Science.gov

Sample records for irradiated anopheles arabiensis

  1. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    PubMed Central

    Helinski, Michelle EH; Hassan, Mo'awia M; El-Motasim, Waleed M; Malcolm, Colin A; Knols, Bart GJ; El-Sayed, Badria

    2008-01-01

    Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. Results Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females. Conclusion It is concluded that although conditions are challenging, there are no major obstacles associated with the small

  2. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis.

    PubMed

    Wondwosen, Betelehem; Birgersson, Göran; Seyoum, Emiru; Tekie, Habte; Torto, Baldwyn; Fillinger, Ulrike; Hill, Sharon R; Ignell, Rickard

    2016-11-30

    Mosquito oviposition site selection is essential for vector population dynamics and malaria epidemiology. Irrigated rice cultivations provide ideal larval habitats for malaria mosquitoes, which has resulted in increased prevalence of the malaria vector, Anopheles arabiensis, in sub-Saharan Africa. The nature and origin of the cues regulating this behaviour are only now being elucidated. We show that gravid Anopheles arabiensis are attracted and oviposit in response to the odour present in the air surrounding rice. Furthermore, we identify a synthetic rice odour blend, using electrophysiological and chemical analyses, which elicits attraction and oviposition in laboratory assays, as well as attraction of free-flying gravid mosquitoes under semi-field conditions. This research highlights the intimate link between malaria vectors and agriculture. The identified volatile cues provide important substrates for the development of novel and cost-effective control measures that target female malaria mosquitoes, irrespective of indoor or outdoor feeding and resting patterns.

  3. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis

    PubMed Central

    Wondwosen, Betelehem; Birgersson, Göran; Seyoum, Emiru; Tekie, Habte; Torto, Baldwyn; Fillinger, Ulrike; Hill, Sharon R.; Ignell, Rickard

    2016-01-01

    Mosquito oviposition site selection is essential for vector population dynamics and malaria epidemiology. Irrigated rice cultivations provide ideal larval habitats for malaria mosquitoes, which has resulted in increased prevalence of the malaria vector, Anopheles arabiensis, in sub-Saharan Africa. The nature and origin of the cues regulating this behaviour are only now being elucidated. We show that gravid Anopheles arabiensis are attracted and oviposit in response to the odour present in the air surrounding rice. Furthermore, we identify a synthetic rice odour blend, using electrophysiological and chemical analyses, which elicits attraction and oviposition in laboratory assays, as well as attraction of free-flying gravid mosquitoes under semi-field conditions. This research highlights the intimate link between malaria vectors and agriculture. The identified volatile cues provide important substrates for the development of novel and cost-effective control measures that target female malaria mosquitoes, irrespective of indoor or outdoor feeding and resting patterns. PMID:27901056

  4. Monooxygenase Levels and Knockdown Resistance (kdr) Allele Frequencies in Anopheles gambiae and Anopheles arabiensis in Kenya

    PubMed Central

    Chen, Hong; Githeko, Andrew K; Githure, John I; Mutunga, James; Zhou, Guofa; Yan, Guiyun

    2013-01-01

    Pyrethroid-treated bed nets and indoor spray are important components of malaria control strategies in Kenya. Information on resistance to pyrethroid insecticides in Anopheles gambiae and An. arabiensis populations is essential to the selection of appropriate insecticides and the management of insecticide resistance. Monooxygenase activity and knockdown resistance (kdr) allele frequency are biochemical and molecular indicators of mosquito resistance to pyrethroids. This study determined baseline information on monooxygenase activity and kdr allele frequency in anopheline mosquitoes in the western region, the Great Rift Valley-central province region, and the coastal region of Kenya. A total of 1990 field-collected individuals, representing 12 An. gambiae and 22 An. arabiensis populations was analyzed. We found significant among-population variation in monooxygenase activity in An. gambiae and An. arabiensis and substantial variability among individuals within populations. Nine out of 12 An. gambiae populations exhibited significantly higher average monooxygenase activity than the susceptible Kisumu reference strain. The kdr alleles (L1014S) were detected in three An. gambiae populations, and one An. arabiensis population in western Kenya, but not in the Rift Valley-central region and the coastal Kenya region. All genotypes with the kdr alleles were heterozygous, and the conservative estimation of kdr allele frequency was below 1% in these four populations. Information on monooxygenase activity and kdr allele frequency reported in this study provided baseline data for monitoring insecticide resistance changes in Kenya during the era when large-scale insecticide-treated bednet and indoor residual spray campaigns were being implemented. PMID:18402140

  5. Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in South-West Ethiopia

    PubMed Central

    2013-01-01

    Background Anopheles arabiensis, the main malaria vector in Ethiopia, shows both anthropophilic and zoophilic behaviours. Insecticide resistance is increasing, and alternative methods of vector control are needed. The objectives of this study were to determine the blood meal origins and the susceptibility to insecticides of An. arabiensis from Chano village near Arba Minch in South-West Ethiopia. Methods Blood meal sources of anopheline mosquitoes collected using Centers for Disease Control and Prevention (CDC) light traps and pyrethrum spray catches (PSC) from human dwellings, and hand-held mouth aspirators from outdoor pit shelters were analysed using a direct enzyme-linked-immunosorbent assay (ELISA). The susceptibility of An. arabiensis to pyrethroid insecticides (alphacypermethrin, lambdacyhalothrin, deltamethrin, and cyfluthrin) and DDT was assessed using females reared from larval and pupal collections from natural breeding sites. Results The blood meal origins of 2967 freshly fed Anopheles mosquitoes were determined. An. arabiensis was the predominant species (75%), and it fed mainly on cattle. The densities of both freshly fed An. arabiensis and those fed on human blood followed similar seasonal patterns. The overall human blood index (HBI) of An. arabiensis, including mixed blood meals, was 44% and the bovine blood index (BBI) was 69%. The HBI of An. arabiensis from CDC light trap collections was 75% and this was higher than those for PSC (38%) and outdoor pit shelter collections (13%), while the BBI was 65% for PSC, 68% for outdoor pit shelters and 72% for CDC light traps. More freshly fed and human blood-fed An. arabiensis were sampled from houses close to the shore of Lake Abaya (the major breeding site). A high proportion of An. arabiensis was resistant to the pyrethroid insecticides, with a mortality rate of 56% for lambdacyhalothrin, 50% for cyfluthrin and alphacypermethrin, 47% for deltamethrin, and 10% for DDT. Conclusion Anopheles arabiensis is

  6. Small-scale field evaluation of the monomolecular surface film 'Arosurf MSF' against Anopheles arabiensis Patton.

    PubMed

    Karanja, D M; Githeko, A K; Vulule, J M

    1994-04-01

    A field trial was conducted to test the insecticidal action of the monolayer surface film 'Arosurf MSF' applied by knapsack sprayers, against larvae and pupae of Anopheles arabiensis Patton in a rice irrigation scheme in Western Kenya. Larval and pupal densities and the number of emerging adults were determined by dipping and emergence cages respectively. Application of the monolayer by knapsack sprayers provided good coverage. There were high daily mortalities of the fourth instar larvae, with no adult emergence from 'Arosurf MSF' treated plots compared to lower fourth instar mortalities and continuous adult emergence from untreated control plots, indicating the potential of the monolayer for control of An. arabiensis mosquitoes in rice fields.

  7. Ecology and behavior of Anopheles arabiensis in relation to agricultural practices in central Kenya.

    PubMed

    Muturi, Ephantus J; Mwangangi, Joseph M; Beier, John C; Blackshear, Millon; Wauna, James; Sang, Rosemary; Mukabana, Wolfgang R

    2013-09-01

    Ecological changes associated with anthropogenic ecosystem disturbances can influence human risk of exposure to malaria and other vector-borne infectious diseases. This study in Mwea, Kenya, investigated the pattern of insecticide use in irrigated and nonirrigated agroecosystems and association with the density, survival, and blood-feeding behavior of the malaria vector Anopheles arabiensis. The parity rates of adult An. arabiensis from randomly selected houses were determined by examining their ovaries for tracheal distension, and polymerase chain reaction was used to identify the host blood meals. In addition, structured questionnaires were used to generate data on insecticide use. Anopheles arabiensis densities were highest in irrigated rice agroecosystems, intermediate in irrigated French beans agroecosystems, and lowest in the nonirrigated agroecosystem. Anopheles arabiensis adult survivorship was significantly lower in irrigated rice agroecosystems than in irrigated French beans agroecosystems. The human blood index (HBI) was significantly higher in the nonirrigated agroecosystem compared to irrigated agroecosystems. Moreover, there was marked variation in HBI among villages in irrigated agroecosystems with significantly lower HBI in Kangichiri and Mathangauta compared to Kiuria, Karima, and Kangai. The proportion of mosquitoes with mixed blood meals varied among villages ranging from 0.25 in Kangichiri to 0.83 in Kiuria. Sumithion, dimethoate, and alpha cypermethrin were the most commonly used insecticides. The 1st was used mostly in irrigated rice agroecosystems, and the last 2 were used mostly in irrigated French beans agroecosystems. These findings indicate that agricultural practices may influence the ecology and behavior of malaria vectors and ultimately the risk of malaria transmission.

  8. Population genetic structure of Anopheles arabiensis (Diptera: Culicidae) in a rice growing area of central Kenya.

    PubMed

    Muturi, Ephantus J; Kim, Chang-Hyun; Baliraine, Frederick N; Musani, Solomon; Jacob, Benjamin; Githure, John; Novak, Robert J

    2010-03-01

    Studies were conducted to examine the population genetic structure of Anopheles arabiensis (Patton) in Mwea Rice Irrigation Scheme and surrounding areas in Central Kenya, under different agricultural systems. This study was motivated by observed differences in malaria transmission indices of An. arabiensis within the scheme compared with adjacent nonirrigated areas. Agricultural practices can modify local microclimate and influence the number and diversity of larval habitats and in so doing may occasion subpopulation differentiation. Thirty samples from each of the three study sites were genotyped at eight microsatellite loci. Seven microsatellite loci showed high polymorphism but revealed no genetic differentiation (FST = 0.006, P = 0.312) and high gene flow (Nm = 29-101) among the three populations. Genetic bottleneck analysis showed no indication of excess heterozygosity in any of the populations. There was high frequency of rare alleles, suggesting that An. arabiensis in the study area has a high potential of responding to selective pressures from environmental changes and vector control efforts. These findings imply that An. arabiensis in the study area occurs as a single, continuous panmictic population with great ability to adapt to human-imposed selective pressures.

  9. Environmental covariates of Anopheles arabiensis in a rice agroecosystem in Mwea, Central Kenya.

    PubMed

    Mwangangi, Joseph M; Muturi, Ephantus J; Shililu, Josephat I; Muriu, Simon; Jacob, Benjamin; Kabiru, Ephantus W; Mbogo, Charles M; Githure, John I; Novak, Robert J

    2007-12-01

    Water quality of aquatic habitats is an important determinant of female mosquito oviposition and successful larval development. This study examined the influence of environmental covariates on Anopheles arabiensis mosquito abundance in the Mwea Irrigation Scheme, Central Province of Kenya, prior to implementation of a malaria vector control program. Experimental rice plots were used to examine the environmental covariates responsible for regulating abundance and diversity of the aquatic stages of malaria vectors. Mosquito larval sampling and water quality analysis were done weekly from the flooding stage to the rice maturation stage. Sampling for mosquito larvae was conducted using standard dipping technique. During each larval collection, environmental covariates such as pH, temperature, conductivity, salinity, dissolved oxygen, water depth, and rice stage were measured. Anopheles arabiensis larval density was highest between 1 wk before transplanting and 4 wk after transplanting with peaks at weeks 0, 3, and 8. The fluctuation in values of the various environmental covariates showed characteristic patterns in different rice growth phases depending on the changes taking place due to the agronomic practices. Using a backward linear regression model, the factors that were found to be associated with abundance of An. arabiensis larvae at any of the rice growing phases included the following: dissolved oxygen, pH, turbidity, water depth, rice height, number of rice tillers, salinity, conductivity, and temperature. The environmental covariates associated with abundance of An. arabiensis were associated with early vegetative stage of the rice growth. For effective control of developmental stages of mosquito larvae, the application of larvicides should be done at the vegetative stage and the larvicides should persist until the beginning of the reproductive stage of the rice.

  10. Multimodal Pyrethroid Resistance in Malaria Vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. in Western Kenya

    PubMed Central

    Kawada, Hitoshi; Dida, Gabriel O.; Ohashi, Kazunori; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Sonye, George; Maekawa, Yoshihide; Mwatele, Cassian; Njenga, Sammy M.; Mwandawiro, Charles; Minakawa, Noboru; Takagi, Masahiro

    2011-01-01

    Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT. PMID:21853038

  11. Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus

    PubMed Central

    2013-01-01

    Background Understanding the biology of malaria vector mosquitoes is crucial to understanding many aspects of the disease, including control and future outcomes. The development rates and survival of two Afrotropical malaria vectors, Anopheles arabiensis and Anopheles funestus, are investigated here under conditions of constant and fluctuating temperatures. These data can provide a good starting point for modelling population level consequences of temperature change associated with climate change. For comparative purposes, these data were considered explicitly in the context of those available for the third African malaria vector, Anopheles gambiae. Methods Twenty five replicates of 20–30 eggs were placed at nine constant and two fluctuating temperatures for development rate experiments and survival estimates. Various developmental parameters were estimated from the data, using standard approaches. Results Lower development threshold (LDT) for both species was estimated at 13-14°C. Anopheles arabiensis developed consistently faster than An. funestus. Optimum temperature (Topt) and development rate at this temperature (μmax) differed significantly between species for overall development and larval development. However, Topt and μmax for pupal development did not differ significantly between species. Development rate and survival of An. funestus was negatively influenced by fluctuating temperatures. By contrast, development rate of An. arabiensis at fluctuating temperatures either did not differ from constant temperatures or was significantly faster. Survival of this species declined by c. 10% at the 15°C to 35°C fluctuating temperature regime, but was not significantly different between the constant 25°C and the fluctuating 20°C to 30°C treatment. By comparison, previous data for An. gambiae indicated fastest development at a constant temperature of 28°C and highest survival at 24°C. Conclusions The three most important African malaria vectors all differ

  12. Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin

    PubMed Central

    2012-01-01

    Background The sterile insect technique (SIT) has been used with success for suppressing or eliminating important insect pests of agricultural or veterinary importance. In order to develop SIT for mosquitoes, female elimination prior to release is essential as they are the disease-transmitting sex. A genetic sexing strain (GSS) of Anopheles arabiensis was created based on resistance to dieldrin, and methods of sex separation at the egg stage were developed. The use of this strain for SIT will require sexually sterile males: useful radiation doses for this purpose were determined for pupae and adults. Methods For the creation of the sexing strain, dieldrin-resistant males were irradiated with 40 Gy using a 60Co source and were subsequently crossed to homozygous susceptible virgin females. Individual families were screened for semi-sterility and for male resistance to dieldrin. For sex separation, eggs of a resulting GSS, ANO IPCL1, were exposed to varying concentrations of dieldrin for different durations. Percent hatch, larval survival, and male and female emergence were recorded. Radiation induced sterility was determined following adult and pupa exposure to gamma rays at 0–105 Gy. Mortality induced by dieldrin treatment, and levels of sterility post radiation were investigated. Results ANO IPCL1 contains a complex chromosome aberration that pseudo-links the male-determining Y chromosome and dieldrin resistance, conferring high natural semi-sterility. Exposure of eggs to 2, 3, and 4 ppm dieldrin solutions resulted in complete female elimination without a significant decrease of male emergence compared to the controls. A dose of 75 Gy reduced the fertility to 3.8 and 6.9% when males were irradiated as pupae or adults respectively, but the proportions of progeny of these males reaching adulthood were 0.6 and 1.5% respectively Conclusion The GSS ANO IPCL1 was shown to be a suitable strain for further testing for SIT though high semi-sterility is a

  13. Screening of selected ethnomedicinal plants from South Africa for larvicidal activity against the mosquito Anopheles arabiensis

    PubMed Central

    2012-01-01

    Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic), that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito larvicidal properties. Methods Extracts of a selection of plant taxa sourced in South Africa were tested for larvicidal properties in an applicable assay. Thirty 3rd instar Anopheles arabiensis larvae were exposed to various extract types (dichloromethane, dichloromethane/methanol) (1:1), methanol and purified water) of each species investigated. Mortality was evaluated relative to the positive control Temephos (Mostop; Agrivo), an effective emulsifiable concentrate larvicide. Results Preliminary screening of crude extracts revealed substantial variation in toxicity with 24 of the 381 samples displaying 100% larval mortality within the seven day exposure period. Four of the high activity plants were selected and subjected to bioassay guided fractionation. The results of the testing of the fractions generated identified one fraction of the plant, Toddalia asiatica as being very potent against the An. arabiensis larvae. Conclusion The present study has successfully identified a plant with superior larvicidal activity at both the crude and semi pure fractions generated through bio-assay guided fractionation. These results have initiated further research into isolating the active compound and developing a malaria vector control tool. PMID:22963538

  14. Larvicidal activity of Cymbopogon citratus (DC) Stapf. and Croton macrostachyus Del. against Anopheles arabiensis Patton, a potent malaria vector.

    PubMed

    Karunamoorthi, K; Ilango, K

    2010-01-01

    Methanol leaf extracts of two Ethiopian traditional medicinal plants viz., Lomisar [vernacular name (local native language, Amharic); Cymbopogon citratus (DC) Stapf. (Poaceae)] and Bisana [vernacular name (local native language, Amharic); Croton macrostachyus Del. (Euphorbiaceae)] were screened for larvicidal activity against late third instar larvae of Anopheles arabiensis Patton, a potent malaria vector in Ethiopia. The larval mortality was observed 24 h of post treatment. Both plant extracts demonstrated varying degrees of larvicidal activity against Anopheles arabiensis. Cymbopogon citratus extract has exhibited potent larvicidal activity than Croton macrostachyus at lower concentrations. The LC50 and LC90 values of Cymbopogon citratus were 74.02 and 158.20 ppm, respectively. From this data, a chi-square value 2.760 is significant at the P < 0.05 level. While, the LC50 and LC90 values of Croton macrostachyus were 89.25 and 224.98 ppm, respectively and the chi-square value 1.035 is significant at the P < 0.05 level. The present investigation establishes that these plant extracts could serve as potent mosquito larvicidal agents against Anopheles arabiensis. However, their mode of actions and larvicidal efficiency under the field conditions should be scrutinized and determined in the near future.

  15. Larvicidal effects of Chinaberry (Melia azederach) powder on Anopheles arabiensis in Ethiopia

    PubMed Central

    2011-01-01

    Background Synthetic insecticides are employed in the widely-used currently favored malaria control techniques involving indoor residual spraying and treated bednets. These methods have repeatedly proven to be highly effective at reducing malaria incidence and prevalence. However, rapidly emerging mosquito resistance to the chemicals and logistical problems in transporting supplies to remote locations threaten the long-term sustainability of these techniques. Chinaberry (Melia azederach) extracts have been shown to be effective growth-inhibiting larvicides against several insects. Because several active chemicals in the trees' seeds have insecticidal properties, the emergence of resistance is unlikely. Here, we investigate the feasibility of Chinaberry as a locally available, low-cost sustainable insecticide that can aid in controlling malaria. Chinaberry fruits were collected from Asendabo, Ethiopia. The seeds were removed from the fruits, dried and crushed into a powder. From developmental habitats in the same village, Anopheles arabiensis larvae were collected and placed into laboratory containers. Chinaberry seed powder was added to the larval containers at three treatment levels: 5 g m-2, 10 g m-2 and 20 g m-2, with 100 individual larvae in each treatment level and a control. The containers were monitored daily and larvae, pupae and adult mosquitoes were counted. This experimental procedure was replicated three times. Results Chinaberry seed powder caused an inhibition of emergence of 93% at the 5 g m-2 treatment level, and 100% inhibition of emergence at the two higher treatment levels. The Chinaberry had a highly statistically significant larvicidal effect at all treatment levels (χ2 = 184, 184, and 155 for 5 g m-2, 10 g m-2 and 20 g m-2, respectively; p < 0.0001 in all cases). In addition, estimates suggest that sufficient Chinaberry seed exists in Asendabo to treat developmental habitat for the duration of the rainy season and support a field trial

  16. Rapid discrimination between Anopheles gambiae s.s. and Anopheles arabiensis by High-Resolution Melt (HRM) analysis.

    PubMed

    Zianni, Michael R; Nikbakhtzadeh, Mahmood R; Jackson, Bryan T; Panescu, Jenny; Foster, Woodbridge A

    2013-04-01

    There is a need for more cost-effective options to more accurately discriminate among members of the Anopheles gambiae complex, particularly An. gambiae and Anopheles arabiensis. These species are morphologically indistinguishable in the adult stage, have overlapping distributions, but are behaviorally and ecologically different, yet both are efficient vectors of malaria in equatorial Africa. The method described here, High-Resolution Melt (HRM) analysis, takes advantage of minute differences in DNA melting characteristics, depending on the number of incongruent single nucleotide polymorphisms in an intragenic spacer region of the X-chromosome-based ribosomal DNA. The two species in question differ by an average of 13 single-nucleotide polymorphisms giving widely divergent melting curves. A real-time PCR system, Bio-Rad CFX96, was used in combination with a dsDNA-specific dye, EvaGreen, to detect and measure the melting properties of the amplicon generated from leg-extracted DNA of selected mosquitoes. Results with seven individuals from pure colonies of known species, as well as 10 field-captured individuals unambiguously identified by DNA sequencing, demonstrated that the method provided a high level of accuracy. The method was used to identify 86 field mosquitoes through the assignment of each to the two common clusters with a high degree of certainty. Each cluster was defined by individuals from pure colonies. HRM analysis is simpler to use than most other methods and provides comparable or more accurate discrimination between the two sibling species but requires a specialized melt-analysis instrument and software.

  17. Effects of drying eggs and egg storage on hatchability and development of Anopheles arabiensis

    PubMed Central

    2013-01-01

    Background The mass rearing of insects requires a large colony from which individuals can be harvested for sterilization and release. Attention is given to larval food requirements and to handling and rearing conditions to ensure predictability and synchrony of development. Maximizing production requires optimized adult holding to ensure mating success, blood feeding and oviposition. Appropriate egg storage and harvesting is necessary to compensate any unpredicted reduction in egg production. Methods Anopheles arabiensis eggs were collected on wet filter paper in eggs cups. The eggs were cleaned and then dried over a suction device with adjustable speed and time. The effects of drying, storage time and storage condition (wet, dry and bulk with relative humidity 75 ± 5% and storage temperatures of 10, 15 and 20°C) on hatch rate, duration of larval stages (L1 to pupal stage), duration of L1 to adult emergence, survival of L1 to pupal stage and the survival of L1 to adult emergence were investigated. Post drying and post storage hatch rates were determined by counting hatched and unhatched eggs and were confirmed by counting the viable larvae in the rearing medium. Results The hatch rate of eggs dried at wind speeds of 1.0 or 1.8 m/s was not significantly different from the control, but eggs dried at 3.0 m/s resulted in very low (64%) hatchability as compared to the control (82%). Eggs stored at 20°C and 75 ± 5% RH in bulk in an aerated vial showed better survival than eggs stored in wet or dry conditions at 10 or 15°C. No significant changes in larval duration and survival were recorded after six days of bulk storage. Conclusion Anopheles arabiensis eggs can be stored in bulk at 20°C and 75 ± 5% RH for six days without any decrease in hatch rate, and up to 9 days with no impact on larval development. PMID:24028497

  18. Spatial abundance and human biting rate of Anopheles arabiensis and Anopheles funestus in savannah and rice agro-ecosystems of Central Tanzania.

    PubMed

    Mboera, Leonard E G; Bwana, Veneranda M; Rumisha, Susan F; Stanley, Grades; Tungu, Patrick K; Malima, Robert C

    2015-05-18

    This study was carried out to determine the spatial variations in malaria mosquito abundance and human biting rate in five villages representing rice-irrigation and savannah ecosystems in Kilosa District, central Tanzania. The study involved five villages namely Tindiga and Malui (wetland/rice irrigation), Twatwatwa and Mbwade (dry savannah) and Kimamba (wet savannah). Indoor mosquitoes were sampled using Centers for Disease Control and Prevention light traps in three houses in each village. Anopheles gambiae s.l. molecular identification was carried out using polymerase chain reaction (PCR). A total of 936 female mosquitoes were collected. About half (46.9%) were malaria mosquitoes (Anopheles gambiae s.l.=28.6%; An. funestus= 18.3%). A total of 161 (60.1%) of the morphologically identified An. gambiae s.l. (268) and subjected to PCR analysis for speciation were genotyped as An. arabiensis. The An. funestus complex mosquitoes were composed of An. funestus funestus and An. rivulorum at the 5:1 ratio. On average, 17.9 Anopheles mosquitoes were collected per village per day. Two-thirds (62.8%) of the malaria mosquitoes were collected in Malui (rice agro-ecosystem) and the lowest number (2.3%) in Twatwatwa (dry savannah ecosystem). The biting rate per person per night for An. arabiensis+An. funestus s.s. was highest in Malui (46.0) and lowest in Twatwatwa (1.67). The parity rate of the An. funestus mosquitoes was lower compared to that of An. arabiensis and none of the mosquitoes was infected with malaria sporozoites. In conclusion, An. arabiensis is the most abundant malaria vector in Kilosa district and its variation is related to the ecological system. The heterogeneity in malaria mosquito abundance and human biting rate could be used to guide selection of locally appropriated control interventions.

  19. A Qualitative Evidence of the Breeding Sites of Anopheles arabiensis Patton (Diptera: Culicidae) in and Around Kassala Town, Eastern Sudan.

    PubMed

    Hamza, Asma Mahmoud; El Rayah, El Amin

    2016-01-01

    Anopheles arabiensis Patton (Diptera: Culicidae) is considered the most efficient malaria vector in eastern Sudan. This study aims to characterize the breeding sites of An. arabiensis throughout the year in and around Kassala town, eastern Sudan. Diverse larval habitat types were visited and characterized based on the habitat type and chemical composition. Mosquito larvae were found in many diverse habitats. During the rainy season, rain pools and water bodies created by the seasonal Gash River serve as the main breeding sites. In the dry season, irrigation canals, seepage from water pipes, neglected wells, artificial containers, and man-made ditches serve as the main breeding sites. Breeding water showed a pH of 7.9 and a low concentration of the total dissolved salts. The results of this study may be considered in planning and implementing larval control programs in the area.

  20. A Qualitative Evidence of the Breeding Sites of Anopheles arabiensis Patton (Diptera: Culicidae) in and Around Kassala Town, Eastern Sudan

    PubMed Central

    Hamza, Asma Mahmoud; El Rayah, El Amin

    2016-01-01

    Anopheles arabiensis Patton (Diptera: Culicidae) is considered the most efficient malaria vector in eastern Sudan. This study aims to characterize the breeding sites of An. arabiensis throughout the year in and around Kassala town, eastern Sudan. Diverse larval habitat types were visited and characterized based on the habitat type and chemical composition. Mosquito larvae were found in many diverse habitats. During the rainy season, rain pools and water bodies created by the seasonal Gash River serve as the main breeding sites. In the dry season, irrigation canals, seepage from water pipes, neglected wells, artificial containers, and man-made ditches serve as the main breeding sites. Breeding water showed a pH of 7.9 and a low concentration of the total dissolved salts. The results of this study may be considered in planning and implementing larval control programs in the area. PMID:27547039

  1. Does Cattle Milieu Provide a Potential Point to Target Wild Exophilic Anopheles arabiensis (Diptera: Culicidae) with Entomopathogenic Fungus? A Bioinsecticide Zooprophylaxis Strategy for Vector Control.

    PubMed

    Lyimo, Issa N; Ng'habi, Kija R; Mpingwa, Monica W; Daraja, Ally A; Mwasheshe, Dickson D; Nchimbi, Nuru S; Lwetoijera, Dickson W; Mnyone, Ladslaus L

    2012-01-01

    Background. Anopheles arabiensis is increasingly dominating malaria transmission in Africa. The exophagy in mosquitoes threatens the effectiveness of indoor vector control strategies. This study aimed to evaluate the effectiveness of fungus against An. arabiensis when applied on cattle and their environments. Methods. Experiments were conducted under semi-field and small-scale field conditions within Kilombero valley. The semi-field reared females of 5-7 days old An. arabiensis were exposed to fungus-treated and untreated calf. Further, wild An. arabiensis were exposed to fungus-treated calves, mud-huts, and their controls. Mosquitoes were recaptured the next morning and proportion fed, infected, and survived were evaluated. Experiments were replicated three times using different individuals of calves. Results. A high proportion of An. arabiensis was fed on calves (>0.90) and become infected (0.94) while resting on fungus-treated mud walls than on other surfaces. However, fungus treatments reduced fecundity and survival of mosquitoes. Conclusion. This study demonstrates for the first time the potential of cattle and their milieu for controlling An. arabiensis. Most of An. arabiensis were fed and infected while resting on fungus-treated mud walls than on other surfaces. Fungus treatments reduced fecundity and survival of mosquitoes. These results suggest deployment of bioinsecticide zooprophylaxis against exophilic An. arabiensis.

  2. Does Cattle Milieu Provide a Potential Point to Target Wild Exophilic Anopheles arabiensis (Diptera: Culicidae) with Entomopathogenic Fungus? A Bioinsecticide Zooprophylaxis Strategy for Vector Control

    PubMed Central

    Lyimo, Issa N.; Ng'habi, Kija R.; Mpingwa, Monica W.; Daraja, Ally A.; Mwasheshe, Dickson D.; Nchimbi, Nuru S.; Lwetoijera, Dickson W.; Mnyone, Ladslaus L.

    2012-01-01

    Background. Anopheles arabiensis is increasingly dominating malaria transmission in Africa. The exophagy in mosquitoes threatens the effectiveness of indoor vector control strategies. This study aimed to evaluate the effectiveness of fungus against An. arabiensis when applied on cattle and their environments. Methods. Experiments were conducted under semi-field and small-scale field conditions within Kilombero valley. The semi-field reared females of 5–7 days old An. arabiensis were exposed to fungus-treated and untreated calf. Further, wild An. arabiensis were exposed to fungus-treated calves, mud-huts, and their controls. Mosquitoes were recaptured the next morning and proportion fed, infected, and survived were evaluated. Experiments were replicated three times using different individuals of calves. Results. A high proportion of An. arabiensis was fed on calves (>0.90) and become infected (0.94) while resting on fungus-treated mud walls than on other surfaces. However, fungus treatments reduced fecundity and survival of mosquitoes. Conclusion. This study demonstrates for the first time the potential of cattle and their milieu for controlling An. arabiensis. Most of An. arabiensis were fed and infected while resting on fungus-treated mud walls than on other surfaces. Fungus treatments reduced fecundity and survival of mosquitoes. These results suggest deployment of bioinsecticide zooprophylaxis against exophilic An. arabiensis. PMID:22934152

  3. Larvicidal efficacy of Ethiopian ethnomedicinal plant Juniperus procera essential oil against Afrotropical malaria vector Anopheles arabiensis (Diptera: Culicidae)

    PubMed Central

    Karunamoorthi, Kaliyaperumal; Girmay, Askual; Fekadu, Samuel

    2014-01-01

    Objective To screen the essential oil of Juniperus procera (J. procera) (Cupressaceae) for larvicidal activity against late third instar larvae of Anopheles arabiensis (An. arabiensis) Patton, the principle malaria vector in Ethiopia. Methods The essential oil of J. procera was evaluated against the larvae of An. arabiensis under the laboratory and semi-field conditions by adopting the World Health Organization standard protocols. The larval mortality was observed for 24 h of post exposure. Results The essential oil of J. procera has demonstrated varying degrees of larvicidal activity against An. arabiensis. The LC50 and LC90 values of J. procera were 14.42 and 24.65 mg/L, respectively under the laboratory conditions, and from this data, a Chi-square value 6.662 was observed to be significant at the P=0.05 level. However, under the semi-field conditions the LC50 and LC90 values of J. procera were 24.51 and 34.21 mg/L, respectively and a Chi-square value 4.615 was significant at the P=0.05 level. The observations clearly showed that larval mortality rate is completely time and dose-dependent as compared with the control. Conclusions This investigation indicates that J. procera could serve as a potential larvicidal agent against insect vector of diseases, particularly An. arabiensis. However further studies are strongly recommended for the identification of the chemical constituents and the mode of action towards the rational design of alternative promising insecticidal agents in the near future. PMID:25183156

  4. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis

    PubMed Central

    Main, Bradley J; Lee, Yoosook; Ferguson, Heather M.; Kreppel, Katharina S.; Kihonda, Anicet; Govella, Nicodem J.; Collier, Travis C.; Cornel, Anthony J.; Eskin, Eleazar; Kang, Eun Yong; Nieman, Catelyn C.; Weakley, Allison M.; Lanzaro, Gregory C.

    2016-01-01

    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of “SNP heritability” for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer

  5. Efficacy of leaves extract of Calotropis procera Ait. (Asclepiadaceae) in controlling Anopheles arabiensis and Culex quinquefasciatus mosquitoes☆

    PubMed Central

    Elimam, Abdalla M.; Elmalik, Khitma H.; Ali, Faysal S.

    2009-01-01

    The present study aimed to investigate, the larvicidal, adult emergence inhibition and oviposition deterrent activity of aqueous leaves extract of Calotropis procera against Anopheles arabiensis and Culex quinquefasciatus as natural mosquito larvicide. The larvicidal activity was monitored against 2nd, 3rd and 4th instar larvae of each mosquito species 24 h post-treatment. Adult emergence inhibition activity was tested by exposing 3rd instar larvae of each mosquito species to different concentrations of extracts (200, 400, 600, 800 and 1000 ppm for An. arabiensis and 100, 200, 300, 400, 500 and 600 ppm for Cx. quinquefasciatus). Probit analysis was used to analyze data from bioassay experiments. The oviposition deterrent activity was tested by using three different concentrations of extracts (1000, 500 and 200 for An. arabiensis, and 1000, 500 and 100 for Cx. quinquefasciatus) that caused high, moderate and low larval mortality in the larvicidal experiment against 3rd instar larvae. It was found that, LC50–LC90 values calculated were 273.53–783.43, 366.44–1018.59 and 454.99–1224.62 ppm for 2nd, 3rd and 4th larval instars, respectively, of An. arabiensis and 187.93–433.51, 218.27–538.27 and 264.85–769.13 ppm for 2nd, 3rd and 4th larval instars, respectively, of Cx. quinquefasciatus. Fifty percent of adult emergence inhibition (EI50) was shown at 277.90 and 183.65 ppm for An. arabiensis and Cx. quinquefasciatus, respectively. The pupal stage was not affected till a concentration of 5000 ppm. The extract showed oviposition deterrence and effective repellence against both mosquito species at different concentrations, with the observation on that maximal eggs were laid in low concentration of extract. These results suggest that the leaves extract of C. procera possess remarkable larvicidal, adult emergence inhibitor, repellent and oviposition deterrent effect against both An. arabiensis and Cx. quinquefasciatus, and might be used as natural biocides

  6. Sterilising effects of pyriproxyfen on Anopheles arabiensis and its potential use in malaria control

    PubMed Central

    2013-01-01

    Background Insecticide resistance poses a major threat to current vector control campaigns. Insecticides with novel modes of action are therefore in high demand. Pyriproxyfen (PPF), a conventional mosquito pupacide, has a unique mode of action that also sterilises adult mosquitoes (unable to produce viable offspring) upon direct contact. However, the timing of PPF exposure in relation to when mosquitoes take a blood meal has an important impact on that sterilisation. This study investigated the relationship between different blood feeding and PPF exposure timings to determine the potential of PPF sterilisation in controlling Anopheles arabiensis. Methods Four treatment regimens were investigated: blood fed three days before PPF exposure (A), blood fed one day before PPF exposure (B), blood fed one day after PPF exposure (C) and blood fed three days after PPF exposure (D) for their impact on egg laying (fecundity) and the production of viable offspring (fertility), while the impact of PPF exposure on mosquito survival was investigated in the absence of a blood meal. All regimens and the survival study exposed mosquitoes to PPF via the bottle assay at 3 mg AI/m2 for 30 minutes. Results Female mosquitoes that blood-fed one day prior to PPF exposure (regimen B), produced no viable offspring during that gonotrophic cycle (100% reduction in fertility). All other treatments had no significant effect. The observed reductions in fecundity and fertility were caused by the retention of eggs (97% of eggs retained, i.e. produced in the ovaries but not laid, in regimen B, p = 0.0004). Some of these retained eggs were deformed in shape. PPF exposure on mosquito survival in the absence of a blood meal was found to have no effect. Conclusions The results presented here suggest that sterilising adult malaria vectors using PPF could form part of a malaria control strategy, taking advantage of the lack of reported resistance to PPF in mosquitoes and its unique mode of action. We

  7. Swarming and mating behavior of male Anopheles arabiensis Patton (Diptera: Culicidae) in an area of the Sterile Insect Technique Project in Dongola, northern Sudan.

    PubMed

    Hassan, Mo'awia M; Zain, Hussam M; Basheer, Mohammed A; Elhaj, Hassab-Elrasoul F; El-Sayed, Badria B

    2014-04-01

    The problems facing the conventional mosquito control methods including resistance to insecticides have led to the development of alternative methods such as the Sterile Insect Technique (SIT) to suppress populations of the malaria vector Anopheles arabiensis in northern Sudan. This method entails the release of large numbers of irradiated males to compete against wild conspecifics for mating with virgin females in the field. The swarming and mating behaviors of this species were conducted at two field sites during the period 2009-2012 in Dongola, northern Sudan. Observations were made in the field sites and in a contained semi-field enclosure. In addition, participation of released irradiated-marked males in the swarms of wild mosquito was investigated. Swarms were observed on sunset in the vicinity of larval habitats around irrigation channel and stopped with the onset of the darkness about 21-25 min after the start. Swarms were observed above visual markers such as palm trees, bare ground, and manure. Several couples were observed leaving the swarms in copula in the direction of the sunlight. The majority of copulations were observed within 12-15 min of the start of swarming. Relatively low insemination rates (28%) of females collected from coupling pairs were observed. Irradiated-marked males were observed to join the natural swarms regularly, indicating their probable competitiveness with the other wild males. These findings enhance the feasibility of staging an SIT campaign against malaria vector in Northern State-Sudan.

  8. Eliminating female Anopheles arabiensis by spiking blood meals with toxicants as a sex separation method in the context of the sterile insect technique

    PubMed Central

    2013-01-01

    Background Ivermectin has longevity reducing effects in several insect species, including disease transmitting mosquitoes after feeding on hosts that have received ivermectin treatment. This has important implications in mosquito population control and thus the reduction of disease transmission. In addition, ivermectin could play an enormous role in mosquito control operations by its use in the female elimination process during mass-rearing, enabling the release of only sterile males in the context of the sterile insect technique (SIT). Methods Blood meals were spiked with various toxicants and were then offered to adult Anopheles arabiensis and killing effects were observed. Varying concentrations of the most effective substance were then tested in subsequent trials to obtain an optimal dose for quick and total female elimination. The remaining males were mated with untreated virgin females to assess whether their mating efficiency had been compromised. The most promising substance at the optimal concentration was further tested on a larger number of adults, after they had been irradiated and partially sterilised as pupae with 70 Gy to evaluate the feasibility of the method in a mass-rearing, and SIT context. The males resulting from the latter trial were also checked for mating efficiency post treatments. Results Ivermectin (Virbamec®) at a concentration of 7.5 ppm was chosen from the toxicants tested as sufficiently effective in eliminating all female An. arabiensis in 4 days, the shortest time required for female elimination of all chemicals tested. Mating efficiency of the non-blood feeding male mosquitoes was not compromised significantly compared to controls even when they were kept for a total of 4 days (from emergence) before theoretical release. The irradiation treatment did not affect overall female feeding behaviour in this setting, nor were the sterile males less competitive for mating with virgin females after the treatments than virgin sterile

  9. Ammonium sulphate fertiliser increases larval populations of Anopheles arabiensis and culicine mosquitoes in rice fields.

    PubMed

    Mutero, C M; Ng'ang'a, P N; Wekoyela, P; Githure, J; Konradsen, F

    2004-01-01

    Field experiments were conducted in central Kenya, to study the effect of ammonium sulphate fertiliser ((NH(4))(2)SO(4)) on mosquito larval populations in rice fields. The experiments used a complete randomised block design having four blocks with two experimental ponds per block, and the fertiliser and control treatments allocated randomly among the ponds. Student's two-sample unpaired t-test was used to test for the significance of differences between the relative counts of larvae in fertiliser and control treatments. The results showed a significant overall increase in the larval populations of An. arabiensis (P<0.01) and culicine mosquitoes (P<0.05), after ponds were treated with the fertiliser. Significantly more fourth instar larvae of An. arabiensis were collected in fertiliser than control plots (P<0.001). An. arabiensis data indicated that the first fertiliser application had the most impact, compared to the second and third applications. This was evident in a significant peak of combined first and second instar An. arabiensis larvae observed 5 days after the first fertiliser application (P<0.05). The studies suggest that ammonium sulphate fertiliser reduces turbidity of water in rice fields, thereby making them visually more attractive for egg-laying by An. arabiensis and culicine mosquitoes.

  10. Screening for adulticidal activity against Anopheles arabiensis in ten plants used as mosquito repellent in South Africa

    PubMed Central

    2014-01-01

    Background Due to the development of resistance to synthetic insecticides, adverse effects to human health, non-target organisms and the environment, there is an urgent need to develop new insecticides, which are effective, safe, biodegrable and target-specific. This study was undertaken to evaluate the adulticidal activity of 10 plants used traditionally as mosquito repellents in South Africa. Methods The dried plant materials were extracted with dichloromethane (DCM) and ethanol (EtOH). The extracts were evaluated for adulticidal activity against Anopheles arabiensis mosquitoes, a potent malaria vector in South Africa. Adult mortality was observed after 24 hours of exposure. Results All the extracts showed adulticidal activity. The highest activity was observed in both DCM and EtOH extracts of Aloe ferox leaves with 98 and 86% mosquito mortality, respectively. The DCM extract of A. ferox leaves was then subjected to a dose-dependent bioassay to determine the EC50 value. The extract exhibited an EC50 value of 4.92 mg/ml. Conclusion The results of the present study showed that the DCM extract of A. ferox leaves may have the potential to be used as an insecticide against An. arabiensis. Further studies to isolate and identify active compounds are in progress. PMID:24884500

  11. Mosquito mass rearing technology: a cold-water vortex device for continuous unattended separation of Anopheles arabiensis pupae from larvae.

    PubMed

    Balestrino, Fabrizio; Gilles, Jérémie R L; Soliban, Sharon M; Nirschl, Anton; Benedict, Quentin E; Benedict, Mark Q

    2011-09-01

    In mass rearing of anopheline mosquitoes, pupae are usually separated from larvae on a daily basis to prevent unwanted adult emergence from trays. Depending on the device and species, 2 physical characteristics have most often been used for separation: buoyant density and size. In this report, we describe a system for continuous separation of Anopheles arabiensis larvae from pupae based on the natural difference in buoyant density and behavior between the 2 stages. We determined that temperatures 4-15 degrees C caused neither mortality nor reduction in likelihood of pupation or emergence. Separation improved as temperatures decreased down to 4 degrees C. We devised and demonstrated a 15 degrees C water vortex separator that we anticipate can process approximately 1 million larvae and pupae per hour with a < 0.3% pupal contamination rate and which operates unattended.

  12. Describing Anopheles arabiensis aquatic habitats in two riceland agro-ecosystems in Mwea, Kenya using a negative binomial regression model with a non-homogenous mean.

    PubMed

    Jacob, Benjamin G; Griffith, Daniel; Muturi, Ephantus; Caamano, Erick X; Shililu, Josephat; Githure, John I; Novak, Robert J

    2009-01-01

    This research illustrates a geostatistical approach for modeling the spatial distribution patterns of Anopheles arabiensis Patton (Patton) aquatic habitats in two riceland environments. QuickBird 0.61 m data, encompassing the visible bands and the near-infra-red (NIR) band, were selected to synthesize images of An. arabiensis aquatic habitats. These bands and field sampled data were used to determine ecological parameters associated with riceland larval habitat development. SAS was used to calculate univariate statistics, correlations and Poisson regression models. Global autocorrelation statistics were generated in ArcGISfrom georeferenced Anopheles aquatic habitats in the study sites. The geographic distribution of Anopheles gambiae s.l. aquatic habitats in the study sites exhibited weak positive autocorrelation; similar numbers of log-larval count habitats tend to clustered in space. Individual rice land habitat data were further evaluated in terms of their covariations with spatial autocorrelation, by regressing them on candidate spatial filter eigenvectors. Each eigenvector generated from a geographically weighted matrix, for both study sites, revealed a distinctive spatial pattern. The spatial autocorrelation components suggest the presence of roughly 14-30% redundant information in the aquatic habitat larval count samples. Synthetic map pattern variables furnish a method of capturing spatial dependency effects in the mean response term in regression analyses of rice land An. arabiensis aquatic habitat data.

  13. The Anopheles arabiensis genetic sexing strain ANO IPCL1 and its application potential for the sterile insect technique in integrated vector management programmes.

    PubMed

    Yamada, Hanano; Vreysen, Marc J B; Bourtzis, Kostas; Tschirk, Wolfgang; Chadee, Dave D; Gilles, Jeremie R L

    2015-02-01

    The Anopheles arabiensis genetic sexing strain ANO IPCL1 was developed based on a dieldrin resistant mutation. The strain has been shown to be practical and reliable in terms of female elimination by dieldrin treatments at larval stages, but has provided some difficulties when treatments were applied at the egg stage. The high natural sterility of this strain has advantages and disadvantages in both mass rearing and the sterilization process. In addition, its recombination rate, although relatively low, poses a threat of strain deterioration if left unchecked in a mass-rearing setting. The males of the ANO IPCL1 have been shown to be equally competitive as lab-reared males of the wild-type Dongola strain, but competitiveness decreased by half when irradiated with 75 Gy—a dose conferring >98% sterility. More controversial issues surround the use of dieldrin—a highly persistent organochlorine that is known to bioaccumulate in the food chain. The prospective use of large volumes of dieldrin in a mass-rearing facility and the retention of its residues by the male mosquitoes makes the use of the strain in the context of the sterile insect technique against this vector highly questionable, and therefore its implementation at a large scale cannot be recommended.

  14. Use of carbon-13 as a population marker for Anopheles arabiensis in a sterile insect technique (SIT) context

    PubMed Central

    Hood-Nowotny, Rebecca; Mayr, Leo; Knols, Bart GJ

    2006-01-01

    Background Monitoring of sterile to wild insect ratios in field populations can be useful to follow the progress in genetic control programmes such as the Sterile Insect Technique (SIT). Of the numerous methods for marking insects most are not suitable for use in mass rearing and mass release. Suitable ones include dye marking, genetic marking and chemical marking. Methods The feasibility of using the stable isotope of carbon, 13C, as a potential chemical marker for Anopheles arabiensis was evaluated in the laboratory. Labeled-13C glucose was incorporated into the larval diet in a powder or liquid form. The contribution of adult sugar feeding to the total mosquito carbon pool and the metabolically active carbon pool was determined by tracing the decline of the enrichment of the adult male mosquito as it switched from a labeled larval diet to an unlabeled adult diet. This decline in the adult was monitored by destructive sampling of the whole mosquito and analyzed using isotope ratio mass spectrometry. Results A two-pool model was used to describe the decline of the 13C-enrichment of adult mosquitoes. The proportion of the total adult carbon pool derived from the adult sugar diet over the life span of mosquitoes was determined and the ratio of structural carbon, with a low turnover rate to metabolically active non-structural carbon was assessed. The uptake and turnover of sugar in the metabolically active fraction suggests that after 3 days >70% of the active fraction carbon is derived from sugar feeding (increasing to >90% by day 7), indicating the high resource demand of male mosquitoes. Conclusion It was possible to "fix" the isotopic label in adult An. arabiensis and to detect the label at an appropriate concentration up to 21 days post-emergence. The optimum labeling treatment would cost around 250 US$ per million mosquitoes. Stable isotope marking may thus aid research on the fate of released insects besides other population-based ecological studies. PMID

  15. Evaluation of Endod (Phytolacca dodecandra: Phytolaccaceae) as a Larvicide Against Anopheles arabiensis, the Principal Vector of Malaria in Ethiopia.

    PubMed

    Getachew, Dejene; Balkew, Meshesha; Gebre-Michael, Teshome

    2016-06-01

    Malaria control methods rely mostly on adult mosquito control using insecticide-treated nets and indoor residual spraying with insecticides. Plants such as endod (Phytolacca dodecandra) can potentially be used for the control of mosquito larvae as a supplement to adult control methods. Following the discovery of endod, a molluscicide plant, more than 5 decades ago in Ethiopia, subsequent studies have shown that its potency can further be increased by simple procedures such as aging endod berry powder in water. This study was conducted to evaluate the killing effect of fresh and aged endod solution against 4th-stage larvae of Anopheles arabiensis. Laboratory-reared An. arabiensis larvae exposed to different concentrations of endod preparation using distilled or spring water had 50% lethal concentration (LC(50))  =  49.6 ppm and 90% lethal concentration (LC(90))  =  234 ppm for fresh and LC(50)  =  36.4 ppm and LC(90)  =  115.7 ppm for the aged endod solution in distilled water against the laboratory population. Against field-collected larvae of the same species, aged preparations in habitat water resulted in higher LC(50) (472.7 ppm) and LC(90) (691 ppm) values, with only a slight improvement over fresh preparations in habitat water (LC(50)  =  456.2 ppm; LC(90)  =  896.1 ppm). In general, although aged preparations of endod required lower concentrations than fresh to kill at least 90% of the larvae, these concentrations were much higher (12-70×) than that required for schistosome-transmitting snails.

  16. Laboratory evaluation of traditional insect/mosquito repellent plants against Anopheles arabiensis, the predominant malaria vector in Ethiopia.

    PubMed

    Karunamoorthi, Kaliyaperumal; Mulelam, Adane; Wassie, Fentahun

    2008-08-01

    Laboratory study was carried out to evaluate the repellent efficiency of most commonly known four traditional insect/mosquito repellent plants Wogert [vernacular name (local native language, Amharic); Silene macroserene], Kebercho [vernacular name (local native language, Amharic); Echinops sp.], Tinjut [vernacular name (local native language, Amharic); Ostostegia integrifolia], and Woira[vernacular name (local native language, Amharic); Olea europaea] against Anopheles arabiensis under the laboratory conditions. One hundred (4-5 days old) female A. arabiensis were introduced into the both 'control' and 'test' repellent chamber through the hole on top. Traditional charcoal stoves were used for direct burning. The experiment was conducted by applying the smoke into the repellent "test" mosquito cage by direct burning of 25 gm of dried plant materials (leaves and roots) until plant materials completely burned. The number of mosquitoes driving away from the "test" and "control" cage was recorded for every 5 min. In the present investigation, the results clearly revealed that the roots of S. macroserene has potent repellent efficiency (93.61%) and was the most effective. The leaves of Echinops sp. (92.47%), leaves of O. integrifolia (90.10%) and O. europaea (79.78%) were also effective. Roots of S. macroserene exhibited the highest repellent efficiency by direct burning. The present study identified these four traditional indigenous insect/mosquito repellent plant materials are very promising and can be used as safer alternative to modern synthetic chemical repellents against mosquito vectors of disease. Since people have been using these plants for some medicinal purposes, no side effects have been found.

  17. Laboratory evaluation of traditionally used plant-based insect repellent against the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae).

    PubMed

    Karunamoorthi, Kaliyaperumal; Ilango, Kandan; Murugan, Kadarkarai

    2010-04-01

    A laboratory study was carried out to evaluate the repellent efficacy of a methanol-leaf extract of Ethiopian traditionally used insect repellent plant viz., Lomi sar [vernacular name (local native language, Amharic); Cymbopogon citratus (DC) Stapf. (Poaceae)] against Anopheles arabiensis at four different concentrations viz., 1.0, 1.5, 2.0, and 2.5 mg/cm(2). The percentage protection in relation to the dose method was performed. C. citratus extract has shown various degrees of repellency impact against A. arabiensis. It provided the maximum total percentage protection of 78.83% at 2.5 mg/cm(2) and followed 68.06% at 2.0 mg/cm(2) for 12 h. All four tested concentrations of C. citratus extract offered significant protection and Student's t test results shows statistically significant (p value = 0.001) [1.0 mg/cm(2) (t = 22.89; df = 4); 1.5 mg/cm(2) (t = 24.03; df = 4); 2.0 mg/cm(2) (t = 36.92; df = 4); 2.5 mg/cm(2) (t = 22.31; df = 4)] difference between treated and control groups. The result suggests that it could serve as a potent insect repellent against vectors of disease. Globally, C. citratus is renowned for its therapeutic values. Above and beyond, due to its user- as well as environmental-friendly nature, it should be promoted among the marginalized populations in order to reduce man-vector contact. In addition, this appropriate strategy affords the opportunity to minimize chemical repellent usage and the risks associated with adverse side effects. At the end of the day, traditionally used plant-based insect repellents could be viable safer alternative sources for chemical insect repellents.

  18. Environmental factors associated with the distribution of Anopheles arabiensis and Culex quinquefasciatus in a rice agro-ecosystem in Mwea, Kenya.

    PubMed

    Muturi, Ephantus J; Mwangangi, Joseph; Shililu, Josephat; Jacob, Benjamin G; Mbogo, Charles; Githure, John; Novak, Robert J

    2008-06-01

    Studies were conducted between May and June, 2006 to investigate the environmental factors affecting the distribution of An. arabiensis Patton and Culex quinquefasciatus Say in Mwea, Kenya. The sampling unit comprised all non-paddy aquatic habitats and ten randomly selected paddies and canals located within a 200 m radius from the periphery of the study site. Thirteen physico-chemical variables were recorded for each sampling site in each sampling occasion and a sample of mosquito larvae and other aquatic invertebrates collected. The non-paddy aquatic habitats identified included pools and marshes. Morphological identification of 1,974 mosquito larvae yielded four species dominated by Cx. quinquefasciatus (73.2%) and An. arabiensis (25.0%). Pools were associated with significantly higher Cx. quinquefasciatus larval abundance and less diversity of other aquatic invertebrates compared with other habitat types. In contrast, the abundance of An. arabiensis did not differ significantly among habitat types. Culex quinquefasciatus habitats had higher water conductivity and exhibited a higher abundance of other aquatic invertebrates than An. arabiensis habitats. Chi-square analysis indicated that the two species were more likely to coexist in the same habitats than would be expected by chance alone. Anopheles arabiensis larvae were positively associated with dissolved oxygen and adults of family Haliplidae and negatively associated with emergent vegetation and Heptageniidae larvae. Culex quinquefasciatus larvae were positively associated with dissolved oxygen, total dissolved solids, Chironomidae larvae, and Microvelidae adults and negatively associated with emergent vegetation. These findings suggest that both biotic and abiotic factors play a significant role in niche partitioning among Cx. quinquefasciatus and An. arabiensis, a factor that should be considered when designing an integrated vector control program.

  19. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    PubMed

    Oliver, Shüné V; Brooke, Basil D

    2016-01-01

    Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance

  20. Sugar-source preference, sugar intake and relative nutritional benefits in Anopheles arabiensis males.

    PubMed

    Gouagna, Louis Clément; Kerampran, Renaud; Lebon, Cyrille; Brengues, Cecile; Toty, Celine; Wilkinson, David A; Boyer, Sébastien; Fontenille, Didier

    2014-04-01

    Plant-derived sugar is the only source of dietary carbohydrate for males of most mosquito species. Male resource acquisition and utilization remain an under-researched area of behavior in vectors of human diseases. However, the renewed interest in the use of sterile males against disease vector mosquitoes reinforces the urgent need for studies on the behavioral and ecological processes that underpin male fitness and reproductive success. Here an attempt was made first to characterize the conditions and modes of resource acquisition (plant derived sugar meals) early in the life of An. arabiensis males, and second to test the hypothesis that the plants chosen for their sugar meals are those which maximize their fitness in terms of energy gains (i.e. amount of lipids, proteins, glycogen and glucose). Olfactometry assays demonstrated the ability of An. arabiensis males to discriminate among a sample of ten abundant flowering plants present in their natural habitats. In further experiments, we observed significant variations in the sugar intake rates that matched their olfactory preferences, with the most attractive plants eliciting significantly higher sugar intake rates. Consistent with our expectations, analyses of the whole-body free sugars, lipids and glycogen unequivocally showed that the energy reserve accumulated post-feeding is dependent on the diet of the adult males, with the preferred plants providing more energy reserves than the less preferred ones, despite mosquitoes actively feeding on both. Taken together, these results show that An. Arabiensis males are able to discern between food sources, preferentially feeding on those species of plant that provide the highest metabolic payoff. Ensuring or somehow heightening the ability to detect and obtain rewarding sugar meals by male mosquitoes reared for field release could enhance their competitive ability in the field.

  1. Evaluation of indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-susceptible Anopheles arabiensis and pyrethroid-resistant Culex quinquefasciatus mosquitoes.

    PubMed

    Oxborough, R M; Kitau, J; Matowo, J; Mndeme, R; Feston, E; Boko, P; Odjo, A; Metonnou, C G; Irish, S; N'guessan, R; Mosha, F W; Rowland, M W

    2010-10-01

    Chlorfenapyr is a pyrrole insecticide with a unique non-neurological mode of action. Laboratory bioassays of chlorfenapyr comparing the mortality of pyrethroid-susceptible and -resistant Anopheles gambiae s.s. and Culex quinquefasciatus mosquitoes indicated that operational cross-resistance is unlikely to occur (resistance ratio ranged between 0 and 2.1). Three trials of chlorfenapyr indoor residual spraying were undertaken in experimental huts in an area of rice irrigation in northern Tanzania that supports breeding of A. arabiensis. Daily mosquito collections were undertaken to assess product performance primarily in terms of mortality. In the second trial, 250mg/m(2) and 500mg/m(2) chlorfenapyr were tested for residual efficacy over 6 months. Both dosages killed 54% of C. quinquefasciatus, whilst for A. arabiensis 250mg/m(2) killed 48% compared with 41% for 500mg/m(2); mortality was as high at the end of the trial as at the beginning. In the third trial, 250mg/m(2) chlorfenapyr was compared with the pyrethroid alpha-cypermethrin dosed at 30mg/m(2). Chlorfenapyr performance was equivalent to the pyrethroid against A. arabiensis, with both insecticides killing 50% of mosquitoes. Chlorfenapyr killed a significantly higher proportion of pyrethroid-resistant C. quinquefasciatus (56%) compared with alpha-cypermethrin (17%). Chlorfenapyr has the potential to be an important addition to the limited arsenal of public health insecticides for indoor residual control of A. arabiensis and pyrethroid-resistant species of mosquito.

  2. Synthesis and characterization of a novel series of 1,4-dihydropyridine analogues for larvicidal activity against Anopheles arabiensis.

    PubMed

    Dharma Rao, Bhaskara D; Bhandary, Subhrajyoti; Chopra, Deepak; Venugopala, Katharigatta N; Gleiser, Raquel M; Kasumbwe, Kabange; Odhav, Bharti

    2017-01-30

    The new-fangled bis(4-substituted benzyl) 4-(4-substitued phenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate derivatives were synthesized by the union of substituted aryl aldehyde, tert-butyl acetoacetate, ammonium carbonate with 4-substituted benzyl alcohol via Hantzsch ester synthesis in aqueous medium under catalyst-free conditions. The newly synthesized compounds were characterized by spectroscopic techniques such as IR, NMR ((1) H and (13) C), ESI mass, elemental analysis, and single-crystal X-ray diffraction. The characterized title compounds were evaluated for the larvicidal activity against Anopheles arabiensis by standard WHO larvicidal assay method using Temephos as standard at 4 μg/ml. The title compounds bis(4-methoxybenzyl) 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate and bis(4-chlorobenzyl) 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate exhibited promising larvicidal activity at 65.6% and 72.2%, respectively, when compared with the standard compound at 98.9%.

  3. Dynamics of immature stages of Anopheles arabiensis and other mosquito species (Diptera: Culicidae) in relation to rice cropping in a rice agro-ecosystem in Kenya.

    PubMed

    Mwangangi, Joseph; Shililu, Josephat; Muturi, Ephantus; Gu, Weidong; Mbogo, Charles; Kabiru, Ephantus; Jacob, Benjamin; Githure, John; Novak, Robert

    2006-12-01

    We determined changes in species composition and densities of immature stages of Anopheles arabiensis mosquitoes in relation to rice growth cycle in order to generate data for developing larval control strategies in rice ecosystems. Experimental rice paddies (6.3m x 3.15m) exposed to natural colonization of mosquitoes were sampled weekly for two rice growing cycles between February 2004 and March 2005. Overall, 21,325 Anopheles larvae were collected, of which 91.9% were 1st and 2nd instars and 8.1% were 3rd and 4th instars. An. arabiensis was the predominant species (84.1%) with other species, An. pharoensis (13.5%), An. funestus (2.1%), An. coustani (0.3%), and An. maculipalpis (0.1%) accounting for only a small proportion of the anophelines collected. Culex quinquefasciatus (65.7%) was the predominant species among the non-anopheline species. Others species collected included: C. annulioris (9.9%), C. poicilipes (7.3%), C. tigripes (7.2%), C. duttoni (0.6%), Aedes aegypti (5.3%), Ae. cumminsii (3.5%), and Ae. vittatus (0.7%). The densities of the major anopheline species were closely related to rice stage and condition of the rice field. An. arabiensis, the predominant species, was most abundant over a three-week period after transplanting. Low densities of larvae were collected during the late vegetative, reproductive, and ripening phases of rice. An increase in larval density ten days post-transplanting was found to correlate with the application of fertilizer (sulphate of ammonia). Culicine and aedine species densities were significantly higher during the post-harvesting period. Our results suggest that the transplanting stage is favorable for the growth of immature stages of An. arabiensis and provides a narrow window for targeted larval intervention in rice.

  4. Contribution of different aquatic habitats to adult Anopheles arabiensis and Culex quinquefasciatus (Diptera: Culicidae) production in a rice agroecosystem in Mwea, Kenya.

    PubMed

    Mwangangi, Joseph M; Muturi, Ephantus J; Shililu, Josephat; Muriu, Simon M; Jacob, Benjamin; Kabiru, Ephantus W; Mbogo, Charles M; Githure, John; Novak, Robert

    2008-06-01

    Studies were conducted to determine the contribution of diverse larval habitats to adult Anopheles arabiensis Patton and Culex quinquefasciatus Say production in a rice land agro-ecosystem in Mwea, Kenya. Two sizes of cages were placed in different habitat types to investigate the influence of non-mosquito invertebrates on larval mortalities and the contribution of each habitat type to mosquito productivities, respectively. These emergence traps had fine netting material covers to prevent adult mosquitoes from ovipositing in the area covered by the trap and immature mosquitoes from entering the cages. The emergence of Anopheles arabiensis in seeps, tire tracks, temporary pools, and paddies was 10.53%, 17.31%, 12.50%, and 2.14%, respectively, while the corresponding values for Cx. quinquefasciatus were 16.85% in tire tracks, 8.39% in temporary pools, and 5.65% in the paddies from 0.125 m3 cages during the study. Cages measuring 1 m3 were placed in different habitat types which included paddy, swamp, marsh, ditch, pool, and seep to determine larval habitat productivity. An. arabiensis was the predominant anopheline species (98.0%, n = 232), although a few Anopheles coustani Laveran (2.0%, n = 5) emerged from the habitats. The productivity for An. arabiensis larvae was 6.0 mosquitoes per m2 for the temporary pools, 5.5 for paddy, 5.4 for marsh, 2.7 for ditch, and 0.6 for seep. The Cx. quinquefasciatus larval habitat productivity was 47.8 mosquitoes per m2 for paddies, 35.7 for ditches, 11.1 for marshes, 4.2 for seeps, 2.4 for swamps, and 1.0 for temporary pools. Pools, paddy, and marsh habitat types were the most productive larval habitats for An. arabiensis while paddy, ditch, and marsh were the most productive larval habitats for Cx. quinquefasciatus. The most common non-mosquito invertebrate composition in the cages included Dytiscidae, Notonectidae, Belostomatidae, and Ephemerellidae, and their presence negatively affected the number of emergent mosquitoes from

  5. ITN mixtures of chlorfenapyr (Pyrrole) and alphacypermethrin (Pyrethroid) for control of pyrethroid resistant Anopheles arabiensis and Culex quinquefasciatus.

    PubMed

    Oxborough, Richard M; Kitau, Jovin; Matowo, Johnson; Feston, Emmanuel; Mndeme, Rajab; Mosha, Franklin W; Rowland, Mark W

    2013-01-01

    Pyrethroid resistant Anopheles gambiae malaria vectors are widespread throughout sub-Saharan Africa and continued efficacy of pyrethroid ITNs is under threat. Chlorfenapyr is a promising pyrrole insecticide with a unique mechanism of action conferring no cross-resistance to existing public health insecticides. Mixtures of chlorfenapyr (CFP) and alphacypermethrin (alpha) may provide additional benefits over chlorfenapyr or alphacypermethrin used alone. An ITN mixture of CFP 100 mg/m(2)+alpha 25 mg/m(2) was compared with CFP 100 mg/m(2) and alpha 25 mg/m(2) in a small-scale experimental hut trial in an area of wild An. arabiensis. The same treatments were evaluated in tunnel tests against insectary-reared pyrethroid susceptible and resistant Culex quinquefasciatus. Performance was measured in terms of insecticide-induced mortality, and blood-feeding inhibition. Tunnel tests showed that mixtures of CFP 100+ alpha 25 were 1.2 and 1.5 times more effective at killing susceptible Cx. quinquefasciatus than either Alpha 25 (P = 0.001) or CFP 100 (P = 0.001) ITNs. Mixtures of CFP100+ alpha 25 were 2.2 and 1.2 times more effective against resistant Cx. quinquefasciatus than either alpha 25 (P = 0.001) or CFP100 (P = 0.003) ITNs. CFP 100+ alpha 25 produced higher levels of blood-feeding inhibition than CFP alone for susceptible (94 vs 46%, P = 0.001) and resistant (84 vs 53%, P = 0.001) strains. In experimental huts the mixture of CFP 100+ Alpha 25 killed 58% of An. arabiensis, compared with 50% for alpha and 49% for CFP, though the differences were not significant. Blood-feeding inhibition was highest in the mixture with a 76% reduction compared to the untreated net (P = 0.001). ITN mixtures of chlorfenapyr and alphacypermethrin should restore effective control of resistant populations of An. gambiae malaria vectors, provide protection from blood-feeding, and may have benefits for resistance management, particularly in areas with low or moderate

  6. ITN Mixtures of Chlorfenapyr (Pyrrole) and Alphacypermethrin (Pyrethroid) for Control of Pyrethroid Resistant Anopheles arabiensis and Culex quinquefasciatus

    PubMed Central

    Oxborough, Richard M.; Kitau, Jovin; Matowo, Johnson; Feston, Emmanuel; Mndeme, Rajab; Mosha, Franklin W.; Rowland, Mark W.

    2013-01-01

    Pyrethroid resistant Anopheles gambiae malaria vectors are widespread throughout sub-Saharan Africa and continued efficacy of pyrethroid ITNs is under threat. Chlorfenapyr is a promising pyrrole insecticide with a unique mechanism of action conferring no cross-resistance to existing public health insecticides. Mixtures of chlorfenapyr (CFP) and alphacypermethrin (alpha) may provide additional benefits over chlorfenapyr or alphacypermethrin used alone. An ITN mixture of CFP 100 mg/m2+alpha 25 mg/m2 was compared with CFP 100 mg/m2 and alpha 25 mg/m2 in a small-scale experimental hut trial in an area of wild An. arabiensis. The same treatments were evaluated in tunnel tests against insectary-reared pyrethroid susceptible and resistant Culex quinquefasciatus. Performance was measured in terms of insecticide-induced mortality, and blood-feeding inhibition. Tunnel tests showed that mixtures of CFP 100+ alpha 25 were 1.2 and 1.5 times more effective at killing susceptible Cx. quinquefasciatus than either Alpha 25 (P = 0.001) or CFP 100 (P = 0.001) ITNs. Mixtures of CFP100+ alpha 25 were 2.2 and 1.2 times more effective against resistant Cx. quinquefasciatus than either alpha 25 (P = 0.001) or CFP100 (P = 0.003) ITNs. CFP 100+ alpha 25 produced higher levels of blood-feeding inhibition than CFP alone for susceptible (94 vs 46%, P = 0.001) and resistant (84 vs 53%, P = 0.001) strains. In experimental huts the mixture of CFP 100+ Alpha 25 killed 58% of An. arabiensis, compared with 50% for alpha and 49% for CFP, though the differences were not significant. Blood-feeding inhibition was highest in the mixture with a 76% reduction compared to the untreated net (P = 0.001). ITN mixtures of chlorfenapyr and alphacypermethrin should restore effective control of resistant populations of An. gambiae malaria vectors, provide protection from blood-feeding, and may have benefits for resistance management, particularly in areas with low or moderate frequency

  7. Establishment of a self-propagating population of the African malaria vector Anopheles arabiensis under semi-field conditions

    PubMed Central

    2010-01-01

    Background The successful control of insect disease vectors relies on a thorough understanding of their ecology and behaviour. However, knowledge of the ecology of many human disease vectors lags behind that of agricultural pests. This is partially due to the paucity of experimental tools for investigating their ecology under natural conditions without risk of exposure to disease. Assessment of vector life-history and demographic traits under natural conditions has also been hindered by the inherent difficulty of sampling these seasonally and temporally varying populations with the limited range of currently available tools. Consequently much of our knowledge of vector biology comes from studies of laboratory colonies, which may not accurately represent the genetic and behavioural diversity of natural populations. Contained semi-field systems (SFS) have been proposed as more appropriate tools for the study of vector ecology. SFS are relatively large, netting-enclosed, mesocosms in which vectors can fly freely, feed on natural plant and vertebrate host sources, and access realistic resting and oviposition sites. Methods A self-replicating population of the malaria vector Anopheles arabiensis was established within a large field cage (21 × 9.1 × 7.1 m) at the Ifakara Health Institute, Tanzania that mimics the natural habitat features of the rural village environments where these vectors naturally occur. Offspring from wild females were used to establish this population whose life-history, behaviour and demography under semi-field conditions was monitored over 24 generations. Results This study reports the first successful establishment and maintenance of an African malaria vector population under SFS conditions for multiple generations (> 24). The host-seeking behaviour, time from blood feeding to oviposition, larval development, adult resting and swarming behaviour exhibited by An. arabiensis under SFS conditions were similar to those seen in nature. Conclusions

  8. Larvicidal, adult emergence inhibition and oviposition deterrent effects of foliage extract from Ricinus communis L. against Anopheles arabiensis and Culex quinquefasciatus in Sudan.

    PubMed

    Elimam, Abdalla M; Elmalik, Khitma H; Ali, Faysal S

    2009-08-01

    Malaria and filariases are prevalent in Sudan and their control depends largely on preventive measures against mosquito vectors. The present work aimed to investigate the larvicidal, adults emergence inhibition and oviposition deterrent effects of aqueous extracts from leaves of Ricinus communis L. against the mosquitoes, Anopheles arabiensis and Culex quinquefasciatus as a biological control means. The larval mortality was observed after 24 hours. The LC50 values calculated were 403.65, 445.66 and 498.88 ppm against 2nd, 3rd and 4th instar larvae of An. arabiensis and 1091.44, 1364.58 and 1445.44 ppm against 2nd, 3rd and 4th larval instars of Cx. quinquefasciatus. 50% of adult emergence inhibition (EI50) were 374.97 and 1180.32 ppm against 3rd instar larvae of An. arabiensis and Cx. quinquefasciatus. The extract showed oviposition deterrent effect against both species. Results reveal that the crude extract of R. communis possesses remarkable larvicidal, adult emergence inhibition and oviposition deterrent properties against both the tested species and can be used as biological control means.

  9. Plasmodium falciparum transmission and aridity: a Kenyan experience from the dry lands of Baringo and its implications for Anopheles arabiensis control

    PubMed Central

    2011-01-01

    Background The ecology of malaria vectors particularly in semi-arid areas of Africa is poorly understood. Accurate knowledge on this subject will boost current efforts to reduce the burden of malaria in sub-Saharan Africa. The objective of this study was to describe the dynamics of malaria transmission in two model semi-arid sites (Kamarimar and Tirion) in Baringo in Kenya. Methods Adult mosquitoes were collected indoors by pyrethrum spray collections (PSC) and outdoors by Centers for Disease Control (CDC) light traps and identified to species by morphological characteristics. Sibling species of Anopheles gambiae complex were further characterized by rDNA. PCR and enzyme-linked immuno-sorbent assays (ELISA) were used to test for Plasmodium falciparum circumsporozoite proteins and host blood meal sources respectively. Results Anopheles arabiensis was not only the most dominant mosquito species in both study sites but also the only sibling species of An. gambiae s.l. present in the area. Other species identified in the study area were Anopheles funestus, Anopheles pharoensis and Anopheles coustani. For Kamarimar but not Tirion, the human blood index (HBI) for light trap samples was significantly higher than for PSC samples (Kamarimar, 0.63 and 0.11, Tirion, 0.48 and 0.43). The HBI for light trap samples was significantly higher in Kamarimar than in Tirion while that of PSC samples was significantly higher in Tirion than in Kamarimar. Entomological inoculation rates (EIR) were only detected for one month in Kamarimar and 3 months in Tirion. The number of houses in a homestead, number of people sleeping in the house, quality of the house, presence or absence of domestic animals, and distance to the animal shelter and the nearest larval habitat were significant predictors of An. arabiensis occurrence. Conclusion Malaria transmission in the study area is seasonal with An. arabiensis as the dominant vector. The fact this species feeds readily on humans and domestic

  10. Ecology of larval mosquitoes, with special reference to Anopheles arabiensis (Diptera: Culcidae) in market-garden wells in urban Dakar, Senegal.

    PubMed

    Robert, V; Awono-Ambene, H P; Thioulouse, J

    1998-11-01

    The urban area of Dakar, Senegal, contains > 5,000 market-garden wells that provide permanent sites for mosquito larvae, in particular Anopheles arabiensis Patton, the major vector of malaria. A study of the bioecology of mosquito larvae was conducted over 1 yr with a monthly visit to 48 of these wells. Overall, 9,589 larvae were collected of which 80.1% were Culicinae and 11.9% Anophelinae. Larvae from stages III and IV (n = 853) were identified to 10 species. An. arabiensis represented 86% of the anophelines collected and An. ziemanni Grunberg 14%. The most common Culicinae species included Aedeomyia africana Neveu-Lemaire, Culex quinquefasciatus Say, and Mimomyia splendens Theobald. Maximum anopheline abundance was observed at the end of the dry season in June, whereas maximum Culicinae abundance was observed at the end of the rainy season in September. Most wells (67%) did not harbor any An. arabiensis larvae and in the remaining 33% the larval abundance was low, averaging 0.54 larvae in stages III-IV per tray sample. To identify factors that determine the abundance of larvae in these wells, a co-inertia (multivariate) analysis was carried out to account for physicochemical variables (depth, turbidity, temperature, pH, conductivity, Na+, Cl-, HCO3-, CO3--, and NO3- concentrations) and biological variables (abundance of mosquito species, predators [e.g., fish, Dytiscidae, Notonectidae, odonates], molluscs [Bulinus and Biomphalaria], and surface plants [water lettuce, Lemna, and filamentous algae]). The co-inertia analysis indicated that the abundance of An. arabiensis was associated with Cx. quinquefasciatus and Cx. decens for the physiochemical data but was not associated with other mosquito species for floro-faunistic data. The conditions associated with abundant An. arabiensis were warm temperature (28-30 degrees C), clear and not too deep water (< 0.5 m), elevated concentrations of HCO3- and CO3--, low concentrations of NO3- and NaCl, low populations of

  11. Spatial and temporal distribution patterns of Anopheles arabiensis breeding sites in La Reunion Island - multi-year trend analysis of historical records from 1996-2009

    PubMed Central

    2011-01-01

    Background An often confounding facet of the dynamics of malaria vectors is the aquatic larval habitat availability and suitable conditions under which they can thrive. Here, we investigated the impact of environmental factors on the temporal and spatial distribution of larval habitats of Anopheles arabiensis in different locations on La Reunion Island. Methods A retrospective examination was made from archival data which provided the complete enumeration of An. arabiensis breeding habitats in three distinct geographic zones - extending North-east, West and South of the island over 14 years, from January 1996 to December 2009. Data on the occurrence and the number of active larval habitats at each of a total of 4376 adjacent ellipsoid grid cells (216,506 square meters each) were used (1) to provide the geographic extent of breeding site availability from year to year and (2) to analyze associations with prevailing environmental factors, habitat types, and locations. Results Anopheles arabiensis utilized a spectrum of man-made and natural aquatic habitats, most of which were concentrated primarily in the rock pools located in ravines and river fringes, and also in the large littoral marshes and within the irrigated agricultural zones. The numbers of breeding site per sampling grid differed significantly in different parts of the island. In contrast to an originally more widespread distribution across the island in the 1950s, detailed geographic analyses of the data obtained in the period extending from 1996-2009 showed an intriguing clustered distribution of active breeding sites in three discontinuous geographic zones, in which aquatic habitats availability fluctuates with the season and year. Seasonality in the prevalence of anopheles breeding sites suggests significant responsiveness to climatic factors. Conclusions The observed retreat of An. arabiensis distribution range to lower altitudinal zones (< 400 m) and the upward shift in the most remote littoral areas

  12. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes

    PubMed Central

    2013-01-01

    Background Indoor residual insecticide spraying (IRS) and long-lasting insecticide treated nets (LLINs) are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. Methods A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset®, PermaNet 2.0®, Icon Life® nets) with IRS (pirimiphos methyl, lambda cyhalothrin, DDT), in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Results Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset® or PermaNet 2.0® nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon Life® nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Conclusions Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used), but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used) or even regressive (e.g. when DDT is used for the IRS). Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of whether they are delivered

  13. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis

    PubMed Central

    Ibrahim, Sulaiman S.; Riveron, Jacob M.; Stott, Robert; Irving, Helen; Wondji, Charles S.

    2016-01-01

    Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre. The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools. PMID:26548743

  14. Long-lasting control of Anopheles arabiensis by a single spray application of micro-encapsulated pirimiphos-methyl (Actellic® 300 CS)

    PubMed Central

    2014-01-01

    Background Pyrethroid-resistant mosquitoes are an increasing threat to malaria vector control. The Global Plan for Insecticide Resistance Management (GPIRM) recommends rotation of non-pyrethroid insecticides for indoor residual spraying (IRS). The options from other classes are limited. The carbamate bendiocarb and the organophosphate pirimiphos-methyl (p-methyl) emulsifiable concentrate (EC) have a short residual duration of action, resulting in increased costs due to multiple spray cycles, and user fatigue. Encapsulation (CS) technology was used to extend the residual performance of p-methyl. Methods Two novel p-methyl CS formulations were evaluated alongside the existing EC in laboratory bioassays and experimental hut trials in Tanzania between 2008-2010. Bioassays were carried out monthly on sprayed substrates of mud, concrete, plywood, and palm thatch to assess residual activity. Experimental huts were used to assess efficacy against wild free-flying Anopheles arabiensis, in terms of insecticide-induced mortality and blood-feeding inhibition. Results In laboratory bioassays of An. arabiensis and Culex quinquefasciatus both CS formulations produced high rates of mortality for significantly longer than the EC formulation on all substrates. On mud, the best performing CS killed >80% of An. arabiensis for five months and >50% for eight months, compared with one and two months, respectively, for the EC. In monthly bioassays of experimental hut walls the EC was ineffective shortly after spraying, while the best CS formulation killed more than 80% of An. arabiensis for five months on mud, and seven months on concrete. In experimental huts both CS and EC formulations killed high proportions of free-flying wild An. arabiensis for up to 12 months after spraying. There was no significant difference between treatments. All treatments provided considerable personal protection, with blood-feeding inhibition ranging from 9-49% over time. Conclusions The long residual

  15. Field investigation on the repellent activity of some aromatic plants by traditional means against Anopheles arabiensis and An. pharoensis (Diptera: Culicidae) around Koka, central Ethiopia.

    PubMed

    Dugassa, Sisay; Medhin, Girmay; Balkew, Meshesha; Seyoum, Aklilu; Gebre-Michael, Teshome

    2009-10-01

    A study was undertaken to evaluate the impact of traditional application methods of mosquito repellent plants in the reduction of the human-vector contact of malaria vectors in central Ethiopia. The plants (Corymbia citriodora, Eucalyptus camaldulensis, Ocimum suave and Ocimum basilicum) were tested by thermal expulsion and direct burning on traditional stoves in the field against two important malaria vectors in Ethiopia (Anopheles arabiensis and An. pharoensis). A Latin-square design was applied for randomly assigning the treatment plants and control to experimental houses over different nights. The percentage repellency of each candidate plant by both application methods was estimated from the catches of mosquitoes in the treatment and control houses. On direct burning of the plants, O. basilicum showed the highest percentage repellency (73.11%, P<0.001) and E. camaldulensis the least repellency (65.29%, P<0.001) against An. arabiensis. By the same method of application, C. citriodora on the other hand gave the highest repellency (72.87%, P<0.001) while E. camaldulensis was still the least repellent plant (66.60%, P<0.001) against An. pharoensis. On thermal expulsion, C. citriodora exhibited the highest repellency (78.69%, P<0.001) while E. camaldulensis was the lowest repellent plant (71.91%, P<0.001) against An. arabiensis. Against An. pharoensis, C. citriodora gave the highest repellency (72.9%, P<0.001) while E. camaldulensis still gave the least repellency (72.2%, P<0.001) on the same method of application. All the tested plants by both methods of application gave partial but significant protection (>65%) against the house-entry and biting of two important malaria vectors in Ethiopia, and thus have a potential to be used at least as supplements to other control methods. However, feasibility and actual impact on disease transmission need to be known on these and other potentially useful plants.

  16. Anopheles arabiensis egg treatment with dieldrin for sex separation leaves residues in male adult mosquitoes that can bioaccumulate in goldfish (Carassius auratus auratus)

    PubMed Central

    Yamada, Hanano; Jandric, Zora; Chhem-Kieth, Sorivan; Vreysen, Marc JB; Rathor, Mohammad N; Gilles, Jeremie RL; Cannavan, Andrew

    2013-01-01

    The sterile insect technique (SIT) is a biological control tactic that is used as a component of area-wide integrated pest management (AW-IPM) programs. The SIT can only be applied against disease-transmitting mosquitoes when only sterile male mosquitoes are released, and the blood-sucking and potentially disease-transmitting females are eliminated from the production line. For Anopheles arabiensis, a potent vector of malaria, a genetic sexing strain was developed whereby females can be eliminated by treating the eggs or larvae with the insecticide dieldrin. To evaluate the presence of dieldrin residues in male mosquitoes designated for SIT releases, a simple, sensitive, and accurate gas chromatography–electron capture detector (GC–ECD) method was developed. In addition, bioaccumulation and food chain transfer of these residues to fish after feeding with treated mosquitoes was demonstrated. The overall recovery from method validation studies was 77.3 ± 2.2% (mean ± relative standard deviation [RSD]) for the mosquitoes, and 99.1 ± 4.4% (mean ± RSD) for the fish. The average dieldrin concentration found in adult male An. arabiensis was 28.1 ± 2.9 µg/kg (mean ± standard deviation [SD]). A range of 23.9 ± 1.1 µg/kg to 73.9 ± 5.2 µg/kg (mean ± SD) of dieldrin was found in the fish samples. These findings indicate the need to reassess the environmental and health implications of control operations with a SIT component against An. arabiensis that involves using persistent organochlorines in the sexing process. PMID:23983078

  17. Genetic mapping identifies a major locus spanning P450 clusters associated with pyrethroid resistance in kdr-free Anopheles arabiensis from Chad.

    PubMed

    Witzig, C; Parry, M; Morgan, J C; Irving, H; Steven, A; Cuamba, N; Kerah-Hinzoumbé, C; Ranson, H; Wondji, C S

    2013-04-01

    Prevention of malaria transmission throughout much of Africa is dependent on bednets that are impregnated with pyrethroid insecticides. Anopheles arabiensis is the major malaria vector in Chad and efforts to control this vector are threatened by the emergence of pyrethroid resistance. WHO bioassays revealed that An. arabiensis from Ndjamena is resistant to pyrethroids and dichlorodiphenyltrichloroethane (DDT) but fully susceptible to carbamates and organophosphates. No 1014F or 1014S kdr alleles were detected in this population. To determine the mechanisms that are responsible for resistance, genetic crosses were established between the Ndja strain and an insecticide susceptible population from Mozambique. Resistance was inherited as an autosomal trait and quantitative trait locus (QTL) mapping identified a single major locus on chromosome 2R, which explained 24.4% of the variance in resistance. This QTL is enriched in P450 genes including 25 cytochrome P450s in total. One of these, Cyp6p4 is 22-fold upregulated in the Ndja strain compared with the susceptible. Piperonyl butoxide (PBO) synergist and biochemical assays further support a role for P450s in conferring pyrethroid resistance in this population.

  18. Comparisons of life-history characteristics of a genetic sexing strain with laboratory strains of Anopheles arabiensis (Diptera: Culicidae) from northern Sudan.

    PubMed

    Oliva, C F; Benedict, M Q; Soliban, S M; Lemperiere, G; Balestrino, F; Gilles, J R L

    2012-09-01

    A genetic sex separation strain (GSS) has been created for Anopheles arabiensis (Patton) (Diptera: Culicidae), one of the major African malaria vectors, for use in controlling wild populations of this species via the sterile insect technique (SIT). This GSS strain, "ANO IPCL1," allows sex separation by a translocation linking a dieldrin resistance allele and the Y chromosome. Differences between ANO IPCL1 relative to wild strains might reflect its field performance and therefore are of concern. Of more immediate interest is how differences might affect production during mass rearing. Life-history parameters were measured for the ANO IPCL1 strain and the two wild strains from which it originated. Although developmental rate differences were found among them, none were large. However, a major observed variation was the very low intrinsic fertility of ANO IPCL1 because of the translocation itself. This resulted in a much lower rate of increase: ANO IPCL1 was able to double its population size, in 7.8 +/- 0.4 d, whereas Dongola and Sennar strains could do so in 4.9 +/- 0.5 and 5.6 +/- 0.4 d. The presence of the Y-autosome translocation mainly affected the natural fertility of the males, and this will require amplification steps during mass rearing.

  19. Evaluation of the efficacy of DDT indoor residual spraying and long-lasting insecticidal nets against insecticide resistant populations of Anopheles arabiensis Patton (Diptera: Culicidae) from Ethiopia using experimental huts

    PubMed Central

    2014-01-01

    Background Indoor Residual Spraying (IRS) and Long-Lasting Insecticidal nets (LLINs) are major malaria vector control tools in Ethiopia. However, recent reports from different parts of the country showed that populations of Anopheles arabiensis, the principal malaria vector, have developed resistance to most families of insecticides recommended for public health use which may compromise the efficacy of both of these key vector control interventions. Thus, this study evaluated the efficacy of DDT IRS and LLINs against resistant populations of An. arabiensis using experimental huts in Asendabo area, southwestern Ethiopia. Methods The susceptibility status of populations of An. arabiensis was assessed using WHO test kits to DDT, deltamethrin, malathion, lambda-cyhalothrin, fenitrothion and bendiocarb. The efficacy of LLIN (PermaNet® 2.0), was evaluated using the WHO cone bioassay. Moreover, the effect of the observed resistance against malaria vector control interventions (DDT IRS and LLINs) were assessed using experimental huts. Results The findings of this study revealed that populations of An. arabiensis were resistant to DDT, deltamethrin, lambda-cyhalothrin and malathion with mortality rates of 1.3%, 18.8%, 36.3% and 72.5%, respectively but susceptible to fenitrothion and bendiocarb with mortality rates of 98.81% and 97.5%, respectively. The bio-efficacy test of LLIN (PermaNet® 2.0) against An. arabiensis revealed that the mosquito population showed moderate knockdown (64%) and mortality (78%). Moreover, mosquito mortalities in DDT sprayed huts and in huts with LLINs were not significantly different (p > 0.05) from their respective controls. Conclusion The evaluation of the efficacy of DDT IRS and LLINs using experimental huts showed that both vector control tools had only low to moderate efficacy against An. arabiensis populations from Ethiopia. Despite DDT being replaced by carbamates for IRS, the low efficacy of LLINs against the resistant population of An

  20. Evaluating preservation methods for identifying Anopheles gambiae s.s. and Anopheles arabiensis complex mosquitoes species using near infra-red spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infra-red spectroscopy (NIRS) has been successfully used on fresh and RNAlater® preserved Anopheles gambiae complex to identify sibling species and age. No preservation methods other than RNAlater® have been tested to preserve mosquitoes for species identification using NIRS. However, RNAlater®...

  1. Efficacy of agnique (mmf) monomolecular surface film against immature stages of Anopheles arabiensis patton and Culex spp (diptera: culicidae) in Khartoum, Sudan.

    PubMed

    Bashir, Al; Hassan, A Abu; Salmah, M R Che; Rahman, W A

    2008-03-01

    The efficacy of the larvicidal and pupicidal agent (Agnique) MMF was evaluated against larvae of An. arabiensis and Culex (Diptera: Culicidae) under field conditions in Bahary Locality, Khartoum, Sudan. At an applied dosage of 0.25 ml/m2, MMF resulted in 89.4, 79.8 and 88.2% reductions in L3-L4 instars An. arabiensis and 63.5% in Culex larvae (all stages) 24 to 72 hours post-treatment. Pupae were completely eliminated (100%) within 24 hours posttreatment. The earlier instars (L1-L2) of An. arabiensis were more tolerant with a 62.5% reduction at 72 hours post-treatment compared to (L3-L4) instars and pupae. At 7-days post-treatment Agnique gave a 57.5% reduction in L1-L2 and 92.6% in L3-L4 instar larvae of An. arabiensis and 57.3% and 86.4% in Culex larvae and pupae, respectively. We conclude that Agnique can perform effectively against L3-L4 instars and pupae of An. arabiensis for only 1 week, and 3 to 4 days against L1-L2 instars of Culex spp.

  2. Centers for Disease Control light traps for monitoring Anopheles arabiensis human biting rates in an area with low vector density and high insecticide-treated bed net use.

    PubMed

    Fornadel, Christen M; Norris, Laura C; Norris, Douglas E

    2010-10-01

    Human landing catches (HLCs) are currently the preferred method to determine vector human biting rates (HBRs), which are key determinants of entomologic inoculation rates and important measures for assessing the impact of vector control efforts. Although HLCs are the most direct means of establishing HBRs, they are labor-intensive, and their use is facing increasing ethical concerns. The relationship between Centers for Disease Control (CDC) light traps and HLC collections was evaluated in Macha, Zambia during the 2007-2008 and 2008-2009 rainy seasons. A CDC light trap captured on average 1.91 (95% confidence interval = 1.16-2.28) times as many An. arabiensis per night as an indoor HLC. Additionally, nets treated with deltamethrin did not affect the numbers of An. arabiensis collected. Our results suggest that in regions where use of vector control interventions is high and vector densities are low, CDC light traps can be used to monitor An. arabiensis HBRs.

  3. Comparative field evaluation of combinations of long-lasting insecticide treated nets and indoor residual spraying, relative to either method alone, for malaria prevention in an area where the main vector is Anopheles arabiensis

    PubMed Central

    2013-01-01

    Background Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are commonly used together in the same households to improve malaria control despite inconsistent evidence on whether such combinations actually offer better protection than nets alone or IRS alone. Methods Comparative tests were conducted using experimental huts fitted with LLINs, untreated nets, IRS plus untreated nets, or combinations of LLINs and IRS, in an area where Anopheles arabiensis is the predominant malaria vector species. Three LLIN types, Olyset®, PermaNet 2.0® and Icon Life® nets and three IRS treatments, pirimiphos-methyl, DDT, and lambda cyhalothrin, were used singly or in combinations. We compared, number of mosquitoes entering huts, proportion and number killed, proportions prevented from blood-feeding, time when mosquitoes exited the huts, and proportions caught exiting. The tests were done for four months in dry season and another six months in wet season, each time using new intact nets. Results All the net types, used with or without IRS, prevented >99% of indoor mosquito bites. Adding PermaNet 2.0® and Icon Life®, but not Olyset® nets into huts with any IRS increased mortality of malaria vectors relative to IRS alone. However, of all IRS treatments, only pirimiphos-methyl significantly increased vector mortality relative to LLINs alone, though this increase was modest. Overall, median mortality of An. arabiensis caught in huts with any of the treatments did not exceed 29%. No treatment reduced entry of the vectors into huts, except for marginal reductions due to PermaNet 2.0® nets and DDT. More than 95% of all mosquitoes were caught in exit traps rather than inside huts. Conclusions Where the main malaria vector is An. arabiensis, adding IRS into houses with intact pyrethroid LLINs does not enhance house-hold level protection except where the IRS employs non-pyrethroid insecticides such as pirimiphos-methyl, which can confer modest enhancements. In

  4. X-ray sterilization of the An. arabiensis genetic sexing strain 'ANO IPCL1' at pupal and adult stages.

    PubMed

    Ndo, C; Yamada, H; Damiens, D D; N'do, S; Seballos, G; Gilles, J R L

    2014-03-01

    With a view to area wide integrated pest management programs with a sterile insect technique (SIT) component against the malaria vector Anopheles arabiensis, the effects of X-ray exposure of males of the genetic sexing strain (GSS) of An. arabiensis, "ANO IPCL1" have been tested. The suitability of X-ray was assessed in comparison to gamma-ray for mosquito sterilization in operational settings where the acquisition of gamma ray irradiators may be problematic. Pupae and adult males were sterilized using X-ray irradiation at 5 increasing doses and effects were observed in terms of fecundity and fertility. Irradiated pupae and adults were further observed for effects on longevity. The adult stage appeared to be more sensitive to radiation exposure than the pupal stage, with a residual fertility of 1% in adults irradiated at 75Gy and 0% at 105Gy, compared to 8%at 75Gy and 4% at 105Gy in adults irradiated at the pupal stage. All treatment groups except those irradiated at 60Gy were statistically different from the control groups in terms of adult longevity post treatment, however overall survival was not highly compromised in the 75Gy treatment group which showed 96% of induced sterility. To ensure the fine balance between the induced sterility and the fitness of the insect produced is achieved, irradiation of adults at this dose may be a good compromise for the SIT as applied for this species, especially in specific cases such as sterilization after female elimination by spiking blood meals. Investigation into the combined effects of blood spiking and irradiation at the adult stage and additional competitiveness studies both in laboratory and field cages will provide more insight into the radiation dose and mosquito stage to be used in the frame of future SIT programs targeting this important malaria vector.

  5. Evaluating the potential of the sterile insect technique for malaria control: relative fitness and mating compatibility between laboratory colonized and a wild population of Anopheles arabiensis from the Kruger National Park, South Africa

    PubMed Central

    2011-01-01

    Background The successful suppression of a target insect population using the sterile insect technique (SIT) partly depends on the premise that the laboratory insects used for mass rearing are genetically compatible with the target population, that the mating competitiveness of laboratory reared males is at least comparable to that of their wild counterparts, and that mass rearing and sterilization processes do not in themselves compromise male fitness to a degree that precludes them from successfully competing for mates in the wild. This study investigated the fitness and sexual cross-compatibility between samples of field collected and laboratory reared An. arabiensis under laboratory conditions. Results The physiological and reproductive fitness of the MALPAN laboratory strain is not substantially modified with respect to the field population at Malahlapanga. Further, a high degree of mating compatibility between MALPAN and the Malahlapanga population was established based on cross-mating experiments. Lastly, the morphological characteristics of hybrid ovarian polytene chromosomes further support the contention that the MALPAN laboratory colony and the An. arabiensis population at Malahlapanga are genetically homogenous and therefore compatible. Conclusions It is concluded that the presence of a perennial and isolated population of An. arabiensis at Malahlapanga presents a unique opportunity for assessing the feasibility of SIT as a malaria vector control option. The MALPAN laboratory colony has retained sufficient enough measures of reproductive and physiological fitness to present as a suitable candidate for male sterilization, mass rearing and subsequent mass release of sterile males at Malahlapanga in order to further assess the feasibility of SIT in a field setting. PMID:22041133

  6. Nigeria Anopheles Vector Database: An Overview of 100 Years' Research

    PubMed Central

    Okorie, Patricia Nkem; McKenzie, F. Ellis; Ademowo, Olusegun George; Bockarie, Moses; Kelly-Hope, Louise

    2011-01-01

    Anopheles mosquitoes are important vectors of malaria and lymphatic filariasis (LF), which are major public health diseases in Nigeria. Malaria is caused by infection with a protozoan parasite of the genus Plasmodium and LF by the parasitic worm Wuchereria bancrofti. Updating our knowledge of the Anopheles species is vital in planning and implementing evidence based vector control programs. To present a comprehensive report on the spatial distribution and composition of these vectors, all published data available were collated into a database. Details recorded for each source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, morphological and molecular species identification methods, insecticide resistance status, including evidence of the kdr allele, and P. falciparum sporozoite rate and W. bancrofti microfilaria prevalence. This collation resulted in a total of 110 publications, encompassing 484,747 Anopheles mosquitoes in 632 spatially unique descriptions at 142 georeferenced locations being identified across Nigeria from 1900 to 2010. Overall, the highest number of vector species reported included An. gambiae complex (65.2%), An. funestus complex (17.3%), An. gambiae s.s. (6.5%). An. arabiensis (5.0%) and An. funestus s.s. (2.5%), with the molecular forms An. gambiae M and S identified at 120 locations. A variety of sampling/collection and species identification methods were used with an increase in molecular techniques in recent decades. Insecticide resistance to pyrethroids and organochlorines was found in the main Anopheles species across 45 locations. Presence of P. falciparum and W. bancrofti varied between species with the highest sporozoite rates found in An. gambiae s.s, An. funestus s.s. and An. moucheti, and the highest microfilaria prevalence in An. gambiae s.l., An. arabiensis, and An. gambiae s.s. This comprehensive geo-referenced database provides an essential baseline on Anopheles

  7. Effect of 60Co-irradiation on the development and immunogenicity of Plasmodium berghei sporozoites in Anopheles stephensi mosquitoes

    SciTech Connect

    Smrkovski, L.L.; McConnell, E.; Tubergen, T.A.

    1983-10-01

    Protection conferred to mice by Plasmodium berghei sporozoites increased significantly when the time interval between 60Co-irradiation of the infected mosquitoes and harvest of sporozoites increased. One thousand sporozoites conferred no protection against challenge if harvested on the day of irradiation, but protected 60% of recipient mice when harvested 28 days postirradiation. When the time between feeding of mosquitoes and irradiation was varied, sporozoites from mosquitoes irradiated 3 days after feeding were infective for mice. Sporozoites from mosquitoes irradiated on day 10 postfeeding were not infective, but were immunogenic. In all experiments a decline occurred in the number of recoverable sporozoites over a 28-day period postirradiation to less than 10% of the yield on the day of irradiation.

  8. In vitro and in vivo host range of Anopheles gambiae densovirus (AgDNV).

    PubMed

    Suzuki, Yasutsugu; Barik, Tapan K; Johnson, Rebecca M; Rasgon, Jason L

    2015-07-29

    AgDNV is a powerful gene transduction tool and potential biological control agent for Anopheles mosquitoes. Using a GFP reporter virus system, we investigated AgDNV host range specificity in four arthropod cell lines (derived from An. gambiae, Aedes albopictus and Drosophila melanogaster) and six mosquito species from 3 genera (An. gambiae, An. arabiensis, An. stephensi, Ae. albopictus, Ae. aegypti and Culex tarsalis). In vitro, efficient viral invasion, replication and GFP expression was only observed in MOS55 An. gambiae cells. In vivo, high levels of GFP were observed in An. gambiae mosquitoes. Intermediate levels of GFP were observed in the closely related species An. arabiensis. Low levels of GFP were observed in An. stephensi, Ae. albopictus, Ae. aegypti and Cx. tarsalis. These results suggest that AgDNV is a specific gene transduction tool for members of the An. gambiae species complex, and could be potentially developed into a biocontrol agent with minimal off-target effects.

  9. In vitro and in vivo host range of Anopheles gambiae densovirus (AgDNV)

    PubMed Central

    Suzuki, Yasutsugu; Barik, Tapan K.; Johnson, Rebecca M.; Rasgon, Jason L.

    2015-01-01

    AgDNV is a powerful gene transduction tool and potential biological control agent for Anopheles mosquitoes. Using a GFP reporter virus system, we investigated AgDNV host range specificity in four arthropod cell lines (derived from An. gambiae, Aedes albopictus and Drosophila melanogaster) and six mosquito species from 3 genera (An. gambiae, An. arabiensis, An. stephensi, Ae. albopictus, Ae. aegypti and Culex tarsalis). In vitro, efficient viral invasion, replication and GFP expression was only observed in MOS55 An. gambiae cells. In vivo, high levels of GFP were observed in An. gambiae mosquitoes. Intermediate levels of GFP were observed in the closely related species An. arabiensis. Low levels of GFP were observed in An. stephensi, Ae. albopictus, Ae. aegypti and Cx. tarsalis. These results suggest that AgDNV is a specific gene transduction tool for members of the An. gambiae species complex, and could be potentially developed into a biocontrol agent with minimal off-target effects. PMID:26220140

  10. Reticulate Speciation and Barriers to Introgression in the Anopheles gambiae Species Complex.

    PubMed

    Crawford, Jacob E; Riehle, Michelle M; Guelbeogo, Wamdaogo M; Gneme, Awa; Sagnon, N'Fale; Vernick, Kenneth D; Nielsen, Rasmus; Lazzaro, Brian P

    2015-11-28

    Speciation as a process remains a central focus of evolutionary biology, but our understanding of the genomic architecture and prevalence of speciation in the face of gene flow remains incomplete. The Anopheles gambiae species complex of malaria mosquitoes is a radiation of ecologically diverse taxa. This complex is well-suited for testing for evidence of a speciation continuum and genomic barriers to introgression because its members exhibit partially overlapping geographic distributions as well as varying levels of divergence and reproductive isolation. We sequenced 20 genomes from wild A. gambiae s.s., Anopheles coluzzii, Anopheles arabiensis, and compared these with 12 genomes from the "GOUNDRY" subgroup of A. gambiae s.l. Amidst a backdrop of strong reproductive isolation, we find strong evidence for a speciation continuum with introgression of autosomal chromosomal regions among species and subgroups. The X chromosome, however, is strongly differentiated among all taxa, pointing to a disproportionately large effect of X chromosome genes in driving speciation among anophelines. Strikingly, we find that autosomal introgression has occurred from contemporary hybridization between A. gambiae and A. arabiensis despite strong divergence (∼5× higher than autosomal divergence) and isolation on the X chromosome. In addition to the X, we find strong evidence that lowly recombining autosomal regions, especially pericentromeric regions, serve as barriers to introgression secondarily to the X. We show that speciation with gene flow results in genomic mosaicism of divergence and introgression. Such a reticulate gene pool connecting vector taxa across the speciation continuum has important implications for malaria control efforts.

  11. Development of a DNA-Based Method for Distinguishing the Malaria Vectors, Anopheles Gambiae from Anopheles Arabiensis.

    DTIC Science & Technology

    1987-11-15

    dessicated thoraces since the DNA probe can readily diacinose sinale dessicatei abdomens. Blood Meal analysis can readily utilize the protein pellet ObLained...range. The species differ in behavior and preferred habitat. Moreover, there is evidence suggesting that the two major vector species may not be equally...contains most of the protein . Dr. Collins has examined this protein pellet from a number of the infecteo soeci fens listed in Table I for blood meal IgG

  12. Development of a DNA-Based Method for Distinguishing the Malaria Vectors, Anopheles gambiae from Anopheles arabiensis.

    DTIC Science & Technology

    1987-06-01

    ITj1ex incr i t.’h a’i x I~ h ) ’ ’(1 . 1,-!.t A I a I a , 4 (A. a-ml.ia-a ’ A A. ,aldbiairbi ,dl tht. II ’ At! :;, ’i . ’ . , ’ ’ ," .( ar , mTor( f...gambiae complex includes si morphologically identical specien, two of w~hich (A. gambiae avid A. arabiernsis ) are thie p!- iav y Afr ican malaria .eto)i...8217 today. Since two or more of the species are commonly s,’mpatric, epidemiological studies to determine the invol,.ement of each in maaria transmissior

  13. The transmission potential of malaria-infected mosquitoes (An.gambiae-Keele, An.arabiensis-Ifakara) is altered by the vertebrate blood type they consume during parasite development.

    PubMed

    Emami, S Noushin; Ranford-Cartwright, Lisa C; Ferguson, Heather M

    2017-01-17

    The efficiency of malaria parasite development within mosquito vectors (sporogony) is a critical determinant of transmission. Sporogony is thought to be controlled by environmental conditions and mosquito/parasite genetic factors, with minimal contribution from mosquito behaviour during the period of parasite development. We tested this assumption by investigating whether successful sporogony of Plasmodium falciparum parasites through to human-infectious transmission stages is influenced by the host species upon which infected mosquitoes feed. Studies were conducted on two major African vector species that generally are found to differ in their innate host preferences: Anopheles arabiensis and An. gambiae sensu stricto. We show that the proportion of vectors developing transmissible infections (sporozoites) was influenced by the source of host blood consumed during sporogony. The direction of this effect was associated with the innate host preference of vectors: higher sporozoite prevalences were generated in the usually human-specialist An. gambiae s.s. feeding on human compared to cow blood, whereas the more zoophilic An. arabiensis had significantly higher prevalences after feeding on cow blood. The potential epidemiological implications of these results are discussed.

  14. The transmission potential of malaria-infected mosquitoes (An.gambiae-Keele, An.arabiensis-Ifakara) is altered by the vertebrate blood type they consume during parasite development

    PubMed Central

    Emami, S. Noushin; Ranford-Cartwright, Lisa C.; Ferguson, Heather M.

    2017-01-01

    The efficiency of malaria parasite development within mosquito vectors (sporogony) is a critical determinant of transmission. Sporogony is thought to be controlled by environmental conditions and mosquito/parasite genetic factors, with minimal contribution from mosquito behaviour during the period of parasite development. We tested this assumption by investigating whether successful sporogony of Plasmodium falciparum parasites through to human-infectious transmission stages is influenced by the host species upon which infected mosquitoes feed. Studies were conducted on two major African vector species that generally are found to differ in their innate host preferences: Anopheles arabiensis and An. gambiae sensu stricto. We show that the proportion of vectors developing transmissible infections (sporozoites) was influenced by the source of host blood consumed during sporogony. The direction of this effect was associated with the innate host preference of vectors: higher sporozoite prevalences were generated in the usually human-specialist An. gambiae s.s. feeding on human compared to cow blood, whereas the more zoophilic An. arabiensis had significantly higher prevalences after feeding on cow blood. The potential epidemiological implications of these results are discussed. PMID:28094293

  15. Localized breeding of the Anopheles gambiae complex (Diptera: Culicidae) along the River Gambia, West Africa.

    PubMed

    Bøgh, C; Bøgh, C; Clarke, S E; Jawara, M; Thomas, C J; Lindsay, S W

    2003-08-01

    A study was undertaken to identify the major larval habitats of the Anopheles gambiae (Giles) complex in rural Gambia. Mosquito larvae and pupae were sampled along transects and in specific habitats in the central region of the country during the rainy seasons of 1996 and 1997. The sampling showed that the major breeding sites were located on the flooded alluvial soils bordering the river. The largest numbers of larvae were found during September, one month after the peak rains. Polymerase chain reaction analysis of specimens showed that Anopheles melas (Theobald) was the dominant species in the flooded areas (81.5%), followed by A. gambiae sensu stricto (Giles) (18.0%) and A. arabiensis (Patton) (0.5%). By sampling in specific habitats it was evident that A. arabiensis was mainly breeding in rain-fed rice fields along the edge of the alluvial soils. Anopheles melas and A. gambiae s.s. often coexisted but whereas A. melas were found in water with a salinity of up to 72% sea water (25.2 g NaCl l(-1)), A. gambiae s.s. only occurred in water with up to 30% sea water (10.5 g NaCl l(-1)). Anopheles melas larvae were found in association with plant communities dominated by sedges and grasses (Eleocharis sp., Paspalum sp., Sporobolus sp.) and sea-purslane Sesuvium portulacastrum (L.) and the presence of cattle hoof prints, whereas A. gambiae s.s. larvae mainly occurred in association with Paspalum sp. and Eleocharis sp. The study showed that even during the peak rainy season, breeding of the A. gambiae complex is almost entirely restricted to the extensive alluvial areas along the river.

  16. The contribution of aestivating mosquitoes to the persistence of Anopheles gambiae in the Sahel

    PubMed Central

    2011-01-01

    Background Persistence of African anophelines throughout the long dry season (4-8 months) when no surface waters are available remains one of the enduring mysteries of medical entomology. Recent studies demonstrated that aestivation (summer diapause) is one mechanism that allows the African malaria mosquito, Anopheles gambiae, to persist in the Sahel. However, migration from distant localities - where reproduction continues year-round - might also be involved. Methods To assess the contribution of aestivating adults to the buildup of populations in the subsequent wet season, two villages subjected to weekly pyrethrum sprays throughout the dry season were compared with two nearby villages, which were only monitored. If aestivating adults are the main source of the subsequent wet-season population, then the subsequent wet-season density in the treated villages will be lower than in the control villages. Moreover, since virtually only M-form An. gambiae are found during the dry season, the reduction should be specific to the M form, whereas no such difference is predicted for S-form An. gambiae or Anopheles arabiensis. On the other hand, if migrants arriving with the first rain are the main source, no differences between treated and control villages are expected across all members of the An. gambiae complex. Results The wet-season density of the M form in treated villages was 30% lower than that in the control (P < 10-4, permutation test), whereas no significant differences were detected in the S form or An. arabiensis. Conclusions These results support the hypothesis that the M form persist in the arid Sahel primarily by aestivation, whereas the S form and An. arabiensis rely on migration from distant locations. Implications for malaria control are discussed. PMID:21645385

  17. Low and seasonal malaria transmission in the middle Senegal River basin: identification and characteristics of Anopheles vectors

    PubMed Central

    2012-01-01

    Background During the last decades two dams were constructed along the Senegal River. These intensified the practice of agriculture along the river valley basin. We conducted a study to assess malaria vector diversity, dynamics and malaria transmission in the area. Methods A cross-sectional entomological study was performed in September 2008 in 20 villages of the middle Senegal River valley to evaluate the variations of Anopheles density according to local environment. A longitudinal study was performed, from October 2008 to January 2010, in 5 selected villages, to study seasonal variations of malaria transmission. Results Among malaria vectors, 72.34% of specimens collected were An. arabiensis, 5.28% An. gambiae of the S molecular form, 3.26% M form, 12.90% An. pharoensis, 4.70% An. ziemanni, 1.48% An. funestus and 0.04% An. wellcomei. Anopheles density varied according to village location. It ranged from 0 to 21.4 Anopheles/room/day and was significantly correlated with the distance to the nearest ditch water but not to the river. Seasonal variations of Anopheles density and variety were observed with higher human biting rates during the rainy season (8.28 and 7.55 Anopheles bite/man/night in October 2008 and 2009 respectively). Transmission was low and limited to the rainy season (0.05 and 0.06 infected bite/man/night in October 2008 and 2009 respectively). During the rainy season, the endophagous rate was lower, the anthropophagic rate higher and L1014F kdr frequency higher. Conclusions Malaria vectors are present at low-moderate density in the middle Senegal River basin with An. arabiensis as the predominant species. Other potential vectors are An. gambiae M and S form and An. funestus. Nonetheless, malaria transmission was extremely low and seasonal. PMID:22269038

  18. Monitoring Dry Season Persistence of Anopheles gambiae s.l. Populations in a Contained Semi-Field System in Southwestern Burkina Faso, West Africa.

    PubMed

    Mamai, W; Simard, F; Couret, D; Ouedraogo, G A; Renault, D; Dabiré, K R; Mouline, K

    2016-01-01

    To gain insight into the dry season survival strategies of Anopheles gambiae s.l., a new contained semi-field system was developed and used for the first time in Burkina Faso, West Africa. The system consisted of a screened greenhouse within which the local environment was reproduced, including all ecological requirements for mosquito development cycle completion. The system was seeded with the progenies of female Anopheles gambiae, Anopheles coluzzii, and Anopheles arabiensis collected in the vicinity of the greenhouse during the rainy season. After successful establishment in the semi-field system, mosquito populations were monitored over a 1-yr period by regular surveys of larval and adult specimens. We provided evidence for the persistence of adult mosquitoes throughout the dry season, in the absence of any suitable larval development site. During the hot and dry periods, adult insects were observed in artificial shelters (clay pots, building blocks, and dark corners). The mosquito population rapidly built up with the return of the rainy season in the area, when artificial breeding sites were refilled in the enclosure. However, only An. coluzzii and, later, An. arabiensis were detected in the subsequent rainy season, whereas no An. gambiae specimen was found. Our findings suggest that An. coluzzii and An. arabiensis may be able to aestivate throughout the dry season in Southwestern Burkina Faso, whereas An. gambiae might adopt a different dry-season survival strategy, such as long-distance re-colonization from distant locations. These results may have important implications for malaria control through targeted vector control interventions.

  19. Molecular identification of chromosomal forms of Anopheles gambiae sensu stricto.

    PubMed

    Favia, G; Louis, C

    1999-09-01

    The Afrotropical malaria vectors Anopheles gambiae sensu stricto and An. arabiensis, responsible for more than 3/4 of the world Plasmodium falciparum inoculations, are members of the Anopheles gambiae complex, a group consisting of six sibling species. The nominal species (An. gambiae s.s.) is by far the most anthropophilic vector and its adaptation to man and his environment involves further ongoing speciation processes. This fact is shown by the existence of a number of incipient taxonomic units characterised by different chromosomal arrangements derived from the presence of polymorphic paracentric inversions. This speciation process is centered in West Africa, where five so-called 'chromosomal forms' have been described, designated with a non-Linnean nomenclature: Forest, Bissau, Savanna, Bamako, and Mopti. Studies on the distribution and the ecology of these incipient species have highlighted specific adaptations to eco-ethological parameters, which might reflect on their relative efficiency as malaria vectors. Cytogenetic analysis, in spite of some inherent difficulties, has proved to be a powerful tool for the identification of An. gambiae sibling species and the individual chromosomal forms. Yet, modern molecular tools are now available, providing alternative faster low-cost technologies, and we discuss here their relative merits.

  20. Cloning of inversion breakpoints in the Anopheles gambiae complex traces a transposable element at the inversion junction.

    PubMed

    Mathiopoulos, K D; della Torre, A; Predazzi, V; Petrarca, V; Coluzzi, M

    1998-10-13

    Anopheles arabiensis, one of the two most potent malaria vectors of the gambiae complex, is characterized by the presence of chromosomal paracentric inversions. Elucidation of the nature and the dynamics of these inversions is of paramount importance for the understanding of the population genetics and evolutionary biology of this mosquito and of the impact on malaria epidemiology. We report here the cloning of the breakpoints of the naturally occurring polymorphic inversion 2Rd' of A. arabiensis. A cDNA clone that cytologically mapped on the proximal breakpoint was the starting material for the isolation of a cosmid clone that spanned the breakpoint. Analysis of the surrounding sequences demonstrated that adjacent to the distal breakpoint lies a repetitive element that exhibits distinct distribution in different A. arabiensis strains. Sequencing analysis of that area revealed elements characteristic of transposable element terminal repeats. We called this presumed transposable element Odysseus. The presence of Odysseus at the junction of the naturally occuring inversion 2Rd' suggests that the inversion may be the result of the transposable element's activity. Characteristics of Odysseus' terminal region as well as its cytological distribution in different strains may indicate a relatively recent activity of Odysseus.

  1. Population Genetics of Anopheles coluzzii Immune Pathways and Genes

    PubMed Central

    Rottschaefer, Susan M.; Crawford, Jacob E.; Riehle, Michelle M.; Guelbeogo, Wamdaogo M.; Gneme, Awa; Sagnon, N’Fale; Vernick, Kenneth D.; Lazzaro, Brian P.

    2014-01-01

    Natural selection is expected to drive adaptive evolution in genes involved in host–pathogen interactions. In this study, we use molecular population genetic analyses to understand how natural selection operates on the immune system of Anopheles coluzzii (formerly A. gambiae “M form”). We analyzed patterns of intraspecific and interspecific genetic variation in 20 immune-related genes and 17 nonimmune genes from a wild population of A. coluzzii and asked if patterns of genetic variation in the immune genes are consistent with pathogen-driven selection shaping the evolution of defense. We found evidence of a balanced polymorphism in CTLMA2, which encodes a C-type lectin involved in regulation of the melanization response. The two CTLMA2 haplotypes, which are distinguished by fixed amino acid differences near the predicted peptide cleavage site, are also segregating in the sister species A. gambiae (“S form”) and A. arabiensis. Comparison of the two haplotypes between species indicates that they were not shared among the species through introgression, but rather that they arose before the species divergence and have been adaptively maintained as a balanced polymorphism in all three species. We additionally found that STAT-B, a retroduplicate of STAT-A, shows strong evidence of adaptive evolution that is consistent with neofunctionalization after duplication. In contrast to the striking patterns of adaptive evolution observed in these Anopheles-specific immune genes, we found no evidence of adaptive evolution in the Toll and Imd innate immune pathways that are orthologously conserved throughout insects. Genes encoding the Imd pathway exhibit high rates of amino acid divergence between Anopheles species but also display elevated amino acid diversity that is consistent with relaxed purifying selection. These results indicate that adaptive coevolution between A. coluzzii and its pathogens is more likely to involve novel or lineage-specific molecular mechanisms

  2. Measurement of flight tone differentiates among members of the Anopheles gambiae species complex (Diptera: Culicidae).

    PubMed

    Brogdon, W G

    1998-09-01

    Through digital sampling and resampling at 5,000 and 20,000 Hz of amplified mosquito flight sound, baseline separation was observed for flight tone frequency distributions of male and female Anopheles gambiae Giles, An. arabiensis Patton, An. merus Donitz, and An. melas Theobald. Males of the 4 species showed flight tones considerably higher than females. Up to 7 harmonics were measured for each species. Close correspondence for each individual mosquito of the means of the flight tone harmonics (corrected for harmonic number) demonstrated the accuracy and precision of the method. These data indicate that flight tone differences have been subjected to selection and may act as an isolating mechanism for mating or serve some other behavioral purpose in these mosquitoes. Individuals and swarms of sympatric species were distinguished from each other for both males and females, but the allopatric species, An. merus and An. melas, were indistinguishable.

  3. [Radiosensitivity curve of different stages of spermatogenesis of Anopheles atroparvus (Diptera:Nematocera)].

    PubMed

    Lecis, A R; Figus, V; Santarini, C

    1975-01-01

    In order to obtain a dose-hatchability curve for irradiated spermatogenetic stages of Anopheles atroparvus, we have irradiated with the same dose "4500 r" young fourth larval stages, old fourth larval stages, nymphae and adult males. Those different stages represent different phases of spermatogenesis. The peak of radiosensitivity for embryonic mortality, was found in spermatids, lowest appeared in spermatogonies.

  4. Habitats and Distribution of Anopheles Sinensis and Associated Anopheles Hyrcanus Group in Japan

    DTIC Science & Technology

    2005-01-01

    SCIENTIFIC NOTE HABITATS AND DISTRffiUTION OF ANOPHELES SINENSIS AND ASSOCIATED ANOPHELES HYRCANUS GROUP IN JAPAN LEOPOLDO M. RUEDA.’ MASASHIRO IWAKAMI.2.b...collections were carried out in August 2002 and July 2003 in Japan . Anopheles sinensis of the Hyrcanus Group. Myzomyia Series of Anopheles. was the...Anopheles sinensis. Hyrcanus Group, Aedes, Clllex, Uranotaenia. Japan . Culicidae The Anopheles Hyrcanus Group consists of sev- eral species that are vectors

  5. Species and populations of the Anopheles gambiae complex in Cameroon with special emphasis on chromosomal and molecular forms of Anopheles gambiae s.s.

    PubMed

    Wondji, Charles; Frédéric, Simard; Petrarca, Vincenzo; Etang, Josiane; Santolamazza, Federica; Della Torre, Alessandra; Fontenille, Didier

    2005-11-01

    We studied the geographical distribution of species, chromosomal, and molecular forms of the Anopheles gambiae Giles (Diptera: Culicidae) complex in 23 sites in Cameroon, Central Africa. Almost all the specimens collected in the four northern-most arid sites were Anopheles arabiensis. Anopheles melas was found in a rural locality surrounded by mangrove swamps, on the Atlantic Coast. In total, 1,525 An. gambiae s.s. females were identified down to their molecular form, and inversion polymorphisms on polytene chromosomes were scored from 186 half-gravid females. The Forest chromosomal form, with standard arrangements almost fixed on both arms of chromosome-2, was the only one observed in the southern, more humid localities. Karyotypes typical of Savanna and Mopti were recorded northwards, in the humid savannas of the Adamawa Province. The molecular forms M and S were widespread throughout Cameroon, and assort independently from the chromosomal forms. S-form populations were characterized by karyotypes typical of Forest and Savanna chromosomal forms, and M-form populations were characterized by karyotypes typical of Forest, Savanna, and Mopti. No M/S hybrid patterns were detected, although M and S mosquitoes were sympatric in 15 sites, providing further evidence for positive assortative mating within molecular forms. The observed ecogeographical distribution of M and S was peculiar: the ecological parameters involved in this distribution still need to be clarified as well as the possible role of competitive exclusion between chromosomally homosequential molecular forms. No difference was observed in host preference or in Plasmodium falciparum infection rates between sympatric M and S populations.

  6. Sampling outdoor, resting Anopheles gambiae and other mosquitoes (Diptera: Culicidae) in western Kenya with clay pots.

    PubMed

    Odiere, M; Bayoh, M N; Gimnig, J; Vulule, J; Irungu, L; Walker, E

    2007-01-01

    Clay pots were analyzed as devices for sampling the outdoor resting fraction of Anopheles gambiae Giles (Diptera: Culicidae) and other mosquito species in a rural, western Kenya. Clay pots (Anopheles gambiae resting pots, herein AgREPOTs), outdoor pit shelters, indoor pyrethrum spray collections (PSC), and Colombian curtain exit traps were compared in collections done biweekly for nine intervals from April to June 2005 in 20 housing compounds. Of 10,517 mosquitoes sampled, 4,668 An. gambiae s.l. were sampled in total of which 63% were An. gambiae s.s. (46% female) and 37% were An. arabiensis (66% female). The clay pots were useful and practical for sampling both sexes of An. gambiae s.l. Additionally, 617 An. funestus (58% female) and 5,232 Culex spp. (males and females together) were collected. Temporal changes in abundance of An. gambiae s.l. were similarly revealed by all four sampling methods, indicating that the clay pots could be used as devices to quantify variation in mosquito population density. Dispersion patterns of the different species and sexes fit well the negative binomial distribution, indicating that the mosquitoes were aggregated in distribution. Aside from providing a useful sampling tool, the AgREPOT also may be useful as a delivery vehicle for insecticides or pathogens to males and females that enter and rest in them.

  7. Anopheles (Anopheles) pseudopunctipennis Theobald (Diptera: Culicidae): Neotype Designation and Description

    DTIC Science & Technology

    2004-01-01

    1020 (M*, F*, L*); Aitken 1945: 327 (M, F*, P*, L, E*, taxonomy, biology); Vargas and Martinez Palacios 1956: 83 (M*, F*, P*, L*). Anopheles...complex of western America. Univ. Calif. Publ. Entomol. 7: 273Ð364. Alvarado , C. A., and R. L. Heredia. 1947. Observaciones sobre una nueva variedad...Cespedes, R. Vargas -Sagarnaga, and R. Rodriguez. 1992. Evidencia genética de un complejo de especie en Anopheles pseudopunctipennis pseudopunctipennis. Bol

  8. The influence of physiological status on age prediction of Anopheles arabiensis using near infra-red spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the age of malaria vectors is essential for evaluating the impact of interventions that reduce the survival of wild mosquito populations and for estimating changes in vectorial capacity. Near infra-red spectroscopy (NIRS) is a simple and non-destructive method that has been used to deter...

  9. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes

    PubMed Central

    2012-01-01

    Background Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. Findings There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus arabiensis arabiensis was 12.3 × 105 cells/ml and 8.10 × 105 cells/ml, respectively. PCC 7120#11 was not effective against An. funestus, with less than 50% mortality obtained at concentrations as high as 3.20 × 107 cells/ml. Conclusions PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent’s spectrum of activity and potential as a vector control agent. PMID:23036082

  10. Are chromosomal inversions induced by transposable elements? A paradigm from the malaria mosquito Anopheles gambiae.

    PubMed

    Mathiopoulos, K D; della Torre, A; Santolamazza, F; Predazzi, V; Petrarca, V; Coluzzi, M

    1999-09-01

    Chromosomal rearrangements abound in nature and can be studied in detail in organisms with polytene chromosomes. In Drosophila and in Anopheline mosquitoes most speciation processes seem to be associated with the establishment of chromosomal rearrangements, particularly of paracentric inversions. It is not known what triggers inversions in natural populations. In the laboratory inversions are commonly generated by X-rays, mutagens or after the activity of certain transposable elements (TEs). The Anopheles gambiae complex is comprised of six sibling species, each one characterized by the presence of fixed paracentric inversions on their chromosomes. Two of these, An. gambiae s.s. and An. arabiensis, are the most important vectors of human malaria and are structured into sub-populations, each carrying a characteristic set of polymorphic chromosomal inversions. We have cloned the breakpoints of the naturally occurring polymorphic inversion In(2R)d' of An. arabiensis. Analysis of the surrounding sequences demonstrated that adjacent to the distal breakpoint lies a transposable element that we called Odysseus. Characteristics of Odysseus' terminal region and its cytological distribution in different strains as well as within the same strain indicate that Odysseus is an actively transposing element. The presence of Odysseus at the junction of the naturally occurring inversion In(2R)d' suggests that the inversion may be the result of the TEs activity. Cytological evidence from Drosophila melanogaster has also implicated the hobo transposable element in the generation of certain Hawaiian endemic inversions. This picture supports the hypothesis of the important role of TEs in generating natural inversions.

  11. Co-occurrence and distribution of East (L1014S) and West (L1014F) African knock-down resistance in Anopheles gambiae sensu lato population of Tanzania

    PubMed Central

    Kabula, Bilali; Kisinza, William; Tungu, Patrick; Ndege, Chacha; Batengana, Benard; Kollo, Douglas; Malima, Robert; Kafuko, Jessica; Mohamed, Mahdi; Magesa, Stephen

    2014-01-01

    Objective Insecticide resistance molecular markers can provide sensitive indicators of resistance development in Anopheles vector populations. Assaying these makers is of paramount importance in the resistance monitoring programme. We investigated the presence and distribution of knock-down resistance (kdr) mutations in Anopheles gambiae s.l. in Tanzania. Methods Indoor-resting Anopheles mosquitoes were collected from 10 sites and tested for insecticide resistance using the standard WHO protocol. Polymerase chain reaction-based molecular diagnostics were used to genotype mosquitoes and detect kdr mutations. Results The An. gambiae tested were resistance to lambdacyhalothrin in Muheza, Arumeru and Muleba. Out of 350 An. gambiae s.l. genotyped, 35% were An. gambiae s.s. and 65% An. arabiensis. L1014S and L1014F mutations were detected in both An. gambiae s.s. and An. arabiensis. L1014S point mutation was found at the allelic frequency of 4–33%, while L1014F was at the allelic frequency 6–41%. The L1014S mutation was much associated with An. gambiae s.s. (χ2 = 23.41; P < 0.0001) and L1014F associated with An. arabiensis (χ2 = 11.21; P = 0.0008). The occurrence of the L1014S allele was significantly associated with lambdacyhalothrin resistance mosquitoes (Fisher exact P < 0.001). Conclusion The observed co-occurrence of L1014S and L1014F mutations coupled with reports of insecticide resistance in the country suggest that pyrethroid resistance is becoming a widespread phenomenon among our malaria vector populations. The presence of L1014F mutation in this East African mosquito population indicates the spreading of this gene across Africa. The potential operational implications of these findings on malaria control need further exploration. Objectif Les marqueurs moléculaires de la résistance aux insecticides peuvent fournir des indicateurs sensibles du développement de la résistance dans les populations de vecteurs Anopheles. Le test de ces

  12. Male motion coordination in swarming Anopheles gambiae and Anopheles coluzzii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Anopheles gambiae species complex comprises the primary vectors of malaria in much of sub-Saharan Africa; most of the mating in these species occurs in swarms composed almost entirely of males. Intermittent, parallel flight patterns in such swarms have been observed, but a detailed description o...

  13. Larval habitat segregation between the molecular forms of the mosquito, Anopheles gambiae in a rice field area of Burkina Faso, West Africa

    PubMed Central

    Gimonneau, Geoffrey; Pombi, Marco; Choisy, Marc; Morand, Serge; Dabiré, Roch K.; Simard, Frederic

    2011-01-01

    In West Africa, lineage splitting between the M and S molecular forms of the major Afro-tropical malaria mosquito, Anopheles gambiae is thought to be driven by ecological divergence, occurring mainly at the larval stage. Here, we present evidences for habitat segregation between the two molecular forms in and around irrigated rice-fields located within the humid savannahs background of western Burkina Faso. Longitudinal sampling of adult mosquitoes emerging from a range of breeding sites distributed along a transect extending from the heart of the rice-fields area into the surrounding savannahs was conducted from June to November 2009. Analysis revealed that the two molecular forms and their sibling species An. arabiensis are not randomly distributed in the area. A major ecological gradient was extracted, in relation to the rice-fields perimeter. The M form was associated with larger breeding sites, which were mainly represented by rice field paddies whereas the S form and An. arabiensis were found to depend upon temporary, rain-filled breeding sites. These results support hypotheses about larval habitat segregation and confirm that both forms have different larval habitat requirement. Segregation appears clearly linked to anthropogenic permanent habitats and the community structure they support. PMID:21501199

  14. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms

    PubMed Central

    Santolamazza, Federica; Mancini, Emiliano; Simard, Frédéric; Qi, Yumin; Tu, Zhijian; della Torre, Alessandra

    2008-01-01

    Background SINEs (Short INterspersed Elements) are homoplasy-free and co-dominant genetic markers which are considered to represent useful tools for population genetic studies, and could help clarifying the speciation processes ongoing within the major malaria vector in Africa, Anopheles gambiae s.s. Here, we report the results of the analysis of the insertion polymorphism of a nearly 200 bp-long SINE (SINE200) within genome areas of high differentiation (i.e. "speciation islands") of M and S A. gambiae molecular forms. Methods A SINE-PCR approach was carried out on thirteen SINE200 insertions in M and S females collected along the whole range of distribution of A. gambiae s.s. in sub-Saharan Africa. Ten specimens each for Anopheles arabiensis, Anopheles melas, Anopheles quadriannulatus A and 15 M/S hybrids from laboratory crosses were also analysed. Results Eight loci were successfully amplified and were found to be specific for A. gambiae s.s.: 5 on 2L chromosome and one on X chromosome resulted monomorphic, while two loci positioned respectively on 2R (i.e. S200 2R12D) and X (i.e. S200 X6.1) chromosomes were found to be polymorphic. S200 2R12D was homozygote for the insertion in most S-form samples, while intermediate levels of polymorphism were shown in M-form, resulting in an overall high degree of genetic differentiation between molecular forms (Fst = 0.46 p < 0.001) and within M-form (Fst = 0.46 p < 0.001). The insertion of S200 X6.1 was found to be fixed in all M- and absent in all S-specimens. This led to develop a novel easy-to-use PCR approach to straightforwardly identify A. gambiae molecular forms. This novel approach allows to overcome the constraints associated with markers on the rDNA region commonly used for M and S identification. In fact, it is based on a single copy and irreversible SINE200 insertion and, thus, is not subjected to peculiar evolutionary patterns affecting rDNA markers, e.g. incomplete homogenization of the arrays through

  15. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes

    PubMed Central

    Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A. P.; Musapa, Mulenga; Chishimba, Sandra; Shiff, Clive J.; Sullivan, David J.; Thuma, Philip E.; Liu, Kun; Agre, Peter

    2011-01-01

    Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections—S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30–80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples—S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2–12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent—S108T (90%), with A16V and the 108T+16V double mutant (49–57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles. PMID:22065788

  16. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya

    PubMed Central

    2011-01-01

    Background As the ecology of mosquito larvae can be complex there is need to develop a rational framework for undertaking larval ecological studies. Local environmental characteristics, such as altitude, climate and land use, can significantly impact on phenology and population dynamics of mosquito larvae, and indirectly affect the dynamics of mosquito-borne diseases. The aim of this study was to assess the feasibility of implementing an integrated approach to larval source management under the distinct ecological settings. Methods The study was conducted in two highland villages and one village, at a lower altitude, in the Lake Victoria basin, where malaria is endemic and transmitted by the same Anopheles mosquito species. In each village the stability of mosquito larval habitats was classified as either temporary or permanent. The productivity of these habitat types was quantified by carrying out weekly larval sampling using a standard dipping method for a period of two years. During sampling the physical characteristic of the larval habitat, including the vegetation cover were noted. Ambient temperature, rainfall and relative humidity were recorded on a 21 × Micro-datalogger in each study site. Results Anopheles gambiae sensu lato larvae were found in all study sites. Anopheles arabiensis was more abundant (93%) in Nyalenda (Lake Victoria basin) and Fort Ternan (highland area; 71%). In Lunyerere (highland area), An. gambiae sensu stricto comprised 93% of the total An. gambiae s.l. larvae. Larvae of An. gambiae s.l. mosquitoes were present in both temporary and permanent habitats with monthly variations dependent on rainfall intensity and location. Anopheles larvae were more likely to be found in man-made as opposed to natural habitats. Grassy habitats were preferred and were, therefore, more productive of Anopheles larvae compared to other habitat types. Weekly rainfall intensity led to an increase or decrease in mosquito larval abundance depending on the

  17. Elevation of Anopheles Chiriquiensis from Synonymy with Anopheles Parapunctipennis and Designation of Name-bearing Types for Anopheles Parapunctipennis and Anopheles Parapunctipennis Guatemalensis (Diptera: Culicidae)

    DTIC Science & Technology

    1989-01-01

    Leon 1938: 4 16, (as An. (Ano.) chiriquiensis var. guatenzalensis) Cumbre de1 Aire, Department of Totonicapan, Guatemala (d*, ?*, L*). Lectotype 9...here designated, bearing the following data: “Sanidad Publica: Guatemala. - A.C.-/Anopheles (Anopheles) A. Chiriquiensis ( ?? Komp)/“ Cumbre de1

  18. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania

    PubMed Central

    2014-01-01

    Background Resistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments. Methods Nine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance. Results Elevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference

  19. Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya.

    PubMed

    Mutero, C M; Blank, H; Konradsen, F; van der Hoek, W

    2000-10-02

    An experiment to assess the impact of intermittent irrigation on Anopheles larval populations, rice yields and water use was conducted in the Mwea rice irrigation scheme in Kenya. Four water regimes including intermittent irrigation were tested in a complete randomized block experimental design. Intermittent irrigation was carried out on a weekly schedule, with flooded conditions from Saturday through Tuesday morning. Larval sampling at each plot was conducted every Monday and prior to draining of intermittently irrigated subplots on Tuesday. All the adult anopheline mosquitoes emerging from larvae collected in the experimental plots were identified as being An. arabiensis. By far the highest numbers of An. arabiensis 1st instar larvae were found in the intermittently irrigated subplots, indicating that the water regime provided the most attractive environment for egg laying. However, the ratio between the 4th and 1st instar larvae in the subplots was only 0.08, indicating very low survival rates. In contrast, the 4th/1st instar ratio for subplots with other water management regimes ranged between 0.27 and 0.68, suggesting a correspondingly higher survival than observed with intermittent irrigation. The total number of 4th instars was almost the same in the intermittently irrigated subplots and the irrigation system normally practised by the farmers. The failure to eliminate larval development up to the 4th instar in the former method was attributed to residual pools of water. Larval abundance fluctuated throughout the 12-week sampling period. The highest larval densities were recorded in the 3 weeks after transplanting the rice seedlings. Afterwards, larval numbers dropped dramatically as the height of rice plants increased. Rice yields at harvest did not show statistically significant differences among subplots with different water regimes. The average yield per hectare ranged from 4.8-5.3 metric tonnes. The average daily water percolation/seepage rate was 3.6 mm

  20. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation

    PubMed Central

    Simard, Frédéric; Ayala, Diego; Kamdem, Guy Colince; Pombi, Marco; Etouna, Joachim; Ose, Kenji; Fotsing, Jean-Marie; Fontenille, Didier; Besansky, Nora J; Costantini, Carlo

    2009-01-01

    Background Speciation among members of the Anopheles gambiae complex is thought to be promoted by disruptive selection and ecological divergence acting on sets of adaptation genes protected from recombination by polymorphic paracentric chromosomal inversions. However, shared chromosomal polymorphisms between the M and S molecular forms of An. gambiae and insufficient information about their relationship with ecological divergence challenge this view. We used Geographic Information Systems, Ecological Niche Factor Analysis, and Bayesian multilocus genetic clustering to explore the nature and extent of ecological and chromosomal differentiation of M and S across all the biogeographic domains of Cameroon in Central Africa, in order to understand the role of chromosomal arrangements in ecological specialisation within and among molecular forms. Results Species distribution modelling with presence-only data revealed differences in the ecological niche of both molecular forms and the sibling species, An. arabiensis. The fundamental environmental envelope of the two molecular forms, however, overlapped to a large extent in the rainforest, where they occurred in sympatry. The S form had the greatest niche breadth of all three taxa, whereas An. arabiensis and the M form had the smallest niche overlap. Correspondence analysis of M and S karyotypes confirmed that molecular forms shared similar combinations of chromosomal inversion arrangements in response to the eco-climatic gradient defining the main biogeographic domains occurring across Cameroon. Savanna karyotypes of M and S, however, segregated along the smaller-scale environmental gradient defined by the second ordination axis. Population structure analysis identified three chromosomal clusters, each containing a mixture of M and S specimens. In both M and S, alternative karyotypes were segregating in contrasted environments, in agreement with a strong ecological adaptive value of chromosomal inversions. Conclusion Our

  1. Metabolomic and ecdysteroid variations in Anopheles gambiae s.l. mosquitoes exposed to the stressful conditions of the dry season in Burkina Faso, West Africa.

    PubMed

    Mamai, W; Mouline, K; Blais, C; Larvor, V; Dabiré, K R; Ouedraogo, G A; Simard, F; Renault, D

    2014-01-01

    This study explored the metabolic adjustments prompted by a switch between the rainy and dry season conditions in the African malaria mosquitoes Anopheles gambiae (M and S molecular forms) and Anopheles arabiensis. Mosquitoes were reared in contrasted experimental conditions reflecting environmental variation in Burkina Faso. Thirty-five metabolites (including sugars, polyols, and amino acids) were monitored in newly emerged males and females, and their ecdysteroid titers were determined. Metabolomic signatures were remarkably similar across species, when specimens of same age and sex were reared under identical experimental conditions. In males and females, amino acids (including glycine, leucine, phenylanine, serine, threonine, and valine) were accumulated in 1-h-old mosquitoes, then decreased 24 h after emergence, probably reflecting adult maturation and the amino acid-consuming process of cuticle sclerotisation. In turn, elevated amounts of alanine and proline in 24-h-old mosquitoes may assist the development of flight ability. Lower concentration of tricarboxylic acid cycle intermediates and isoleucine characterized older females reared under dry season conditions, suggesting metabolic and reproduction depression. In all cases, ecdysteroid concentration was much higher in males than in females, with significant seasonal variation in males. This might reflect a unique role of these hormones in shaping reproductive strategies and population demography in the An. gambiae s.l. species complex, further contributing to local adaptation in a highly fluctuating environment.

  2. Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa

    PubMed Central

    2011-01-01

    Background The Anopheles gambiae gSG6 is an anopheline-specific salivary protein which helps female mosquitoes to efficiently feed on blood. Besides its role in haematophagy, gSG6 is immunogenic and elicits in exposed individuals an IgG response, which may be used as indicator of exposure to the main African malaria vector A. gambiae. However, malaria transmission in tropical Africa is sustained by three main vectors (A. gambiae, Anopheles arabiensis and Anopheles funestus) and a general marker, reflecting exposure to at least these three species, would be especially valuable. The SG6 protein is highly conserved within the A. gambiae species complex whereas the A. funestus homologue, fSG6, is more divergent (80% identity with gSG6). The aim of this study was to evaluate cross-reactivity of human sera to gSG6 and fSG6. Methods The A. funestus SG6 protein was expressed/purified and the humoral response to gSG6, fSG6 and a combination of the two antigens was compared in a population from a malaria hyperendemic area of Burkina Faso where both vectors were present, although with a large A. gambiae prevalence (>75%). Sera collected at the beginning and at the end of the high transmission/rainy season, as well as during the following low transmission/dry season, were analysed. Results According to previous observations, both anti-SG6 IgG level and prevalence decreased during the low transmission/dry season and showed a typical age-dependent pattern. No significant difference in the response to the two antigens was found, although their combined use yielded in most cases higher IgG level. Conclusions Comparative analysis of gSG6 and fSG6 immunogenicity to humans suggests the occurrence of a wide cross-reactivity, even though the two proteins carry species-specific epitopes. This study supports the use of gSG6 as reliable indicator of exposure to the three main African malaria vectors, a marker which may be useful to monitor malaria transmission and evaluate vector control

  3. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    PubMed Central

    2010-01-01

    Background This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. Results A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method. Conclusions The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern Region: An. (Anopheles) atroparvus, An. (Ano

  4. Distribution of Anopheles albimanus, Anopheles vestitipennis, and Anopheles crucians associated with land use in northern Belize.

    PubMed

    Grieco, John P; Johnson, Sarah; Achee, Nicole L; Masuoka, Penny; Pope, Kevin; Rejmánková, Eliska; Vanzie, Errol; Andre, Richard; Roberts, Donald

    2006-05-01

    Anthropogenic land use changes often alter natural patterns of disease transmission. The goal of this study was to determine whether phosphorus input from sugarcane, Saccharum officinarum L., cultivation in northern Belize could pose a significant environmental impact on malaria transmission by changing vegetation structure and composition of wetlands and associated larval habitats. Our primary focus was on the increased dominance of cattail, Typha domingensis Pers., a favored habitat for Anopheles vestitipennis Dyar & Knab. A land cover classification based on satellite imagery was used to select 20 marshes impacted by agricultural runoff and 20 marshes surrounded by forest (nonimpacted). A 100-m transect was established into each of the 40 marshes. Water, vegetation, and larval sampling were conducted at the 0-, 10-, 25-, 50-, and 100-m locations along the transect. Analyses of larval density data indicated that Anopheles albimanus Wiedemann was negatively correlated with percentage of cover of Typha (R2 = 0.39, P < 0.001) but positively correlated with sparse Eleocharis cellulosa Torr. (rush) cover (R2 = 0.19, P < 0.05) and presence of cyanobacterial mats (CBM) (R2 = 0.33, P < 0.0001). An. vestitipennis was found to be positively correlated with percentage of cover of Typha (R2 = 0.19, P < 0.001). Canonical correspondence analysis identified CBM and light as the variables associated with the presence of An. albimanuts larvae, Typha cover with An. vestitipennis larvae, and Eleocharis and absence of light with Anopheles crucians (Wiedemann). A positive correlation also existed between marshes adjacent to agricultural activities and presence of An. vestitipennis (R2 = 0.37, P < 0.05). These results indicate that marshes in proximity to agricultural fields are conducive for Typha growth, thereby providing habitat for the more efficient malaria vector

  5. Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin

    PubMed Central

    Yadouleton, Anges William M; Asidi, Alex; Djouaka, Rousseau F; Braïma, James; Agossou, Christian D; Akogbeto, Martin C

    2009-01-01

    Background A fast development of urban agriculture has recently taken place in many areas in the Republic of Benin. This study aims to assess the rapid expansion of urban agriculture especially, its contribution to the emergence of insecticide resistance in populations of Anopheles gambiae. Methods The protocol was based on the collection of sociological data by interviewing vegetable farmers regarding various agricultural practices and the types of pesticides used. Bioassay tests were performed to assess the susceptibility of malaria vectors to various agricultural insecticides and biochemical analysis were done to characterize molecular status of population of An. gambiae. Results This research showed that: (1) The rapid development of urban agriculture is related to unemployment observed in cities, rural exodus and the search for a balanced diet by urban populations; (2) Urban agriculture increases the farmers' household income and their living standard; (3) At a molecular level, PCR revealed the presence of three sub-species of An. gambiae (An. gambiae s.s., Anopheles melas and Anopheles arabiensis) and two molecular forms (M and S). The kdr west mutation recorded in samples from the three sites and more specifically on the M forms seems to be one of the major resistance mechanisms found in An. gambiae from agricultural areas. Insecticide susceptibility tests conducted during this research revealed a clear pattern of resistance to permethrin (76% mortality rate at Parakou; 23.5% at Porto-Novo and 17% at Cotonou). Conclusion This study confirmed an increase activity of the vegetable farming in urban areas of Benin. This has led to the use of insecticide in an improper manner to control vegetable pests, thus exerting a huge selection pressure on mosquito larval population, which resulted to the emergence of insecticide resistance in malaria vectors. PMID:19442297

  6. A supervised land cover classification of a western Kenya lowland endemic for human malaria: associations of land cover with larval Anopheles habitats

    PubMed Central

    Mutuku, FM; Bayoh, MN; Hightower, AW; Vulule, JM; Gimnig, JE; Mueke, JM; Amimo, FA; Walker, ED

    2009-01-01

    Background A supervised land cover classification was developed from very high resolution IKONOS satellite data and extensive ground truth sampling of a ca. 10 sq km malaria-endemic lowland in western Kenya. The classification was then applied to an investigation of distribution of larval Anopheles habitats. The hypothesis was that the distribution and abundance of aquatic habitats of larvae of various species of mosquitoes in the genus Anopheles is associated with identifiable landscape features. Results and discussion The classification resulted in 7 distinguishable land cover types, each with a distinguishable vegetation pattern, was highly accurate (89%, Kappa statistic = 0.86), and had a low rate of omission and commission errors. A total of 1,198 habitats and 19,776 Anopheles larvae of 9 species were quantified in samples from a rainy season, and 184 habitats and 582 larvae from a dry season. Anopheles gambiae s.l. was the dominant species complex (51% of total) and A. arabiensis the dominant species. Agricultural land covers (mature maize fields, newly cultivated fields, and pastured grasslands) were positively associated with presence of larval habitats, and were located relatively close to stream channels; whilst nonagricultural land covers (short shrubs, medium shrubs, tall shrubs, and bare soil around residences) were negatively associated with presence of larval habitats and were more distant from stream channels. Number of larval habitats declined exponentially with distance from streams. IKONOS imagery was not useful in direct detection of larval habitats because they were small and turbid (resembling bare soil), but was useful in localization of them through statistical associations with specific land covers. Conclusion A supervised classification of land cover types in rural, lowland, western Kenya revealed a largely human-modified and fragmented landscape consisting of agricultural and domestic land uses. Within it, larval habitats of Anopheles

  7. Molecular Evolution of Immune Genes in the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Lehmann, Tovi; Hume, Jen C. C.; Licht, Monica; Burns, Christopher S.; Wollenberg, Kurt; Simard, Fred; Ribeiro, Jose' M. C.

    2009-01-01

    Background As pathogens that circumvent the host immune response are favoured by selection, so are host alleles that reduce parasite load. Such evolutionary processes leave their signature on the genes involved. Deciphering modes of selection operating on immune genes might reveal the nature of host-pathogen interactions and factors that govern susceptibility in host populations. Such understanding would have important public health implications. Methodology/Findings We analyzed polymorphisms in four mosquito immune genes (SP14D1, GNBP, defensin, and gambicin) to decipher selection effects, presumably mediated by pathogens. Using samples of Anopheles arabiensis, An. quadriannulatus and four An. gambiae populations, as well as published sequences from other Culicidae, we contrasted patterns of polymorphisms between different functional units of the same gene within and between populations. Our results revealed selection signatures operating on different time scales. At the most recent time scale, within-population diversity revealed purifying selection. Between populations and between species variation revealed reduced differentiation (GNBP and gambicin) at coding vs. noncoding- regions, consistent with balancing selection. McDonald-Kreitman tests between An. quadriannulatus and both sibling species revealed higher fixation rate of synonymous than nonsynonymous substitutions (GNBP) in accordance with frequency dependent balancing selection. At the longest time scale (>100 my), PAML analysis using distant Culicid taxa revealed positive selection at one codon in gambicin. Patterns of genetic variation were independent of exposure to human pathogens. Significance and Conclusions Purifying selection is the most common form of selection operating on immune genes as it was detected on a contemporary time scale on all genes. Selection for “hypervariability” was not detected, but negative balancing selection, detected at a recent evolutionary time scale between sibling

  8. The effect of dams and seasons on malaria incidence and anopheles abundance in Ethiopia

    PubMed Central

    2013-01-01

    Background Reservoirs created by damming rivers are often believed to increase malaria incidence risk and/or stretch the period of malaria transmission. In this paper, we report the effects of a mega hydropower dam on P. falciparum malaria incidence in Ethiopia. Methods A longitudinal cohort study was conducted over a period of 2 years to determine Plasmodium falciparum malaria incidence among children less than 10 years of age living near a mega hydropower dam in Ethiopia. A total of 2080 children from 16 villages located at different distances from a hydropower dam were followed up from 2008 to 2010 using active detection of cases based on weekly house to house visits. Of this cohort of children, 951 (48.09%) were females and 1059 (51.91%) were males, with a median age of 5 years. Malaria vectors were simultaneously surveyed in all the 16 study villages. Frailty models were used to explore associations between time-to-malaria and potential risk factors, whereas, mixed-effects Poisson regression models were used to assess the effect of different covariates on anopheline abundance. Results Overall, 548 (26.86%) children experienced at least one clinical malaria episode during the follow up period with mean incidence rate of 14.26 cases/1000 child-months at risk (95% CI: 12.16 - 16.36). P. falciparum malaria incidence showed no statistically significant association with distance from the dam reservoir (p = 0.32). However, P. falciparum incidence varied significantly between seasons (p < 0.01). The malaria vector, Anopheles arabiensis, was however more abundant in villages nearer to the dam reservoir. Conclusions P. falciparum malaria incidence dynamics were more influenced by seasonal drivers than by the dam reservoir itself. The findings could have implications in timing optimal malaria control interventions and in developing an early warning system in Ethiopia. PMID:23566411

  9. An Analysis of Diet Quality, How It Controls Fatty Acid Profiles, Isotope Signatures and Stoichiometry in the Malaria Mosquito Anopheles arabiensis

    PubMed Central

    Hood-Nowotny, Rebecca; Schwarzinger, Bettina; Schwarzinger, Clemens; Soliban, Sharon; Madakacherry, Odessa; Aigner, Martina; Watzka, Margarete; Gilles, Jeremie

    2012-01-01

    Background Knowing the underlying mechanisms of mosquito ecology will ensure effective vector management and contribute to the overall goal of malaria control. Mosquito populations show a high degree of population plasticity in response to environmental variability. However, the principle factors controlling population size and fecundity are for the most part unknown. Larval habitat and diet play a crucial role in subsequent mosquito fitness. Developing the most competitive insects for sterile insect technique programmes requires a “production” orientated perspective, to deduce the most effective larval diet formulation; the information gained from this process offers us some insight into the mechanisms and processes taking place in natural native mosquito habitats. Methodology/Principal Findings Fatty acid profiles and de-novo or direct assimilation pathways, of whole-individual mosquitoes reared on a range of larval diets were determined using pyrolysis gas chromatograph/mass spectrometry. We used elemental analysis and isotope ratio mass spectrometry to measure individual-whole-body carbon, nitrogen and phosphorous values and to assess the impact of dietary quality on subsequent population stoichiometry, size, quality and isotopic signature. Diet had the greatest impact on fatty acid (FA) profiles of the mosquitoes, which exhibited a high degree of dietary routing, characteristic of generalist feeders. De-novo synthesis of a number of important FAs was observed. Mosquito C:N stoichiometry was fixed in the teneral stage. Dietary N content had significant influence on mosquito size, and P was shown to be a flexible pool which limited overall population size. Conclusions/Significance Direct routing of FAs was evident but there was ubiquitous de-novo synthesis suggesting mosquito larvae are competent generalist feeders capable of survival on diet with varying characteristics. It was concluded that nitrogen availability in the larval diet controlled teneral mosquito size and that teneral CN ratio is a sex- and species-specific fixed parameter. This finding has significant implications for overall mosquito competitiveness and environmental management. PMID:23133509

  10. Adaptation through chromosomal inversions in Anopheles

    PubMed Central

    Ayala, Diego; Ullastres, Anna; González, Josefa

    2014-01-01

    Chromosomal inversions have been repeatedly involved in local adaptation in a large number of animals and plants. The ecological and behavioral plasticity of Anopheles species—human malaria vectors—is mirrored by high amounts of polymorphic inversions. The adaptive significance of chromosomal inversions has been consistently attested by strong and significant correlations between their frequencies and a number of phenotypic traits. Here, we provide an extensive literature review of the different adaptive traits associated with chromosomal inversions in the genus Anopheles. Traits having important consequences for the success of present and future vector control measures, such as insecticide resistance and behavioral changes, are discussed. PMID:24904633

  11. Fine structure of the eggs of Anopheles (Anopheles) apicimacula (Diptera:Culicidae).

    PubMed

    Rodriguez, M H; Chávez, B; Orozco, A; Martínez-Palomo, A

    1996-09-01

    The eggs of Anopheles (Anopheles) apicimacula Dyar and Knab are described from scanning electron micrographs. The eggs are boat-shaped, with frills that extend ventrally along the length of the egg and surround the deck region. The ornamentation on the dorsal and lateral surfaces is formed by groups of smooth, round tubercles. The ventral surface is covered by irregularly jagged tubercles. Prominent lobed tubercles are present at the anterior and posterior ends of the deck.

  12. Dose–response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato

    PubMed Central

    2013-01-01

    Background Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Methods Dose–response and standardized field tests were implemented following standard procedures of the World Health Organization’s Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Results Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77

  13. Evaluation of Polyethylene-Based Long Lasting Treated Bed Net Netprotect on Anopheles Mosquitoes, Malaria Incidence, and Net Longivity in Western Kenya

    PubMed Central

    Odhiambo, M. T. O.; Skovmand, O.; Vulule, J. M.; Kokwaro, E. D.

    2013-01-01

    We studied the effect on malaria incidence, mosquito abundance, net efficacy, net use rate, chemical analysis, and holes of a long lasting insecticide treated bed net (Netprotect) in western Kenya, 2007–2010. Nets were hung in 150 households 6 months before they were hung in a second, 2 km away. Indoor resting densities were monitored by pyrethrum spray catch and malaria cases by passive detection using clinical manifestations and rapid diagnostic test. The probability of finding An. arabiensis in the control area was 2.6 times higher than that in intervention area during the first 6 months. Human blood feeding index of Anopheles funestus declined 17%. After bed nets were hung in the second area, malaria incidence declined 25% down to the level in the first area. Incidence remained at this low level for 2 years. 90% of collected nets were efficacious after 3-year use. Deltamethrin dosage declined from 1.9 to 0.5 g/kg over 3 years. Attrition rate after 3 years was 21%. WHO hole index changed from 333 to 114 to 381 over the three years. This index summarizes the numbers of holes in size categories and multiplies with the mean hole area per category. It is very sensitive to the impact of big holes in a few nets. PMID:24194770

  14. Abundance patterns of Anopheles pseudopunctipennis and Anopheles argyritarsis in northwestern Argentina.

    PubMed

    Dantur Juri, María Julia; Claps, Guillermo Luis; Santana, Mirta; Zaidenberg, Mario; Almirón, Walter Ricardo

    2010-09-01

    Anopheles pseudopunctipennis is an important malaria vector in Argentina but the role of Anopheles argyritarsis in the transmission of the parasite is still unknown. Abundance patterns of both species and their relationship to climatic variables were studied in the subtropical mountainous forest in northwestern Argentina. Adults were collected with CDC light traps from September 2002 to November 2005 in Salta (northern area) and Tucumán (southern area) provinces, from 3 localities in each province. The abundance of both species in localities was compared using the Kruskal-Wallis test, and their changes in abundance in relation to climatic variables were analyzed by Multilevel Poisson Regression. Anopheles argyritarsis was more abundant than A. pseudopunctipennis, and both reached a peak during the spring. There were significant differences in abundance in the northern localities for A. pseudopunctipennis, and between northern and southern localities for A. argyritarsis. Temperature, rainfall and relative humidity were significant predictors of the abundance of these two species.

  15. The complete mitochondrial genome of Anopheles minimus (Diptera: Culicidae) and the phylogenetics of known Anopheles mitogenomes.

    PubMed

    Hua, Ya-Qiong; Ding, Yi-Ran; Yan, Zhen-Tian; Si, Feng-Ling; Luo, Qian-Chun; Chen, Bin

    2016-06-01

    Anopheles minimus is an important vector of human malaria in southern China and Southeast Asia. The phylogenetics of mosquitoes has not been well resolved, and the mitochondrial genome (mtgenome) has proven to be an important marker in the study of evolutionary biology. In this study, the complete mtgenome of An. minimus was sequenced for the first time. It is 15 395 bp long and encodes 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and a non-coding region. The gene organization is consistent with those of known Anopheles mtgenomes. The mtgenome performs a clear bias in nucleotide composition with a positive AT-skew and a negative GC-skew. All 13 PCGs prefer to use the codon UUA (Leu), ATN as initiation codon but cytochrome-oxidase subunit 1 (COI) and ND5, with TCG and GTG, and TAA as termination codon, but COI, COII, COIII and ND4, all with the incomplete T. tRNAs have the typical clover-leaf structure, but tRNA(Ser(AGN)) is consistent with known Anopheles mtgenomes. The control region includes a conserved T-stretch and a (TA)n stretch, and has the highest A+T content at 93.1%. The phylogenetics of An. minimus with 18 other Anopheles species was constructed by maximum likelihood and Bayesian inference, based on concatenated PCG sequences. The subgenera, Cellia and Anopheles, and Nyssorhynchus and Kerteszia have mutually close relationships, respectively. The Punctulatus group and Leucosphyrus group of Neomyzomyia Series, and the Albitarsis group of Albitarsis Series were suggested to be monophyletic. The monophyletic status of the subgenera, Cellia, Anopheles, Nyssorhynchus and Kerteszia need to be further elucidated.

  16. Anopheles (Anopheles) Lesteri Biases and Hu (Diptera: Culicidae): Neotype Designation and Description

    DTIC Science & Technology

    2005-06-30

    Anopheles) anthropoplwglts: Ma 1981: 1I (key; distribution, China: Fukien. Kiangsi. Kiangsu. Kwangsi. Kweichow. Shanghai. provinces south of Yantze River ...lowing: Taina Litwak for her illustrations; Bel Rueda, Buddy Buenavista. Lerma Bue- navista. Benjie Puma. and Modesta Coro- nado-Puma for their help in

  17. Humoral response to the Anopheles gambiae salivary protein gSG6: a serological indicator of exposure to Afrotropical malaria vectors.

    PubMed

    Rizzo, Cinzia; Ronca, Raffaele; Fiorentino, Gabriella; Verra, Federica; Mangano, Valentina; Poinsignon, Anne; Sirima, Sodiomon Bienvenu; Nèbiè, Issa; Lombardo, Fabrizio; Remoue, Franck; Coluzzi, Mario; Petrarca, Vincenzo; Modiano, David; Arcà, Bruno

    2011-03-17

    Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus) and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the immune tolerance and

  18. First Record of Anopheles oryzalimnetes, Anopheles argyritarsis, and Anopheles sawyeri (Diptera: Culicidae) in the Caatinga Biome, Semiarid Scrubland of Sergipe State, Brazil.

    PubMed

    Marteis, L S; Sallum, M A M; Natal, D; Oliveira, T M P; Gama, R A; Dolabella, S S; Santos, R L C

    2015-09-01

    Caatinga is one of the least known biomes of Brazil in relation to biodiversity. The dry condition of semiarid areas has been associated in the past with low richness of fauna and flora, not encouraging studies in this region. There is a lack of mosquito records including anophelines. Thus, to investigate the biodiversity of Anopheles mosquitoes in the Caatinga biome, we collected immature mosquitoes in aquatic habitats in a conservation reserve located in the northwestern portion of Sergipe state. The captured specimens were initially identified as Anopheles albitarsis l.s. and Anopheles argyritarsis l.s. To confirm the morphological identification, sequences were generated by cytochrome oxidase subunit I mitocondrial gene. The results showed that the specimens belong to the species Anopheles oryzalimnetes, An. argyritarsis, and Anopheles sawyeri. These are the first records of these species in this region. The presence of Anopheles in the Caatinga biome, which is characterized by arid and semiarid climatic conditions, encourages the interest in the study of biological, physiological, and behavioral adaptations, selected over time, which allow these mosquito populations to survive through the long periods of drought that is characteristic of this region.

  19. Neuropeptides and Peptide Hormones in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Riehle, Michael A.; Garczynski, Stephen F.; Crim, Joe W.; Hill, Catherine A.; Brown, Mark R.

    2002-10-01

    The African malaria mosquito, Anopheles gambiae, is specialized for rapid completion of development and reproduction. A vertebrate blood meal is required for egg production, and multiple feedings subsequently allow transmission of malaria parasites, Plasmodium spp. Regulatory peptides from 35 genes annotated from the A. gambiae genome likely coordinate these and other physiological processes. Plasmodium parasites may affect actions of newly identified insulin-like peptides, which coordinate growth and reproduction of its vector, A. gambiae, as in Drosophila melanogaster, Caenorhabditis elegans, and mammals. This genomic information provides a basis to expand understanding of hematophagy and pathogen transmission in this mosquito.

  20. Vector competence of Anopheles and Culex mosquitoes for Zika virus.

    PubMed

    Dodson, Brittany L; Rasgon, Jason L

    2017-01-01

    Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. Although Aedes mosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, including Culex and Anopheles species, and we lack a thorough understanding of which mosquito species to target for vector control. We exposed Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint, Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes were refractory to Zika virus infection. We conclude that Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus.

  1. Vector competence of Anopheles and Culex mosquitoes for Zika virus

    PubMed Central

    Dodson, Brittany L.

    2017-01-01

    Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. Although Aedes mosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, including Culex and Anopheles species, and we lack a thorough understanding of which mosquito species to target for vector control. We exposed Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint, Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes were refractory to Zika virus infection. We conclude that Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus. PMID:28316896

  2. A New Classification for the Leucosphyrus Group of Anopheles (Cellia)

    DTIC Science & Technology

    1989-01-01

    some modification in Knight and Marks (1952) for the subgenus Finlaya of Aedes and were standardized for the genus Anopheles, subgenus Anopheles by...Zool. 32: 321-329. Knight, K.L. and E.N. Marks. 1952. An annotated checklist of the mosquitoes of the subgenus Finlaya, genus Aedes . Proc. U.S. Nat... Mosquito Systematics Vol. 21(3) 1989 197 A New Classification for the Leucosphyrus Group of Anopheles (Cellia)’ E.L. Peyton”*” ABSTRACT. The

  3. Distinct population structure for co-occurring Anopheles goeldii and Anopheles triannulatus in Amazonian Brazil

    PubMed Central

    McKeon, Sascha Naomi; Moreno, Marta; Sallum, Maria Anise; Povoa, Marinete Marins; Conn, Jan Evelyn

    2013-01-01

    To evaluate whether environmental heterogeneity contributes to the genetic heterogeneity in Anopheles triannulatus, larval habitat characteristics across the Brazilian states of Roraima and Pará and genetic sequences were examined. A comparison with Anopheles goeldii was utilised to determine whether high genetic diversity was unique to An. triannulatus. Student t test and analysis of variance found no differences in habitat characteristics between the species. Analysis of population structure of An. triannulatus and An. goeldii revealed distinct demographic histories in a largely overlapping geographic range. Cytochrome oxidase I sequence parsimony networks found geographic clustering for both species; however nuclear marker networks depicted An. triannulatus with a more complex history of fragmentation, secondary contact and recent divergence. Evidence of Pleistocene expansions suggests both species are more likely to be genetically structured by geographic and ecological barriers than demography. We hypothesise that niche partitioning is a driving force for diversity, particularly in An. triannulatus. PMID:23903977

  4. [Role of Anopheles melas Theobald (1903) on malaria transmission in a mangrove swamp in Saloum (Senegal)].

    PubMed

    Diop, A; Molez, J F; Konaté, L; Fontenille, D; Gaye, O; Diouf, M; Diagne, M; Faye, O

    2002-09-01

    From June 1995 to January 1998, entomological studies carried out in five villages located in the Delta's Saloum have allowed to better understand the contribution of An. melas Theobald (1903) to malaria transmission in mangrove swamp. Among the five villages studied, three of them (Simal, Djilor and Marlothie) located along the Saloum river, are colonised by An. arabiensis; the two others (Djifere and Diakhanor) located between the sea and the river, are colonised by An. melas. During the rainy season and at the beginning of the dry season, An. melas and An. arabiensis are sympatric. The ratio of An. melas/An. arabiensis increases when we go closer the coast where An. melas becomes quite exclusive. When An. melas is predominant, endophagy, endophily and anthropophily are very marked. The parturity rates are lower in An. melas than in An. arabiensis. In the predominance area of each species, transmission is on the same level. During the period of sympatry, An. arabiensis is responsible for the transmission and when it is absent, An. melas carries on. Transmission occurs from July to March with a maximum at the beginning of the dry season. In the villages of the mangrove swamp, its prolongation until the middle of the dry season is due to An. melas.

  5. Odorant reception in the malaria mosquito Anopheles gambiae.

    PubMed

    Carey, Allison F; Wang, Guirong; Su, Chih-Ying; Zwiebel, Laurence J; Carlson, John R

    2010-03-04

    The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa. It locates its human hosts primarily through olfaction, but little is known about the molecular basis of this process. Here we functionally characterize the Anopheles gambiae odorant receptor (AgOr) repertoire. We identify receptors that respond strongly to components of human odour and that may act in the process of human recognition. Some of these receptors are narrowly tuned, and some salient odorants elicit strong responses from only one or a few receptors, suggesting a central role for specific transmission channels in human host-seeking behaviour. This analysis of the Anopheles gambiae receptors permits a comparison with the corresponding Drosophila melanogaster odorant receptor repertoire. We find that odorants are differentially encoded by the two species in ways consistent with their ecological needs. Our analysis of the Anopheles gambiae repertoire identifies receptors that may be useful targets for controlling the transmission of malaria.

  6. Blood-feeding behavior of Anopheles gambiae and Anopheles melas in Ghana, western Africa.

    PubMed

    Tuno, Nobuko; Kjaerandsen, Jostein; Badu, Kingsley; Kruppa, Thomas

    2010-01-01

    Anopheles gambiae is the predominant malaria vector species in Ghana, western Africa, with a strong local presence of Anopheles melas Theobald along the southern coast. We studied the biting behavior of these two species of the Anopheles gambiae complex inland and at the coast in Ghana, with special attention to the local peoples' preference for outdoor sleeping. We collected mosquitoes at two sites in 2007, representing the moist semideciduous forest zone and the strand and mangrove zone, and the sampling was repeated in the dry and rainy seasons. Sampled mosquitoes were examined for species, parity and size (wing length), and we identified the hosts of their bloodmeals. We interviewed 288 of the village people to determine where and when they slept outdoors. Our study confirmed that An. gambiae is the only species of the An. gambiae complex in the Ashanti region and revealed that An. melas is highly dominant on the western coast of Ghana. Both species showed high human blood rates in indoor resting mosquito samples. More people sleep outside on the coast than inland. An. melas demonstrated high exophily. An. gambiae bit people more frequently indoors and did so more often during the dry season than in the rainy season. We suggest that the degree of exophily in An. melas may be affected by humidity and the availability of human as well as by the mosquitoes' innate habits.

  7. The mosquito Anopheles (Cellia) oreios sp. n., formerly species 6 of the Australasian Anopheles farauti complex, and a critical review of its biology and relation to disease.

    PubMed

    Bangs, M J; Taai, K; Howard, T M; Cook, S; Harbach, R E

    2015-03-01

    Species 6 of the Australasian Anopheles farauti sibling species complex (Diptera: Culicidae) is described and formally named Anopheles oreios Bangs & Harbach, sp. n. Adult, pupal and fourth-instar larval specimens collected in the Baliem Valley, Papua Province, Indonesia, are characterized and compared with those of Anopheles farauti, Anopheles hinesorum, Anopheles irenicus and Anopheles torresiensis (formerly informally denoted as species 1, 2, 7 and 3, respectively). The variable wings of adult females, the male genitalia, the pupa and the fourth-instar larva of An. oreios are illustrated and DNA sequence data are included for regions coding for sections of the mitochondrial COI and COII genes. The biology of An. oreios and its relation to malaria transmission are discussed in detail and contrasted with the biology and disease relations of some members of the An. farauti and Anopheles punctulatus sibling species complexes.

  8. Colonization of Anopheles pseudopunctipennis from Mexico.

    PubMed

    Villarreal, C; Arredondo-Jiménez, J I; Rodriguez, M H; Ulloa, A

    1998-12-01

    Two colonies of Anopheles pseudopunctipennis, Tapachula and Abasolo strains, were established under laboratory conditions with a thermoperiod (29 degrees C during the day; 24 degrees C during the night) and artificial dusk. To stimulate mating, a light beam from a flashlight was shone on the cage shortly after lights off. This procedure was repeated for the first 6 mosquito generations (parental to F6) and thereafter light stimulation was unnecessary for mating. The Tapachula colony has been maintained for 24 generations in 24 months, with insemination rates in females > 80% since the F3, and a monthly production of 30,000 pupae since the F7. Using the same procedure, the Abasolo colony from northeastern Mexico has been maintained for 13 generations in 14 months, with insemination rates of 26-52%.

  9. Ecological Suitability and Spatial Distribution of Five Anopheles Species in Amazonian Brazil

    PubMed Central

    McKeon, Sascha N.; Schlichting, Carl D.; Povoa, Marinete M.; Conn, Jan E.

    2013-01-01

    Seventy-six sites characterized in Amazonian Brazil revealed distinct habitat diversification by examining the environmental factors associated with the distribution and abundance of five anopheline species (Diptera: Culicidae) in the subgenus Nyssorhynchus. These included three members of the Albitarsis Complex, Anopheles oryzalimnetes, Anopheles marajoara, Anopheles janconnae; Anopheles triannulatus, and Anopheles goeldii. Anopheles janconnae abundance had a positive correlation to water flow and a negative relationship to sun exposure. Abundance of An. oryzalimentes was associated with water chemistry. Anopheles goeldii larvae were abundant in shaded, more saline waters. Anopheles marajoara and An. triannulatus were negatively associated with available resources, although An. marajoara also showed several local correlations. These analyses suggest An. triannulatus is a habitat generalist, An. oryzalimentes and An. janconnae are specialists, and An. marajoara and An. goeldii could not be easily classified either way. Correlations described herein provide testable hypotheses for future research and identifying habitats for vector control. PMID:23546804

  10. Comparison of transmission parameters between Anopheles argyritarsis and Anopheles pseudopunctipennis in two ecologically different localities of Bolivia

    PubMed Central

    2013-01-01

    Background Anopheles (Anopheles) pseudopunctipennis is a recognized malaria vector in the slopes of the Andes of Bolivia. There, other species might be involved in malaria transmission and one candidate could be Anopheles argyritarsis. Although it is generally admitted that this species is not a malaria vector in the neotropical region, its potential role in transmission is still controversial and this situation has to be cleared, at least for Bolivia. Comparing the vectorial efficiency of An. pseudopunctipennis with that of An. argyritarsis could solve the question. Methods The two species were sampled throughout Bolivia to estimate their degree of co-existence in their distribution range. Vectorial efficiencies of the two species were compared in two ecologically different localities where the species were sympatric by analysing their vectorial capacities and components (i e, human biting rates, human biting index, survival, durations of the gonotrophic cycle and extrinsic cycle), and the entomological inoculation rates (EIR). Mosquitoes were sampled monthly during more than one year in the two localities. A monthly sample consisted in hourly captures in four houses (inside and outside) in each locality, during four consecutive nights. Climatic variables (temperature, humidity, potential evapo-transpiration and precipitations) were recorded to better understand variability in the entomological parameters. Relationships were analysed using multivariate methods. Results Anopheles pseudopunctipennis and An. argyritarsis are “altitude” species, sharing the same geographical distribution range in the Andes of Bolivia. No Plasmodium parasite was identified in An. argyritarsis and estimates of the vectorial capacity indicated that it is not a malaria vector in the two studied localities, unlike An. pseudopunctipennis which showed positive EIRs. This latter species, although not a very good malaria vector, exhibited better life traits values and better behavioural

  11. A Small-Scale Field Trial of Pyriproxyfen-Impregnated Bed Nets against Pyrethroid-Resistant Anopheles gambiae s.s. in Western Kenya

    PubMed Central

    Kawada, Hitoshi; Dida, Gabriel O.; Ohashi, Kazunori; Kawashima, Emiko; Sonye, George; Njenga, Sammy M.; Mwandawiro, Charles; Minakawa, Noboru

    2014-01-01

    Pyrethroid resistance is becoming a major problem for vector control programs, because at present, there are few suitable chemical substitutes for pyrethroids, as when used on bed nets the insecticide must have low mammalian toxicity as well as high activity to mosquitoes. Pyriproxyfen (PPF) is one of the most active chemicals among the juvenile hormone mimic (JHM) group. Sterilizing mosquitoes by using PPF could be a potential control measure for pyrethroid-resistant malaria vectors. We investigated the sterilizing effects of two types of PPF-impregnated bed nets – a 1% PPF-impregnated net and a 1% PPF +2% permethrin-impregnated net (Olyset Duo) – to pyrethroid-resistant wild population of Anopheles gambiae s.s. in western Kenya. High mortality of blood-fed mosquitos was observed 3 days post-collection, in the houses where PPF-impregnated nets were used, indicating the effect of PPF on the longevity of mosquitos that came in contact with the net. Reduction in the number of ovipositing females, number of eggs, and number of progeny per female were also observed in the houses in which both Olyset Duo and PPF-impregnated nets were used. This is the first field study showing the high sterilizing efficacy of PPF against wild pyrethroid-resistant An. gambiae s.s. population. In addition, we recognized the necessity of combined use of permethrin with PPF, in order to reduce the risk of mosquito bites and provide a level of personal protection. Further studies on wild pyrethroid-resistant mosquito populations such as An. arabiensis and An. funestus s.s. would provide more information on the practical use of the PPF-impregnated bed nets. PMID:25333785

  12. Species Composition and Distribution of Adult Anopheles (Diptera: Culicidae) in Panama

    PubMed Central

    LOAIZA, J. R.; BERMINGHAM, E.; SCOTT, M. E.; ROVIRA, J. R.; CONN, J. E.

    2010-01-01

    Anopheles (Diptera: Culicidae) species composition and distribution were studied using human landing catch data over a 35-yr period in Panama. Mosquitoes were collected from 77 sites during 228 field trips carried out by members of the National Malaria Eradication Service. Fourteen Anopheles species were identified. The highest average human biting rates were recorded from Anopheles (Nyssorhynchus) albimanus (Wiedemann) (9.8 bites/person/night) and Anopheles (Anopheles) punctimacula (Dyar and Knab) (6.2 bites/person/night). These two species were also the most common, present in 99.1 and 74.9%, respectively, of the sites. Anopheles (Nyssorhynchus) aquasalis (Curry) was encountered mostly in the indigenous Kuna Yala Comarca along the eastern Atlantic coast, where malaria case history and average human biting rate (9.3 bites/person/night) suggest a local role in malaria transmission. An. albimanus, An. punctimacula, and Anopheles (Anopheles) vestitipennis (Dyar and Knab) were more abundant during the rainy season (May–December), whereas An. aquasalis was more abundant in the dry season (January–April). Other vector species collected in this study were Anopheles (Kerteszia) neivai (Howard, Dyar, and Knab) and Anopheles (Anopheles) pseudopunctipennis s.l. (Theobald). High diversity of Anopheles species and six confirmed malaria vectors in endemic areas of Panama emphasize the need for more detailed studies to better understand malaria transmission dynamics. PMID:18826025

  13. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa

    PubMed Central

    2010-01-01

    Background Based on highly successful demonstrations in Israel that attractive toxic sugar bait (ATSB) methods can decimate local populations of mosquitoes, this study determined the effectiveness of ATSB methods for malaria vector control in the semi-arid Bandiagara District of Mali, West Africa. Methods Control and treatment sites, selected along a road that connects villages, contained man-made ponds that were the primary larval habitats of Anopheles gambiae and Anopheles arabiensis. Guava and honey melons, two local fruits shown to be attractive to An. gambiae s.l., were used to prepare solutions of Attractive Sugar Bait (ASB) and ATSB that additionally contained boric acid as an oral insecticide. Both included a color dye marker to facilitate determination of mosquitoes feeding on the solutions. The trial was conducted over a 38-day period, using CDC light traps to monitor mosquito populations. On day 8, ASB solution in the control site and ATSB solution in the treatment site were sprayed using a hand-pump on patches of vegetation. Samples of female mosquitoes were age-graded to determine the impact of ATSB treatment on vector longevity. Results Immediately after spraying ATSB in the treatment site, the relative abundance of female and male An. gambiae s.l. declined about 90% from pre-treatment levels and remained low. In the treatment site, most females remaining after ATSB treatment had not completed a single gonotrophic cycle, and only 6% had completed three or more gonotrophic cycles compared with 37% pre-treatment. In the control site sprayed with ASB (without toxin), the proportion of females completing three or more gonotrophic cycles increased from 28.5% pre-treatment to 47.5% post-treatment. In the control site, detection of dye marker in over half of the females and males provided direct evidence that the mosquitoes were feeding on the sprayed solutions. Conclusion This study in Mali shows that even a single application of ATSB can substantially

  14. Mark-recapture studies of host selection by Anopheles (Anopheles) vestitipennis.

    PubMed

    Ulloa, Armando; Arredondo-Jiménez, Juan I; Rodriguez, Mario H; Fernández-Salas, Ildefonso

    2002-03-01

    We present herein the results of a series of mark-recapture experiments with female Anopheles vestitipennis. Theses experiments used human and animal hosts to assess the degree of anthropophily of field-caught specimens, originally collected on either host, and of their offspring. Fidelity of mosquitoes to particular hosts was estimated by recapturing marked host-seeking mosquitoes returning for a 2nd blood meal. Results indicated that mosquitoes seeking animal hosts were more faithful (80.48%; 33 of 41) in returning to their original host than were those seeking human hosts (63%; 49 of 78).

  15. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    PubMed Central

    2010-01-01

    Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density), fungus (species and concentration) and environmental effects (exposure duration and food availability) influence larval mortality caused by fungus, was studied. Methods Laboratory bioassays were performed on the larval stages of Anopheles gambiae and Anopheles stephensi with spores of two fungus species, Metarhizium anisopliae and Beauveria bassiana. For various larval and fungal characteristics and environmental effects the time to death was determined and survival curves established. These curves were compared by Kaplan Meier and Cox regression analyses. Results Beauveria bassiana and Metarhizium anisopliae caused high mortality of An. gambiae and An. stephensi larvae. However, Beauveria bassiana was less effective (Hazard ratio (HR) <1) compared to Metarhizium anisopliae. Anopheles stephensi and An. gambiae were equally susceptible to each fungus. Older larvae were less likely to die than young larvae (HR < 1). The effect of increase in fungus concentration on larval mortality was influenced by spore clumping. One day exposure to fungal spores was found to be equally effective as seven days exposure. In different exposure time treatments 0 - 4.9% of the total larvae, exposed to fungus, showed infection at either the pupal or adult stage. Mortality rate increased with increasing larval density and amount of available food. Conclusions This study shows that both fungus species have potential to kill mosquitoes in the larval stage, and that mortality rate depends on fungus species itself, larval stage targeted, larval density and amount of nutrients available to the larvae. Increasing the concentration of fungal spores or reducing the exposure time to spores did not show a proportional

  16. Functional characterisation of the Anopheles leucokinins and their cognate G-protein coupled receptor.

    PubMed

    Radford, Jonathan C; Terhzaz, Selim; Cabrero, Pablo; Davies, Shireen-A; Dow, Julian A T

    2004-12-01

    Identification of the Anopheles gambiae leucokinin gene from the completed A. gambiae genome revealed that this insect species contains three leucokinin peptides, named Anopheles leucokinin I-III. These peptides are similar to those identified in two other mosquito species, Aedes aegypti and Culex salinarius. Additionally, Anopheles leucokinin I displays sequence similarity to Drosophila melanogaster leucokinin. Using a combination of computational and molecular approaches, a full-length cDNA for a candidate leucokinin-like receptor was isolated from A. stephensi, a close relative of A. gambiae. Alignment of the known leucokinin receptors--all G protein-coupled receptors (GPCRs)--with this receptor, identified some key conserved regions within the receptors, notably transmembrane (TM) domains I, II, III, VI and VII. The Anopheles leucokinins and receptor were shown to be a functional receptor-ligand pair. All three Anopheles leucokinins caused a dose-dependent rise in intracellular calcium ([Ca2+]i) when applied to S2 cells co-expressing the receptor and an aequorin transgene, with a potency order of I>II>III. Drosophila leucokinin was also found to activate the Anopheles receptor with a similar EC50 value to Anopheles leucokinin I. However, when the Anopheles peptides were applied to the Drosophila receptor, only Anopheles leucokinin I and II elicited a rise in [Ca2+]i. This suggests that the Anopheles receptor has a broader specificity for leucokinin ligands than the Drosophila receptor. Antisera raised against the Anopheles receptor identified a doublet of approx. 65 and 72 kDa on western blots, consistent with the presence of four N-glycosylation sites within the receptor sequence, and the known glycosylation of the receptor in Drosophila. In Anopheles tubules, as in Drosophila, the receptor was localised to the stellate cells. Thus we provide the first identification of Anopheles mosquito leucokinins (Anopheles leucokinins) and a cognate leucokinin receptor

  17. Environmental abundance of Anopheles (Diptera: Culicidae) larval habitats on land cover change sites in Karima Village, Mwea Rice Scheme, Kenya.

    PubMed

    Jacob, Benjamin G; Muturi, Ephantus; Halbig, Patrick; Mwangangi, Joseph; Wanjogu, R K; Mpanga, Enock; Funes, Jose; Shililu, Josephat; Githure, John; Regens, James L; Novak, Robert J

    2007-01-01

    A study was carried out at Karima Village in the Mwea Rice Irrigation Scheme in Kenya to assess the impact of rice husbandry and associated land cover change for mosquito larval abundance. A multi-temporal, land use land cover (LULC) classification dataset incorporating distributions of Anopheles arabiensis aquatic larval habitats was produced in ERDAS Imagine version 8.7 using combined images from IKONOS at 4m spatial resolution from 2005 and Landsat Thematic Mapper (TM)trade mark classification data at 30-meters spatial resolution from 1988 for Karima. Of 207 larval habitats sampled, most were either canals (53.4%) or paddies (45.9%), and only one habitat was classified as a seep (0.5%). The proportion of habitats that were poorly drained was 55.1% compared with 44.9% for the habitats that were well drained. An LULC base map was generated. A grid incorporating each rice paddy was overlaid over the LULC maps stratifying each cell based on levels of irrigation. Paddies/grid cells were classified as 1) well irrigated and 2) poorly irrigated. Early stages of rice growth showed peak larval production during the early part of the cropping cycle (rainy season). Total LULC change for Karima over 16 years was 59.8%. Of those areas in which change was detected, the LULC change for Karima was 4.30% for rice field to built environment, 8.74% for fallow to built environment, 7.19% for rice field to fallow, 19.03% built to fallow, 5.52% for fallow to rice field, and 8.35% for built environment to rice field. Of 207 aquatic habitats in Karima, 54.1 (n = 112) were located in LULC change sites and 45.9 (n = 95) were located in LULC non-change sites. Rice crop LULC maps derived from IKONOS and TM data in geographic information systems can be used to investigate the relationship between rice cultivation practices and higher anopheline larval habitat distribution.

  18. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages.

    PubMed

    Gimonneau, Geoffrey; Tchioffo, Majoline T; Abate, Luc; Boissière, Anne; Awono-Ambéné, Parfait H; Nsango, Sandrine E; Christen, Richard; Morlais, Isabelle

    2014-12-01

    During their immature life stages, malaria mosquitoes are exposed to a wide array of microbes and contaminants from the aquatic habitats. Although prior studies have suggested that environmental exposure shapes the microbial community structure in the adult mosquito, most reports have focused on laboratory-based experiments and on a single mosquito epithelium, the gut. In this study, we investigated the influence of the breeding site on the development of the Anopheles coluzzii and Anopheles gambiae microbiota in natural conditions. We characterized bacterial communities from aquatic habitats, at surface microlayer and subsurface water levels, to freshly emerge adult mosquitoes using multiplexed 16S rRNA gene pyrosequencing and we separately analyzed the microbiota associated with the different epithelia of adult individual, midguts, ovaries and salivary glands. We found that the distribution of bacterial communities in the aquatic habitats differed according to the depth of water collections. Inter-individual variation of bacterial composition was large in larvae guts but adult mosquitoes from a same breeding site shared quite similar microbiota. Although some differences in bacterial abundances were highlighted between the different epithelia of freshly emerged An. coluzzii and An. gambiae, an intriguing feature from our study is the particular similarity of the overall bacterial communities. Our results call for further investigations on the bacterial population dynamics in the different tissues to determine the distinctive characteristics of each microbiota during the mosquito lifespan and to identify specific interactions between certain key phyla or species and the insect life history traits.

  19. Laser induced mortality of Anopheles stephensi mosquitoes

    PubMed Central

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-01-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild. PMID:26887786

  20. Metabolic Pathways in Anopheles stephensi mitochondria

    PubMed Central

    Giulivi, Cecilia; Ross-Inta, Catherine; Horton, Ashley A.; Luckhart, Shirley

    2017-01-01

    No studies have been performed on mitochondria of malaria vector mosquitoes. This information would be valuable in understanding mosquito aging and detoxification of insecticides, two parameters that significantly impact malaria parasite transmission in endemic regions. Here, we report the analyses of respiration and oxidative phosphorylation in mitochondria of cultured cells (ASE line) from Anopheles stephensi, a major vector of malaria in India, Southeast Asia and parts of the Middle East. ASE cell mitochondria shared many features in common with mammalian muscle mitochondria, despite the fact that these cells have a larval origin. However, two major differences with mammalian mitochondria were apparent. One, the glycerol-phosphate shuttle plays a major role in NADH oxidation in ASE cell mitochondria as it does in insect muscle mitochondria. In contrast, mammalian white muscle mitochondria depend primarily on lactate dehydrogenase, whereas red muscle mitochondria depend on the malate-oxaloacetate shuttle. Two, ASE mitochondria were able to oxidize Pro at a rate comparable with that of α-glycerophosphate. However, the Pro pathway appeared to differ from the currently accepted pathway, in that ketoglutarate could be catabolyzed completely by the Krebs cycle or via transamination depending on the ATP need. PMID:18588503

  1. Laser induced mortality of Anopheles stephensi mosquitoes

    NASA Astrophysics Data System (ADS)

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-02-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild.

  2. RNAi Trigger Delivery into Anopheles gambiae Pupae.

    PubMed

    Regna, Kimberly; Harrison, Rachel M; Heyse, Shannon A; Chiles, Thomas C; Michel, Kristin; Muskavitch, Marc A T

    2016-03-08

    RNA interference (RNAi), a naturally occurring phenomenon in eukaryotic organisms, is an extremely valuable tool that can be utilized in the laboratory for functional genomic studies. The ability to knockdown individual genes selectively via this reverse genetic technique has allowed many researchers to rapidly uncover the biological roles of numerous genes within many organisms, by evaluation of loss-of-function phenotypes. In the major human malaria vector Anopheles gambiae, the predominant method used to reduce the function of targeted genes involves injection of double-stranded (dsRNA) into the hemocoel of the adult mosquito. While this method has been successful, gene knockdown in adults excludes the functional assessment of genes that are expressed and potentially play roles during pre-adult stages, as well as genes that are expressed in limited numbers of cells in adult mosquitoes. We describe a method for the injection of Serine Protease Inhibitor 2 (SRPN2) dsRNA during the early pupal stage and validate SRPN2 protein knockdown by observing decreased target protein levels and the formation of melanotic pseudo-tumors in SRPN2 knockdown adult mosquitoes. This evident phenotype has been described previously for adult stage knockdown of SRPN2 function, and we have recapitulated this adult phenotype by SRPN2 knockdown initiated during pupal development. When used in conjunction with a dye-labeled dsRNA solution, this technique enables easy visualization by simple light microscopy of injection quality and distribution of dsRNA in the hemocoel.

  3. Behavioral Cost & Overdominance in Anopheles gambiae

    PubMed Central

    Diop, Malal M.; Moiroux, Nicolas; Chandre, Fabrice; Martin-Herrou, Hadrien; Milesi, Pascal; Boussari, Olayidé; Porciani, Angélique; Duchon, Stéphane; Labbé, Pierrick; Pennetier, Cédric

    2015-01-01

    In response to the widespread use of control strategies such as Insecticide Treated Nets (ITN), Anopheles mosquitoes have evolved various resistance mechanisms. Kdr is a mutation that provides physiological resistance to the pyrethroid insecticides family (PYR). In the present study, we investigated the effect of the Kdr mutation on the ability of female An. gambiae to locate and penetrate a 1cm-diameter hole in a piece of netting, either treated with insecticide or untreated, to reach a bait in a wind tunnel. Kdr homozygous, PYR-resistant mosquitoes were the least efficient at penetrating an untreated damaged net, with about 51% [39-63] success rate compared to 80% [70-90] and 78% [65-91] for homozygous susceptible and heterozygous respectively. This reduced efficiency, likely due to reduced host-seeking activity, as revealed by mosquito video-tracking, is evidence of a recessive behavioral cost of the mutation. Kdr heterozygous mosquitoes were the most efficient at penetrating nets treated with PYR insecticide, thus providing evidence for overdominance, the rarely-described case of heterozygote advantage conveyed by a single locus. The study also highlights the remarkable capacity of female mosquitoes, whether PYR-resistant or not, to locate holes in bed-nets. PMID:25831058

  4. Anopheles Midgut FREP1 Mediates Plasmodium Invasion*

    PubMed Central

    Zhang, Genwei; Niu, Guodong; Franca, Caio M.; Dong, Yuemei; Wang, Xiaohong; Butler, Noah S.; Dimopoulos, George; Li, Jun

    2015-01-01

    Malaria transmission depends on sexual stage Plasmodium parasites successfully invading Anopheline mosquito midguts following a blood meal. However, the molecular mechanisms of Plasmodium invasion of mosquito midguts have not been fully elucidated. Previously, we showed that genetic polymorphisms in the fibrinogen-related protein 1 (FREP1) gene are significantly associated with Plasmodium falciparum infection in Anopheles gambiae, and FREP1 is important for Plasmodium berghei infection of mosquitoes. Here we identify that the FREP1 protein is secreted from the mosquito midgut epithelium and integrated as tetramers into the peritrophic matrix, a chitinous matrix formed inside the midgut lumen after a blood meal feeding. Moreover, we show that the FREP1 can directly bind Plasmodia sexual stage gametocytes and ookinetes. Notably, ablating FREP1 expression or targeting FREP1 with antibodies significantly decreases P. falciparum infection in mosquito midguts. Our data support that the mosquito-expressed FREP1 mediates mosquito midgut invasion by multiple species of Plasmodium parasites via anchoring ookinetes to the peritrophic matrix and enabling parasites to penetrate the peritrophic matrix and the epithelium. Thus, targeting FREP1 can limit malaria transmission. PMID:25991725

  5. Bionomics of Anopheles spp. (Diptera: Culicidae) in a malaria endemic region of Sukabumi, West Java, Indonesia.

    PubMed

    Stoops, Craig A; Rusmiarto, Saptoro; Susapto, Dwiko; Munif, Amurl; Andris, Heri; Barbara, Kathryn A; Sukowati, Supratman

    2009-12-01

    A 15-month bionomic study of Anopheles species was conducted in two ecologically distinct villages (coastal and upland) of Sukabumi District, West Java, Indonesia from June 2006 to September 2007. Mosquitoes were captured using human-landing collections at both sites. During the study, a total of 17,100 Anopheles mosquitoes comprising 13 Anopheles species were caught: 9,151 at the coastal site and 7,949 at the upland site. Anopheles barbirostris, Anopheles maculatus, and Anopheles vagus were the predominant species caught at the coastal site, and Anopheles aconitus, Anopheles barbirostris, and An. maculatus predominated in the upland site. Overall, species were exophagic at both sites, but there was variation between species. Anopheles aconitus was endophagic at the coastal site, exophagic at the upland site, collected most often in April 2007 and had a peak landing time between 22:00 and 23:00. Anopheles sundaicus was only collected at the coastal site, exophagic, collected most often in October 2006, and had a peak landing time between 19:00 and 20:00. Potential malaria vector species such An. aconitus, An. maculatus, and An. sundaicus were present throughout the year. None of the 7,770 Anopheles tested using CSP-ELISA were positive for malaria, although the risk for malaria outbreaks in Sukabumi district remains high.

  6. Mermithid nematodes found in adult Anopheles from southeastern Senegal

    PubMed Central

    2012-01-01

    Background Over two dozen mermithid nematodes have been described parasitizing mosquitoes worldwide, however, only two species were found in Africa. Mermithid nematodes kill their mosquito host upon emergence, which suggests that they could be developed as biological control agents of mosquitoes. Both Romanomermis culicivorax and Romanomermis iyengari have been reared for mass release to control numerous Anopheles species vector populations, and in one instance this may have led to reduced malaria prevalence in a human population. Methods Anopheles mosquitoes were collected during a malaria study in southeastern Senegal. Two different adult blood fed mosquitoes had a single mermithid nematode emerge from their anus while they were being held post-capture. Primers from the 18 S rDNA were developed to sequence nematode DNA and screen mosquitoes for mermithid DNA. 18 S rDNA from the Senegalese mermithid and other mermithid entries in GenBank were used to create a Maximum Parsimony tree of the Mermithidae family. Results The mermithid was present in 1.8% (10/551) of the sampled adult Anopheles species in our study area. The mermithid was found in An. gambiae s.s., An. funestus, and An. rufipes from the villages of Ndebou, Boundoucondi, and Damboucoye. Maximum parsimony analysis confirmed that the nematode parasites found in Anopheles were indeed mermithid parasites, and of the mermithid sequences available in GenBank, they are most closely related to Strelkovimermis spiculatus. Conclusions To our knowledge, this is the first report of mermithids from adult Anopheles mosquitoes in Senegal. The mermithid appears to infect Anopheles mosquitoes that develop in diverse larval habitats. Although maximum parsimony analysis determined the mermithid was closely related to Strelkovimermis spiculatus, several characteristics of the mermithid were more similar to the Empidomermis genus. Future mermithid isolations will hopefully allow: formal taxonomic identification

  7. Biology & control of Anopheles culicifacies Giles 1901

    PubMed Central

    Sharma, V.P.; Dev, V.

    2015-01-01

    Malaria epidemiology is complex due to multiplicity of disease vectors, sibling species complex and variations in bionomical characteristics, vast varied terrain, various ecological determinants. There are six major mosquito vector taxa in India, viz. Anopheles culicifacies, An. fluviatilis, An. stephensi, An. minimus, An. dirus and An. sundaicus. Among these, An. culicifacies is widely distributed and considered the most important vector throughout the plains and forests of India for generating bulk of malaria cases (>60% annually). Major malaria epidemics are caused by An. culicifaices. It is also the vector of tribal malaria except parts of Odisha and Northeastern States of India. An. culicifacies has been the cause of perennial malaria transmission in forests, and over the years penetrated the deforested areas of Northeast. An. culicifacies participates in malaria transmission either alone or along with An. stephensi or An. fluviatilis. The National Vector Borne Disease Control Programme (NVBDCP) spends about 80 per cent malaria control budget annually in the control of An. culicifacies, yet it remains one of the most formidable challenges in India. With recent advances in molecular biology there has been a significant added knowledge in understanding the biology, ecology, genetics and response to interventions, requiring stratification for cost-effective and sustainable malaria control. Research leading to newer interventions that are evidence-based, community oriented and sustainable would be useful in tackling the emerging challenges in malaria control. Current priority areas of research should include in-depth vector biology and control in problem pockets, preparation of malaria-risk maps for focused and selective interventions, monitoring insecticide resistance, cross-border initiative and data sharing, and coordinated control efforts for achieving transmission reduction, and control of drug-resistant malaria. The present review on An. culicifacies

  8. Anthropophilic Anopheles species composition and malaria in Tierradentro, Córdoba, Colombia

    PubMed Central

    Schiemann, David Joachim; Pinzón, Martha Lucía Quiñones; Hankeln, Thomas

    2014-01-01

    Malaria is still a primary health problem in Colombia. The locality of Tierradentro is situated in the municipality of Montelíbano, Córdoba, in the northwest of Colombia, and has one of the highest annual parasite index of malaria nationwide. However, the vectors involved in malaria transmission in this locality have not yet been identified. In this study, the local anthropophilic Anopheles composition and natural infectivity with Plasmodium were investigated. In August 2009, 927 female Anopheles mosquitoes were collected in eight localities using the human landing catch method and identified based on their morphology. Cryptic species were determined by restriction fragment length polymorphism-internal transcribed spacer (ITS)2 molecular analysis. Eight species [Anopheles nuneztovari s.l. (92.8%), Anopheles darlingi (5.1%), Anopheles triannulatus s.l. (1.8%), Anopheles pseudopunctipennis s.l. (0.2%), Anopheles punctimacula s.l. (0.2%), Anopheles apicimacula (0.1%), Anopheles albimanus (0.1%) and Anopheles rangeli (0.1%)] were identified and species identity was confirmed by ITS2 sequencing. This is the first report of An. albimanus, An. rangeli and An. apicimacula in Tierradentro. Natural infectivity with Plasmodium was determined by ELISA. None of the mosquitoes was infectious for Plasmodium. An. nuneztovari s.l. was the predominant species and is considered the primary malaria vector; An. darlingi and An. triannulatus s.l. could serve as secondary vectors.

  9. The genome of Anopheles darlingi, the main neotropical malaria vector.

    PubMed

    Marinotti, Osvaldo; Cerqueira, Gustavo C; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M R; Wespiser, Adam R; Almeida E Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; Silva, Artur Luiz da Costa da; Graveley, Brenton R; Walenz, Brian P; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; Azevedo Junior, Gilson Martins de; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q M; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M C; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Urményi, Turán P; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

    2013-08-01

    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector-human and vector-parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.

  10. The dance of male Anopheles gambiae in mating swarms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mating behavior of the malaria vector Anopheles gambiae is of great interest from a fundamental and applied perspective. One of the most important elements of mating in this species is the crepuscular mating aggregation (swarm) composed almost entirely of males, where most coupling and inseminat...

  11. Workbook on the Identification of Anopheles Adults. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional workbook is designed to enable malaria control workers to identify adults of "Anopheles" species that are important malaria vectors. The morphological features of the adults are illustrated in a programed booklet, which also contains an illustrated taxonomic key to adult females of 29 anopheline species. A glossary and a…

  12. Workbook on the Identification of Anopheles Larvae. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional booklet is designed to enable malarial control workers to identify the larvae of "Anopheles" species that are important malaria vectors. The morphological features of the larvae are illustrated in a programed booklet, which also contains an illustrated taxonomic key to 25 species of anopheline larvae. A glossary and a short…

  13. The Genome of Anopheles darlingi, the main neotropical malaria vector

    PubMed Central

    Marinotti, Osvaldo; Cerqueira, Gustavo C.; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M. R.; Wespiser, Adam R.; Almeida e Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; da Silva, Artur Luiz da Costa; Graveley, Brenton R.; Walenz, Brian P.; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M.; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; de Azevedo Junior, Gilson Martins; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q. M.; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M. C.; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S.; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E.; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Ürményi, Turán P.; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi. PMID:23761445

  14. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    PubMed

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Gosoniu, Laura; Drescher, Axel W; Fillinger, Ulrike; Tanner, Marcel; Killeen, Gerry F; Castro, Marcia C

    2009-05-01

    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats.

  15. Distribution and larval habitat characterization of Anopheles moucheti, Anopheles nili, and other malaria vectors in river networks of southern Cameroon.

    PubMed

    Antonio-Nkondjio, Christophe; Ndo, Cyrille; Costantini, Carlo; Awono-Ambene, Parfait; Fontenille, Didier; Simard, Frédéric

    2009-12-01

    Despite their importance as malaria vectors, little is known of the bionomic of Anopheles nili and Anopheles moucheti. Larval collections from 24 sites situated along the dense hydrographic network of south Cameroon were examined to assess key ecological factors associated with these mosquitoes distribution in river networks. Morphological identification of the III and IV instar larvae by the use of microscopy revealed that 47.6% of the larvae belong to An. nili and 22.6% to An. moucheti. Five variables were significantly involved with species distribution, the pace of flow of the river (lotic, or lentic), the light exposure (sunny or shady), vegetation (presence or absence of vegetation) the temperature and the presence or absence of debris. Using canonical correspondence analysis, it appeared that lotic rivers, exposed to light, with vegetation or debris were the best predictors of An. nili larval abundance. Whereas, An. moucheti and An. ovengensis were highly associated with lentic rivers, low temperature, having Pistia. An. nili and An. moucheti distribution along river systems across south Cameroon was highly correlated with environmental variables. The distribution of An. nili conforms to that of a generalist species which is adapted to exploiting a variety of environmental conditions, Whereas, An. moucheti, Anopheles ovengensis and Anopheles carnevalei appeared as specialist forest mosquitoes.

  16. Genomic Islands of Speciation in Anopheles gambiae

    PubMed Central

    Hahn, Matthew W; Nuzhdin, Sergey V

    2005-01-01

    The African malaria mosquito, Anopheles gambiae sensu stricto (A. gambiae), provides a unique opportunity to study the evolution of reproductive isolation because it is divided into two sympatric, partially isolated subtaxa known as M form and S form. With the annotated genome of this species now available, high-throughput techniques can be applied to locate and characterize the genomic regions contributing to reproductive isolation. In order to quantify patterns of differentiation within A. gambiae, we hybridized population samples of genomic DNA from each form to Affymetrix GeneChip microarrays. We found that three regions, together encompassing less than 2.8 Mb, are the only locations where the M and S forms are significantly differentiated. Two of these regions are adjacent to centromeres, on Chromosomes 2L and X, and contain 50 and 12 predicted genes, respectively. Sequenced loci in these regions contain fixed differences between forms and no shared polymorphisms, while no fixed differences were found at nearby control loci. The third region, on Chromosome 2R, contains only five predicted genes; fixed differences in this region were also verified by direct sequencing. These “speciation islands” remain differentiated despite considerable gene flow, and are therefore expected to contain the genes responsible for reproductive isolation. Much effort has recently been applied to locating the genes and genetic changes responsible for reproductive isolation between species. Though much can be inferred about speciation by studying taxa that have diverged for millions of years, studying differentiation between taxa that are in the early stages of isolation will lead to a clearer view of the number and size of regions involved in the genetics of speciation. Despite appreciable levels of gene flow between the M and S forms of A. gambiae, we were able to isolate three small regions of differentiation where genes responsible for ecological and behavioral isolation are

  17. The salivary gland chromosomes of Anopheles pseudopunctipennis pseudopunctipennis*

    PubMed Central

    Baker, Richard H.; Kitzmiller, J. B.; Chowdaiah, B. N.

    1965-01-01

    The authors present a salivary chromosome map of Anopheles p. pseudopunctipennis, an important malaria vector in the Americas. The salivary chromosomes appear as a short metacentric X and two metacentric autosomes. The arms of chromosome 2 are of almost equal length, but the right arm of chromosome 3 is almost twice as long as the left. The metacentric X is the first to be described in the subgenus Anopheles. The banding patterns of the autosomes show many similarities to those of the North American maculipennis complex and to those of the Central American A. vestitipennis and A. neomaculipalpus. Three chromosomal aberrations, one in the X and two in the right arm of chromosome 3, occur commonly in several different populations. ImagesFIG. 3FIG. 5FIG. 6FIG. 7 PMID:5295407

  18. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    PubMed Central

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  19. Studies on Anopheles (Kerteszia) homunculus Komp (Diptera: Culicidae)

    DTIC Science & Technology

    2009-01-01

    ITS2) region of the nuclear rDNA cistron has been widely employed in molecular systematic studies of Anopheles at the species level (e.g. Li and... molecular characterization. The second internal transcribed spacer (ITS2) of the nuclear rDNA cistron was sequenced for six individuals of An. homunculus...among the clones from Colombia needs further investigation by sequencing ITS2 from a larger sample size. Finally, morphological and molecular evidence

  20. Diversity of the Bacterial Microbiota of Anopheles Mosquitoes from Binh Phuoc Province, Vietnam.

    PubMed

    Ngo, Chung T; Romano-Bertrand, Sara; Manguin, Sylvie; Jumas-Bilak, Estelle

    2016-01-01

    The naturally acquired microbiota of Anopheles can influence vector's susceptibility to Plasmodium and its capacity to transmit them. Microbiota modification is a new challenge to limit disease transmission but it still needs advanced knowledges on bacterial community in Anopheles, especially in wild and infected specimens from diverse origin and species. Bacterial culture and 16S rRNA gene-PCR associated to Temporal Temperature Gradient Electrophoresis (TTGE) were applied to explore the bacterial diversity in the abdomen of 100 wild specimens (eight Anopheles species) collected in the Binh Phuoc Province, Vietnam. Culture and PCR-TTGE were complementary. The bacterial richness of the mosquito collection encompassed 105 genera belonging to seven phyla, mostly Proteobacteria, Firmicutes, and Actinobacteria. Staphylococcus, Clostridium, and Bacillus in Firmicutes were the most prevalent genera. However, Proteobacteria represented by 57 genera was the most diversified phylum in Anopheles microbiota. The high overall of Anopheles-associated bacteria is confirmed with, to our knowledge, 51 genera described for the first time in Anopheles microbiota. However, the diversity per specimen was low with average diversity index and the average Shannon-Wiener score (H) of 4.843 and 5.569, respectively. The most represented bacterial genera were present in <30% of the specimens. Consequently, the core microbiota share by Anopheles from Binh Phuoc was very narrow, suggesting that Anopheles microbiota was greatly influenced by local environments. The repertory of bacterial genera in two specimens of An. dirus and An. pampanai naturally infected by Plasmodium vivax was also described as preliminary results. Finally, this study completed the repertory of bacteria associated to wild Anopheles. Anopheles associated-bacteria appeared specimen-dependent rather than mosquitoe species- or group-dependent. Their origin and the existence of Anopheles-specific bacterial taxa are discussed.

  1. Diversity of the Bacterial Microbiota of Anopheles Mosquitoes from Binh Phuoc Province, Vietnam

    PubMed Central

    Ngo, Chung T.; Romano-Bertrand, Sara; Manguin, Sylvie; Jumas-Bilak, Estelle

    2016-01-01

    The naturally acquired microbiota of Anopheles can influence vector’s susceptibility to Plasmodium and its capacity to transmit them. Microbiota modification is a new challenge to limit disease transmission but it still needs advanced knowledges on bacterial community in Anopheles, especially in wild and infected specimens from diverse origin and species. Bacterial culture and 16S rRNA gene-PCR associated to Temporal Temperature Gradient Electrophoresis (TTGE) were applied to explore the bacterial diversity in the abdomen of 100 wild specimens (eight Anopheles species) collected in the Binh Phuoc Province, Vietnam. Culture and PCR-TTGE were complementary. The bacterial richness of the mosquito collection encompassed 105 genera belonging to seven phyla, mostly Proteobacteria, Firmicutes, and Actinobacteria. Staphylococcus, Clostridium, and Bacillus in Firmicutes were the most prevalent genera. However, Proteobacteria represented by 57 genera was the most diversified phylum in Anopheles microbiota. The high overall of Anopheles-associated bacteria is confirmed with, to our knowledge, 51 genera described for the first time in Anopheles microbiota. However, the diversity per specimen was low with average diversity index and the average Shannon–Wiener score (H) of 4.843 and 5.569, respectively. The most represented bacterial genera were present in <30% of the specimens. Consequently, the core microbiota share by Anopheles from Binh Phuoc was very narrow, suggesting that Anopheles microbiota was greatly influenced by local environments. The repertory of bacterial genera in two specimens of An. dirus and An. pampanai naturally infected by Plasmodium vivax was also described as preliminary results. Finally, this study completed the repertory of bacteria associated to wild Anopheles. Anopheles associated-bacteria appeared specimen-dependent rather than mosquitoe species- or group-dependent. Their origin and the existence of Anopheles-specific bacterial taxa are

  2. Developing transgenic Anopheles mosquitoes for the sterile insect technique.

    PubMed

    Nolan, Tony; Papathanos, Philippos; Windbichler, Nikolai; Magnusson, Kalle; Benton, Jason; Catteruccia, Flaminia; Crisanti, Andrea

    2011-01-01

    In the last 10 years the availability of the genome sequence of Anopheles gambiae and the development of a transgenic technology for several species of Anopheles mosquitoes have, in combination, helped in enabling us to gain several insights into the biology of these mosquitoes that is relevant to their capacity as vectors of the malaria parasite. While this information is anticipated to inform many novel vector control strategies, the technique most likely to benefit in the near future from the availability of a reliable transgenic technology is the sterile insect technique (SIT), which relies on releasing large numbers of sterile insects to compete for mates in the wild, leading to population suppression. Although SIT has been proven to work reliably for many insects, the construction of suitable strains, and induction of sterility, has until now been a laborious process, combining classical genetics with radiation-induced sterility. Using transgenesis to create strains of Anopheles suitable for SIT could potentially offer several advantages over current approaches, in that the basic design of transgenic constructs designed for other insects should be rapidly transferable to mosquitoes, and induction of sterility as a product of the transgenic modification could obviate the requirement for radiation and its associated deleterious effects. In this paper the progress of different transgenic approaches in constructing tools for SIT will be reviewed.

  3. Evolution of an Epigenetic Gene Ensemble within the Genus Anopheles

    PubMed Central

    Jenkins, Adam M.; Muskavitch, Marc A.T.

    2015-01-01

    Epigenetic control of gene expression has important implications for the regulation of developmental processes, for mediating homeostasis and responses to the external environment, and for transgenerational inheritance of gene expression patterns. Genes that mediate epigenetic control have been well-characterized in Drosophila melanogaster, and we have identified and analyzed an orthologous gene ensemble in Anopheles gambiae that comprises 169 orthologs related to a 215-member epigenetic gene ensemble in D. melanogaster. We find that this ensemble is highly conserved among anopheline mosquitoes, as we identify only seven gene family expansion/contraction events within the ensemble among 12 mosquito species we have studied within the genus Anopheles. Comparative analyses of the epigenetic gene expression across the genera Drosophila and Anopheles reveal distinct tissue-associated expression patterns in the two genera, but similar temporal expression patterns. The A. gambiae complex and D. melanogaster subgroup epigenetic gene ensembles exhibit similar evolutionary rates, as assessed by their respective dN/dS values. These differences in tissue-associated expression patterns, in contrast to similarities in evolutionary rates and temporal expression patterns, may imply that some members of the epigenetic gene ensemble have been redeployed within one or both genera, in comparison to the most recent common ancestor of these two clades. Members of this epigenetic gene ensemble may constitute another set of potential targets for vector control and enable further reductions in the burden of human malaria, by analogy to recent success in development of small molecule antagonists for mammalian epigenetic machinery. PMID:25724208

  4. Mosquito biosurveillance on Kyushu Island, Japan, with emphasis on Anopheles Hyrcanus Group and related species (Diptera: culicidae).

    PubMed

    Rueda, Leopoldo M; Pagac, Benedict; Iwakami, Masashiro; Spring, Alexandra R; Motoki, Mayasa T; Pecor, James E; Higa, Yukiko; Futami, Kyoko; Imanishi, Nozomi; Long, Lewis S; Debboun, Mustapha

    2014-01-01

    This report includes the distribution records of the Anopheles (Anopheles) Hyrcanus Group and associated species in Kyushu Island, Japan, based on our field collections from various localities of 4 prefectures (Fukuoka, Kumamoto, Nagasaki, Saga), primarily from 2002-2013. The status of common and potential mosquito vectors, particularly Anopheles species, in Japan are noted.

  5. The Physical Genome Mapping of Anopheles albimanus Corrected Scaffold Misassemblies and Identified Interarm Rearrangements in Genus Anopheles

    PubMed Central

    Artemov, Gleb N.; Peery, Ashley N.; Jiang, Xiaofang; Tu, Zhijian; Stegniy, Vladimir N.; Sharakhova, Maria V.; Sharakhov, Igor V.

    2016-01-01

    The genome of the Neotropical malaria vector Anopheles albimanus was sequenced as part of the 16 Anopheles Genomes Project published in 2015. The draft assembly of this species consisted of 204 scaffolds with an N50 scaffold size of 18.1 Mb and a total assembly size of 170.5 Mb. It was among the smallest genomes with the longest scaffolds in the 16 Anopheles species cluster, making An. albimanus the logical choice for anchoring the genome assembly to chromosomes. In this study, we developed a high-resolution cytogenetic photomap with completely straightened polytene chromosomes from the salivary glands of the mosquito larvae. Based on this photomap, we constructed a chromosome-based genome assembly using fluorescent in situ hybridization of PCR-amplified DNA probes. Our physical mapping, assisted by an ortholog-based bioinformatics approach, identified and corrected nine misassemblies in five large genomic scaffolds. Misassemblies mostly occurred in junctions between contigs. Our comparative analysis of scaffolds with the An. gambiae genome detected multiple genetic exchanges between pericentromeric regions of chromosomal arms caused by partial-arm translocations. The final map consists of 40 ordered genomic scaffolds and corrected fragments of misassembled scaffolds. The An. albimanus physical map comprises 98.2% of the total genome assembly and represents the most complete genome map among mosquito species. This study demonstrates that physical mapping is a powerful tool for correcting errors in draft genome assemblies and for creating chromosome-anchored reference genomes. PMID:27821634

  6. Diversification of the Genus Anopheles and a Neotropical Clade from the Late Cretaceous

    PubMed Central

    Freitas, Lucas A.; Russo, Claudia A. M.; Voloch, Carolina M.; Mutaquiha, Olívio C. F.; Marques, Lucas P.; Schrago, Carlos G.

    2015-01-01

    The Anopheles genus is a member of the Culicidae family and consists of approximately 460 recognized species. The genus is composed of 7 subgenera with diverse geographical distributions. Despite its huge medical importance, a consensus has not been reached on the phylogenetic relationships among Anopheles subgenera. We assembled a comprehensive dataset comprising the COI, COII and 5.8S rRNA genes and used maximum likelihood and Bayesian inference to estimate the phylogeny and divergence times of six out of the seven Anopheles subgenera. Our analysis reveals a monophyletic group composed of the three exclusively Neotropical subgenera, Stethomyia, Kerteszia and Nyssorhynchus, which began to diversify in the Late Cretaceous, at approximately 90 Ma. The inferred age of the last common ancestor of the Anopheles genus was ca. 110 Ma. The monophyly of all Anopheles subgenera was supported, although we failed to recover a significant level of statistical support for the monophyly of the Anopheles genus. The ages of the last common ancestors of the Neotropical clade and the Anopheles and Cellia subgenera were inferred to be at the Late Cretaceous (ca. 90 Ma). Our analysis failed to statistically support the monophyly of the Anopheles genus because of an unresolved polytomy between Bironella and A. squamifemur. PMID:26244561

  7. Mosaic: a position-effect variegation eye-color mutant in the mosquito Anopheles gambiae.

    PubMed

    Benedict, M Q; McNitt, L M; Cornel, A J; Collins, F H

    2000-01-01

    The Mosaic (Mos) mutation, isolated in the F1 of 60Co-irradiated mosquitoes, confers variegated eye color to third and fourth instar larvae, pupae, and adults of the mosquito Anopheles gambiae. Mos is recessive in wild pink eye (p+) individuals, but is dominant and confers areas of wild-type pigment in mutant pink eye backgrounds. Mos is located 14.4 cM from pink eye on the X chromosome and is associated with a duplication of division 2B euchromatin that has been inserted into division 6 heterochromatin. Various combinations of Mos, pink eye alleles, and the autosomal mutation red eye were produced. In all cases, the darker pigmented regions of the eye in Mos individuals show the phenotypic interactions expected if the phenotype of those regions is due to expression of a p+ allele. Expression of Mos is suppressed by rearing larvae at 32 degrees C relative to 22 degrees C. All of these characteristics are consistent with Mos being a duplicated wild copy of the pink eye gene undergoing position-effect variegation.

  8. ANOSPEX: A Stochastic, Spatially Explicit Model for Studying Anopheles Metapopulation Dynamics

    PubMed Central

    Oluwagbemi, Olugbenga O.; Fornadel, Christen M.; Adebiyi, Ezekiel F.; Norris, Douglas E.; Rasgon, Jason L.

    2013-01-01

    Anopheles mosquitoes transmit malaria, a major public health problem among many African countries. One of the most effective methods to control malaria is by controlling the Anopheles mosquito vectors that transmit the parasites. Mathematical models have both predictive and explorative utility to investigate the pros and cons of different malaria control strategies. We have developed a C++ based, stochastic spatially explicit model (ANOSPEX; AnophelesSpatially-Explicit) to simulate Anopheles metapopulation dynamics. The model is biologically rich, parameterized by field data, and driven by field-collected weather data from Macha, Zambia. To preliminarily validate ANOSPEX, simulation results were compared to field mosquito collection data from Macha; simulated and observed dynamics were similar. The ANOSPEX model will be useful in a predictive and exploratory manner to develop, evaluate and implement traditional and novel strategies to control malaria, and for understanding the environmental forces driving Anopheles population dynamics. PMID:23861847

  9. Biting patterns and seasonality of anopheles gambiae sensu lato and anopheles funestus mosquitoes in Kamuli District, Uganda

    PubMed Central

    2013-01-01

    Background We investigated the biting patterns and seasonal abundances of Anopheles gambiae s.l. and An. funestus mosquitoes in Kamuli District, Uganda. Methods Hourly indoor and outdoor catches of human biting mosquitoes were sampled from 19.00 to 07.00 hours for four consecutive nights each month using bed net traps in forty-eight houses randomly selected from Bugabula county where insecticide-treated bed nets (ITNs) had been used for at least five years and Budiope county where ITNs had not been used. The indoor and outdoor human-biting fractions, time of biting of the anophelines and climatic data were recorded from January to December 2010. Data were analysed using Multi-way analysis of variance, Kruskal-wallis rank sum test and Pearson correlation. The number of mosquitoes caught biting humans and resting indoors, the indoor and outdoor human biting densities and biting rates during different hours of the night, and mosquito abundances for a twelve-month sampling period in both zones are reported. Results Approximately four times more Anopheles mosquitoes were caught biting humans in Budiope County than in the Bugabula zone, with An. gambiae s. l. catches exceeding those of An. funestus. In both zones, peak night biting occurred between 23.00 and 05.00 hours. The majority of bites occurred between 03.00 and 06.00 hours for both Anopheles gambiae s. l. and funestus group. Outdoor biting densities of Anopheles gambiae s. l. exceeded the indoor biting densities throughout the night in both zones, while the indoor and outdoor human biting densities of An. funestus group were apparently equal. The outdoor and indoor human biting rates were similar in both zones. In Bugabula county, the abundance of An. gambiae s.l. was rainfall-dependent, while the An. funestus group could thrive with or without rain fall. In Budiope county, both An. gambiae s.l. and An. funestus mosquitoes thrived all year round regardless of the amount of rainfall. Conclusion Considering the

  10. Differential susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to infections with coindigenous Plasmodium vivax variants VK210 and VK247 in southern Mexico.

    PubMed

    Gonzalez-Ceron, L; Rodriguez, M H; Nettel, J C; Villarreal, C; Kain, K C; Hernandez, J E

    1999-01-01

    The susceptibilities to coindigenous Plasmodium vivax of colonized Anopheles albimanus and Anopheles pseudopunctipennis from southern Mexico were investigated by simultaneous feeding with infected blood obtained from patients. The genes encoding circumsporozoite protein variant types (VK210 and VK247) in blood samples were determined by PCR and oligonucleotide probe hybridization. A. albimanus was more susceptible to VK210, and A. pseudopunctipennis was more susceptible to VK247.

  11. Discovery of flavivirus-derived endogenous viral elements in Anopheles mosquito genomes supports the existence of Anopheles-associated insect-specific flaviviruses.

    PubMed

    Lequime, Sebastian; Lambrechts, Louis

    2017-01-01

    The Flavivirus genus encompasses several arboviruses of public health significance such as dengue, yellow fever, and Zika viruses. It also includes insect-specific flaviviruses (ISFs) that are only capable of infecting insect hosts. The vast majority of mosquito-infecting flaviviruses have been associated with mosquito species of the Aedes and Culex genera in the Culicinae subfamily, which also includes most arbovirus vectors. Mosquitoes of the Anophelinae subfamily are not considered significant arbovirus vectors; however, flaviviruses have occasionally been detected in field-caught Anopheles specimens. Whether such observations reflect occasional spillover or laboratory contamination or whether Anopheles mosquitoes are natural hosts of flaviviruses is unknown. Here, we provide in silico and in vivo evidence of transcriptionally active, flavivirus-derived endogenous viral elements (EVEs) in the genome of Anopheles minimus and Anopheles sinensis. Such non-retroviral endogenization of RNA viruses is consistent with a shared evolutionary history between flaviviruses and Anopheles mosquitoes. Phylogenetic analyses of the two newly described EVEs support the existence of a distinct clade of Anopheles-associated ISFs.

  12. Discovery of flavivirus-derived endogenous viral elements in Anopheles mosquito genomes supports the existence of Anopheles-associated insect-specific flaviviruses

    PubMed Central

    Lequime, Sebastian; Lambrechts, Louis

    2017-01-01

    The Flavivirus genus encompasses several arboviruses of public health significance such as dengue, yellow fever, and Zika viruses. It also includes insect-specific flaviviruses (ISFs) that are only capable of infecting insect hosts. The vast majority of mosquito-infecting flaviviruses have been associated with mosquito species of the Aedes and Culex genera in the Culicinae subfamily, which also includes most arbovirus vectors. Mosquitoes of the Anophelinae subfamily are not considered significant arbovirus vectors; however, flaviviruses have occasionally been detected in field-caught Anopheles specimens. Whether such observations reflect occasional spillover or laboratory contamination or whether Anopheles mosquitoes are natural hosts of flaviviruses is unknown. Here, we provide in silico and in vivo evidence of transcriptionally active, flavivirus-derived endogenous viral elements (EVEs) in the genome of Anopheles minimus and Anopheles sinensis. Such non-retroviral endogenization of RNA viruses is consistent with a shared evolutionary history between flaviviruses and Anopheles mosquitoes. Phylogenetic analyses of the two newly described EVEs support the existence of a distinct clade of Anopheles-associated ISFs. PMID:28078104

  13. Environmental factors associated with spatial and temporal distribution of Anopheles (Diptera: Culicidae) larvae in Sukabumi, West Java, Indonesia.

    PubMed

    Stoops, Craig A; Gionar, Yoyo R; Shinta; Sismadi, Priyanto; Elyazar, Iqbal R F; Bangs, Michael J; Sukowati, Supratman

    2007-07-01

    A 12-mo ecological study of the spatial-temporal distribution of immature stages of Anopheles species was conducted in Sukabumi District, West Java, Indonesia. The study characterized 1,600 sites from a contiguous coastal and hill zone (0-800-m elevation) of which 64% contained Anopheles larvae. Principal component and multiple logistic regression analyses identified ecological parameters associated with presence of nine [Anopheles aconitus Doenitz, Anopheles annularis Van de Wulp, Anopheles barbirostris Van der Wulp, Anopheles flavirostris (Ludlow), Anopheles insulaeflorum (Swellengrebel and Swellengrebel de Graaf), Anopheles kochi Doenitz, Anopheles maculatus Theobald, Anopheles sundaicus (Rodenwaldt), and Anopheles vagus Doenitz] of 15 Anopheles species collected. Combined data for all nine species showed increased Anopheles presence associated with wet season periods and higher elevation habitats exhibiting reduced tree canopy coverage, higher water temperatures, and shallower water depths. Habitat variables measured included topography (elevation), water conditions (temperature, pH, salinity depth, and velocity), habitat characteristics (substrate and canopy cover), density and type of aquatic vegetation coverage (riparian, floating, and emergent), and distance from nearest human habitation. Significant relationships were found for nine species when using all habitats in the analysis. Habitat characteristics for three species were refined. An. aconitus and An. barbirostris were associated with higher elevation rice, Oryza savita L., paddies with relatively shallow water depths, higher water temperatures, higher acidity and salinity concentrations, and a greater average distance from human habitation. An. vagus presence in rice paddies was associated with lower elevation fields, deeper and cooler water, less acidic and saline conditions, and habitats closer to human dwellings. Overall, the distribution of Anopheles species in Sukabumi was found to be nonrandom

  14. Low rates of multiple fertilization in parous Anopheles albimanus.

    PubMed

    Villarreal, C; Fuentes-Maldonado, G; Rodriguez, M H; Yuval, B

    1994-03-01

    We determined how frequently parous female Anopheles albimanus fertilize their eggs with sperm from more than one male. To establish paternity we relied on 2 phenotypically distinct laboratory strains. Nulliparous females were allowed to mate freely with males from one strain, and after oviposition they were offered a 2nd mating with males of the other strain. Fertilization patterns were determined by the phenotypes of offspring. Only 0.6% of females ovipositing for a 2nd time (n = 312) used sperm from the 2nd male, as did 4% of females completing a 3rd gonotrophic cycle (n = 25). In this species receptivity is not routinely renewed following oviposition.

  15. G Protein-Coupled Receptors in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Hill, Catherine A.; Fox, A. Nicole; Pitts, R. Jason; Kent, Lauren B.; Tan, Perciliz L.; Chrystal, Mathew A.; Cravchik, Anibal; Collins, Frank H.; Robertson, Hugh M.; Zwiebel, Laurence J.

    2002-10-01

    We used bioinformatic approaches to identify a total of 276 G protein-coupled receptors (GPCRs) from the Anopheles gambiae genome. These include GPCRs that are likely to play roles in pathways affecting almost every aspect of the mosquito's life cycle. Seventy-nine candidate odorant receptors were characterized for tissue expression and, along with 76 putative gustatory receptors, for their molecular evolution relative to Drosophila melanogaster. Examples of lineage-specific gene expansions were observed as well as a single instance of unusually high sequence conservation.

  16. Genetic Structure of Anopheles (Nyssorhynchus) marajoara (Diptera: Culicidae) in Colombia

    DTIC Science & Technology

    2010-01-01

    587GENETIC STRUCTURE OF ANOPHELES MARAJOARA IN COLOMBIA were sampled ( Figure 2 ). These populations were from Cáceres, Antioquia Department, 07°34...M5-71 (9; Meta), M5-71 (7; Norte de Santander), M1-31 and M10-1 (7 each; Magdalena), and M5-71 , M6-8 , and M7-1 (6 each; Antioquia ). In...2.07) and Antioquia (n A = 4.89 ± 1.27); Norte de Santander (n A = 5.33 ± 1.32) and Magdalena (n A = 5.53 ± 1.07) yielded intermediate values, and

  17. [Food irradiation].

    PubMed

    Migdał, W

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by Codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and the World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Institute of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19MeV, 1 kW) and an industrial unit Elektronika (10MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permission for irradiation for: spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables.

  18. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  19. PCR identification and distribution of Anopheles daciae (Diptera, Culicidae) in Germany.

    PubMed

    Kronefeld, Mandy; Werner, Doreen; Kampen, Helge

    2014-06-01

    Based primarily on nucleotide polymorphisms in the internal transcribed spacer 2 (ITS2) of the ribosomal DNA, Anopheles daciae was recently described as an additional member of the Maculipennis Group of species, separate from Anopheles messeae with which it had previously been confused due to morphological and genetic similarity. Species differentiation between A. messeae and A. daciae was possible only by ITS2 polymerase chain reaction (PCR) amplification followed by DNA sequencing or RFLP analysis. In addition to its siblings, Anopheles maculipennis, Anopheles atroparvus and A. messeae, A. daciae has been shown to occur in Germany, although with limited distribution. We here describe additional collection sites for this species in Germany, showing concentrations in East Germany and the northern Upper Rhine Valley in Southwest Germany. A species-specific multiplex PCR assay is presented that is able to differentiate the four Maculipennis Group sibling species occurring in Germany plus Anopheles sacharovi, Anopheles melanoon and Anopheles labranchiae. The correct identification and detailed knowledge of the biology of A. daciae are of relevance since it might be a vector of disease agents, as suggested by the vector potential of its siblings and the recent finding of an A. daciae female infected with Dirofilaria repens in southern Germany.

  20. Biting patterns and seasonal densities of Anopheles mosquitoes in the Cayo District, Belize, Central America with emphasis on Anopheles darlingi.

    PubMed

    Achee, Nicole L; Grieco, John P; Rejmankova, Eliska; Andre, Richard G; Vanzie, Errol; Polanco, Jorge; Briceno, Ireneo; King, Russell; Roberts, Donald R

    2006-06-01

    The present study utilized an experimental hut to conduct human-baited landing collections for characterizing the all-night biting patterns and seasonal densities of adult Anopheles darlingi in the centrally located Cayo District of Belize, Central America. A total of 25 all-night collections (i.e., sunset to sunrise) were conducted from January 2002 to May 2003, capturing a total of 18,878 An. darlingi females. Anopheles darlingi exhibited a bimodal nightly biting pattern with one predominate peak occurring three h after sunset and a smaller peak occurring one h prior to sunrise. Biting females were collected throughout the night in higher densities indoors (9,611) than outside (9,267) the experimental hut (O:I=1.00:1.04). Seasonal adult collections show An. darlingi densities were highest during the transitional months between the end of the wet and beginning of the dry season (January) and the end of the dry season and beginning of the wet season (May). A total of 2,010 An. darlingi females was captured in 31 two-h, human-baited landing collections performed from January to October 2002. Anopheles darlingi monthly population densities were found to have no significant associations with high or low temperatures, precipitation, or river level. However, qualitative data examination indicates an inverse relationship between river level and An. darlingi adult collections suggesting a disturbance of larval habitats. All-night biting and seasonal distribution patterns for other anopheline species are also described. None of the adult specimens collected throughout the entire study tested positive for Plasmodium spp. infection using the VecTest rapid diagnostic kit.

  1. Experimental Plasmodium vivax infection of key Anopheles species from the Brazilian Amazon

    PubMed Central

    2013-01-01

    Background Anopheles darlingi is the major malaria vector in countries located in the Amazon region. Anopheles aquasalis and Anopheles albitarsis s.l. are also proven vectors in this region. Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were found infected with Plasmodium vivax; however, their status as vectors is not yet well defined. Knowledge of susceptibility of Amazon anopheline populations to Plasmodium infection is necessary to better understand their vector capacity. Laboratory colonization of An. darlingi, the main Amazon vector, has proven to be difficult and presently An. aquasalis is the only available autonomous colony. Methods Larvae of An. darlingi, An. albitarsis s.l., An. nuneztovari s.l. and An. triannulatus s.l. were collected in the field and reared until adult stage. Adults of An. aquasalis were obtained from a well-established colony. Mosquitoes were blood-fed using a membrane-feeding device containing infected blood from malarial patients. The infection of the distinct Anopheles species was evaluated by the impact variance of the following parameters: (a) parasitaemia density; (b) blood serum inactivation of the infective bloodmeal; (c) influence of gametocyte number on infection rates and number of oocysts. The goal of this work was to compare the susceptibility to P. vivax of four field-collected Anopheles species with colonized An. aquasalis. Results All Anopheles species tested were susceptible to P. vivax infection, nevertheless the proportion of infected mosquitoes and the infection intensity measured by oocyst number varied significantly among species. Inactivation of the blood serum prior to mosquito feeding increased infection rates in An. darlingi and An. triannulatus s.l., but was diminished in An. albitarsis s.l. and An. aquasalis. There was a positive correlation between gametocyte density and the infection rate in all tests (Z = −8.37; p < 0.001) but varied among the mosquito species. Anopheles albitarsis

  2. Gene Expression-Based Biomarkers for Anopheles gambiae Age Grading

    PubMed Central

    Wang, Mei-Hui; Marinotti, Osvaldo; Zhong, Daibin; James, Anthony A.; Walker, Edward; Guda, Tom; Kweka, Eliningaya J.; Githure, John; Yan, Guiyun

    2013-01-01

    Information on population age structure of mosquitoes under natural conditions is fundamental to the understanding of vectorial capacity and crucial for assessing the impact of vector control measures on malaria transmission. Transcriptional profiling has been proposed as a method for predicting mosquito age for Aedes and Anopheles mosquitoes, however, whether this new method is adequate for natural conditions is unknown. This study tests the applicability of transcriptional profiling for age-grading of Anopheles gambiae, the most important malaria vector in Africa. The transcript abundance of two An. gambiae genes, AGAP009551 and AGAP011615, was measured during aging under laboratory and field conditions in three mosquito strains. Age-dependent monotonic changes in transcript levels were observed in all strains evaluated. These genes were validated as age-grading biomarkers using the mark, release and recapture (MRR) method. The MRR method determined a good correspondence between actual and predicted age, and thus demonstrated the value of age classifications derived from the transcriptional profiling of these two genes. The technique was used to establish the age structure of mosquito populations from two malaria-endemic areas in western Kenya. The population age structure determined by the transcriptional profiling method was consistent with that based on mosquito parity. This study demonstrates that the transcription profiling method based on two genes is valuable for age determination of natural mosquitoes, providing a new approach for determining a key life history trait of malaria vectors. PMID:23936017

  3. Anophelism in a Former Malaria Area of Northeastern Spain

    PubMed Central

    Bueno-Marí, Rubén; Jiménez-Peydró, Ricardo

    2013-01-01

    Background: A field study on diversity and distribution of anophelines currently present in a past endemic malaria area of Spain was carried out in order to identify possible risk areas of local disease transmission. Methods: Multiple larval sites were sampled from June to October of 2011 in the Region of Somontano de Barbastro (Northeastern Spain). The sampling effort was fixed at 10 minutes which included the active search for larvae in each biotope visited. Results: A total of 237 larval specimens belonging to four Anopheles species (Anopheles atroparvus, An. claviger, An. maculipennis and An. petragnani) were collected and identified. Conclusions: Malaria receptivity in the study area is high, especially in the area of Cinca river valley, due to the abundance of breeding sites of An. atroparvus very close to human settlements. Although current socio-economic conditions in Spain reduce possibilities of re-emergence of malaria transmission, it is evident that certain entomological and epidemiological vigilance must be maintained and even increased in the context of current processes of climate change and globalization. PMID:24409440

  4. Dosage Compensation in the African Malaria Mosquito Anopheles gambiae

    PubMed Central

    Rose, Graham; Krzywinska, Elzbieta; Kim, Jan; Revuelta, Loic; Ferretti, Luca; Krzywinski, Jaroslaw

    2016-01-01

    Dosage compensation is the fundamental process by which gene expression from the male monosomic X chromosome and from the diploid set of autosomes is equalized. Various molecular mechanisms have evolved in different organisms to achieve this task. In Drosophila, genes on the male X chromosome are upregulated to the levels of expression from the two X chromosomes in females. To test whether a similar mechanism is operating in immature stages of Anopheles mosquitoes, we analyzed global gene expression in the Anopheles gambiae fourth instar larvae and pupae using high-coverage RNA-seq data. In pupae of both sexes, the median expression ratios of X-linked to autosomal genes (X:A) were close to 1.0, and within the ranges of expression ratios between the autosomal pairs, consistent with complete compensation. Gene-by-gene comparisons of expression in males and females revealed mild female bias, likely attributable to a deficit of male-biased X-linked genes. In larvae, male to female ratios of the X chromosome expression levels were more female biased than in pupae, suggesting that compensation may not be complete. No compensation mechanism appears to operate in male germline of early pupae. Confirmation of the existence of dosage compensation in A. gambiae lays the foundation for research into the components of dosage compensation machinery in this important vector species. PMID:26782933

  5. The Anopheles gambiae transcriptome - a turning point for malaria control.

    PubMed

    Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J

    2017-04-01

    Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence.

  6. Irradiation subassembly

    DOEpatents

    Seim, O.S.; Filewicz, E.C.; Hutter, E.

    1973-10-23

    An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)

  7. Larval Habitats Characterization and Species Composition of Anopheles Mosquitoes in Tunisia, with Particular Attention to Anopheles maculipennis Complex

    PubMed Central

    Tabbabi, Ahmed; Boussès, Philippe; Rhim, Adel; Brengues, Cécile; Daaboub, Jabeur; Ben-Alaya-Bouafif, Nissaf; Fontenille, Didier; Bouratbine, Aïda; Simard, Frédéric; Aoun, Karim

    2015-01-01

    In Tunisia, malaria transmission has been interrupted since 1980. However, the growing number of imported cases and the persistence of putative vectors stress the need for additional studies to assess the risk of malaria resurgence in the country. In this context, our aim was to update entomological data concerning Anopheles mosquitoes in Tunisia. From May to October of 2012, mosquito larval specimens were captured in 60 breeding sites throughout the country and identified at the species level using morphological keys. Environmental parameters of the larval habitats were recorded. Specimens belonging to the An. maculipennis complex were further identified to sibling species by the ribosomal deoxyribonucleic acid (rDNA)–internal transcribed spacer 2 (ITS2) polymerase chain reaction (PCR) technique. In total, 647 Anopheles larvae were collected from 25 habitats. Four species, including An. labranchiae, An. multicolor, An. sergentii, and An. algeriensis, were morphologically identified. rDNA-ITS2 PCR confirmed that An. labranchiae is the sole member of the An. maculipennis complex in Tunisia. An. labranchiae was collected throughout northern and central Tunisia, and it was highly associated with rural habitat, clear water, and sunlight areas. Larvae of An. multicolor and An. sergentii existed separately or together and were collected in southern Tunisia in similar types of breeding places. PMID:25561567

  8. Mass spectrometry identification of age-associated proteins from the malaria mosquitoes Anopheles gambiae s.s. and Anopheles stephensi.

    PubMed

    Sikulu, Maggy T; Monkman, James; Dave, Keyur A; Hastie, Marcus L; Dale, Patricia E; Kitching, Roger L; Killeen, Gerry F; Kay, Brian H; Gorman, Jeffry J; Hugo, Leon E

    2015-09-01

    This study investigated proteomic changes occurring in Anopheles gambiae and Anopheles stephensi during adult mosquito aging. These changes were evaluated using two-dimensional difference gel electrophoresis (2D-DIGE) and the identities of aging related proteins were determined using capillary high-pressure liquid chromatography (capHPLC) coupled with a linear ion-trap (LTQ)-Orbitrap XL hybrid mass spectrometry (MS). Here, we have described the techniques used to determine age associated proteomic changes occurring in heads and thoraces across three age groups; 1, 9 and 17 d old A. gambiae and 4 age groups; 1, 9, 17 and 34 d old A. stephensi. We have provided normalised spot volume raw data for all protein spots that were visible on 2D-DIGE images for both species and processed Orbitrap mass spectrometry data. For public access, mass spectrometry raw data are available via ProteomeXchange with identifier PXD002153. A detailed description of this study has been described elsewhere [1].

  9. Anopheles moucheti and Anopheles vinckei are candidate vectors of ape Plasmodium parasites, including Plasmodium praefalciparum in Gabon.

    PubMed

    Paupy, Christophe; Makanga, Boris; Ollomo, Benjamin; Rahola, Nil; Durand, Patrick; Magnus, Julie; Willaume, Eric; Renaud, François; Fontenille, Didier; Prugnolle, Franck

    2013-01-01

    During the last four years, knowledge about the diversity of Plasmodium species in African great apes has considerably increased. Several new species were described in chimpanzees and gorillas, and some species that were previously considered as strictly of human interest were found to be infecting African apes. The description in gorillas of P. praefalciparum, the closest relative of P. falciparum which is the main malignant agent of human malaria, definitively changed the way we understand the evolution and origin of P. falciparum. This parasite is now considered to have appeared recently, following a cross-species transfer from gorillas to humans. However, the Plasmodium vector mosquito species that have served as bridge between these two host species remain unknown. In order to identify the vectors that ensure ape Plasmodium transmission and evaluate the risk of transfer of these parasites to humans, we carried out a field study in Gabon to capture Anopheles in areas where wild and semi-wild ape populations live. We collected 1070 Anopheles females belonging to 15 species, among which An. carnevalei, An. moucheti and An. marshallii were the most common species. Using mtDNA-based PCR tools, we discovered that An. moucheti, a major human malaria vector in Central Africa, could also ensure the natural transmission of P. praefalciparum among great apes. We also showed that, together with An. vinckei, An. moucheti was infected with P. vivax-like parasites. An. moucheti constitutes, therefore, a major candidate for the transfer of Plasmodium parasites from apes to humans.

  10. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae.

    PubMed

    Baldini, Francesco; Segata, Nicola; Pompon, Julien; Marcenac, Perrine; Shaw, W Robert; Dabiré, Roch K; Diabaté, Abdoulaye; Levashina, Elena A; Catteruccia, Flaminia

    2014-06-06

    Wolbachia are maternally transmitted intracellular bacteria that invade insect populations by manipulating their reproduction and immunity and thus limiting the spread of numerous human pathogens. Experimental Wolbachia infections can reduce Plasmodium numbers in Anopheles mosquitoes in the laboratory, however, natural Wolbachia infections in field anophelines have never been reported. Here we show evidence of Wolbachia infections in Anopheles gambiae in Burkina Faso, West Africa. Sequencing of the 16S rRNA gene identified Wolbachia sequences in both female and male germlines across two seasons, and determined that these sequences are vertically transmitted from mother to offspring. Whole-genome sequencing of positive samples suggests that the genetic material identified in An. gambiae belongs to a novel Wolbachia strain, related to but distinct from strains infecting other arthropods. The evidence of Wolbachia infections in natural Anopheles populations promotes further investigations on the possible use of natural Wolbachia-Anopheles associations to limit malaria transmission.

  11. Avoidance behavior to essential oils by Anopheles minimus, a malaria vector in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excito-repellency tests were used to characterize behavioral responses of laboratory colonized Anopheles minimus, a malaria vector in Thailand, using four essential oils, citronella (Cymbopogom nadus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), vetiver (Vetiveria zizanioides), ...

  12. Molecular comparison of topotypic specimens confirms Anopheles (Nyssorhynchus) dunhami Causey (Diptera: Culicidae) in the Colombian Amazon

    PubMed Central

    Ruiz, Freddy; Linton, Yvonne-Marie; Ponsonby, David J; Conn, Jan E; Herrera, Manuela; Quiñones, Martha L; Vélez, Iván D; Wilkerson, Richard C

    2015-01-01

    The presence of Anopheles (Nyssorhynchus) dunhami Causey in Colombia (Department of Amazonas) is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI) barcodes and nuclear rDNA second internal transcribed spacer (ITS2) sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America. PMID:21120360

  13. Salivary Polytene Chromosome Map of Anopheles darlingi, the Main Vector of Neotropical Malaria

    PubMed Central

    Rafael, Míriam S.; Rohde, Cláudia; Bridi, Letícia C.; da Silva Valente Gaiesky, Vera Lúcia; Tadei, Wanderli P.

    2010-01-01

    New photomap of Anopheles (Nyssorhynchus) darlingi Root, 1926, is described for a population from Guajará-Mirim, State of Rondonia, Brazil. The number of sections in the previous A. darlingi reference map was maintained and new subsections were added to the five chromosome arms. Breakage points of paracentric inversions had been previously incorporated into the photomap of this species. An additional inversion is reported, called 3Lc, totaling 14 inversions in the A. darlingi chromosome arms. The proposed photomap is potentially useful for further evolutionary studies in addition to physical and in silico chromosome mapping using A. darlingi genomic and transcriptome sequences. Furthermore, in our attempt to compare sections of the 2R chromosome arm of A. darlingi with Anopheles funestus, Anopheles stephensi, and Anopheles gambiae, we found great differences in the arrangement of the polytene chromosome bands, which are consistent with the known phylogenetic divergence of these species. PMID:20682862

  14. Mosquitoes of Anopheles hyrcanus (Diptera, Culicidae) Group: Species Diagnostic and Phylogenetic Relationships

    PubMed Central

    Khrabrova, Natalia V.; Andreeva, Yulia V.; Sibataev, Anuarbek K.; Alekseeva, Svetlana S.; Esenbekova, Perizat A.

    2015-01-01

    Herein, we report the results of study of Anopheles species in Primorsk and Khabarovsk regions of Russia. Three species of the Anopheles hyrcanus group: An. kleini, An. pullus, and An. lesteri were identified by molecular taxonomic diagnostics for the first time in Russia. Surprisingly, An. sinensis, which earlier was considered the only species of Anopheles in Russian Far East, was not observed. We analyzed nucleotide variation in the 610-bp fragment of the 5′ end of the cytochrome c oxidase subunit I (COI) region. All species possessed a distinctive set of COI sequences. A maximum likelihood phylogenetic tree was constructed for members of the hyrcanus group. The examined Anopheles hyrcanus group members could be divided into two major subgroups: subgroup 1 (An. hyrcanus and An. pullus) and subgroup 2 (An. sinensis, An. kleini, and An. lesteri), which were found to be monophyletic. PMID:26149867

  15. Bionomics of Anopheles (Diptera: Culicidae) in a malaria endemic region of Sungai Nyamuk Village, Sebatik Island - North Kalimantan, Indonesia.

    PubMed

    Sugiarto; Hadi, Upik Kesumawati; Soviana, Susi; Hakim, Lukman

    2017-03-14

    The bionomics of Anopheles was investigated in coastal Sungai Nyamuk Village, Nunukan District, North Kalimantan Province from August 2010 to January 2012. Mosquitoes were captured using human landing collections. A total of 5,103 Anopheles mosquitoes comprising 11 species were caught and 2,259 adult parous females were tested by ELISA for Plasmodium antigen. Anopheles vagus, An. sundaicus and An. subpictus were the most abundant species caught. Overall, Anopheles vagus were zoophilic and exophagic, but there was variation between species. Anopheles sundaicus and An. subpictus were anthropophilic and endophagic. Anopheles peditaeniatus and An. sundaicus collected biting humans outdoors were positive for P. falciparum protein and were incriminated as the likely vectors of malaria in Sungai Nyamuk Village. This research also showed that malaria transmission in Sungai Nyamuk Village occurred outdoors. Residual house spraying therefore would not protect the human population from vector contact, so that combination use of long lasting nets and personel protection is needed.

  16. [Detection of Anopheles artemievi Gordeev et al. (Diptera, Culicidae) in Turkmenistan].

    PubMed

    Zvantsov, A B; Rozyev, K; Gordeev, M I; Goriacheva, I I; Khemzaev, Kh; Ezhov, M N

    2010-01-01

    Anopheles artemievi (a member of An. maculipennis complex species) described from the Transfergana region (South Kyrgyzstan) in 2004 was first found in the Lebap veloyat (Eastern Turkmenistan). A single larva of this species was collected together with An. superpictus in the irrigation channel of a rice field. Species affiliation has been proven by a polymerase chain reaction-restriction fragment length polymorphism method. This species is to be included into a list of Anopheles species of Turkmenistan.

  17. Mathematical Modeling of Sterile Insect Technology for Control of Anopheles Mosquito

    NASA Astrophysics Data System (ADS)

    Anguelov, R.; Dumont, Y.; Lubuma, J.

    2011-11-01

    Sterile Insect Technology (SIT) is a nonpolluting method of insect control that relies on the release of sterile males. We study the effectiveness of the application of SIT for control of Anopheles mosquito via mathematical modeling. The theoretical analysis of the mathematical model as a dynamical system leads to the formulation of possible strategies for control of the Anopheles mosquito, also illustrated by numerical simulations.

  18. Advances in the study of Anopheles funestus, a major vector of malaria in Africa.

    PubMed

    Coetzee, M; Fontenille, D

    2004-07-01

    The recent literature on cytogenetic and molecular studies of Anopheles funestus, a major vector of malaria in Africa, is reviewed. Molecular data from West and Central Africa suggest a new species in the group closely allied to Anopheles rivulorum. Cytogenetic and molecular studies of populations from West, Central, East and southern Africa indicate considerable genetic structuring within An. funestus itself, which may well restrict the spread of pyrethroid resistance that has been demonstrated in southern Africa.

  19. Irradiated foods

    MedlinePlus

    ... it reduces the risk of food poisoning . Food irradiation is used in many countries. It was first approved in the U.S. to prevent sprouts on white potatoes, and to control insects on wheat and in certain spices and seasonings.

  20. Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes

    PubMed Central

    Carissimo, Guillaume; Eiglmeier, Karin; Reveillaud, Julie; Holm, Inge; Diallo, Mawlouth; Diallo, Diawo; Vantaux, Amélie; Kim, Saorin; Ménard, Didier; Siv, Sovannaroth; Belda, Eugeni; Bischoff, Emmanuel; Antoniewski, Christophe; Vernick, Kenneth D.

    2016-01-01

    Mosquitoes of the Anopheles gambiae complex display strong preference for human bloodmeals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O’nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex. Here, we describe two novel insect RNA viruses, a Dicistrovirus and a Cypovirus, found in laboratory colonies of An. gambiae taxa using small-RNA deep sequencing. Sequence analysis was done with Metavisitor, an open-source bioinformatic pipeline for virus discovery and de novo genome assembly. Wild-collected Anopheles from Senegal and Cambodia were positive for the Dicistrovirus and Cypovirus, displaying high sequence identity to the laboratory-derived virus. Thus, the Dicistrovirus (Anopheles C virus, AnCV) and Cypovirus (Anopheles Cypovirus, AnCPV) are components of the natural virome of at least some anopheline species. Their possible influence on mosquito immunity or transmission of other pathogens is unknown. These natural viruses could be developed as models for the study of Anopheles-RNA virus interactions in low security laboratory settings, in an analogous manner to the use of rodent malaria parasites for studies of mosquito anti-parasite immunity. PMID:27138938

  1. Species composition and natural infectivity of anthropophilic Anopheles (Diptera: Culicidae) in the states of Córdoba and Antioquia, Northwestern Colombia.

    PubMed

    Gutiérrez, Lina A; González, John J; Gómez, Giovan F; Castro, Martha I; Rosero, Doris A; Luckhart, Shirley; Conn, Jan E; Correa, Margarita M

    2009-12-01

    Malaria is a serious health problem in the states of Córdoba and Antioquia, Northwestern Colombia, where 64.4% of total Colombian cases were reported in 2007. Because little entomological information is available in this region, the aim of this work was to identify the Anopheles species composition and natural infectivity of mosquitoes distributed in seven localities with highest malaria transmission. A total of 1,768 Anopheles mosquitoes were collected using human landing catches from March 2007-July 2008. Ten species were identified; overall, Anopheles nuneztovari s.l. was the most widespread (62%) and showed the highest average human biting rates. There were six other species of the Nyssorhynchus subgenus: Anopheles albimanus (11.6%), Anopheles darlingi (9.8%), Anopheles braziliensis (6.6%), Anopheles triannulatus s.l. (3.5%), Anopheles albitarsis s.l. and Anopheles oswaldoi s.l. at < 1%; and three of the Anopheles subgenus: Anopheles punctimacula, Anopheles pseudopunctipennis s.l. and Anopheles neomaculipalpusat < 1% each. Two species from Córdoba, An. nuneztovari and An. darlingi, were found to be naturally infected by Plasmodium vivax VK247, as determined by ELISA and confirmed by nested PCR. All species were active indoors and outdoors. These results provide basic information for targeted vector control strategies in these localities.

  2. Scanning electron microscopic observations of Anopheles albimanus (Diptera: Culicidae) eggs.

    PubMed

    Rodriguez, M H; Chavez, B; Orozco, A; Loyola, E G; Martinez-Palomo, A

    1992-05-01

    To investigate the existence of subspecies of Anopheles albimanus Wiedeman in southern Mexico, the egg morphology of specimens obtained from several field populations and from insectary-adapted colonies of uniform pupal phenotype was examined. Scanning electron microscopic observations have shown that the eggs of An. albimanus are polymorphic in respect to the size and shape of their floats, but not in their ornamentation. Four types of eggs were found. Differences in the proportion of the various morphological types were statistically significant, although proportions of egg types were variable among individuals within the same population. These observations are suggestive of distinctive populations and warrant further studies using more sensitive methods to investigate sibling species in An. albimanus sensu lato.

  3. Phormidium animalis (Cyanobacteria: Oscillatoriaceae) supports larval development of Anopheles albimanus.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sánchez, José D

    2003-06-01

    The capability of Phormidium animalis, a cyanobacterium commonly found in larval habitats of Anopheles albimanus in southern Mexico, to support larval development of this mosquito was investigated. First-stage larvae were reared under insectary conditions with P. animalis ad libitum and their development was compared with larvae fed with wheat germ. The time of pupation and adult mosquito size, assessed by wing length, were similar in both groups, but fewer adult mosquitoes were obtained from larvae fed with the cyanobacteria. Nevertheless, these observations indicate that P. animalis is ingested and assimilated by larval An. albimanus, making this cyanobacterium a good candidate for genetic engineering for the introduction of mosquitocidal toxins for malaria control in the region.

  4. Colombian Anopheles triannulatus (Diptera: Culicidae) Naturally Infected with Plasmodium spp.

    PubMed Central

    Rosero, Doris A.; Naranjo-Diaz, Nelson; Alvarez, Natalí; Cienfuegos, Astrid V.; Luckhart, Shirley

    2013-01-01

    The role of Anopheles triannulatus as a local vector has not yet been defined for malaria-endemic regions of Colombia. Therefore, the aim of this work was to detect An. triannulatus naturally infected with Plasmodium spp., as an approximation to determining its importance as malaria vector in the country. A total of 510 An. triannulatus were collected in six malaria-endemic localities of NW and SE Colombia from January 2009 to March 2011. In the NW, two specimens were naturally infected; one with Plasmodium vivax VK247, collected biting on humans and the other with Plasmodium falciparum, collected resting on cattle. In the SE, two specimens were positive for P. falciparum. Although these results show An. triannulatus naturally infected with Plasmodium, further studies are recommended to demonstrate the epidemiological importance of this species in malaria-endemic regions of Colombia. PMID:27335865

  5. Genetic Structure of Anopheles (Nyssorhynchus) marajoara (Diptera: Culicidae) in Colombia

    PubMed Central

    Brochero, Helena; Li, Cong; Wilkerson, Richard; Conn, Jan E.; Ruiz-García, Manuel

    2010-01-01

    Five Anopheles marajoara Galvão and Damasceno populations, representing diverse ecological conditions, were sampled throughout Colombia and analyzed using nine hypervariable DNA microsatellite loci. The overall genetic diversity (H = 0.58) was lower than that determined for some Brazilian populations using the same markers. The Caquetá population (Colombia) had the lowest gene diversity (H = 0.48), and it was the only population at Hardy–Weinberg equilibrium. Hardy–Weinberg disequilibrium in the remaining four populations was probably caused by the Wahlund effect. The assignment analyses showed two incompletely isolated gene pools separated by the Eastern Andean cordillera. However, other possible geographical barriers (rivers and other mountains) did not play any role in the moderate genetic heterogeneity found among these populations (FST = 0.069). These results are noteworthy, because this species is a putative malaria vector in Colombia. PMID:20810825

  6. Genetic structure of Anopheles (Nyssorhynchus) marajoara (Diptera: Culicidae) in Colombia.

    PubMed

    Brochero, Helena; Li, Cong; Wilkerson, Richard; Conn, Jan E; Ruiz-García, Manuel

    2010-09-01

    Five Anopheles marajoara Galvão and Damasceno populations, representing diverse ecological conditions, were sampled throughout Colombia and analyzed using nine hypervariable DNA microsatellite loci. The overall genetic diversity (H = 0.58) was lower than that determined for some Brazilian populations using the same markers. The Caquetá population (Colombia) had the lowest gene diversity (H = 0.48), and it was the only population at Hardy-Weinberg equilibrium. Hardy-Weinberg disequilibrium in the remaining four populations was probably caused by the Wahlund effect. The assignment analyses showed two incompletely isolated gene pools separated by the Eastern Andean cordillera. However, other possible geographical barriers (rivers and other mountains) did not play any role in the moderate genetic heterogeneity found among these populations (F(ST) = 0.069). These results are noteworthy, because this species is a putative malaria vector in Colombia.

  7. Laboratory colonization of Anopheles pseudopunctipennis (Diptera: Culicidae) without forced mating.

    PubMed

    Lardeux, Frédéric; Quispe, Vicente; Tejerina, Rosenka; Rodríguez, Roberto; Torrez, Libia; Bouchité, Bernard; Chávez, Tamara

    2007-08-01

    Anopheles pseudopunctipennis is one of the main malaria vectors in the Andean regions of South America. Few experimental data exist on this species because it is not very available in laboratories due to its eurygamic status that makes colony maintenance difficult. Indeed, individuals do not mate in the confined space of insectary cages. To avoid this problem, forced artificial mating can be used. However, this technique is time consuming, requires a well-trained technician, and is inadequate for easy mass production, which is sometimes necessary for certain experimental works. This study presents a technique based on exposure of adult mosquitoes to a blue stroboscopic light for 20 min during several nights, which encourages them to copulate naturally under laboratory conditions. After some generations, a self-free-mating strain was obtained. The technique is simple, inexpensive and is probably effective whatever the An. pseudopunctipennis strain considered.

  8. Organization of olfactory centres in the malaria mosquito Anopheles gambiae

    PubMed Central

    Riabinina, Olena; Task, Darya; Marr, Elizabeth; Lin, Chun-Chieh; Alford, Robert; O'Brochta, David A.; Potter, Christopher J.

    2016-01-01

    Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes. PMID:27694947

  9. Viral paratransgenesis in the malaria vector Anopheles gambiae.

    PubMed

    Ren, Xiaoxia; Hoiczyk, Egbert; Rasgon, Jason L

    2008-08-22

    Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae.

  10. Malaria vectorial capacity of a population of Anopheles gambiae

    PubMed Central

    Garrett-Jones, C.; Shidrawi, G. R.

    1969-01-01

    In order to assess the factors of malaria vectorial capacity and the daily reproduction rate, separate consideration is given to data from Kankiya, Northern Nigeria, concerning the incidence of vector—man contact (the man-biting rate), the vector's expectation of infective life, as reflected by the proportion of parous mosquitos under certain conditions, and the vector's man-biting habit, comprising the frequency of feeding and the human blood index. The main difficulty in the assessment of each of these factors was shown to be that of representative and adequate sampling, especially in a sprayed area. In order to compensate for deficiencies in the Kankiya data, especially with regard to the daily and cyclic survival-rates, the gonotrophic cycle and the effective sporogonic period, more complete published data on an Anopheles gambiae population in East Africa were examined, and extrapolations were made from these data in spite of the consequential risks involved. The results of the analysis show that the spraying of an area with DDT reduced the malaria vectorial capacity of Anopheles gambiae sp. B (the main vector of Plasmodium falciparum in the area) by an over-all factor of about 23 times. Nevertheless the basic reproduction rate of the disease is estimated to have averaged slightly over 20 in the sprayed area during the 6 months of the main transmission season. This is consistent with an observed recovery in the parasite rate, which had been reduced to a very low level by regular mass drug administration through the preceding dry season. The analysis was a tentative exercise in “epidemiological entomology” and it is suggested that in the postgraduate teaching of tropical hygiene, the epidemiological approach to entomology should be preferred to the classical morphological-bionomical approach. PMID:5306719

  11. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia.

    PubMed

    Lau, Yee-Ling; Lee, Wenn-Chyau; Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics.

  12. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia

    PubMed Central

    Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics. PMID:27347683

  13. Molecular Confirmation of Anopheles (Anopheles) lesteri from the Republic of South Korea and its Genetic Identity with An. (Ano.) anthropophagus from China (Diptera: Culicidae)

    DTIC Science & Technology

    2003-12-08

    genus Anopheles (Beebe et al. 1999; Fritz 1998; Marinucci et al. 1999; Paskewitz et al. 1993; Wilkerson et al. In press). Morphological...Control Association, 16, 189- 198. Marinucci , M., Romi, R., Mancini, P., Di, L.M. & Severini, C. (1999) Phylogenetic relationships of seven

  14. Draft Genome Sequence of Asaia sp. Strain SF2.1, an Important Member of the Microbiome of Anopheles Mosquitoes

    PubMed Central

    Shane, Jackie L.; Bongio, Nicholas J.; Favia, Guido

    2014-01-01

    Asaia spp. are abundant members of the microbiota of Anopheles mosquitoes, the principle vectors of malaria. Here, we report the draft genome sequence of Asaia sp. strain SF2.1. This strain is under development as a platform to deliver antimalarial peptides and proteins to adult female Anopheles mosquitoes. PMID:24407652

  15. A simple Chelex protocol for DNA extraction from Anopheles spp.

    PubMed

    Musapa, Mulenga; Kumwenda, Taida; Mkulama, Mtawa; Chishimba, Sandra; Norris, Douglas E; Thuma, Philip E; Mharakurwa, Sungano

    2013-01-09

    Endemic countries are increasingly adopting molecular tools for efficient typing, identification and surveillance against malaria parasites and vector mosquitoes, as an integral part of their control programs. For sustainable establishment of these accurate approaches in operations research to strengthen malaria control and elimination efforts, simple and affordable methods, with parsimonious reagent and equipment requirements are essential. Here we present a simple Chelex-based technique for extracting malaria parasite and vector DNA from field collected mosquito specimens. We morphologically identified 72 Anopheles gambiae sl. from 156 mosquitoes captured by pyrethrum spray catches in sleeping rooms of households within a 2,000 km(2) vicinity of the Malaria Institute at Macha. After dissection to separate the head and thorax from the abdomen for all 72 Anopheles gambiae sl. mosquitoes, the two sections were individually placed in 1.5 ml microcentrifuge tubes and submerged in 20 μl of deionized water. Using a sterile pipette tip, each mosquito section was separately homogenized to a uniform suspension in the deionized water. Of the ensuing homogenate from each mosquito section, 10 μl was retained while the other 10 μl was transferred to a separate autoclaved 1.5 ml tube. The separate aliquots were subjected to DNA extraction by either the simplified Chelex or the standard salting out extraction protocol(9,10). The salting out protocol is so-called and widely used because it employs high salt concentrations in lieu of hazardous organic solvents (such as phenol and chloroform) for the protein precipitation step during DNA extraction(9). Extracts were used as templates for PCR amplification using primers targeting arthropod mitochondrial nicotinamide adenine dinucleotide dehydrogenase (NADH) subunit 4 gene (ND4) to check DNA quality, a PCR for identification of Anopheles gambiae sibling species(10) and a nested PCR for typing of Plasmodium falciparum infection

  16. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    SciTech Connect

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  17. Systematics of the Oswaldoi Complex (Anopheles, Nyssorhynchus) in South America

    PubMed Central

    2013-01-01

    Background Effective malaria control relies on accurate identification of those Anopheles mosquitoes responsible for the transmission of Plasmodium parasites. Anopheles oswaldoi s.l. has been incriminated as a malaria vector in Colombia and some localities in Brazil, but not ubiquitously throughout its Neotropical range. This evidence together with variable morphological characters and genetic differences supports that An. oswaldoi s.l. compromises a species complex. The recent fully integrated redescription of An. oswaldoi s.s. provides a solid taxonomic foundation from which to molecularly determine other members of the complex. Methods DNA sequences of the Second Internal Transcribed Spacer (ITS2 - rDNA) (n = 192) and the barcoding region of the Cytochrome Oxidase I gene (COI - mtDNA) (n = 110) were generated from 255 specimens of An. oswaldoi s.l. from 33 localities: Brazil (8 localities, including the lectotype series of An. oswaldoi), Ecuador (4), Colombia (17), Trinidad and Tobago (1), and Peru (3). COI sequences were analyzed employing the Kimura-two-parameter model (K2P), Bayesian analysis (MrBayes), Mixed Yule-Coalescent model (MYC, for delimitation of clusters) and TCS genealogies. Results Separate and combined analysis of the COI and ITS2 data sets unequivocally supported four separate species: two previously determined (An. oswaldoi s.s. and An. oswaldoi B) and two newly designated species in the Oswaldoi Complex (An. oswaldoi A and An. sp. nr. konderi). The COI intra- and inter-specific genetic distances for the four taxa were non-overlapping, averaging 0.012 (0.007 to 0.020) and 0.052 (0.038 to 0.064), respectively. The concurring four clusters delineated by MrBayes and MYC, and four independent TCS networks, strongly confirmed their separate species status. In addition, An. konderi of Sallum should be regarded as unique with respect to the above. Despite initially being included as an outgroup taxon, this species falls well within the

  18. Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae

    PubMed Central

    2012-01-01

    Background When ingested in a blood meal, ivermectin has been shown to reduce the survivorship of Anopheles gambiae in the laboratory and field. Furthermore, ivermectin mass drug administrations in Senegal have been shown to reduce the proportion of Plasmodium falciparum-sporozoite-containing An. gambiae. This study addresses whether ivermectin inhibits sporogony of P. falciparum in An. gambiae. Methods Anophele gambiae s.s. G3 strain were fed two concentrations of ivermectin (LC25 and LC5) along with P. falciparum NF54 in human blood meals at staggered intervals. Mosquitoes ingested ivermectin concurrent with parasites (DPI 0), or at three (DPI 3), six (DPI 6), and nine (DPI 9) days post parasite ingestion, or three days prior (DPI −3) to parasite ingestion. Mosquitoes were dissected at seven, twelve or fourteen days post parasite ingestion and either oocyst or sporozoite prevalence was recorded. To determine if P. falciparum sporozoite-containing An. gambiae were more susceptible to ivermectin than uninfected controls, survivorship was recorded for mosquitoes which ingested P. falciparum or control blood meal on DPI 0 and then a second blood meal containing ivermectin (LC25) on DPI 14. Results Ivermectin (LC25) co-ingested (DPI 0) with parasites reduced the proportion of An. gambiae that developed oocysts (χ2 = 15.4842, P = 0.0002) and sporozoites (χ2 = 19.9643, P < 0.0001). Ivermectin (LC25) ingested DPI 6 (χ2 = 8.5103, P = 0.0044) and 9 (χ2 = 14.7998, P < 0.0001) reduced the proportion of An. gambiae that developed sporozoites but not when ingested DPI 3 (χ2 = 0.0113, P = 1). Ivermectin (LC5) co-ingested (DPI 0) with parasites did not reduce the proportion of An. gambiae that developed oocysts (χ2 = 4.2518, P = 0.0577) or sporozoites (χ2 = 2.3636, P = 0.1540), however, when ingested DPI −3 the proportion of An. gambiae that developed sporozoites was reduced (χ2 = 8.4806, P = 0.0047). Plasmodium falciparum infection significantly reduced the

  19. Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint

    PubMed Central

    Ngo, Chung Thuy; Aujoulat, Fabien; Veas, Francisco; Jumas-Bilak, Estelle; Manguin, Sylvie

    2015-01-01

    Background Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study. Method The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota. Results and Discussion The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes. Conclusion Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes. PMID:25747513

  20. Phytosanitary Irradiation

    PubMed Central

    Hallman, Guy J.; Blackburn, Carl M.

    2016-01-01

    Phytosanitary treatments disinfest traded commodities of potential quarantine pests. Phytosanitary irradiation (PI) treatments use ionizing radiation to accomplish this, and, since their international commercial debut in 2004, the use of this technology has increased by ~10% annually. Generic PI treatments (one dose is used for a group of pests and/or commodities, although not all have been tested for efficacy) are used in virtually all commercial PI treatments, and new generic PI doses are proposed, such as 300 Gy, for all insects except pupae and adult Lepidoptera (moths). Fresh fruits and vegetables tolerate PI better than any other broadly used treatment. Advances that would help facilitate the use of PI include streamlining the approval process, making the technology more accessible to potential users, lowering doses and broadening their coverage, and solving potential issues related to factors that might affect efficacy. PMID:28231103

  1. Determinants of Anopheles seasonal distribution patterns across a forest to periurban gradient near Iquitos, Peru.

    PubMed

    Reinbold-Wasson, Drew D; Sardelis, Michael R; Jones, James W; Watts, Douglas M; Fernandez, Roberto; Carbajal, Faustino; Pecor, James E; Calampa, Carlos; Klein, Terry A; Turell, Michael J

    2012-03-01

    As part of a field ecology study of arbovirus and malaria activity in the Amazon Basin, Loreto Department, Peru, we collected mosquitoes landing on humans at a forest site and inside and outside of residences and military barracks at periurban, rural, and village sites. We collected 11 Anopheles spp. from these four sites. An. darlingi, the principal malaria vector in the region, accounted for 98.7% of all Anopheles spp. collected at Puerto Almendra. Peaks in landing activity occurred during the December and April collection periods. However, the percent of sporozoite-positive Anopheles spp. was highest 1-2 months later, when landing activity decreased to approximately 10% of the peak activity periods. At all sites, peak landing activity occurred about 2 hours after sunset. These data provide a better understanding of the taxonomy, population density, and seasonal and habitat distribution of potential malaria vectors within the Amazon Basin region.

  2. Biology of Anopheles saperoi, an Endemic Species in Okinawajima, the Ryukyu Archipelago, Japan.

    PubMed

    Mannen, Kosuke; Toma, Takako; Minakawa, Noboru; Higa, Yukiko; Miyagi, Ichiro

    2016-03-01

    Biological studies of Anopheles saperoi were conducted using larval and adult mosquito collections in the northern part of Okinawajima of the Ryukyu Archipelago from June 2009 to July 2010. Anopheles saperoi was the most collected species in the northern Okinawajima, except Motobu Peninsula, where it was not collected. The southern distribution of An. saperoi was Sugita Stream, Nago City. Anopheles saperoi was collected throughout the year with reproduction (gonotrophic cycle) observed year-round. Immature densities varied for Hinna and Yona streams, and were negatively affected by precipitation patterns. Human attraction activity of females varied for by study area and collection time and was positively affected by temperature, but negatively by heavy rainfall. The greatest female human attraction activity was observed during 3:00-5:00 p.m., with peak at twilight. Parity rates varied from 23.1% to 83.3% throughout the year.

  3. Factors influencing infection and transmission of Anopheles gambiae densovirus (AgDNV) in mosquitoes

    PubMed Central

    2016-01-01

    Anopheles gambiae densovirus (AgDNV) is a potential microbial agent for paratransgenesis and gene transduction in An. gambiae, the major vector of human malaria in sub-Saharan Africa. Understanding the interaction between AgDNV and An. gambiae is critical for using AgDNV in a basic and applied manner for Anopheles gene manipulation. Here, we tested the effects of mosquito age, sex, blood feeding status, and potential for horizontal transmission using an enhanced green fluorescent protein (EGFP) reporter AgDNV system. Neither mosquito age at infection nor feeding regime affected viral titers. Female mosquitoes were more permissive to viral infection than males. Despite low viral titers, infected males were able to venereally transmit virus to females during mating, where the virus was localized with the transferred sperm in the spermathecae. These findings will be useful for designing AgDNV-based strategies to manipulate Anopheles gambiae. PMID:27867767

  4. Factors influencing infection and transmission of Anopheles gambiae densovirus (AgDNV) in mosquitoes.

    PubMed

    Barik, Tapan K; Suzuki, Yasutsugu; Rasgon, Jason L

    2016-01-01

    Anopheles gambiae densovirus (AgDNV) is a potential microbial agent for paratransgenesis and gene transduction in An. gambiae, the major vector of human malaria in sub-Saharan Africa. Understanding the interaction between AgDNV and An. gambiae is critical for using AgDNV in a basic and applied manner for Anopheles gene manipulation. Here, we tested the effects of mosquito age, sex, blood feeding status, and potential for horizontal transmission using an enhanced green fluorescent protein (EGFP) reporter AgDNV system. Neither mosquito age at infection nor feeding regime affected viral titers. Female mosquitoes were more permissive to viral infection than males. Despite low viral titers, infected males were able to venereally transmit virus to females during mating, where the virus was localized with the transferred sperm in the spermathecae. These findings will be useful for designing AgDNV-based strategies to manipulate Anopheles gambiae.

  5. [Anopheles funestus and rice agriculture in the Madagascar highlands].

    PubMed

    Marrama, L; Rajaonarivelo, E; Laventure, S; Rabarison, P

    1995-01-01

    An exhaustive study of the potential habitats of Anopheles funestus was led during 1992 in Ankazobe on the Plateau of Madagascar, 95 km northwest of the capital Tananarive. The rice fields provide more than 90% of the positive habitats versus less than 10% for the nonhuman biotopes. Larva are especially abundant on the surfaces of the rice during grain head formation and maturation. The dense vegetation coverage provides them with shade and protection against predators. After harvesting, the follows can be filled with water and wild vegetation, and then also provide an important share of the habitats. The rice fields are omnipresent on the Plateau where they supply the basis of local alimentation. A. funestus then constitutes a serious risk for all of the villages. The role of the rice fields as habitats for A. funestus has already been noted in Kenya but in West Africa the rice fields do not host this species, even if this species is very abundant in the other types of habitats.

  6. Exploring Anopheles gut bacteria for Plasmodium blocking activity

    PubMed Central

    Bahia, Ana C; Dong, Yuemei; Blumberg, Benjamin J; Mlambo, Godfree; Tripathi, Abhai; BenMarzouk-Hidalgo, Omar J; Chandra, Ramesh; Dimopoulos, George

    2014-01-01

    SUMMARY Malaria parasite transmission requires the successful development of Plasmodium gametocytes into flagellated microgametes upon mosquito blood ingestion, and the subsequent fertilization of microgametes and macrogametes for the development of motile zygotes, called ookinetes, which invade and transverse the Anopheles vector mosquito midgut at around 18-36 h after blood ingestion. Within the mosquito midgut, the malaria parasite has to withstand the mosquito's innate immune response and the detrimental effect of its commensal bacterial flora. We have assessed the midgut colonization capacity of 5 gut bacterial isolates from field-derived, and 2 from laboratory colony, mosquitoes and their effect on Plasmodium development in vivo and in vitro, along with their impact on mosquito survival. Some bacterial isolates activated the mosquito's immune system, affected the mosquito's life span, and were capable of blocking Plasmodium development. We have also shown that the ability of these bacteria to inhibit the parasites is likely to involve different mechanisms and factors. A Serratia marcescens isolate was particularly efficient in colonizing the mosquitoes’ gut, compromising mosquito survival, and inhibiting both sexual- and asexual-stage Plasmodium through secreted factors, thereby rendering it a potential candidate for the development of a malaria transmission intervention strategy. PMID:24428613

  7. Behavior and population structure of Anopheles darlingi in Colombia.

    PubMed

    Naranjo-Díaz, Nelson; Conn, Jan E; Correa, Margarita M

    2016-04-01

    Anopheles darlingi is a widely distributed and important malaria vector in Colombia. Biogeographical and ecological heterogeneity across the Colombian distribution led to the hypothesis of behavioral and genetic differentiation among A. darlingi populations. A total of 2017 A. darlingi specimens were collected during 222 h of sampling. This vector was the most abundant anopheline species in most of the localities sampled. Subdivision between samples collected west and east of the Andes was indicated by 1) mitochondrial COI and nuclear CAD sequences from NW-W and CE-S populations (COI ΦST=0.48761-0.81974, CAD FST=0.11319-0.21321), 2) a COI haplotype network, and 3) SAMOVA. Endo- and exophagy were detected in populations west of the Andes, whereas exophagy was evident in PTG, a locality east of the Andes. Isolation by resistance was significant for COI and explained 26% of the genetic differentiation. We suggest that at a macrogeographic scale, the Andes influence the differentiation of A. darlingi in Colombia and may drive divergence, and, at a microgeographic scale, ecological differences have a significant impact on structure. These data could constitute a baseline for the design of effective vector interventions, locality-specific for the east and similar for panmictic populations west of the Andes.

  8. Bionomics of sympatric chromosomal forms of Anopheles funestus (Diptera: Culicidae).

    PubMed

    Dia, Ibrahima; Sagnon, N'Fale; Guelbeogo, Moussa Wamdaogo; Diallo, Mawlouth

    2011-12-01

    Anopheles funestus is one of the major vectors of malaria in Africa. Cytogenetic studies conducted on populations from West Africa have shown variable degrees of polymorphism with a genetic structure leading to the description of two chromosomal forms called "Folonzo" and "Kiribina" that exhibit limited gene flow. Because studies on allopatric populations showed bionomical heterogeneities, the present study was undertaken during three consecutive years (2006, 2007, and 2008) in an area of sympatry in Senegal, in order to assess their bionomical characteristics and compare their epidemiologic role in malaria transmission. Overall, the two forms coexisted in the study area; the Kiribina form being more abundant and exhibiting higher biting rates. Based on an enzyme-linked immunosorbent assay, the anthropophilic rates were statistically comparable and were, respectively, 30.7% and 28.6% for Kiribina and Folonzo. Plasmodium falciparum circumsporozoite rates were also comparable and were 2.7% for Kiribina and 3.1% for Folonzo. Both forms were involved in malaria transmission; Kiribina being responsible for 68% of transmission. Thus, due to the limited gene flow between the two forms, the introduction of transgene for Plasmodium resistance in one of the two forms could be a disadvantage for the implementation of control strategies based on the use of Plasmodium-refractory genetically modified individuals. Nevertheless, it could represent an advantage limiting the insurgence of insecticide resistance gene spread between forms and should be taken into account for the implementation of control strategies.

  9. Biolistic techniques for transfection of mosquito embryos (Anopheles gambiae).

    PubMed

    Mialhe, E; Miller, L H

    1994-05-01

    To compensate for the extremely low rates of transformation by DNA microinjection into mosquito embryos of Anopheles gambiae, biolistic techniques were evaluated for introduction of DNA into large numbers of mosquito embryos. Biolistic experiments were first performed with a commercially available instrument intended for this purpose, according to the recommended procedure. The amount of DNA delivered was measured by the expression of luciferase under the control of the Drosophila heat shock protein (hsp) 70 promoter. Despite attempts to optimize biolistic parameters, the level of luciferase activity was low and highly variable. Two other methods of biolistic delivery of DNA-coated particles in aqueous suspension were then evaluated. One method used the gas explosion of the commercially available instrument (mentioned above) to drive an aqueous suspension of DNA-coated particles at high pressure. This method reproducibly increased the level of expression about 100-fold without greatly reducing embryo viability. Another method, which was recently described for plant transfection, uses lower pressure to deliver the aqueous suspension of DNA-coated particles. The level of expression of luciferase and the survival of embryos were equivalent to that obtained with the instrument modified for aqueous delivery of particles. Thus, both aqueous methods offer the advantages of reproducibly delivering more DNA to the embryos. Moreover, these methods could be suitable for delivering DNA mixed with proteins, such as restriction endonucleases and integrases, that may be destroyed by ethanol precipitation used in the standard PDS-1000/He method.

  10. Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi

    PubMed Central

    2014-01-01

    Background Anopheles darlingi is the main malaria mosquito vector in the Amazonia region. In spite of being considered a riverine, forest-dwelling species, this mosquito is becoming more abundant in peri-urban areas, increasing malaria risk. This has been associated with human-driven environmental changes such as deforestation. Methods Microsatellites were used to characterize A. darlingi from seven localities along the Madeira River, Rondônia (Brazil), collected in the early and late periods of the rainy season. Results Two genetically distinct subpopulations were detected: one (subpopulation A) was associated with the late rainfall period and seems to be ecologically closer to the typical forest A. darlingi; the other (subpopulation B) was associated with the early rainfall period and is probably more adapted to drier conditions by exploiting permanent anthropogenic breeding sites. Results suggest also a pattern of asymmetric introgression, with more subpopulation A alleles introgressed into subpopulation B. Both subpopulations (and admixed mosquitoes) presented similar malaria infection rates, highlighting the potential for perennial malaria transmission in the region. Conclusions The co-occurrence of two genetically distinct subpopulations of A. darlingi adapted to different periods of rainfall may promote a more perennial transmission of malaria throughout the year. These findings, in a context of strong environmental impact due to deforestation and dam construction, have serious implications for malaria epidemiology and control in the Amazonian region. PMID:24885508

  11. Characterisation of Species and Diversity of Anopheles gambiae Keele Colony

    PubMed Central

    McGeechan, Sion; Inch, Donald; Smart, Graeme; Richterová, Lenka; Mwangi, Jonathan M.

    2016-01-01

    Anopheles gambiae sensu stricto was recently reclassified as two species, An. coluzzii and An. gambiae s.s., in wild-caught mosquitoes, on the basis of the molecular form, denoted M or S, of a marker on the X chromosome. The An. gambiae Keele line is an outbred laboratory colony strain that was developed around 12 years ago by crosses between mosquitoes from 4 existing An. gambiae colonies. Laboratory colonies of mosquitoes often have limited genetic diversity because of small starting populations (founder effect) and subsequent fluctuations in colony size. Here we describe the characterisation of the chromosomal form(s) present in the Keele line, and investigate the diversity present in the colony using microsatellite markers on chromosome 3. We also characterise the large 2La inversion on chromosome 2. The results indicate that only the M-form of the chromosome X marker is present in the Keele colony, which was unexpected given that 3 of the 4 parent colonies were probably S-form. Levels of diversity were relatively high, as indicated by a mean number of microsatellite alleles of 6.25 across 4 microsatellites, in at least 25 mosquitoes. Both karyotypes of the inversion on chromosome 2 (2La/2L+a) were found to be present at approximately equal proportions. The Keele colony has a mixed M- and S-form origin, and in common with the PEST strain, we propose continuing to denote it as an An. gambiae s.s. line. PMID:28033418

  12. Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes

    PubMed Central

    Dieme, Constentin; Bechah, Yassina; Socolovschi, Cristina; Audoly, Gilles; Berenger, Jean-Michel; Faye, Ousmane; Raoult, Didier; Parola, Philippe

    2015-01-01

    A growing number of recent reports have implicated Rickettsia felis as a human pathogen, paralleling the increasing detection of R. felis in arthropod hosts across the globe, primarily in fleas. Here Anopheles gambiae mosquitoes, the primary malarial vectors in sub-Saharan Africa, were fed with either blood meal infected with R. felis or infected cellular media administered in membrane feeding systems. In addition, a group of mosquitoes was fed on R. felis-infected BALB/c mice. The acquisition and persistence of R. felis in mosquitoes was demonstrated by quantitative PCR detection of the bacteria up to day 15 postinfection. R. felis was detected in mosquito feces up to day 14. Furthermore, R. felis was visualized by immunofluorescence in salivary glands, in and around the gut, and in the ovaries, although no vertical transmission was observed. R. felis was also found in the cotton used for sucrose feeding after the mosquitoes were fed infected blood. Natural bites from R. felis-infected An. gambiae were able to cause transient rickettsemias in mice, indicating that this mosquito species has the potential to be a vector of R. felis infection. This is particularly important given the recent report of high prevalence of R. felis infection in patients with “fever of unknown origin” in malaria-endemic areas. PMID:26056256

  13. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.

    PubMed Central

    Richman, A M; Dimopoulos, G; Seeley, D; Kafatos, F C

    1997-01-01

    Innate immune-related gene expression in the major disease vector mosquito Anopheles gambiae has been analyzed following infection by the malaria parasite, Plasmodium berghei. Substantially increased levels of mRNAs encoding the antibacterial peptide defensin and a putative Gram-negative bacteria-binding protein (GNBP) are observed 20-30 h after ingestion of an infected blood-meal, at a time which indicates that this induction is a response to parasite invasion of the midgut epithelium. The induction is dependent upon the ingestion of infective, sexual-stage parasites, and is not due to opportunistic co-penetration of resident gut micro-organisms into the hemocoel. The response is activated following infection both locally (in the midgut) and systemically (in remaining tissues, presumably fat body and/or hemocytes). The observation that Plasmodium can trigger a molecularly defined immune response in the vector constitutes an important advance in our understanding of parasite-vector interactions that are potentially involved in malaria transmission, and extends knowledge of the innate immune system of insects to encompass responses to protozoan parasites. PMID:9321391

  14. Forest malaria in Bangladesh. II. Transmission by Anopheles dirus.

    PubMed

    Rosenberg, R; Maheswary, N P

    1982-03-01

    Seasonal, holoendemic malaria transmission in a small, isolated forest community was studied by doing outdoor and indoor all-night man-biting catches over 21 consecutive months. More than 3.8% of Anopheles dirus (=An. balabacensis s.l.), the most frequently caught anopheline, were infective. One An. annularis was also infective. Transmission occurred only during the 7-month monsoon. In the absence of DDT, An. dirus bit with equal frequency indoors and outdoors. When DDT was present in dwellings, fewer females fed indoors and they fed earlier. Feeding pattern was influenced by the phase of the moon: peak outdoors feeding was sharpest and earliest at first quarter and came later as the moon rose later. An average 31% of biting An. dirus lived long enough to reach infectivity of P. falciparum. Although fewer than 10 females fed per man per night, a resident could have received more than 100 infective bites in 2 years. Correlation between actual and calculated rates of gametocytemia were poorest in months when calculated survival rates of mosquitoes were most suspect.

  15. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    PubMed Central

    Marimo, Patience; Hayeshi, Rose; Mukanganyama, Stanley

    2016-01-01

    Glutathione transferases (GSTs) are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT). The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1) was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA) was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT) in malaria control programmes where resistance is mediated by GSTs. PMID:26925266

  16. Resistance Mechanisms of Anopheles stephensi (Diptera: Culicidae) to Temephos

    PubMed Central

    Soltani, Aboozar; Vatandoost, Hassan; Oshaghi, Mohammad Ali; Ravasan, Naseh Maleki; Enayati, Ahmad Ali; Asgarian, Fatemeh

    2015-01-01

    Background: Anopheles stephensi is a sub-tropical species and has been considered as one of the most important vector of human malaria throughout the Middle East and South Asian region including the malarious areas of southern Iran. Current reports confirmed An. stephensi resistance to temephos in Oman and India. However, there is no comprehensive research on mechanisms of temephos resistance in An. stephensi in the literature. This study was designed in order to clarify the enzymatic and molecular mechanisms of temephos resistance in this species. Methods: Profile activities of α- and ß-esterases, mixed function oxidase (MFO), glutathione-S-transferase (GST), insensitive acetylcholinesterase, and para-nitrophenyl acetate (PNPA)-esterase enzymes were tested for An. stephensi strain with resistance ratio of 15.82 to temephos in comparison with susceptible strain. Results: Results showed that the mean activity of α-EST, GST and AChE enzymes were classified as altered indicating metabolic mechanisms have considerable role in resistance of An. stephensi to temephos. Molecular study using PCR-RFLP method to trace the G119S mutation in ACE-1 gene showed lack of the mutation responsible for organophosphate insecticide resistance in the temephos-selected strain of An. stephensi. Conclusion: This study showed that the altered enzymes but not targets site insensitivity of ACE-1 are responsible for temephos resistance in An. stephensi in south of Iran. PMID:26114145

  17. The evolutionary divergence of STAT transcription factor in different Anopheles species.

    PubMed

    Gupta, Kuldeep; Dhawan, Rini; Kajla, Mithilesh; Misra, Tripti; Kumar, Sanjeev; Gupta, Lalita

    2017-01-05

    Anopheles mosquito transmits Plasmodium, the malaria causing parasite. Different species of Anopheles mosquito dominate in a particular geographical location and are capable of transmitting specific strains of Plasmodium. It is important to understand the biology of different anophelines to control the parasite transmission. STAT is an evolutionary conserved transcription factor that regulates the parasite development in African malaria vector Anopheles gambiae. Unlike Drosophila and Aedes aegypti, where a single STAT gene plays an important role in immunity, An. gambiae contains one evolutionary conserved STAT-A and another retro-duplicated, introns-less STAT-B gene. To find out whether other species of Anopheles also have two STATs, the available genomic data of different anophelines were used to annotate their STATs through in silico analyses. Our results revealed that Indian malaria vector An. stephensi genome contains two STATs, AsSTAT-A and AsSTAT-B genes. These genes were cloned and confirmed by sequencing. Both AsSTATs were found to be expressed in different development stages of mosquito. However, the relative mRNA levels of evolutionary conserved AsSTAT-A gene were always higher than the retroduplicated AsSTAT-B gene. STAT pathway was activated upon Plasmodium berghei infection, indicated its role in immunity. Furthermore, comparative in silico analysis of eighteen Anopheles species revealed that five species: An. sinensis, An. albimanus, An. darlingi, An. dirus andAn. farauti do not contain STAT-B gene in their genome. Interestingly, thirteen species of the subgenus Anopheles and Cellia that contain both STATs were also mutually diverged. This consequence leads to sequence variability in some significant protein motifs within the STAT-B genes. Phylogenetic analyses indicated that an independent, lineage-specific duplication occurred in the subgenus Cellia after the diversification of series Neomyzomyia from its last common ancestor. In An. atroparvus

  18. Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host-symbiont interaction.

    PubMed

    Hughes, Grant L; Ren, Xiaoxia; Ramirez, Jose L; Sakamoto, Joyce M; Bailey, Jason A; Jedlicka, Anne E; Rasgon, Jason L

    2011-02-01

    The endosymbiotic bacterium Wolbachia is being investigated as a potential control agent in several important vector insect species. Recent studies have shown that Wolbachia can protect the insect host against a wide variety of pathogens, resulting in reduced transmission of parasites and viruses. It has been proposed that compromised vector competence of Wolbachia-infected insects is due to up-regulation of the host innate immune system or metabolic competition. Anopheles mosquitoes, which transmit human malaria parasites, have never been found to harbor Wolbachia in nature. While transient somatic infections can be established in Anopheles, no stable artificially-transinfected Anopheles line has been developed despite numerous attempts. However, cultured Anopheles cells can be stably infected with multiple Wolbachia strains such as wAlbB from Aedes albopictus, wRi from Drosophila simulans and wMelPop from Drosophila melanogaster. Infected cell lines provide an amenable system to investigate Wolbachia-Anopheles interactions in the absence of an infected mosquito strain. We used Affymetrix GeneChip microarrays to investigate the effect of wAlbB and wRi infection on the transcriptome of cultured Anopheles Sua5B cells, and for a subset of genes used quantitative PCR to validate results in somatically-infected Anopheles mosquitoes. Wolbachia infection had a dramatic strain-specific effect on gene expression in this cell line, with almost 700 genes in total regulated representing a diverse array of functional classes. Very strikingly, infection resulted in a significant down-regulation of many immune, stress and detoxification-related transcripts. This is in stark contrast to the induction of immune genes observed in other insect hosts. We also identified genes that may be potentially involved in Wolbachia-induced reproductive and pathogenic phenotypes. Somatically-infected mosquitoes had similar responses to cultured cells. The data show that Wolbachia has a profound

  19. Factors associated with distribution of Anopheles aquasalis and Anopheles oswaldoi (Diptera: Culicidae) in a malarious area, northeastern Venezuela.

    PubMed

    Grillet, M E

    2000-03-01

    Spatial and temporal abundance patterns of anopheline larvae and their relationships with wetland conditions were studied in an endemic malaria area in northeastern Venezuela, where Anopheles aquasalis Curry is the main vector. Larvae were sampled over a 2-yr period in 7 wetland types (brackish and freshwater herbaceous swamps, mangrove swamps, freshwater ponds, clear-cut marsh forests, small irrigation canals, and swamp forests), covering 3 environmental gradients (salinity, aquatic vegetation, and habitat permanence). Twelve variable were quantified to describe each habitat. Two species of anophelines were collected. An. aquasalis was the species with the widest distribution, and its highest abundance was in the seasonal brackish mangrove habitat during the rainy season. An. oswaldoi Peryassu was rarely encountered, but was mainly associated with the dry season and with the permanent fresh water wetlands (such as ponds). Principal components and correlation analyses revealed that the physicochemical (salinity, dissolved oxygen) variables of the wetland were associated most strongly with the spatial distribution of both species. Variations in salinity were strongly associated with the abundance of An. aquasalis. Both the occurrence and abundance of An. oswaldoi were most closely correlated with dissolved oxygen. Changes in seasonal abundance of both species were associated with rainfall. The relevance of these results to vector control in northern Venezuela is discussed.

  20. Anopheles fauna of coastal Cayenne, French Guiana: modelling and mapping of species presence using remotely sensed land cover data

    PubMed Central

    Adde, Antoine; Dusfour, Isabelle; Roux, Emmanuel; Girod, Romain; Briolant, Sébastien

    2016-01-01

    Little is known about the Anopheles species of the coastal areas of French Guiana, or their spatiotemporal distribution or environmental determinants. The present study aimed to (1) document the distribution of Anopheles fauna in the coastal area around Cayenne, and (2) investigate the use of remotely sensed land cover data as proxies of Anopheles presence. To characterise the Anopheles fauna, we combined the findings of two entomological surveys that were conducted during the period 2007-2009 and in 2014 at 37 sites. Satellite imagery data were processed to extract land cover variables potentially related to Anopheles ecology. Based on these data, a methodology was formed to estimate a statistical predictive model of the spatial-seasonal variations in the presence of Anopheles in the Cayenne region. Two Anopheles species, known as main malaria vectors in South America, were identified, including the more dominant An. aquasalis near town and rural sites, and An. darlingi only found in inland sites. Furthermore, a cross-validated model of An. aquasalis presence that integrated marsh and forest surface area was extrapolated to generate predictive maps. The present study supports the use of satellite imagery by health authorities for the surveillance of malaria vectors and planning of control strategies. PMID:27982304

  1. Population fluctuation of Anopheles (Diptera: Culicidae) in forest and forest edge habitats in Tucumán province, Argentina.

    PubMed

    Dantur Juri, M J; Almirón, W R; Claps, G L

    2010-06-01

    The aim of this work was to study the possible effects of forest and forest edge habitats on the population fluctuation of the Anopheles species in northwestern Argentina, taking into consideration the relationship between this fluctuation and climatic variables. This study is one of the first that involves the Anopheles fauna in the country and its dynamics in two different habitats. Sampling was carried out from October, 2002 to October, 2003, in the forest and on the forest edge. Both habitats were compared for species diversity and abundance, and multiple regression analyses were performed to analyze the effects of environmental variables on the population dynamics. Five hundred and sixteen adult specimens of Anopheles species were collected, the most numerous group being Arribalzaga (52.1%), followed by Anopheles (Nyssorhynchus) strodei (20.5%) and Anopheles (Nyssorhynchus) evansae (6.4%). Mosquito abundance was greatest in the forest, the most productive habitat. Samples were collected throughout the sampling period, with a smaller peak in summer. Small numbers of Anopheles (Anopheles) pseudopunctipennis were found throughout the year. Relative humidity, with a 15-day delay, was the factor that most strongly contributed to the temporal sample fluctuation. We conclude that the best season for anopheline development in the study area is from spring to fall, although the period with the greatest transmission risk is the fall, with the greatest An. pseudopunctipennis abundance.

  2. Anopheles fauna of coastal Cayenne, French Guiana: modelling and mapping of species presence using remotely sensed land cover data.

    PubMed

    Adde, Antoine; Dusfour, Isabelle; Roux, Emmanuel; Girod, Romain; Briolant, Sébastien

    2016-12-01

    Little is known about the Anopheles species of the coastal areas of French Guiana, or their spatiotemporal distribution or environmental determinants. The present study aimed to (1) document the distribution of Anopheles fauna in the coastal area around Cayenne, and (2) investigate the use of remotely sensed land cover data as proxies of Anopheles presence. To characterise the Anopheles fauna, we combined the findings of two entomological surveys that were conducted during the period 2007-2009 and in 2014 at 37 sites. Satellite imagery data were processed to extract land cover variables potentially related to Anopheles ecology. Based on these data, a methodology was formed to estimate a statistical predictive model of the spatial-seasonal variations in the presence of Anopheles in the Cayenne region. Two Anopheles species, known as main malaria vectors in South America, were identified, including the more dominant An. aquasalis near town and rural sites, and An. darlingi only found in inland sites. Furthermore, a cross-validated model of An. aquasalis presence that integrated marsh and forest surface area was extrapolated to generate predictive maps. The present study supports the use of satellite imagery by health authorities for the surveillance of malaria vectors and planning of control strategies.

  3. Filling the Gap 115 Years after Ronald Ross: The Distribution of the Anopheles coluzzii and Anopheles gambiae s.s from Freetown and Monrovia, West Africa

    PubMed Central

    de Souza, Dziedzom K.; Koudou, Benjamin G.; Bolay, Fatorma K.; Boakye, Daniel A.; Bockarie, Moses J.

    2013-01-01

    It was in Freetown, Sierra Leone, that the malaria mosquito Anopheles coastalis, now known as Anopheles gambiae, was first discovered as the vector of malaria, in 1899. That discovery led to a pioneering vector research in Sierra Leone and neighbouring Liberia, where mosquito species were extensively characterized. Unfortunately, the decade long civil conflicts of the 1990s, in both countries, resulted in a stagnation of the once vibrant research on disease vectors. This paper attempts to fill in some of the gaps on what is now known of the distribution of the sibling species of the An. gambiae complex, and especially the An. coluzzii and An. gambiae s.s, formerly known as the An. gambiae molecular M and S forms respectively, in the cities of Freetown and Monrovia. PMID:23741429

  4. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  5. Innate host selection in Anopheles vestitipennis from southern Mexico.

    PubMed

    Ullo, Armando; Arredondo-Jiménez, Juan I; Rodríguez, Mario H; Fernández-Salas, Ildefonso; González-Cerón, Lilia

    2004-12-01

    We assessed the degree of host specificity of the purported anthropophilic and zoophilic populations of Anopheles vestitipennis. A series of experiments were conducted in an experimental hut with 3 compartments lined with nylon netting. A central release compartment and 2 side compartments were each baited with equivalent surface area of human and animal baits. Wild An. vestitipennis collected on each host, as well as corresponding F1 mosquitoes, were released in the central compartment. Overall, 22% (166/748) of all mosquitoes collected on humans were recaptured in the human compartment, whereas 23% of mosquitoes originally collected on animals were recaptured in this compartment. Experiments with F1 females resulted in 59% human selection rates, a 2.6 times increase compared with wild anthropophilic females, while a 1.2 times decrease in human selection rates (from 24% to 20%) was observed in F1 of wild zoophilic females. Host selection experiments in the Lacandón Forest revealed the same trend. These findings suggested that the complex mode of inheritance that resulted in female mosquitoes showing a stronger tendency to return to their preferred host was obscured by the nature of the method of collection, i.e., wild parental females selecting a host either innately or opportunistically, the majority of which were likely innately attracted. This was revealed by F1 females, of which, when given the choice to select a host, a higher proportion opted for the preferred one. The results presented here are in accordance with other studies that identified a subpopulation of An. vestitipennis in southern Mexico with higher anthropophily.

  6. The dance of male Anopheles gambiae in wild mating swarms.

    PubMed

    Butail, Sachit; Manoukis, Nicholas C; Diallo, Moussa; Ribeiro, José M C; Paley, Derek A

    2013-05-01

    An important element of mating in the malaria vector Anopheles gambiae Giles in nature is the crepuscular mating aggregation (swarm) composed almost entirely of males, where most coupling and insemination is generally believed to occur. In this study, we mathematically characterize the oscillatory movement of male An. gambiae in terms of an established individual-based mechanistic model that parameterizes the attraction of a mosquito toward the center of the swarm using the natural frequency of oscillation and the resistance to its motion, characterized by the damping ratio. Using three-dimensional trajectory data of ten wild mosquito swarms filmed in Mali, Africa, we show two new results for low and moderate wind conditions, and indicate how these results may vary in high wind. First, we show that in low and moderate wind the vertical component of the mosquito motion has a lower frequency of oscillation and higher damping ratio than horizontal motion. In high wind, the vertical and horizontal motions are similar to one another and the natural frequencies are higher than in low and moderate wind. Second, we show that the predicted average disagreement in the direction of motion of swarming mosquitoes moving randomly is greater than the average disagreement we observed between each mosquito and its three closest neighbors, with the smallest level of disagreement occurring for the nearest neighbor in seven out of 10 swarms. The alignment of the direction of motion between nearest neighbors is the highest in high wind. This result provides evidence for flight-path coordination between swarming male mosquitoes.

  7. Plasmodium infection alters Anopheles gambiae detoxification gene expression

    PubMed Central

    2010-01-01

    Background Anopheles gambiae has been shown to change its global gene expression patterns upon Plasmodium infection. While many alterations are directly related to the mosquito's innate immune response, parasite invasion is also expected to generate toxic by-products such as free radicals. The current study aimed at identifying which loci coding for detoxification enzymes are differentially expressed as a function of Plasmodium berghei infection in midgut and fat body tissues. Results Using a custom-made DNA microarray, transcript levels of 254 loci primarily belonging to three major detoxification enzyme families (glutathione S-transferases, cytochrome P450 monooxygenases and esterases) were compared in infected and uninfected mosquitoes both during ookinete invasion and the release of sporozoites into the hemocoel. The greatest changes in gene expression were observed in the midgut in response to ookinete invasion. Interestingly, many detoxification genes including a large number of P450s were down-regulated at this stage. In the fat body, while less dramatic, gene expression alterations were also observed and occurred during the ookinete invasion and during the release of sporozoites into the hemocoel. While most gene expression changes were tissue-related, CYP6M2, a CYP previously associated with insecticide resistance, was over-expressed both in the midgut and fat body during ookinete invasion. Conclusions Most toxicity-related reactions occur in the midgut shortly after the ingestion of an infected blood meal. Strong up-regulation of CYP6M2 in the midgut and the fat body as well as its previous association with insecticide resistance shows its broad role in metabolic detoxification. PMID:20482856

  8. Dry season reproductive depression of Anopheles gambiae in the Sahel

    PubMed Central

    Yaro, Alpha S.; Traoré, Adama; Huestis, Diana L.; Adamou, Abdoulaye; Timbiné, Seydou; Kassogué, Yaya; Diallo, Moussa; Dao, Adama; Traoré, Sékou F.; Lehmann, Tovi

    2016-01-01

    The African malaria mosquito, Anopheles gambiae, is widespread south of the Sahara including in dry savannahs and semi-arid environments where no surface water exists for several months a year. Adults of the M form of An. gambiae persist through the long dry season, when no surface waters are available, by increasing their maximal survival from 4 weeks to 7 months. Dry season diapause (aestivation) presumably underlies this extended survival. Diapause in adult insects is intrinsically linked to depressed reproduction. To determine if reproduction of the Sahelian M form is depressed during the dry season, we assessed seasonal changes in oviposition, egg batch size, and egg development, as well as insemination rate and blood feeding in wild caught mosquitoes. Results from xeric Sahelian and riparian populations were compared. Oviposition response in the Sahelian M form dropped from 70% during the wet season to 20% during the dry season while the mean egg batch size among those that laid eggs fell from 173 to 101. Correspondingly, the fraction of females that exhibited gonotrophic dissociation increased over the dry season from 5% to 45%, while a similar fraction of the population retained developed eggs despite having access to water. This depression in reproduction the Sahelian M form was not caused by a reduced insemination rate. Seasonal variation in these reproductive parameters of the riparian M form population was less extreme and the duration of reproductive depression was shorter. Blood feeding responses did not change with the season in either population. Depressed reproduction during the dry season in the Sahelian M form of An. gambiae provides additional evidence for aestivation and illuminates the physiological processes involved. The differences between the Sahelian and riparian population suggest an adaptive cline in aestivation phenotypes between populations only 130 km apart. PMID:22609421

  9. Ion and solute transport by Prestin in Drosophila and Anopheles.

    PubMed

    Hirata, Taku; Czapar, Anna; Brin, Lauren; Haritonova, Alyona; Bondeson, Daniel P; Linser, Paul; Cabrero, Pablo; Thompson, James; Dow, Julian A T; Romero, Michael F

    2012-04-01

    The gut and Malpighian tubules of insects are the primary sites of active solute and water transport for controlling hemolymph and urine composition, pH, and osmolarity. These processes depend on ATPase (pumps), channels and solute carriers (Slc proteins). Maturation of genomic databases enables us to identify the putative molecular players for these processes. Anion transporters of the Slc4 family, AE1 and NDAE1, have been reported as HCO(3)(-) transporters, but are only part of the story. Here we report Dipteran (Drosophila melanogaster (d) and Anopheles gambiae (Ag)) anion exchangers, belonging to the Slc26 family, which are multi-functional anion exchangers. One Drosophila and two Ag homologues of mammalian Slc26a5 (Prestin) and Slc26a6 (aka, PAT1, CFEX) were identified and designated dPrestin, AgPrestinA and AgPrestinB. dPrestin and AgPrestinB show electrogenic anion exchange (Cl(-)/nHCO(3)(-), Cl(-)/SO(4)(2-) and Cl(-)/oxalate(2-)) in an oocyte expression system. Since these transporters are the only Dipteran Slc26 proteins whose transport is similar to mammalian Slc26a6, we submit that Dipteran Prestin are functional and even molecular orthologues of mammalian Slc26a6. OSR1 kinase increases dPrestin ion transport, implying another set of physiological processes controlled by WNK/SPAK signaling in epithelia. All of these mRNAs are highly expressed in the gut and Malpighian tubules. Dipteran Prestin proteins appear suited for central roles in bicarbonate, sulfate and oxalate metabolism including generating the high pH conditions measured in the Dipteran midgut lumen. Finally, we present and discuss Drosophila genetic models that integrate these processes.

  10. Breakdown in the Process of Incipient Speciation in Anopheles gambiae

    PubMed Central

    Nwakanma, Davis C.; Neafsey, Daniel E.; Jawara, Musa; Adiamoh, Majidah; Lund, Emily; Rodrigues, Amabelia; Loua, Kovana M.; Konate, Lassana; Sy, Ngayo; Dia, Ibrahima; Awolola, T. Samson; Muskavitch, Marc A. T.; Conway, David J.

    2013-01-01

    Understanding genetic causes and effects of speciation in sympatric populations of sexually reproducing eukaryotes is challenging, controversial, and of practical importance for controlling rapidly evolving pests and pathogens. The major African malaria vector mosquito Anopheles gambiae sensu stricto (s.s.) is considered to contain two incipient species with strong reproductive isolation, hybrids between the M and S molecular forms being very rare. Following recent observations of higher proportions of hybrid forms at a few sites in West Africa, we conducted new surveys of 12 sites in four contiguous countries (The Gambia, Senegal, Guinea-Bissau, and Republic of Guinea). Identification and genotyping of 3499 A. gambiae s.s. revealed high frequencies of M/S hybrid forms at each site, ranging from 5 to 42%, and a large spectrum of inbreeding coefficient values from 0.11 to 0.76, spanning most of the range expected between the alternative extremes of panmixia and assortative mating. Year-round sampling over 2 years at one of the sites in The Gambia showed that M/S hybrid forms had similar relative frequencies throughout periods of marked seasonal variation in mosquito breeding and abundance. Genome-wide scans with an Affymetrix high-density single-nucleotide polymorphism (SNP) microarray enabled replicate comparisons of pools of different molecular forms, in three separate populations. These showed strong differentiation between M and S forms only in the pericentromeric region of the X chromosome that contains the molecular form-specific marker locus, with only a few other loci showing minor differences. In the X chromosome, the M/S hybrid forms were more differentiated from M than from S forms, supporting a hypothesis of asymmetric introgression and backcrossing. PMID:23335339

  11. Characterization of the multicopper oxidase gene family in Anopheles gambiae

    PubMed Central

    Gorman, Maureen J.; Dittmer, Neal T.; Marshall, Jeremy L.; Kanost, Michael R.

    2008-01-01

    The multicopper oxidase (MCO) family of enzymes includes laccases, which oxidize a broad range of substrates including diphenols, and several oxidases with specific substrates such as iron, copper or ascorbic acid. We have identified five putative MCO genes in the genome of Anopheles gambiae and have cloned cDNAs encompassing the full coding region for each gene. MCO1 mRNA was detected in all developmental stages and in all of the larval and adult tissues tested. We observed an increase in MCO1 transcript abundance in the midguts and Malphighian tubules of adult females following a blood meal and in adult abdominal carcasses in response to an immune challenge. Two alternatively spliced isoforms of MCO2 mRNA were identified. The A isoform of MCO2 was previously detected in larval and pupal cuticle where it probably catalyzes sclerotization reactions (He et al., 2007). The B isoform was transcriptionally upregulated in ovaries in response to a blood meal. MCO3 mRNA was detected in the adult midgut, Malpighian tubules, and male reproductive tissues; like MCO1, it was upregulated in response to an immune challenge or a blood meal. MCO4 and MCO5 were observed primarily in eggs and in the abdominal carcass of larvae. A phylogenetic analysis of insect MCO genes identified putative orthologs of MCO1 and MCO2 in all of the insect genomes tested, whereas MCO3, MCO4 and MCO5 were found only in the two mosquito species analyzed. MCO2 orthologs have especially high sequence similarity, suggesting that they are under strong purifying selection; the A isoforms are more conserved than the B isoforms. The mosquito specific group shares a common ancestor with MCO2. This initial study of mosquito MCOs suggests that MCO2 may be required for egg development or eggshell tanning in addition to cuticle tanning, while MCO1 and MCO3 may be involved in metal metabolism or immunity. PMID:18675911

  12. Use of Irradiated Foods

    NASA Technical Reports Server (NTRS)

    Brynjolfsson, A.

    1985-01-01

    The safety of irradiated foods is reviewed. Guidelines and regulations for processing irradiated foods are considered. The radiolytic products formed in food when it is irradiated and its wholesomeness is discussed. It is concluded that food irradiation processing is not a panacea for all problems in food processing but when properly used will serve the space station well.

  13. A mark release-recapture study to define the flight behaviors of Anopheles vestitipennis and Anopheles albimanus in Belize, Central America.

    PubMed

    Achee, Nicole L; Grieco, John P; Andre, Richard G; Rejmankova, Eliska; Roberts, Donald R

    2007-09-01

    The recapture rates of wild-caught, unengorged Anopheles vestitipennis and Anopheles albimanus females were determined at 0, 400, and 800 m from a fixed release point in Belize, Central America. Three sampling trials, each consisting of two 12-hour collections, were performed at each distance during September-October 2003. A total of 1,621 An. vestitipennis and 1,326 An. albimanus were marked and released during the course of the study. The recapture rate of An. vestitipennis was greatest at 0 m (7.9%; 44/ 556) and declined from 3.0% (16/531) at 400 m to 0.2% (1/534) at 800 m. Anopheles albimanus females were recaptured only at the 0-m distance and in extremely low numbers (1.1%; 5/446). Biting patterns for the unmarked natural populations were similar to those previously described for Belize, and recaptures for both species occurred during these normal biting times. The overall recapture rates for An. vestitipennis (3.76%; 61/ 1,621) and An. albimanus (0.38%; 5/1,326) indicate that An. vestitipennis has a higher probability of being attracted to a human habitation.

  14. Distribution and Larval Habitats of Anopheles Species in Northern Gyeonggi Province, Republic of Korea

    DTIC Science & Technology

    2011-06-01

    preferences for oviposition , extensive larval collections that identify breeding sites based on stages of larval development are...species composition and population densities, habitat preferences based on species composition and relative population densities, and...including habitat preferences . Anopheles sinensis, considered a secondary malaria vector by some (Lee et al. 2007, Joshi et al. 2009), is

  15. Tyrosine Hydroxylase is crucial for maintaining pupal tanning and immunity in Anopheles sinensis

    PubMed Central

    Qiao, Liang; Du, Minghui; Liang, Xin; Hao, Youjin; He, Xiu; Si, Fengling; Mei, Ting; Chen, Bin

    2016-01-01

    Tyrosine hydroxylase (TH), the initial enzyme in the melanin pathway, catalyzes tyrosine conversion into Dopa. Although expression and regulation of TH have been shown to affect cuticle pigmentation in insects, no direct functional studies to date have focused on the specific physiological processes involving the enzyme during mosquito development. In the current study, silencing of AsTH during the time period of continuous high expression in Anopheles sinensis pupae led to significant impairment of cuticle tanning and thickness, imposing a severe obstacle to eclosion in adults. Meanwhile, deficiency of melanin in interference individuals led to suppression of melanization, compared to control individuals. Consequently, the ability to defend exogenous microorganisms declined sharply. Accompanying down-regulation of the basal expression of five antimicrobial peptide genes resulted in further significant weakening of immunity. TH homologs as well as the composition of upstream transcription factor binding sites at the pupal stage are highly conserved in the Anopheles genus, implying that the TH-mediated functions are crucial in Anopheles. The collective evidence strongly suggests that TH is essential for Anopheles pupae tanning and immunity and provides a reference for further studies to validate the utility of the key genes involved in the melanization pathway in controlling mosquito development. PMID:27416870

  16. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae ...

  17. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya.

    PubMed

    Wanjala, Christine L; Mbugi, Jernard P; Ototo, Edna; Gesuge, Maxwell; Afrane, Yaw A; Atieli, Harrysone E; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2015-12-01

    We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non-pyrethroid-based vector control tools may be preferable for malaria prevention in this region.

  18. Morphological, Molecular, and Chromosomal Discrimination of Cryptic Anopheles (Nyssorhynchus) (Diptera: Culicidae) from South America

    DTIC Science & Technology

    1998-09-01

    Morphological, Molecular , and Chromosomal Discrimination of Cryptic Anopheies (A?~ssorhynchus) (Diptera: Culicidae) from South America L. P...appraisal of molecular , chromosomal, and morphological characters, we conclude herein that the 2 taxa are specifically distinct and remove An. trinkae...TITLE AND SUBTITLE Morphological, Molecular , and Chromosomal Discrimination of Cryptic Anopheles( Nyssorhynchus) (Diptera: Culicidae) from South

  19. Anopheles (Nyssorhynchus) Pictipennis: A New Mosquito Record from the Atacama Region of Northern Chile

    DTIC Science & Technology

    2008-01-01

    Santiago, this species rarely feeds on humans, but it is highly attracted to domestic animals (Linthicum 1988). In this paper, we report An. (N...Mosq Control Assoc 12:619-626. Neghme AR. 1943. Contribucion a la biologia del Anopheles pictipenllis (Philippi, 1865). I. Communica- cion

  20. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya

    PubMed Central

    Wanjala, Christine L.; Mbugi, Jernard P.; Ototo, Edna; Gesuge, Maxwell; Afrane, Yaw A.; Atieli, Harrysone E.; Zhou, Guofa; Githeko, Andrew K.

    2015-01-01

    We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non–pyrethroid-based vector control tools may be preferable for malaria prevention in this region. PMID:26583525

  1. Molecular Comparison of Topotypic Specimens Confirms Anopheles (Nyssorhynchus) dunhami Causey (Diptera: Culicidae) in the Colombian Amazon

    DTIC Science & Technology

    2010-11-01

    of Health, Albany, NY, USA 5Facultad de Medicina , Universidad Nacional de Colombia, Bogotá, Colombia 6Programa de Estudio y Control de Enfermedades...Tropicales, Facultad de Medicina , Universidad de Antioquia, Medellín, Colombia The presence of Anopheles (Nyssorhynchus) dunhami Causey in Colombia

  2. A study of the blood-feeding patterns of Anopheles mosquitos through precipitin tests*

    PubMed Central

    1960-01-01

    The success of malaria eradication campaigns depends on the use of all methods which make for a better understanding of the biology and behaviour of mosquito vectors. One such method is precipitin testing, by which it is possible to identify the human or animal origin of blood meals of mosquitos and thereby to determine their host preferences and vectorial importance, both generally and locally. In 1955, the World Health Organization in agreement with the Lister Institute of Preventive Medicine, Elstree, England, set up a precipitin test service related to entomological surveys in malaria eradication programmes and available to national research and WHO field personnel. The purpose was to stimulate interest in the study of bionomics of Anopheles species, to facilitate the identification of blood meals of Anopheles, to eliminate experimental errors by the use of a standardized technique and highly sensitive antisera, and finally to apply the results in the strategy of malaria eradication. The results obtained over the past five years are summarized in tabular form. The study—the largest ever undertaken—included 51 species of Anopheles and 56 377 tests, of which 93.9% yielded positive results, are reviewed. The available knowledge of the vectorial importance of 39 species of Anopheles is compared with their human blood ratio, this term being used to express the percentage of human blood in relation to all precipitin tests found positive. PMID:20604062

  3. Anopheles species composition explains differences in Plasmodium transmission in La Guajira, northern Colombia.

    PubMed

    Herrera-Varela, Manuela; Orjuela, Lorena I; Peñalver, Cilia; Conn, Jan E; Quiñones, Martha L

    2014-11-01

    Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control.

  4. Batkoa apiculata (Thaxter) Humber affecting Anopheles (Diptera: Culicidae) in the municipality of Una, Southern Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveys for fungal pathogens affecting adult mosquitoes from the genus Anopheles were conducted in flooded and swamp-like natural breeding sites near residences in the center and suburbs of the city of Una as well as the nearby village of Outeiro in southern Bahia. Surveys of 54 mosquito breeding si...

  5. Anopheles species composition explains differences in Plasmodium transmission in La Guajira, northern Colombia

    PubMed Central

    Herrera-Varela, Manuela; Orjuela, Lorena I; Peñalver, Cilia; Conn, Jan E; Quiñones, Martha L

    2014-01-01

    Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control. PMID:25411002

  6. A new marker, black, a useful recombination suppressor, In(2)2, and a balanced lethal for chromosome 2 of the mosquito Anopheles gambiae.

    PubMed

    Benedict, M Q; McNitt, L M; Cornel, A J; Collins, F H

    1999-10-01

    A new marker for the second chromosome of Anopheles gambiae, black, was isolated from progeny of 60Co-irradiated mosquitoes. The black mutation increases melanization of larval setae and portions of the cuticle that are heavily sclerotized such as the saddle and head capsule. Adults have a sooty color that almost completely eliminates white banding on wings, tarsi, and palps. Fertility and general vigor of black individuals is reduced relative to wild-type; however, this does not prevent routine use for genetic crossing. The black marker was mapped to an interval on chromosome 2 between collarless and Dieldrin resistance 22 centiMorgans (cM) from collarless and 39 cM from Dieldrin resistance. We also isolated from 60Co-irradiated mosquitoes a pericentric inversion, In(2)2, that was marked with dominant alleles of the independently assorting genes collarless and Dieldrin resistance. This inversion is in coupling with the pericentric inversion 2Rd and covers approximately two-thirds of chromosome 2 from divisions 9 to 22. While inbreeding In(2)2 heterozygotes, we isolated a stock in which the inversion was in repulsion to a chromosome marked with c b DlS and an unidentified recessive lethal. This arrangement produced a useful and stable chromosome 2 balancer system that has remained intact for 26 generations without selection. These genetic tools will reduce the effort requires to isolate, among other things, the genetic factors affecting malaria parasite interactions with the mosquito host.

  7. Genomic and evolutionary analyses of Tango transposons in Aedes aegypti, Anopheles gambiae and other mosquito species.

    PubMed

    Coy, M R; Tu, Z

    2007-08-01

    Tango is a transposon of the Tc1 family and was originally discovered in the African malaria mosquito, Anopheles gambiae. Here we report a systematic analysis of the genome sequence of the yellow fever mosquito, Aedes aegypti, which uncovered three distinct Tango transposons. We name the only An. gambiae Tango transposon AgTango1 and the three Ae. aegypti Tango elements AeTango1-3. Like AgTango1, AeTango1 and AeTango2 elements both have members that retain characteristics of autonomous elements such as intact open reading frames and terminal inverted repeats (TIRs). AeTango3 is a degenerate transposon with no full-length members. All full-length Tango transposons contain subterminal direct repeats within their TIRs. AgTango1 and AeTango1-3 form a single clade among other Tc1 transposons. Within this clade, AgTango1 and AeTango1 are closely related and share approximately 80% identity at the amino acid level, which exceeds the level of similarity of the majority of host genes in the two species. A survey of Tango in other mosquito species was carried out using degenerate PCR. Tango was isolated and sequenced in all members of the An. gambiae species complex, Aedes albopictus and Ochlerotatus atropalpus. Oc. atropalpus contains a rich diversity of Tango elements, while Tango elements in Ae. albopictus and the An. gambiae species complex all belong to Tango1. No Tango was detected in Culex pipiens quinquefasciatus, Anopheles stephensi, Anopheles dirus, Anopheles farauti or Anopheles albimanus using degenerate PCR. Bioinformatic searches of the Cx. p. quinquefasciatus (~10 x coverage) and An. stephensi (0.33 x coverage) databases also failed to uncover any Tango elements. Although other evolutionary scenarios cannot be ruled out, there are indications that Tango1 underwent horizontal transfer among divergent mosquito species.

  8. Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time

    PubMed Central

    2010-01-01

    Background The complete sequences of the mitochondrial genomes (mtDNA) of members of the northern and southern genotypes of Anopheles (Nyssorhynchus) darlingi were used for comparative studies to estimate the time to the most recent common ancestor for modern anophelines, to evaluate differentiation within this taxon, and to seek evidence of incipient speciation. Methods The mtDNAs were sequenced from mosquitoes from Belize and Brazil and comparative analyses of structure and base composition, among others, were performed. A maximum likelihood approach linked with phylogenetic information was employed to detect evidence of selection and a Bayesian approach was used to date the split between the subgenus Nyssorhynchus and other Anopheles subgenera. Results The comparison of mtDNA sequences within the Anopheles darlingi taxon does not provide sufficient resolution to establish different units of speciation within the species. In addition, no evidence of positive selection in any protein-coding gene of the mtDNA was detected, and purifying selection likely is the basis for this lack of diversity. Bayesian analysis supports the conclusion that the most recent ancestor of Nyssorhynchus and Anopheles+Cellia was extant ~94 million years ago. Conclusion Analyses of mtDNA genomes of Anopheles darlingi do not provide support for speciation in the taxon. The dates estimated for divergence among the anopheline groups tested is in agreement with the geological split of western Gondwana (95 mya), and provides additional support for explaining the absence of Cellia in the New World, and Nyssorhynchus in the Afro-Eurasian continents. PMID:20470395

  9. Complete Dosage Compensation in Anopheles stephensi and the Evolution of Sex-Biased Genes in Mosquitoes

    PubMed Central

    Jiang, Xiaofang; Biedler, James K.; Qi, Yumin; Hall, Andrew Brantley; Tu, Zhijian

    2015-01-01

    Complete dosage compensation refers to hyperexpression of the entire X or Z chromosome in organisms with heterogametic sex chromosomes (XY male or ZW female) in order to compensate for having only one copy of the X or Z chromosome. Recent analyses suggest that complete dosage compensation, as in Drosophila melanogaster, may not be the norm. There has been no systematic study focusing on dosage compensation in mosquitoes. However, analysis of dosage compensation in Anopheles mosquitoes provides opportunities for evolutionary insights, as the X chromosome of Anopheles and that of its Dipteran relative, D. melanogaster formed independently from the same ancestral chromosome. Furthermore, Culicinae mosquitoes, including the Aedes genus, have homomorphic sex-determining chromosomes, negating the need for dosage compensation. Thus, Culicinae genes provide a rare phylogenetic context to investigate dosage compensation in Anopheles mosquitoes. Here, we performed RNA-seq analysis of male and female samples of the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Autosomal and X-linked genes in An. stephensi showed very similar levels of expression in both males and females, indicating complete dosage compensation. The uniformity of average expression levels of autosomal and X-linked genes remained when An. stephensi gene expression was normalized by that of their Ae. aegypti orthologs, strengthening the finding of complete dosage compensation in Anopheles. In addition, we comparatively analyzed the differentially expressed genes between adult males and adult females in both species, investigated sex-biased gene chromosomal distribution patterns in An. stephensi and provided three examples where gene duplications may have enabled the acquisition of sex-specific expression during mosquito evolution. PMID:26078263

  10. Resting behaviour, ecology and genetics of malaria vectors in large scale agricultural areas of Western Kenya.

    PubMed

    Githeko, A K; Service, M W; Mbogo, C M; Atieli, F K

    1996-12-01

    In Kenya indoor and outdoor resting densities of Anopheles arabiensis and Anopheles funestus at the Ahero rice irrigation scheme, and Anopheles gambiae s.s., An. arabiensis and An. funestus at the Miwani sugar belt were assessed for 13 months by pyrethrum spray collections in houses and granaries. The vector's house leaving behaviour was evaluated with exit traps and it was noted that early exophily (i.e., deliberate) was not detected in any of the vectors. Assortative indoor/outdoor resting behaviour was studied by a capture-mark-release-recapture method and showed that in An. arabiensis both indoor and outdoor resting traits were present in the same individuals. Samples of half-gravid female An. gambiae s.l. were chromosomally identified either as Anopheles gambiae s.s. or An. arabiensis and in a subsample chromosomal inversions were read. Anopheles gambiae s.s. and An. arabiensis had the 2Rb inversion but in addition the 2La inversion was found in An. gambiae s.s. and this is an indication of low chromosomal variation. At Ahero An. arabiensis was most abundant when the rice crop was immature and An. funestus when the crop was mature. This succession of vectors facilitated the transmission of malaria throughout the year. At Miwani, An. gambiae s.l. population peaked during the long rains but the proportion of An. arabiensis was highest during the dry season. The indoor resting density of males of the three vector species was less than half of the females.

  11. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period

    PubMed Central

    Sattler, Michael A; Mtasiwa, Deo; Kiama, Michael; Premji, Zul; Tanner, Marcel; Killeen, Gerry F; Lengeler, Christian

    2005-01-01

    Introduction By 2030, more than 50% of the African population will live in urban areas. Controlling malaria reduces the disease burden and further improves economic development. As a complement to treated nets and prompt access to treatment, measures targeted against the larval stage of Anopheles sp. mosquitoes are a promising strategy for urban areas. However, a precise knowledge of the geographic location and potentially of ecological characteristics of breeding sites is of major importance for such interventions. Methods In total 151 km2 of central Dar es Salaam, the biggest city of Tanzania, were systematically searched for open mosquito breeding sites. Ecologic parameters, mosquito larvae density and geographic location were recorded for each site. Logistic regression analysis was used to determine the key ecological factors explaining the different densities of mosquito larvae. Results A total of 405 potential open breeding sites were examined. Large drains, swamps and puddles were associated with no or low Anopheles sp. larvae density. The probability of Anopheles sp. larvae to be present was reduced when water was identified as "turbid". Small breeding sites were more commonly colonized by Anopheles sp. larvae. Further, Anopheles gambiae s.l. larvae were found in highly organically polluted habitats. Conclusions Clear ecological characteristics of the breeding requirements of Anopheles sp. larvae could not be identified in this setting. Hence, every stagnant open water body, including very polluted ones, have to be considered as potential malaria vector breeding sites. PMID:15649333

  12. Commercial food irradiation

    SciTech Connect

    Black, E.F.; Libby, L.M.

    1983-06-01

    Food irradiation is discussed. Irradiation exposes food to gamma rays from a cobalt-60 or a cesium-137 source, or to high-energy electrons emitted by an electron accelerator. A major advantage is that food can be packaged either before or after treatment. FDA regulations with regard to irradiation are discussed. Comments on an 'Advance Notice' on irradiation, published by the FDA in 1981 are summarized.

  13. Viruses in the Anopheles A, Anopheles B, and Tete Serogroups in the Orthobunyavirus Genus (Family Bunyaviridae) Do Not Encode an NSs Protein▿

    PubMed Central

    Mohamed, Maizan; McLees, Angela; Elliott, Richard M.

    2009-01-01

    Viruses in the genus Orthobunyavirus, family Bunyaviridae, have a genome comprising three segments (called L, M, and S) of negative-sense RNA. Serological studies have classified the >170 named virus isolates into 18 serogroups, with a few additional as yet ungrouped viruses. Until now, molecular studies and full-length S-segment nucleotide sequences were available for representatives of eight serogroups; in all cases, the S segment encodes two proteins, N (nucleocapsid) and NSs (nonstructural), in overlapping open reading frames (ORFs) that are translated from the same mRNA. The NSs proteins of Bunyamwera virus (BUNV) and California serogroup viruses have been shown to play a role in inhibiting host cell mRNA and protein synthesis, thereby preventing induction of interferon (IFN). We have determined full-length sequences of the S segments of representative viruses in the Anopheles A, Anopheles B, and Tete serogroups, and we report here that these viruses do not show evidence of having an NSs ORF. In addition, these viruses have rather longer N proteins than those in the other serogroups. Most of the naturally occurring viruses that lack the NSs protein behaved like a recombinant BUNV with the NSs gene deleted in that they failed to prevent induction of IFN-β mRNA. However, Tacaiuma virus (TCMV) in the Anopheles A serogroup inhibited IFN induction in a manner similar to that of wild-type BUNV, suggesting that TCMV has evolved an alternative mechanism, not involving a typical NSs protein, to antagonize the host innate immune response. PMID:19439468

  14. Pre-copula acoustic behaviour of males in the malarial mosquitoes Anopheles coluzzii and Anopheles gambiae s.s. does not contribute to reproductive isolation.

    PubMed

    Simões, Patrício M V; Gibson, Gabriella; Russell, Ian J

    2017-02-01

    We reveal that males of two members of the Anopheles gambiae s.l. species complex, Anopheles coluzzii and Anopheles gambiae s.s. (hereafter A. gambiae), which are both malaria vectors, perform a stereotypical acoustic behaviour in response to pure tones at frequencies that encompass the frequency range of the female's flight-tones. This behaviour resembles that described for Culex quinquefasciatus and consists of phonotactic flight initiated by a steep increase in wing-beat frequency (WBF) followed by rapid frequency modulation (RFM) of WBF when in close proximity to the sound source. RFM was elicited without acoustic feedback or the presence of a live female, but it appears to be a stereotypic behaviour in the immediate lead up to copula formation. RFM is an independent and different behavioural process from harmonic convergence interactions used by male-female pairs for mate recognition at earlier stages of mating. Acoustic threshold for RFM was used to plot behavioural audiograms from free-flying A coluzzii and A gambiae males. These audiograms were almost identical (minima ∼400 Hz) and encompassed the WBF ranges of A coluzzii (378-601 Hz) and A gambiae (373-590 Hz) females, indicating that males of the two species share similar frequency tuning and range. Furthermore, no differences were found between the two species in their WBFs, RFM behaviour or harmonic convergence ratios. These results indicate that assortative mating between A coluzzii and A gambiae is unlikely to be based on male-specific acoustic behaviours during RFM. The significance of these findings in relation to possible mechanisms for assortative mating is discussed.

  15. Resistance Status of the Malaria Vector Mosquitoes, Anopheles stephensi and Anopheles subpictus Towards Adulticides and Larvicides in Arid and Semi-Arid Areas of India

    PubMed Central

    Tikar, S. N.; Mendki, M.J.; Sharma, A. K.; Sukumaran, D.; Veer, Vijay; Prakash, Shri; Parashar, B. D.

    2011-01-01

    Susceptibility studies of malaria vectors Anopheles stephensi Liston (Diptera: Culicidae) and An. subpictus Grassi collected during 2004–2007 from various locations of Arid and Semi-Arid Zone of India were conducted by adulticide bioassay of DDT, malathion, deltamethrin and larvicide bioassay of fenthion, temephos, chlorpyriphos and malathion using diagnostic doses. Both species from all locations exhibited variable resistance to DDT and malathion from majority of location. Adults of both the species were susceptible to Deltamethrin. Larvae of both the Anopheline species showed some evidence of resistance to chlorpyriphos followed by fenthion whereas susceptible to temephos and malathion. PMID:21870971

  16. Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico.

    PubMed

    Ulloa, Armando; Gonzalez-Cerón, Lilia; Rodríguez, Mario H

    2006-12-01

    The host preference, survival rates, and length of the gonotrophic cycle of Anopheles punctimacula was investigated in southern México. Mosquitoes were collected in 15-day separate experiments during the rainy and dry seasons. Daily changes in the parous-nulliparous ratio were recorded and the gonotrophic cycle length was estimated by a time series analysis. Anopheles punctimacula was most abundant during the dry season and preferred animals to humans. The daily survival rate in mosquitoes collected in animal traps was 0.96 (parity rate = 0.86; gonotrophic cycle = 4 days). The length of gonotrophic cycle of 4 days was estimated on the base of a high correlation coefficient value appearing every 4 days. The minimum time estimated for developing mature eggs after blood feeding was 72 h. The proportion of mosquitoes living enough to transmit Plasmodium vivax malaria during the dry season was 0.35.

  17. Anopheles gambiae exploits the treehole ecosystem in western Kenya: a new urban malaria risk?

    PubMed

    Omlin, Francois X; Carlson, John C; Ogbunugafor, C Brandon; Hassanali, Ahmed

    2007-12-01

    At six sites in western Kenya, we explored the presence of Anopheles immature stages in treeholes. An. gambiae larvae were found in 19 species, 13 of which are exotic. The most common exotic species were Delonix regia, Jacaranda mimosipholia, and Eucalyptus citrodora. In Kisumu city, longitudinal assessments of 10 Flamboyant trees showed repeated presence of An. gambiae s.s. in treeholes with water. Production of Anopheles larvae did not correlate with habitat volume but with habitat height, showing a strong but statistically insignificant negative correlation. During a dry season, eggs recovered by rinsing dry treeholes hatched into 2.5 +/- 3.06 An. gambiae and 7.9 +/- 8.2 Aedes larvae. In cage experiments, An. gambiae s.s. laid more eggs in water originating from treeholes than in distilled or lake water, implying preference for ovipositing in this habitat. Our findings indicate that treeholes represent a hitherto unrecognized habitat for malaria vectors, which needs further studies.

  18. Welding irradiated stainless steel

    SciTech Connect

    Kanne, W.R. Jr.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-12-31

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials.

  19. Scanning electron microscopy of egg hatching of Anopheles albimanus (Diptera: Culicidae).

    PubMed

    Rodriguez, M H; Orozco, A; Chavez, B; Martinez-Palomo, A

    1992-09-01

    Scanning electron and light microscopic observations showed that egg hatching in Anopheles albimanus Wiedemann is aided by a chisel-shaped spine. This hatching tooth is surrounded by a thin flexible membrane fixed to a groove in the head of the larvae. Increased intracranial pressure may force the spine against the egg shell until a fissure is produced. Further opening of the egg is achieved by movements of the head and the entire body of the larva.

  20. Bionomics of the Primary Malaria Vector, Anopheles pseudopunctipennis, in the Tapachula Foothill Area of Southern Mexico

    DTIC Science & Technology

    1992-02-04

    of Preventive Medicine and Biometrics. and Mario Henry Rodriguez, Adjunct Associate Professor Malaria, the more important vector-borne disease in...and guidance provided by Dr. Mario Henry Rodriguez. I am very grateful for the opportunity to have worked with him in TapachuIa, Mexico. The...Mexico ( Vargas and Martinez-Palacios, 1955). Included in the list of actual and potential malaria vectors is Anopheles albimanus Wiedemann, An

  1. Preliminary observations on cross-mating of the malaria vector, Anopheles sergentii from two Egyptian oases.

    PubMed

    Kenawy, M A; Sowilem, M M; Abdel-Hamid, Y M; Wahba, M M

    2000-12-01

    Intra- and inter-strain crosses were made between randomly collected adults Anopheles sergentii originated from Tersa village (El-Faiyum Governorate) and Siwa oasis (Matruh Governorate). The success of such crosses and their effects on fecundity and fertility of the parental females and on survival and development velocities of the F1 immatures were examined. No overall heterosis effects on such attributes were detected suggesting absence of genetic differences between the vector populations in these two malarious areas.

  2. The Distribution of Circumsporozoite Protein (CS) in Anopheles Stephensi Mosquitoes Infected with Plasmodium Falciparum Malaria

    DTIC Science & Technology

    1990-01-01

    389 in differentiating oocysts, on remnant membranes left on the midgut Roitt IM, BrostoffJ, Male DK (1985): Immunology. St Louis, CV Mosby wall after...Plasmodium falciparum; Anopheles stephensi; Cir- on the mosquito midgut. As oocysts differentiated to ma- cumsporozoite protein; Fuchsin/naphthol AS-BI...and sporogony in the mosquito. During a blood meal, microscopy and an indirect fluorescent antibody test (IFAT). These the mosquito ingests the male

  3. Morphological Analysis of Three Populations of Anopheles (Nyssorhynchus) Nuneztovari Gabaldon (Diptera: Culicidae) from Colombia

    DTIC Science & Technology

    2008-02-01

    populations of Anopheles (Nyssorhynchus) nuneztovari Gabaldón (Diptera: Culicidae) from Colombia Mayury Fajardo Ramos, Ranulfo González Obando/+, Marco...Fidel Suárez, David López, Richard Wilkerson1, Maria Anice Mureb Sallum2 Facultad de Ciencias Naturales y Exactas y Facultad de Salud , AA 25623...Universidad del Valle, Cali, Colombia 1Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD, US 2Departamento de

  4. Inference of the Oxidative Stress Network in Anopheles stephensi upon Plasmodium Infection

    PubMed Central

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K.; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway. PMID:25474020

  5. Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens

    PubMed Central

    Blanford, Simon; Read, Andrew F; Thomas, Matthew B

    2009-01-01

    Background Temperature is a critical determinant of the development of malaria parasites in mosquitoes, and hence the geographic distribution of malaria risk, but little is known about the thermal preferences of Anopheles. A number of other insects modify their thermal behaviour in response to infection. These alterations can be beneficial for the insect or for the infectious agent. Given current interest in developing fungal biopesticides for control of mosquitoes, Anopheles stephensi were examined to test whether mosquitoes showed thermally-mediated behaviour in response to infection with fungal entomopathogens and the rodent malaria, Plasmodium yoelii. Methods Over two experiments, groups of An. stephensi were infected with one of three entomopathogenic fungi, and/or P. yoelii. Infected and uninfected mosquitoes were released on to a thermal gradient (14 – 38°C) for "snapshot" assessments of thermal preference during the first five days post-infection. Mosquito survival was monitored for eight days and, where appropriate, oocyst prevalence and intensity was assessed. Results and conclusion Both infected and uninfected An. stephensi showed a non-random distribution on the gradient, indicating some capacity to behaviourally thermoregulate. However, chosen resting temperatures were not altered by any of the infections. There is thus no evidence that thermally-mediated behaviours play a role in determining malaria prevalence or that they will influence the performance of fungal biopesticides against adult Anopheles. PMID:19379519

  6. Ability of TEP1 in intestinal flora to modulate natural resistance of Anopheles dirus.

    PubMed

    Wang, Yanyan; Wang, Ying; Zhang, Jingru; Xu, Wenyue; Zhang, Jian; Huang, Fu Sheng

    2013-08-01

    Blocking transmission of malaria is a reliable way to control and eliminate infection. However, in-depth knowledge of the interaction between Plasmodium and mosquito is needed. Studies suggest that innate immunity is the main mechanism inhibiting development of malaria parasites in the mosquito. Recent studies have found that use of antibiotics that inhibit the mosquito gut flora can reduce the immune response of Anopheles gambiae, thereby contributing to the development of malaria parasites. In our study, we used the non susceptible model of Anopheles dirus-Plasmodium yoelii to explore the effect of Anopheles intestinal flora on the natural resistance of A. dirus to P. yoelii. We found that in mosquitoes infected with Plasmodium, the intestinal flora can regulate expression of thioester-containing protein (TEP1) via an RNAi gene-silencing approach. Our results suggest that in the absence of TEP1, the natural microbiota cannot suppress the development of P. yoelii in A. dirus. This suggests that AdTEP1 plays an important role in the resistance of A. dirus to P. yoelii. The intestinal flora may modulate the development of P. yoelii in A. dirus by regulating TEP1 expression.

  7. Rubidium marking of Anopheles mosquitoes detectable by field-capable X-ray spectrometry.

    PubMed

    Wilkins, E E; Smith, S C; Roberts, J M; Benedict, M

    2007-06-01

    We present a mosquito marking technique suitable for mark-release-recapture that can be used with a hand-held, portable X-ray fluorescence (XRF) spectrometer, which is practical for field measurements. Third instar Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) and Anopheles stephensi Liston larvae were cultured to pupation in water containing rubidium (Rb) Cl at concentrations up to 1000 p.p.m. Rb. Anopheles gambiae larvae survived to adulthood at concentrations as high as 1000 p.p.m. Rb but suffered pupal mortality and reduced adult longevity at high concentrations. We were able to culture An. stephensi at Rb concentrations as high as 300 p.p.m. The presence of Rb in adults was evaluated using a portable XRF analyser, and we were able to reliably detect Rb above background levels in 10-day-old females and 4-day-old males at concentrations causing minimal pupal or adult mortality. We observed that Rb marking was not permanent, and the concentration declined significantly as adults aged. The low cost of labelling with RbCl and the field portability of the spectrometer provide a useful means for labelling mosquitoes via breeding sites or in the laboratory for mark-release-recapture experiments.

  8. Rhodopsin management during the light-dark cycle of Anopheles gambiae mosquitoes

    PubMed Central

    Moon, Young Min; Metoxen, Alexander J.; Leming, Matthew T.; Whaley, Michelle A.; O’Tousa, Joseph E.

    2014-01-01

    The tropical disease vector mosquito Anopheles gambiae possesses 11 rhodopsin genes. Three of these, GPROP1, GPROP3, and GPROP4, encode rhodopsins with >99% sequence identity. We created antisera against these rhodopsins and used immunohistology to show that one or more of these rhodopsins are expressed in the major R1-6 photoreceptor class of the adult Anopheles gambiae eye. Under dark conditions, rhodopsin accumulates within the light-sensitive rhabdomere of the photoreceptor. Light treatment, however, causes extensive movement of rhodopsin to the cytoplasmic compartment. Protein electrophoresis showed that the rhodopsin is present in two different forms. The larger form is an immature species that is deglycosylated during the posttranslational maturation process to generate the smaller, mature form. The immature form is maintained at a constant level regardless of lighting conditions. These results indicate that rhodopsin biosynthesis and movement into the rhabdomere occurs at a constant rate. In contrast, the mature form increases in abundance when animals are placed in dark conditions. Light-triggered internalization and protein degradation counteracts this rhodopsin increase and keeps rhabdomeric rhodopsin levels low in light conditions. The interplay of the constant maturation rate with light-triggered degradation causes rhodopsin to accumulate within the rhabdomere only in dark conditions. Thus, Anopheles photoreceptors possess a mechanism for adjusting light sensitivity through light-dependent control of rhodopsin levels and cellular location. PMID:25260623

  9. Anopheles stephensi Heme Peroxidase HPX15 Suppresses Midgut Immunity to Support Plasmodium Development

    PubMed Central

    Kajla, Mithilesh; Kakani, Parik; Choudhury, Tania Pal; Kumar, Vikas; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2017-01-01

    The heme peroxidase HPX15 is an evolutionary conserved anopheline lineage-specific gene. Previously, we found that this gene is present in the genome of 19 worldwide distributed different species of Anopheles mosquito and its orthologs are absent in other mosquitoes, insects, or human. In addition, 65–99% amino acid identity among these 19 orthologs permitted us to hypothesize that the functional aspects of this gene might be also conserved in different anophelines. In this study, we found that Anopheles stephensi AsHPX15 gene is mainly expressed in the midgut and highly induced after uninfected or Plasmodium berghei-infected blood feeding. RNA interference-mediated silencing of midgut AsHPX15 gene drastically reduced the number of developing P. berghei oocysts. An antiplasmodial gene nitric oxide synthase was induced 13-fold in silenced midguts when compared to the unsilenced controls. Interestingly, the induction of antiplasmodial immunity in AsHPX15-silenced midguts is in absolute agreement with Anopheles gambiae. In A. gambiae, AgHPX15 catalyzes the formation of a dityrosine network at luminal side of the midgut that suppresses the activation of mosquito immunity against the bolus bacteria. Thus, a low-immunity zone created by this mechanism indirectly supports Plasmodium development inside the midgut lumen. These indistinguishable functional behaviors and conserved homology indicates that HPX15 might be a potent target to manipulate the antiplasmodial immunity of the anopheline midgut, and it will open new frontiers in the field of malaria control. PMID:28352267

  10. Chemical Composition and Repellent Activity of Achillea vermiculata and Satureja hortensis against Anopheles stephensi

    PubMed Central

    Pirmohammadi, Masoumeh; Shayeghi, Mansoureh; Vatandoost, Hassan; Abaei, Mohammad Reza; Mohammadi, Ali; Bagheri, Akbar; Khoobdel, Mehdi; Bakhshi, Hasan; Pirmohammadi, Maryam; Tavassoli, Maryam

    2016-01-01

    Background: One of the best ways to control the malaria disease and to be protected human against Anopheles mosquito biting is the use of repellents. Throughout repellents, herbal ones may be an appropriate and safe source for protection. Methods: Chemical constituents of Achillea vermiculata and Satoreja hortensis were determined by using gas chromatography-mass spectrometry. Efficacy and the protection time of these plants were assessed on Anopheles stephensi under the laboratory condition. Results: The mean assessed protection time and efficacy for A. vermiculata was 2.16 and 3.16 hours respectively and the obtained ED50 and ED90 for this plant was 5.67 and 63 μl/cm2 respectively. The figured for S. hortensis was 4.16 and 5 hours respectively. ED50 and ED90 for this plant were 5.63 and 45.75μl/cm2 respectively. Conclusion: Results of investigation showed that S. hortensis plant has an acceptable protection time, therefore, this plant could be considered as a good herbal repellent against anopheles mosquitoes. PMID:27308278

  11. A viral over-expression system for the major malaria mosquito Anopheles gambiae

    PubMed Central

    Suzuki, Yasutsugu; Niu, Guodong; Hughes, Grant L.; Rasgon, Jason L.

    2014-01-01

    Understanding pathogen/mosquito interactions is essential for developing novel strategies to control mosquito-borne diseases. Technical advances in reverse-genetics, such as RNA interference (RNAi), have facilitated elucidation of components of the mosquito immune system that are antagonistic to pathogen development, and host proteins essential for parasite development. Forward genetic approaches, however, are limited to generation of transgenic insects, and while powerful, mosquito transgenesis is a resource- and time-intensive technique that is not broadly available to most laboratories. The ability to easily “over-express” genes would enhance molecular studies in vector biology and expedite elucidation of pathogen-refractory genes without the need to make transgenic insects. We developed and characterized an efficient Anopheles gambiae densovirus (AgDNV) over-expression system for the major malaria vector Anopheles gambiae. High-levels of gene expression were detected at 3 days post-infection and increased over time, suggesting this is an effective system for gene induction. Strong expression was observed in the fat body and ovaries. We validated multiple short promoters for gene induction studies. Finally, we developed a polycistronic system to simultaneously express multiple genes of interest. This AgDNV-based toolset allows for consistent transduction of genes of interest and will be a powerful molecular tool for research in Anopheles gambiae mosquitoes. PMID:24875042

  12. Phylogeography of the neotropical Anopheles triannulatus complex (Diptera: Culicidae) supports deep structure and complex patterns

    PubMed Central

    2013-01-01

    Background The molecular phylogenetic relationships and population structure of the species of the Anopheles triannulatus complex: Anopheles triannulatus s.s., Anopheles halophylus and the putative species Anopheles triannulatus C were investigated. Methods The mitochondrial COI gene, the nuclear white gene and rDNA ITS2 of samples that include the known geographic distribution of these taxa were analyzed. Phylogenetic analyses were performed using Bayesian inference, Maximum parsimony and Maximum likelihood approaches. Results Each data set analyzed septely yielded a different topology but none provided evidence for the seption of An. halophylus and An. triannulatus C, consistent with the hypothesis that the two are undergoing incipient speciation. The phylogenetic analyses of the white gene found three main clades, whereas the statistical parsimony network detected only a single metapopulation of Anopheles triannulatus s.l. Seven COI lineages were detected by phylogenetic and network analysis. In contrast, the network, but not the phylogenetic analyses, strongly supported three ITS2 groups. Combined data analyses provided the best resolution of the trees, with two major clades, Amazonian (clade I) and trans-Andean + Amazon Delta (clade II). Clade I consists of multiple subclades: An. halophylus + An. triannulatus C; trans-Andean Venezuela; central Amazonia + central Bolivia; Atlantic coastal lowland; and Amazon delta. Clade II includes three subclades: Panama; cis-Andean Colombia; and cis-Venezuela. The Amazon delta specimens are in both clades, likely indicating local sympatry. Spatial and molecular variance analyses detected nine groups, corroborating some of subclades obtained in the combined data analysis. Conclusion Combination of the three molecular markers provided the best resolution for differentiation within An. triannulatus s.s. and An. halophylus and C. The latest two species seem to be very closely related and the analyses performed were

  13. Comparative susceptibility of three species of Anopheles from Belize, Central America, to Plasmodium falciparum (NF-54).

    PubMed

    Grieco, John P; Achee, Nicole L; Roberts, Donald R; Andre, Richard G

    2005-09-01

    In August of 2000, a comparative susceptibility study was conducted using 3 species of Anopheles mosquitoes from Belize, Central America, and a standard species used in laboratory infection studies, Anopheles stephensi. Test populations were fed human blood infected with cultured Plasmodium falciparum (NF-54 strain) parasites via a membrane feeder. The control species, An. stephensi, exhibited the highest infections, with 73.8% of dissected specimens positive for sporozoites in the salivary glands. The control species also showed heavier sporozoite loads; 74.0% of positive glands having greater than 200 sporozoites. Of species from Belize, Anopheles darlingi was the most susceptibile, e.g., 41.0% of salivary glands were positive, with more than 200 sporozoites per gland. Anopheles vestitipennis had a low salivary gland infection rate (9.3%) and a moderate number of sporozoites in glands (i.e., 85.7% containing 50-250 sporozoites). Anopheles albimanus was the least susceptible species to infection. No specimens of An. albimanus from the Golden Stream population developed sporozoites in the salivary glands, yet 20.7% of dissected specimens had positive midgut infections. The An. albimanus Buena Vista population showed similar results with only a 2.2% salivary gland infection rate and a 21.5% midgut infection rate. Oocysts in An. stephensi increased in size by 20% after day 10. Development peaked at day 12, with a mean oocyst diameter of 58 microm at onset of oocyst differentiation. Oocysts developed more slowly in An. vestitipennis until day 10. After day 10, there was a 53% increase in oocyst development over the previous 10 days. Oocyst differentiation was not observed until day 13 postfeed. As with An. vestitipennis, both populations of An. albimanus showed similar slow rates of oocyst development; however, no dramatic growth increase occurred after day 10. The oocysts in the Golden Stream population exhibited a cessation of growth after day 10, peaking at a mean

  14. Linking Deforestation to Malaria in the Amazon: Characterization of the Breeding Habitat of the Principal Malaria Vector, Anopheles darlingi

    PubMed Central

    Vittor, Amy Y.; Pan, William; Gilman, Robert H.; Tielsch, James; Glass, Gregory; Shields, Tim; Sánchez-Lozano, Wagner; Pinedo, Viviana V.; Salas-Cobos, Erit; Flores, Silvia; Patz, Jonathan A.

    2009-01-01

    This study examined the larval breeding habitat of a major South American malaria vector, Anopheles darlingi, in areas with varying degrees of ecologic alteration in the Peruvian Amazon. Water bodies were repeatedly sampled across 112 km of transects along the Iquitos-Nauta road in ecologically varied areas. Field data and satellite imagery were used to determine the landscape composition surrounding each site. Seventeen species of Anopheles larvae were collected. Anopheles darlingi larvae were present in 87 of 844 sites (10.3%). Sites with A. darlingi larvae had an average of 24.1% forest cover, compared with 41.0% for sites without A. darlingi (P < 0.0001). Multivariate analysis identified seasonality, algae, water body size, presence of human populations, and the amount of forest and secondary growth as significant determinants of A. darlingi presence. We conclude that deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk. PMID:19556558

  15. Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus

    PubMed Central

    Abdullah, Mohd Amir F; Valaitis, Algimantas P; Dean, Donald H

    2006-01-01

    Background Aminopeptidase N (APN) type proteins isolated from several species of lepidopteran insects have been implicated as Bacillus thuringiensis (Bt) toxin-binding proteins (receptors) for Cry toxins. We examined brush border membrane vesicle (BBMV) proteins from the mosquito Anopheles quadrimaculatus to determine if APNs from this organism would bind mosquitocidal Cry toxins that are active to it. Results A 100-kDa protein with APN activity (APNAnq 100) was isolated from the brush border membrane of Anopheles quadrimaculatus. Native state binding analysis by surface plasmon resonance shows that APNAnq 100 forms tight binding to a mosquitocidal Bt toxin, Cry11Ba, but not to Cry2Aa, Cry4Ba or Cry11Aa. Conclusion An aminopeptidase from Anopheles quadrimaculatus mosquitoes is a specific binding protein for Bacillus thuringiensis Cry11Ba. PMID:16716213

  16. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  17. Perspective on food irradiation

    SciTech Connect

    Not Available

    1987-02-01

    Recent US Food and Drug Administration approval of irradiation treatment for fruit, vegetables and pork has stimulated considerable discussion in the popular press on the safety and efficacy of irradiation processing of food. This perspective is designed to summarize the current scientific information available on this issue.

  18. MASSIVE LEAKAGE IRRADIATOR

    DOEpatents

    Wigner, E.P.; Szilard, L.; Christy, R.F.; Friedman, F.L.

    1961-05-30

    An irradiator designed to utilize the neutrons that leak out of a reactor around its periphery is described. It avoids wasting neutron energy and reduces interference with the core flux to a minimum. This is done by surrounding all or most of the core with removable segments of the material to be irradiated within a matrix of reflecting material.

  19. Behavioral responses of catnip (Nepeta cataria) by two species of mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand.

    PubMed

    Polsomboon, Suppaluck; Grieco, John P; Achee, Nicole L; Chauhan, Kamlesh R; Tanasinchayakul, Somchai; Pothikasikorn, Jinrapa; Chareonviriyaphap, Theeraphap

    2008-12-01

    An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Aedes aegypti and Anopheles harrisoni was conducted using an automated excitorepellency test system. Aedes aegypti showed significantly higher escape rates from the contact chamber at 5% catnip oil compared to other concentrations (P < 0.05). With Anopheles harrisoni, a high escape response was seen at 2.5% catnip oil from the contact chamber, while in the noncontact chamber a higher escape response was observed at a concentration of 5%. Results showed that this compound exhibits both irritant and repellent actions.

  20. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  1. Characterization and detection of Anopheles vestitipennis and Anopheles punctimacula (Diptera: Culicidae) larval habitats in Belize with field survey and SPOT satellite imagery.

    PubMed

    Rejmankova, E; Pope, K O; Roberts, D R; Lege, M G; Andre, R; Greico, J; Alonzo, Y

    1998-06-01

    Surveys of larval habitats of Anopheles vestitipennis and Anopheles punctimacula were conducted in Belize, Central America. Habitat analysis and classification resulted in delineation of eight habitat types defined by dominant life forms and hydrology. Percent cover of tall dense macrophytes, shrubs, open water, and pH were significantly different between sites with and without An. vestitipennis. For An. punctimacula, percent cover of tall dense macrophytes, trees, detritus, open water, and water depth were significantly different between larvae positive and negative sites. The discriminant function for An. vestitipennis correctly predicted the presence of larvae in 65% of sites and correctly predicted the absence of larvae in 88% of sites. The discriminant function for An. punctimacula correctly predicted 81% of sites for the presence of larvae and 45% for the absence of larvae. Canonical discriminant analysis of the three groups of habitats (An. vestitipennis positive; An. punctimacula positive; all negative) confirmed that while larval habitats of An. punctimacula are clustered in the tree dominated area, larval habitats of An. vestitipennis were found in both tree dominated and tall dense macrophyte dominated environments. The forest larval habitats of An. vestitipennis and An. punctimacula seem to be randomly distributed among different forest types. Both species tend to occur in denser forests with more detritus, shallower water, and slightly higher pH. Classification of dry season (February) SPOT multispectral satellite imagery produced 10 land cover types with the swamp forest and tall dense marsh classes being of particular interest. The accuracy assessment showed that commission errors for the tall, dense marsh and swamp forest appeared to be minor; but omission errors were significant, especially for the swamp forest (perhaps because no swamp forests are flooded in February). This means that where the classification indicates there are An. vestitipennis

  2. Characterization and detection of Anopheles vestitipennis and Anopheles punctimacula (Diptera: Culicidae) larval habitats in Belize with field survey and SPOT satellite imagery

    NASA Technical Reports Server (NTRS)

    Rejmankova, E.; Pope, K. O.; Roberts, D. R.; Lege, M. G.; Andre, R.; Greico, J.; Alonzo, Y.

    1998-01-01

    Surveys of larval habitats of Anopheles vestitipennis and Anopheles punctimacula were conducted in Belize, Central America. Habitat analysis and classification resulted in delineation of eight habitat types defined by dominant life forms and hydrology. Percent cover of tall dense macrophytes, shrubs, open water, and pH were significantly different between sites with and without An. vestitipennis. For An. punctimacula, percent cover of tall dense macrophytes, trees, detritus, open water, and water depth were significantly different between larvae positive and negative sites. The discriminant function for An. vestitipennis correctly predicted the presence of larvae in 65% of sites and correctly predicted the absence of larvae in 88% of sites. The discriminant function for An. punctimacula correctly predicted 81% of sites for the presence of larvae and 45% for the absence of larvae. Canonical discriminant analysis of the three groups of habitats (An. vestitipennis positive; An. punctimacula positive; all negative) confirmed that while larval habitats of An. punctimacula are clustered in the tree dominated area, larval habitats of An. vestitipennis were found in both tree dominated and tall dense macrophyte dominated environments. The forest larval habitats of An. vestitipennis and An. punctimacula seem to be randomly distributed among different forest types. Both species tend to occur in denser forests with more detritus, shallower water, and slightly higher pH. Classification of dry season (February) SPOT multispectral satellite imagery produced 10 land cover types with the swamp forest and tall dense marsh classes being of particular interest. The accuracy assessment showed that commission errors for the tall, dense marsh and swamp forest appeared to be minor; but omission errors were significant, especially for the swamp forest (perhaps because no swamp forests are flooded in February). This means that where the classification indicates there are An. vestitipennis

  3. Identification of bloodmeals in Anopheles quadrimaculatus and Anopheles punctipennis from eastern equine encephalitis virus foci in northeastern U.S.A.

    PubMed

    Molaei, G; Farajollahi, A; Armstrong, P M; Oliver, J; Howard, J J; Andreadis, T G

    2009-12-01

    The host-feeding patterns of Anopheles quadrimaculatus Say and Anopheles punctipennis (Say) were examined in order to evaluate their potential contributions to the transmission of eastern equine encephalitis virus (EEEv) and other arboviruses in the northeastern U.S.A. Engorged mosquitoes of the two species were collected from EEEv foci in central New York (NY) and throughout New Jersey (NJ), and their bloodmeals were identified using a polymerase chain reaction (PCR)-based assay and sequencing portions of the mitochondrial cytochrome b gene. Analysis of 131 An. quadrimaculatus and 107 An. punctipennis from NY revealed that 97.7% and 97.2%, respectively, had acquired blood solely from mammalian hosts. Similarly, examination of 288 An. quadrimaculatus and 127 An. punctipennis from NJ showed 100% and 96.0%, respectively, contained mammalian-derived bloodmeals. Mosquitoes containing mixed bloodmeals from both avian and mammalian hosts were detected in 1.6% of An. quadrimaculatus from NY, and 2.8% and 4.0% of An. punctipennis from NY and NJ, respectively. White-tailed deer (Odocoileus virginianus) constituted the most common vertebrate host for these anopheline mosquitoes, accounting for 85.8-97.7% of all bloodmeals identified. The predominance of white-tailed deer as a source of bloodmeals supports enzootic amplification of deer-associated arboviruses in this region, including Jamestown Canyon, Cache Valley and Potosi viruses. One horse- and two human-derived bloodmeals were also detected in An. quadrimaculatus collected in NJ. Limited avian-derived bloodmeals were detected from mourning dove (Zenaida macroura), sharp-shinned hawk (Accipiter striatus) and house finch (Carpodacus mexicanus), mostly in mixed bloodmeals. Occasional feeding on avian hosts suggests that these mosquitoes may participate as epizootic-epidemic bridge vectors of EEEv from viraemic birds to mammalian hosts of concern, including horses and humans. An isolate of EEEv was recovered from the head

  4. Biological cost of tolerance to heavy metals in the mosquito Anopheles gambiae.

    PubMed

    Mireji, P O; Keating, J; Hassanali, A; Mbogo, C M; Muturi, M N; Githure, J I; Beier, J C

    2010-06-01

    The global rate of heavy metal pollution is rapidly increasing in various habitats. Anopheles malaria vector species (Diptera: Culicidae) appear to tolerate many aquatic habitats with metal pollutants, despite their normal proclivity for 'clean' water (i.e. low levels of organic matter). Investigations were conducted to establish whether there are biological costs for tolerance to heavy metals in Anopheles gambiae Giles sensu stricto and to assess the potential impact of heavy metal pollution on mosquito ecology. Anopheles gambiae s.s. were selected for cadmium, copper or lead tolerance through chronic exposure of immature stages to solutions of the metals for three successive generations. Biological costs were assessed in the fourth generation by horizontal life table analysis. Tolerance in larvae to cadmium (as cadmium chloride, CdCl(2)), copper [as copper II nitrate hydrate, Cu(NO(3))(2) 2.5 H(2)O] and lead [as lead II nitrate, Pb(NO(3))(2)], monitored by changes in LC(50) concentrations of the metals, changed from 6.07 microg/L, 12.42 microg/L and 493.32 microg/L to 4.45 microg/L, 25.02 microg/L and 516.69 microg/L, respectively, after three generations of exposure. The metal-selected strains had a significantly lower magnitude of egg viability, larval and pupal survivorship, adult emergence, fecundity and net reproductive rate than the control strain. The population doubling times were significantly longer and the instantaneous birth rates lower in most metal-selected strains relative to the control strain. Our results suggest that although An. gambiae s.s. displays the potential to develop tolerance to heavy metals, particularly copper, this may occur at a significant biological cost, which can adversely affect its ecological fitness.

  5. Anopheles ziemanni a locally important malaria vector in Ndop health district, north west region of Cameroon

    PubMed Central

    2014-01-01

    Background Malaria transmission in Cameroon is mediated by a plethora of vectors that are heterogeneously distributed across the country depending on the biotope. To effectively guide malaria control operations, regular update on the role of local Anopheles species is essential. Therefore, an entomological survey was conducted between August 2010 and May 2011 to evaluate the role of the local anopheline population in malaria transmission in three villages of the Ndop health district in the northwest region of Cameroon where malaria is holoendemic, as a means to acquiring evidence based data for improved vector intervention. Methods Mosquitoes were sampled both indoor and outdoor for four consecutive nights in each locality during each month of survey. Sampling was done by the human landing catch method on volunteers. Anopheles species were identified morphologically and their ovaries randomly dissected for parity determination. Infection with Plasmodium falciparum was detected by Circumsporozoite protein ELISA. Members of An. gambiae complex were further identified to molecular level by PCR and RFLP PCR. Results An. ziemanni was the main malaria vector and whether outdoor or indoor. The man biting rate for the vectors ranged from 6.75 to 8.29 bites per person per night (b/p/n). The entomological inoculation rate for this vector species was 0.0278 infectious bites per person per night (ib/p/n) in Mbapishi, 0.034 ib/p/n in Mbafuh, and 0.063 ib/p/n in Backyit. These were by far greater than that for An. gambiae. No difference was observed in the parity rate of these two vectors. PCR analysis revealed the presence of only An. colluzzi (M- form). Conclusions An. ziemanni is an important local malaria vector in Ndop health district. The findings provide useful baseline information on the anopheles species composition, their distribution and role in malaria transmission that would guide the implementation of integrated vector management strategies in the locality. PMID

  6. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    PubMed Central

    2012-01-01

    Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR). Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically accessible desiccant will likely

  7. Intragenomic rDNA ITS2 Variation in the Neotropical Anopheles (Nyssorhynchus) albitarsis Complex (Diptera: Culicidae)

    DTIC Science & Technology

    2006-12-07

    However, in Allopb,/er, there are examples of rONA intragenomic variation (\\X’ilkerson et al. 2004; Fairley et al. 2005), but its prevalence and...Anopheles species (Onyabe and Conn 1999; Wilkerson et al. 2004; Fairley et aI. 200S) and in other mos- quitoes in subfamily Culicinae (Black et a!. 1989...DNA 1TS2 sequences. J :-.led Entomo!’ 33:109-116. Dover GA. 1982. Molecular dri"e: a cnhesive mode of species evolution. Nature. 299:111-117. Fairley

  8. Plasmodium vivax sporozoite rates from Anopheles albimanus in southern Chiapas, Mexico.

    PubMed

    Ramsey, J M; Salinas, E; Bown, D N; Rodriguez, M H

    1994-06-01

    Anopheles albimanus mosquitoes were collected from August 1984 to November 1987 on intra- and peridomicile human bait in Rancheria El Gancho, Chiapas, Mexico. The mosquitoes were desiccated and stored in silicon chambers from 3 mo to 3 yr post-collection prior to being assayed using a direct enzyme-linked immunosorbent assay to detect Plasmodium vivax predominant-type sporozoite protein. Peridomicile-collected mosquitoes had a 10-fold higher sporozoite rate than those collected indoors, but only the latter correlate significantly with the seasonal human parasite index. Mosquito sporozoite burden was also significantly higher in the peridomicile-collected population.

  9. Laboratory oviposition, fecundity and egg hatching ability of colonized Anopheles albimanus from southwestern Mexico.

    PubMed

    Ramsey, J M; Salinas, E; Lopez, J R; del Angel-Cabañas, G; Martinez, L; Bown, D N

    1988-12-01

    Fecundity, oviposition patterns and egg hatching characteristics were studied in two colonies of Anopheles albimanus isolated from the Pacific coast of southern Mexico. Fecundity was inversely proportional to the cage space available to the female and was influenced by the bloodmeal source, feeding method and previous feeding history. The length of the gonotrophic cycle decreased with succeeding experience from a mean 6.6 in the first to 2.6 days for the fifth cycle. Oviposition timing was also dependent on availability of oviposition substrate. Hatching success of eggs increased significantly when the oviposition site was witheld until 48 hr post-bloodmeal.

  10. Habitat discrimination by gravid Anopheles gambiae sensu lato – a push-pull system

    PubMed Central

    2014-01-01

    Background The non-random distribution of anopheline larvae in natural habitats suggests that gravid females discriminate between habitats of different quality. Whilst physical and chemical cues used by Culex and Aedes vector mosquitoes for selecting an oviposition site have been extensively studied, those for Anopheles remain poorly explored. Here the habitat selection by Anopheles gambiae sensu lato (s.l.), the principal African malaria vector, was investigated when presented with a choice of two infusions made from rabbit food pellets, or soil. Methods Natural colonization and larval survival was evaluated in artificial ponds filled randomly with either infusion. Dual-choice, egg-count bioassays evaluated the responses of caged gravid females to (1) two- to six-day old infusions versus lake water; (2) autoclaved versus non-autoclaved soil infusions; and assessed (3) the olfactory memory of gravid females conditioned in pellet infusion as larvae. Results Wild Anopheles exclusively colonized ponds with soil infusion and avoided those with pellet infusion. When the individual infusions were tested in comparison with lake water, caged An. gambiae sensu stricto (s.s.) showed a dose response: females increasingly avoided the pellet infusion with increasing infusion age (six-day versus lake water: odds ratio (OR) 0.22; 95% confidence interval (CI) 0.1-0.5) and showed increasing preference to lay eggs as soil infusion age increased (six-day versus lake water: OR 2.1; 95% CI 1.4-3.3). Larvae survived in soil infusions equally well as in lake water but died in pellet infusions. Anopheles gambiae s.s. preferred to lay eggs in the non-autoclaved soil (OR 2.6; 95% CI 1.8-3.7) compared with autoclaved soil. There was no change in the avoidance of pellet infusion by individuals reared in the infusion compared with those reared in lake water. Conclusion Wild and caged An. gambiae s.l. females discriminate between potential aquatic habitats for oviposition. These choices benefit

  11. Identification of the sibling species of the Anopheles maculipennis complex by heteroduplex analysis.

    PubMed

    Romi, R; Boccolini, D; Di Luca, M; La Rosa, G; Marinucci, M

    2000-10-01

    The group of anopheline mosquitoes referred to as 'Anopheles maculipennis complex' includes the most important malaria vectors of the Palearctic Western region. The species belonging to this complex, however, are difficult or impossible to distinguish by morphological characters. To differentiate sibling palearctic species belonging to this complex, interspecific differences in the ITS2 sequences were used to set up a rapid and sensitive diagnostic tool based on heteroduplex analysis. The relative heteroduplex mobility allowed the following seven species to be readily distinguished: An. atroparvus, An. labranchiae, An. maculipennis s.s. , An. martinius, An melanoon, An. messeae and An. sacharovi.

  12. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    PubMed Central

    2013-01-01

    Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. Methods Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Results Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was

  13. 3D tracking of mating events in wild swarms of the malaria mosquito Anopheles gambiae.

    PubMed

    Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Yaro, Alpha S; Dao, Adama; Traoré, Sekou F; Ribeiro, José M; Lehmann, Tovi; Paley, Derek A

    2011-01-01

    We describe an automated tracking system that allows us to reconstruct the 3D kinematics of individual mosquitoes in swarms of Anopheles gambiae. The inputs to the tracking system are video streams recorded from a stereo camera system. The tracker uses a two-pass procedure to automatically localize and track mosquitoes within the swarm. A human-in-the-loop step verifies the estimates and connects broken tracks. The tracker performance is illustrated using footage of mating events filmed in Mali in August 2010.

  14. Alaskan Commodities Irradiation Project

    SciTech Connect

    Zarling, J.P.; Swanson, R.B.; Logan, R.R.; Das, D.K.; Lewis, C.E.; Workman, W.G.; Tumeo, M.A.; Hok, C.I.; Birklid, C.A.; Bennett, F.L.

    1988-12-01

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology. 40 refs., 50 figs., 53 tabs.

  15. Spatial Patterns of Plasmodium falciparum Clinical Incidence, Asymptomatic Parasite Carriage and Anopheles Density in Two Villages in Mali.

    PubMed

    Sissoko, Mahamadou S; van den Hoogen, Lotus L; Samake, Yacouba; Tapily, Amadou; Diarra, Adama Z; Coulibaly, Maimouna; Bouare, Madama; Gaudart, Jean; Knight, Philip; Sauerwein, Robert W; Takken, Willem; Bousema, Teun; Doumbo, Ogobara K

    2015-10-01

    Heterogeneity in malaria exposure is most readily recognized in areas with low-transmission patterns. By comparison, little research has been done on spatial patterns in malaria exposure in high-endemic settings. We determined the spatial clustering of clinical malaria incidence, asymptomatic parasite carriage, and Anopheles density in two villages in Mali exposed to low- and mesoendemic-malaria transmission. In the two study areas that were < 1 km(2) in size, we observed evidence for spatial clustering of Anopheles densities or malaria parasite carriage during the dry season. Anopheles density and malaria prevalence appeared associated in some of our detected hotspots. However, many households with high parasite prevalence or high Anopheles densities were located outside the identified hotspots. Our findings indicate that within small villages exposed to low- or mesoendemic-malaria transmission, spatial patterns in mosquito densities and parasite carriage are best detected in the dry season. Considering the high prevalence of parasite carriage outside detected hotspots, the suitability of the area for targeting control efforts to households or areas of more intense malaria transmission may be limited.

  16. Draft Genome Sequences of Two Strains of Serratia spp. from the Midgut of the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Pei, Dong; Hill-Clemons, Casey; Carissimo, Guillaume; Yu, Wanqin; Vernick, Kenneth D.

    2015-01-01

    Here, we report the annotated draft genome sequences of two strains of Serratia spp., Ag1 and Ag2, isolated from the midgut of two different strains of Anopheles gambiae. The genomes of these two strains are almost identical. PMID:25767231

  17. Genome Sequence of Elizabethkingia anophelis Strain EaAs1, Isolated from the Asian Malaria Mosquito Anopheles stephensi.

    PubMed

    Raygoza Garay, Juan Antonio; Hughes, Grant L; Koundal, Vikas; Rasgon, Jason L; Mwangi, Michael M

    2016-03-10

    We sequenced the genome of a strain of the Gram-negative bacterial species Elizabethkingia anophelis, which is an important component of the Anopheles mosquito microbiome. This genome sequence will add to the list of resources used to examine host-microbe interactions in mosquitoes.

  18. Genome Sequence of Stenotrophomonas maltophilia Strain SmAs1, Isolated From the Asian Malaria Mosquito Anopheles stephensi

    PubMed Central

    Hughes, Grant L.; Raygoza Garay, Juan Antonio; Koundal, Vikas; Mwangi, Michael M.

    2016-01-01

    An isolate of Stenotrophomonas maltophilia was cultured from the Asian malaria vector Anopheles stephensi. Here, we present the annotated draft genome sequence of this S. maltophilia strain. This genomic resource will facilitate further characterization of bacteria associated with mosquitoes. PMID:26966198

  19. Habitat suitability of Anopheles vector species and association with human malaria in the Atlantic Forest in south-eastern Brazil.

    PubMed

    Laporta, Gabriel Zorello; Ramos, Daniel Garkauskas; Ribeiro, Milton Cezar; Sallum, Maria Anice Mureb

    2011-08-01

    Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.

  20. Notes and Redescriptions of Some Anopheles Series Arribalzagia Holotypes (Diptera: Culicidae) in the British Museum (Natural History)

    DTIC Science & Technology

    1988-10-12

    Ev- ans La Cabrero Estado Carabobo 192 1 Dr. M Nunez Tovar”; “Holotype of Anopheles venezuelae Evans det. J . Chainey 1975.” Condition of specimen...Anophelines of the Amazon Med. Parasitol. 17: 101-l 11. Valley. Proc. Entomol. Sot. Wash. 35: 117-133. Reid, J . A. and K. L. Knight. 196 1. Classification

  1. Larvicidal and repellent activity of Vetiveria zizaniodes (Poaceae) essential oil against the malaria vector Anopheles stephensi (Liston) (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Essential oil extracted by steam distillation of Vetiveria zizanioides (L.) Nash (Poaceae) was evaluated for larvicidal and adult repellent activity against the malaria vector Anopheles stephensi (Liston). Median lethal concentrations (LC50) at 24 h post treatment for instars 1-4 were, respectively,...

  2. Toxicity of six plant extracts and two pyridine alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behavior especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined th...

  3. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands.

    PubMed

    Afrane, Yaw A; Githeko, Andrew K; Yan, Guiyun

    2012-02-01

    Climate change is expected to lead to latitudinal and altitudinal temperature increases. High-elevation regions such as the highlands of Africa and those that have temperate climate are most likely to be affected. The highlands of Africa generally exhibit low ambient temperatures. This restricts the distribution of Anopheles mosquitoes, the vectors of malaria, filariasis, and O'nyong'nyong fever. The development and survival of larval and adult mosquitoes are temperature dependent, as are mosquito biting frequency and pathogen development rate. Given that various Anopheles species are adapted to different climatic conditions, changes in climate could lead to changes in species composition in an area that may change the dynamics of mosquito-borne disease transmission. It is important to consider the effect of climate change on rainfall, which is critical to the formation and persistence of mosquito breeding sites. In addition, environmental changes such as deforestation could increase local temperatures in the highlands; this could enhance the vectorial capacity of the Anopheles. These experimental data will be invaluable in facilitating the understanding of the impact of climate change on Anopheles.

  4. Electrophysiological responses of gustatory receptor neurons on the labella of the common malaria mosquito Anopheles quadrimaculatus Say (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recorded electrical responses from sensory cells associated with gustatory sensilla on the labella of female Anopheles quadrimaculatus to salt, sucrose, quinine (a feeding deterrent) and the insect repellent, N,N-diethyl-3-methylbenzamide (DEET). A salt-sensitive cell responded to increasing con...

  5. Brazilian mosquito (Diptera: Culicidae) fauna: I. Anopheles species from Porto Velho, Rondônia state, western Amazon, Brazil.

    PubMed

    Morais, Sirlei Antunes; Urbinatti, Paulo Roberto; Sallum, Maria Anice Mureb; Kuniy, Adriana Akemi; Moresco, Gilberto Gilmar; Fernandes, Aristides; Nagaki, Sandra Sayuri; Natal, Delsio

    2012-12-01

    This study contributes to knowledge of Anopheles species, including vectors of Plasmodium from the western Brazilian Amazon in Porto Velho, Rondônia State. The sampling area has undergone substantial environmental changes as a consequence of agricultural and hydroelectric projects, which have caused intensive deforestation and favored habitats for some mosquito species. The purpose of this study was to diagnose the occurrence of anopheline species from collections in three locations along an electric-power transmission line. Each locality was sampled three times from 2010 to 2011. The principal adult mosquitoes captured in Shannon trap were Anopheles darlingi, An. triannulatus, An. nuneztovari l.s., An.gilesi and An. costai. In addition, larvae were collected in ground breeding sites for Anopheles braziliensis, An. triannulatus, An. darlingi, An. deaneorum, An. marajoara, An. peryassui, An. nuneztovari l.s. and An. oswaldoi-konderi. Anopheles darlingi was the most common mosquito in the region. We discuss Culicidae systematics, fauna distribution, and aspects of malaria in altered habitats of the western Amazon.

  6. Genome Sequence of Elizabethkingia anophelis Strain EaAs1, Isolated from the Asian Malaria Mosquito Anopheles stephensi

    PubMed Central

    Raygoza Garay, Juan Antonio; Hughes, Grant L.; Koundal, Vikas; Mwangi, Michael M.

    2016-01-01

    We sequenced the genome of a strain of the Gram-negative bacterial species Elizabethkingia anophelis, which is an important component of the Anopheles mosquito microbiome. This genome sequence will add to the list of resources used to examine host-microbe interactions in mosquitoes. PMID:26966196

  7. Food irradiation in perspective

    NASA Astrophysics Data System (ADS)

    Henon, Y. M.

    1995-02-01

    Food irradiation already has a long history of hopes and disappointments. Nowhere in the world it plays the role that it should have, including in the much needed prevention of foodborne diseases. Irradiated food sold well wherever consumers were given a chance to buy them. Differences between national regulations do not allow the international trade of irradiated foods. While in many countries food irradiation is still illegal, in most others it is regulated as a food additive and based on the knowledge of the sixties. Until 1980, wholesomeness was the big issue. Then the "prerequisite" became detection methods. Large amounts of money have been spent to design and validate tests which, in fact, aim at enforcing unjustified restrictions on the use of the process. In spite of all the difficulties, it is believed that the efforts of various UN organizations and a growing legitimate demand for food safety should in the end lead to recognition and acceptance.

  8. [The irradiation process].

    PubMed

    Barillot, I; Chauvet, B; Hannoun Lévi, J M; Lisbona, A; Leroy, T; Mahé, M A

    2016-09-01

    The purpose of this article is to describe the regulatory framework of the radiotherapy practice in France, the external irradiation and brachytherapy process and the guidelines for patient follow-up.

  9. Pesticide susceptibility status of Anopheles mosquitoes in four flood-affected districts of South Punjab, Pakistan.

    PubMed

    Rathor, Hamayun Rashid; Nadeem, Ghazala; Khan, Imtinan Akram

    2013-01-01

    Recent floods drastically increased the burden of disease, in particular the incidence of malaria, in the southern districts of the Punjab province in Pakistan. Control of malaria vector mosquitoes in these districts requires the adoption of an appropriate evidence-based policy on the use of pesticides, and having the latest information on the insecticide resistance status of malaria vector mosquitoes is essential for designing effective disease prevention policy. Using World Health Organization (WHO) test kits, the present study utilized papers impregnated with DDT, malathion, deltamethrin, lambda-cyhalothrin, and permethrin, to determine the insecticide susceptibility/resistance status of malaria vector mosquitoes in four flood-affected districts. The test results showed that both Anopheles stephensi and Anopheles culicifacies remained resistant to DDT and malathion. Tests with three commonly used pyrethroids, permethrin, lambda-cyhalothrin, and deltamethrin, detected resistance in the majority of cases, but in a number of localities mortalities with these three pyrethroids ranged from 80-97% and were therefore placed under verification-required status. This status indicates the presence of susceptible individuals in these populations. These results suggest that if appropriate resistance management strategies are applied in these areas, then the development of high levels of resistance can still be prevented or slowed. This study forms an important evidence base for the strategic planning of vector control in the four flood-affected districts.

  10. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-02-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.

  11. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection

    PubMed Central

    Angleró-Rodríguez, Yesseinia I.; Blumberg, Benjamin J.; Dong, Yuemei; Sandiford, Simone L.; Pike, Andrew; Clayton, April M.; Dimopoulos, George

    2016-01-01

    Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect’s ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito’s anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito’s susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito’s innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission. PMID:27678168

  12. Landscape and land cover factors influence the presence of Aedes and Anopheles larvae.

    PubMed

    Vanwambeke, Sophie O; Somboon, Pradya; Harbach, Ralph E; Isenstadt, Mark; Lambin, Eric F; Walton, Catherine; Butlin, Roger K

    2007-01-01

    The objective of this study was to test for associations between land cover data and the presence of mosquito larvae of the genera Aedes Meigen and Anopheles Meigen in northern Thailand at the landscape scale. These associations were compared with associations between larval habitat variables and the presence of mosquito larvae at a finer spatial scale. Collection data for the larvae of one Aedes species and three species-groups of Anopheles, all of which are involved in pathogen transmission, were used. A variety of northern Thai landscapes were included, such as upland villages, lowland villages and peri-urban areas. Logistic regression was used to evaluate associations. Generally, land cover and landscape variables explained the presence of larvae as well as did larval habitat variables. Results were best for species/species-groups with specific habitat requirements. Land cover variables act as proxies for the types of habitat available and their attributes. Good knowledge of the habitat requirements of the immature stages of mosquitoes is necessary for interpreting the effects of land cover.

  13. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe

    PubMed Central

    2011-01-01

    Background There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Methods Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Results Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004 Anopheles maculipennis s.s. Differentiation between sibling species was not so evident at the phenotype level. Conclusions Levels of population differentiation within An. atroparvus were low and not correlated with geographic distance or with putative physical barriers to gene flow (Alps and Pyrenées). While these results may suggest considerable levels of gene flow, other explanations such as the effect of historical population perturbations can also be hypothesized. PMID:21223582

  14. Bionomic Aspects of the Anopheles subpictus Species Complex in Sri Lanka

    PubMed Central

    Jude, Pavillupillai J.; Ramasamy, Ranjan; Surendran, Sinnathamby N.

    2014-01-01

    Anopheles subpictus Grassi s.l. (Diptera: Culicidae) functions as a secondary malaria vector to Anopheles culicifacies Giles s.l. (Diptera: Culicidae) in Sri Lanka. The taxon A. subpictus is reported to exist as a species complex comprising four sibling species (A–D) that can be differentiated through polytene chromosome banding patterns and stage-specific morphometric traits in India. Based on the morphological characteristics described for the Indian Subpictus Complex, the presence of all four sibling species has been described in Sri Lanka. As sibling species show distinct bio-ecological characteristics that are important for devising appropriate vector control measures, a study was carried out in six districts in the dry zone of Sri Lanka. The results confirm the presence of all four sibling species, with species C predominating in inland areas and species B in coastal areas. Species C and D were indoor-resting and indoor-feeding, while species B was outdoor-resting with no significant preference for indoor- or outdoor-resting. Species B showed distinct morphological variation in the ornamentation of wings and palpi. Blood meal analysis revealed that species B, C, and D can feed on humans as well as cattle. The differential bio-ecological traits shown by the members of the Subpictus Complex are important for developing appropriate vector control measures in Sri Lanka. PMID:25205254

  15. Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis.

    PubMed

    Zhou, Dan; Liu, Xianmiao; Sun, Yan; Ma, Lei; Shen, Bo; Zhu, Changliang

    2015-01-01

    Anopheles sinensis is an important malaria vector in China and other Southeast Asian countries, and the emergence of insecticide resistance in this mosquito poses a serious threat to the efficacy of malaria control programs. The recently published An. sinensis genome and transcriptome provide an opportunity to understand the molecular mechanisms of insecticide resistance. Analysis of the An. sinensis genome revealed 174 detoxification genes, including 93 cytochrome P450s (P450s), 31 glutathione-S-transferases (GSTs), and 50 choline/carboxylesterases (CCEs). The gene number was similar to that in An. gambiae, but represented a decrease of 29% and 42% compared with Aedes aegypti and Culex quinquefasciatus, respectively. The considerable contraction in gene number in Anopheles mosquitoes mainly occurred in two detoxification supergene families, P450s and CCEs. The available An. sinensis transcriptome was also re-analyzed to further identify key resistance-associated detoxification genes. Among 174 detoxification genes, 124 (71%) were detected. Several candidate genes overexpressed in a deltamethrin-resistant strain (DR-strain) were identified as belonging to the CYP4 or CYP6 family of P450s and the Delta GST class. These generated data provide a basis for identifying the resistance-associated genes of An. sinensis at the molecular level.

  16. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae)

    PubMed Central

    Linton, Yvonne-Marie; Ruiz-Lopez, J. Freddy; Conn, Jan E.; Sallum, Maria Anice M.; Póvoa, Marinete M.; Bergo, Eduardo S.; Oliveira, Tatiane M. P.; Sucupira, Izis; Wilkerson, Richard C.

    2015-01-01

    The Anopheles albitarsis group of mosquitoes comprises eight recognized species and one mitochondrial lineage. Our knowledge of malaria vectorial importance and the distribution and evolution of these taxa is incomplete. We constructed ecological niche models (ENMs) for these taxa and used hypothesized phylogenetic relationships and ENMs to investigate environmental and ecological divergence associated with speciation events. Two major clades were identified, one north (Clade 1) and one south (Clade 2) of the Amazon River that likely is or was a barrier to mosquito movement. Clade 1 species occur more often in higher average temperature locations than Clade 2 species, and taxon splits within Clade 1 corresponded with a greater divergence of variables related to precipitation than was the case within Clade 2. Comparison of the ecological profiles of sympatric species and sister species support the idea that phylogenetic proximity is related to ecological similarity. Anopheles albitarsis I, An. janconnae, and An. marajoara ENMs had the highest percentage of their predicted suitable habitat overlapping distribution models of Plasmodium falciparum and P. vivax, and warrant additional studies of the transmission potential of these species. Phylogenetic proximity may be related to malaria vectorial importance within the Albitarsis Group. PMID:24820570

  17. Indirect evidence that agricultural pesticides select for insecticide resistance in the malaria vector Anopheles gambiae.

    PubMed

    Luc, Djogbénou S; Benoit, Assogba; Laurette, Djossou; Michel, Makoutode

    2016-06-01

    We investigated the possible relationship between the agricultural use of insecticides and the emergence of insecticide resistance. Bioassays were conducted using simulated mosquito larval habitats and well known Anopheles gambiae strains. Soil samples were collected from vegetable production areas in Benin, including one site with insecticide use, one site where insecticides had not been used for two months, and a third where insecticides had not been used. Pupation and emergence rates were very low in pyrethroid-susceptible strains when exposed to soil that had been recently exposed to insecticides. Pupation and emergence rates in strains with the kdr mutation alone or both the kdr and Ace-1 mutations were much higher. Overall, strains with the kdr mutation survived at higher rates compared to that without kdr mutation. Although this study is observational, we provide indirect evidence indicating that soils from agricultural areas contain insecticide residues that can play a role in the emergence of insecticide resistance in Anopheles. This aspect should be taken into account to better utilize the insecticide in the context of integrated pest management programs.

  18. A proteogenomic analysis of Anopheles gambiae using high-resolution Fourier transform mass spectrometry.

    PubMed

    Chaerkady, Raghothama; Kelkar, Dhanashree S; Muthusamy, Babylakshmi; Kandasamy, Kumaran; Dwivedi, Sutopa B; Sahasrabuddhe, Nandini A; Kim, Min-Sik; Renuse, Santosh; Pinto, Sneha M; Sharma, Rakesh; Pawar, Harsh; Sekhar, Nirujogi Raja; Mohanty, Ajeet Kumar; Getnet, Derese; Yang, Yi; Zhong, Jun; Dash, Aditya P; MacCallum, Robert M; Delanghe, Bernard; Mlambo, Godfree; Kumar, Ashwani; Keshava Prasad, T S; Okulate, Mobolaji; Kumar, Nirbhay; Pandey, Akhilesh

    2011-11-01

    Anopheles gambiae is a major mosquito vector responsible for malaria transmission, whose genome sequence was reported in 2002. Genome annotation is a continuing effort, and many of the approximately 13,000 genes listed in VectorBase for Anopheles gambiae are predictions that have still not been validated by any other method. To identify protein-coding genes of An. gambiae based on its genomic sequence, we carried out a deep proteomic analysis using high-resolution Fourier transform mass spectrometry for both precursor and fragment ions. Based on peptide evidence, we were able to support or correct more than 6000 gene annotations including 80 novel gene structures and about 500 translational start sites. An additional validation by RT-PCR and cDNA sequencing was successfully performed for 105 selected genes. Our proteogenomic analysis led to the identification of 2682 genome search-specific peptides. Numerous cases of encoded proteins were documented in regions annotated as intergenic, introns, or untranslated regions. Using a database created to contain potential splice sites, we also identified 35 novel splice junctions. This is a first report to annotate the An. gambiae genome using high-accuracy mass spectrometry data as a complementary technology for genome annotation.

  19. Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Ali, Mohamed Yacoob Syed; Ravikumar, Sundaram; Beula, Johanson Margaret

    2013-01-01

    Objective To identify the larvicidal activity of the seaweed extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus Methods Seaweed extracts of Ulva lactuca, Caulerpa racemosa (C. racemosa), Sargassum microystum, Caulerpa scalpelliformis, Gracilaria corticata, Turbinaria decurrens, Turbinaria conoides and Caulerpa toxifolia were dissolved in DMSO to prepare a graded series of concentration. The test for the larvicidal effect of seaweeds against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of three mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (10-100 µg). Each experiment was conducted with triplicate with concurrent a control group. Results Among the seaweeds extract, C. racemosa showed toxicity against 4th instar larvae of Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi with equivalent LC50 value (0.055 6±0.010 3) µg/mL, (0.067 5±0.136 0) µg/mL and (0.066 1±0.007 6) µg/mL, respectively. Conclusions The present study concluded that, the mosquito larvicidal property of C. racemosa might be the prospective alternative source to control the mosquitoes.

  20. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    PubMed Central

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-01-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases. PMID:26839008

  1. Plasmodium vivax Sporozoite Production in Anopheles albimanus Mosquitoes for Vaccine Clinical Trials

    PubMed Central

    Solarte, Yezid; Manzano, María R.; Rocha, Leonardo; Hurtado, Hugo; James, Mark A.; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2011-01-01

    Vaccine development for Plasmodium vivax malaria is underway. A model to assess the protective efficacy of vaccine candidates in humans is urgently needed. Given the lack of continuous P. vivax cultures, we developed a system to infect Anopheles albimanus mosquitoes using blood from P. vivax-infected patients and determined parameters for challenge of malaria-naive volunteers by mosquito bite. Absence of co-infections in parasitized blood was confirmed by tests consistent with blood bank screening. A total of 119 experiments were conducted using batches of 900–4,500 mosquitoes fed by an artificial membrane feeding method. Optimal conditions for mosquito probing and infection were determined. Presence of oocyst and sporozoites were assessed on Days 7–8 and 14–15, respectively, and conditions to choose batches of infected mosquitoes for sporozoite challenge were established. Procedures to infect volunteers took a 2-hour period including verification of inoculum dose. Anopheles albimanus mosquitoes represent a valuable resource for P. vivax sporozoite challenge of volunteers. PMID:21292875

  2. Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis

    PubMed Central

    Zhou, Dan; Liu, Xianmiao; Sun, Yan; Ma, Lei; Shen, Bo; Zhu, Changliang

    2015-01-01

    Anopheles sinensis is an important malaria vector in China and other Southeast Asian countries, and the emergence of insecticide resistance in this mosquito poses a serious threat to the efficacy of malaria control programs. The recently published An. sinensis genome and transcriptome provide an opportunity to understand the molecular mechanisms of insecticide resistance. Analysis of the An. sinensis genome revealed 174 detoxification genes, including 93 cytochrome P450s (P450s), 31 glutathione-S-transferases (GSTs), and 50 choline/carboxylesterases (CCEs). The gene number was similar to that in An. gambiae, but represented a decrease of 29% and 42% compared with Aedes aegypti and Culex quinquefasciatus, respectively. The considerable contraction in gene number in Anopheles mosquitoes mainly occurred in two detoxification supergene families, P450s and CCEs. The available An. sinensis transcriptome was also re-analyzed to further identify key resistance-associated detoxification genes. Among 174 detoxification genes, 124 (71%) were detected. Several candidate genes overexpressed in a deltamethrin-resistant strain (DR-strain) were identified as belonging to the CYP4 or CYP6 family of P450s and the Delta GST class. These generated data provide a basis for identifying the resistance-associated genes of An. sinensis at the molecular level. PMID:26588704

  3. Characterization of Anopheles darlingi (Diptera: Culicidae) larval habitats in Belize, Central America

    NASA Technical Reports Server (NTRS)

    Manguin, S.; Roberts, D. R.; Andre, R. G.; Rejmankova, E.; Hakre, S.

    1996-01-01

    Surveys for larvae of Anopheles darlingi Root were conducted in April, May, and August 1994 in riverine habitats of central Belize (Cayo and Belize districts). An. darlingi was present during both the dry and wet seasons. Larvae were encountered most frequently in patches of floating debris along river margins. The floating mats were often formed by bamboo hanging over the banks and dense submersed bamboo roots. Larvae were found less frequently in lake margins, small lagoons, and ground pools with submersed roots and patches of floating leaves or vegetation. In addition to their association with floating debris, larvae of An. darlingi were associated positively with shade and submersed plants in riverine environments. Samples from river habitats showed the larvae of Anopheles albimanus Wiedemann to be strongly associated with sun-exposed sites containing green or blue-green algae. Unlike An. darlingi, An. albimanus was an ubiquitous mosquito, the immatures of which occurred in a wide variety of riverine and nonriverine aquatic habitats. Based on published reports and our experience, the association of An. darlingi with river systems was verified, and its distribution in Central America and Mexico was mapped.

  4. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia

    PubMed Central

    Chen, Bin; Harbach, Ralph E.; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K.

    2012-01-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except northern Thailand with central Thailand. Mismatch distributions and extremely significant Fs values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. PMID:22982161

  5. Ecology of Anopheles darlingi Root with respect to vector importance: a review

    PubMed Central

    2011-01-01

    Anopheles darlingi is one of the most important malaria vectors in the Americas. In this era of new tools and strategies for malaria and vector control it is essential to have knowledge on the ecology and behavior of vectors in order to evaluate appropriateness and impact of control measures. This paper aims to provide information on the importance, ecology and behavior of An. darlingi. It reviews publications that addressed ecological and behavioral aspects that are important to understand the role and importance of An. darlingi in the transmission of malaria throughout its area of distribution. The results show that Anopheles darlingi is especially important for malaria transmission in the Amazon region. Although numerous studies exist, many aspects determining the vectorial capacity of An. darlingi, i.e. its relation to seasons and environmental conditions, its gonotrophic cycle and longevity, and its feeding behavior and biting preferences, are still unknown. The vector shows a high degree of variability in behavioral traits. This makes it difficult to predict the impact of ongoing changes in the environment on the mosquito populations. Recent studies indicate a good ability of An. darlingi to adapt to environments modified by human development. This allows the vector to establish populations in areas where it previously did not exist or had been controlled to date. The behavioral variability of the vector, its adaptability, and our limited knowledge of these impede the establishment of effective control strategies. Increasing our knowledge of An. darlingi is necessary. PMID:21923902

  6. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    PubMed Central

    Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

    2015-01-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  7. Total lymphoid irradiation

    SciTech Connect

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-05-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen.

  8. Blood irradiation: Rationale and technique

    SciTech Connect

    Lewis, M.C. )

    1990-01-01

    Upon request by the local American Red Cross, the Savannah Regional Center for Cancer Care irradiates whole blood or blood components to prevent post-transfusion graft-versus-host reaction in patients who have severely depressed immune systems. The rationale for blood irradiation, the total absorbed dose, the type of patients who require irradiated blood, and the regulations that apply to irradiated blood are presented. A method of irradiating blood using a linear accelerator is described.

  9. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of

  10. Mosquito larvicidal properties of Orthisiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To determine the larvicidal activity of hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Orthosiphon thymiflorus leaves against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Methods: Larvicidal activity was determined in laboratory bioassays using var...

  11. Population Structure of the Primary Malaria Vector in South America, Anopheles darlingi, Using Isozyme, Random Amplified Polymorphic DNA, Internal Transcribed Spacer 2, and Morphologic Markers

    DTIC Science & Technology

    1999-01-01

    derscoring some congruence, in this case, between two dif- ferent molecular markers. Intraspecific variation in the ITS2 region of 21 members of...morphism in the salivary gland chromosomes of Anopheles darlingi. Mosq News 32: 555-565. 29. Tadei WP, Santos JMN, Rabbani MG, 1982. Biologia de ano...Contel EPB, dos Santos JMM, Tadei Wp, 1984. Biologia de Anophelinos Amazonicos. VI. Enzimatica em Anopheles dar- lingi Root (Dipt.: Culicidae). Acta

  12. The relationship between wing length, blood meal volume, and fecundity for seven colonies of Anopheles species housed at the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.

    PubMed

    Phasomkusolsil, Siriporn; Pantuwattana, Kanchana; Tawong, Jaruwan; Khongtak, Weeraphan; Kertmanee, Yossasin; Monkanna, Nantaporn; Klein, Terry A; Kim, Heung-Chul; McCardle, Patrick W

    2015-12-01

    Established colonies of Anopheles campestris, Anopheles cracens, Anopheles dirus, Anopheles kleini, Anopheles minimus, Anopheles sawadwongporni, and Anopheles sinensis are maintained at the Armed Forces Research Institute of Medical Sciences (AFRIMS). Females were provided blood meals on human blood containing citrate as an anticoagulant using an artificial membrane feeder. The mean wing length, used as an estimate of body size, for each species was compared to blood-feeding duration (time), blood meal volume, and numbers of eggs oviposited. Except for An. campestris and An. cracens, there were significant interspecies differences in wing length. The mean blood meal volumes (mm(3)) of An. kleini and An. sinensis were significantly higher than the other 5 species. For all species, the ratios of unfed females weights/blood meal volumes were similar (range: 0.76-0.88), except for An. kleini (1.08) and An. cracens (0.52), that were significantly higher and lower, respectively. Adult females were allowed to feed undisturbed for 1, 3, and 5min intervals before blood feeding was interrupted. Except for An. campestris and An. sawadwongporni, the number of eggs oviposited were significantly higher for females that fed for 3min when compared to those that only fed for 1min. This information is critical to better understand the biology of colonized Anopheles spp. and their role in the transmission of malaria parasites as they relate to the relative size of adult females, mean volumes of blood of engorged females for each of the anopheline species, and the effect of blood feeding duration on specific blood meal volumes and fecundity.

  13. ORNL irradiation creep facility

    SciTech Connect

    Reiley, T.C.; Auble, R.L.; Beckers, R.M.; Bloom, E.E.; Duncan, M.G.; Saltmarsh, M.J.; Shannon, R.H.

    1980-09-01

    A machine was developed at ORNL to measure the rates of elongation observed under irradiation in stressed materials. The source of radiation is a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). This choice allows experiments to be performed which simulate the effects of fast neutrons. A brief review of irradiation creep and experimental constraints associated with each measurement technique is given. Factors are presented which lead to the experimental choices made for the Irradiation Creep Facility (ICF). The ICF consists of a helium-filled chamber which houses a high-precision mechanical testing device. The specimen to be tested must be thermally stabilized with respect to the temperature fluctuations imposed by the particle beam which passes through the specimen. Electrical resistance of the specimen is the temperature control parameter chosen. Very high precision in length measurement and temperature control are required to detect the small elongation rates relevant to irradiation creep in the test periods available (approx. 1 day). The apparatus components and features required for the above are presented in some detail, along with the experimental procedures. The damage processes associated with light ions are discussed and displacement rates are calculated. Recent irradiation creep results are given, demonstrating the suitability of the apparatus for high resolution experiments. Also discussed is the suitability of the ICF for making high precision thermal creep measurements.

  14. Development of a Gravid Trap for Collecting Live Malaria Vectors Anopheles gambiae s.l.

    PubMed Central

    Dugassa, Sisay; Lindh, Jenny M.; Oyieke, Florence; Mukabana, Wolfgang R.; Lindsay, Steven W.; Fillinger, Ulrike

    2013-01-01

    Background Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps. Methods Experiments were implemented in an 80 m2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap’s sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap) that provided an open, unobstructed oviposition site was developed and evaluated. Results Box and CDC gravid traps collected similar numbers (relative rate (RR) 0.8, 95% confidence interval (CI) 0.6–1.2; p = 0.284), whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2–0.5; p < 0.001). The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6–0.7; p < 0.001). This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2–2.2; p = 0.001) with the new OviART trap. Conclusion Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles. PMID:23861952

  15. Identification of one capa and two pyrokinin receptors from the malaria mosquito Anopheles gambiae.

    PubMed

    Olsen, Stine S; Cazzamali, Giuseppe; Williamson, Michael; Grimmelikhuijzen, Cornelis J P; Hauser, Frank

    2007-10-19

    We cloned the cDNA of three evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae and functionally expressed them in Chinese hamster ovary cells. One receptor, Ang-Capa-R, was only activated by the two Anopheles capa neuropeptides Ang-capa-1 (GPTVGLFAFPRVamide) and Ang-capa-2 (pQGLVPFPRVamide) with EC(50) values of 8.6x10(-9)M and 3.3x10(-9)M, respectively, but not by any other known mosquito neuropeptide. The second receptor, Ang-PK-1-R, was selectively activated by the Anopheles pyrokinin-1 peptides Ang-PK-1-1 (AGGTGANSAMWFGPRLamide) and Ang-PK-1-2 (AAAMWFGPRLamide) with EC(50) values of 3.3x10(-8)M and 2.5x10(-8)M, respectively, but not by mosquito capa or pyrokinin-2 peptides. For the third receptor, Ang-PK-2-R, the most potent ligands were the pyrokinin-2 peptides Ang-PK-2-1 (DSVGENHQRPPFAPRLamide) and Ang-PK-2-2 (NLPFSPRLamide) with EC(50) values of 5.2x10(-9)M and 6.4x10(-9)M, respectively. However, this receptor could also be activated by the two pyrokinins-1, albeit with lower potency (EC(50): 2-5x10(-8)M). Because Ang-capa-1 and -2 and Ang-PK-1-1 are located on one preprohormone and the other peptides on another prohormone, these results imply a considerable crosstalk between the capa, pyrokinin-1 and pyrokinin-2 systems. Gene structure and phylogenetic tree analyses showed that Ang-Capa-R was the orthologue of the Drosophila capa receptor CG14575, Ang-PK-1-R the orthologue of the Drosophila pyrokinin-1 receptor CG9918, and Ang-PK-2-R the orthologue of the Drosophila pyrokinin-2 receptors CG8784 and CG8795. This is the first report on the functional characterization and crosstalk properties of capa and pyrokinin receptors in mosquitoes.

  16. Predicting the potential distribution of main malaria vectors Anopheles stephensi, An. culicifacies s.l. and An. fluviatilis s.l. in Iran based on maximum entropy model.

    PubMed

    Pakdad, Kamran; Hanafi-Bojd, Ahmad Ali; Vatandoost, Hassan; Sedaghat, Mohammad Mehdi; Raeisi, Ahmad; Moghaddam, Abdolreza Salahi; Foroushani, Abbas Rahimi

    2017-05-01

    Malaria is considered as a major public health problem in southern areas of Iran. The goal of this study was to predict best ecological niches of three main malaria vectors of Iran: Anopheles stephensi, Anopheles culicifacies s.l. and Anopheles fluviatilis s.l. A databank was created which included all published data about Anopheles species of Iran from 1961 to 2015. The suitable environmental niches for the three above mentioned Anopheles species were predicted using maximum entropy model (MaxEnt). AUC (area under Roc curve) values were 0.943, 0.974 and 0.956 for An. stephensi, An. culicifacies s.l. and An. fluviatilis s.l respectively, which are considered as high potential power of model in the prediction of species niches. The biggest bioclimatic contributor for An. stephensi and An. fluviatilis s.l. was bio 15 (precipitation seasonality), 25.5% and 36.1% respectively, followed by bio 1 (annual mean temperature), 20.8% for An. stephensi and bio 4 (temperature seasonality) with 49.4% contribution for An. culicifacies s.l. This is the first step in the mapping of the country's malaria vectors. Hence, future weather situation can change the dispersal maps of Anopheles. Iran is under elimination phase of malaria, so that such spatio-temporal studies are essential and could provide guideline for decision makers for IVM strategies in problematic areas.

  17. FOOD IRRADIATION REACTOR

    DOEpatents

    Leyse, C.F.; Putnam, G.E.

    1961-05-01

    An irradiation apparatus is described. It comprises a pressure vessel, a neutronic reactor active portion having a substantially greater height than diameter in the pressure vessel, an annular tank surrounding and spaced from the pressure vessel containing an aqueous indium/sup 1//sup 1//sup 5/ sulfate solution of approximately 600 grams per liter concentration, means for circulating separate coolants through the active portion and the space between the annular tank and the pressure vessel, radiator means adapted to receive the materials to be irradiated, and means for flowing the indium/sup 1//sup 1//sup 5/ sulfate solution through the radiator means.

  18. Fuel or irradiation subassembly

    DOEpatents

    Seim, O.S.; Hutter, E.

    1975-12-23

    A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.

  19. Effects of transmission-blocking immunity on Plasmodium vivax infections in Anopheles albimanus populations.

    PubMed

    Ramsey, J M; Salinas, E; Rodriguez, M H; Beaudoin, R L

    1994-02-01

    Two colonized populations of Anopheles albimanus isolated from the Suchiate region, Chiapas State, Mexico, were compared for their susceptibility to coindigenous Plasmodium vivax. Groups of mosquitoes were fed in vitro with either autologous donor blood or the same blood cells substituted with serum negative for anti-gametocyte antibody. Significant differences in susceptibility between the 2 colonies were encountered if the autologous blood from a patient was fed to mosquitoes: mean infection rates of AnA2-positive groups was double that in AnA1 mosquitoes. Consistent for both colonies, only 23.6% of samples positive from malaria-negative serum-substituted blood were infected with an autologous blood feed. Vector competence in these mosquito populations was partially linked to the human populations's immune response to the parasite.

  20. Molecular Taxonomy Provides New Insights into Anopheles Species of the Neotropical Arribalzagia Series

    PubMed Central

    Gómez, Giovan F.; Bickersmith, Sara A.; González, Ranulfo; Conn, Jan E.; Correa, Margarita M.

    2015-01-01

    Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI) and nuclear internal transcribed spacer 2 (ITS2) sequences were used to evaluate initial identification and to investigate phylogenetic relationships of seven Anopheles morphospecies of the Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades for An. punctimaculas.s., An. calderoni, An. malefactor s.l., An. neomaculipalpus, An. apicimacula s.l., An. mattogrossensis and An. peryassui. This study provides the first molecular confirmation of An. malefactorfrom Colombia and discovered conflicting patterns of divergence for the molecular markers among specimens from northeast and northern Colombia suggesting the presence of two previously unrecognized Molecular Operational Taxonomic Units (MOTUs). Furthermore, two highly differentiated An. apicimacula MOTUs previously found in Panama were detected. Overall, the combined molecular dataset facilitated the detection of known and new Colombian evolutionary lineages, and constitutes the baseline for future research on their bionomics, ecology and potential role as malaria vectors. PMID:25774795

  1. Use of generalized regression tree models to characterize vegetation favoring Anopheles albimanus breeding.

    PubMed

    Hernandez, J E; Epstein, L D; Rodriguez, M H; Rodriguez, A D; Rejmankova, E; Roberts, D R

    1997-03-01

    We propose the use of generalized tree models (GTMs) to analyze data from entomological field studies. Generalized tree models can be used to characterize environments with different mosquito breeding capacity. A GTM simultaneously analyzes a set of predictor variables (e.g., vegetation coverage) in relation to a response variable (e.g., counts of Anopheles albimanus larvae), and how it varies with respect to a set of criterion variables (e.g., presence of predators). The algorithm produces a treelike graphical display with its root at the top and 2 branches stemming down from each node. At each node, conditions on the value of predictors partition the observations into subgroups (environments) in which the relation between response and criterion variables is most homogeneous.

  2. Biological variation in two Anopheles vestitipennis populations with different feeding preferences in southern Mexico.

    PubMed

    Ulloa, Armando; Rodríguez, Mario H; Arredondo-Jimenez, Juan I; Fernandez-Salas, Ildefonso

    2005-12-01

    The lengths of gonotrophic cycle and egg development and survival rate were studied in Anopheles vestitipennis collected in horse and human-baited traps in southern Mexico. The gonotrophic cycle duration was estimated using cross-correlation analysis, whereas the survival rate was assessed using a vertical method. Daily changes of parity rates gave significant correlation indices at 3 and 4 days in the zoophilic and anthropophilic populations, respectively. The minimum time required to develop mature eggs after blood feeding was 54 and 60 h, and the survival rate was 0.93 and 0.88 in zoophilic and anthropophilic female mosquito populations, respectively. These biological differences provide additional support for the existence of subpopulations with distinctive feeding preferences within An. vestitipennis in southern Mexico.

  3. Intradomiciliary behavior of Anopheles albimanus on the coastal plain of southern Mexico: implications for malaria control.

    PubMed

    Bown, D N; Rodriguez, M H; Arredondo-Jimenez, J I; Loyola, E G; Rodriguez, M C

    1993-09-01

    The postfeeding indoor resting behavior of Anopheles albimanus in experimental houses in southern México was investigated by using a mark-recapture procedure. The majority of mosquitoes rested inside houses after taking a blood meal indoors. There was a higher landing frequency on interior surfaces other than walls and roofs; however, mosquitoes rested for longer periods on these 2 surfaces. Successive landings on walls after short flights showed that mosquitoes gradually increased their mean landing height from 1.0 to 1.4 m. Similarly, mosquitoes resting at the base of inner roofs had a successive landing height range of about 0.5 m. Based on these observations and the potential for reduction of nearly 50% in the quantity of insecticide used and the time needed to apply it, village-scale studies involving the selective spraying of a 1-m-wide swath of insecticide on walls and on roofs are recommended in this area.

  4. Behavioral response of Anopheles darlingi to DDT-sprayed house walls in Amazonia.

    PubMed

    Roberts, D R; Alecrim, W D

    1991-01-01

    The behavioral response of Anopheles darlingi females to spraying of house walls with DDT was studied along the Ituxi River in Amazonas, Brazil, using a house sprayed with 2 g DDT per square meter of wall surface and an untreated house serving as a control. It was found that hardly any An. darlingi females entered, exited, or took blood meals inside the treated house after it was sprayed with DDT, and that specimens marked and released inside the house tended to depart immediately. This behavior appears to constitute true repellency rather than contact irritability. Since the typical house in the vicinity of the study site had only two walls, the persistence of malaria in the local area was probably due to home construction practices.

  5. Microplate assay analysis of the distribution of organophosphate and carbamate resistance in Guatemalan Anopheles albimanus

    PubMed Central

    Brogdon, W. G.; Beach, R. F.; Stewart, J. M.; Castanaza, L.

    1988-01-01

    Simple microplate assay methods for determining the frequency of insecticide resistance in single mosquitos were used to study the distribution and localization of organophosphate and carbamate resistance in field populations of Anopheles albimanus Weidemann in Guatemala, where such resistance, caused by heavy use of agricultural pesticides, has long been assumed to be widespread. Areas of complete susceptibility to organophosphates and carbamates were observed, as well as areas where the resistant phenotypes represented up to 98% of the population. Overall, the resistance levels were lower and more localized than expected. Two mechanisms of resistance were identified by the microassay methods. These were the elevated esterase (nonspecific esterase) and insensitive acetylcholinesterase mechanisms which were selected independently, the former (documented for the first time in Central American anophelines) being predominant. These methods represent a promising new technology for the detection and assessment of resistance and will facilitate improved control strategy decisions. PMID:3262440

  6. Assessment of the residual toxicity to Anopheles gambiae of the organophosphorus insecticides malathion and Baytex

    PubMed Central

    Smith, A.; Hocking, K. S.

    1962-01-01

    As part of a WHO programme to evaluate possible substitutes for the chlorinated hydrocarbons to which anopheline mosquitos in many countries have become resistant, two organophosphorus insecticides, malathion and Baytex, were tested as residual sprays on various types of surface against Anopheles gambiae adults in experimental huts at Magugu in Tanganyika. The long-lasting toxicity of both insecticides on relatively impervious surfaces was confirmed, but—as is the case with the chlorinated hydrocarbons—shorter persistence was obtained on sorptive surfaces. As most of the mosquitos rested on the roof, its surface was of much greater importance than the wall surface in determining kill; trials with naturally entering mosquitos indicated that where the roof was of grass malathion was to be preferred to Baytex. Observations confirmed that control huts attracted far more mosquitos than the treated huts and that the insecticide vapour apparently masked the human odour. PMID:13993107

  7. High-Resolution Cytogenetic Map for the African Malaria Vector Anopheles gambiae

    PubMed Central

    George, Phillip; Sharakhova, Maria V.; Sharakhov, Igor V.

    2010-01-01

    Cytogenetic and physical maps are indispensible for precise assembly of genome sequences, functional characterization of chromosomal regions, and population genetic and taxonomic studies. We have created a new cytogenetic map for Anopheles gambiae by using a high-pressure squash technique that increases overall band clarity. To link chromosomal regions to the genome sequence, we attached genome coordinates, based on 302 markers of BAC, cDNA clones, and PCR-amplified gene fragments, to the chromosomal bands and interbands at approximately a 0.5-1 Mb interval. In addition, we placed the breakpoints of seven common polymorphic inversions on the map and described the chromosomal landmarks for the arm and inversion identification. The map's improved resolution can be used to further enhance physical mapping, improve genome assembly, and stimulate epigenomic studies of malaria vectors. PMID:20609021

  8. “Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes”

    PubMed Central

    Neafsey, Daniel E.; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.; Brockman, Andrew I.; Burkot, Thomas R.; Burt, Austin; Chan, Clara S.; Chauve, Cedric; Chiu, Joanna C.; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L.M.; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B.; Guelbeogo, Wamdaogo M.; Hall, Andrew B.; Han, Mira V.; Hlaing, Thaung; Hughes, Daniel S.T.; Jenkins, Adam M.; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G.; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C.; Kirmitzoglou, Ioannis K.; Koekemoer, Lizette L.; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K.N.; Lirakis, Manolis; Lobo, Neil F.; Lowy, Ernesto; MacCallum, Robert M.; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N.; Moore, Wendy; Murphy, Katherine A.; Naumenko, Anastasia N.; Nolan, Tony; Novoa, Eva M.; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A.; Pakpour, Nazzy; Papathanos, Philippos A.; Peery, Ashley N.; Povelones, Michael; Prakash, Anil; Price, David P.; Rajaraman, Ashok; Reimer, Lisa J.; Rinker, David C.; Rokas, Antonis; Russell, Tanya L.; Sagnon, N'Fale; Sharakhova, Maria V.; Shea, Terrance; Simão, Felipe A.; Simard, Frederic; Slotman, Michel A.; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J.; Thomas, Gregg W.C.; Tojo, Marta; Topalis, Pantelis; Tubio, José M.C.; Unger, Maria F.; Vontas, John; Walton, Catherine; Wilding, Craig S.; Willis, Judith H.; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M.; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K.; Collins, Frank H.; Cornman, Robert S.; Crisanti, Andrea; Donnelly, Martin J.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Hansen, Immo A.; Howell, Paul I.; Kafatos, Fotis C.; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A.T.; Ribeiro, José M.; Riehle, Michael A.; Sharakhov, Igor V.; Tu, Zhijian; Zwiebel, Laurence J.; Besansky, Nora J.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover, but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  9. Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation

    PubMed Central

    Clarkson, Chris S.; Weetman, David; Essandoh, John; Yawson, Alexander E.; Maslen, Gareth; Manske, Magnus; Field, Stuart G.; Webster, Mark; Antão, Tiago; MacInnis, Bronwyn; Kwiatkowski, Dominic; Donnelly, Martin J.

    2014-01-01

    Adaptive introgression can provide novel genetic variation to fuel rapid evolutionary responses, though it may be counterbalanced by potential for detrimental disruption of the recipient genomic background. We examine the extent and impact of recent introgression of a strongly selected insecticide-resistance mutation (Vgsc-1014F) located within one of two exceptionally large genomic islands of divergence separating the Anopheles gambiae species pair. Here we show that transfer of the Vgsc mutation results in homogenization of the entire genomic island region (~1.5% of the genome) between species. Despite this massive disruption, introgression is clearly adaptive with a dramatic rise in frequency of Vgsc-1014F and no discernable impact on subsequent reproductive isolation between species. Our results show (1) how resilience of genomes to massive introgression can permit rapid adaptive response to anthropogenic selection and (2) that even extreme prominence of genomic islands of divergence can be an unreliable indicator of importance in speciation. PMID:24963649

  10. Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation.

    PubMed

    Clarkson, Chris S; Weetman, David; Essandoh, John; Yawson, Alexander E; Maslen, Gareth; Manske, Magnus; Field, Stuart G; Webster, Mark; Antão, Tiago; MacInnis, Bronwyn; Kwiatkowski, Dominic; Donnelly, Martin J

    2014-06-25

    Adaptive introgression can provide novel genetic variation to fuel rapid evolutionary responses, though it may be counterbalanced by potential for detrimental disruption of the recipient genomic background. We examine the extent and impact of recent introgression of a strongly selected insecticide-resistance mutation (Vgsc-1014F) located within one of two exceptionally large genomic islands of divergence separating the Anopheles gambiae species pair. Here we show that transfer of the Vgsc mutation results in homogenization of the entire genomic island region (~1.5% of the genome) between species. Despite this massive disruption, introgression is clearly adaptive with a dramatic rise in frequency of Vgsc-1014F and no discernable impact on subsequent reproductive isolation between species. Our results show (1) how resilience of genomes to massive introgression can permit rapid adaptive response to anthropogenic selection and (2) that even extreme prominence of genomic islands of divergence can be an unreliable indicator of importance in speciation.

  11. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes.

    PubMed

    Amer, Abdelkrim; Mehlhorn, Heinz

    2006-09-01

    Since ancient times, plant products were used in various aspects. However, their use against pests decreased when chemical products became developed. Recently, concerns increased with respect to public health and environmental security requiring detection of natural products that may be used against insect pests. In this study, 41 plant extracts and 11 oil mixtures were evaluated against the yellow fever mosquito, Aedes aegypti (Linnaeus), the malaria vector, Anopheles stephensi (Liston), and the filariasis and encephalitis vector, Culex quinquefasciatus (Say) (Diptera: Culicidae) using the skin of human volunteers to find out the protection time and repellency. The five most effective oils were those of Litsea (Litsea cubeba), Cajeput (Melaleuca leucadendron), Niaouli (Melaleuca quinquenervia), Violet (Viola odorata), and Catnip (Nepeta cataria), which induced a protection time of 8 h at the maximum and a 100% repellency against all three species. This effect needs, however, a peculiar formulation to fix them on the human skin.

  12. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

    PubMed

    Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R; Aganezov, Sergey S; Alekseyev, Max A; Allen, James E; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W; Blandin, Stephanie A; Brockman, Andrew I; Burkot, Thomas R; Burt, Austin; Chan, Clara S; Chauve, Cedric; Chiu, Joanna C; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L M; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B; Guelbeogo, Wamdaogo M; Hall, Andrew B; Han, Mira V; Hlaing, Thaung; Hughes, Daniel S T; Jenkins, Adam M; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C; Kirmitzoglou, Ioannis K; Koekemoer, Lizette L; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K N; Lirakis, Manolis; Lobo, Neil F; Lowy, Ernesto; MacCallum, Robert M; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N; Moore, Wendy; Murphy, Katherine A; Naumenko, Anastasia N; Nolan, Tony; Novoa, Eva M; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A; Pakpour, Nazzy; Papathanos, Philippos A; Peery, Ashley N; Povelones, Michael; Prakash, Anil; Price, David P; Rajaraman, Ashok; Reimer, Lisa J; Rinker, David C; Rokas, Antonis; Russell, Tanya L; Sagnon, N'Fale; Sharakhova, Maria V; Shea, Terrance; Simão, Felipe A; Simard, Frederic; Slotman, Michel A; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J; Thomas, Gregg W C; Tojo, Marta; Topalis, Pantelis; Tubio, José M C; Unger, Maria F; Vontas, John; Walton, Catherine; Wilding, Craig S; Willis, Judith H; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K; Collins, Frank H; Cornman, Robert S; Crisanti, Andrea; Donnelly, Martin J; Emrich, Scott J; Fontaine, Michael C; Gelbart, William; Hahn, Matthew W; Hansen, Immo A; Howell, Paul I; Kafatos, Fotis C; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A T; Ribeiro, José M; Riehle, Michael A; Sharakhov, Igor V; Tu, Zhijian; Zwiebel, Laurence J; Besansky, Nora J

    2015-01-02

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.

  13. Prey-predator relationship between the cyclopoids Mesocyclops longisetus and Mesocyclops meridianus with Anopheles aquasalis larvae.

    PubMed

    Pernía, Javier; de Zoppi, Roa Evelyn; Palacios-Cáceres, Mario

    2007-06-01

    Copepods from the genus Mesocyclops are considered predators and potential biological control for mosquito larvae. Two copepod species M. meridianus and M. longisetus were found in natural developmental habitat for malaria vector Anopheles aquasalis in Paria, Venezuela. Predatory potential on 1st-stage mosquito larvae An. aquasalis was evaluated under laboratory conditions for the 2 species of copepod. Further records of both copepod life cycle and body size were taken. A 2 x 3 factorial design was used, consisting of 1:1 and 10:1 prey-predator ratios with and without interspecific interactions. Despite significant body-size differences, M. longisetus and M. meridianus reached maturity 17 days after hatching with no significant differences. Life cycle span of both copepod species are described for the first time. The 2 species showed the same predatory potential despite larval (prey) abundance variation.

  14. Larvicidal activity of a few plant extracts against Culex quinquefasciatus and Anopheles stephensi.

    PubMed

    Pushpalatha, E; Muthukrishnan, J

    1995-03-01

    Larvicidal activity of partially purified extracts of leaves of Vitex negundo, Nerium oleander and seeds of Syzygium jambolanum on different instars of Culex quinquefasciatus and Anopheles stephensi was estimated. Petroleum ether (PE): Ethyl acetate (EA) 3:1 fraction of V. negundo, 1:1 fractions of N. oleander and S. jambolanum inflicted considerable larval mortality and interfered with pupal-adult metamorphosis. At very low concentration the active fractions of these plant extracts extended the duration of the various larval instars and of pupation. In general, I and II instar larvae were more susceptible to the active fractions. Species and stage specific differences in the susceptibility of the mosquitoes to the active fractions of the plant extracts were observed.

  15. Population genetic structure of malaria vector Anopheles stephensi Liston (Diptera: Culicidae).

    PubMed

    Gakhar, S K; Sharma, Richa; Sharma, Arvind

    2013-04-01

    Malaria is a complex disease that afflicts human today. Malaria epidemiology is associated with drug resistance in parasite and differential distribution and insecticide resistance in vector. Efforts are being made to eradicate malaria but burden of malaria is still increasing. Vector control is essential for malaria prevention strategies. Knowledge of population genetic structure is pre-requisite for determining prevention strategies particularly using transgenic mosquitoes. Population genetic study can predict level of gene flow between different populations. Anopheles stephensi Liston is urban vector of malaria in Indo-Pakistan subcontinent. About 12% of malaria cases of malaria in India are contributed by A. stephensi. Studies conducted on population genetics of A. stephensi using various markers in different parts of the world are discussed in this communication.

  16. Imidacloprid and Thiamethoxam Induced Mutations in Internal Transcribed Spacer 2 (ITS2) of Anopheles stephensi.

    PubMed

    Bhinder, Preety; Chaudhry, Asha; Barna, Bhupinder; Kaur, Satvinderjeet

    2012-05-01

    The present article deals with the polymerase chain reaction (PCR)-based genotoxicity evaluation of neonicotinoid pesticides, imidacloprid and thiamethoxam, by using the genome of a mosquito Anopheles stephensi taken as an experimental model. After treatment of the second instar larvae with LC(20) of the pesticides for 24 h, the induced nucleotide sequence variations in the internal transcribed spacer 2 (ITS2) of freshly hatched unfed control and treated individuals was studied from the sequence alignment data and the mutations in the form of insertion, deletion and substitution of bases were recorded. Measurable differences, indicative of the genetic damage due to imidacloprid and thiamethoxam were observed when ITS2 sequences of control and treated individuals were compared. It was found that imidacloprid-treated individual had 8 deletions, 29 insertions, 18 transitions and 33 transversions, whereas thiamethoxam-treated individual had 10 deletions, 8 insertions, 47 transitions and 68 transversions.

  17. Intraspecific nucleotide variation in Anopheles gambiae: new insights into the biology of malaria vectors.

    PubMed

    Morlais, Isabelle; Ponçon, Nicolas; Simard, Frédéric; Cohuet, Anna; Fontenille, Didier

    2004-12-01

    The Anopheles gambiae genome sequence, together with the recent development of molecular tools for genome-wide analysis, promises new insights into the biology of the malaria vector. These insights should help define the best possible breakdown point for interrupting transmission in the mosquito vector. A survey of the intraspecific nucleotide diversity in coding regions of three different mosquito strains showed an average of one single nucleotide polymorphism (SNP) every 125 coding base pairs. High levels of nucleotide polymorphism were observed in mosquito immune-related genes and pathogen recognition receptors harbored higher replacement substitutions. Genotyping at SNP loci in natural populations of An. gambiae from three malaria foci showed contrasting patterns. The distribution of mutation Y443H in the thioester-containing protein 3 (TEP3) gene suggested this mutational event has occurred under selective constraints. Our results show that SNP-based studies will be valuable in identifying the sequence variation associated with phenotypic traits shaping vector competence.

  18. Population structure of the malaria vector Anopheles funestus in Senegal based on microsatellite and cytogenetic data.

    PubMed

    Cohuet, A; Dia, I; Simard, F; Raymond, M; Fontenille, D

    2004-06-01

    The study of chromosomal inversions distribution within natural Anopheles funestus populations from West Africa revealed high levels of genetic structuring. In Burkina Faso, this was interpreted as evidence for incipient speciation, and two chromosomal forms were described, namely 'Folonzo' and 'Kiribina'. Assignation of field collected specimens to one chromosomal form depends upon application of an algorithm based on chromosomal inversions. We assessed relevance and applicability of this algorithm on An. funestus populations from Senegal, where both forms occur. Furthermore, we estimated the level of genetic differentiation between populations using microsatellite loci spread over the whole genome. Significant genetic differentiation was revealed between geographical populations of An. funestus, and the pattern observed suggested isolation by distance. Chromosomal heterogeneity was not detected by microsatellite markers. Thus, although incipient speciation could not be ruled out by our data, our results suggest that differential environmental selection pressure acting on inversions should be considered a major factor in shaping their distribution in wild An. funestus populations.

  19. Population genetic structure of the malaria vector Anopheles moucheti in south Cameroon forest region.

    PubMed

    Antonio-Nkondjio, Christophe; Ndo, Cyrille; Awono-Ambene, Parfait; Ngassam, Pierre; Fontenille, Didier; Simard, Frédéric

    2007-01-01

    We used recently developed microsatellite DNA markers to explore the population genetic structure of the malaria vector, Anopheles moucheti. Polymorphism at 10 loci was examined to assess level of genetic differentiation between four A. moucheti populations from South Cameroon situated 65-400 km apart. All microsatellite loci were highly polymorphic with a number of distinct alleles per locus ranging from 9 to 17. Fst estimates ranging from 0.0094 to 0.0275 (P < 0.001) were recorded. These results suggest a very low level of genetic differentiation between A. moucheti populations. The recently available microsatellite loci revealed useful markers to assess genetic differentiation between geographical populations of A. moucheti in Cameroon.

  20. Population genetic structure of urban malaria vector Anopheles stephensi in India.

    PubMed

    Sharma, Richa; Sharma, Arvind; Kumar, Ashwani; Dube, Madhulika; Gakhar, S K

    2016-04-01

    Malaria is a major public health problem in India because climatic condition and geography of India provide an ideal environment for development of malaria vector. Anopheles stephensi is a major urban malaria vector in India and its control has been hampered by insecticide resistance. In present study population genetic structure of A. stephensi is analyzed at macro geographic level using 13 microsatellite markers. Significantly high genetic differentiation was found in all studied populations with differentiation values (FST) ranging from 0.0398 to 0.1808. The geographic distance was found to be playing a major role in genetic differentiation between different populations. Overall three genetic pools were observed and population of central India was found to be coexisting in two genetic pools. High effective population size (Ne) was found in all the studied populations.

  1. Limited Diversity of Anopheles Darlingi in The Peruvian Amazon Region of Iquitos

    PubMed Central

    PINEDO-CANCINO, VIVIANA; SHEEN, PATRICIA; TARAZONA-SANTOS, EDUARDO; OSWALD, WILLIAM E.; JERI, CESAR; VITTOR, AMY YOMIKO; PATZ, JONATHAN A.; GILMAN, ROBERT H.

    2006-01-01

    Anopheles darlingi is the most important malaria vector in the Amazon basin of South America, and is capable of transmitting both Plasmodium falciparum and P. vivax. To understand the genetic structure of this vector in the Amazonian region of Peru, a simple polymerase chain reaction (PCR)-based test to identify this species of mosquito was used. A random amplified polymorphic DNA-PCR was used to study genetic variation at the micro-geographic level in nine geographically separate populations of An. darlingi collected in areas with different degrees of deforestation surrounding the city of Iquitos. Within-population genetic diversity in nine populations, as quantified by the expected heterozygosity (HE), ranged from 0.27 to 0.32. Average genetic distance (FST) among these populations was 0.017. These results show that the nine studied populations are highly homogeneous, suggesting that strategies can be developed to combat this malaria vector as a single epidemiologic unit. PMID:16896125

  2. Effect of bioactive fractions of Citrullus vulgaris Schrad. leaf extract against Anopheles stephensi and Aedes aegypti.

    PubMed

    Mullai, K; Jebanesan, A; Pushpanathan, T

    2008-04-01

    The benzene extract of Citrullus vulgaris was tested against Anopheles stephensi and Aedes aegypti for the larvicidal activity and ovicidal properties. The crude benzene extract was found to be more effective against A. stephensi than A. aegypti. The LC50 values were 18.56 and 42.76 ppm respectively. The LC50 values for silica gel fractions (bioactive fractions I, II, III and IV) were 11.32, 14.12, 14.53 and 16.02 ppm respectively. The mean per cent hatchability of the egg rafts were observed after 48 h post treatment. The crude extract of benzene exerted 100% mortality at 250 ppm against A. stephensi and at 300 ppm against A. aegypti. The silica gel fractions I and II afforded 100% mortality at 100 ppm and III and IV exerted the hatchability rate of 4.9 and 5.3% at the same concentration against A. stephensi.

  3. Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection.

    PubMed

    Dimopoulos, George; Christophides, George K; Meister, Stephan; Schultz, Jörg; White, Kevin P; Barillas-Mury, Carolina; Kafatos, Fotis C

    2002-06-25

    The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided into induced and down-regulated gene clusters. Gram+ and Gram- bacteria and microbial elicitors up-regulated a diverse set of genes, many belonging to the immunity class, and the response to malaria partially overlapped with this response. Oxidative stress activated a distinctive set of genes, mainly implicated in oxidoreductive processes. Injury up- and down-regulated gene clusters also were distinctive, prominently implicating glycolysis-related genes and citric acid cycle/oxidative phosphorylation/redox-mitochondrial functions, respectively. Cross-comparison of in vivo and in vitro responses indicated the existence of tightly coregulated gene groups that may correspond to gene pathways.

  4. A newly recognized species in the Anopheles (Nyssorhynchus) albitarsis complex (Diptera: Culicidae) from Puerto Carreno, Colombia.

    PubMed

    Brochero, Helena H L; Li, Cong; Wilkerson, Richard C

    2007-06-01

    We report a previously unrecognized mosquito species from eastern Colombia belonging to the Anopheles (Nyssorhynchus) albitarsis complex. We provisionally name this taxon An. albitarsis species "F." Until now, the only members of the Albitarsis Complex recorded from north of the Amazon River have been An. marajoara and a putative phylogenetic species, An. albitarsis "E." As with the other largely monomorphic species in the complex, we were able to detect its presence using ribosomal DNA internal transcribed spacer 2 (rDNA ITS2) and partial white gene sequences. Unlike An. marajoara, but in common with other species in the complex, An. albitarsis F lacks the white gene fourth intron. This species is sympatric with An. marajoara in a malaria-endemic area in Puerto Carreño, Vichada Department, Colombia. It could be an important current and/or historical vector of human malaria parasites at this locality and, depending on its actual distribution, elsewhere in Colombia and Venezuela.

  5. Larvicidal activity of oak Quercus infectoria Oliv. (Fagaceae) gall extracts against Anopheles stephensi Liston.

    PubMed

    Aivazi, Ali-Ashraf; Vijayan, V A

    2009-06-01

    There is a growing interest in the use of botanical insecticides to reduce the use of synthetic pesticides in order to avoid environmental side effects. Anopheles stephensi is the primary vector of urban malaria, an endemic disease in India. So, an effort to assay An. stephensi larvae with gall extracts of Quercus infectoria was made under laboratory conditions at Mysore. Ethyl-acetate extract was found to be the most effective of all the five extracts tested for larvicidal activity against the fourth instar larvae, with LC(50) of 116.92 ppm followed by gallotannin, n-butanol, acetone, and methanol with LC(50) values of 124.62, 174.76, 299.26, and 364.61 ppm, respectively. The efficacy in killing mosquito larvae may make this plant promising for the development of new botanical larvicide.

  6. Changes in Genetic Diversity from Field to Laboratory During Colonization of Anopheles darlingi Root (Diptera: Culicidae).

    PubMed

    Lainhart, William; Bickersmith, Sara A; Moreno, Marta; Rios, Carlos Tong; Vinetz, Joseph M; Conn, Jan E

    2015-11-01

    The process of colonizing any arthropod species, including vector mosquitoes, necessarily involves adaptation to laboratory conditions. The adaptation and evolution of colonized mosquito populations needs consideration when such colonies are used as representative models for pathogen transmission dynamics. A recently established colony of Anopheles darlingi, the primary malaria vector in Amazonian South America, was tested for genetic diversity and bottleneck after 21 generations, using microsatellites. As expected, laboratory An. darlingi had fewer private and rare alleles (frequency < 0.05), decreased observed heterozygosity, and more common alleles (frequency > 0.50), but no significant evidence of a bottleneck, decrease in total alleles, or increase in inbreeding compared with field specimens (founder population). Low-moderate differentiation between field and laboratory populations was detected. With these findings, and the documented inherent differences between laboratory and field populations, results of pathogen transmission studies using this An. darlingi colony need to be interpreted cautiously.

  7. Changes in Genetic Diversity from Field to Laboratory during Colonization of Anopheles darlingi Root (Diptera: Culicidae)

    PubMed Central

    Lainhart, William; Bickersmith, Sara A.; Moreno, Marta; Rios, Carlos Tong; Vinetz, Joseph M.; Conn, Jan E.

    2015-01-01

    The process of colonizing any arthropod species, including vector mosquitoes, necessarily involves adaptation to laboratory conditions. The adaptation and evolution of colonized mosquito populations needs consideration when such colonies are used as representative models for pathogen transmission dynamics. A recently established colony of Anopheles darlingi, the primary malaria vector in Amazonian South America, was tested for genetic diversity and bottleneck after 21 generations, using microsatellites. As expected, laboratory An. darlingi had fewer private and rare alleles (frequency < 0.05), decreased observed heterozygosity, and more common alleles (frequency > 0.50), but no significant evidence of a bottleneck, decrease in total alleles, or increase in inbreeding compared with field specimens (founder population). Low-moderate differentiation between field and laboratory populations was detected. With these findings, and the documented inherent differences between laboratory and field populations, results of pathogen transmission studies using this An. darlingi colony need to be interpreted cautiously. PMID:26283742

  8. The impact of insecticides management linked with resistance expression in Anopheles spp. populations.

    PubMed

    Silva, Guilherme Liberato da; Pereira, Thiago Nunes; Ferla, Noeli Juarez; Silva, Onilda Santos da

    2016-06-01

    The resistance of some species of Anopheles to chemical insecticides is spreading quickly throughout the world and has hindered the actions of prevention and control of malaria. The main mechanism responsible for resistance in these insects appears to be the target site known as knock-down resistance (kdr), which causes mutations in the sodium channel. Even so, many countries have made significant progress in the prevention of malaria, focusing largely on vector control through long-lasting insecticide nets (LLINs), indoor residual spraying and (IRS) of insecticides. The objective of this review is to contribute with information on the more applied insecticides for the control of the main vectors of malaria, its effects, and the different mechanisms of resistance. Currently it is necessary to look for others alternatives, e.g. biological control and products derived from plants and fungi, by using other organisms as a possible regulator of the populations of malaria vectors in critical outbreaks.

  9. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae

    PubMed Central

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A.; Serhan, Charles N.; Ribeiro, Jose M.; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to ‘remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. PMID:26100162

  10. Laboratory Evaluation of Temephos against Anopheles stephensi and Culex pipiens Larvae in Iran

    PubMed Central

    Abai, Mohammad Reza; Hanafi-Bojd, Ahmad Ali; Vatandoost, Hassan

    2016-01-01

    Background: Malaria is still a health problem in Iran. There are several vector control activities, including Indoor Residual spraying, using insecticide treated nets and larviciding including Temephos. In addition nuisance mosquitos are prevalent in the urban areas. So that evaluation of this species to larvicide will provide a clue for management of vector control activities. Methods: Two mosquito species were used in this study: Anopheles stephensi were collected from Kazeroun and Culex pipiens from Tehran, capital of Iran. All the tests were carried out according to the WHO method. All the test kis was provided by WHO. Results: Results showed a LC50= 0.0523 and LC90=0.3822 mg/l for An. stephensi. The figure for Cx. pipiens was 0.1838 and 0.8505 mg/l respectively. Conclusion: monitoring of insecticide resistance to Temephos should be evaluated regularly for management of vector control. PMID:28032103

  11. Comparative fitness assessment of Anopheles stephensi transgenic lines receptive to site-specific integration.

    PubMed

    Amenya, D A; Bonizzoni, M; Isaacs, A T; Jasinskiene, N; Chen, H; Marinotti, O; Yan, G; James, A A

    2010-04-01

    Genetically modified mosquitoes that are unable to transmit pathogens offer opportunities for controlling vector-borne diseases such as malaria and dengue. Site-specific gene recombination technologies are advantageous in the development of these insects because antipathogen effector genes can be inserted at integration sites in the genome that cause the least alteration in mosquito fitness. Here we describe Anopheles stephensi transgenic lines containing phi C31 attP'docking' sites linked to a fluorescent marker gene. Chromosomal insertion sites were determined and life-table parameters were assessed for transgenic mosquitoes of each line. No significant differences in fitness between the transgenic and nontransgenic mosquitoes were detected in this study. These transgenic lines are suitable for future site-specific integrations of antiparasite transgenes into the attP sites.

  12. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development

    PubMed Central

    Shaw, W. Robert; Marcenac, Perrine; Childs, Lauren M.; Buckee, Caroline O.; Baldini, Francesco; Sawadogo, Simon P.; Dabiré, Roch K.; Diabaté, Abdoulaye; Catteruccia, Flaminia

    2016-01-01

    The maternally inherited alpha-proteobacterium Wolbachia has been proposed as a tool to block transmission of devastating mosquito-borne infectious diseases like dengue and malaria. Here we study the reproductive manipulations induced by a recently identified Wolbachia strain that stably infects natural mosquito populations of a major malaria vector, Anopheles coluzzii, in Burkina Faso. We determine that these infections significantly accelerate egg laying but do not induce cytoplasmic incompatibility or sex-ratio distortion, two parasitic reproductive phenotypes that facilitate the spread of other Wolbachia strains within insect hosts. Analysis of 221 blood-fed A. coluzzii females collected from houses shows a negative correlation between the presence of Plasmodium parasites and Wolbachia infection. A mathematical model incorporating these results predicts that infection with these endosymbionts may reduce malaria prevalence in human populations. These data suggest that Wolbachia may be an important player in malaria transmission dynamics in Sub-Saharan Africa. PMID:27243367

  13. [The distribution of the mosquitoes of the Anopheles maculipennis complex (Diptera, Culicidae, Anophelinae) in Central Asia].

    PubMed

    Zvantsov, A B; Gordeev, M I; Goriacheva, I I; Ezhov, M N

    2014-01-01

    The polymerase chain reaction-restriction fragment length polymorphism method, cytogenetic analysis, and investigation of egg exochorion have indicated that three representatives of the Anopheles maculipennis complex (subgenus Anopheles): An artemievi Gordeev et al., An. messeae Falleroni, and An. marinius Shingarev. An. messeae is a European-Siberian species that has extended the southern border of its habitat and has been distributed in the south of Kazakhstan and in the north of Kyrgyzstan. In, Kyrgyzstan, An. messeae inhabiting the plains of Europe and Siberia is encountered rather high up in the mountains: the highest point where this species is found is at 1,879 m above sea level. An. artemievi is present in the highland and piedmont regions of Central Asia (Uzbekistan, Kyrgyzstan, southern Kazakhstan, and northern Tajikistan) and in the intermountain basins (Naryn and Fergana ones). The single finding of this species is in south-eastern Turkmenistan. On the contrary, An. martinius tends to be in the plains and occurs in north-eastern Turkmenistan, Karakalpakstan, and Kazakhstan (Kzyl-Orda). On the other hand, a population of this species is found in proximity to the foothills of the Gissar Range in the east of Uzbekistan. An.maculipennis s.str. is not seen in Central Asia. Early evidence for the presence of both An. maculipennis s.str. and An. martinius in Kopet Dag (Southern Turkmenistan) is rather questionable. It is not improbable that these data are appropriate for either the newly described species An.persiensis or the scientifically new representative of the An. maculipennis complex.

  14. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Hopp, Ann-Katrin; Saenger, Mélanie; Soichot, Julien; Scholze, Heidi; Boch, Jens; Blandin, Stéphanie A.; Marois, Eric

    2017-01-01

    Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1) is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs) in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites. PMID:28095489

  15. Polymorphisms in Anopheles gambiae Immune Genes Associated with Natural Resistance to Plasmodium falciparum

    PubMed Central

    Harris, Caroline; Lambrechts, Louis; Rousset, François; Abate, Luc; Nsango, Sandrine E.; Fontenille, Didier; Morlais, Isabelle; Cohuet, Anna

    2010-01-01

    Many genes involved in the immune response of Anopheles gambiae, the main malaria vector in Africa, have been identified, but whether naturally occurring polymorphisms in these genes underlie variation in resistance to the human malaria parasite, Plasmodium falciparum, is currently unknown. Here we carried out a candidate gene association study to identify single nucleotide polymorphisms (SNPs) associated with natural resistance to P. falciparum. A. gambiae M form mosquitoes from Cameroon were experimentally challenged with three local wild P. falciparum isolates. Statistical associations were assessed between 157 SNPs selected from a set of 67 A. gambiae immune-related genes and the level of infection. Isolate-specific associations were accounted for by including the effect of the isolate in the analysis. Five SNPs were significantly associated to the infection phenotype, located within or upstream of AgMDL1, CEC1, Sp PPO activate, Sp SNAKElike, and TOLL6. Low overall and local linkage disequilibrium indicated high specificity in the loci found. Association between infection phenotype and two SNPs was isolate-specific, providing the first evidence of vector genotype by parasite isolate interactions at the molecular level. Four SNPs were associated to either oocyst presence or load, indicating that the genetic basis of infection prevalence and intensity may differ. The validity of the approach was verified by confirming the functional role of Sp SNAKElike in gene silencing assays. These results strongly support the role of genetic variation within or near these five A. gambiae immune genes, in concert with other genes, in natural resistance to P. falciparum. They emphasize the need to distinguish between infection prevalence and intensity and to account for the genetic specificity of vector-parasite interactions in dissecting the genetic basis of Anopheles resistance to human malaria. PMID:20862317

  16. Anopheles (Diptera: Culicidae) malaria vectors in the municipality of Puerto Carreno, Vichada, Colombia

    PubMed Central

    Jiménez, Pilar; Conn, Jan E.; Wirtz, Robert; Brochero, Helena

    2013-01-01

    Introduction The study of the biological aspects of Anopheles spp., strengthens the entomological surveillance. Objective To determine biological aspects and behavior of adult Anopheles mosquitoes in the urban area of Puerto Carreño municipality, Vichada, Colombia. Materials and methods Wild anophelines were collected landing on humans both indoors and outdoors between 18:00h and 06:00h for 50 min/h during two consecutive nights/month for eight months in the urban area of Puerto Carreño. The biting rate activity, the natural infection by Plasmodium falciparum and P. vivax VK247 and VK210 using ELISA, and the annual entomological inoculation rate were determined for each species. The members of the Albitarsis complex were determined by amplificacion of the white gene by polymerase chain reaction. Results In order of abundance the species found were An. darlingi (n=1,166), An. marajoara sensu stricto (n=152), An. braziliensis (n=59), An. albitarsis F (n=25), An. albitarsis sensu lato (n=16), An. argyritarsis (n=3) and An. oswaldoi sensu lato (n=2). An. darlingi showed two activity peaks between 21:00 to 22:00 and 05:00 to 06:00 hours outdoors and between 21:00 to 22:00 and 04:00 to 05:00 indoors. Natural infection of this species was found with P. vivax VK210 and its annual entomological inoculation rate was 2. Natural infection of An marajoara sensu stricto with P. falciparum was found, with an annual entomological inoculation rate of 5 and a peak biting activity between 18:00 to 19:00 hrs both indoors and outdoors. Conclusion Transmission of malaria in the urban area of Puerto Carreño, Vichada, can occur by An. darlingi and An. marajoara s. s. PMID:23235809

  17. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae

    PubMed Central

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J.; Tittiger, Claus; Juárez, M. Patricia; Mijailovsky, Sergio J.; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J.; Vontas, John

    2016-01-01

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of 14C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An. gambiae. PMID:27439866

  18. Anopheles Midgut Epithelium Evades Human Complement Activity by Capturing Factor H from the Blood Meal

    PubMed Central

    Khattab, Ayman; Barroso, Marta; Miettinen, Tiera; Meri, Seppo

    2015-01-01

    Hematophagous vectors strictly require ingesting blood from their hosts to complete their life cycles. Exposure of the alimentary canal of these vectors to the host immune effectors necessitates efficient counteractive measures by hematophagous vectors. The Anopheles mosquito transmitting the malaria parasite is an example of hematophagous vectors that within seconds can ingest human blood double its weight. The innate immune defense mechanisms, like the complement system, in the human blood should thereby immediately react against foreign cells in the mosquito midgut. A prerequisite for complement activation is that the target cells lack complement regulators on their surfaces. In this work, we analyzed whether human complement is active in the mosquito midgut, and how the mosquito midgut cells protect themselves against complement attack. We found that complement remained active for a considerable time and was able to kill microbes within the mosquito midgut. However, the Anopheles mosquito midgut cells were not injured. These cells were found to protect themselves by capturing factor H, the main soluble inhibitor of the alternative complement pathway. Factor H inhibited complement on the midgut cells by promoting inactivation of C3b to iC3b and preventing the activity of the alternative pathway amplification C3 convertase enzyme. An interference of the FH regulatory activity by monoclonal antibodies, carried to the midgut via blood, resulted in increased mosquito mortality and reduced fecundity. By using a ligand blotting assay, a putative mosquito midgut FH receptor could be detected. Thereby, we have identified a novel mechanism whereby mosquitoes can tolerate human blood. PMID:25679788

  19. Genome-Wide Transcriptional Analysis of Genes Associated with Acute Desiccation Stress in Anopheles gambiae

    PubMed Central

    Wang, Mei-Hui; Marinotti, Osvaldo; Vardo-Zalik, Anne; Boparai, Rajni; Yan, Guiyun

    2011-01-01

    Malaria transmission in sub-Saharan Africa varies seasonally in intensity. Outbreaks of malaria occur after the beginning of the rainy season, whereas, during the dry season, reports of the disease are less frequent. Anopheles gambiae mosquitoes, the main malaria vector, are observed all year long but their densities are low during the dry season that generally lasts several months. Aestivation, seasonal migration, and local adaptation have been suggested as mechanisms that enable mosquito populations to persist through the dry season. Studies of chromosomal inversions have shown that inversions 2La, 2Rb, 2Rc, 2Rd, and 2Ru are associated with various physiological changes that confer aridity resistance. However, little is known about how phenotypic plasticity responds to seasonally dry conditions. This study examined the effects of desiccation stress on transcriptional regulation in An. gambiae. We exposed female An. gambiae G3 mosquitoes to acute desiccation and conducted a genome-wide analysis of their transcriptomes using the Affymetrix Plasmodium/Anopheles Genome Array. The transcription of 248 genes (1.7% of all transcripts) was significantly affected in all experimental conditions, including 96 with increased expression and 152 with decreased expression. In general, the data indicate a reduction in the metabolic rate of mosquitoes exposed to desiccation. Transcripts accumulated at higher levels during desiccation are associated with oxygen radical detoxification, DNA repair and stress responses. The proportion of transcripts within 2La and 2Rs (2Rb, 2Rc, 2Rd, and 2Ru) (67/248, or 27%) is similar to the percentage of transcripts located within these inversions (31%). These data may be useful in efforts to elucidate the role of chromosomal inversions in aridity tolerance. The scope of application of the anopheline genome demonstrates that examining transcriptional activity in relation to genotypic adaptations greatly expands the number of candidate regions

  20. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons

    PubMed Central

    Arcaz, Arthur C.; Huestis, Diana L.; Dao, Adama; Yaro, Alpha S.; Diallo, Moussa; Andersen, John; Blomquist, Gary J.; Lehmann, Tovi

    2016-01-01

    ABSTRACT The African malaria mosquitoes Anopheles gambiae and Anopheles coluzzii range over forests and arid areas, where they withstand dry spells and months-long dry seasons, suggesting variation in their desiccation tolerance. We subjected a laboratory colony (G3) and wild Sahelian mosquitoes during the rainy and dry seasons to desiccation assays. The thoracic spiracles and amount and composition of cuticular hydrocarbons (CHCs) of individual mosquitoes were measured to determine the effects of these traits on desiccation tolerance. The relative humidity of the assay, body water available, rate of water loss and water content at death accounted for 88% of the variation in desiccation tolerance. Spiracle size did not affect the rate of water loss or desiccation tolerance of the colony mosquitoes, as was the case for the total CHCs. However, six CHCs accounted for 71% of the variation in desiccation tolerance and three accounted for 72% of the variation in the rate of water loss. Wild A. coluzzii exhibited elevated desiccation tolerance during the dry season. During that time, relative thorax and spiracle sizes were smaller than during the rainy season. A smaller spiracle size appeared to increase A. coluzzii's desiccation tolerance, but was not statistically significant. Seasonal changes in CHC composition were detected in Sahelian A. coluzzii. Stepwise regression models suggested the effect of particular CHCs on desiccation tolerance. In conclusion, the combination of particular CHCs along with the total amount of CHCs is a primary mechanism conferring desiccation tolerance in A. coluzzii, while variation in spiracle size might be a secondary mechanism. PMID:27207644

  1. Irradiating insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a non-technical article focusing on phytosanitary uses of irradiation. In a series of interview questions, I present information on the scope of the invasive species problem and the contribution of international trade in agricultural products to the movement of invasive insects. This is foll...

  2. Update on meat irradiation

    SciTech Connect

    Olson, D.G.

    1997-12-01

    The irradiation of meat and poultry in the United States is intended to eliminate pathogenic bacteria from raw product, preferably after packaging to prevent recontamination. Irradiation will also increase the shelf life of raw meat and poultry products approximately two to three times the normal shelf life. Current clearances in the United States are for poultry (fresh or frozen) at doses from 1.5 to 3.0 kGy and for fresh pork at doses from 0.3 to 1.0 kGy. A petition for the clearance of all red meat was submitted to the Food and Drug Administration (FDA) in July 1994. The petition is for clearances of fresh meat at doses from 1.5 to 4.5 kGy and for frozen meat at {approximately}2.5 to 7.5 kGy. Clearance for red meat is expected before the end of 1997. There are 28 countries that have food irradiation clearances, of which 18 countries have clearances for meat or poultry. However, there are no uniform categories or approved doses for meat and poultry among the countries that could hamper international trade of irradiated meat and poultry.

  3. Phytosanitary applications of irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytosanitary treatments are used to disinfest agricultural commodities of quarantine pests so the commodities can be shipped across quarantine barriers to trade. Ionizing irradiation is a promising treatment that is increasing in use. Almost 19,000 tons of sweet potatoes and several fruits, plus ...

  4. Generic phytosanitary irradiation treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The history of the development of generic phytosanitary irradiation (PI) treatments is discussed beginning with its initial proposal in 1986. Generic PI treatments in use today are 150 Gy for all hosts of Tephritidae, 250 Gy for all arthropods on mango and papaya shipped from Australia to New Zeala...

  5. NSUF Irradiated Materials Library

    SciTech Connect

    Cole, James Irvin

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  6. Effectiveness of aerial- and ground-applied Bacillus formulations against Anopheles quadrimaculatus larvae in Arkansas rice plots.

    PubMed

    Dennett, J A; Meisch, M V

    2000-09-01

    Experimental Bacillus larvicides designed to float on or near the water surface were compared to labeled standard Bacillus corn-cob-based larvicides using sentinel Anopheles quadrimaculatus larvae in Arkansas rice plots during the 1998 growing season. Experimental floating formulations of Bacillus thuringiensis israelensis applied at 5.58 and 11.18 kg/ha provided up to 100% control of 3rd- and 4th-stage Anopheles larvae within 24-48 h, whereas the water-dispersible granule formulations containing Bacillus sphaericus required 48-72 h to yield >75% mortality in 0.16-ha plots at 11.18 kg/ha. Detecting and targeting the smaller developmental stages (1st- and 2nd-stage larvae) could increase the effectiveness of the tested compounds against An. quadrimaculatus in Arkansas and other rice-growing regions.

  7. Food irradiation: Activities and potentialities

    NASA Astrophysics Data System (ADS)

    Doellstaedt, R.; Huebner, G.

    After the acceptance of food irradiation up to an overall average dose of 10 kGy recommended by the Joint FAO/IAEA/WHO Expert Committee on the Wholesomeness of Irradiated Food in October 1980, the G.D.R. started a programme for the development of techniques for food irradiation. A special onion irradiator was designed and built as a pilot plant for studying technological and economic parameters of the irradiation of onions. The new principle of bulk-cargo irradiation allows the integration of this technology into the usual harvest technology for onions on the way from field to storage. Scientific and applied research work has been carried out in the past 3 yr on the irradiation of spices, potatoes, eviscerated chicken, animal feeds, fodder yeast, drugs and vaccines. In connection with the irradiation of eviscerated chicken, fodder yeast and animal feeds the basis of an antisalmonella programme has been discussed. Germ-count-reduced spices were employed for the production of test charges of preserves and tinned products. The results have led to the decision to design and build a new multipurpose irradiator for food irradiation. In order to cover the legal aspects of food irradiation the Ministry of Health issued regulations concerning the recommendation of irradiated food in the G.D.R.

  8. Susceptibility of three laboratory strains of Anopheles albimanus (Diptera: Culicidae) to coindigenous Plasmodium vivax in southern Mexico.

    PubMed

    Chan, A S; Rodríguez, M H; Torres, J A; Rodríguez, M del C; Villarreal, C

    1994-05-01

    Three morphologically different pupal phenotypes (green, striped, brown) were selected from a parent strain of Anopheles albimanus Wiedemann collected from the Suchiate region in the state of Chiapas, Mexico. Significant differences in susceptibility to coindigenous Plasmodium vivax Grassi & Feletti were observed when striped was compared with the parent colony as well as with brown and with green phenotypes. Differences in susceptibility were not significant between the other phenotypes and the parent colony.

  9. Remotely-sensed land use patterns and the presence of Anopheles larvae (Diptera: Culicidae) in Sukabumi, West Java, Indonesia.

    PubMed

    Stoops, Craig A; Gionar, Yoyo R; Shinta; Sismadi, Priyanto; Rachmat, Agus; Elyazar, Iqbal F; Sukowati, Supratman

    2008-06-01

    Land use patterns and the occurrence of Anopheles species larvae were studied in Sukabumi District, West Java, Indonesia, from October 2004 to September 2005. Two land use maps derived using remote sensing were used. One map derived from Quickbird satellite images of 150 km2 of the Simpenan and Ciemas subdistricts (106 degrees 27' 53"-106 degrees 38' 38" E and 6 degrees 59' 59"-7 degrees 8' 46" S) in Sukabumi and one using ASTER images covering 4,000 km2 of Sukabumi District from 106 degrees 22' 15"-107 degrees 4' 1" E and 6 degrees 42' 50" - 7 degrees 26' 13" S. There was a total of 11 Anopheles spp. collected from 209 sampling locations in the area covered by the Quickbird image and a total of 15 Anopheles spp. collected from 1,600 sampling locations in the area covered by the ASTER map. For the area covered by the land use maps, ten species were found to have statistically positive relationships between land use class and species presence: Anopheles aconitus, An. annularis, An. barbirostris. An. flavirostris, An. insulaeflorum, An. kochi, An. maculatus, An. subpictus, An. sundaicus, and An. vagus. Quickbird and ASTER satellite images both produced land maps that were adequate for predicting species presence in an area. The land use classes associated with malaria vector breeding were rice paddy (An. aconitus, An. subpictus), plantation located near or adjacent to human settlements (An. maculatus), bush/shrub (An. aconitus, An. maculatus, An. sundaicus), bare land, and water body land use on the coast located < or = 250 m of the beach (An. sundaicus). Understanding the associations of habitat and species in one area, predictions of species presence or absence can be made prior to a ground survey allowing for accurate vector survey and control planning.

  10. Anopheles lindesayi japonicus Yamada (Diptera: Culicidae) in Korea: comprehensive review, new collection records, and description of larval habitats

    DTIC Science & Technology

    2007-09-01

    3North Carolina Department ofEnvironment and Natural Resources. 585 Waughtown St.• Winston-Salem. NC 27107, U.S.A. fKorea Center for Disease Control ...Seou~ Korea Received 13 September 2007; Accepted 29 December 2007 ABSTRACf: Anopheles lindesayi japonicus Yamada is an uncommonly collected mosquito ...in Korea. and its presence is based upon limited collection data and anecdotal reports in Korean mosquito literature: 45 specimens collected from 15

  11. Efficacy of Bacillus thuringiensis var. Kurstaki in the control of two mosquito species (Anopheles stephensi and Culex quinquefasciatus).

    PubMed

    Kumar, A Senthil; Moorthi, M; Ramakrishnan, N; Dhanapakiam, P; Ramasamy, V K; Rajeswari, A Raja

    2009-05-01

    Bioinsecticide Bacillus thuringiensis var. kurstaki (Btk) was used for controlling the mosquito species (Anopheles stephensi and Culex quinquefasciatus) which gave a significant (p<0.05) mortality in both species. The higher concentration of Btk was highly effective compared to the control ones. The controlling effect was dose and time dependent. Among the studied mosquitoes the C. quinquefasciatus (LC5 0.154%) was more susceptible than A. stephensi (LC50 0.372%) towards the bioinsecticide Btk.

  12. Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Benelli, Giovanni

    2016-02-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to resistance, high operational costs and adverse non-target effects. Nowadays, plant-borne mosquitocides may serve as suitable alternative in the fight against mosquito vectors. In this study, the mosquito larvicidal activity of Origanum vulgare (Lamiaceae) leaf essential oil (EO) and its major chemical constituents was evaluated against the malaria vectors Anopheles stephensi and An. subpictus, the filariasis vector Culex quinquefasciatus and the Japanese encephalitis vector Cx. tritaeniorhynchus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the essential oil of O. vulgare contained 17 compounds. The major chemical components were carvacrol (38.30%) and terpinen-4-ol (28.70%). EO had a significant toxic effect against early third-stage larvae of An. stephensi, An. subpictus, Cx. quinquefasciatus and Cx. tritaeniorhynchus, with LC50 values of 67.00, 74.14, 80.35 and 84.93 μg/ml. The two major constituents extracted from the O. vulgare EO were tested individually for acute toxicity against larvae of the four mosquito vectors. Carvacrol and terpinen-4-ol appeared to be most effective against An. stephensi (LC50=21.15 and 43.27 μg/ml, respectively) followed by An. subpictus (LC50=24.06 and 47.73 μg/ml), Cx. quinquefasciatus (LC50=26.08 and 52.19 μg/ml) and Cx. tritaeniorhynchus (LC50=27.95 and 54.87 μg/ml). Overall, this research adds knowledge to develop newer and safer natural larvicides against malaria, filariasis and Japanese encephalitis mosquito vectors.

  13. [Distribution of species and kdr gene frequency among Anopheles gambiae s.s. and Anopheles coluzzii populations in five agricultural sites in Côte d'Ivoire].

    PubMed

    Tia, E; Chouaibou, M; Gbalégba, C N G; Boby, A M O; Koné, M; Kadjo, A K

    2017-03-29

    The resistance of Anopheles gambiae s.l. to insecticides constitutes a concern for the programs of malaria control because it can be an obstacle to effective control of the vectors. The follow-up of this resistance is a priority to work out strategies of management and to preserve the means of that major malaria vector control activities. The general objective of this study is to identify the species within An. gambiae s.l., and to determine the frequency of the Kdr gene in An. gambiae s.s. and An. coluzzii in five agricultural sites in Ivory Coast: an urban site, two semirural sites (coffee-trees/cacao-trees, orchard) and two rural sites (rice site and a traditional village without agricultural insecticide). During this study, 2285 specimens of An. gambiae s.l. were analyzed for this purpose. An. gambiae s.s. (in the past called molecular form S) and An. coluzzii (in the past called molecular form M) were the only species of the complex An. gambiae identified in all the sites. The frequency of the Kdr mutation varied from 0.37 in the site without agricultural insecticide to 0.95 in the urban site where there is an intense use of insecticides. Three areas of these species distribution were observed: an area where the species An. gambiae s.s. is dominant (sites located in savanna), an area with predominance of An. coluzzii (in the southern forested area) and an intermediate area where the two species were in a same proportion (pre-forested site).The Kdr mutation was identified in the two species in all the sites in savanna and forest, except in the site without agricultural insecticide where only An. gambiae was resistant. It shows the increase of the receptive potential of An. gambiae s.l. with respect to the Kdr gene and the extension of the resistance to insecticide of this species in Ivory Coast.

  14. [Temporary evolutions of flies anopheles in high altitude region of Lwiro-Katana (Democratic Republic of the Congo)].

    PubMed

    Bandibabone, B J; Zawadi, M B; Ntale, M V; Habamungu, C C; Ombeni, B L

    2016-02-01

    This study has been done with the objective of knowing more about the Anopheles evolutions situation at Lwiro-Katana from 1967 up to 2014. On seven species identified in this region, only four were permanent in nine investigations done. The geometric average calculated shows the evolution of 3.152 for Anopheles funestus, 2.867 for An. gambiae, 2.663 for An. demeilloni and 2.441 for An. marshallii. These species share almost the same ecological conditions for their larval development found in different kinds of water. These conditions were created by the anthropisation of the region followed by some activities. The increasing process attests that An. funestus, An. gambiae and An. demeilloni have an increasing tendency while An. marshallii has a decreasing tendency and is likely to approach the 0 level. An. coustani and An. christyi miss the stability development due to the environmental pertubations since 1980 in this environment. An. kingi wasn't identified after 1980. All of these species of anopheles share the same ecological niche and present a scientific interest. The knowledge of their evolution in this area is really very important because it helps to have better vector control. Also three of those mosquitos (An. gambiae, An. funestus and An. marshallii) are the greatest responsible of the killing paludism South of the Sahara.

  15. Species composition and natural infectivity of anthropophilic Anopheles (Diptera: Culicidae) in Córdoba and Antioquia states in northwestern Colombia

    PubMed Central

    Gutiérrez, Lina A; González, John J; Gómez, Giovan F; Castro, Martha I; Rosero, Doris A; Luckhart, Shirley; Conn, Jan E; Correa, Margarita M

    2011-01-01

    Malaria is a serious health problem in Córdoba and Antioquia states in northwestern Colombia, where 64.4% of the total Colombian cases were reported in 2007. Because little entomological information is available in this region, the aim of this work was to identify the Anopheles species composition and natural infectivity of mosquitoes distributed in seven localities with the highest malaria transmission. A total of 1,768 Anopheles mosquitoes were collected using human landing catches from March 2007 to July 2008. Ten species were identified; overall, An. nuneztovari s.l. was the most widespread (62%) and showed the highest average human biting rates. There were six other species of the Nyssorhynchus subgenus: An. albimanus (11.6%), An. darlingi (9.8%), An. braziliensis (6.6%), An. triannulatus s.l. (3.5%), An. albitarsis s.l. and An. oswaldoi s.l. at <1%; and three of the Anopheles subgenus: An. punctimacula, An. pseudopunctipennis s.l. and An. neomaculipalpus at <1% each. Two species from Córdoba, An. nuneztovari and An. darlingi, were detected naturally infected by Plasmodium vivax VK247 using ELISA and confirmed by nested PCR. All species were active indoors and outdoors. These results provide basic information for targeted vector control strategies in these localities. PMID:20140372

  16. Spatio-temporal variations of Anopheles coluzzii and An. gambiae and their Plasmodium infectivity rates in Lobito, Angola.

    PubMed

    Carnevale, Pierre; Toto, Jean-Claude; Besnard, Patrick; Santos, Maria Adelaide Dos; Fortes, Filomeno; Allan, Richard; Manguin, Sylvie

    2015-06-01

    From 2003 to 2007, entomological surveys were conducted in Lobito town (Benguela Province, Angola) to determine which Anopheles species were present and to identify the vectors responsible for malaria transmission in areas where workers of the Sonamet Company live. Two types of surveys were conducted: (1) time and space surveys in the low and upper parts of Lobito during the rainy and dry periods; (2) a two-year longitudinal study in Sonamet workers' houses provided with long-lasting insecticide-treated nets (LLIN), "PermaNet," along with the neighboring community. Both species, An. coluzzii (M molecular form) and An. gambiae (S molecular form), were collected. Anopheles coluzzii was predominant during the dry season in the low part of Lobito where larvae develop in natural ponds and temporary pools. However, during the rainy season, An. gambiae was found in higher proportions in the upper part of the town where larvae were collected in domestic water tanks built near houses. Anopheles melas and An. listeri were captured in higher numbers during the dry season and in the low part of Lobito where larvae develop in stagnant brackish water pools. The infectivity rates of An. gambiae s.l. varied from 0.90% to 3.41%.

  17. Identification of morphological and chemical markers of dry- and wet-season conditions in female Anopheles gambiae mosquitoes

    PubMed Central

    2014-01-01

    Background Increased understanding of the dry-season survival mechanisms of Anopheles gambiae in semi-arid regions could benefit vector control efforts by identifying weak links in the transmission cycle of malaria. In this study, we examined the effect of photoperiod and relative humidity on morphologic and chemical traits known to control water loss in mosquitoes. Methods Anopheles gambiae body size (indexed by wing length), mesothoracic spiracle size, and cuticular hydrocarbon composition (both standardized by body size) were examined in mosquitoes raised from eggs exposed to short photoperiod and low relative humidity, simulating the dry season, or long photoperiod and high relative humidity, simulating the wet-season. Results Mosquitoes exposed to short photoperiod exhibited larger body size and larger mesothoracic spiracle length than mosquitoes exposed to long photoperiod. Mosquitoes exposed to short photoperiod and low relative humidity exhibited greater total cuticular hydrocarbon amount than mosquitoes exposed to long photoperiod and high relative humidity. In addition, total cuticular hydrocarbon amount increased with age and was higher in mated females. Mean n-alkane retention time (a measure of cuticular hydrocarbon chain length) was lower in mosquitoes exposed to short photoperiod and low relative humidity, and increased with age. Individual cuticular hydrocarbon peaks were examined, and several cuticular hydrocarbons were identified as potential biomarkers of dry- and wet-season conditions, age, and insemination status. Conclusions Results from this study indicate that morphological and chemical changes underlie aestivation of Anopheles gambiae and may serve as biomarkers of aestivation. PMID:24970701

  18. ELECTRON IRRADIATION OF SOLIDS

    DOEpatents

    Damask, A.C.

    1959-11-01

    A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

  19. BIOLOGICAL IRRADIATION FACILITY

    DOEpatents

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  20. Surface segregation during irradiation

    SciTech Connect

    Rehn, L.E.; Lam, N.Q.

    1985-10-01

    Gibbsian adsorption is known to alter the surface composition of many alloys. During irradiation, four additional processes that affect the near-surface alloy composition become operative: preferential sputtering, displacement mixing, radiation-enhanced diffusion and radiation-induced segregation. Because of the mutual competition of these five processes, near-surface compositional changes in an irradiation environment can be extremely complex. Although ion-beam induced surface compositional changes were noted as long as fifty years ago, it is only during the past several years that individual mechanisms have been clearly identified. In this paper, a simple physical description of each of the processes is given, and selected examples of recent important progress are discussed. With the notable exception of preferential sputtering, it is shown that a reasonable qualitative understanding of the relative contributions from the individual processes under various irradiation conditions has been attained. However, considerably more effort will be required before a quantitative, predictive capability can be achieved. 29 refs., 8 figs.

  1. Larval habitats of Anopheles species in a rural settlement on the malaria frontier of southwest Amazon, Brazil.

    PubMed

    Rufalco-Moutinho, Paulo; Schweigmann, Nicolás; Bergamaschi, Denise Pimentel; Mureb Sallum, Maria Anice

    2016-12-01

    Rural settlements are social arrangements expanding in the Amazon region, which generate disturbances in the natural environment, thus affecting the ecology of the species of Anopheles and thus the malaria transmission. Larval habitats are important sources for maintenance of mosquito vector populations, and holding back a natural watercourse is a usual process in the establishment of rural settlements, since the formation of micro-dams represents a water resource for the new settlers. Identifying characteristics of the larval habitats that may be associated with both the presence and abundance of Anopheles vectors species in an environment under ecological transition is background for planning vector control strategies in rural areas in the Amazon. Anopheles larvae collections were performed in two major types of habitats: natural and flow-limited water collections that were constructed by holding back the original watercourse. A total of 3123 Anopheles spp. larvae were captured in three field-sampling collections. The majority of the larvae identified were taken from flow-limited water collections belonged to species of the Nyssorhynchus subgenus (92%), whereas in the natural larval habitats a fewer number of individuals belonged to the Stethomyia (5%) and Anopheles (3%) subgenera. The total of Nyssorhynchus identified (1818), 501 specimens belonged to An. darlingi, 750 to An. triannulatus and 567 for others remaining species. In addition, 1152 could not be identified to subgenus/species level, because they were either in the first-instar or damaged. The primary vector in areas of the Amazon river basin, An. darlingi, was found exclusively in man-made habitats. Statistical analysis display An. triannulatus with specialist behavior for characteristics of man-made habitats. Modifications in the natural environment facilitate the rise of larval habitats for species with epidemiological importance for malaria in the region. This study showed that man-made habitats

  2. [The Anopheles gambiae species complex and Kdr resistance gene at the periphery of Douala, Cameroon].

    PubMed

    Ntonga Akono, P; Mbouangoro, A; Mbida Mbida, A; Ndo, C; Peka Nsangou, M F; Kekeunou, S

    2017-03-16

    This study was conducted from May to June 2015 in Yassa (industrialized area) and Logbessou (non-industrialized area), two peri-urban areas of the city of Douala, Cameroon with the aim of an assessment of the spatial distribution of the gambiae complex, the determination of their resistance to insecticides and the distribution of the Kdr mutation. Mosquito larvae were collected by the dipping method and nursed to adult stage. The sensitivity of adult Anopheles gambiae s.l. populations to DDT and pyrethroids was assessed following WHO protocol. All tested mosquitoes were identified by PCR SINE. Only survivors were used to search for the Kdr mutation. In both areas, the gambiae complex included An. coluzzii and An. gambiae sympatric in their breeding sites. However, An. gambiae was predominant in Logbessou (88%) and An. coluzzii in Yassa (68%). Tests with deltamethrin, permethrin and DDT revealed mortality rates below 90% regardless of the area of origin of the mosquitoes. PCR diagnosis of Kdr mutation showed that over 95% of survivors harbored the Kdr gene in both sites, with resistant allele frequencies ranging from 0.96 to 1.0 in An. gambiae and from 0.89 to 0.96 in An. coluzzii. The strong resistance of An. coluzzii and This study was conducted from May to June 2015 in Yassa (industrialized area) and Logbessou (nonindustrialized area), two peri-urban areas of the city of Douala, Cameroon with the aim of an assessment of the spatial distribution of the gambiae complex, the determination of their resistance to insecticides and the distribution of the Kdr mutation. Mosquito larvae were collected by the dipping method and nursed to adult stage. The sensitivity of adult Anopheles gambiae s.l. populations to DDT and pyrethroids was assessed following WHO protocol. All tested mosquitoes were identified by PCR SINE. Only survivors were used to search for the Kdr mutation. In both areas, the gambiae complex included An. coluzzii and An. gambiae sympatric in their breeding

  3. Satellite-derived NDVI, LST, and climatic factors driving the distribution and abundance of Anopheles mosquitoes in a former malarious area in northwest Argentina.

    PubMed

    Dantur Juri, María Julia; Estallo, Elizabet; Almirón, Walter; Santana, Mirta; Sartor, Paolo; Lamfri, Mario; Zaidenberg, Mario

    2015-06-01

    Distribution and abundance of disease vectors are directly related to climatic conditions and environmental changes. Remote sensing data have been used for monitoring environmental conditions influencing spatial patterns of vector-borne diseases. The aim of this study was to analyze the effect of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic factors (temperature, humidity, wind velocity, and accumulated rainfall) on the distribution and abundance of Anopheles species in northwestern Argentina using Poisson regression analyses. Samples were collected from December, 2001 to December, 2005 at three localities, Aguas Blancas, El Oculto and San Ramón de la Nueva Orán. We collected 11,206 adult Anopheles species, with the major abundance observed at El Oculto (59.11%), followed by Aguas Blancas (22.10%) and San Ramón de la Nueva Orán (18.79%). Anopheles pseudopunctipennis was the most abundant species at El Oculto, Anopheles argyritarsis predominated in Aguas Blancas, and Anopheles strodei in San Ramón de la Nueva Orán. Samples were collected throughout the sampling period, with the highest peaks during the spring seasons. LST and mean temperature appear to be the most important variables determining the distribution patterns and major abundance of An. pseudopunctipennis and An. argyritarsis within malarious areas.

  4. Whole-genome sequencing reveals absence of recent gene flow and separate demographic histories for Anopheles punctulatus mosquitoes in Papua New Guinea

    PubMed Central

    LOGUE, KYLE; SMALL, SCOTT T.; CHAN, ERNEST R.; REIMER, LISA; SIBA, PETER M.; ZIMMERMAN, PETER A.; SERRE, DAVID

    2015-01-01

    Anopheles mosquitoes are the vectors of several human diseases including malaria. In many malaria endemic areas, several species of Anopheles coexist, sometimes in the form of related sibling species that are morphologically indistinguishable. Determining the size and organization of Anopheles populations, and possible ongoing gene flow among them is important for malaria control and, in particular, for monitoring the spread of insecticide resistance alleles. However, these parameters have been difficult to evaluate in most Anopheles species due to the paucity of genetic data available. Here, we assess the extent of contemporary gene flow and historical variations in population size by sequencing and de novo assembling the genomes of wild-caught mosquitoes from four species of the Anopheles punctulatus group of Papua New Guinea. Our analysis of more than 50 Mb of orthologous DNA sequences revealed no evidence of contemporary gene flow among these mosquitoes. In addition, investigation of the demography of two of the An. punctulatus species revealed distinct population histories. Overall, our analyses suggest that, despite their similarities in morphology, behaviour and ecology, contemporary sympatric populations of An. punctulatus are evolving independently. PMID:25677924

  5. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae

    PubMed Central

    Manda, Hortance; Gouagna, Louis C; Foster, Woodbridge A; Jackson, Robert R; Beier, John C; Githure, John I; Hassanali, Ahmed

    2007-01-01

    Background A previous study showed for Anopheles gambiae s.s. a gradation of feeding preference on common plant species growing in a malaria holoendemic area in western Kenya. The present follow-up study determines whether there is a relationship between the mosquito's preferences and its survival and fecundity. Methods Groups of mosquitoes were separately given ad libitum opportunity to feed on five of the more preferred plant species (Hamelia patens, Parthenium hysterophorus, Ricinus communis, Senna didymobotrya, and Tecoma stans) and one of the less preferred species (Lantana camara). The mosquitoes were monitored daily for survival. Sugar solution (glucose 6%) and water were used as controls. In addition, the fecundity of mosquitoes on each plant after (i) only one blood meal (number of eggs oviposited), and (ii) after three consecutive blood meals (proportion of females ovipositing, number of eggs oviposited and hatchability of eggs), was determined. The composition and concentration of sugar in the fed-on parts of each plant species were determined using gas chromatography. Using SAS statistical package, tests for significant difference of the fitness values between mosquitoes exposed to different plant species were conducted. Results and Conclusion Anopheles gambiae that had fed on four of the five more preferred plant species (T. stans, S. didymobotrya, R. communis and H. patens, but not P. hysterophorus) lived longer and laid more eggs after one blood meal, when compared with An. gambiae that had fed on the least preferred plant species L. camara. When given three consecutive blood-meals, the percentage of females that oviposited, but not the number of eggs laid, was significantly higher for mosquitoes that had previously fed on the four more preferred plant species. Total sugar concentration in the preferred plant parts was significantly correlated with survival and with the proportion of females that laid eggs. This effect was associated mainly with

  6. De Novo Transcriptome Sequencing in Anopheles funestus Using Illumina RNA-Seq Technology

    PubMed Central

    Crawford, Jacob E.; Guelbeogo, Wamdaogo M.; Sanou, Antoine; Traoré, Alphonse; Vernick, Kenneth D.; Sagnon, N'Fale; Lazzaro, Brian P.

    2010-01-01

    Background Anopheles funestus is one of the primary vectors of human malaria, which causes a million deaths each year in sub-Saharan Africa. Few scientific resources are available to facilitate studies of this mosquito species and relatively little is known about its basic biology and evolution, making development and implementation of novel disease control efforts more difficult. The An. funestus genome has not been sequenced, so in order to facilitate genome-scale experimental biology, we have sequenced the adult female transcriptome of An. funestus from a newly founded colony in Burkina Faso, West Africa, using the Illumina GAIIx next generation sequencing platform. Methodology/Principal Findings We assembled short Illumina reads de novo using a novel approach involving iterative de novo assemblies and “target-based” contig clustering. We then selected a conservative set of 15,527 contigs through comparisons to four Dipteran transcriptomes as well as multiple functional and conserved protein domain databases. Comparison to the Anopheles gambiae immune system identified 339 contigs as putative immune genes, thus identifying a large portion of the immune system that can form the basis for subsequent studies of this important malaria vector. We identified 5,434 1∶1 orthologues between An. funestus and An. gambiae and found that among these 1∶1 orthologues, the protein sequence of those with putative immune function were significantly more diverged than the transcriptome as a whole. Short read alignments to the contig set revealed almost 367,000 genetic polymorphisms segregating in the An. funestus colony and demonstrated the utility of the assembled transcriptome for use in RNA-seq based measurements of gene expression. Conclusions/Significance We developed a pipeline that makes de novo transcriptome sequencing possible in virtually any organism at a very reasonable cost ($6,300 in sequencing costs in our case). We anticipate that our approach could be used

  7. The effects of oviposition-site deprivation on Anopheles gambiae reproduction

    PubMed Central

    2012-01-01

    Background The African malaria mosquito, Anopheles gambiae, depends on availability of suitable surface water for oviposition. Short and long dry spells occur throughout the year in many parts of its range that limit its access to oviposition sites. Although not well understood, oviposition-site deprivation has been found to rapidly reduce egg batch size and hatch rate of several mosquito species. We conducted laboratory experiments to assess these effects of oviposition-site deprivation on An. gambiae and to evaluate the role of nutrition and sperm viability as mediators of these effects. Methods Anopheles gambiae adults (1–2 d old) from the G3 laboratory colony were assigned to the following treatment groups: oviposition-deprived (fed once and then deprived of oviposition site for 7 or 14 d), multiple-fed control (fed regularly once a week and allowed to lay eggs without delay), and age matched blood-deprived control (fed once, three days before water for oviposition was provided). Egg batch size and hatch rate were measured. In the second experiment two additional treatment groups were included: oviposition-deprived females that received either a second (supplemental) blood meal or virgin males (supplemental mating) 4 days prior to receiving water for oviposition. Results An. gambiae was highly sensitive to oviposition-site deprivation. Egg batch size dropped sharply to 0–3.5 egg/female within 14 days, due to reduced oviposition rate rather than a reduced number of eggs/batch. Egg hatch rate also fell dramatically to 0-2% within 7 days. The frequency of brown eggs that fail to tan was elevated. A supplemental blood meal, but not ‘supplemental insemination,’ recovered the oviposition rate of females subjected to oviposition-site deprivation. Similarly, a supplemental blood meal, but not ‘supplemental insemination,’ partly recovered hatch rate, but this increase was marginally significant (P < 0.069). Conclusions Even a short dry spell resulting in

  8. [Malaria, anopheles, the anti-malaria campaign in French Guyana: between dogmatism and judgment].

    PubMed

    Raccurt, C P

    1997-01-01

    The recrudescence of malaria in French Guiana involves both border regions. One notes the predominance of Plasmodium falciparum along the Maroni River on the Surinam frontier and the transmission of both Plasmodium falciparum and Plasmodium vivax in amerindian settlements along the Oyapock River on the Brazilian frontier. The main mosquito vector is the endoexophile species, Anopheles darlingi. The role of man-biting forest anophelines in malaria transmission is still unclear. At the present time, malaria control is based on curative treatment of the confirmed cases (approximately 4,000 cases a year by active and passive screening). Vector control is supported by annual houses insecticides spraying and, to a lesser degree, use of insecticide-impregnated bednets. The main limiting factors for successful control have been difficulty in implementing a strategy adapted to the cultures of the amerindian and bushnegro populations living on either side of the river-frontiers and in organizing effective cross-border cooperation. The alleged role of immigration in transmission dynamics has been more speculative than real. However the growth of the population and the increase of human activities inside rain forest areas have favorized Anopheles darlingi breeding by uncontrolled deforestation. This situation need to be monitored closely. Information campaigns to improve public awareness could be useful. Following measures could improve control in sparsely populated, remote areas: to promote an integrated preventive program for a real community-wide distribution of primary health care; to discontinue insecticides spraying in houses which is poorly accepted by the bushnegro population and unsuitable to the amerindian dwellings; to support the use of personal protection; to initiate an effective anopheline larvae control; to determine the impact of the transmission during day-time activities especially among very small settlements far from the main villages where members of the

  9. Optimization of a Membrane Feeding Assay for Plasmodium vivax Infection in Anopheles albimanus

    PubMed Central

    Vallejo, Andrés F.; Rubiano, Kelly; Amado, Andres; Krystosik, Amy R.; Herrera, Sócrates; Arévalo-Herrera, Myriam

    2016-01-01

    Introduction Individuals exposed to malaria infections for a long time develop immune responses capable of blocking Plasmodium transmission to mosquito vectors, potentially limiting parasite spreading in nature. Development of a malaria TB vaccine requires a better understanding of the mechanisms and main effectors responsible for transmission blocking (TB) responses. The lack of an in vitro culture system for Plasmodium vivax has been an important drawback for development of a standardized method to assess TB responses to this parasite. This study evaluated host, vector, and parasite factors that may influence Anopheles mosquito infection in order to develop an efficient and reliable assay to assess the TB immunity. Methods/Principal Findings A total of 94 P. vivax infected patients were enrolled as parasite donors or subjects of direct mosquito feeding in two malaria endemic regions of Colombia (Tierralta, and Buenaventura). Parasite infectiousness was assessed by membrane feeding assay or direct feeding assay using laboratory reared Anopheles mosquitoes. Infection was measured by qPCR and by microscopically examining mosquito midguts at day 7 for the presence of oocysts. Best infectivity was attained in four day old mosquitoes fed at a density of 100 mosquitos/cage. Membrane feeding assays produced statistically significant better infections than direct feeding assays in parasite donors; cytokine profiles showed increased IFN-γ, TNF and IL-1 levels in non-infectious individuals. Mosquito infections and parasite maturation were more reliably assessed by PCR compared to microscopy. Conclusions We evaluated mosquito, parasite and host factors that may affect the outcome of parasite transmission as measured by artificial membrane feeding assays. Results have led us to conclude that: 1) optimal mosquito infectivity occurs with mosquitoes four days after emergence at a cage density of 100; 2) mosquito infectivity is best quantified by PCR as it may be underestimated

  10. FDA perspective on food irradiation

    SciTech Connect

    Pauli, G.H.

    1994-12-31

    The Center for Food Safety and Applied Nutrition (CFSAN) monitors the safety of food irradiation. A few limited uses are regulated, and occasionally CFSAN receives a petition for a new use. Despite extensive studies (more than 400) showing the safety of food irradiation, a cloud of suspicion continues to hang over this issue in the mind of the public. People perceive food irradiation and direct body irradiation as having similar implications. Food irradiation is banned in two states in the United States. Food is irradiated for the following purposes: delay of ripening, prevention of sprouting, eradication of pests and sterilization, and allowing commodities to be stored unrefrigerated for long periods of time. The dosage depends on the purpose of the irradiation. Radiolytic products are formed during irradiation and during storage afterward. Most of these products are also formed during conventional preservation. In 1980, CFSAN, then the Bureau of Foods, introduced the term unique radiolytic products for compounds not identified in foods after conventional processing. Although the existence of URPs was never proven chemically, the term has caused anxiety. Irradiation of foods in the commercially useful range does not generate radioactivity above natural background. Because radiolytic products formed from beef, chicken, and pork are primarily the same, irradiated foods of similar food groups may be evaluated generically.

  11. Replacement of 137Cs irradiators with x-ray irradiators.

    PubMed

    Dodd, Brian; Vetter, Richard J

    2009-02-01

    Self-shielded 137Cs irradiators have been used for many years to irradiate blood products to prevent graft vs. host disease and to irradiate cells and small animals in research. A report by the National Academy of Sciences recommends that careful consideration be given to replacement of 137Cs irradiators with x-ray irradiators. Several manufacturers and users of x-ray irradiators were contacted to determine costs of replacing and maintaining 137Cs irradiators with x-ray units and to assess users' experience with x-ray irradiators. Purchase costs of x-ray units are similar to 137Cs irradiators, but maintenance costs are significantly higher if annual service contracts are used. Performance of the two irradiator types appears to be equivalent, but in some cases x-ray irradiations may need to be performed in multiple configurations to achieve adequate uniformity in dose. No literature reports were found that evaluated the biological effectiveness of x rays vs. 137Cs gamma rays; therefore, a careful study should be conducted to determine the biological effectiveness of x rays vs. 137Cs gamma rays for biological responses relevant to transfusion medicine and immunological research. Throughput may be problematic for large transfusion medicine programs, and back-up plans may be necessary in case the x-ray unit needs to be taken out of service for extended maintenance. Disposition of a 137Cs irradiator will add to the cost of replacement with an x-ray unit, but disposal may be possible through the U.S. Department of Energy's Off-Site Source Recovery Program.

  12. Craniospinal irradiation techniques

    SciTech Connect

    Scarlatescu, Ioana Avram, Calin N.; Virag, Vasile

    2015-12-07

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  13. Peri-/intradomicillary behavior in relation to host-seeking of Anopheles pseudopunctipennis in southern Mexico.

    PubMed

    Casas, M; Rodríguez, M H; Bown, D N

    1994-09-01

    Peri-/intradomicillary resting and host-seeking behavior of Anopheles pseudopunctipennis was studied in an experimental house (surrounded by a curtain-net) that had not been sprayed with insecticide. Peak mosquito densities were recorded resting on vegetation 1 h earlier (1900-2000 h) than on the curtain-net, suggesting that a proportion of females prefer resting on adjacent vegetation prior to moving indoors. Between 2000 and 2100 h there was a marked decrease in numbers of mosquitoes resting on the exterior of the curtain-net. In separate experiments without the net, a single peak in numbers of mosquitoes resting on interior surfaces and/or biting human bait occurred between 2000 and 2100 h. Unfed mosquitoes had higher numbers of contacts with wall surfaces than with the roof. Moreover, a higher proportion of mosquitoes collected on human bait had > or = 1 dilatation(s), and higher parity rates than those resting on walls. Higher proportions of parous mosquitoes more frequently fed from 1800 to 2100 h, whereas higher proportions of nulliparous mosquitoes fed during morning hours. Nearly 25% of all mosquitoes exited 1 h following their release inside the house, whereas nearly 7% remained indoors for > 9 h. Overall results demonstrated that the behavior of An. pseudopunctipennis females depends on outdoor/indoor stimuli, being multivariable in nature. This includes contacts with a variety of biological (i.e., vegetation, human) and inert surfaces, which in part appears to be controlled by age structure.

  14. Selective and conventional house-spraying of DDT and bendiocarb against Anopheles pseudopunctipennis in southern Mexico.

    PubMed

    Casas, M; Torres, J L; Bown, D N; Rodríguez, M H; Arredondo-Jiménez, J I

    1998-12-01

    Indoor feeding behaviors and mortalities of Anopheles pseudopunctipennis females were evaluated following contact with selective (bands covering mosquitoes' preferred resting areas) and full applications of DDT and bendiocarb on indoor sprayable surfaces. The DDT residues provoked strong avoidance behavior. To a lesser degree, mosquitoes were also repelled by bendiocarb-sprayed surfaces. Because of strong irritancy/repellency, unfed mosquitoes were driven outdoors in proportionally higher numbers. The resting time on selectively or fully DDT-sprayed huts was greatly reduced in comparison to bendiocarb-sprayed huts. Although unfed mosquitoes tended to rest on non-DDT-sprayed surfaces in the selectively treated hut, the man-biting rate was similar with both types of treatments. Unfed mosquitoes were repelled less from selectively bendiocarb-treated surfaces. Similar reductions in postfed resting times were observed on all surfaces suggesting that once fed, mosquitoes rested on sprayed surfaces for shorter intervals of time. Engorged mosquitoes had normal resting behavior (pre- and postspray) within the range of preferred resting heights in both DDT- and bendiocarb-sprayed huts, but the proportion of mosquitoes fed in the DDT-treated huts was lower. Selective spraying of walls was as effective as spraying the complete walls with both insecticides, but DDT was more effective in reducing mosquito-human contact. These studies show that by more effectively targeting vector behavior, a cost-effective alternative to traditional control techniques can be achieved.

  15. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development.

    PubMed

    Gonzalez-Ceron, Lilia; Santillan, Frida; Rodriguez, Mario H; Mendez, Domingo; Hernandez-Avila, Juan E

    2003-05-01

    Bacterial infections were investigated in midguts of insectary and field-collected Anopheles albimanus Weidemann from southern Mexico. Serratia marcescens, Enterobacter cloacae and Enterobacter amnigenus 2, Enterobacter sp., and Serratia sp. were isolated in field samples obtained in 1998, but only Enterobacter sp. was recovered in field samples of 1997 and no bacteria were isolated from insectary specimens. These bacteria were offered along with Plasmodium vivax infected blood to aseptic insectary An. albimanus, and the number of infected mosquitoes as well as the oocyst densities assessed after 7d. Plasmodium vivax infections in mosquitoes co-infected with En. amnigenus 2, En. cloacae, and S. marcensces were 53, 17, and 210 times, respectively, lower than in control mosquitoes, and the mean oocyst density in mosquitoes co-infected with En. cloacae was 2.5 times lower than in controls. Mortality was 13 times higher in S. marcensces-infected mosquitoes compared with controls. The overall midgut bacterial infection in mosquito field populations may influence P. vivax transmission, and could contribute to explain the annual variations in malaria incidence observed in the area.

  16. Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in southern Mexico.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sanchez, José D; Bond-Compeán, J Guillermo; Cold-Morgan, Michelle

    2002-11-01

    Cyanobacteria associated with Anopheles albimanus Wiedemann larval habitats from southern Chiapas, Mexico, were isolated and identified from water samples and larval midguts using selective medium BG-11. Larval breeding sites were classified according to their hydrology and dominant vegetation. Cyanobacteria isolated in water samples were recorded and analyzed according to hydrological and vegetation habitat breeding types, and mosquito larval abundance. In total, 19 cyanobacteria species were isolated from water samples. Overall, the most frequently isolated cyanobacterial taxa were Phormidium sp., Oscillatoria sp., Aphanocapsa cf. littoralis, Lyngbya lutea, P. animalis, and Anabaena cf. spiroides. Cyanobacteria were especially abundant in estuaries, irrigation canals, river margins and mangrove lagoons, and more cyanobacteria were isolated from Brachiaria mutica, Ceratophyllum demersum, and Hymenachne amplexicaulis habitats. Cyanobacteria were found in habitats with low to high An. albimanus larval abundance, but Aphanocapsa cf. littoralis was associated with habitats of low larval abundance. No correlation was found between water chemistry parameters and the presence of cyanobacteria, however, water temperature (29.2-29.4 degrees C) and phosphate concentration (79.8-136.5 ppb) were associated with medium and high mosquito larvae abundance. In An. albimanus larval midguts, only six species of cyanobacteria were isolated, the majority being from the most abundant cyanobacteria in water samples.

  17. Landscape surrounding human settlements and Anopheles albimanus (Diptera: Culicidae) abundance in Southern Chiapas, Mexico.

    PubMed

    Rodriguez, A D; Rodriguez, M H; Hernandez, J E; Dister, S W; Beck, L R; Rejmankova, E; Roberts, D R

    1996-01-01

    Landscape characteristics that may influence important components of the Anopheles albimanus Wiedemann life cycle, including potential breeding sites, suitable diurnal resting sites, and possible sources of blood meals, were analyzed at 14 villages in a malarious area of southern Mexico. An. albimanus adults were collected weekly in each village using UV-light traps between July 1991 and August 1992. Based on rainfall, the study was divided into 6 seasonal periods. Villages were considered to have high mosquito abundance when >5 mosquitoes per trap per night were collected during any 1 of the 6 seasonal periods. The extension and frequency of 11 land cover types surrounding villages were determined using aerial photographs and subsequently verified through field surveys. Elevation was the main landscape feature that separated villages with low and high mosquito abundance. All villages with high mosquito abundance were below 25 m. Transitional and mangrove land cover types were found only in the high mosquito abundance group. Flooded areas as potential breeding sites and potential adult resting sites in unmanaged pastures were significantly more frequent in areas surrounding villages with high mosquito abundance. No significant differences in density of cattle and horses were found among village groups. Overall, surrounding breeding sites located at low elevations in flooded unmanaged pastures seemed to be the most important determinants of An. albimanus adult abundance in the villages.

  18. Bionomics of adult Anopheles pseudopunctipennis (Diptera: Culicidae) in the Tapachula foothills area of southern Mexico.

    PubMed

    Fernandez-Salas, I; Rodriguez, M H; Roberts, D R; Rodriguez, M C; Wirtz, R A

    1994-09-01

    Field studies on the bionomics of adult Anopheles pseudopunctipennis Theobald were conducted to assess its relative importance as a primary vector of vivax malaria in southern Mexico. In four malaria endemic villages in a foothill region near Tapachula, Mexico, population densities of A. pseudopunctipennis increased during the dry seasons of 1990 and 1991. The pattern of nocturnal host-seeking activity indoors was unimodal with a late night peak at 0100 hours enhancing its vectorial significance, because it occurred when most residents were asleep and fully exposed to the anophelines. Comparisons of trapping methods showed that a horse-baited trap was more effective than human landing catches or UV light traps. Pit shelters, on the other hand, were more effective than indoor and natural shelter resting collections. Results of enzyme-linked immunosorbent assays performed on wild-caught A. pseudopunctipennis specimens documented the presence of natural infections with the VK210 and new VK247 circumsporozoite polymorphs of P. vivax. These findings verify the importance of A. pseudopunctipennis as a major vector of vivax malaria at higher elevations and extend the geographical range of the VK247 P. vivax polymorph in Mexico.

  19. [Intra-domiciliary low volume spraying of malathion and deltamethrin for controlling Anopheles sp].

    PubMed

    Vaca-Marín, M A; Rodríguez-López, M H; Bown, D N; Ríos, R

    1991-01-01

    The effectiveness of low volume (LV) house-spraying of deltamethrin 0.027 per cent and malathion 20 per cent in the control of Anopheles sp was evaluated in two villages of Tabasco, México during the last semester of 1987. Two spray rounds were carried out at three-month intervals, using Fontan R-12 back-pack-space sprayers. Residual effect and cost-benefit were evaluated and compared to the standard DDT spraying technique using the Hudson X-pert sprayer. The entomological evaluation focused on mortality rates and density levels observed from intra and peridomicilliary man biting collections, indoor mosquito resting densities, curtain trap and the standard WHO wall bioassay. It was determined that when using the LV method these insecticides were highly effective. Malathion showed a residual effect of eight weeks whereas deltamethrin was found to have a residual activity of up to 12 weeks. Deltamethrin was more effective in reducing intra and peridomiciliary biting rates, and indoor resting mosquitoes. The cost-benefit ratio of deltamethrin and malathion LV house-spraying was 2.56 and 0.89, respectively, as compared to the standard DDT house-spraying. Considering its effectiveness in anopheline control and its cost-benefit, in addition to being a functional technique, intradomicile LV insecticide spraying should be considered as a practical alternative in malaria control programs.

  20. Vegetation-derived cues for the selection of oviposition substrates by Anopheles albimanus under laboratory conditions.

    PubMed

    Torres-Estrada, José Luis; Meza-Alvarez, R Amanda; Cibrián-Tovar, Juan; Rodríguez-López, Mario H; Arredondo-Jiménez, Juan I; Cruz-López, Leopoldo; Rojas-Leon, Julio C

    2005-12-01

    Oviposition response of gravid Anopheles albimanus Wiedemman (Diptera: Culicidae) females to water containing Brachiaria mutica, Cynodon dactylon, Jouvea straminea, Fimbristylis spadicea, and Ceratophyllum demersum was investigated. Gravid An. albimanus females deposited similar egg numbers in cups containing natural plants in water from natural breeding sites and in cups containing natural plants in distilled water. Gravid mosquitoes deposited significantly more eggs in cups containing natural plants in water from natural breeding sites than in cups containing artificial plants in water from the corresponding natural breeding sites. These results were confirmed in experiments conducted in a wind tunnel, indicating that female response is mediated by chemical cues from plants. Bioassays with organic extracts of all 5 plant species indicated that these extracts at 100%, 10%, and 1% concentrations had an oviposition repellent effect, while attractiveness was observed at 0.1%, 0.01%, and 0.001%. Gas chromatography and mass spectrometry analysis of the organic extracts found in all 5 plants showed a mixture of terpenoid and alcohol compounds, among them: guaiacol, phenol, isoeugenol, longifolene, caryophyllene, phenyl ethyl alcohol, and p-cresol. These results suggest that middle-range volatiles from plants may function as chemical cues for the female's oviposition response in this mosquito species.

  1. Intradomicillary pre- and postfeeding behavior of Anopheles pseudopunctipennis of southern Mexico: implications for malaria control.

    PubMed

    Casas, M; Bown, D N; Rodríguez, M H

    1994-09-01

    The intradomicillary pre- and postfeed resting behavior of Anopheles pseudopunctipennis was studied in an experimental house in southern Mexico. During resting periods (both pre-/postfeed) mosquitos had greater contact (landings) with the inner roof than with the walls and other surfaces. A comparison of mean landing frequency and overall resting time (pre-/postfeed) showed that a greater periodic and prolonged contact occurred prefeed, probably as a result of disturbed activity associated with host movements. Pre-/postfeed resting patterns on walls were limited to a 0.6-0.5-m-wide band, nearly 1 m from the floor, and to a narrower band on the roof, 0.3-0.2 m wide, approximately 2.3 m from the floor, respectively. We calculated that with a band width of 0.8 m on the walls and another band 0.8 m wide on the roof, 87.2% of the mosquitoes had at least one contact with either the wall, the roof, or with both surfaces, along with an overall mean resting time (pre-/postfeed) of 8.1 min/landing. These findings suggest that a high potential for control can be achieved by spraying preferred wall and roof resting sites in this region where the intradomicillary application of residual insecticide is the primary malaria control measure.

  2. Gonotrophic cycle and survivorship of Anopheles pseudopunctipennis (Diptera: Culicidae) in the Tapachula foothills of southern Mexico.

    PubMed

    Fernandez-Salas, I; Rodriguez, M H; Roberts, D R

    1994-05-01

    Mark-release-recapture experiments were conducted to determine the length of the gonotrophic cycle and survivorship of Anopheles pseudopunctipennis Theobald in the Tapachula foothills of southern Mexico. Separate trials with wild-caught females were conducted in the early and late dry season to examine intraseasonal differences. The gonotrophic cycle of insectary-reared, nulliparous females was estimated during the late dry season. A total of 5.4-5.7% of marked females was recaptured. A 3-d gonotrophic cycle was characteristic of wild-caught females, whereas a 4-d gonotrophic cycle was characteristic for insectary-reared females. Engorged, wild-caught females completed oogenesis in approximately 60 h under field conditions. Blood digestion in 23.5% of 2,221 and 21.9% of 1,195 engorged, wild-caught females held in the insectary was not accompanied by egg development. Dissections of these females showed that nearly 85% were nulliparous and presumably pregravid. These statistics plus other field data were used to determine that 60% of all nulliparous entered a pregravid condition. The body size and wing length of gravids was significantly larger than pregravids. Daily survival estimates of 0.875 and 0.884 were calculated for field-collected females during the early and late dry season, respectively.

  3. A test of the chromosomal theory of ecotypic speciation in Anopheles gambiae.

    PubMed

    Manoukis, Nicholas C; Powell, Jeffrey R; Touré, Mahamoudou B; Sacko, Adama; Edillo, Frances E; Coulibaly, Mamadou B; Traoré, Sekou F; Taylor, Charles E; Besansky, Nora J

    2008-02-26

    The role of chromosomal inversions in speciation has long been of interest to evolutionists. Recent quantitative modeling has stimulated reconsideration of previous conceptual models for chromosomal speciation. Anopheles gambiae, the most important vector of human malaria, carries abundant chromosomal inversion polymorphism nonrandomly associated with ecotypes that mate assortatively. Here, we consider the potential role of paracentric inversions in promoting speciation in A. gambiae via "ecotypification," a term that refers to differentiation arising from local adaptation. In particular, we focus on the Bamako form, an ecotype characterized by low inversion polymorphism and fixation of an inversion, 2Rj, that is very rare or absent in all other forms of A. gambiae. The Bamako form has a restricted distribution by the upper Niger River and its tributaries that is associated with a distinctive type of larval habitat, laterite rock pools, hypothesized to be its optimal breeding site. We first present computer simulations to investigate whether the population dynamics of A. gambiae are consistent with chromosomal speciation by ecotypification. The models are parameterized using field observations on the various forms of A. gambiae that exist in Mali, West Africa. We then report on the distribution of larvae of this species collected from rock pools and more characteristic breeding sites nearby. Both the simulations and field observations support the thesis that speciation by ecotypification is occurring, or has occurred, prompting consideration of Bamako as an independent species.

  4. Thorsellia anophelis is the dominant bacterium in a Kenyan population of adult Anopheles gambiae mosquitoes.

    PubMed

    Briones, Aurelio M; Shililu, Josephat; Githure, John; Novak, Robert; Raskin, Lutgarde

    2008-01-01

    Anopheles gambiae mosquitoes are not known to harbor endosymbiotic bacteria. Here we show, using nucleic acid-based methods, that 16S rRNA gene sequences specific to a recently described mosquito midgut bacterium, Thorsellia anophelis, is predominant in the midgut of adult An. gambiae s.l. mosquitoes captured in residences in central Kenya, and also occurs in the aquatic rice paddy environment nearby. PCR consistently detected T. anophelis in the surface microlayer of rice paddies, which is also consistent with the surface-feeding behavior of A. gambiae s.l. larvae. Phylogenetic analysis of cloned environmental 16S rRNA genes identified four major Thorsellia lineages, which are closely affiliated to an insect endosymbiont of the genus Arsenophonus. Physiological characterizations support the hypothesis that T. anophelis is well adapted to the female anopheline midgut by utilizing blood and tolerating the alkaline conditions in this environment. The results suggest that aquatically derived bacteria such as T. anophelis can persist through mosquito metamorphosis and become well-established in the adult mosquito midgut.

  5. Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa

    PubMed Central

    Sanford, Michelle R.; Cornel, Anthony J.; Nieman, Catelyn C.; Dinis, Joao; Marsden, Clare D.; Weakley, Allison M.; Han, Sarah; Rodrigues, Amabelia; Lanzaro, Gregory C.; Lee, Yoosook

    2014-01-01

    Presence of Plasmodium falciparum circumsporozoite protein (CSP) was detected by enzyme linked immunosorbent assay (ELISA) in a sample of Anopheles gambiae s.s., A. melas and A. pharoensis collected in Guinea-Bissau during October and November 2009. The percentage of P. falciparum infected samples (10.2% overall; confidence interval (CI): 7.45-13.6%) was comparable to earlier studies from other sites in Guinea-Bissau (9.6-12.4%). The majority of the specimens collected were identified as A. gambiae which had an individual infection rate of 12.6 % (CI: 8.88-17.6) across collection sites. A small number of specimens of A. coluzzii, A. coluzzii x A. gambiae hybrids, A. melas and A. pharoensis were collected and had infection rates of 4.3% (CI:0.98-12.4), 4.1% (CI:0.35-14.5), 11.1% (CI:1.86-34.1) and 33.3% (CI:9.25-70.4) respectively. Despite being present in low numbers in indoor collections, the exophilic feeding behaviors of A. melas (N=18) and A. pharoensis (N=6) and high infection rates observed in this survey suggest falciparum-malaria transmission potential outside of the protection of bed nets. PMID:25383188

  6. Carbamate and Pyrethroid Resistance in the Akron Strain of Anopheles gambiae

    PubMed Central

    Mutunga, James M.; Anderson, Troy D.; Craft, Derek T.; Gross, Aaron D.; Swale, Daniel R.; Tong, Fan; Wong, Dawn M.; Carlier, Paul R.; Bloomquist, Jeffrey R.

    2015-01-01

    Insecticide resistance in the malaria vector, Anopheles gambiae is a serious problem, epitomized by the multi-resistant Akron strain, originally isolated in the country of Benin. Here we report resistance in this strain to pyrethroids and DDT (13-fold to 35-fold compared to the susceptible G3 strain), but surprisingly little resistance to etofenprox, a compound sometimes described as a “pseudo-pyrethroid.” There was also strong resistance to topically-applied commercial carbamates (45-fold to 81-fold), except for the oximes aldicarb and methomyl. Biochemical assays showed enhanced cytochrome P450 monooxygenase and carboxylesterase activity, but not that of glutathione-S-transferase. A series of substituted α,α,α,-trifluoroacetophenone oxime methylcarbamates were evaluated for enzyme inhibition potency and toxicity against G3 and Akron mosquitoes. The compound bearing an unsubstituted phenyl ring showed the greatest toxicity to mosquitoes of both strains. Low cross resistance in Akron was retained by all analogs in the series. Kinetic analysis of acetylcholinesterase activity and its inhibition by insecticides in the G3 strain showed inactivation rate constants greater than that of propoxur, and against Akron enzyme inactivation rate constants similar to that of aldicarb. However, inactivation rate constants against recombinant human AChE were essentially identical to that of the G3 strain. Thus, the acetophenone oxime carbamates described here, though potent insecticides that control resistant Akron mosquitoes, require further structural modification to attain acceptable selectivity and human safety. PMID:26047119

  7. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii

    PubMed Central

    Suh, Eunho; Choe, Dong-Hwan; Saveer, Ahmed M.; Zwiebel, Laurence J.

    2016-01-01

    Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and 6-methyl-5-hepten-2-one (sulcatone) each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females. PMID:26900947

  8. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae

    PubMed Central

    Alout, Haoues; Dabiré, Roch K.; Djogbénou, Luc S.; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-01-01

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1R mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance. PMID:27432257

  9. Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection

    PubMed Central

    Boissière, Anne; Tchioffo, Majoline T.; Bachar, Dipankar; Abate, Luc; Marie, Alexandra; Nsango, Sandrine E.; Shahbazkia, Hamid R.; Awono-Ambene, Parfait H.; Levashina, Elena A.; Christen, Richard; Morlais, Isabelle

    2012-01-01

    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. PMID:22693451

  10. Modulation of Malaria Infection in Anopheles gambiae Mosquitoes Exposed to Natural Midgut Bacteria

    PubMed Central

    Tchioffo, Majoline T.; Boissière, Anne; Churcher, Thomas S.; Abate, Luc; Gimonneau, Geoffrey; Nsango, Sandrine E.; Awono-Ambéné, Parfait H.; Christen, Richard; Berry, Antoine; Morlais, Isabelle

    2013-01-01

    The development of Plasmodium falciparum within the Anopheles gambiae mosquito relies on complex vector-parasite interactions, however the resident midgut microbiota also plays an important role in mediating parasite infection. In natural conditions, the mosquito microbial flora is diverse, composed of commensal and symbiotic bacteria. We report here the isolation of culturable midgut bacteria from mosquitoes collected in the field in Cameroon and their identification based on the 16S rRNA gene sequencing. We next measured the effect of selected natural bacterial isolates on Plasmodium falciparum infection prevalence and intensity over multiple infectious feedings and found that the bacteria significantly reduced the prevalence and intensity of infection. These results contrast with our previous study where the abundance of Enterobacteriaceae positively correlated with P. falciparum infection (Boissière et al. 2012). The oral infection of bacteria probably led to the disruption of the gut homeostasis and activated immune responses, and this pinpoints the importance of studying microbe-parasite interactions in natural conditions. Our results indicate that the effect of bacterial exposure on P. falciparum infection varies with factors from the parasite and the human host and calls for deeper dissection of these parameters for accurate interpretation of bacterial exposure results in laboratory settings. PMID:24324714

  11. Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya

    PubMed Central

    Kukutla, Phanidhar; Yan, Guiyun; Xu, Jiannong

    2011-01-01

    The mosquito gut represents an ecosystem that accommodates a complex, intimately associated microbiome. It is increasingly clear that the gut microbiome influences a wide variety of host traits, such as fitness and immunity. Understanding the microbial community structure and its dynamics across mosquito life is a prerequisite for comprehending the symbiotic relationship between the mosquito and its gut microbial residents. Here we characterized gut bacterial communities across larvae, pupae and adults of Anopheles gambiae reared in semi-natural habitats in Kenya by pyrosequencing bacterial 16S rRNA fragments. Immatures and adults showed distinctive gut community structures. Photosynthetic Cyanobacteria were predominant in the larval and pupal guts while Proteobacteria and Bacteroidetes dominated the adult guts, with core taxa of Enterobacteriaceae and Flavobacteriaceae. At the adult stage, diet regime (sugar meal and blood meal) significantly affects the microbial structure. Intriguingly, blood meals drastically reduced the community diversity and favored enteric bacteria. Comparative genomic analysis revealed that the enriched enteric bacteria possess large genetic redox capacity of coping with oxidative and nitrosative stresses that are associated with the catabolism of blood meal, suggesting a beneficial role in maintaining gut redox homeostasis. Interestingly, gut community structure was similar in the adult stage between the field and laboratory mosquitoes, indicating that mosquito gut is a selective eco-environment for its microbiome. This comprehensive gut metatgenomic profile suggests a concerted symbiotic genetic association between gut inhabitants and host. PMID:21957459

  12. Insights from the Genome Annotation of Elizabethkingia anophelis from the Malaria Vector Anopheles gambiae

    PubMed Central

    Pei, Dong; Rayl, Melanie; Yu, Wanqin; Steritz, Matthew; Faye, Ingrid; Xu, Jiannong

    2014-01-01

    Elizabethkingia anophelis is a dominant bacterial species in the gut ecosystem of the malaria vector mosquito Anopheles gambiae. We recently sequenced the genomes of two strains of E. anophelis, R26T and Ag1, isolated from different strains of A. gambiae. The two bacterial strains are identical with a few exceptions. Phylogenetically, Elizabethkingia is closer to Chryseobacterium and Riemerella than to Flavobacterium. In line with other Bacteroidetes known to utilize various polymers in their ecological niches, the E. anophelis genome contains numerous TonB dependent transporters with various substrate specificities. In addition, several genes belonging to the polysaccharide utilization system and the glycoside hydrolase family were identified that could potentially be of benefit for the mosquito carbohydrate metabolism. In agreement with previous reports of broad antibiotic resistance in E. anophelis, a large number of genes encoding efflux pumps and β-lactamases are present in the genome. The component genes of resistance-nodulation-division type efflux pumps were found to be syntenic and conserved in different taxa of Bacteroidetes. The bacterium also displays hemolytic activity and encodes several hemolysins that may participate in the digestion of erythrocytes in the mosquito gut. At the same time, the OxyR regulon and antioxidant genes could provide defense against the oxidative stress that is associated with blood digestion. The genome annotation and comparative genomic analysis revealed functional characteristics associated with the symbiotic relationship with the mosquito host. PMID:24842809

  13. Insights from the genome annotation of Elizabethkingia anophelis from the malaria vector Anopheles gambiae.

    PubMed

    Kukutla, Phanidhar; Lindberg, Bo G; Pei, Dong; Rayl, Melanie; Yu, Wanqin; Steritz, Matthew; Faye, Ingrid; Xu, Jiannong

    2014-01-01

    Elizabethkingia anophelis is a dominant bacterial species in the gut ecosystem of the malaria vector mosquito Anopheles gambiae. We recently sequenced the genomes of two strains of E. anophelis, R26T and Ag1, isolated from different strains of A. gambiae. The two bacterial strains are identical with a few exceptions. Phylogenetically, Elizabethkingia is closer to Chryseobacterium and Riemerella than to Flavobacterium. In line with other Bacteroidetes known to utilize various polymers in their ecological niches, the E. anophelis genome contains numerous TonB dependent transporters with various substrate specificities. In addition, several genes belonging to the polysaccharide utilization system and the glycoside hydrolase family were identified that could potentially be of benefit for the mosquito carbohydrate metabolism. In agreement with previous reports of broad antibiotic resistance in E. anophelis, a large number of genes encoding efflux pumps and β-lactamases are present in the genome. The component genes of resistance-nodulation-division type efflux pumps were found to be syntenic and conserved in different taxa of Bacteroidetes. The bacterium also displays hemolytic activity and encodes several hemolysins that may participate in the digestion of erythrocytes in the mosquito gut. At the same time, the OxyR regulon and antioxidant genes could provide defense against the oxidative stress that is associated with blood digestion. The genome annotation and comparative genomic analysis revealed functional characteristics associated with the symbiotic relationship with the mosquito host.

  14. [Anopheles cruzii larvae found in bromelias in an urban area on the Brazilian coast].

    PubMed

    Marques, Gisela R A M; Forattini, Oswaldo Paulo

    2009-04-01

    The occurrence of Anopheles (Kerteszia) cruzii larvae is reported for the first time in bromelias on the ground located in an urban area within the municipality of Ilha Bela, on the northern coast of the State of São Paulo. From March 1998 to July 1999 312 immature forms of An. cruzii were captured, being that 8.6% of them were in bromelias in the urban environment, 40.1% in periurban bromelias and 51.3% in the forest. The average number of bromelias containing An. cruzii was 4.0% of the total investigated. The positive rate in the periurban and forested environments presented similar values. The presence of An. cruzii is probably due to their having been present previously in the forest, together with the frequent presence of these breeding places, food sources and appropriate shelter in the urban area. This set of factors makes it necessary to warn against the possibility of transferring infections from one environment to the other.

  15. Isoenzymatic analysis of four Anopheles (Kerteszia) bellator Dyar & Knab (Diptera: Culicidae) populations.

    PubMed

    de Carvalho-Pinto, Carlos José; Lourenço-de-Oliveira, Ricardo

    2003-12-01

    Anopheles bellator is a small silvatic bromelia-breeding mosquito and is a primary human malaria vector species in Southern Brazil. The bromelia-breeding habitat of the species should accompany the Atlantic forest coastal distribution, where bromeliads are abundant. Nonetheless, records on An. bellator collections show a gap in the species geographical distribution. An. bellator has been recorded in Southern Brazil and in the Brazilian states of Bahia and Paraíba. It appears again in the island of Trinidad, in Trinidad and Tobago. The aim of this work was to measure gene flow between different populations of An. bellator collected in the northern and southern extremes of the geographic distribution of this species. Mosquitoes were captured in forest borders in Santa Catarina, São Paulo, and Bahia states in Brazil and in the island of Trinidad in Republic of Trinidad and Tobago. Genetic distances varied between 0.076 and 0.680, based on enzymatic profiles from 11 distinct isoenzymes. Results indicate the existence of low-level gene flow between Brazilian populations of An. bellator, and a gene flow was even lower between the Brazilian and the Trinidad populations. This finding lead us to hypothesize that An. bellator did not spread along the coast, but reached northeastern areas through inland routes.

  16. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii.

    PubMed

    Suh, Eunho; Choe, Dong-Hwan; Saveer, Ahmed M; Zwiebel, Laurence J

    2016-01-01

    Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and 6-methyl-5-hepten-2-one (sulcatone) each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females.

  17. Oviposition site preference and egg hatchability of Anopheles gambiae: effects of land cover types.

    PubMed

    Munga, Stephen; Minakawa, Noboru; Zhou, Guofa; Barrack, Okeyo-Owuor J; Githeko, Andrew K; Yan, Guiyun

    2005-11-01

    We studied the oviposition site preference and egg hatchability of Anopheles gambiae Giles with water collected from farmlands, forests, and natural wetlands. Water types significantly affected oviposition preference. Mosquitoes deposited significantly more eggs in rainwater in both the dry and wet seasons than waters from forests and wetlands, suggesting that An. gambiae prefers water with few impurities for oviposition. In the dry season, An. gambiae females also deposited significantly more eggs in waters from farmlands than those from forests and natural wetlands, but these differences were not statistically significant during the wet season. In both indoor and natural conditions, egg mortality in natural wetland habitats was significantly higher than in farmland habitats. The average water temperature in natural wetland habitats was significantly lower than farmland habitats in the natural conditions, but it remained the same under indoor experimental conditions, suggesting that factors other than water temperature play an important role in egg hatchability. Together with the findings from previous studies on the effects of land cover on larval survivorship, our results support the hypothesis that variations in habitat conditions induced by different land cover types contribute to the heterogeneous spatial distribution of An. gambiae larvae in the western Kenya highland.

  18. Anopheles culicifacies: siblings species composition and its relationship to malaria incidence.

    PubMed

    Subbarao, S K; Vasantha, K; Raghavendra, K; Sharma, V P; Sharma, G K

    1988-03-01

    Entomological and epidemiological surveys in May, August and November 1985 and March 1986 were conducted in villages in Bulandshahr, a western district in Uttar Pradesh and in three eastern districts, Jaunpur, Ballia and Saran. In Bulandshahr, Anopheles culicifacies sibling species A and B were found, with a predominance of species A. Both Plasmodium vivax and P. falciparum were present and the malaria incidence remained high (SPR, 6-50%) indicating an active transmission. In contrast, in three eastern districts predominance of species B with an occasional occurrence of species A was observed. Malaria cases were almost absent in Ballia and Saran and in Jaunpur 10.3% slide positivity rate was observed in May but in later surveys cases were considerably lower (SPR, 0.5-2.9%) indicating the absence of indigenous transmission. In the eastern districts, malaria parasites are regularly brought in from endemic areas by the migrant labor population. Although An. culicifacies s.l. occurs in both the areas, the difference in malaria incidence appears to be due to the difference in the composition of the sibling species which is, the predominant presence of species A in the western district and its absence in eastern districts. This indicates that species A is responsible for active malaria transmission while species B is not.

  19. Variant Ionotropic Receptors in the Malaria Vector Mosquito Anopheles gambiae Tuned to Amines and Carboxylic Acids

    PubMed Central

    Pitts, R. Jason; Derryberry, Stephen L.; Zhang, Zhiwei; Zwiebel, Laurence J.

    2017-01-01

    The principal Afrotropical human malaria vector mosquito, Anopheles gambiae, remains a significant threat to global health. A critical component in the transmission of malaria is the ability of An. gambiae females to detect and respond to human-derived chemical kairomones in their search for blood meal hosts. The basis for host odor responses resides in olfactory receptor neurons (ORNs) that express chemoreceptors encoded by large gene families, including the odorant receptors (ORs) and the variant ionotropic receptors (IRs). While ORs have been the focus of extensive investigation, functional IR complexes and the chemical compounds that activate them have not been identified in An. gambiae. Here we report the transcriptional profiles and functional characterization of three An. gambiae IR (AgIr) complexes that specifically respond to amines or carboxylic acids - two classes of semiochemicals that have been implicated in mediating host-seeking by adult females but are not known to activate An. gambiae ORs (AgOrs). Our results suggest that AgIrs play critical roles in the detection and behavioral responses to important classes of host odors that are underrepresented in the AgOr chemical space. PMID:28067294

  20. Brazilian Anopheles darlingi Root (Diptera: Culicidae) Clusters by Major Biogeographical Region

    PubMed Central

    Bergo, Eduardo S.; Randel, Melissa A.

    2015-01-01

    The major drivers of the extensive biodiversity of the Neotropics are proposed to be geological and tectonic events together with Pliocene and Pleistocene environmental and climatic change. Geographical barriers represented by the rivers Amazonas/Solimões, the Andes and the coastal mountain ranges in eastern Brazil have been hypothesized to lead to diversification within the primary malaria vector, Anopheles (Nyssorhynchus) darlingi Root, which primarily inhabits rainforest. To test this biogeographical hypothesis, we analyzed 786 single nucleotide polymorphisms (SNPs) in 12 populations of An. darlingi from across the complex Brazilian landscape. Both model-based (STRUCTURE) and non-model-based (Principal Components and Discriminant Analysis) analysis of population structure detected three major genetic clusters that correspond with newly described Neotropical biogeographical regions: 1) Atlantic Forest province (= southeast population); 2) Parana Forest province (= West Atlantic forest population, with one Chacoan population - SP); and 3) Brazilian dominion population (= Amazonian population with one Chacoan population - TO). Significant levels of pairwise genetic divergences were found among the three clusters, allele sharing among clusters was negligible, and geographical distance did not contribute to differentiation. We infer that the Atlantic forest coastal mountain range limited dispersal between the Atlantic Forest province and the Parana Forest province populations, and that the large, diagonal open vegetation region of the Chacoan dominion dramatically reduced dispersal between the Parana and Brazilian dominion populations. We hypothesize that the three genetic clusters may represent three putative species. PMID:26172559

  1. CPF and CPFL, two related gene families encoding cuticular proteins of Anopheles gambiae and other insects.

    PubMed

    Togawa, Toru; Augustine Dunn, W; Emmons, Aaron C; Willis, Judith H

    2007-07-01

    Cuticular proteins (CPs) are structural proteins of insects as well as other arthropods. Several CP families have been described, among them a small family defined by a 51 amino acid motif [Andersen, S.O., Rafn, K., Roepstorff, P., 1997. Sequence studies of proteins from larval and pupal cuticle of the yellow meal worm, Tenebrio molitor. Insect Biochem. Mol. Biol. 27, 121-131]. We identified four proteins of this family in Anopheles gambiae that we have named CPF. We have also identified CPFs from other insects by searching databases. Alignment of these CPF proteins showed that the conserved region is only 44 aa long and revealed another conserved motif at the C-terminus. A dendrogram divided the CPF proteins into four groups, one basal and three specialized. We also identified several proteins of another CP family, CPFL, which has similarities to CPFs. CPFs and CPFLs share some protein motifs. Expression studies with real-time qRT-PCR of the A. gambiae CPFs and CPFLs showed that the four CPFs and one CPFL gene are expressed just before pupal or adult ecdysis, suggesting that they are components of the outer layer of pupal and adult cuticles. The other CPFLs appear to contribute to larval cuticle. Recombinant CPF proteins did not bind to chitin in the assay we used.

  2. Larval density dependence in Anopheles gambiae s.s., the major African vector of malaria.

    PubMed

    Muriu, Simon M; Coulson, Tim; Mbogo, Charles M; Godfray, H Charles J

    2013-01-01

    Anopheles gambiae sensu stricto is the most important vector of malaria in Africa although relatively little is known about the density-dependent processes determining its population size. Mosquito larval density was manipulated under semi-natural conditions using artificial larval breeding sites placed in the field in coastal Kenya; two experiments were conducted: one manipulating the density of a single cohort of larvae across a range of densities and the other employing fewer densities but with the treatments crossed with four treatments manipulating predator access. In the first experiment, larval survival, development rate and the size of the adult mosquito all decreased with larval density (controlling for block effects between 23% and 31% of the variance in the data could be explained by density). In the second experiment, the effects of predator manipulation were not significant, but again we observed strong density dependence in larval survival (explaining 30% of the variance). The results are compared with laboratory studies of A. gambiae larval competition and the few other studies conducted in the field, and the consequences for malaria control are discussed.

  3. Molecular Characterization of Larval Peripheral Thermosensory Responses of the Malaria Vector Mosquito Anopheles gambiae

    PubMed Central

    Liu, Chao; Zwiebel, Laurence J.

    2013-01-01

    Thermosensation provides vital inputs for the malaria vector mosquito, Anopheles gambiae which utilizes heat-sensitivity within a broad spectrum of behaviors, most notably, the localization of human hosts for blood feeding. In this study, we examine thermosensory behaviors in larval-stage An. gambiae, which as a result of their obligate aquatic habitats and importance for vectorial capacity, represents an opportunistic target for vector control as part of the global campaign to eliminate malaria. As is the case for adults, immature mosquitoes respond differentially to a diverse array of external heat stimuli. In addition, larvae exhibit a striking phenotypic plasticity in thermal-driven behaviors that are established by temperature at which embryonic development occurs. Within this spectrum, RNAi-directed gene-silencing studies provide evidence for the essential role of the Transient Receptor Potential sub-family A1 (TRPA1) channel in mediating larval thermal-induced locomotion and thermal preference within a discrete upper range of ambient temperatures. PMID:23940815

  4. Three-dimensional structures of the tracheal systems of Anopheles sinensis and Aedes togoi pupae

    PubMed Central

    Ha, Young-Ran; Yeom, Eunseop; Ryu, Jeongeun; Lee, Sang-Joon

    2017-01-01

    Mosquitoes act as a vector for the transmission of disease. The World Health Organization has recommended strict control of mosquito larvae because of their “few, fixed, and findable” features. The respiratory system of mosquito larvae and pupae in the water has a weak point. As aquatic organisms, mosquito larvae and pupae inhale atmosphere oxygen. However, the mosquito pupae have a non-feeding stage, unlike the larvae. Therefore, detailed study on the tracheal system of mosquito pupae is helpful for understanding their survival strategy. In this study, the three-dimensional (3D) structures of the tracheal systems of Anopheles sinensis and Aedes togoi pupae were comparatively investigated using synchrotron X-ray microscopic computed tomography. The respiratory frequencies of the dorsal trunks were also investigated. Interestingly, the pupae of the two mosquito species possess special tracheal systems of which the morphological and functional features are distinctively different. The respiratory frequency of Ae. togoi is higher than that of An. sinensis. These differences in the breathing phenomena and 3D structures of the respiratory systems of these two mosquito species provide an insight into the tracheal systems of mosquito pupae. PMID:28287649

  5. Impact of trehalose transporter knockdown on Anopheles gambiae stress adaptation and susceptibility to Plasmodium falciparum infection

    PubMed Central

    Liu, Kun; Dong, Yuemei; Huang, Yuzheng; Rasgon, Jason L.; Agre, Peter

    2013-01-01

    Anopheles gambiae is a major vector mosquito for Plasmodium falciparum, the deadly pathogen causing most human malaria in sub-Saharan Africa. Synthesized in the fat body, trehalose is the predominant sugar in mosquito hemolymph. It not only provides energy but also protects the mosquito against desiccation and heat stresses. Trehalose enters the mosquito hemolymph by the trehalose transporter AgTreT1. In adult female A. gambiae, AgTreT1 is predominantly expressed in the fat body. We found that AgTreT1 expression is induced by environmental stresses such as low humidity or elevated temperature. AgTreT1 RNA silencing reduces the hemolymph trehalose concentration by 40%, and the mosquitoes succumb sooner after exposure to desiccation or heat. After an infectious blood meal, AgTreT1 RNA silencing reduces the number of P. falciparum oocysts in the mosquito midgut by over 70% compared with mock-injected mosquitoes. These data reveal important roles for AgTreT1 in stress adaptation and malaria pathogen development in a major vector mosquito. Thus, AgTreT1 may be a potential target for malaria vector control. PMID:24101462

  6. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes.

    PubMed

    Hu, Xiaobang; Leming, Matthew T; Whaley, Michelle A; O'Tousa, Joseph E

    2014-03-15

    Differential rhodopsin gene expression within specialized R7 photoreceptor cells divides the retinas of Aedes aegypti and Anopheles gambiae mosquitoes into distinct domains. The two species express the rhodopsin orthologs Aaop8 and Agop8, respectively, in a large subset of these R7 photoreceptors that function as ultraviolet receptors. We show here that a divergent subfamily of mosquito rhodopsins, Aaop10 and Agop10, is coexpressed in these R7 photoreceptors. The properties of the A. aegypti Aaop8 and Aaop10 rhodopsins were analyzed by creating transgenic Drosophila expressing these rhodopsins. Electroretinogram recordings, and spectral analysis of head extracts, obtained from the Aaop8 strain confirmed that Aaop8 is an ultraviolet-sensitive rhodopsin. Aaop10 was poorly expressed and capable of eliciting only small and slow light responses in Drosophila photoreceptors, and electroretinogram analysis suggested that it is a long-wavelength rhodopsin with a maximal sensitivity near 500 nm. Thus, coexpression of Aaop10 rhodopsin with Aaop8 rhodopsin has the potential to modify the spectral properties of mosquito ultraviolet receptors. Retention of Op10 rhodopsin family members in the genomes of Drosophila species suggests that this rhodopsin family may play a conserved role in insect vision.

  7. Essential oils enhance the toxicity of permethrin against Aedes aegypti and Anopheles gambiae.

    PubMed

    Gross, A D; Norris, E J; Kimber, M J; Bartholomay, L C; Coats, J R

    2017-03-01

    Insecticide resistance and growing public concern over the safety and environmental impacts of some conventional insecticides have resulted in the need to discover alternative control tools. Naturally occurring botanically-based compounds are of increased interest to aid in the management of mosquitoes. Susceptible strains of Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Anopheles gambiae (Meigen) (Diptera: Culicidae) were treated with permethrin, a common type-I synthetic pyrethroid, using a discriminate dose that resulted in less than 50% mortality. Piperonyl butoxide (PBO) and 35 essential oils were co-delivered with permethrin at two doses (2 and 10 µg) to determine if they could enhance the 1-h knockdown and the 24-h mortality of permethrin. Several of the tested essential oils enhanced the efficacy of permethrin equally and more effectively than piperonyl butoxide PBO, which is the commercial standard to synergize chemical insecticide like pyrethroids. PBO had a strikingly negative effect on the 1-h knockdown of permethrin against Ae. aegypti, which was not observed in An. gambiae. Botanical essential oils have the capability of increasing the efficacy of permethrin allowing for a natural alternative to classic chemical synergists, like PBO.

  8. Some ecological attributes of malarial vector Anopheles superpictus Grassi in endemic foci in southeastern Iran

    PubMed Central

    Nejati, Jalil; Vatandoost, Hasan; Oshghi, Mohammad Ali; Salehi, Masud; Mozafari, Ehssan; Moosa-Kazemi, Seyed Hasan

    2013-01-01

    Objective To determine the bionomics and susceptibility status of the malarial vector Anopheles superpictus (An. superpictus) to different insecticides in the Sistan-Baluchestan province which has the highest malarial prevalence in Iran. Methods Different sampling methods, in addition to scoring abdominal conditions, were used to define the seasonal activity and endo/exophilic behavior of this species. In addition, the standard WHO susceptibility tests were applied on adult field strains. Results Most adult mosquitoes were collected from outdoor shelters. The peak of seasonal activity of An. superpictus occurred at the end of autumn. Most larvae were collected from natural and permanent breeding places with full sunlight and no vegetation. Blood feeding activities occurred around midnight. Compared with the abdominal conditions of adult mosquitoes collected indoors, the abdominal conditions of adult mosquitoes collected outdoors were gravid and semigravid. This species was suspected to be resistant to DDT, but was susceptible to other insecticides. Conclusions An. superpictus was present in almost all outdoor shelters, and the ratios of gravid, semigravid/unfed, and freshly fed confirmed that this species had a higher tendency to rest outdoors than indoors. This behavior can protect An. superpictus from indoor residual spraying in this malarious area. To the best of our knowledge, this is the first report on the susceptibility status of An. superpictus in Southeastern Iran. We do not suggest the use of DDT for indoor residual spraying in southeast Iran. PMID:24093794

  9. Stable chromosomal inversion polymorphisms and insecticide resistance in the malaria vector mosquito Anopheles gambiae (Diptera: Culicidae).

    PubMed

    Brooke, B D; Hunt, R H; Chandre, F; Carnevale, P; Coetzee, M

    2002-07-01

    Anopheles gambiae Giles has been implicated as a major vector of malaria in Africa. A number of paracentric chromosomal inversions have been observed as polymorphisms in wild and laboratory populations of this species. These polymorphisms have been used to demonstrate the existence of five reproductive units in West African populations that are currently described as incipient species. They have also been correlated with various behavioral characteristics such as adaptation to aridity and feeding preference and have been associated with insecticide resistance. Two paracentric inversions namely 2La and 2Rb are highly ubiquitous in the wild and laboratory populations sampled. Both inversions are easily conserved during laboratory colonization of wild material and one shows significant positive heterosis with respect to Hardy-Weinberg proportions. Inversion 2La has previously been associated with dieldrin resistance and inversion 2Rb shows an association with DDT resistance based on this study. The stability and maintenance of these inversions as polymorphisms provides an explanation for the transmission and continued presence of DDT and dieldrin resistance in a laboratory strain of An. gambiae in the absence of insecticide selection pressure. This effect may also be operational in wild populations. Stable inversion polymorphism also provides a possible mechanism for the continual inheritance of suitable genetic factors that otherwise compromise the fitness of genetically modified malaria vector mosquitoes.

  10. Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis.

    PubMed

    Zhong, Daibin; Chang, Xuelian; Zhou, Guofa; He, Zhengbo; Fu, Fengyang; Yan, Zhentian; Zhu, Guoding; Xu, Tielong; Bonizzoni, Mariangela; Wang, Mei-Hui; Cui, Liwang; Zheng, Bin; Chen, Bin; Yan, Guiyun

    2013-01-01

    Anopheles sinensis is the most important vector of malaria in Southeast Asia, including China. Currently, the most effective measure to prevent malaria transmission relies on vector control through the use of insecticides, primarily pyrethroids. Extensive use of insecticides poses strong selection pressure on mosquito populations for resistance. Resistance to insecticides can arise due to mutations in the insecticide target site (target site resistance), which in the case of pyrethroids is the para-type sodium channel gene, and/or the catabolism of the insecticide by detoxification enzymes before it reaches its target (metabolic detoxification resistance). In this study, we examined deltamethrin resistance in An. sinensis from China and investigated the relative importance of target site versus metabolic detoxification mechanisms in resistance. A high frequency (>85%) of nonsynonymous mutations in the para gene was found in populations from central China, but not in populations from southern China. Metabolic detoxification as measured by the activity of monooxygenases and glutathione S-transferases (GSTs) was detected in populations from both central and southern China. Monooxygenase activity levels were significantly higher in the resistant than the susceptible mosquitoes, independently of their geographic origin. Stepwise multiple regression analyses in mosquito populations from central China found that both knockdown resistance (kdr) mutations and monooxygenase activity were significantly associated with deltamethrin resistance, with monooxygenase activity playing a stronger role. These results demonstrate the importance of metabolic detoxification in pyrethroid resistance in An. sinensis, and suggest that different mechanisms of resistance could evolve in geographically different populations.

  11. Human blood-feeding rates among sympatric sibling species of Anopheles quadrimaculatus mosquitoes in northern Florida.

    PubMed

    Jensen, T; Cockburn, A F; Kaiser, P E; Barnard, D R

    1996-05-01

    We compared rates of feeding on human hosts for blood-engorged female Anopheles quadrimaculatus species A, B and C1 collected from daytime resting sites in Manatee Springs State Park, Levy County, Florida during 1992-1993. Quick-blot DNA probes were used to identify mosquito taxa and also the presence of human blood in the mosquito gut. In collections from a campground area, human blood-feeding rates differed significantly among mosquito species (10.7% [19 of 177], 0%, [0 of 62], and 1.2%, [4 of 327]), respectively for species A, B and C1). In collections from a woodland site (1 km from the campground), 1.5% (2 of 129) of the species B females had fed on humans, whereas none of 19 species A or 159 species C1 females had done so. Of the three species in this study area, species A appears the most likely to be a biting pest of humans and a vector of human malaria.

  12. Genetic Structure of a Local Population of the Anopheles gambiae Complex in Burkina Faso

    PubMed Central

    Markianos, Kyriacos; Bischoff, Emmanuel; Mitri, Christian; Guelbeogo, Wamdaogo M.; Gneme, Awa; Eiglmeier, Karin; Holm, Inge; Sagnon, N’Fale; Vernick, Kenneth D.; Riehle, Michelle M.

    2016-01-01

    Members of the Anopheles gambiae species complex are primary vectors of human malaria in Africa. Population heterogeneities for ecological and behavioral attributes expand and stabilize malaria transmission over space and time, and populations may change in response to vector control, urbanization and other factors. There is a need for approaches to comprehensively describe the structure and characteristics of a sympatric local mosquito population, because incomplete knowledge of vector population composition may hinder control efforts. To this end, we used a genome-wide custom SNP typing array to analyze a population collection from a single geographic region in West Africa. The combination of sample depth (n = 456) and marker density (n = 1536) unambiguously resolved population subgroups, which were also compared for their relative susceptibility to natural genotypes of Plasmodium falciparum malaria. The population subgroups display fluctuating patterns of differentiation or sharing across the genome. Analysis of linkage disequilibrium identified 19 new candidate genes for association with underlying population divergence between sister taxa, A. coluzzii (M-form) and A. gambiae (S-form). PMID:26731649

  13. Ecophysiology of Anopheles gambiae s.l.: Persistence in the Sahel

    PubMed Central

    Huestis, Diana L.; Lehmann, Tovi

    2014-01-01

    The dry-season biology of malaria vectors is poorly understood, especially in arid environments when no surface waters are available for several months, such as during the dry season in the Sahel. Here we reappraise results on the dry-season physiology of members of the Anopheles gambiae s.l. complex in the broad context of dormancy in insects and especially in mosquitoes. We examine evidence on seasonal changes in reproduction, metabolism, stress tolerance, nutrition, molecular regulation, and environmental conditions and determine if the current results are compatible with dry-season diapause (aestivation) as the primary strategy for persistence throughout the dry season in the