; Hiyama, Emiko

    2010-06-01

    We study the new type of big-bang nucleosynthesis (BBN) reactions that are catalyzed by a hypothetical long-lived negatively charged, massive leptonic particle (called X{sup -}) such as the supersymmetric (SUSY) particle stau, the scalar partner of the tau lepton. It is known that if the X{sup -} particle has a lifetime of tau{sub X} > or approx. 10{sup 3} s, it can capture a light element previously synthesized in standard BBN and form a Coulombic bound state and induces various types of reactions in which X{sup -} acts as a catalyst. Some of these X{sup -} catalyzed reactions have significantly large cross sections so that the inclusion of the reactions into the BBN network calculation can markedly change the abundances of some elements. We use a high-accuracy three-body calculation method developed by the authors and provide precise cross sections and rates of these catalyzed BBN reactions for use in the BBN network calculation.

  9. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    NASA Astrophysics Data System (ADS)

    Hainey, Mel F.; Redwing, Joan M.

    2016-12-01

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  10. Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene

    SciTech Connect

    Xu, Songchen; Boschen, Jeffery S.; Biswas, Abhranil; Kobayashi, Takeshi; Pruski, Marek; Windus, Theresa L.; Sadow, Aaron D.

    2015-08-17

    An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ³-N,Si,C-PhB(OxMe²)(OxMe²SiHPh)ImMes}Rh(H)CO][HB(C₆F₅)₃] (2, OxMe² = 4,4-dimethyl-2-oxazoline; ImMes = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(OxMe²)₂ImMes}RhH(SiH2Ph)CO (1) and B(C6F5)3. The unusual oxazoline-coordinated silylene structure in 2 is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(OxMe²)₂ImMes}RhH(SiHPh)CO][HB(C₆F₅)₃] generated by H abstraction. Complex 2 catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced by the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenation of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C₆F₅)₃ catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH₃ as the reducing agent.

  11. Computational study of gold-catalyzed homo- and cross-coupling reactions.

    PubMed

    Nieto Faza, Olalla; Silva López, Carlos

    2013-05-17

    The role of gold as the organizing metal in homo- and cross-coupling reactions is explored in this paper combining DFT calculations with QTAIM, NBO, and the energetic span model analysis. For the gold(III) complex 7, a key intermediate in the experimental oxidative coupling scheme by Zhang et al., we describe the mechanisms corresponding to a cross-coupling after transmetalation with boron compounds and to a homocoupling after transmetalation with the original gold(I) complex 6, a new example of dual role of this metal in homogeneous catalysis. We predict for the first path a two-step transmetalation with a low energy rate-limiting step characterized by a four-center transition structure, where fluorine plays an essential role, followed by a reductive elimination where the C-C bond formation is coupled to the departure of fluorine from the gold center. The homocoupling path follows a similar mechanism, with a two-step transmetalation with interesting changes in bonding around the Au(I) center and a rate-limiting reductive elimination. Our findings on the competition between mechanisms, and the effect of ligands and solvent, agree with the experimental results and provide new insights into the mechanism of gold-catalyzed cross-coupling reactions. PMID:23597253

  12. Cobalt-Catalyzed C(sp(2))-H Borylation: Mechanistic Insights Inspire Catalyst Design.

    PubMed

    Obligacion, Jennifer V; Semproni, Scott P; Pappas, Iraklis; Chirik, Paul J

    2016-08-24

    A comprehensive study into the mechanism of bis(phosphino)pyridine (PNP) cobalt-catalyzed C-H borylation of 2,6-lutidine using B2Pin2 (Pin = pinacolate) has been conducted. The experimentally observed rate law, deuterium kinetic isotope effects, and identification of the catalyst resting state support turnover limiting C-H activation from a fully characterized cobalt(I) boryl intermediate. Monitoring the catalytic reaction as a function of time revealed that borylation of the 4-position of the pincer in the cobalt catalyst was faster than arene borylation. Cyclic voltammetry established the electron withdrawing influence of 4-BPin, which slows the rate of C-H oxidative addition and hence overall catalytic turnover. This mechanistic insight inspired the next generation of 4-substituted PNP cobalt catalysts with electron donating and sterically blocking methyl and pyrrolidinyl substituents that exhibited increased activity for the C-H borylation of unactivated arenes. The rationally designed catalysts promote effective turnover with stoichiometric quantities of arene substrate and B2Pin2. Kinetic studies on the improved catalyst, 4-(H)2BPin, established a change in turnover limiting step from C-H oxidative addition to C-B reductive elimination. The iridium congener of the optimized cobalt catalyst, 6-(H)2BPin, was prepared and crystallographically characterized and proved inactive for C-H borylation, a result of the high kinetic barrier for reductive elimination from octahedral Ir(III) complexes. PMID:27476954

  13. Xanthine oxidase-catalyzed metabolism of 2-nitrofluorene, a carcinogenic air pollutant, in rat skin.

    PubMed

    Ueda, Osamu; Kitamura, Shigeyuki; Ohashi, Koji; Sugihara, Kazumi; Ohta, Shigeru

    2003-04-01

    The reductive metabolism of 2-nitrofluorene, a carcinogenic air pollutant, in rat skin microsomes and cytosol was investigated. 2-Nitrofluorene was reduced to the corresponding amine by the microsomes with NADPH and by the cytosol with 2-hydroxypyrimidine or 4-hydroxypyrimidine under anaerobic conditions. The cytosolic activity was much higher than that of skin microsomes. The 2- or 4-hydroxypyrimidine-linked nitroreductase activity was inhibited by oxypurinol and (+/-)-8-(3-methoxy-4-phenylsulfinylphenyl) pyrazolo[1,5-a]-1,3,5-triazine-4(1H)-one (BOF-4272), inhibitors of xanthine oxidase, but not by menadione, chlorpromazine and isovanillin, inhibitors of aldehyde oxidase. When skin cytosol was applied to a DEAE-cellulose column, the fractions containing xanthine oxidase exhibited a marked 2-hydroxypyrimidine-linked nitroreductase activity. In contrast, the aldehyde oxidase fraction showed little activity. Nitroreductase fractions obtained by ion exchange chromatography showed a band in Western blotting analysis using anti-rat xanthine oxidase. Moreover, the xanthine oxidase fraction exhibited a significant nitroreductase activity in the presence of 2-hydroxypyrimidine, 4-hydroxypyrimidine or hypoxanthine, and these activities were inhibited by inhibitors of xanthine oxidase. These results indicated that reduction of 2-nitrofluorene in the skin was mainly catalyzed by xanthine oxidase. PMID:12642461

  14. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  15. Gold-catalyzed cyclization reactions of allenol and alkynol derivatives.

    PubMed

    Alcaide, Benito; Almendros, Pedro

    2014-03-18

    Although gold is chemically inert as a bulk metal, the landmark discovery that gold nanoparticles can be effective catalysts has opened up new and exciting research opportunities in the field. In recent years, there has been growth in the number of reactions catalyzed by gold complexes [gold(I) and gold(III)], usually as homogeneous catalysts, because they are soft Lewis acids. In addition, alkynes and allenes have interesting reactivities and selectivities, notably their ability to produce complex structures in very few steps. In this Account, we describe our work in gold catalysis with a focus on the formation of C-C and C-O bonds using allenes and alkynes as starting materials. Of these, oxa- and carbo-cyclizations are perhaps the best known and most frequently studied. We have divided those contributions into sections arranged according to the nature of the starting material (allene versus alkyne). Gold-catalyzed carbocyclizations in allenyl C2-linked indoles, allenyl-β-lactams, and allenyl sugars follow different mechanistic pathways. The cyclization of indole-tethered allenols results in the efficient synthesis of carbazole derivatives, for example. However, the compound produced from gold-catalyzed 9-endo carbocyclization of (aryloxy)allenyl-tethered 2-azetidinones is in noticeable contrast to the 5-exo hydroalkylation product that results from allenyl sugars. We have illustrated the unusual preference for the 4-exo-dig cyclization in allene chemistry, as well as the rare β-hydride elimination reaction, in gold catalysis from readily available α-allenols. We have also observed in γ-allenols that a (methoxymethyl)oxy protecting group not only masks a hydroxyl functionality but also exerts directing effects as a controlling unit in a gold-catalyzed regioselectivity reversal. Our recent work has also led to a combined experimental and computational study on regioselective gold-catalyzed synthetic routes to 1,3-oxazinan-2-ones (kinetically controlled

  16. Catalytic Radical Reduction in Aqueous Solution by a Ruthenium Hydride Intermediate.

    PubMed

    Htet, Yamin; Tennyson, Andrew G

    2016-07-18

    Some manganese complexes can catalyze both antioxidant and pro-oxidant reactions, whereby the disparate reactivity modes are determined by the catalyst environment and afford distinct therapeutic effects. We recently reported the reduction of radicals in buffered aqueous solution catalyzed by a ruthenium complex with biologically relevant non-tertiary alcohols as terminal reductants. Mechanistic evidence is presented, indicating that this catalytic radical reduction is achieved by a Ru-hydride intermediate formed by β-hydride elimination from a Ru-alkoxide species. A similar mechanism and Ru-hydride intermediate was previously reported to kill cancer cells with catalytic pro-oxidant effects. Therefore, our demonstration of catalytic antioxidant effects by the same type of intermediate reveals new potential therapeutic strategies and applications for catalytic systems that form Ru-hydride intermediates. PMID:27254303

  17. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    SciTech Connect

    Bertrand, Guy

    2012-06-29

    high temperatures and long reaction times. To address this issue, we have developed several new families of carbon- and boron-based ligands, which are even better donors. The corresponding metal complexes (particularly gold, rhodium, iridium, and ruthenium) of all these species will be tested in the Markovnikov and anti-Markovnikov hydroamination of alkynes, allenes, and also alkenes with ammonia and hydrazine. We will also develop metal-free catalytic processes for the functionalization of ammonia and hydrazine. By possessing both a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble and can mimic the chemical behavior of transition metals. Our preliminary results demonstrate that specially designed carbenes can split the N–H bond of ammonia by an initial nucleophilic activation that prevents the formation of Lewis acid-base adducts, which is the major hurdle for the transition metal catalyzed functionalization of NH3. The use of purely organic compounds as catalysts will eliminate the major drawbacks of transition-metal-catalysis technology, which are the excessive cost of metal complexes (metal + ligands) and in many cases the toxicity of the metal.

  18. MCNP variance reduction overview

    SciTech Connect

    Hendricks, J.S.; Booth, T.E.

    1985-01-01

    The MCNP code is rich in variance reduction features. Standard variance reduction methods found in most Monte Carlo codes are available as well as a number of methods unique to MCNP. We discuss the variance reduction features presently in MCNP as well as new ones under study for possible inclusion in future versions of the code.

  19. Multicomponent redox catalysts for reduction of large biological molecules using molecular hydrogen as the reductant

    SciTech Connect

    Chao, S.; Simon, R.A.; Mallouk, T.E.; Wrighton, M.S.

    1988-03-30

    One-electron reduction of the large biological molecules horse heart cytochrome c, sperm whale myoglobin, and horseradish peroxidase using H/sub 2/ as the reductant can be catalyzed by two-component, high surface area heterogeneous catalysts. The catalysts can be prepared by first functionalizing high surface area SiO/sub 2/ with a polycationic polymer into which is dispersed MCl/sub 4//sup 2 -/ (M = Pd, Pt). Reduction with H/sub 2/ yields elemental Pd or Pt dispersed in the polymer. The particles are finally functionalized with a redox polymer derived from hydrolysis of Si(OR)/sub 3/ groups of an N,N'-dialkyl-4,4'-bipyridinium- or from a cobalticenium-based monomer. The two components of the heterogeneous catalysts are the buried noble metal capable of activating the H/sub 2/ and the redox polymer, which can equilibrate both with the noble metal and with the large biological molecule. Reduction of the large biological molecules in aqueous solution can be effected at room temperature and 1 atm H/sub 2/ using the catalysts under conditions where the biological materials would not be reducible with H/sub 2/ alone or when the noble metal alone would be used as the catalyst.

  20. Experimental and density functional theoretical investigations of linkage isomerism in six-coordinate FeNO(6) iron porphyrins with axial nitrosyl and nitro ligands.

    PubMed

    Novozhilova, Irina V; Coppens, Philip; Lee, Jonghyuk; Richter-Addo, George B; Bagley, Kimberly A

    2006-02-15

    A critical component of the biological activity of NO and nitrite involves their coordination to the iron center in heme proteins. Irradiation (330 < lambda < 500 nm) of the nitrosyl-nitro compound (TPP)Fe(NO)(NO(2)) (TPP = tetraphenylporphyrinato dianion) at 11 K results in changes in the IR spectrum associated with both nitro-to-nitrito and nitrosyl-to-isonitrosyl linkage isomerism. Only the nitro-to-nitrito linkage isomer is obtained at 200 K, indicating that the isonitrosyl linkage isomer is less stable than the nitrito linkage isomer. DFT calculations reveal two ground-state conformations of (porphine)Fe(NO)(NO(2)) that differ in the relative axial ligand orientations (i.e., GS parallel and GS perpendicular). In both conformations, the FeNO group is bent (156.4 degrees for GS parallel, 159.8 degrees for GS perpendicular) for this formally {FeNO}(6) compound. Three conformations of the nitrosyl-nitrito isomer (porphine)Fe(NO)(ONO) (MSa parallel, MSa perpendicular, and MSa(L)) and two conformations of the isonitrosyl-nitro isomer (porphine)Fe(ON)(NO(2)) (MSb parallel and MSb perpendicular) are identified, as are three conformations of the double-linkage isomer (porphine)Fe(ON)(ONO) (MSc parallel, MSc perpendicular, MSc(L)). Only 2 of the 10 optimized geometries contain near-linear FeNO (MSa(L)) and FeON (MSc(L)) bonds. The energies of the ground-state and isomeric structures increase in the order GS < MSa < MSb < MSc. Vibrational frequencies for all of the linkage isomers have been calculated, and the theoretical gas-phase absorption spectrum of (porphine)Fe(NO)(NO(2)) has been analyzed to obtain information on the electronic transitions responsible for the linkage isomerization. Comparison of the experimental and theoretical IR spectra does not provide evidence for the existence of a double linkage isomer of (TPP)Fe(NO)(NO(2)).

  1. Co-ordination of iron acquisition, iron porphyrin chelation and iron-protoporphyrin export via the cytochrome c biogenesis protein CcmC in Pseudomonas fluorescens.

    PubMed

    Baysse, Christine; Matthijs, Sandra; Schobert, Max; Layer, Gunhild; Jahn, Dieter; Cornelis, Pierre

    2003-12-01

    The cytoplasmic membrane protein CcmC is, together with other Ccm proteins, a component for the maturation of c-type cytochromes in Gram-negative bacteria. A Pseudomonas fluorescens ATCC 17400 ccmC mutant is cytochrome c-deficient and shows considerably reduced production of the two siderophores pyoverdine and quinolobactin, paralleled by a general inability to utilize various iron sources, with the exception of haem. The ccmC mutant accumulates in a 5-aminolevulinic acid-dependent synthesis a reddish, fluorescent pigment identified as protoporphyrin IX. As a consequence a visA phenotype similar to that of a ferrochelatase-deficient hemH mutant characterized by drastically reduced growth upon light exposure was observed for the ccmC mutant. The defect of iron-protoporphyrin formation was further demonstrated by the failure of ccmC cell-free proteinase K-treated extracts to stimulate the growth of a haem auxotrophic hemH indicator strain, compared to similarly prepared wild-type extracts. In addition, the ccmC mutant did not sustain hemH growth in cross-feeding experiments while the wild-type did. Significantly reduced resistance to oxidative stress mediated by haem-containing catalases was observed for the ccmC mutant. A double hemH ccmC mutant could not be obtained in the presence of external haem without the hemH gene in trans, indicating that the combination of the two mutations is lethal. It was concluded that CcmC, apart from its known function in cytochrome c biogenesis, plays a role in haem biosynthesis. A function in the regulatory co-ordination of iron acquisition via siderophores, iron insertion into porphyrin via ferrochelatase and iron-protoporphyrin export for cytochrome c formation is predicted. PMID:14663086

  2. Electronic and nuclear structural snapshots in ligand dissociation and recombination processes of iron porphyrin in solution: a combined optical/X-ray approach.

    PubMed

    Mara, Michael W; Shelby, Megan; Stickrath, Andrew; Harpham, Mike; Huang, Jier; Zhang, Xiaoyi; Hoffman, Brian M; Chen, Lin X

    2013-11-14

    The photodissociation and recombination of CO and 1-methylimidazole (Im) from iron protoporphyrin IX (FePP-ImCO) dissolved in a 30% v/v aqueous solution of Im was studied using ultrafast optical transient absorption (TA) and X-ray transient absorption (XTA) spectroscopies. FePP-ImCO was shown to lose the CO ligand upon excitation at the Q bands, with 3.8 ps vibrational cooling and 21.6 ps intersystem crossing time constants derived from optical TA experiments, followed by ligation of a second Im on the nanosecond time scale. The penta-coordinate FePP-Im intermediate which forms following CO dissociation adopts a square pyramidal geometry with a "domed" iron center that is reminiscent of that formed upon loss of CO from carbonmonoxymyoglobin (MbCO). Unlike MbCO, which typically retains its newly generated penta-coordinated geometry until CO recombination, FePP can adopt a hexa-coordinate geometry by binding an additional Im ligand (FePP-(Im)2), allowing the porphyrin to exist in the low-spin electronic state even without the CO attached. The second Im ligand remains bound until CO recombination occurs with a time constant of 283 μs. The photodissociated states of FePP-ImCO and MbCO 100 ps after photoexcitation have similar iron site geometries, implying that the protein matrix in MbCO maintains minimum potential energy in the heme center despite the large-scale reorganization in the protein secondary and tertiary structure that arises from the dynamic active site/matrix interaction.

  3. O2-binding albumin thin films: solid membranes of poly(ethylene glycol)-conjugated human serum albumin incorporating iron porphyrin.

    PubMed

    Nakagawa, Akito; Komatsu, Teruyuki; Huang, Yubin; Lu, Gang; Tsuchida, Eishun

    2007-01-01

    Poly(ethylene glycol) (PEG)-conjugated human serum albumin (HSA) incorporating the tetrakis(alpha,alpha,alpha,alpha-o-amidophenyl)porphinatoiron(II) derivative (FeP) [PEG(HSA-FeP)] is a unique plasma protein-based O2 carrier as a red blood cell substitute. The aqueous solution of PEG(HSA-FeP) [mw of PEG: 2-kDa (PEG2) or 5-kDa (PEG5)] was evaporated on a glass surface to produce a red-colored solid membrane. Scanning electron microscopy observations revealed that the PEG2(HSA-FeP) membrane consisted of two parts: (i) a surface layer made of a fibrous component (10 microm thickness), and (ii) a bottom layer of an amorphous phase (5 microm thickness). The condensed solution provided a thick membrane (70 microm), which also has the amorphous bottom layer. On the other hand, the PEG5(HSA-FeP) produced homogeneous membrane made of the fibrous component. The FeP active sites in the solid membrane formed very stable O2-adduct complexes at 37 degrees C with a half-lifetime of 40 h. The O2-binding affinity of the PEG2(HSA-FeP) membrane (P1/2 = 40 Torr, 25 degrees C) was 4-fold lower than that in aqueous solution, which is kinetically due to the low association rate constant. The membrane was soluble again in water and organic solvents (ethanol and chloroform) without deformation of the secondary structure of the protein. The addition of hyaluronic acid gave a free-standing flexible thin film, and it can also bind and release O2 as well. These O2-carrying albumin membranes with a micrometer-thickness would be of significant medical importance for a variety of clinical treatments.

  4. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  5. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes

    SciTech Connect

    Zhao, Nan; Ferrer, Jean-Luc; Moon, Hong S; Kapteyn, Jeremy; Zhuang, Xiaofeng; Hasebe, Mitsuyasu; Stewart, Neal C.; Gang, David R.; Chen, Feng

    2012-01-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.

  6. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    PubMed

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems. PMID:26881922

  7. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    PubMed

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  8. Optimizing parallel reduction operations

    SciTech Connect

    Denton, S.M.

    1995-06-01

    A parallel program consists of sets of concurrent and sequential tasks. Often, a reduction (such as array sum) sequentially combines values produced by a parallel computation. Because reductions occur so frequently in otherwise parallel programs, they are good candidates for optimization. Since reductions may introduce dependencies, most languages separate computation and reduction. The Sisal functional language is unique in that reduction is a natural consequence of loop expressions; the parallelism is implicit in the language. Unfortunately, the original language supports only seven reduction operations. To generalize these expressions, the Sisal 90 definition adds user-defined reductions at the language level. Applicable optimizations depend upon the mathematical properties of the reduction. Compilation and execution speed, synchronization overhead, memory use and maximum size influence the final implementation. This paper (1) Defines reduction syntax and compares with traditional concurrent methods; (2) Defines classes of reduction operations; (3) Develops analysis of classes for optimized concurrency; (4) Incorporates reductions into Sisal 1.2 and Sisal 90; (5) Evaluates performance and size of the implementations.

  9. Iodine-catalyzed oxidative coupling reactions utilizing C - H and X - H as nucleophiles.

    PubMed

    Liu, Dong; Lei, Aiwen

    2015-04-01

    In recent decades, iodine-catalyzed oxidative coupling reactions utilizing C - H and X - H as nucleophiles have received considerable attention because they represent more efficient, greener, more atom-economical, and milder bond-formation strategies over transition-metal-catalyzed oxidative coupling reactions. This Focus Review gives a brief summary of recent development on iodine-catalyzed oxidative coupling reactions utilizing C - H and X - H as nucleophiles.

  10. Pt-Catalyzed Synthesis of Functionalized Symmetrical and Unsymmetrical Disilazanes.

    PubMed

    Kuciński, Krzysztof; Szudkowska-Frątczak, Justyna; Hreczycho, Grzegorz

    2016-09-01

    In nearly every total synthesis, silylating agents are employed in synthetic steps to protect sensitive functional groups. A Pt-catalyzed hydrosilylation of various unsaturated substrates to prepare novel symmetrical and unsymmetrical disilazanes is described. The developed synthetic methodology is widely applicable and tolerates all manner of functional groups (e.g., amines, ethers, esters, halogens, silanes, etc.). To demonstrate the value of the described method, mono-substituted 1,1,3,3-tetramethyldisilazanes were further selectively converted to completely new unsymmetrical derivatives. PMID:27414042

  11. Ruthenium-Catalyzed meta-Selective C—H Bromination

    PubMed Central

    Teskey, Christopher J; Lui, Andrew Y W; Greaney, Michael F

    2015-01-01

    The first example of a transition-metal-catalyzed, meta-selective C–H bromination procedure is reported. In the presence of catalytic [{Ru(p-cymene)Cl2}2], tetrabutylammonium tribromide can be used to functionalize the meta C–H bond of 2-phenylpyridine derivatives, thus affording difficult to access products which are highly predisposed to further derivatization. We demonstrate this utility with one-pot bromination/arylation and bromination/alkenylation procedures to deliver meta-arylated and meta-alkenylated products, respectively, in a single step. PMID:26288217

  12. Urea- and Thiourea-Catalyzed Aminolysis of Carbonates.

    PubMed

    Blain, Marine; Yau, Honman; Jean-Gérard, Ludivine; Auvergne, Rémi; Benazet, Dominique; Schreiner, Peter R; Caillol, Sylvain; Andrioletti, Bruno

    2016-08-23

    The aminolysis of (poly)carbonates by (poly)amines provides access to non-isocyanate polyurethanes (NIPUs) that are toxic-reagent-free analogues of polyurethanes (PUs). Owing to their low reactivity, the ring opening of cyclic carbonates requires the use of a catalyst. Herein, we report that the more available and cheaper ureas could advantageously be used for catalyzing the formation of NIPUs at the expense of the thiourea analogues. In addition, we demonstrate a medium-range pKa of the (thio)urea and an unqeual substitution pattern is critical for controlling the efficiency of the carbonate opening. PMID:27467779

  13. Asymmetric Propargylation of Ketones using Allenylboronates Catalyzed by Chiral Biphenols

    PubMed Central

    Barnett, David S.; Schaus, Scott E.

    2011-01-01

    Chiral biphenols catalyze the enantioselective asymmetric propargylation of ketones using allenylboronates. The reaction uses 10 mol % of 3,3′-Br2-BINOL as the catalyst and allenyldioxoborolane as the nucleophile, in the absence of solvent, and under microwave irradiation to afford the homopropargylic alcohol. The reaction products are obtained in good yields (60 – 98%) and high enantiomeric ratios (3:1 – 99:1). Diastereoselective propargylations using chiral racemic allenylboronates result in good diastereoselectivities (dr > 86:14) and enantioselectivities (er > 92:8) under the catalytic conditions. PMID:21732609

  14. Asymmetric propargylation of ketones using allenylboronates catalyzed by chiral biphenols.

    PubMed

    Barnett, David S; Schaus, Scott E

    2011-08-01

    Chiral biphenols catalyze the enantioselective asymmetric propargylation of ketones using allenylboronates. The reaction uses 10 mol % of 3,3'-Br(2)-BINOL as the catalyst and allenyldioxoborolane as the nucleophile, in the absence of solvent, and under microwave irradiation to afford the homopropargylic alcohol. The reaction products are obtained in good yields (60-98%) and high enantiomeric ratios (3:1-99:1). Diastereoselective propargylations using chiral racemic allenylboronates result in good diastereoselectivities (dr >86:14) and enantioselectivities (er >92:8) under the catalytic conditions. PMID:21732609

  15. Palladium-Catalyzed Oxidative Domino Carbocyclization–Arylation of Bisallenes

    PubMed Central

    2016-01-01

    Herein we report a highly efficient and site-selective palladium-catalyzed oxidative carbocyclization–arylation reaction of bisallenes and arylboronic acids under operationally simple conditions for the selective synthesis of cyclohexadiene derivatives. The palladium source and the solvent proved to be crucial for the selectivity and the reactivity displayed. Interestingly, in the absence of the nucleophile, an oxidative carbocyclization-β-elimination pathway predominates. The reaction conditions are compatible with a wide range of functional groups, and the reaction exhibits broad substrate scope. Furthermore, key information regarding the mechanism was obtained using control experiments and kinetic studies. PMID:27761298

  16. Base-Catalyzed Depolymerization of Lignin: Separation of Monomers

    SciTech Connect

    Vigneault, A.; Johnson, D. K.; Chornet, E.

    2007-12-01

    In our quest for fractionating lignocellulosic biomass and valorizing specific constitutive fractions, we have developed a strategy for the separation of 12 added value monomers generated during the hydrolytic based-catalyzed depolymerization of a Steam Exploded Aspen Lignin. The separation strategy combines liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. LLE, vacuum distillation and flash LC were tested experimentally. Batch vacuum distillation produced up to 4 fractions. Process simulation confirmed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, 3 of which require further chromatography and crystallization for purification.

  17. Complex Biotransformations Catalyzed by Radical S-Adenosylmethionine Enzymes*

    PubMed Central

    Zhang, Qi; Liu, Wen

    2011-01-01

    The radical S-adenosylmethionine (AdoMet) superfamily currently comprises thousands of proteins that participate in numerous biochemical processes across all kingdoms of life. These proteins share a common mechanism to generate a powerful 5′-deoxyadenosyl radical, which initiates a highly diverse array of biotransformations. Recent studies are beginning to reveal the role of radical AdoMet proteins in the catalysis of highly complex and chemically unusual transformations, e.g. the ThiC-catalyzed complex rearrangement reaction. The unique features and intriguing chemistries of these proteins thus demonstrate the remarkable versatility and sophistication of radical enzymology. PMID:21771780

  18. Copper-catalyzed selective arylations of benzoxazoles with aryl iodides.

    PubMed

    Kim, Donghae; Yoo, Kwangho; Kim, Se Eun; Cho, Hee Jin; Lee, Junseong; Kim, Youngjo; Kim, Min

    2015-04-01

    A copper-catalyzed direct ring-opening double N-arylation of benzoxazoles with aryl iodides has been developed. The present system exhibits high selectivity despite competition from C-arylation. The selectivity between ring-opening N-arylation and C-arylation was controlled by the choice of reaction vessel. The nitrile bound bis(triphenylphosphine)copper cyanide was identified as the active catalytic species for both reactions, and when combined with a nitrile-containing solvent, enhanced the reaction efficiency.

  19. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    SciTech Connect

    Roman Vladimirovich Rozhkov

    2004-12-19

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a {beta}-hydrogen in the vinylic halide results in {beta}-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the {alpha}-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  20. Aerobic Copper-Catalyzed O-Methylation with Methylboronic Acid.

    PubMed

    Jacobson, Clare E; Martinez-Muñoz, Noelia; Gorin, David J

    2015-07-17

    The oxidative coupling of alkylboronic acids with oxygen nucleophiles offers a strategy for replacing toxic, electrophilic alkylating reagents. Although the Chan-Lam reaction has been widely applied in the arylation of heteroatom nucleophiles, O-alkylation with boronic acids is rare. We report a Cu-catalyzed nondecarboxylative methylation of carboxylic acids with methylboronic acid that proceeds in air with no additional oxidant. An isotope-labeling study supports an oxidative cross-coupling mechanism, in analogy to that proposed for Chan-Lam arylation. PMID:26111825

  1. Exploring Transition Metal Catalyzed Reactions via AB Initio Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Hratchian, Hrant P.

    2011-06-01

    The study and prediction of chemical reactivity is one of the most influential contributions of quantum chemistry. A central concept in the theoretical treatment of chemical reactions is the reaction pathway, which can be quite difficult to integrate accurately and efficiently. This talk will outline our developments in the integration of these pathways on ab initio potential energy surfaces. We will also describe results from recent studies on the kinetics of transition metal catalyzed reactions, including the importance of vibrational coupling to the reaction coordinate and the role of this coupling in catalytic rate enhancement.

  2. Can Chlorine Anion Catalyze the Reaction fo HOCl with HCl?

    NASA Technical Reports Server (NTRS)

    Richardson, S. L.; Francisco, J. S.; Mebel, A. M.; Morokuma, K.

    1997-01-01

    The reaction of HOCl + HCl -> Cl2 + H20 in the presence of Cl has been studied using ab initio methods. This reaction has been shown to have a high activation barrier of 46.5 kcal/mol. The chlorine anion, Cl- is found to catalyze the reaction, viz. two mechanisms. The first involves Cl- interacting through the concerted four-center transition state of the neutral reaction. The other mechanism involves the formation of a HCl-HOCl-Cl- intermediate which dissociates into Cl2 + Cl- + H20. The steps are found to have no barriers. The overall exothermicity is 15.5 kcal/mol.

  3. New modes for the osmium-catalyzed oxidative cyclization.

    PubMed

    Donohoe, Timothy J; Lindsay-Scott, Peter J; Parker, Jeremy S; Callens, Cedric K A

    2010-03-01

    The osmium-catalyzed oxidative cyclization of amino alcohol initiators formally derived from 1,4-dienes is an effective method for the construction of pyrrolidines, utilizing a novel reoxidant (4-nitropyridine N-oxide = NPNO). The cyclization of enantiopure syn- and anti-amino alcohols gives rise to enantiopure cis- and trans-2,5-disubstituted pyrrolidines, respectively. Moreover, the cyclization of bis-homoallylic amines bearing an exocyclic chelating group is shown to be a complementary method for trans-pyrrolidine formation.

  4. Copper-catalyzed stereoselective aminoboration of bicyclic alkenes.

    PubMed

    Sakae, Ryosuke; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2015-01-01

    A copper-catalyzed aminoboration of bicyclic alkenes, including oxa- and azabenzonorbornadienes, has been developed. With this method, amine and boron moieties are simultaneously introduced at an olefin with exo selectivity. Subsequent stereospecific transformations of the boryl group can provide oxygen- and nitrogen-rich cyclic molecules with motifs that may be found in natural products or pharmaceutically active compounds. Moreover, a catalytic asymmetric variant of this transformation was realized by using a copper complex with a chiral bisphosphine ligand, namely (R,R)-Ph-BPE. PMID:25404258

  5. Iron-Catalyzed Cross-Coupling of Alkenyl Acetates.

    PubMed

    Gärtner, Dominik; Stein, André Luiz; Grupe, Sabine; Arp, Johannes; Jacobi von Wangelin, Axel

    2015-09-01

    Stable C-O linkages are generally unreactive in cross-coupling reactions which mostly employ more electrophilic halides or activated esters (triflates, tosylates). Acetates are cheap and easily accessible electrophiles but have not been used in cross-couplings because the strong C-O bond and high propensity to engage in unwanted acetylation and deprotonation. Reported herein is a selective iron-catalyzed cross-coupling of diverse alkenyl acetates, and it operates under mild reaction conditions (0 °C, 2 h) with a ligand-free catalyst (1-2 mol%). PMID:26184455

  6. Photoredox Catalysis in Nickel-Catalyzed Cross-Coupling.

    PubMed

    Cavalcanti, Livia N; Molander, Gary A

    2016-08-01

    The traditional transition metal-catalyzed cross-coupling reaction, although well suited for C(sp2)-C(sp2) cross-coupling, has proven less amenable toward coupling of C(sp3)-hybridized centers, particularly using functional group tolerant reagents and reaction conditions. The development of photoredox/Ni dual catalytic methods for cross-coupling has opened new vistas for the construction of carbon-carbon bonds at C(sp3)-hybridized centers. In this chapter, a general outline of the features of such processes is detailed. PMID:27573391

  7. Palladium-Catalyzed Regioselective Difluoroalkylation and Carbonylation of Alkynes.

    PubMed

    Wang, Qiang; He, Yu-Tao; Zhao, Jia-Hui; Qiu, Yi-Feng; Zheng, Lan; Hu, Jing-Yuan; Yang, Yu-Chen; Liu, Xue-Yuan; Liang, Yong-Min

    2016-06-01

    A novel, four-component synthetic strategy to synthesize a series of β-difluoroalkyl unsaturated esters/amides with high regioslectivity is described. This Pd-catalyzed difluoroalkylation and carbonylation reaction can be carried out with simple starting materials. Through this protocol, two new C-C bonds (including one C-CF2 bond) and one C-O(N) bond are constructed simultaneously in a single step. The synthetic utility of this reaction system has been certified by the applicability to a wide scope of alkynes and nucleophiles. Preliminary mechanistic studies suggest that the difluoroalkyl radical pathway is involved in this reaction. PMID:27191858

  8. Iron-Catalyzed C-H Functionalization Processes.

    PubMed

    Cera, Gianpiero; Ackermann, Lutz

    2016-10-01

    Iron-catalyzed C-H activation has recently emerged as an increasingly powerful tool for the step-economical transformation of unreactive C-H bonds. Particularly, the recent development of low-valent iron catalysis has set the stage for novel C-H activation strategies via chelation assistance. The low-cost, natural abundance, and low toxicity of iron prompted its very recent application in organometallic C-H activation catalysis. An overview of the use of iron catalysis in C-H activation processes is summarized herein up to May 2016. PMID:27573499

  9. Copper-catalyzed stereoselective aminoboration of bicyclic alkenes.

    PubMed

    Sakae, Ryosuke; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2015-01-01

    A copper-catalyzed aminoboration of bicyclic alkenes, including oxa- and azabenzonorbornadienes, has been developed. With this method, amine and boron moieties are simultaneously introduced at an olefin with exo selectivity. Subsequent stereospecific transformations of the boryl group can provide oxygen- and nitrogen-rich cyclic molecules with motifs that may be found in natural products or pharmaceutically active compounds. Moreover, a catalytic asymmetric variant of this transformation was realized by using a copper complex with a chiral bisphosphine ligand, namely (R,R)-Ph-BPE.

  10. Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system.

    PubMed

    Monteiro, Julieta B; Nascimento, Maria G; Ninow, Jorge L

    2003-04-01

    The 1,3-regiospecifique lipase, Lipozyme IM, catalyzed the esterification of lauric acid and glycerol in a homogeneous system. To overcome the drawback of the insolubility of glycerol in hexane, which is extensively used in enzymatic synthesis, a mixture of n-hexane/tert-butanol (1:1, v/v) was used leading to a monophasic system. The conversion of lauric acid into monolaurin was 65% in 8 h, when a molar ratio of glycerol to fatty acid (5:1) was used with the fatty acid at 0.1 M, and the phenomenon of acyl migration was minimized.

  11. The Palladium-Catalyzed Trifluoromethylation of Vinyl Sulfonates

    PubMed Central

    Cho, Eun Jin; Buchwald, Stephen L.

    2011-01-01

    A method for the palladium-catalyzed trifluoromethylation of cyclohexenyl sulfonates has been developed. Various cyclohexenyl triflates and nonaflates underwent trifluoromethylation under mild reaction conditions using a catalyst system composed of Pd(dba)2 or [(allyl)PdCl]2 and the monodentate biaryl phosphine ligand tBuXPhos. The trifluoromethyl anion (CF3−) or its equivalent for the process was generated in situ from TMSCF3 in combination with KF or TESCF3 in combintion with RbF. PMID:22111687

  12. Lipase-catalyzed aza-Michael reaction on acrylate derivatives.

    PubMed

    Steunenberg, Peter; Sijm, Maarten; Zuilhof, Han; Sanders, Johan P M; Scott, Elinor L; Franssen, Maurice C R

    2013-04-19

    A methodology has been developed for an efficient and selective lipase-catalyzed aza-Michael reaction of various amines (primary and secondary) with a series of acrylates and alkylacrylates. Reaction parameters were tuned, and under the optimal conditions it was found that Pseudomonas stutzeri lipase and Chromobacterium viscosum lipase showed the highest selectivity for the aza-Michael addition to substituted alkyl acrylates. For the first time also, some CLEAs were examined that showed a comparable or higher selectivity and yield than the free enzymes and other formulations.

  13. Autocatalytic asymmetric reduction of 2,6-diacetylpyridine.

    PubMed

    Panosyan, Francis B; Chin, Jik

    2003-10-16

    [reaction: see text] We report here that the C(2)-symmetric diol 2,6-bis(1-hydroxyethyl)pyridine (2) can effect chiral-catalyzed reduction of 2,6-diacetylpyridine (1) and produce more of the diol (2) with the same configuration in an enantiomerically enriched form. The two carbonyl functionalities of (1) are reduced in 90% conversion to produce the enantio-enriched C(2)-symmetric diol (40% ee, 47% de) using zinc trifluoromethanesulfonate and a catalytic amount of the chiral C(2)-symmetric diol (2). PMID:14535750

  14. DEVELOPMENT OF HIGH ACTIVITY, CATALYTIC SYSTEMS FOR NOx REDUCTION

    SciTech Connect

    Unknown

    2001-12-01

    This project was directed at an investigation of catalytic NO{sub x} reduction on carbonaceous supports at low temperatures. The experimental work was conducted primarily in a packed bed reactor/gas flow system that was constructed for this work. The analytical techniques employed were mass spectrometry, NO{sub x} chemiluminescence, and gas chromatography. The experimental plan was focused on steady-state reactivity experiments, followed by temperature programmed desorption (TPD) of surface intermediates, and also selected temperature-programmed reaction (TPR) experiments. Both uncatalyzed and catalyzed (potassium-promoted) phenolic resin char, were investigated as well as the catalytic effect of additional CO in the gas phase.

  15. Stereoselective Reduction of Imines with Trichlorosilane Using Solid-Supported Chiral Picolinamides.

    PubMed

    Fernandes, Sílvia D; Porta, Riccardo; Barrulas, Pedro C; Puglisi, Alessandra; Burke, Anthony J; Benaglia, Maurizio

    2016-01-01

    The stereoselective reduction of imines with trichlorosilane catalyzed by chiral Lewis bases is a well-established procedure for the synthesis of enantio-enriched amines. Five supported cinchona-based picolinamides have been prepared and their activity tested in a model reaction. The comparison of different supporting materials revealed that polystyrene gave better results than silica in terms of stereoselectivity. The applicability of the solid-supported catalyst of choice to the reduction of different imines was also demonstrated. Additionally, for the first time, a catalytic reactor containing a polymer-immobilized chiral picolinamide has been employed for the stereoselective reduction of imines with trichlorosilane under continuous flow conditions. PMID:27608000

  16. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments

    NASA Astrophysics Data System (ADS)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.

    2011-12-01

    Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number

  17. Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridine-amine cobalt complex

    DOE PAGES

    Lewandowska-Andralojc, Anna; Baine, Teera; Zhao, Xuan; Muckerman, James T.; Fujita, Etsuko; Poyansky, Dmitry E.

    2015-04-22

    The ability of cobalt-based transition metal complexes to catalyze electrochemical proton reduction to produce molecular hydrogen has resulted in a large number of mechanistic studies involving various cobalt complexes. In addition, while the basic mechanism of proton reduction promoted by cobalt species is well understood, the reactivity of certain reaction intermediates, such as CoI and CoIII–H, is still relatively unknown owing to their transient nature, especially in aqueous media. In this work we investigate the properties of intermediates produced during catalytic proton reduction in aqueous solutions promoted by the [(DPA-Bpy)Co(OH₂)]n+ (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,20-bipyridine-6-methanamine) complex ([Co(L)(OH₂)]n+ where L is the pentadentatemore » DPA-Bpy ligand or [Co(OH₂)]n+ as a shorthand). Experimental results based on transient pulse radiolysis and laser flash photolysis methods, together with electrochemical studies and supported by DFT calculations indicate that, while the water ligand is strongly coordinated to the metal center in the oxidation state 3+, one-electron reduction of the complex to form a CoII species results in weakening the Co–O bond. The further reduction to a CoI species leads to the loss of the aqua ligand and the formation of [CoI–VS)]⁺ (VS = vacant site). Interestingly, DFT calculations also predict the existence of a [CoI(κ⁴-L)(OH₂)]⁺ species at least transiently, and its formation is consistent with the experimental Pourbaix diagram. Both electrochemical and kinetics results indicate that the CoI species must undergo some structural change prior to accepting the proton, and this transformation represents the rate-determining step (RDS) in the overall formation of [CoIII–H]⁺. We propose that this RDS may originate from the slow removal of a solvent ligand in the intermediate [CoI(κ⁴-L)(OH₂)]⁺ in addition to the significant structural reorganization of the metal complex and

  18. Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridine-amine cobalt complex

    SciTech Connect

    Lewandowska-Andralojc, Anna; Baine, Teera; Zhao, Xuan; Muckerman, James T.; Fujita, Etsuko; Poyansky, Dmitry E.

    2015-04-22

    The ability of cobalt-based transition metal complexes to catalyze electrochemical proton reduction to produce molecular hydrogen has resulted in a large number of mechanistic studies involving various cobalt complexes. In addition, while the basic mechanism of proton reduction promoted by cobalt species is well understood, the reactivity of certain reaction intermediates, such as CoI and CoIII–H, is still relatively unknown owing to their transient nature, especially in aqueous media. In this work we investigate the properties of intermediates produced during catalytic proton reduction in aqueous solutions promoted by the [(DPA-Bpy)Co(OH₂)]n+ (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,20-bipyridine-6-methanamine) complex ([Co(L)(OH₂)]n+ where L is the pentadentate DPA-Bpy ligand or [Co(OH₂)]n+ as a shorthand). Experimental results based on transient pulse radiolysis and laser flash photolysis methods, together with electrochemical studies and supported by DFT calculations indicate that, while the water ligand is strongly coordinated to the metal center in the oxidation state 3+, one-electron reduction of the complex to form a CoII species results in weakening the Co–O bond. The further reduction to a CoI species leads to the loss of the aqua ligand and the formation of [CoI–VS)]⁺ (VS = vacant site). Interestingly, DFT calculations also predict the existence of a [CoI(κ⁴-L)(OH₂)]⁺ species at least transiently, and its formation is consistent with the experimental Pourbaix diagram. Both electrochemical and kinetics results indicate that the CoI species must undergo some structural change prior to accepting the proton, and this transformation represents the rate-determining step (RDS) in the overall formation of [CoIII–H]⁺. We propose that this RDS may originate from the slow removal of a solvent ligand in the

  19. The prosegment catalyzes native folding of Plasmodium falciparum plasmepsin II.

    PubMed

    Jaafar, Ahmad Haniff; Xiao, Huogen; Dee, Derek R; Bryksa, Brian C; Bhaumik, Prasenjit; Yada, Rickey Y

    2016-10-01

    Plasmepsin II is a malarial pepsin-like aspartic protease produced as a zymogen containing an N-terminal prosegment domain that is removed during activation. Despite structural similarities between active plasmepsin II and pepsin, their prosegments adopt different conformations in the respective zymogens. In contrast to pepsinogen, the proplasmepsin II prosegment is 80 residues longer, contains a transmembrane region and is non-essential for recombinant expression in an active form, thus calling into question the prosegment's precise function. The present study examines the role of the prosegment in the folding mechanism of plasmepsin II. Both a shorter (residues 77-124) and a longer (residues 65-124) prosegment catalyze plasmepsin II folding at rates more than four orders of magnitude faster compared to folding without prosegment. Native plasmepsin II is kinetically trapped and requires the prosegment both to catalyze folding and to shift the folding equilibrium towards the native conformation. Thus, despite low sequence identity and distinct zymogen conformations, the folding landscapes of plasmepsin II and pepsin, both with and without prosegment, are qualitatively identical. These results imply a conserved and unusual feature of the pepsin-like protease topology that necessitates prosegment-assisted folding. PMID:27378574

  20. Lanthanide cofactors accelerate DNA-catalyzed synthesis of branched RNA.

    PubMed

    Javadi-Zarnaghi, Fatemeh; Höbartner, Claudia

    2013-08-28

    Most deoxyribozymes (DNA catalysts) require metal ions as cofactors for catalytic activity, with Mg(2+), Mn(2+), and Zn(2+) being the most represented activators. Trivalent transition-metal ions have been less frequently considered. Rare earth ions offer attractive properties for studying metal ion binding by biochemical and spectroscopic methods. Here we report the effect of lanthanide cofactors, in particular terbium (Tb(3+)), for DNA-catalyzed synthesis of 2',5'-branched RNA. We found up to 10(4)-fold increased ligation rates for the 9F7 deoxribozyme using 100 μM Tb(3+) and 7 mM Mg(2+), compared to performing the reaction with 7 mM Mg(2+) alone. Combinatorial mutation interference analysis (CoMA) was used to identify nucleotides in the catalytic region of 9F7 that are essential for ligation activity with different metal ion combinations. A minimized version of the DNA enzyme sustained high levels of Tb(3+)-assisted activity. Sensitized luminescence of Tb(3+) bound to DNA in combination with DMS probing and DNase I footprinting results supported the CoMA data. The accelerating effect of Tb(3+) was confirmed for related RNA-ligating deoxyribozymes, pointing toward favorable activation of internal 2'-OH nucleophiles. The results of this study offer fundamental insights into nucleotide requirements for DNA-catalyzed RNA ligation and will be beneficial for practical applications that utilize 2',5'-branched RNA.