Science.gov

Sample records for irradiated neptunium targets

  1. Fabrication of neptunium oxide targets for irradiation in FFTF

    SciTech Connect

    Blair, H.T.; Chidester, K.M.

    1993-07-01

    The feasibility of.fabdcating neptunium oxide into various target configurations for irradiation in FFTF to produce plutonium-238 was demonstrated by the Nuclear Fuels Technology group at Los Alamos. The configurations included cold-pressed and sintered pellets and wafers and powder encapsulated in 0.0025-cm thick molybdenum foil envelopes. NpO{sub 2} Pellets with a density of 86.5%TD and wafers that were approximately 2-cm diameter by 0.0229-cm thick were produced. Uranium dioxide wafers were fabricated without cracking and warping by assuring uniform distribution of powder in the die before pressing and by setting the pressed wafers on ceramic microspheres for sintering. Forming the powder into microspheres before pressing enabled uniform die filling. Radiation exposure measurements made during the NPO{sub 2} processing showed a maximum of 500 g/mo could be handled in the shielded gloveboxes at Los Alamos and still comply with the exposure limits set by DOE Radiological Control Manual, DOE-EH-0256T.

  2. Dissolution of Neptunium Oxide in Unirradiated Mark 53 Targets

    SciTech Connect

    Rudisill, T.S.

    2002-12-06

    Nine unirradiated Mark 53 targets currently stored at the K-Reactor must be dissolved to allow recovery of the neptunium content. The Mark 53 targets are an aluminum clad, neptunium oxide (NpO2)/aluminum metal cermet used for the production of plutonium-238. The targets will be dissolved in H-Canyon and blended with solutions generated from routine fuel dissolutions for purification by solvent extraction. The increased neptunium concentration should not have a significant effect on the neptunium decontamination factor achieved by the 1st cycle of solvent extraction; however, the neptunium content of the uranium product (1CU) will likely increase in proportion to the increase in the neptunium feed concentration. The recovered neptunium will be combined with the existing inventory of neptunium solution currently stored in H-Canyon. The combined inventory will undergo subsequent purification and conversion to an oxide for shipment to the Oak Ridge National Laboratory where plutonium- 238 will be manufactured using the High Flux Isotope Reactor.

  3. Dissolution of Neptunium Oxide in Unirradiated Mark 53 Targets

    SciTech Connect

    Rudisill, T.S.

    2002-06-07

    Nine unirradiated Mark 53 targets currently stored at the K-Reactor must be dissolved to allow recovery of the neptunium content. The Mark 53 targets are an aluminum clad neptunium oxide (NpO2)/aluminum metal cermet used for the production of plutonium-238. The targets will be dissolved in H-Canyon and blended with solutions generated from routine fuel dissolutions for purification by solvent extraction

  4. Neptunium

    NASA Astrophysics Data System (ADS)

    Yoshida, Zenko; Johnson, Stephen G.; Kimura, Takaumi; Krsul, John R.

    The first report on the discovery of neptunium was in 1940 by McMillan and Abelson (1940), although McMillan did the preliminary work in 1939 and published his findings (McMillan, 1939). He did not claim that a new element had been discovered until confirmatory measurements had been undertaken in the following year. The production of neptunium was accomplished by placing a layer of uranium trioxide on paper with several aluminum or paper foils and then exposing this to neutrons from a cyclotron. Examination of the uranium paper sample containing the non-recoiling fraction displayed that two new radioactive components had been created. One component displayed a 23 min half-life, later identified as U-239, while the second exhibited a 2.3 day half-life. Both components decayed via β particle emission. Preliminary chemical analysis was performed to determine the behavior of the 2.3 day component and resulted in the contradictory assignment of this component as that exhibiting an atomic number of 93, but not being transuranic in nature (Segrè, 1939). Segrè noted in his paper that his conclusions were contradictory. However, the following quotation is from his paper, “The necessary conclusion seems to be that the 23 minute uranium decays into a very long-lived 93 and that transuranic elements have not yet been observed.” The primary stumbling block to the proper assignment of the material as transuranic in nature was the lack of observation of any alpha decay activity that would emanate from the daughter product of the beta decay of this new material with an atomic number 93. It was this work by Segrè (1939) that led McMillan and Abelson to revisit the chemical analysis and determine its properties in greater depth.

  5. Dose rate dependence of the speciation of neptunium in irradiated solutions of nitric acid

    SciTech Connect

    Precek, M.; Paulenova, A.; Mincher, B.J.; Mezyk, S.P.

    2013-07-01

    The effects of radiation on the redox speciation of neptunium are of interest due to their impact on the performance of separation of neptunium from highly radioactive solutions of dissolved used nuclear fuel. In this study, the influence of dose rate change from 0.4 kGy/h to 6 kGy/h was examined during irradiation of solutions of initially hexavalent 2.0-2.5 mM neptunium in nitric acid of two different concentrations (0.5 and 1 M). Results indicate that the immediate radiolytic steady-state concentration of neptunium(V) were depressed and its initial radiolytic yield was up to 2-times lower (in 1 M HNO{sub 3} solutions)during irradiations with the higher dose rate. The finding is explained on the basis of the enhancement of the role of oxidizing radicals during the radiolytic process. (authors)

  6. Post-Irradiation Examination of Array Targets - Part I

    SciTech Connect

    Icenhour, A.S.

    2004-01-23

    During FY 2001, two arrays, each containing seven neptunium-loaded targets, were irradiated at the Advanced Test Reactor in Idaho to examine the influence of multi-target self-shielding on {sup 236}Pu content and to evaluate fission product release data. One array consisted of seven targets that contained 10 vol% NpO{sub 2} pellets, while the other array consisted of seven targets that contained 20 vol % NpO{sub 2} pellets. The arrays were located in the same irradiation facility but were axially separated to minimize the influence of one array on the other. Each target also contained a dosimeter package, which consisted of a small NpO{sub 2} wire that was inside a vanadium container. After completion of irradiation and shipment back to the Oak Ridge National Laboratory, nine of the targets (four from the 10 vol% array and five from the 20 vol% array) were punctured for pressure measurement and measurement of {sup 85}Kr. These nine targets and the associated dosimeters were then chemically processed to measure the residual neptunium, total plutonium production, {sup 238}Pu production, and {sup 236}Pu concentration at discharge. The amount and isotopic composition of fission products were also measured. This report provides the results of the processing and analysis of the nine targets.

  7. PERFORMANCE OF THE SAVANNAH RIVER SITE COULOMETER FOR NEPTUNIUM PROCESSACCOUNTABILITY AND NEPTUNIUM OXIDE PRODUCT CHARACTERIZATION

    SciTech Connect

    Holland, M; Patterson Nuessle, P; Sheldon Nichols, S; Joe Cordaro, J; George Reeves, G

    2008-06-04

    The Savannah River Site's (SRS) H-Area B-Line (HB-Line) nuclear facility is processing neptunium solutions for stabilization as an oxide. The oxide will eventually be reprocessed and fabricated into target material and the 237Np irradiated to produce {sup 238}Pu in support of National Aeronautics and Space Administration space program missions. As part of nuclear materials accountability, solution concentrations were measured using a high-precision controlled-potential coulometer developed and manufactured at the SRS for plutonium accountability measurements. The Savannah River Site Coulometer system and measurement methodology for plutonium meets performance standards in ISO 12183-2005, 'Controlled-Potential Coulometric Assay of Plutonium'. The Department of Energy (DOE) does not produce or supply a neptunium metal certified reference material, which makes qualifying a measurement method and determining accuracy and precision difficult. Testing and performance of the Savannah River Site Coulometer indicates that it can be used to measure neptunium process solutions and dissolved neptunium oxide without purification for material control and accountability purposes. Savannah River Site's Material Control and Accountability organization has accepted the method uncertainty for accountability and product characterization measurements.

  8. Targeted cytoplasmic irradiation and autophagy.

    PubMed

    Wu, Jinhua; Zhang, Bo; Wuu, Yen-Ruh; Davidson, Mercy M; Hei, Tom K

    2017-03-01

    The effect of ionizing irradiation on cytoplasmic organelles is often underestimated because the general dogma considers direct DNA damage in the nuclei to be the primary cause of radiation induced toxicity. Using a precision microbeam irradiator, we examined the changes in mitochondrial dynamics and functions triggered by targeted cytoplasmic irradiation with α-particles. Mitochondrial dysfunction induced by targeted cytoplasmic irradiation led to activation of autophagy, which degraded dysfunctional mitochondria in order to maintain cellular energy homeostasis. The activation of autophagy was cytoplasmic irradiation-specific and was not detected in nuclear irradiated cells. This autophagic process was oxyradical-dependent and required the activity of the mitochondrial fission protein dynamin related protein 1 (DRP1). The resultant mitochondrial fission induced phosphorylation of AMP activated protein kinase (AMPK) which leads to further activation of the extracellular signal-related kinase (ERK) 1/2 with concomitant inhibition of the mammalian target of rapamycin (mTOR) to initiate autophagy. Inhibition of autophagy resulted in delayed DNA damage repair and decreased cell viability, which supports the cytoprotective function of autophagy. Our results reveal a novel mechanism in which dysfunctional mitochondria are degraded by autophagy in an attempt to protect cells from toxic effects of targeted cytoplasmic radiation.

  9. NEPTUNIUM SOLVENT EXTRACTION PROCESS

    DOEpatents

    Dawson, L.R.; Fields, P.R.

    1959-10-01

    The separation of neptunium from an aqueous solution by solvent extraction and the extraction of neptunium from the solvent solution are described. Neptunium is separated from an aqueous solution containing tetravalent or hexavalent neptunium nitrate, nitric acid, and a nitrate salting out agent, such as sodium nitrate, by contacting the solution with an organic solvent such as diethyl ether. Subsequently, the neptunium nitrate is extracted from the organic solvent extract phase with water.

  10. Evaluation of the efficiency of DTPA and other new chelating agents for removing neptunium from target organs.

    PubMed

    Paquet, F; Metivier, H; Poncy, J L; Burgada, R; Bailly, T

    1997-05-01

    Diethylenetriamine pentaacetic acid (DTPA) has been tested with 8 other new chelators for neptunium decorporation after systemic contamination in the rat. The ligands were injected intravenously at a dosage of 30 mumol kg-1 and the animals killed 24 h later. The results show that none of the chelators tested was efficient in removing significant amounts of the radionuclide from the body. In order to understand why these chelators were ineffective, in vitro approaches have since been developed in which high concentrations of DTPA were added to Np-bearing ligands in the blood, liver and skeleton. The main conclusions were that under our experimental conditions neptunium was not chelatable after its organ deposition.

  11. ELECTRODEPOSITION OF NEPTUNIUM

    DOEpatents

    Seaborg, G.T.; Wahl, A.C.

    1960-08-30

    A process of electrodepositing neptunium from solutions is given which comprises conducting the electrodeposition from an absolute alcohol bath containing a neptunium nitrate and lanthanum nitrate at a potential of approximately 50 volts and a current density of between about 1.8 and 4.7 ma/dm/ sup 2/.

  12. NEPTUNIUM OXIDE PROCESSING

    SciTech Connect

    Jordan, J; Watkins, R; Hensel, S

    2009-05-27

    The Savannah River Site's HB-Line Facility completed a campaign in which fifty nine cans of neptunium oxide were produced and shipped to the Idaho National Laboratory in the 9975 shipping container. The neptunium campaign was divided into two parts: Part 1 which consisted of oxide made from H-Canyon neptunium solution which did not require any processing prior to conversion into an oxide, and Part 2 which consisted of oxide made from additional H-Canyon neptunium solutions which required processing to purify the solution prior to conversion into an oxide. The neptunium was received as a nitrate solution and converted to oxide through ion-exchange column extraction, precipitation, and calcination. Numerous processing challenges were encountered in order make a final neptunium oxide product that could be shipped in a 9975 shipping container. Among the challenges overcome was the issue of scale: translating lab scale production into full facility production. The balance between processing efficiency and product quality assurance was addressed during this campaign. Lessons learned from these challenges are applicable to other processing projects.

  13. Separation of sodium-22 from irradiated targets

    DOEpatents

    Taylor, Wayne A.; Jamriska, David

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  14. SOLVENT EXTRACTION OF NEPTUNIUM

    DOEpatents

    Butler, J.P.

    1958-08-12

    A process is described for the recovery of neptuniunn from dissolver solutions by solvent extraction. The neptunium containing solution should be about 5N, in nitric acid.and about 0.1 M in ferrous ion. The organic extracting agent is tributyl phosphate, and the neptuniunn is recovered from the organic solvent phase by washing with water.

  15. METHOD OF SEPARATING NEPTUNIUM

    DOEpatents

    Seaborg, G.T.

    1961-10-24

    plutonium in an aqueous solution containing sulfate ions. The process consists of contacting the solution with an alkali metal bromate, digesting the resulting mixture at 15 to 25 deg C for a period of time not more than that required to oxidize the neptunium, adding lanthanum ions and fluoride ions, and separating the plutonium-containing precipitate thus formed from the supernatant solution. (AEC)

  16. Neptunium and plutonium complexes with a sterically encumbered triamidoamine (TREN) scaffold.

    PubMed

    Brown, Jessie L; Gaunt, Andrew J; King, David M; Liddle, Stephen T; Reilly, Sean D; Scott, Brian L; Wooles, Ashley J

    2016-04-07

    The syntheses and characterisation of isostructural neptunium(iv) and plutonium(iv) complexes [An(IV)(TREN(TIPS))(Cl)] [An = Np, Pu; TREN(TIPS) = {N(CH2CH2NSiPr(i)3)3}(3-)] are reported, along with the demonstration that they are likely reduced to the corresponding neptunium(iii) and plutonium(iii) products [An(III)(TREN(TIPS))]; this chemistry provides new platforms from which to target a plethora of unprecedented molecular functionalities in transuranic chemistry and the neptunium(iv) molecule is the first structurally characterised neptunium(iv)-amide complex.

  17. Neptunium and plutonium complexes with a sterically encumbered triamidoamine (TREN) scaffold

    DOE PAGES

    Brown, Jessie L.; Gaunt, Andrew J.; King, David M.; ...

    2016-03-11

    Here, the syntheses and characterization of isostructural neptunium(IV) and plutonium(IV) complexes [MIV(TRENTIPS)(Cl)] [An = Np, Pu; TRENTIPS = {N(CH2CH2NSiPri3)3}3] are reported, along with the demonstration that they are likely reduced to the corresponding neptunium(III) and plutonium(III) products [MIII(TRENTIPS)]; this chemistry provides new platforms from which to target a plethora of unprecedented molecular functionalities in transuranic chemistry and the neptunium(IV) molecule is the first structurally characterized neptunium(IV)–amide complex.

  18. Separation of transuranium elements from irradiated targets

    SciTech Connect

    Wham, R.M.; Benker, D.E.; Felker, L.K.; Chattin, F.R.

    1993-12-31

    Aluminum targets containing curium/americium oxide are irradiated to produce the transcurium actinides einsteinium, fermium, berkelium, and californium. Recovery of recycle curium/americium and the transcurium elements involves several chemical processing steps to selectively recover those elements and remove fission products. Chemical processing steps developed at the Radiochemical Engineering Development Center (REDC) include aluminum dejacketing, solvent extraction to remove bulk impurities, solvent extraction to remove plutonium, anion exchange to partition curium and transcurium elements from the rare earths, and a second anion exchange cycle to separate americium/curium from the transcurium elements.

  19. Soluble irradiation targets and methods for the production of radiorhenium

    SciTech Connect

    Vanderhevden, J.L.E.; Su, F.M.; Ehrhardt, G.J.

    1992-09-08

    This patent describes a method of producing a rhenium-188 radionuclide generator. It comprises irradiating a water soluble irradiation target selected from the group consisting of sodium tungstate and lithium tungstate, reacting the irradiated target with an aqueous zirconium solution to obtain an insoluble zirconium tungstate gel, and disposing the zirconium tungstate in an elutable container to obtain the rhenium-188 radionuclide generator.

  20. Recovery of niobium from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1994-01-01

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  1. Thermal Convection on an Irradiated Target

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Thangam, Siva

    2016-11-01

    The present work involves the computational modeling of metallic targets subject to steady and high intensity heat flux. The ablation and associated fluid dynamics when metallic surfaces are exposed to high intensity laser fluence at normal atmospheric conditions is modelled. The incident energy from the laser is partly absorbed and partly reflected by the surface during ablation and subsequent vaporization of the melt. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented and discussed in the context of various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. The energy distribution during the process between the bulk and vapor phase strongly depends on optical and thermodynamic properties of the irradiated material, radiation wavelength, and laser intensity. The relevance of the findings to various manufacturing processes as well as for the development of protective shields is discussed. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  2. Recovery of germanium-68 from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1993-01-01

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  3. Method for mounting laser fusion targets for irradiation

    DOEpatents

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  4. Results of Neptunium Disposal Testing

    SciTech Connect

    Walker, D.D.

    2003-10-07

    Researchers investigated the neutralization of neptunium solution from H-Canyon Tank 16.4 and the properties of the resulting slurry. This work investigated slurry properties from a single neutralization protocol and limited storage times.

  5. Neptunium as a Tool for Reducing Proliferation Risks with Plutonium: A Technical Analysis of its Efficiency and its Drawbacks

    SciTech Connect

    Greneche, Dominique; Ng, Selena; Guesdon, Bernard; Vinoche, Richard; Delpech, Marc; Golfier, Herve; Dolci, Florence; Poinot-Salanon, Christine

    2006-07-01

    Introducing neptunium into the nuclear fuel cycle has been proposed in the past as a way to impede the diversion or the direct use of plutonium to fabricate a nuclear explosive device. This paper aims to technically analyze the industrial consequences should this proposal be implemented. Two scenarios are considered: 1) adding neptunium to fresh uranium oxide (UOX) fuel before irradiation in a light water reactor; 2) separating neptunium together with plutonium from used UOX fuel and using this combined oxide to fabricate mixed oxide (MOX) fuel before subsequent irradiation in a light water reactor. In both cases, assembly calculations for a pressurized water reactor using fresh fuel doped with neptunium are presented for a wide range of neptunium proportions. Consequences on core and fuel performances and the fuel cycle are analyzed. These are weighed against the potential proliferation resistance benefits of adding neptunium due to the increased quantity of the plutonium isotope {sup 238}Pu in the discharged fuel, or due to the potentially increased detectability through gamma ray emissions of a plutonium-neptunium oxide mixture. Finally, the proliferation risk presented by neptunium itself is discussed. (authors)

  6. The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization

    SciTech Connect

    Simos N.; Hanson A.; Brown, D.; Elbakhshawn, M.

    2016-04-11

    BLAIRR STUDY STATUS OVERVIEW Beamline Complex Evaluation/Assessment and Adaptation to the Goals Facility Radiological Constraints ? Large scale analyses of conventional facility and integrated shield (concrete, soil)Target Optimization and Design: Beam-target interaction optimization Hadronic interaction and energy deposition limitations Single phase and Hybrid target concepts Irradiation Damage Thermo-mechanical considerations Spallation neutron fluence optimization for (a) fast neutron irradiation damage (b) moderator/reflector studies, (c) NTOF potential and optimization (d) mono-energetic neutron beam

  7. The production of Neptunium-236g.

    PubMed

    Jerome, S M; Ivanov, P; Larijani, C; Parker, D J; Regan, P H

    2014-12-01

    Radiochemical analysis of (237)Np is important in a number of fields, such as nuclear forensics, environmental analysis and measurements throughout the nuclear fuel cycle. However analysis is complicated by the lack of a stable isotope of neptunium. Although various tracers have been used, including (235)Np, (239)Np and even (236)Pu, none are entirely satisfactory. However, (236g)Np would be a better candidate for a neptunium yield tracer, as its long half-life means that it is useable as both a radiometric and mass spectrometric measurements. This radionuclide is notoriously difficult to prepare, and limited in scope. In this paper, we examine the options for the production of (236g)Np, based on work carried out at NPL since 2011. However, this work was primarily aimed at the production of (236)Pu, and not (236g)Np and therefore the rate of production are based on the levels of (236)Pu generated in the irradiation of (i) (238)U with protons, (ii) (235)U with deuterons, (iii) (236)U with protons and (iv) (236)U with deuterons. The derivation of a well-defined cross section is complicated by the relevant paucity of information on the variation of the (236m)Np:(236g)Np production ratio with incident particle energy. Furthermore, information on the purity of (236g)Np so produced is similarly sparse. Accordingly, the existing data is assessed and a plan for future work is presented.

  8. Production and analysis of mass-deficient neptunium and plutonium isotopes

    NASA Astrophysics Data System (ADS)

    Whittaker, B.

    1984-06-01

    Neptunium-235, 236Pu and 237Pu are produced by cyclotron-irradiation of high-enrichment 238U or 235U targets. Plutonium-236 may be directly assayed and partially analysed by means of alpha-counting and spectrometry techniques, but 235Np and 237Pu are assayed indirectly by their 235U and 237Np ground-state X-ray and gamma emissions, respectively. For 235Np combined alpha, gamma and X-ray analysis is necessary to positively identify and quantify this isotope since 234Np produces an identical X-ray spectrum. The need for new nuclear-data measurements of 237Pu absolute gamma intensities, 235Np alpha branching, and 235Np half-life is stressed. Product isotopic purity is discussed in the context of target material purity and beam energy.

  9. Neptunium - Uranium - Plutonium Co-Extraction in TBP-based Solvent Extraction Processes for Spent Nuclear Fuel Recycling

    SciTech Connect

    Arm, S.T.; Abrefah, J.; Lumetta, G.J.; Sinkov, S.I.

    2007-07-01

    The US, through the Global Nuclear Energy Partnership, is currently engaged in efforts aimed at closing the nuclear fuel cycle. Neptunium behavior is important to understand for transuranic recycling because of its complex oxidation chemistry. The Pacific Northwest National Laboratory is investigating neptunium oxidation chemistry in the context of the PUREX process. Neptunium extraction in the PUREX process relies on maintaining either IV or V oxidation states. Qualitative conversion of neptunium(V) to neptunium(VI) was achieved within 5 hours in 6 M nitric acid at 95 deg. C. However, the VI state was not maintained during a batch contact test simulating the PUREX process and neptunium reduced to the V state, rendering it inextractable. Vanadium(V) was found to be effective in maintaining neptunium(VI) by adding it to a simulated irradiated nuclear fuel feed in 6 M nitric acid and to the scrub acid in the batch contact simulation of the PUREX process. Computer simulations of the PUREX process with a typical irradiated nuclear fuel in 6 M nitric acid as feed indicated little impact of the higher acid concentration on the behavior of fission products of moderate extractability. We plan to perform countercurrent tests of this modified PUREX process in the near future. (authors)

  10. Vacuum aperture isolator for retroreflection from laser-irradiated target

    DOEpatents

    Benjamin, Robert F.; Mitchell, Kenneth B.

    1980-01-01

    The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

  11. Neptunium and plutonium complexes with a sterically encumbered triamidoamine (TREN) scaffold

    SciTech Connect

    Brown, Jessie L.; Gaunt, Andrew J.; King, David M.; Liddle, Stephen T.; Reilly, Sean D.; Scott, Brian L.; Wooles, Ashley J.

    2016-03-11

    Here, the syntheses and characterization of isostructural neptunium(IV) and plutonium(IV) complexes [MIV(TRENTIPS)(Cl)] [An = Np, Pu; TRENTIPS = {N(CH2CH2NSiPri3)3}3] are reported, along with the demonstration that they are likely reduced to the corresponding neptunium(III) and plutonium(III) products [MIII(TRENTIPS)]; this chemistry provides new platforms from which to target a plethora of unprecedented molecular functionalities in transuranic chemistry and the neptunium(IV) molecule is the first structurally characterized neptunium(IV)–amide complex.

  12. Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride

    NASA Astrophysics Data System (ADS)

    Squires, Leah N.; Lessing, Paul

    2016-04-01

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can be easily removed upon cooling. The direct reduction technique consistently produces high purity (98%-99% pure) neptunium metal.

  13. OXIDATIVE METHOD OF SEPARATING PLUTONIUM FROM NEPTUNIUM

    DOEpatents

    Beaufait, L.J. Jr.

    1958-06-10

    A method is described of separating neptunium from plutonium in an aqueous solution containing neptunium and plutonium in valence states not greater than +4. This may be accomplished by contacting the solution with dichromate ions, thus oxidizing the neptunium to a valence state greater than +4 without oxidizing any substantial amount of plutonium, and then forming a carrier precipitate which carries the plutonium from solution, leaving the neptunium behind. A preferred embodiment of this invention covers the use of lanthanum fluoride as the carrier precipitate.

  14. Target Material Irradiation Studies for High-Intensity Accelerator Beams

    SciTech Connect

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W.T.; McDonald, K.; Sheppard, J.; Evangelakis, G.; Yoshimura, K.; /KEK, Tsukuba

    2005-08-16

    This paper presents results of recent experimental studies focusing on the behavior of special materials and composites under irradiation conditions and their potential use as accelerator targets. The paper also discusses the approach and goals of on-going investigations on an expanded material matrix geared toward the neutrino superbeam and muon collider initiatives.

  15. Radiotoxicity of neptunium(V) and neptunium(V)-nitrilotriacetic acid (NTA) complexes towards Chelatobacter heintzii

    SciTech Connect

    Banaszak, J.E. |; Reed, D.T.; Rittmann, B.E.

    1997-03-10

    The objective of this work was to investigate the toxicity mechanisms of neptunium and the neptunium-NTA complex towards Chelatobacter heintzii. The results show that metal toxicity of aquo NpO{sub 2}{sup +} may significantly limit growth of Cl heintzii at free metal ion concentrations greater than {approx} 10{sup {minus}5} M. However, neptunium concentrations {ge} 10{sup {minus}4} M do not cause measurable radiotoxicity effects in C. heintzii when present in the form of a neptunium-NTA complex or colloidal/precipitated neptunium-phosphate. The neptunium-NTA complex, which is stable under aerobic conditions, is destabilized by microbial degradation of NTA. When phosphate was present, degradation of NTA led to the precipitation of a neptunium-phosphate phase.

  16. Phonon dynamics of neptunium chalcogenides

    NASA Astrophysics Data System (ADS)

    Aynyas, Mahendra; Rukmangad, Aditi; Arya, Balwant S.; Sanyal, Sankar P.

    2012-06-01

    We have performed phonon calculations of Neptunium Chalcogenides (NpX) (X= S, Se, Te) based on breathing shell model (BSM) which includes breathing motion of electron of the Np-atoms due to f-d hybridization. The model predicts that the short range breathing phenomenon play a dominant role in the phonon properties. We also report, for the first time specific heat for these compounds.

  17. Packaging and Transportation of Additional Neptunium Oxide

    SciTech Connect

    Watkins, R.; Jordan, J.; Hensel, S.

    2010-05-05

    The Savannah River Site's HB-Line Facility completed a second neptunium oxide production campaign in which nine (9) additional cans of neptunium oxide were produced and shipped to the Idaho National Laboratory and Oak Ridge National Laboratory in the 9975 shipping container. These additional cans were from a different feed solution than the first fifty (50) cans of neptunium oxide that were previously produced and shipped via a Letter of Amendment to the 9975 Safety Analysis Report for Packaging (SARP) content table. This paper will address the challenges associated with demonstrating the neptunium oxide produced from the additional feed solution was equivalent to the original neptunium oxide and within the content description of the Letter of Amendment.

  18. Neptunium migration in salt brine aquifers

    SciTech Connect

    Bidoglio, G.; DePlano, A.

    1986-09-01

    Investigation of reactions between neptunium and soil samples representative of the saline area around the Gorleben salt dome (Federal Republic of Germany) was conducted to obtain an understanding of the transport mechanism of neptunium in saturated brine aquifers. Leaching of /sup 237/ Np-doped glasses with brine under oxic conditions resulted in the release of soluble species of Np(V). Adsorption parameters obtained from the application of nonlinear sorption isotherms to static experiments were used to interpret the migration of neptunium through soil columns. The existence of two different adsorption sites reacting with neptunium at different rates was postulated. Retardation factors under oxic and anoxic conditions were measured. In anoxic environments such as those found in undisturbed repository horizons, more neptunium activity was fixed by the soil.

  19. A solid target system with remote handling of irradiated targets for PET cyclotrons.

    PubMed

    Siikanen, J; Tran, T A; Olsson, T G; Strand, S-E; Sandell, A

    2014-12-01

    A solid target system was developed for a PET cyclotron. The system is compatible with many different target materials in the form of foils and electroplated/sputtered targets which makes it useful for production of a wide variety of different PET radionuclides. The target material is manually loaded into the system. Remote handling of irradiated target material is managed with a pneumatic piston and a vacuum technique which allows the targets to be dropped into a shielded transport container. To test the target performance, proton irradiations (12.8 MeV, 45 μA) of monoisotopic yttrium foils (0.64 mm, direct water cooling) were performed to produce 89Zr. The yields were 2200±200 MBq (1 h, n=13) and 6300±65 MBq (3 h, n=3).

  20. Sample Targeting During Single-Particle Single-Cell Irradiation

    NASA Astrophysics Data System (ADS)

    Bigelow, A. W.; Randers-Pehrson, G.; Michel, K. A.; Brenner, D. J.; Dymnikov, A. D.

    2003-08-01

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  1. Neptunium uptake by serum transferrin.

    PubMed

    Llorens, Isabelle; Den Auwer, Christophe; Moisy, Philippe; Ansoborlo, Eric; Vidaud, Claude; Funke, Harld

    2005-04-01

    Although of major impact in terms of biological and environmental hazards, interactions of actinide cations with biological molecules are only partially understood. Human serum transferrin (Tf) is one of the major iron carriers in charge of iron regulation in the cell cycle and consequently contamination by actinide cations is a critical issue of nuclear toxicology. Combined X-ray absorption spectroscopy (XAS) and near infrared absorption spectrometry were used to characterize a new complex between Tf and Np (IV) with the synergistic nitrilotriacetic acid (NTA) anion. Description of the neptunium polyhedron within the iron coordination site is given.

  2. Simulation of cosmic irradiation conditions in thick target arrangements

    NASA Technical Reports Server (NTRS)

    Theis, S.; Englert, P.; Reedy, R. C.; Arnold, J. R.

    1986-01-01

    One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target.

  3. PRECIPITATION METHOD OF SEPARATION OF NEPTUNIUM

    DOEpatents

    Magnusson, L.B.

    1958-07-01

    A process is described for the separation of neptunium from plutonium in an aqueous solution containing neptunium ions in a valence state not greater than +4, plutonium ioms in a valence state not greater than +4, and sulfate ions. The Process consists of adding hypochlorite ions to said solution in order to preferentially oxidize the neptunium and then adding lanthanum ions and fluoride ions to form a precipitate of LaF/sub 3/ carrying the plutonium, and thereafter separating the supernatant solution from the precipitate.

  4. Post irradiation examination of the Spallation Neutron Source target vessels

    SciTech Connect

    McClintock, David A; Ferguson, Phillip D; Mansur, Louis K

    2010-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of target vessel. Though mitigation of cavitation erosion and radiation damage to the target vessel will be a critical for successful high-power operation of the SNS facility, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  5. Final Report on MEGAPIE Target Irradiation and Post-Irradiation Examination

    SciTech Connect

    Yong, Dai

    2015-06-30

    Megawatt pilot experiment (MEGAPIE) was successfully performed in 2006. One of the important goals of MEGAPIE is to understand the behaviour of structural materials of the target components exposed to high fluxes of high-energy protons and spallation neutrons in flowing LBE (liquid lead-bismuth eutectic) environment by conducting post-irradiation examination (PIE). The PIE includes four major parts: non-destructive test, radiochemical analysis of production and distribution of radionuclides produced by spallation reaction in LBE, analysis of LBE corrosion effects on structural materials, T91 and SS 316L steels, and mechanical testing of the T91 and SS 316L steels irradiated in the lower part of the target. The non-destructive test (NDT) including visual inspection and ultrasonic measurement was performed in the proton beam window area of the T91 calotte of the LBE container, the most intensively irradiated part of the MEGAPIE target. The visual inspection showed no visible failure and the ultrasonic measurement demonstrated no detectable change in thickness in the beam window area. Gamma mapping was also performed in the proton beam window area of the AlMg3 safety-container. The gamma mapping results were used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. Radiochemical analysis of radionuclides produced by spallation reaction in LBE is to improve the understanding of the production and distribution of radionuclides in the target. The results demonstrate that the radionuclides of noble metals, 207Bi, 194Hg/Au are rather homogeneously distributed within the target, while radionuclides of electropositive elements are found to be deposited on the steel-LBE interface. The corrosion effect of LBE on the structural components under intensive irradiation was investigated by metallography. The results show that no evident corrosion damages. However, unexpected deep

  6. Organometallic neptunium(III) complexes.

    PubMed

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  7. Organometallic neptunium(III) complexes

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  8. Separation of americium, curium, and plutonium from irradiated targets

    SciTech Connect

    Felker, L.K.; Benker, D.E.; Chattin, F.R.

    1995-04-01

    The Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL) processes highly irradiated targets for the Mark 42 program to separate Am, Cm, and Pu. The target feed material for each assembly was 3.3 kg of plutonium (78% {sup 239}Pu) that was irradiated at the Savannah River Site to yield approximately 100 g each of {sup 243}Am and {sup 244}Cm, and 100-g quantities of {sup 242}Pu for special DOE projects. The REDC has plans to process ten of these target assemblies over the next few years. The first assembly has been dissolved, and approximately 1/4 of this material has been used to test the processing flowsheet. Various aqueous processes developed at the REDC over the past years were utilized to dissolve the target segments, separate the bulk of the impurities from the transuranics, separate the plutonium from the transplutonium actinides, and separate the rare earth fission products from the Am-Cm. The separation of the Am-Cm products to the desired purity levels presented new processing challenges for REDC operations. Through a combination of precipitation and cation-exchange operations, an Am product containing part-per-million levels of Cm was obtained. Standard REDC processing techniques were used to prepare the products as oxides for shipment. Future processing will focus on the reduction of waste solutions, improvement of yields, and application of new technologies for improved processing.

  9. Craniospinal Irradiation With Spinal IMRT to Improve Target Homogeneity

    SciTech Connect

    Panandiker, Atmaram Pai; Ning, Holly; Likhacheva, Anna; Ullman, Karen; Arora, Barbara; Ondos, John C.; Karimpour, Shervin; Packer, Roger; Miller, Robert; Citrin, Deborah . E-mail: citrind@mail.nih.gov

    2007-08-01

    Purpose: To report a new technique for the spinal component of craniospinal irradiation (CSI) in the supine position, to describe a verification procedure for this method, and to compare this technique with conventional plans. Methods and Materials: Twelve patients were treated between 1998 and 2006 with CSI using a novel technique. Sixteen children were treated with a conventional field arrangement. All patients were followed for outcomes and toxicity. CSI was delivered using a posteroanterior (PA) intensity-modulated radiation therapy (IMRT) spinal field matched to conventional, opposed lateral cranial fields. Treatment plans were generated for each patient using the IMRT technique and a standard PA field technique. The resulting dosimetry was compared to determine target homogeneity, maximum dose to normal tissues, and total monitor units delivered. Results: Evaluation of the spinal IMRT technique compared with a standard PA technique reveals a 7% reduction in the target volume receiving {>=}110% of the prescribed dose and an 8% increase in the target volume receiving {>=}95% of the prescribed dose. Although target homogeneity was improved, the maximum dose delivered in the paraspinal muscles was increased by approximately 8.5% with spinal IMRT compared to the PA technique. Follow-up evaluations revealed no unexpected toxicity associated with the IMRT technique. Conclusions: A new technique of spine IMRT is presented in combination with a quality assurance method. This method improves target dose uniformity compared to the conventional CSI technique. Longer follow-up will be required to determine any benefit with regard to toxicity and disease control.

  10. Particle therapy of moving targets-the strategies for tumour motion monitoring and moving targets irradiation.

    PubMed

    Kubiak, Tomasz

    2016-10-01

    Particle therapy of moving targets is still a great challenge. The motion of organs situated in the thorax and abdomen strongly affects the precision of proton and carbon ion radiotherapy. The motion is responsible for not only the dislocation of the tumour but also the alterations in the internal density along the beam path, which influence the range of particle beams. Furthermore, in case of pencil beam scanning, there is an interference between the target movement and dynamic beam delivery. This review presents the strategies for tumour motion monitoring and moving target irradiation in the context of hadron therapy. Methods enabling the direct determination of tumour position (fluoroscopic imaging of implanted radio-opaque fiducial markers, electromagnetic detection of inserted transponders and ultrasonic tumour localization systems) are presented. Attention is also drawn to the techniques which use external surrogate motion for an indirect estimation of target displacement during irradiation. The role of respiratory-correlated CT [four-dimensional CT (4DCT)] in the determination of motion pattern prior to the particle treatment is also considered. An essential part of the article is the review of the main approaches to moving target irradiation in hadron therapy: gating, rescanning (repainting), gated rescanning and tumour tracking. The advantages, drawbacks and development trends of these methods are discussed. The new accelerators, called "cyclinacs", are presented, because their application to particle therapy will allow making a breakthrough in the 4D spot scanning treatment of moving organs.

  11. A target design for irradiation of NaI at high beam current

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Sodd, V. J.

    1972-01-01

    A solution to the targetry problems encountered when the iodine nucleus is a target for cyclotron irradiation is given as a target design. A target based on this design was used in 30 microampere irradiations of 46 MeV alpha particles for one-half hour without significant damage. Such an irradiation produces 6 to 7 mCi of Cs-129. This target should also be considered for cyclotron production of the radioisotopes Cs-127, I-123, and Xe-127.

  12. Optical emission from Al target irradiated by FLASH

    NASA Astrophysics Data System (ADS)

    Stránský, M.; Rohlena, K.

    2014-04-01

    The following text touches on some peculiarities in optical emission spectroscopy results from experiments on the free-electron laser FLASH [1, 2]. Aluminum targets were irradiated with 13.5 nm ~ 25 fs pulses at intensities of 1013 and 1016 W/cm2 (20 and 1 μm foci). Surprisingly, only neutral atom lines for the case with wider focus and traces of ion lines in the tighter focus case were observed with the optical emission spectroscopy (200-600 nm range), [2]. The motivating idea behind this work is the suggestion in [1] by Zastrau that the optical spectrometer sees only emissions from a cold expanding lower-density (< 1022 cm-3) plasma plume. In this contribution the notion of UV range screening is analyzed in detail.

  13. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, Jr., Jerry; Avens, Larry R.; Trujillo, Eddie A.

    1992-01-01

    A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.

  14. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  15. PACKAGING AND TRANSPORTATION OF NEPTUNIUM OXIDE

    SciTech Connect

    Watkins, R; Steve Hensel, S; Jeffrey Jordan, J

    2009-03-03

    The Savannah River Site's HB-Line Facility completed a campaign in which fifty (50) cans of neptunium oxide were produced and shipped to the Idaho National Laboratory in the 9975 shipping container. This shipping campaign involved the addition of neptunium oxide to the 9975 Safety Analysis Report for Packaging (SARP) as a new content and subsequently a Letter of Amendment to the SARP content table. This paper will address the proper steps which should be taken to add a new content table to a SARP. It will also address the importance of product sampling and understanding the material shipping requirements of a SARP.

  16. Neptunium dioxide precipitation kinetics in aqueous systems

    NASA Astrophysics Data System (ADS)

    Johnsen, Amanda Melia

    The proposed Yucca Mountain nuclear waste repository poses questions about the behavior of nuclear materials stored underground for thousands of years. Chemical and transport behaviors of 237Np in such a repository are of particular interest because of 237Np's 2.14 million year half-life. Previous neptunium solubility studies in Yucca Mountain ground waters supersaturated with NpO+2aq reacted below 100°C for up to a year reported various Np(V) solid phases. However, recent studies with NpO+2aq under similar conditions at 200°C reported precipitation of NpO 2(cr), suggesting Np(IV) solid phases were previously unobserved due to kinetic limitations. The aim of this thesis is to better understand the NpO+2aq -NpO2(cr) reduction-precipitation system by conducting experiments to obtain first-order answers concerning effects of temperature, ionic strength, and O2 and CO2. Unfiltered experiments conducted at 10-4M Np(V), pH 6-6.5, ˜ 10-4-10 -3M ionic strength, and 200°C indicated colloids might effect precipitation kinetics, necessitating solution filtration. Subsequent filtered experiments at 200, 212, and 225°C showed consistent and distinctive temperature dependent behavior at short reaction times. At long times, 200°C experiments showed unexpected dissolution of neptunium solids, but 212°C and 225°C experiments demonstrated quasi steady-state neptunium concentrations of ˜ 3x10-6M and ˜ 6x10-6M, respectively. Steady-state 212°C and 225°C experiments were then "adjusted" to their original neptunium and hydrogen ion concentrations before continuing at temperature, creating additional neptunium precipitates; these experiments showed less consistent neptunium behavior, suggesting kinetic dependence on solids from the initial precipitation. Solids from a 225°C experiment analyzed by X-ray diffraction were NpO2(cr). A 200°C experiment with a NaCl concentration of 0.05 M showed a drastic increase in neptunium loss and hydrogen ion gain rates. Another 200

  17. Dissolution of Neptunium and Plutonium Oxides Using a Catalyzed Electrolytic Process

    SciTech Connect

    Hylton, TD

    2004-10-25

    This report discusses the scoping study performed to evaluate the use of a catalyzed electrolytic process for dissolving {sup 237}Np oxide targets that had been irradiated to produce {sup 238}Pu oxide. Historically, these compounds have been difficult to dissolve, and complete dissolution was obtained only by adding hydrofluoric acid to the nitric acid solvent. The presence of fluoride in the mixture is undesired because the fluoride ions are corrosive to tank and piping systems and the fluoride ions cause interferences in the spectrophotometric analyses. The goal is to find a dissolution method that will eliminate these issues and that can be incorporated into a processing system to support the domestic production and purification of {sup 238}Pu. This study evaluated the potential of cerium(IV) ions, a strong oxidant, to attack and dissolve the oxide compounds. In the dissolution process, the cerium(IV) ions are reduced to cerium(III) ions, which are not oxidants. Therefore, an electrolytic process was incorporated to continuously convert cerium(III) ions back to cerium(IV) ions so that they can dissolve more of the oxide compounds. This study showed that the neptunium and plutonium oxides were successfully dissolved and that more development work should be performed to optimize the procedure.

  18. Physics of Double Pulse Irradiation of Targets For Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M.; Masud, R.; Manzoor, L.; Tiedje, H.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2016-10-01

    Experiments have been carried out on double-pulse irradiation of um-scale foil targets with varying preplasma conditions. Our experiment at the Titan Laser facility utilized two 700 fs, 1054 nm pulses, separated by 1 to 5 ps with a total energy of 100 J, and with 5-20% of the total energy contained within the first pulse. The proton spectra were measured with radiochromic film stacks and magnetic spectrometers. The prepulse energy was on the order of 10 mJ, which appears to have a moderating effect on the double pulse enhancement of proton beam. We have performed LSP PIC simulations to understand the double pulse enhancement mechanism, as well as the role of preplasma in modifying the interaction. A 1D parameter study was done to isolate various aspects of the interaction, while 2D simulations provide more detailed physical insight and a better comparison with experimental data. Work by the Univ. of Alberta was supported by the Natural Sciences and Engineering Research Council of Canada. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  19. DEVELOPMENT OF NDA METHODS FOR NEPTUNIUM METAL

    SciTech Connect

    C. MOSS; ET AL

    2000-10-01

    Many techniques have been developed and applied in the US and other countries for the control of the special nuclear materials (SNM) plutonium and uranium, but no standard methods exist for the determination of neptunium in bulk containers. Such methods are needed because the U.S. Department of Energy requires all Government-owned {sup 237}Np be treated as if it were SNM and the International Atomic Energy Agency is considering how to monitor this material. We present the results of the measurements of several samples of neptunium metal with a variety of techniques. Analysis of passive gamma-ray spectra uniquely identifies the material, provides isotopic ratios for contaminants, such as {sup 243}Am, and may provide information about the shielding, mass, and time since processing. Active neutron interrogation, using the delayed neutron technique in a package monitor, provides useful data even if the neptunium is shielded. The tomographic gamma scanner yields a map of the distribution of the neptunium and shielding in a container. Active photon interrogation with pulses from a 10-MeV linac produces delayed neutrons between pulses, even when the container is heavily shielded. Data from one or more of these techniques can be used to identify the material and estimate a mass in a bulk container.

  20. Neutron Resonance Parameters for Np-237 (Neptunium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Volume 24 `Neutron Resonance Parameters' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides the neutron resonance parameters for the isotope Np-237 (Neptunium).

  1. A target design for irradiation of NaI at high beam current.

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Sodd, V. J.

    1972-01-01

    A solution to the targetry problems encountered when the iodine nucleus is a target for cyclotron irradiation is given as a new target design. A target based on this design has been used in 30 microampere irradiations of 46 MeV alpha particles for one-half hour without significant damage. Such an irradiation produces 6 to 7 mCi of Cs-129, an isotope useful in nuclear medicine. This target should also be considered for cyclotron production of the radioisotopes Cs-127, I-123, and Xe-127.

  2. Neptunium_Oxide_Precipitation_Kinetics_AJohnsen

    SciTech Connect

    Johnsen, A M; Roberts, K E; Prussin, S G

    2012-06-08

    We evaluate the proposed NpO{sub 2}{sup +}(aq)-NpO{sub 2}(cr) reduction-precipitation system at elevated temperatures to obtain primary information on the effects of temperature, ionic strength, O{sub 2} and CO{sub 2}. Experiments conducted on unfiltered solutions at 10{sup -4} M NpO{sub 2}{sup +}(aq), neutral pH, and 200 C indicated that solution colloids strongly affect precipitation kinetics. Subsequent experiments on filtered solutions at 200, 212, and 225 C showed consistent and distinctive temperature-dependent behavior at reaction times {le} 800 hours. At longer times, the 200 C experiments showed unexpected dissolution of neptunium solids, but experiments at 212 C and 225 C demonstrated quasi steady-state neptunium concentrations of 3 x 10{sup -6} M and 6 x 10{sup -6} M, respectively. Solids from a representative experiment analyzed by X-ray diffraction were consistent with NpO{sub 2}(cr). A 200 C experiment with a NaCl concentration of 0.05 M showed a dramatic increase in the rate of neptunium loss. A 200 C experiment in an argon atmosphere resulted in nearly complete loss of aqueous neptunium. Previously proposed NpO{sub 2}{sup +}(aq)-NpO{sub 2}(cr) reduction-precipitation mechanisms in the literature specified a 1:1 ratio of neptunium loss and H{sup +} production in solution over time. However, all experiments demonstrated ratios of approximately 0.4 to 0.5. Carbonate equilibria can account for only about 40% of this discrepancy, leaving an unexpected deficit in H+ production that suggests that additional chemical processes are occurring.

  3. DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES

    SciTech Connect

    Kyser, E

    2009-01-12

    This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

  4. New neptunium(V) borates that exhibit the alexandrite effect.

    PubMed

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2012-01-02

    A new neptunium(V) borate, K[(NpO(2))B(10)O(14)(OH)(4)], was synthesized using boric acid as a reactive flux. The compound possesses a layered structure in which Np(V) resides in triangular holes, creating a hexagonal-bipyramidal environment around neptunium. This compound is unusual in that it exhibits the Alexandrite effect, a property that is typically restricted to neptunium(IV) compounds.

  5. Target depth dependence of damage rate in metals by 150 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Ishi, Y.; Kuriyama, Y.; Mori, Y.; Sato, K.; Uesugi, T.; Xu, Q.

    2015-01-01

    A series of irradiation experiments with 150 MeV protons was performed. The relationship between target depth (or shield thickness) and displacement damage during proton irradiation was obtained by in situ electrical resistance measurements at 20 K. Positron annihilation lifetime measurements were also performed at room temperature after irradiation, as a function of the target thickness. The displacement damage was found to be high close to the beam incident surface area, and decreased with increasing target depth. The experimental results were compared with damage production calculated with an advanced Monte Carlo particle transport code system (PHITS).

  6. Incorporation of neptunium(VI) into a uranyl selenite.

    PubMed

    Meredith, Nathan A; Polinski, Matthew J; Lin, Jian; Simonetti, Antonio; Albrecht-Schmitt, Thomas E

    2012-10-15

    The incorporation of neptunium(VI) into the layered uranyl selenite Cs[(UO(2))(HSeO(3))(SeO(3))] has yielded the highest level of neptunium uptake in a uranyl compound to date with an average of 12(±3)% substitution of Np(VI) for U(VI). Furthermore, this is the first case in nearly 2 decades of dedicated incorporation studies in which the oxidation state of neptunium has been determined spectroscopically in a doped uranyl compound and also the first time in which neptunium incorporation has resulted in a structural transformation.

  7. Neptunium flow-sheet verification at reprocessing plants

    SciTech Connect

    Rance, P.; Chesnay, B.; Killeen, T.; Murray, M.; Nikkinen, M.; Petoe, A.; Plumb, J.; Saukkonen, H.

    2007-07-01

    Due to their fissile nature, neptunium and americium have at least a theoretical potential application as nuclear explosives and their proliferation potential was considered by the IAEA in studies in the late 1990's. This work was motivated by an increased awareness of the proliferation potential of americium and neptunium and a number of emerging projects in peaceful nuclear programmes which could result in an increase in the available quantities of these minor actinides. The studies culminated in proposals for various voluntary measures including the reporting of international transfers of separated americium and neptunium, declarations concerning the amount of separated neptunium and americium held by states and the application of flow-sheet verification to ensure that facilities capable of separating americium or neptunium are operated in a manner consistent with that declared. This paper discusses the issue of neptunium flowsheet verification in reprocessing plants. The proliferation potential of neptunium is first briefly discussed and then the chemistry of neptunium relevant to reprocessing plants described with a view to indicating a number of issues relevant to the verification of neptunium flow-sheets. Finally, the scope of verification activities is discussed including analysis of process and engineering design information, plant monitoring and sampling and the potential application of containment and surveillance measures. (authors)

  8. Accuracy of positioning and irradiation targeting for multiple targets in intracranial image-guided radiation therapy: a phantom study.

    PubMed

    Tominaga, Hirofumi; Araki, Fujio; Shimohigashi, Yoshinobu; Ishihara, Terunobu; Kawasaki, Keiichi; Kanetake, Nagisa; Sakata, Junichi; Iwashita, Yuki

    2014-12-21

    This study investigated the accuracy of positioning and irradiation targeting for multiple off-isocenter targets in intracranial image-guided radiation therapy (IGRT). A phantom with nine circular targets was created to evaluate both accuracies. First, the central point of the isocenter target was positioned with a combination of an ExacTrac x-ray (ETX) and a 6D couch. The positioning accuracy was determined from the deviations of coordinates of the central point in each target obtained from the kV-cone beam computed tomography (kV-CBCT) for IGRT and the planning CT. Similarly, the irradiation targeting accuracy was evaluated from the deviations of the coordinates between the central point of each target and the central point of each multi-leaf collimator (MLC) field for multiple targets. Secondly, the 6D couch was intentionally rotated together with both roll and pitch angles of 0.5° and 1° at the isocenter and similarly the deviations were evaluated. The positioning accuracy for all targets was less than 1 mm after 6D positioning corrections. The irradiation targeting accuracy was up to 1.3 mm in the anteroposterior (AP) direction for a target 87 mm away from isocenter. For the 6D couch rotations with both roll and pitch angles of 0.5° and 1°, the positioning accuracy was up to 1.0 mm and 2.3 mm in the AP direction for the target 87 mm away from the isocenter, respectively. The irradiation targeting accuracy was up to 2.1 mm and 2.6 mm in the AP direction for the target 87 mm away from the isocenter, respectively. The off-isocenter irradiation targeting accuracy became worse than the positioning accuracy. Both off-isocenter accuracies worsened in proportion to rotation angles and the distance from the isocenter to the targets. It is necessary to examine the set-up margin for off-isocenter multiple targets at each institution because irradiation targeting accuracy is peculiar to the linac machine.

  9. Accuracy of positioning and irradiation targeting for multiple targets in intracranial image-guided radiation therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Tominaga, Hirofumi; Araki, Fujio; Shimohigashi, Yoshinobu; Ishihara, Terunobu; Kawasaki, Keiichi; Kanetake, Nagisa; Sakata, Junichi; Iwashita, Yuki

    2014-12-01

    This study investigated the accuracy of positioning and irradiation targeting for multiple off-isocenter targets in intracranial image-guided radiation therapy (IGRT). A phantom with nine circular targets was created to evaluate both accuracies. First, the central point of the isocenter target was positioned with a combination of an ExacTrac x-ray (ETX) and a 6D couch. The positioning accuracy was determined from the deviations of coordinates of the central point in each target obtained from the kV-cone beam computed tomography (kV-CBCT) for IGRT and the planning CT. Similarly, the irradiation targeting accuracy was evaluated from the deviations of the coordinates between the central point of each target and the central point of each multi-leaf collimator (MLC) field for multiple targets. Secondly, the 6D couch was intentionally rotated together with both roll and pitch angles of 0.5° and 1° at the isocenter and similarly the deviations were evaluated. The positioning accuracy for all targets was less than 1 mm after 6D positioning corrections. The irradiation targeting accuracy was up to 1.3 mm in the anteroposterior (AP) direction for a target 87 mm away from isocenter. For the 6D couch rotations with both roll and pitch angles of 0.5° and 1°, the positioning accuracy was up to 1.0 mm and 2.3 mm in the AP direction for the target 87 mm away from the isocenter, respectively. The irradiation targeting accuracy was up to 2.1 mm and 2.6 mm in the AP direction for the target 87 mm away from the isocenter, respectively. The off-isocenter irradiation targeting accuracy became worse than the positioning accuracy. Both off-isocenter accuracies worsened in proportion to rotation angles and the distance from the isocenter to the targets. It is necessary to examine the set-up margin for off-isocenter multiple targets at each institution because irradiation targeting accuracy is peculiar to the linac machine.

  10. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE

    NASA Astrophysics Data System (ADS)

    Siebenwirth, C.; Greubel, C.; Drexler, S. E.; Girst, S.; Reindl, J.; Walsh, D. W. M.; Dollinger, G.; Friedl, A. A.; Schmid, T. E.; Drexler, G. A.

    2015-04-01

    In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future.

  11. Comparison of neptunium sorption results using batch and column techniques

    SciTech Connect

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.; Chipera, S.J.; Bish, D.L.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments under static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases.

  12. Heavy-Ion Irradiation of Thulium(III) Oxide Targets Prepared by Polymer-Assisted Deposition

    SciTech Connect

    Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, Tashi; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino

    2008-09-15

    Thulium(III) oxide (Tm{sub 2}O{sub 3}) targets prepared by the polymer-assisted deposition (PAD) method were irradiated by heavy-ion beams to test the method's feasibility for nuclear science applications. Targets were prepared on silicon nitride backings (thickness of 1000 nm, 344 {micro}g/cm{sup 2}) and were irradiated with an {sup 40}Ar beam at laboratory frame energy of {approx}210 MeV (50 particle nA). The root mean squared (RMS) roughness prior to irradiation is 1.1 nm for a {approx}250 nm ({approx}220 {micro}g/cm{sup 2}) Tm{sub 2}O{sub 3} target, and an RMS roughness of 2.0 nm after irradiation was measured by atomic force microscopy (AFM). Scanning electron microscopy of the irradiated target reveals no significant differences in surface homogeneity when compared to imaging prior to irradiation. Target flaking was not observed from monitoring Rutherford scattered particles as a function of time.

  13. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    NASA Astrophysics Data System (ADS)

    Korovin, Yu. A.; Konobeyev, A. Yu.; Pereslavtsev, P. E.

    1995-09-01

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclider transmutation. All calculations have been performed using the SNT code [1].

  14. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    SciTech Connect

    Korovin, Yu. A.; Konobeyev, A. Yu.; Pereslavtsev, P. E.

    1995-09-15

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclider transmutation. All calculations have been performed using the SNT code.

  15. Molecular toolbox for genetic manipulation of the stalked budding bacterium Hyphomonas neptunium.

    PubMed

    Jung, Alexandra; Eisheuer, Sabrina; Cserti, Emöke; Leicht, Oliver; Strobel, Wolfgang; Möll, Andrea; Schlimpert, Susan; Kühn, Juliane; Thanbichler, Martin

    2015-01-01

    The alphaproteobacterium Hyphomonas neptunium proliferates by a unique budding mechanism in which daughter cells emerge from the end of a stalk-like extension emanating from the mother cell body. Studies of this species so far have been hampered by the lack of a genetic system and of molecular tools allowing the regulated expression of target genes. Based on microarray analyses, this work identifies two H. neptunium promoters that are activated specifically by copper and zinc. Functional analyses show that they have low basal activity and a high dynamic range, meeting the requirements for use as a multipurpose expression system. To facilitate their application, the two promoters were incorporated into a set of integrative plasmids, featuring a choice of two different selection markers and various fluorescent protein genes. These constructs enable the straightforward generation and heavy metal-inducible synthesis of fluorescent protein fusions in H. neptunium, thereby opening the door to an in-depth analysis of polar growth and development in this species.

  16. Molecular Toolbox for Genetic Manipulation of the Stalked Budding Bacterium Hyphomonas neptunium

    PubMed Central

    Jung, Alexandra; Eisheuer, Sabrina; Cserti, Emöke; Leicht, Oliver; Strobel, Wolfgang; Möll, Andrea; Schlimpert, Susan; Kühn, Juliane

    2014-01-01

    The alphaproteobacterium Hyphomonas neptunium proliferates by a unique budding mechanism in which daughter cells emerge from the end of a stalk-like extension emanating from the mother cell body. Studies of this species so far have been hampered by the lack of a genetic system and of molecular tools allowing the regulated expression of target genes. Based on microarray analyses, this work identifies two H. neptunium promoters that are activated specifically by copper and zinc. Functional analyses show that they have low basal activity and a high dynamic range, meeting the requirements for use as a multipurpose expression system. To facilitate their application, the two promoters were incorporated into a set of integrative plasmids, featuring a choice of two different selection markers and various fluorescent protein genes. These constructs enable the straightforward generation and heavy metal-inducible synthesis of fluorescent protein fusions in H. neptunium, thereby opening the door to an in-depth analysis of polar growth and development in this species. PMID:25398860

  17. Development of two-band infrared radiometer for irradiance calibration of target simulators

    SciTech Connect

    Yang, Sen; Li, Chengwei

    2015-07-15

    A detector-based spectral radiometer has been developed for the calibration of target simulator. Unlike the conventional spectral irradiance calibration method based on radiance and irradiance, the new radiometer is calibrated using image-space temperature based method. The image-space temperature based method improves the reproducibility in the calibration of radiometer and reduces the uncertainties existing in the conventional calibration methods. The calibrated radiometer is then used to establish the irradiance transfer standard for the target simulator. With the designed radiometer in this paper, a highly accurate irradiance calibration for target simulators of wavelength from 2.05 to 2.55 μm and from 3.7 to 4.8 μm can be performed with an expanded uncertainty (k = 2) of calibration of 2.18%. Last but not least, the infrared radiation of the target simulator was measured by the infrared radiometer, the effectiveness and capability of which are verified through measurement of temperature and irradiance and a comparison with the thermal imaging camera.

  18. Neptunium Binding Kinetics with Arsenazo(III)

    SciTech Connect

    Martin, Leigh R.; Johnson, Aaron T.; Mezyk, Stephen P.

    2014-08-01

    This document has been prepared to meet FCR&D level 2 milestone M2FT-14IN0304021, “Report on the results of actinide binding kinetics with aqueous phase complexants” This work was carried out under the auspices of the Thermodynamics and Kinetics of Advanced Separations Systems FCR&D work package. The report details kinetics experiments that were performed to measure rates of aqueous phase complexation for pentavalent neptunium with the chromotropic dye Arsenazo III (AAIII). The studies performed were designed to determine how pH, ionic strength and AAIII concentration may affect the rate of the reaction. A brief comparison with hexavalent neptunium is also made. It was identified that as pH was increased the rate of reaction also increased, however increasing the ionic strength and concentration of AAIII had the opposite effect. Interestingly, the rate of reaction of Np(VI) with AAIII was found to be slower than that of the Np(V) reaction.

  19. Neptunium(III) application in extraction chromatography.

    PubMed

    Guérin, Nicolas; Nadeau, Kenny; Larivière, Dominic

    2011-12-15

    This paper describes a novel strategy for actinide separation by extraction chromatography with Np(III) valence adjustment. Neptunium(IV) was reduced to Np(III) using Cr(II) and then selectively separated from uranium (IV) on a TEVA resin. After elution, Np(III) was retained on a DGA resin in order to remove any detrimental chromium impurities. Neptunium(III) formation was demonstrated by the complete and selective elution of Np from TEVA resin (99 ± 7%) in less than 12 mL of 9M HCl from U(IV) (0.7 ± 0.7%). It was determined by UV-visible and kinetic studies that Cr(II) was the only species responsible for the elution of Np(IV) as Np(III) and that the Cr(II) solution could be prepared from 2 to 30 min before its use without the need of complex degassing systems to prevent the oxidation of Np(III) by oxygen. The methodology proposed here with TEVA/DGA resins provides removal of Cr(III) impurities produced at high decontamination factors (2.8 × 10(3) and 7.3 × 10(4) respectively).

  20. Systems and methods for processing irradiation targets through a nuclear reactor

    DOEpatents

    Dayal, Yogeshwar; Saito, Earl F.; Berger, John F.; Brittingham, Martin W.; Morales, Stephen K.; Hare, Jeffrey M.

    2016-05-03

    Apparatuses and methods produce radioisotopes in instrumentation tubes of operating commercial nuclear reactors. Irradiation targets may be inserted and removed from instrumentation tubes during operation and converted to radioisotopes otherwise unavailable during operation of commercial nuclear reactors. Example apparatuses may continuously insert, remove, and store irradiation targets to be converted to useable radioisotopes or other desired materials at several different origin and termination points accessible outside an access barrier such as a containment building, drywell wall, or other access restriction preventing access to instrumentation tubes during operation of the nuclear plant.

  1. Separation of Plutonium from Irradiated Fuels and Targets

    SciTech Connect

    Gray, Leonard W.; Holliday, Kiel S.; Murray, Alice; Thompson, Major; Thorp, Donald T.; Yarbro, Stephen; Venetz, Theodore J.

    2015-09-30

    Spent nuclear fuel from power production reactors contains moderate amounts of transuranium (TRU) actinides and fission products in addition to the still slightly enriched uranium. Originally, nuclear technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel for military purposes. Military plutonium separations had essentially ceased by the mid-1990s. Reprocessing, however, can serve multiple purposes, and the relative importance has changed over time. In the 1960’s the vision of the introduction of plutonium-fueled fast-neutron breeder reactors drove the civilian separation of plutonium. More recently, reprocessing has been regarded as a means to facilitate the disposal of high-level nuclear waste, and thus requires development of radically different technical approaches. In the last decade or so, the principal reason for reprocessing has shifted to spent power reactor fuel being reprocessed (1) so that unused uranium and plutonium being recycled reduce the volume, gaining some 25% to 30% more energy from the original uranium in the process and thus contributing to energy security and (2) to reduce the volume and radioactivity of the waste by recovering all long-lived actinides and fission products followed by recycling them in fast reactors where they are transmuted to short-lived fission products; this reduces the volume to about 20%, reduces the long-term radioactivity level in the high-level waste, and complicates the possibility of the plutonium being diverted from civil use – thereby increasing the proliferation resistance of the fuel cycle. In general, reprocessing schemes can be divided into two large categories: aqueous/hydrometallurgical systems, and pyrochemical/pyrometallurgical systems. Worldwide processing schemes are dominated by the aqueous (hydrometallurgical) systems. This document provides a historical review of both categories of reprocessing.

  2. Surface Complexation of Neptunium(V) with Goethite

    SciTech Connect

    Jerden, James L.; Kropf, A. Jeremy

    2007-07-01

    Batch adsorption experiments in which neptunium-bearing solutions were reacted with goethite (alpha-FeOOH) have been performed to study uptake mechanisms in sodium chloride and calcium-bearing sodium silicate solutions. This paper presents results identifying and quantifying the mechanisms by which neptunium is adsorbed as a function of pH and reaction time (aging). Also presented are results from tests in which neptunium is reacted with goethite in the presence of other cations (uranyl and calcium) that may compete with neptunium for sorption sites. The desorption of neptunium from goethite has been studied by re-suspending the neptunium-loaded goethite samples in solutions containing no neptunium. Selected reacted sorbent samples were analyzed by x-ray absorption spectroscopy (XAS) to determine the oxidation state and molecular speciation of the adsorbed neptunium. Results have been used to establish the pH adsorption edge of neptunium on goethite in sodium chloride and calcium-bearing sodium silicate solutions. The results indicate that neptunium uptake on goethite reaches 95% at a pH of approximately 7 and begins to decrease at pH values greater than 8.5. Distribution coefficients for neptunium sorption range from less than 1000 (moles/kg){sub sorbed} / (moles/kg){sub solution} at pH less than 5.0 to greater than 10,000 (moles/kg){sub sorbed} / (moles/kg){sub solution} at pH greater than 7.0. Distribution coefficients as high as 100,000 (moles/kg){sub sorbed} / (moles/kg){sub solution} were recorded for the tests done in calcite equilibrated sodium silicate solutions. XAS results show that neptunium complexes with the goethite surface mainly as Np(V) (although Np(IV) is prevalent in some of the longer-duration sorption tests). The neptunium adsorbed to goethite shows Np-O bond length of approximately 1.8 angstroms which is representative of the Np-O axial bond in the neptunyl(V) complex. This neptunyl(V) ion is coordinated to 5 or 6 equatorial oxygens with Np

  3. Neptunium Disposal to the Savannah River Site Tank Farm

    SciTech Connect

    Walker, D.D.

    2004-02-26

    Researchers investigated the neutralization of an acidic neptunium solution from a Savannah River Site (SRS) processing canyon and the properties of the resulting slurry to determine the feasibility of disposal in the SRS tank farm. The acidic solution displayed no properties that precluded the proposed disposal route. Neutralization of the acidic neptunium forms a 4 wt per cent slurry of precipitated metal hydroxides. The insoluble solids consist largely of iron (92 per cent) and neptunium hydroxides (2 per cent). The concentration of soluble neptunium remaining after neutralization equaled much less than previous solubility measurements predicted. Researchers used an apparatus similar to an Ostwald-type viscometer to estimate the consistency of the neptunium slurry with the solids present. The yield stress and consistency of the 4 wt per cent slurry will allow transfer through the tank farm, although concentration of the insoluble solids above 4 wt per cent may cause significant problems due to increased consistency and yield stress. The consistency of the 4 wt per cent slurry is 7.6 centipoise (cP) with a yield stress less than 1 Pascal (Pa). The neptunium slurry, when combined with actual washed radioactive sludge, slightly reduces the yield stress and consistency of the sludge and produces a combined slurry with acceptable rheological properties for vitrification.

  4. Neptunium(III) copper(I) diselenide.

    PubMed

    Wells, Daniel M; Skanthakumar, S; Soderholm, L; Ibers, James A

    2009-02-11

    The title compound, NpCuSe(2), is the first ternary neptunium transition-metal chalcogenide. It was synthesized from the elements at 873 K in an evacuated fused-silica tube. Single crystals were grown by vapor transport with I(2). NpCuSe(2) crystallizes in the LaCuS(2) structure type and can be viewed as a stacking of layers of CuSe(4) tetra-hedra and of double layers of NpSe(7) monocapped trigonal prisms along [100]. Because there are no Se-Se bonds in the structure, the formal oxidation states of Np/Cu/Se may be assigned as +III/+I/-II, respectively.

  5. Experimental Measurements of Short-Lived Fission Products from Uranium, Neptunium, Plutonium and Americium

    SciTech Connect

    Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.

    2009-11-01

    Fission yields are especially well characterized for long-lived fission products. Modeling techniques incorporate numerous assumptions and can be used to deduce information about the distribution of short-lived fission products. This work is an attempt to gather experimental (model-independent) data on the short-lived fission products. Fissile isotopes of uranium, neptunium, plutonium and americium were irradiated under pulse conditions at the Washington State University 1 MW TRIGA reactor to achieve ~108 fissions. The samples were placed on a HPGe (high purity germanium) detector to begin counting in less than 3 minutes post irradiation. The samples were counted for various time intervals ranging from 5 minutes to 1 hour. The data was then analyzed to determine which radionuclides could be quantified and compared to the published fission yield data.

  6. Isotope production target irradiation experience at the annular core research reactor

    SciTech Connect

    Talley, D.G.

    1997-02-01

    As a result of an Environmental Impact Statement (EIS) recently issued by the Department of Energy, Sandia National Laboratories (SNL) has been selected as the {open_quotes}most appropriate facility{close_quotes} for the production of {sup 99}Mo. The daughter product of {sup 99}Mo is {sup 99m}Tc, a radioisotope used in 36,000 medical procedures per day in the U.S.{close_quote} At SNL, the {sup 99}Mo would be created by the fission process in UO{sub 2} coated {open_quotes}targets{close_quotes} and chemically separated in the SNL Hot Cell Facility (HCF). SNL has recently completed the irradiation of five production targets at its Annular Core Research Reactor (ACRR). Following irradiation, four of the targets were chemically processed in the HCF using the Cintichem process.

  7. High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Yellin, J.

    1986-01-01

    Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.

  8. Targeted Cytoplasmic Irradiation with Alpha Particles Induces Mutations in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Wu, Li-Jun; Randers-Pehrson, Gerhard; Xu, An; Waldren, Charles A.; Geard, Charles R.; Yu, Zengliang; Hei, Tom K.

    1999-04-01

    Ever since x-rays were shown to induce mutation in Drosophila more than 70 years ago, prevailing dogma considered the genotoxic effects of ionizing radiation, such as mutations and carcinogenesis, as being due mostly to direct damage to the nucleus. Although there was indication that alpha particle traversal through cellular cytoplasm was innocuous, the full impact remained unknown. The availability of the microbeam at the Radiological Research Accelerator Facility of Columbia University made it possible to target and irradiate the cytoplasm of individual cells in a highly localized spatial region. By using dual fluorochrome dyes (Hoechst and Nile Red) to locate nucleus and cellular cytoplasm, respectively, thereby avoiding inadvertent traversal of nuclei, we show here that cytoplasmic irradiation is mutagenic at the CD59 (S1) locus of human-hamster hybrid (AL) cells, while inflicting minimal cytotoxicity. The principal class of mutations induced are similar to those of spontaneous origin and are entirely different from those of nuclear irradiation. Furthermore, experiments with radical scavenger and inhibitor of intracellular glutathione indicated that the mutagenicity of cytoplasmic irradiation depends on generation of reactive oxygen species. These findings suggest that cytoplasm is an important target for genotoxic effects of ionizing radiation, particularly radon, the second leading cause of lung cancer in the United States. In addition, cytoplasmic traversal by alpha particles may be more dangerous than nuclear traversal, because the mutagenicity is accomplished by little or no killing of the target cells.

  9. Effects of the irradiation of a finite number of laser beams on the implosion of a cone-guided target

    NASA Astrophysics Data System (ADS)

    Yanagawa, T.; Sakagami, H.; Nagatomo, H.; Sunahara, A.

    2016-03-01

    In direct drive laser fusion, the non-uniformity of the laser absorption on the target surface caused by the irradiation of a finite number of laser beams is a sever problem. GekkoXII laser at Osaka University has twelve laser beams and is irradiated to the target with a dodecahedron orientation, in which the distribution of the laser absorption on the target surface becomes non-uniform. Furthermore, in the case of a cone-guided target, the laser irradiation orientation is more limited. In this paper, we conducted implosion simulations of the cone- guided target based on GekkoXII irradiation orientation and compared the case of using the twelve beams and nine beams where the three beams irradiating the cone region are cut. The implosion simulations were conducted by a three-dimensional pure hydro code.

  10. HTCAP-1: a program for calcuating operating temperatures in HFIR target irradiation experiments

    SciTech Connect

    Kania, M.J.; Howard A.M.

    1980-06-01

    The thermal modeling code, HTCAP-1, calculates in-reactor operating temperatures of fueled specimens contained in the High Flux Isotope Reactor (HFIR) target irradiation experiments (HT-series). Temperature calculations are made for loose particle and bonded fuel rod specimens. Maximum particle surface temperatures are calculated for the loose particles and centerline and surface temperatures for the fuel rods. Three computational models are employed to determine fission heat generation rates, capsule heat transfer analysis, and specimen temperatures. This report is also intended to be a users' manual, and the application of HTCAP-1 to the HT-34 irradiation capsule is presented.

  11. Post-Irradiation Examination of 237Np Targets for 238Pu Production

    SciTech Connect

    Morris, Robert Noel; Baldwin, Charles A; Hobbs, Randy W; Schmidlin, Joshua E

    2015-01-01

    Oak Ridge National Laboratory is recovering the US 238Pu production capability and the first step in the process has been to evaluate the performance of a 237Np target cermet pellet encased in an aluminum clad. The process proceeded in 3 steps; the first step was to irradiate capsules of single pellets composed of NpO2 and aluminum power to examine their shrinkage and gas release. These pellets were formed by compressing sintered NpO2 and aluminum powder in a die at high pressure followed by sintering in a vacuum furnace. Three temperatures were chosen for sintering the solution precipitated NpO2 power used for pellet fabrication. The second step was to irradiate partial targets composed of 8 pellets in a semi-prototypical arrangement at the two best performing sintering temperatures to determine which temperature gave a pellet that performed the best under the actual planned irradiation conditions. The third step was to irradiate ~50 pellets in an actual target configuration at design irradiation conditions to assess pellet shrinkage and gas release, target heat transfer, and dimensional stability. The higher sintering temperature appeared to offer the best performance after one cycle of irradiation by having the least shrinkage, thus keeping the heat transfer gap between the pellets and clad small minimizing the pellet operating temperature. The final result of the testing was a target that can meet the initial production goals, satisfy the reactor safety requirements, and can be fabricated in production quantities. The current focus of the program is to verify that the target can be remotely dissembled, the pellets dissolved, and the 238Pu recovered. Tests are being conducted to examine these concerns and to compare results to code predictions. Once the performance of the full length targets has been quantified, the pellet 237Np loading will be revisited to determine if it can be

  12. Sensing device and method for measuring emission time delay during irradiation of targeted samples

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2000-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  13. The influence of target preparation and mode of irradiation on PIXE analysis of biological samples

    NASA Astrophysics Data System (ADS)

    Galuszka, Janusz; Jarczyk, Lucjan; Rokita, Eugeniusz; Strzalkowski, Adam; Sych, Marek

    1984-04-01

    The following methods of target preparation were examined and compared: dry ashing at high temperature, low temperature ashing in plasma asher, wet ashing, lyophilization at a temperature of 35°C, cryofixation with drying in vacuum and dehydration in alcohol with drying in vacuum. All these techniques were applied to prepare targets from five different rat organs: liver, kidney, brain, lung and muscle tissue. The dried and powdered sample material was pressed into pellets or was distributed on formvar film. The evaporation of the thin carbon layer on the investigated target and placing of the thin carbon film in front of a target were also tested. The targets were irradiated in vacuum using an external beam in the air chamber. The influence of the method of target preparation on the detection limits, time requirements and escape of elements from the sample material is discussed.

  14. Transmutation of 129I, 237Np, 238Pu, 239Pu and 241Am Using Neutrons Produced in Target-Blanket System ``Energy & Transmutation'' Bombarded by Relativistic Protons

    NASA Astrophysics Data System (ADS)

    Adam, J.; Katovsky, K.; Balabekyan, A.; Solnyshkin, A. A.; Kalinnikov, V. G.; Stegailov, V. I.; Tsoupko-Sitnikov, V. M.; Stetsenko, S. G.; Krivopustov, M. I.; Pronskikh, V. S.; Vladimirova, N. M.; Kumawat, H.

    2005-05-01

    Target-blanket facility "Energy & Transmutation" was irradiated by a 2 GeV proton beam extracted from the Nuclotron Accelerator at the Joint Institute for Nuclear Research in Dubna, Russia. Radioactive samples made from iodine, neptunium, plutonium and americium were irradiated by spallation neutrons produced in the "E&T" facility. Transmutation reaction yields (residual nuclei production yields) have been determined using methods of γ-spectroscopy. The energy spectrum of the neutron field has been studied by using a set of threshold detectors.

  15. A Mitochondria-Targeted Nitroxide/Hemigramicidin S Conjugate Protects Mouse Embryonic Cells Against Gamma Irradiation

    SciTech Connect

    Jiang Jianfei; Belikova, Natalia A.; Hoye, Adam T.; Zhao Qing; Epperly, Michael W.; Greenberger, Joel S.; Wipf, Peter; Kagan, Valerian E.

    2008-03-01

    Purpose: To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in {gamma}-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. Methods and Materials: Cells were incubated with 5-125 before (10 minutes) or after (1 hour) {gamma}-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cell surface. Cell survival was measured by means of a clonogenic assay. Results: Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 {mu}M) effectively suppressed {gamma}-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of {gamma}-irradiated cells. In addition, 5-125 enhanced and prolonged {gamma}-irradiation-induced G{sub 2}/M phase arrest. Conclusions: Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G{sub 2}/M phase, may contribute to the protection.

  16. Blood vessel damage correlated with irradiance for in vivo vascular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Jinde; Tan, Zou; Niu, Xiangyu; Lin, Linsheng; Lin, Huiyun; Li, Buhong

    2016-10-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely utilized for the prevention or treatment of vascular-related diseases, including age-related macular degeneration, port-wine stains and prostate cancer. In order to quantitative assessment the blood vessel damage during V-PDT, nude mice were implanted with Titanium dorsal skin window chambers for in vivo V-PDT studies. For treatments, various irradiances including 50, 75, 100 and 200 mW/cm2 provided by a 532 nm semiconductor laser were performed with the same total light dose of 30 J/cm2 after the mice were intravenously injection of Rose Bengal for 25 mg/Kg body weight. Laser speckle imaging and microscope were used to monitor blood flow dynamics and vessel constriction during and after V-PDT, respectively. The V-PDT induced vessel damages between different groups were compared. The results show that significant difference in blood vessel damage was found between the lower irradiances (50, 75 and 100 mW/cm2) and higher irradiance (200 mW/cm2), and the blood vessel damage induced by V-PDT is positively correlated with irradiance. This study implies that the optimization of irradiance is required for enhancing V-PDT therapeutic efficiency.

  17. Mechanisms of DNA Damage Response to Targeted Irradiation in Organotypic 3D Skin Cultures

    PubMed Central

    Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M.; Schettino, Giuseppe

    2014-01-01

    DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255

  18. Charpy impact tests on martensitic/ferritic steels after irradiation in SINQ target-3

    NASA Astrophysics Data System (ADS)

    Dai, Yong; Marmy, Pierre

    2005-08-01

    Charpy impact tests were performed on martensitic/ferritic (MF) steels T91, F82H, Optifer-V and Optimax-A/-C irradiated in SINQ Target-3 up to 7.5 dpa and 500 appm He in a temperature range of 120-195 °C. Results demonstrate that for all the four kinds of steels, the ductile-to-brittle transition temperature (DBTT) increases with irradiation dose. The difference in the DBTT shifts (ΔDBTT) of the different steels is not significant after irradiation in the SINQ target. The ΔDBTT data from the previous small punch (Δ DBTT SP) and the present Charpy impact (ΔDBTT CVN) tests can be correlated with the expression: Δ DBTT SP = 0.4ΔDBTT CVN. All the ΔDBTT data fall into a linear band when they are plotted versus helium concentration. The results indicate that helium effects on the embrittlement of MF steels are significant, particularly at higher concentrations. It suggests that MF steels may not be very suitable for applications at low temperatures in spallation irradiation environments where helium production is high.

  19. In situ hydrothermal reduction of neptunium(VI) as a route to neptunium(IV) phosphonates.

    PubMed

    Bray, Travis H; Nelson, Anna-Gay D; Jin, Geng Bang; Haire, Richard G; Albrecht-Schmitt, Thomas E

    2007-12-24

    A lamellar neptunium(IV) methylphosphonate, Np(CH3PO3)(CH3PO3H)(NO3)(H2O).H2O, has been prepared under hydrothermal conditions via the in situ reduction of NpVI to NpIV. The single crystal structure of this compound shows polar layers that are joined to one another via a hydrogen-bonding network involving interlayer water molecules. Magnetic susceptibility measurements demonstrate that the NpIV ions are magnetically isolated from one another.

  20. Ion-exchange chromatographic separation of einsteinium from irradiated californium targets

    SciTech Connect

    Elesin, A.A.; Nikolaev, V.M.; Shalimov, V.V.; Popov, Yu.S.; Kovantsev, V.N.; Tselishchev, I.V.; Filimonov, V.T.; Mishenev, V.B.; Yadovin, A.A.; Golosovskii, L.S.; Chetverikov, A.P.

    1987-07-01

    Einsteinium was obtained by preparing two experimental californium targets and subjecting them to neutron irradiation in a high-flux reactor. The einsteinium was separated from the bombarded targets on a column packed with KU-2U sulfonated cation-exchange resin (20-50 ..mu..m) and eluted at room temperature with an ammonium ..cap alpha..-hydroxyisobutyrate solution. Three successive separation cycles removed californium to produce einsteinium in 68% yield with a decontamination factor of 5.3 x 10/sup 6/. About 20% of the einsteinium was used up by analysis and 11% remained in intermediate fractions. The method developed yielded pure einsteinium with little fission products present. The contribution of the fission products to the total einsteinium gamma-irradiation dose rate was no greater than 81%, due primarily to the radioisotope terbium-160.

  1. Laser irradiations of advanced targets promoting absorption resonance for ion acceleration in TNSA regime

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Calcagno, L.; Giulietti, D.; Cutroneo, M.; Zimbone, M.; Skala, J.

    2015-07-01

    Advanced targets based on Au nanoparticles embedded in polymers films show high absorption coefficient in the UV-visible and infrared region. They can be employed to enhance the proton and ion acceleration from the laser-generated plasma in TNSA regime. In conditions of "p" polarized laser irradiations at 1015 W/cm2 intensity, in these films can be induced resonant absorption due to plasma wave excitation. Plasma on-line diagnostics is based on SiC detectors, Thomson spectrometry and X-ray streak camera imaging. Measurements of kinetic energy of accelerated ions indicate a significant increment using polymer targets containing gold nanoparticles and "p" polarized laser light with respect to pure polymers and unpolarized light irradiation.

  2. Gas Generation Testing of Neptunium Oxide at Elevated Temperature

    SciTech Connect

    Duffey, JM

    2004-01-30

    Elevated temperature gas generation tests have been conducted using neptunium dioxide produced on a laboratory scale using the HB-Line Phase II flowsheet. These tests were performed to determine what effect elevated temperatures would have on the neptunium dioxide in comparison to neptunium dioxide tested at ambient temperature. The headspace gas compositions following storage at elevated temperatures associated with normal conditions of transport (NCT) have been measured. These test results show an increase in hydrogen generation rate at elevated temperature and significant removal of oxygen from the headspace gas. The elevated temperature gas generation tests described in this report involved heating small test vessels containing neptunium dioxide and measuring the headspace gas pressure and composition at the end of the test period. Four samples were used in these tests to evaluate the impact of process variables on the gas generation rate. Two samples were calcined to 600 degrees Celsius and two were calcined to 650 degrees Celsius. Each test vessel contained approximately 9.5 g of neptunium dioxide. Following exposure to 75 per cent relative humidity (RH) for five days, these samples were loaded in air and then heated to between 105 and 115 degrees Celsius for about one month. At the conclusion of the test period, the headspace gas of each container was analyzed using a micro-gas chromatograph installed in the glovebox where the experiments were conducted. The pressure, volume, and composition data for the headspace gas samples were used to calculate average H2 generation rates.

  3. Neptunium interaction with uranium dioxide in aqueous solution

    NASA Astrophysics Data System (ADS)

    Batuk, O. N.; Kalmykov, St. N.; Petrov, V. G.; Zakharova, E. V.; Teterin, Yu. A.; Teterin, A. Yu.; Shapovalov, V. I.; Haire, M. J.

    2007-05-01

    Neptunium, Np(V) and Np(IV), sorption onto uranium dioxide surface was studied at various values of pH. Sorption was studied in two sets of experiments with different redox conditions that correspond to either Np(V) (Set 1) or Np(IV) (Set 2) in solution. In Set 1 the reduction of Np(V) was established when low pH solution covered a UO2 surface. When the pH increased, the sorption of neptunium is decreased. At pH > 5.5 neptunium sequestration from solution is governed by Np(V) sorption onto UO2.25. In Set 2 (the more anoxic conditions) complete neptunium sorption is established at pH > 2: it is present in the tetravalent form over the whole pH range. The proposed mechanisms of neptunium sorption was suggested by using pH sorption edges of Th(IV) as an analog to Np(IV) onto UO2 and Np(V) onto ThO2. The UO2 surface was characterized by X-ray photoelectron spectroscopy (XPS) after equilibration with aqueous solutions at different pH values.

  4. Probing Dense Plasmas Created from Intense Irradiation of Solid Target in the XUV Domain

    SciTech Connect

    Dobosz, S.; Doumy, G.; Stabile, H.; Monot, P.; Bougeard, M.; Reau, F.; Martin, Ph.

    2006-04-07

    In this paper, electronic density and temperature have been inferred from XUV transmission through hot solid-density plasma created by high temporal contrast femtosecond irradiation of thin plastic foil target in the 1018W/cm2 intensity range. High order harmonics generated in pulsed gas jet are used as a probe beam. The initial plasma parameters are determined with an accuracy better than 15% on the 100fs time scale, by comparison of the transmission of two consecutive harmonics.

  5. Estimation of photoneutron yield from beryllium target irradiated by variable energy microtron-based bremsstrahlung radiation

    NASA Astrophysics Data System (ADS)

    Eshwarappa, K. M.; Ganesh; Siddappa, K.; Kashyap, Yogesh; Sinha, Amar; Sarkar, P. S.; Godwal, B. K.

    2005-03-01

    The possibility of setting up microtron-based photoneutron source by utilizing bremsstrahlung radiation interaction with beryllium targets is critically examined. The bremsstrahlung yield for tantalum (Ta) target is obtained by EGS4 simulation. The neutron yield is estimated theoretically by MCNP simulation. The yield was measured experimentally by neutron irradiation of calibrated SSNTD CR-39 films. The total neutron yield is found to be of the order 10 10 n/s for 250 Hz PRR and 10 9 n/s for 50 Hz PRR. A detailed comparison shows good agreement between theoretical and experimentally measured yields.

  6. Neptunium(V) Incorporation/Sorption with Uranium(VI) Alteration Products

    SciTech Connect

    Friese, Judah I.; Douglas, Matthew; Buck, Edgar C.; Clark, Susan B.; Hanson, Brady D.

    2004-04-01

    An initial uranium phase that has been observed to form during the corrosion of spent nuclear fuel is the uranium oxy-hydroxide metaschoepite. It has been proposed that neptunium(V) solubility can be limited by its association with this uranium phase. Metaschoepite has been synthesized in the presence of neptunium(V) over the pH range modeled in the proposed Yucca Mountain geologic repository. Uranium (VI) phaseswere synthesized by varying pH and neptunium concentrations. Results of neptunium association with the uranium alteration phases are presented and the relationship to dissolved neptunium concentrations discussed.

  7. Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki

    2017-01-01

    Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.

  8. Quasimonoenergetic proton bunches generation from doped foil targets irradiated by intense lasers

    SciTech Connect

    Cui Yunqian; Wang Weimin; Li Yutong; Sheng Zhengming; Zhang Jie

    2013-02-15

    We propose a scheme to generate 10 MeV-level quasimonoenergetic proton bunches using proton-doped heavy-ion targets irradiated by intense lasers via target normal sheath acceleration. The heavy substrate ions provide a long-life quasi-stable sheath field to accelerate the doped protons at the target rear and consequently a quasimonoenergetic proton bunch is produced. The scheme is demonstrated by two-dimensional particle-in-cell simulations. An exemplificative simulation with parameters of targets made by ion-implant technique, a kind of modern doping process, gives a quasimonoenergetic bunch with peak energy {approx}13MeV, energy spread {approx}24%, and {approx}nC charge at the focused laser intensity 10{sup 20}W/cm{sup 2}.

  9. Modified Purex first-cycle extraction for neptunium recovery

    SciTech Connect

    Dinh, Binh; Moisy, Philippe; Baron, Pascal; Calor, Jean-Noel; Espinoux, Denis; Lorrain, Brigitte; Benchikouhne-Ranchoux, Magali

    2008-07-01

    A new PUREX first-cycle flowsheet was devised to enhance the extraction yield of neptunium at the extraction step of this cycle. Simulation results (using a qualified process-simulation tool), le d to raising the nitric acid concentration of the feed from 3 M to 4.5 M to allow extraction of more than 99% of the neptunium. This flowsheet was operated in the shielded process cell of ATALANTE facility using pulsed columns and mixer-settlers banks. A 15 kg quantity of genuine oxide fuel of average burn up of 52 GWd/t with cooling time of nearly five years was treated, and the neptunium extraction yield obtained was greater than 99.6%. (authors)

  10. Ultrastructural lesions induced by neptunium-237: apoptosis or necrosis?

    PubMed

    Pusset, D; Fromm, M; Poncy, J L; Kantelip, B; Galle, P; Chambaudet, A; Baud, M; Boulahdour, H

    2002-07-01

    In this study, we are concerned with the 237 isotope of neptunium (237Np), which is a by-product of uranium in nuclear reactors. To study ultrastructural lesions induced by this element, a group of rats were injected with a solution of 237Np-nitrate once a day for 14 weeks. Lesions observed in liver and kidney are described using electron microscopy. Ultrastructural alterations of cellular membranes and intracellular organelles demonstrated the existence of neptunium toxicity. This toxicity was characterized by various lesions, such as cytoplasmic clarification, disappearance of mitochondrial cristae, swollen mitochondria, abnormal condensation of nuclear chromatin, and nuclear fragmentations. This study demonstrated the probable induction of apoptosis by neptunium both in liver and kidneys.

  11. Resonance ionization mass spectroscopy for trace analysis of neptunium

    NASA Astrophysics Data System (ADS)

    Riegel, J.; Deißenberger, R.; Herrmann, G.; Köhler, S.; Sattelberger, P.; Trautmann, N.; Wendeler, H.; Ames, F.; Kluge, H.-J.; Scheerer, F.; Urban, F.-J.

    1993-05-01

    Resonance ionization mass spectroscopic (RIMS) measurements for trace analysis and spectroscopy of 237Np, the ecologically most important isotope of neptunium, are described. The chemical procedure for the separation of neptunium from aqueous samples as well as the preparation of filaments for RIMS are outlined. Several two- and three-step excitation schemes have been investigated in order to find suitable conditions for the sensitive detection of 237Np. Using a three-step, three-color excitation and ionization scheme an overall detection efficiency of 3×10-8 was obtained, resulting in a detection limit of 4×108 atoms (160 fg) of 237Np. The hyperfine structure splittings of the levels under investigation, which influence the detection limit, were measured. A new method to determine the first ionization potential (IP) was applied to neptunium yielding a value of IP=6.2655(2) eV.

  12. [Selective localization of neptunium-237 in nuclei of mammalian cells].

    PubMed

    Galle, P; Boulahdour, H; Metivier, H

    1992-01-01

    After injection in the rat of soluble neptunium salt, the distribution of this element was studied at the subcellular level by electron microscopy and electron probe microanalysis. Abnormal structures have been observed by electron microscopy in the nuclei of hepatocytes, and the same structures have also been observed in the nuclei of the proximal tubules cells of the kidney. These structures are formed of clusters of very small and dense particles, several nanometers in diameter. The clusters are localized in the central part of the nuclei and they are separate from nucleoli and heterochromatin. Electron probe X-ray analysis of this cluster have shown that they contain neptunium associated with phosphorus. In the cell containing neptunium inclusions, other non specific lesions are also observed (nuclear pycnosis, mitochondrial depletion).

  13. Effect of natural organic materials on cadmium and neptunium sorption

    SciTech Connect

    Kung, K.S.; Triay, I.R.

    1994-10-01

    In a batch sorption study of the effect of naturally occurring organic materials on the sorption of cadmium and neptunium on oxides and tuff surfaces, the model sorbents were synthetic goethite, boehmite, amorphous silicon oxides, and a crushed tuff material from Yucca Mountain, Nevada. An amino acid, 3-(3,4-dihydroxypheny)-DL-alanine (DOPA), and an aquatic-originated fulvic material, Nordic aquatic fulvic acid (NAFA), were used as model organic chemicals. Sorption isotherm results showed that DOPA sorption followed the order aluminum oxide > iron oxide > silicon oxide and that the amount of DOAP sorption for a given sorbent increased as the solution pH was raised. The sorption of cadmium and neptunium on the iron oxide was about ten times higher than that on the aluminum oxide. The sorption of cadmium and neptunium on natural tuff material was much lower than that on aluminum and iron oxides. The sorption of cadmium on iron and aluminum oxides was found to be influenced by the presence of DOPA, and increasing the amount of DOPA coating resulted in higher cadmium sorption on aluminum oxide. However, for iron oxide, cadmium sorption decreased with increasing DOPA concentration. The presence of the model organic materials DOPA and NAFA did not affect the sorption of neptunium on tuff material or on the iron and aluminum oxides. Spectroscopic results indicate that cadmium complexes strongly with DOPA. Therefore, the effect of the organic material, DOPA, on the cadmium sorption is readily observed. However, neptunium is possibly complexed weakly with organic material. Thus, DOPA and NAFA have little effect on neptunium sorption on all sorbents selected for study.

  14. Post-irradiation examination of the Spallation Neutron Source target module

    NASA Astrophysics Data System (ADS)

    McClintock, D. A.; Ferguson, P. D.; Mansur, L. K.

    2010-03-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of the target module. Though cavitation erosion and radiation damage to the target vessel are expected to dictate its lifetime, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post-irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  15. Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation

    SciTech Connect

    Belikov, R S; Khishchenko, K V; Krasyuk, I K; Semenov, A Yu; Stuchebryukhov, I A; Rinecker, T; Schoenlein, A; Rosmej, O N; Tomut, M

    2015-05-31

    We present the results of experiments on the spallation phenomena in graphite targets under shock-wave nano- and picosecond irradiation, which have been performed on Kamerton-T (GPI, Moscow, Russia) and PHELIX (GSI, Darmstadt, Germany) laser facilities. In the range of the strain rates of 10{sup 6} – 10{sup 7} s{sup -1}, the data on the dynamic mechanical strength of the material at rapure (spallation) have been for the first time obtained. With a maximal strain rate of 1.4 × 10{sup 7} s{sup -1}, the spall strength of 2.1 GPa is obtained, which constitutes 64% of the theoretical ultimate tensile strength of graphite. The effect of spallation is observed not only on the rear side of the target, but also on its irradiated (front) surface. With the use of optical and scanning electron microscopes, the morphology of the front and rear surfaces of the targets is studied. By means of Raman scattering of light, the graphite structure both on the target front surface under laser exposure and on its rear side in the spall zone is investigated. A comparison of the dynamic strength of graphite and synthetic diamond is performed. (extreme light fields and their applications)

  16. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    SciTech Connect

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.

  17. Hot electron production using the Texas Petawatt Laser irradiating thick gold targets

    NASA Astrophysics Data System (ADS)

    Taylor, Devin; Liang, Edison; Clarke, Taylor; Henderson, Alexander; Chaguine, Petr; Wang, Xin; Dyer, Gilliss; Serratto, Kristina; Riley, Nathan; Donovan, Michael; Ditmire, Todd

    2013-06-01

    We present data for relativistic hot electron production by the Texas Petawatt Laser irradiating solid Au targets with thickness between 1 and 4 mm. The experiment was performed at the short focus target chamber TC1 in July 2011, with intensities on the order of several ×1019 W/cm2 and laser energies around 50 J. We discuss the design of an electron-positron magnetic spectrometer to record the lepton energy spectra ejected from the Au targets and present a deconvolution algorithm to extract the lepton energy spectra. We measured hot electron spectra out to ˜50 MeV, which show a narrow peak around 10-20 MeV, plus high energy exponential tail. The hot electron spectral shapes appear significantly different from those reported for other PW lasers.

  18. Post-Irradiation Properties of Candidate Materials for High-Power Targets

    SciTech Connect

    Kirk, H.G.; Ludewig, H.; Mausner, L.F.; Simos, N.; Thieberger, P.; Hayato, Y.; Yoshimura, K.; McDonald, K.T.; Sheppard, J.; Trung, L.P.; /SUNY, Stony Brook

    2006-03-15

    The desire of the high-energy-physics community for more intense secondary particle beams motivates the development of multi-megawatt, pulsed proton sources. The targets needed to produce these secondary particle beams must be sufficiently robust to withstand the intense pressure waves arising from the high peak-energy deposition which an intense pulsed beam will deliver. In addition, the materials used for the targets must continue to perform in a severe radiation environment. The effect of the beam induced pressure waves can be mitigated by use of target materials with high-yield strength and/or low coefficient of thermal expansion (CTE). We report here first results of an expanded study of the effects of irradiation on several additional candidate materials with high strength (AlBeMet, beryllium, Ti-V6-Al4) or low CTE (a carbon-carbon composite, a new Toyota ''gum'' metal alloy, Super-Invar).

  19. Alpha self-irradiation effects in ternary oxides of actinides elements: The zircon-like phases Am IIIVO 4 and AIINp IV(VO 4) 2 ( A=Sr, Pb)

    NASA Astrophysics Data System (ADS)

    Goubard, F.; Griesmar, P.; Tabuteau, A.

    2005-06-01

    We report the experimental studies of irradiation damage from alpha decay in neptunium and americium vanadates versus cumulative dose. The isotopes used were the transuranium α-emitter 237Np and the α,γ-emitter 241Am. Neptunium and americium vanadates self-irradiation was studied by X-ray diffraction method (XRD). The comparison of the powder diffraction patterns reveal that the irradiation has no apparent effect on the neptunium phases while the americium vanadate swells and becomes metamict as a function of cumulative dose.

  20. Neptunium redox speciation at the illite surface

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Banik, Nidhu lal; Lützenkirchen, Johannes; Marquardt, Christian Michael; Dardenne, Kathy; Schild, Dieter; Rothe, Joerg; Diascorn, Alexandre; Kupcik, Tomas; Schäfer, Thorsten; Geckeis, Horst

    2015-03-01

    Neptunium (Np(V)) sorption onto a purified illite is investigated as a function of pH (3-10) and [NpVO2+]tot(3 × 10-8-3 × 10-4 M) in 0.1 M NaCl under Ar atmosphere. After about one week reaction time, only insignificant variation of Np sorption is observed and the establishment of reaction equilibrium can be assumed. Surprisingly, solid-liquid distribution ratios (Rd) are clearly higher than those measured for Np(V) sorption onto illite under aerobic conditions. The observation that Rd increases with decreasing pe (pe = -log ae-) suggests partial reduction to Np(IV), although measured redox potentials (pe values) at a first glance suggest the predominance of Np(V). Reduction to Np(IV) at the illite surface could indeed be confirmed by X-ray absorption near-edge spectroscopy (XANES). Np speciation in presence of the purified Na-illite under given conditions is consistently described by applying the 2 sites protolysis non-electrostatic surface complexation and cation exchange model. Measured pe data are taken to calculate Np redox state and surface complexation constants for Np(IV) are derived by applying a data fitting procedure. Constants are very consistent with results obtained by applying an existing linear free energy relationship (LFER). Taking Np(IV) surface complexation constants into account shifts the calculated Np(V)/Np(IV) redox borderline in presence of illite surfaces by 3-5 pe units (0.2-0.3 V) towards redox neutral conditions. Our study suggests that Np(V) reduction in presence of a sorbing mineral phase is thermodynamically favored.

  1. Production of 230U/226Th for targeted alpha therapy via proton irradiation of 231Pa.

    PubMed

    Morgenstern, Alfred; Lebeda, Ondrej; Stursa, Jan; Bruchertseifer, Frank; Capote, Roberto; McGinley, John; Rasmussen, Gert; Sin, Mihaela; Zielinska, Barbara; Apostolidis, Christos

    2008-11-15

    (230)U and its daughter nuclide (226)Th are novel therapeutic nuclides for application in targeted alpha-therapy of cancer. We have investigated the feasibility of producing (230)U/(226)Th via proton irradiation of (231)Pa according to the reaction (231)Pa(p,2n)(230)U. The experimental excitation function for this reaction is reported for the first time. Cross sections were measured using thin targets of (231)Pa prepared by electrodeposition and (230)U yields were analyzed using alpha-spectrometry. Beam parameters (energy and intensity) were determined both by calculation using a mathematical model based on measured beam orbits and beam current integrator and by parallel monitor reactions on copper foils using high-resolution gamma-spectrometry and IAEA recommended cross-section data. The measured cross sections are in good agreement with model calculations using the EMPIRE-II code and are sufficiently high for the production of (230)U/(226)Th in clinically relevant amounts. A highly effective separation process was developed to isolate clinical grade (230)U from irradiated protactinium oxide targets. Product purity was assessed using alpha- and gamma-spectrometry as well as ICPMS.

  2. Sasse Modeling of First Cycle Neptunium (VI) Recovery Flowsheet

    SciTech Connect

    Laurinat, J. E.

    2006-04-01

    A flowsheet has been proposed to separate neptunium from solutions in H-Canyon Tanks 16.4, 12.5, and 11.7 in the First Cycle solvent extraction banks, in which cerium(IV) (Ce(IV)) serves as an agent to oxidize neptunium to neptunium(VI) (Np(VI)). A SASSE (Spreadsheet Algorithm for Stagewise Solvent Extraction) spreadsheet model indicates that the proposed flowsheet is a feasible method for separating neptunium and uranium from sulfates, thorium, and other metal impurities. The proposed flowsheet calls for stripping the sulfates, thorium, and other metal impurities into the 1AW stream and extracting and then stripping the neptunium and uranium into the 1BP stream. SASSE predicts that separation of thorium from the other actinides can be accomplished with actinide losses of 0.01% or less. It is assumed that other metal impurities such as iron, aluminum, and fission products will follow the thorium into 1AW. Due to an organic/aqueous distribution coefficient that is close to one, SASSE predicts that plutonium(VI) (Pu(VI)) is split between the A Bank and B Bank aqueous output streams, with 27% going to 1AW and 73% going to 1BP. An extrapolated distribution coefficient based on unvalidated Ce(IV) distribution measurements at a single nitrate concentration and a comparison with thorium(IV) (Th(IV)) distributions indicates that Ce(IV) could reflux in 1B Bank. If the Ce(IV) distribution coefficient is lower than would be predicted by this single point extrapolation, but still higher than the distribution coefficient for Th(IV), then Ce(IV) would follow Np(VI) and uranium(VI) (U(VI)) into 1BP. The SASSE model was validated using data from a 1964 oxidizing flowsheet for the recovery of Np(VI) in Second Cycle. For the proposed flowsheet to be effective in recovering neptunium, the addition of approximately 0.025 M ceric ammonium nitrate (Ce(NH4)2(NO3)6) to both the 1AF and 1AS streams is required to stabilize the neptunium in the +6

  3. Neutron production by a 13C thick target irradiated by 20 90 MeV protons

    NASA Astrophysics Data System (ADS)

    Lhersonneau, G.; Malkiewicz, T.; Vakhtin, D.; Plokhoi, V.; Alyakrinskiy, O.; Barbui, M.; Brandenburg, S.; Dendooven, P.; Cinausero, M.; Kandiev, Ya.; Kettunen, H.; Khlebnikov, S.; Lyapin, V.; Penttilä, H.; Prete, G.; Rizzi, V.; Samarin, S.; Tecchio, L. B.; Trzaska, W. H.; Tyurin, G.

    2008-10-01

    Neutron production using an enriched 13C carbon converter has been measured during the design study of the italian RIB facility SPES. Energy and angular distributions of neutrons emitted by bombarding a 13C target of stopping length with protons in the range of 20 to 90 MeV have been measured by time-of-flight and activation and compared with the prediction of a Monte Carlo code developed at Snezhinsk. At the proton energy of 100 MeV, firstly envisaged for SPES, the gain with respect to a natural C target is less than a factor of two, while yields still compare well with those for 40 MeV deuterons on natural carbon adopted by SPIRAL-II. At energies near 30 MeV the 13C thick target is definitely more prolific than the target of natural carbon, but both yields with protons are clearly lower than the one with deuterons. At the energy of 20 MeV envisaged for a first stage of SPES it might be more efficient to irradiate the uranium target with protons rather than using the two-stage method with converter.

  4. FGF1-gold nanoparticle conjugates targeting FGFR efficiently decrease cell viability upon NIR irradiation

    PubMed Central

    Szlachcic, Anna; Pala, Katarzyna; Zakrzewska, Malgorzata; Jakimowicz, Piotr; Wiedlocha, Antoni; Otlewski, Jacek

    2012-01-01

    Fibroblast growth factor receptors (FGFRs) are overexpressed in a wide variety of tumors, such as breast, bladder, and prostate cancer, and therefore they are attractive targets for different types of anticancer therapies. In this study, we designed, constructed, and characterized FGFR-targeted gold nanoconjugates suitable for infrared-induced thermal ablation (localized heating leading to cancer cell death) based on gold nanoparticles (AuNPs). We showed that a recombinant ligand of all FGFRs, human fibroblast growth factor 1 (FGF1), can be used as an agent targeting covalently bound AuNPs to cancer cells overexpressing FGFRs. To assure thermal stability, protease resistance, and prolonged half-life of the targeting protein, we employed highly stable FGF1 variant that retains the biological activities of the wild type FGF1. Novel FGF1 variant, AuNP conjugates are specifically internalized only by the cells expressing FGFRs, and they significantly reduce their viability after irradiation with near-infrared light (down to 40% of control cell viability), whereas the proliferation potential of cells lacking FGFRs is not affected. These results demonstrate the feasibility of FGF1-coated AuNPs for targeted cancer therapy. PMID:23226697

  5. Recovery and purification of nickel-63 from HFIR-irradiated targets

    SciTech Connect

    Williams, D.F.; O'Kelley, G.D.; Knauer, J.B.; Porter, C.E.; Wiggins, J.T.

    1993-06-01

    The production of large quantities of high-specific-activity [sup 63]Ni (>10 Ci/g) requires both a highly enriched [sup 62]Ni target and a long irradiation period at high neutron flux. Trace impurities in the nickel and associated target materials are also activated and account for a significant fraction of the discharged activity and essentially all of the gamma activity. While most of these undesirable activation products can be removed as chloride complexes during anion exchange, chromium, present at [sup 51]Cr, and scandium, present as [sup 46]Sc, are exceptions and require additional processing to achieve the desired purity. Optimized flowsheets are discussed based upon the current development and production experience.

  6. Recovery and purification of nickel-63 from HFIR-irradiated targets

    SciTech Connect

    Williams, D.F.; O`Kelley, G.D.; Knauer, J.B.; Porter, C.E.; Wiggins, J.T.

    1993-06-01

    The production of large quantities of high-specific-activity {sup 63}Ni (>10 Ci/g) requires both a highly enriched {sup 62}Ni target and a long irradiation period at high neutron flux. Trace impurities in the nickel and associated target materials are also activated and account for a significant fraction of the discharged activity and essentially all of the gamma activity. While most of these undesirable activation products can be removed as chloride complexes during anion exchange, chromium, present at {sup 51}Cr, and scandium, present as {sup 46}Sc, are exceptions and require additional processing to achieve the desired purity. Optimized flowsheets are discussed based upon the current development and production experience.

  7. Nanostructured targets irradiation by ns-laser for nuclear astrophysics applications: first results

    NASA Astrophysics Data System (ADS)

    Muoio, A.; Altana, C.; Frassetto, M.; Lanzalone, G.; Malferrari, L.; Mascali, D.; Odorici, F.; Tudisco, S.

    2017-03-01

    The studies discussed in this work are related to a scientific program that aims to reproduce astrophysical-plasmas in laboratory in order to better understand the nuclear processes involved in the stellar burning. An experimental campaign aiming to investigate the effects of innovative nanostructured targets based on Ni, Fe and Co nanowires on laser energy absorption in the ns time domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Nanowires structures are tuned to increase the light absorption in the visible and infrared range due possibly to plasmonic excitation driven by the incoming photons. Different diagnostics techniques permit to monitor the plasma and to determine its reproducibility. Targets were then irradiated by Nd:YAG 2J, 6 ns infrared laser (λ = 1064 nm) at different pumping energies. Some preliminary results will be illustrated.

  8. Directed fast electron beams in ultraintense picosecond laser irradiated solid targets

    SciTech Connect

    Ge, X. L.; Lin, X. X.; Yuan, X. H. E-mail: ytli@iphy.ac.cn; Sheng, Z. M.; Carroll, D. C.; Neely, D.; Gray, R. J.; Tresca, O.; McKenna, P.; Yu, T. P.; Chen, M.; Liu, F.; Zhuo, H. B.; Zielbauer, B.; and others

    2015-08-31

    We report on fast electron transport and emission patterns from solid targets irradiated by s-polarized, relativistically intense, picosecond laser pulses. A beam of multi-MeV electrons is found to be transported along the target surface in the laser polarization direction. The spatial-intensity and energy distributions of this beam are compared with the beam produced along the laser propagation axis. It is shown that even for peak laser intensities an order of magnitude higher than the relativistic threshold, laser polarization still plays an important role in electron energy transport. Results from 3D particle-in-cell simulations confirm the findings. The characterization of directional beam emission is important for applications requiring efficient energy transfer, including secondary photon and ion source development.

  9. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells

    PubMed Central

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H.; Sareen, Dhruv

    2015-01-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. Significance The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. PMID:26185257

  10. Precipitation of neptunium dioxide from aqueous solution

    SciTech Connect

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  11. Enhanced electron-positron pair production by ultra intense laser irradiating a compound target

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Ma, Yan-Yun; Yu, Tong-Pu; Zhao, Jun; Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Zhao, Yuan; Zhang, Shi-Jie; Liu, Jin-Jin; Zhuo, Hong-Bin; Shao, Fu-Qiu; Kawata, Shigeo

    2016-12-01

    High-energy-density electron-positron pairs play an increasingly important role in many potential applications. Here, we propose a scheme for enhanced positron production by an ultra intense laser irradiating a gas-Al compound target via the multi-photon Breit-Wheeler (BW) process. The laser pulse first ionizes the gas and interacts with a near-critical-density plasma, forming an electron bubble behind the laser pulse. A great deal of electrons are trapped and accelerated in the bubble, while the laser front hole-bores the Al target and deforms its front surface. A part of the laser wave is thus reflected by the inner curved target surface and collides with the accelerated electron bunch. Finally, a large number of γ photons are emitted in the forward direction via the Compton back-scattering process and the BW process is initiated. Dense electron-positron pairs are produced with a maximum density of 6.02× {{10}27} m-3. Simulation results show that the positron generation is greatly enhanced in the compound target, where the positron yield is two orders of magnitude greater than that in only the solid slab case. The influences of the laser intensity, gas density and length on the positron beam quality are also discussed, which demonstrates the feasibility of the scheme in practice.

  12. Speciation-dependent toxicity of neptunium(V) toward chelatobacter heintzii.

    SciTech Connect

    Banaszak, J. E.; Reed, D. T.; Rittmann, B. E.; Chemical Engineering; Northwestern Univ.

    1998-04-15

    This work investigates how chemical speciation controls the toxicity of neptunium and the neptunium-NTA complex toward Chelatobacter heintzii. We studied the effect of aquo and complexed/precipitated neptunium on the growth of C. heintzii in noncomplexing glucose and phosphate-buffered nitrilotriacetic acid (NTA) growth media. Equilibrium chemical speciation modeling and absorption spectroscopy were used to link neptunium speciation to biological growth inhibition. Our results show that metal toxicity of aquo NpO{sub 2}{sup +} significantly limits the growth of C. heintzii at free metal ion concentrations greater than {approx}10{sup -5} M. However, neptunium concentrations {ge}10{sup -4} M do not cause measurable radiotoxicity effects in C. heintzii when present in the form of a neptunium-NTA complex or colloidal/precipitated neptunium phosphate. The neptunium-NTA complex, which is stable under aerobic conditions, is destabilized by microbial degradation of NTA. When phosphate was present, degradation of NTA led to the precipitation of a neptunium-phosphate phase.

  13. Alpha self-irradiation effects in ternary oxides of actinides elements: The zircon-like phases Am{sup III}VO{sub 4} and A{sup II}Np{sup IV}(VO{sub 4}){sub 2} (A=Sr, Pb)

    SciTech Connect

    Goubard, F. . E-mail: fabrice.goubard@chim.u-cergy.fr; Griesmar, P.; Tabuteau, A.

    2005-06-15

    We report the experimental studies of irradiation damage from alpha decay in neptunium and americium vanadates versus cumulative dose. The isotopes used were the transuranium {alpha}-emitter {sup 237}Np and the {alpha},{gamma}-emitter {sup 241}Am. Neptunium and americium vanadates self-irradiation was studied by X-ray diffraction method (XRD). The comparison of the powder diffraction patterns reveal that the irradiation has no apparent effect on the neptunium phases while the americium vanadate swells and becomes metamict as a function of cumulative dose.

  14. Neptunium (VI) and neptunium (VI/V) mixed valence cluster compounds

    SciTech Connect

    May, Iain

    2008-01-01

    Neptunium has three readily accessible oxidation states, IV, V and VI, which can coexist under certain conditions, with the aqueous soluble neptunyl(V) moiety, {l_brace}NpO{sub 2}{r_brace}{sup +}, of most environmental relevance. Careful control of Np chemistry is required during actinide separation processes. In addition, the long half life of the major alpha emitting isotope ({sup 237}Np, t{sub 1/2} = 2.144 x 10{sup 6} years) renders Np a major contributor to the radiotoxicity of nuclear waste as a function of time. Significant quantities of neptunium are generated in nuclear reactors and the current surge in interest in nuclear power will lead to an increase in our need to further understand the chemistry of this element. It is clearly of importance that Np chemistry is well understood and there have been several recent investigations into the structural, spectroscopic and magnetic properties of Np compounds. However, the vast majority of this chemistry has been performed in aqueous solution, prohibiting the use of air and moisture sensitive ligands. This is in stark contrast to uranium and thorium where inert atmosphere chemistry with moisture sensitive donor ligands has flourished, yielding greater insight into the structural and electronic properties of these early actinides. For the uranyl(VI) moiety, {l_brace}UO{sub 2}{r_brace}{sup 2+}, UO{sub 2}Cl{sub 2}(thf){sub 3} (and the desolvated dimer [UO{sub 2}Cl{sub 2}(thf)]{sub 2}) have proven to be excellent moisture-free reagents for inert atmosphere uranyl chemistry. These starting reagents have been used extensively within our group to study soft donor ligand coordination in the uranyl equatorial plane and oxo-activation to Lewis acid coordination. However, until now the absence of such a starting reagent for Np has limited our ability to extend this chemistry any further across the actinide series, which is required if we are to gain a more complete understanding of 5f element chemistry. The synthesis of [Np

  15. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    SciTech Connect

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.; Burgess, Thomas W.; Ellis, Ronald James; Giuliano, D.; Howard, R.; Kiggans, James O.; Lessard, Timothy L.; Ohriner, Evan Keith; Perkins, Dale E.; Varma, Venugopal Koikal

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  16. Laser irradiation of disk targets at 0. 53. mu. m wavelength

    SciTech Connect

    Mead, W.C.; Campbell, E.M.; Estabrook, K.G.

    1981-01-26

    We present results and analysis for laser-irradiations of Be, CH, Ti, and Au disk targets with 0.53 ..mu..m light in 3 to 35 J, 600 ps pulses, at nominal intensities from 3 x 10/sup 13/ to approx. 4 x 10/sup 15/ W/cm/sup 2/. The measured absorptions are higher than observed in similar 1.06 ..mu..m irradiations, and are largely consistent with modeling which shows the importance of inverse bremsstrahlung and Brillouin scattering. Observed red-shifted back-reflected light shows that Brillouin is operating at low to moderate levels. The measured fluxes of multi-keV x-rays indicate low hot-electron fractions, with temperatures which are consistent with resonance absorption. Measurements show efficient conversion of absorbed light into sub-keV x-rays, with time-, angular-, and spatial-emission distributions which are generally consistent with non-LTE modeling using inhibited thermal electron transport.

  17. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    DOEpatents

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  18. Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.

    2004-08-01

    During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.

  19. Systems and methods for retaining and removing irradiation targets in a nuclear reactor

    SciTech Connect

    Runkle, Gary A.; Matsumoto, Jack T.; Dayal, Yogeshwar; Heinold, Mark R.

    2015-12-08

    A retainer is placed on a conduit to control movement of objects within the conduit in access-restricted areas. Retainers can prevent or allow movement in the conduit in a discriminatory fashion. A fork with variable-spacing between prongs can be a retainer and be extended or collapsed with respect to the conduit to change the size of the conduit. Different objects of different sizes may thus react to the fork differently, some passing and some being blocked. Retainers can be installed in inaccessible areas and allow selective movement in remote portions of conduit where users cannot directly interface, including below nuclear reactors. Position detectors can monitor the movement of objects through the conduit remotely as well, permitting engagement of a desired level of restriction and object movement. Retainers are useable in a variety of nuclear power plants and with irradiation target delivery, harvesting, driving, and other remote handling or robotic systems.

  20. Targeting Pro-Apoptotic TRAIL Receptors Sensitizes HeLa Cervical Cancer Cells to Irradiation-Induced Apoptosis

    SciTech Connect

    Maduro, John H.; Vries, Elisabeth de; Meersma, Gert-Jan; Hougardy, Brigitte; Zee, Ate G.J. van der; Jong, Steven de

    2008-10-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL (rhTRAIL) and the agonistic antibodies against DR4 and DR5 were added to irradiated HeLa cells. The effect was evaluated with apoptosis and cytotoxicity assays and at the protein level. Membrane receptor expression was measured with flow cytometry. Small-interfering RNA against p53, DR4, and DR5 was used to investigate their function on the combined effect. Results: rhTRAIL and the agonistic DR4 and DR5 antibodies strongly enhanced 10-Gy-induced apoptosis. This extra effect was 22%, 23%, and 29% for rhTRAIL, DR4, and DR5, respectively. Irradiation increased p53 expression and increased the membrane expression of DR5 and DR4. p53 suppression, as well as small-interfering RNA against DR5, resulted in a significant downregulation of DR5 membrane expression but did not affect apoptosis induced by irradiation and rhTRAIL. After small-interfering RNA against DR4, rhTRAIL-induced apoptosis and the additive effect of irradiation on rhTRAIL-induced apoptosis were abrogated, implicating an important role for DR4 in apoptosis induced through irradiation in combination with rhTRAIL. Conclusion: Irradiation-induced apoptosis is strongly enhanced by targeting the pro-apoptotic TRAIL receptors DR4 or DR5. Irradiation results in a p53-dependent increase in DR5 membrane expression. The sensitizing effect of rhTRAIL on irradiation in the HeLa cell line is, however especially mediated through the DR4 receptor.

  1. Syntheses of neptunium trichloride and measurements of its melting temperature

    NASA Astrophysics Data System (ADS)

    Hayashi, Hirokazu; Takano, Masahide; Kurata, Masaki; Minato, Kazuo

    2013-09-01

    Neptunium trichloride (NpCl3) of high purity was synthesized by the solid state reaction of neptunium nitride with cadmium chloride. Lattice parameters of hexagonal NpCl3 were determined from the powder X-ray diffraction pattern to be a = 0.7428 ± 0.0001 nm and c = 0.4262 ± 0.0003 nm, which fairly agree with the reported values. The melting temperature of NpCl3 was measured on a sample of about 1 mg, hermetically encapsulated in a gold crucible with a differential thermal analyzer. The value determined was 1070 ± 3 K which is close to the recommended value (1075 ± 30 K) derived from the mean value of the melting temperature of UCl3 and of PuCl3.

  2. Plutonium, americium, and neptunium speciation in selected groundwaters

    USGS Publications Warehouse

    Cleveland, J.M.; Rees, T.F.; Nash, K.L.

    1985-01-01

    Speciation was determined at 25 and 90 degree C in four groundwaters from diverse sources: the Sparta aquifer in Louisiana, near the Vacherie salt dome; Mansfield No. 2 well in the Palo Duro Basin, Texas; the Stripa mine in Sweden; and the Waste Isolation Pilot Plant in New Mexico. Neptunium generally was soluble in all waters and was present exclusively as Np(V) and Np(VI), regardless of initial oxidation state. The results indicated that plutonium and neptunium solubilities were determined by the oxidation-reduction properties of the waters, i. e. , their abilities to convert these elements to soluble oxidation states. This was not the case for americium, however; Am(IV) was not detected, and the solubility of this element was determined entirely by the chemical properties of Am(III).

  3. Extraction of Uranium, Neptunium and Plutonium from Caustic Media

    SciTech Connect

    Delmau, Laetitia H.; Bonnesen, Peter V.; Engle, Nancy L.; Raymond, Kenneth N.; Xu, Jade

    2004-03-28

    5 Fundamental research on uranium, neptunium and plutonium separation from alkaline media using solvent extraction is being conducted. Specific extractants for these actinides from alkaline media have been synthesized to investigate the feasibility of selective removal of these elements. Two families of extractants have been studied: terephthalamide and tetra(hydroxybenzyl)ethylene diamine derivatives. Fundamental studies were conducted to characterize their extraction behavior from a wide variety of aqueous conditions. The terephthalamide derivatives exhibit a significant extraction strength along with a discriminatory behavior among the actinides, plutonium being extracted the most strongly. Quantitative extraction of plutonium and moderate extraction of neptunium and uranium was achieved from a simple caustic solution. Interestingly, strontium is also quantitatively extracted by these derivatives. However, their stability to highly caustic solutions still needs to be imp roved. Tetra(hydroxybenzyl)ethylene diamine derivatives exhibit a very good stability to caustic conditions and are currently being studied.

  4. RAPID MEASUREMENTS OF NEPTUNIUM OXIDATION STATES USING CHROMATOGRAPHIC RESINS

    SciTech Connect

    Diprete, D; C Diprete, C; Mira Malek, M; Eddie Kyser, E

    2009-03-24

    The Savannah River Site's (SRS) H-Canyon facility uses ceric ammonium nitrate (CAN) to separate impure neptunium (Np) from a high sulfate feed stream. The material is processed using a two-pass solvent extraction purification which relies on CAN to oxidize neptunium to Np(VI) during the first pass prior to extraction. Spectrophotometric oxidation-state analyses normally used to validate successful oxidation to Np(VI) prior to extraction were compromised by this feed stream matrix. Therefore, a rapid chromatographic method to validate successful Np oxidation was developed using Eichrom Industries TRU and TEVA{reg_sign} resins. The method was validated and subsequently transferred to existing operations in the process analytical laboratories.

  5. SEPARATION OF NEPTUNIUM FROM PLUTONIUM BY CHLORINATION AND SUBLIMATION

    DOEpatents

    Fried, S.M.

    1958-11-18

    A process is described for separating neptunium from plutonium. The method consists in chlorinating a mixture of the oxides of Np and Pu by contacting the mixture with carbon tetrachloride at about 500 icient laborato C. ln this manner the Np is converted to the tetrachlorlde and the Pu converted to the trichloride. Since NpCl/sub 4/ is more latile than PuCl/sub 3/, the separation ls effected by vaporing sad subsequently condenslng the NpCl/sub 4/.

  6. Geologic migration potentials of technetium-99 and neptunium-237.

    PubMed

    Bondietti, E A; Francis, C W

    1979-03-30

    Relatively mobile TcO(+)(-) and NpO(2)(+) can be chemically reduced to less soluble oxidation states in the presence of igneous rocks, as predicted by oxidation-reduction measurements. Current risk assessments, which consider technetium and neptunium as potentially capable of migrating from high-level radioactive waste repositories, may be overestimating their potential hazard to the public since the Fe(II) content of many subsurface waters may maintain these elements in less soluble oxidation states.

  7. XAS and TRLIF spectroscopy of uranium and neptunium in seawater.

    PubMed

    Maloubier, Melody; Solari, Pier Lorenzo; Moisy, Philippe; Monfort, Marguerite; Den Auwer, Christophe; Moulin, Christophe

    2015-03-28

    Seawater contains radionuclides at environmental levels; some are naturally present and others come from anthropogenic nuclear activity. In this report, the molecular speciation in seawater of uranium(VI) and neptunium(V) at a concentration of 5 × 10(-5) M has been investigated for the first time using a combination of two spectroscopic techniques: Time-resolved laser-induced fluorescence (TRLIF) for U and extended X-ray absorption fine structure (EXAFS) for U and Np at the LIII edge. In parallel, the theoretical speciation of uranium and neptunium in seawater at the same concentration is also discussed and compared to spectroscopic data. The uranium complex was identified as the neutral carbonato calcic complex UO2(CO3)3Ca2, which has been previously described in other natural systems. In the case of neptunium, the complex identified is mainly a carbonato complex whose exact stoichiometry is more difficult to assess. The knowledge of the actinide molecular speciation and reactivity in seawater is of fundamental interest in the particular case of uranium recovery and more generally regarding the actinide life cycle within the biosphere in the case of accidental release. This is the first report of actinide direct speciation in seawater medium that can complement inventory data.

  8. Uranium and Neptunium Desorption from Yucca Mountain Alluvium

    SciTech Connect

    C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

    2006-03-16

    Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

  9. Visualization experiment of 30 MeV proton beam irradiated water target

    NASA Astrophysics Data System (ADS)

    Hwan Hong, Bong; Gun Yang, Tea; Su Jung, In; Soo Park, Yeun; Hee Cho, Hyung

    2011-11-01

    The nucleate boiling phenomena in a water target irradiated by 30 MeV proton beam were visualized experimentally. The beam size was 10 mm in diameter and beam current of 10, 15 and 20 μA were used, respectively. A target cavity of 4.5 cc in volume was filled with distilled water without atmosphere. A CMOS camera is used to record the phenomena through a side window. The temperature and pressure were measured during experiments. The depth of the Bragg peak was indicated by the blue light emission of the proton beam in the water target. In the case of 10 μA beam intensity, there was no visible phase change but fluxes by convection was observed at the Bragg peak and near the foil surface region. At 15 μA beam intensity, steam bubbles were generated by homogenous nuclear boiling at the Bragg peak and corrupted by cavitation at the upper region. The steam bubble generation point can be indicated by the blue light emission, which can show us the position of the Bragg peak. At 20 μΑ beam intensity, the steam bubbles were generated at Bragg peak and near the foil surface. The homogenous nucleate boiling at the Bragg peak was dominant and the heterogeneous nucleate boiling near the foil surface took place, occasionally. The cavitation of the steam bubble was also observed in the upper region within the target. The penetration depth of the proton beam was change along with the steam bubble formation. The blue light emission of the proton beam in water shows that the penetration depth of the proton beam becomes deeper when vapor bubbles are generated.

  10. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  11. Enhanced X-ray emission from laser-produced gold plasma by double pulses irradiation of nano-porous targets

    NASA Astrophysics Data System (ADS)

    Fazeli, R.

    2017-02-01

    Enhancement of the soft X-ray emission including free-free, free-bound and bound-bound emissions from Au nano-porous targets irradiated by single and double laser pulses is studied through numerical simulations. Laser pulses of duration 2 ns are used in calculations considering different prepulse intensities and a fixed intensity of 1013 Wcm-2 for the main pulse. The effects of prepulse intensity and time separation between laser pulses are studied for targets of different porosities. Results show that the X-ray yield can be enhanced significantly by a nano-porous target having optimum initial density. Such enhancement can be more improved when double laser pulses with appropriate delay time and intensities irradiate nano-porous targets. It is shown that the enhancement will be reduced when the prepulse intensity is greater than a specific value.

  12. Neptunium and americium speciation in selected basalt, granite, shale, and tuff ground waters

    USGS Publications Warehouse

    Cleveland, J.M.; Rees, T.F.; Nash, K.L.

    1983-01-01

    Neptunium and americium are relatively insoluble in ground waters containing high sulfate concentrations, particularly at 90??C. The insoluble neptunium species is Np(IV); hence reducing waters should enhance its formation. Americium can exist only in the trivalent state under these conditions, and its solubility also should be representative of that of curium.

  13. Evaluation of the Effects of Tank 50H Solids on Dissolved Uranium, Plutonium and Neptunium

    SciTech Connect

    Oji, L.N.

    2003-12-02

    The study of the effects of contacting a simulated salt solution spiked with uranium, plutonium, and neptunium with Tank 50H solids. General findings include: There is no evidence for interaction between Tank 50H solids and uranium from the spiked salt solution. Lack of uranium removal may reflect prior removal of uranium. There is evidence for interaction between Tank 50H solids with plutonium and neptunium as evidenced by loss of these two actinides from the salt solution. The amount of plutonium and neptunium lost from solution increased with an increase in the quantity of Tank 50H solids for a fixed simulant volume. The removal of plutonium and neptunium fit typical sorption isotherms allowing development of loading curves for estimating maximum solids loading. The maximum loading capacities for plutonium and neptunium in the simulants are, respectively, 2.01 and 4.48 micrograms per gram of Tank 50H solids. The oxalate in the Tank 50H solids is not directly responsible for the loss of plutonium and neptunium from the salt solution. The removal of plutonium and neptunium may be attributed to other minor components of the Tank 50H solids. We recommend additional testing to identify the component responsible for the plutonium and neptunium removal.

  14. Re-Evaluating Neptunium in Uranyl Phases Derived from Corroded Spent Fuel

    SciTech Connect

    Fortner, Jeffrey A.; Finch, Robert J.; Kropf, A. Jeremy; Cunnane, James C.

    2004-11-15

    Interest in mechanisms that may control radioelement release from corroded commercial spent nuclear fuel (CSNF) has been heightened by the selection of the Yucca Mountain site in Nevada as the repository for high-level nuclear waste in the United States. Neptunium is an important radionuclide in repository models owing to its relatively long half-life and its high aqueous mobility as neptunyl [Np(V)O{sub 2}{sup +}]. The possibility of neptunium sequestration into uranyl alteration phases produced by corroding CSNF would suggest a process for lowering neptunium concentration and subsequent migration from a geologic repository. However, there remains little experimental evidence that uranyl compounds will, in fact, serve as long-term host phases for the retention of neptunium under conditions expected in a deep geologic repository. To directly explore this possibility, we examined specimens of uranyl alteration phases derived from humid-air-corroded CSNF by X-ray absorption spectroscopy to better determine neptunium uptake in these phases. Although neptunium fluorescence was readily observed from as-received CSNF, it was not observed from the uranyl alteration rind. We establish upper limits for neptunium incorporation into CSNF alteration phases that are significantly below previously reported concentrations obtained by using electron energy loss spectroscopy (EELS). We attribute the discrepancy to a plural-scattering event that creates a spurious EELS peak at the neptunium-M{sub V} energy.

  15. Re-evaluating neptunium in uranyl phases derived from corroded spent fuel.

    SciTech Connect

    Fortner, J. A.; Finch, R. J.; Kropf, A. J.; Cunnane, J. C.; Chemical Engineering

    2004-11-01

    Interest in mechanisms that may control radioelement release from corroded commercial spent nuclear fuel (CSNF) has been heightened by the selection of the Yucca Mountain site in Nevada as the repository for high-level nuclear waste in the United States. Neptunium is an important radionuclide in repository models owing to its relatively long half-life and its high aqueous mobility as neptunyl [Np(V)O+2]. The possibility of neptunium sequestration into uranyl alteration phases produced by corroding CSNF would suggest-a process for lowering neptunium concentration and subsequent migration from a geologic repository. However, there remains little experimental evidence that uranyl compounds will, in fact, serve as long-term host phases for the retention of neptunium under conditions expected in a deep geologic repository. To directly explore this possibility, we examined specimens of uranyl alteration phases derived from humid-air-corroded CSNF by X-ray absorption spectroscopy to better determine neptunium uptake in these phases. Although neptunium fluorescence was readily observed from as-received CSNF, it was not observed from the uranyl alteration rind. We establish upper limits for neptunium incorporation into CSNF alteration phases that are significantly below previously reported concentrations obtained by using electron energy loss spectroscopy (EELS). We attribute the discrepancy to a plural-scattering event that creates a spurious EELS peak at the neptunium-MV energy.

  16. Measurements of X-ray doses and spectra produced by picosecond laser-irradiated solid targets.

    PubMed

    Yang, Bo; Qiu, Rui; Yu, Minghai; Jiao, Jinlong; Lu, Wei; Yan, Yonghong; Zhang, Bo; Zhang, Zhimeng; Zhou, Weimin; Li, Junli; Zhang, Hui

    2017-05-01

    Experiments have shown that high-intensity laser interaction with a solid target can generate significant X-ray doses. This study was conducted to determine the X-ray doses and spectra produced for picosecond laser-irradiated solid targets. The photon doses and X-ray spectra in the laser forward and side directions were measured using an XG III ps 300 TW laser system. For laser intensities of 7×10(18)-4×10(19)W/cm(2), the maximum photon dose was 16.8 mSv at 50cm with a laser energy of ~153J on a 1-mm Ta target. The photon dose in the forward direction increased more significantly with increasing laser intensity than that in the side direction. For photon energies >300keV, the X-ray spectrum can be fit with an effective temperature distribution of the exponential form, dN/dE = k× exp(-E/Tx). The X-ray temperature Tx increased with the laser intensity in the forward direction with values of 0.46-0.75MeV. Tx was less strongly correlated with the laser intensity in the side direction with values of 0.29-0.32MeV. The escaping electron spectrum was also measured. The measured electron temperature was correlated with the electron temperature predicted by the ponderomotive law. The observations in this experiment were also investigated numerically. A good agreement was observed between the experimental and simulation results.

  17. Neptunium multipoles and resonant x-ray Bragg diffraction by neptunium dioxide (NpO2).

    PubMed

    Lovesey, S W; Detlefs, C; Rodríguez-Fernández, A

    2012-06-27

    The low-temperature ordered state of neptunium dioxide (NpO(2)) remains enigmatic. After decades of experimental and theoretical efforts, long-range order of a time-odd (magnetic) high-order atomic multipole moment is now generally considered to be the fundamental order parameter, the most likely candidate being a magnetic triakontadipole (rank 5). To date, however, direct experimental observation of the primary order parameter remains outstanding. In the light of new experimental findings, we re-examine the effect of crystal symmetry on the atomic multipoles and the resulting x-ray resonant scattering signature. Our simulations use the crystallographic point group ̅3m (D(3d)), because corresponding magnetic groups ̅3m', ̅3'm', and ̅3'm are shown by us to be at odds with a wealth of experimental results. In addition to the previously observed (secondary) quadrupole order, we derive expressions for higher-order multipoles that might be observed in future experiments. In particular, magnetic octupole moments are predicted to contribute to Np M(2,3) and L(2,3) resonant scattering via E2–E2 events. The Lorentzian-squared lineshape observed at the M(4) resonance is shown to be the result of the anisotropy of the 3p(3/2) core levels. Quantitative comparison of our calculations to the measured data yields a core–hole width Γ = 2.60(7) eV and a core-state exchange energy [absolute value]ε(1/2)[absolute value] = 0.76(2) eV.

  18. Neptunium multipoles and resonant x-ray Bragg diffraction by neptunium dioxide (NpO2)

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Detlefs, C.; Rodríguez-Fernández, A.

    2012-06-01

    The low-temperature ordered state of neptunium dioxide (NpO2) remains enigmatic. After decades of experimental and theoretical efforts, long-range order of a time-odd (magnetic) high-order atomic multipole moment is now generally considered to be the fundamental order parameter, the most likely candidate being a magnetic triakontadipole (rank 5). To date, however, direct experimental observation of the primary order parameter remains outstanding. In the light of new experimental findings, we re-examine the effect of crystal symmetry on the atomic multipoles and the resulting x-ray resonant scattering signature. Our simulations use the crystallographic point group \\bar {3}m (D3d), because corresponding magnetic groups \\bar {3}{m}^{\\prime}, {\\bar {3}}^{\\prime}{m}^{\\prime} and {\\bar {3}}^{\\prime}m are shown by us to be at odds with a wealth of experimental results. In addition to the previously observed (secondary) quadrupole order, we derive expressions for higher-order multipoles that might be observed in future experiments. In particular, magnetic octupole moments are predicted to contribute to Np M2,3 and L2,3 resonant scattering via E2-E2 events. The Lorentzian-squared lineshape observed at the M4 resonance is shown to be the result of the anisotropy of the 3p3/2 core levels. Quantitative comparison of our calculations to the measured data yields a core-hole width Γ = 2.60(7) eV and a core-state exchange energy \\vert \\varepsilon (\\frac{1}{2})\\vert =0.7 6(2) eV.

  19. Irradiation damage analysis on the flat plate type target plate of the divertor for fusion experimental reactors

    NASA Astrophysics Data System (ADS)

    Ishiyama, S.; Akiba, M.; Eto, M.

    1996-04-01

    To design the relevant plasma facing components of fusion experimental reactors such as ITER, irradiation damage analysis, especially on divertor structures exposed to high heat flux and heavy neutron irradiation, is one of the most important problems. This paper presents finite element analytical results of the thermal and irradiation induced stresses which occurred in the divertor structures which are exposed to neutron irradiation at 0-1 dpa with a high heat flux up to 15 MW/m 2. A type of target plate model of the divertor structure studied in present study e.g. flat plate model has bonded structure of one-dimensional high thermal conductivity carbon-carbon composite (C/C) and oxygen-free high conductivity copper (OFHC), as armor and substrate/heat sink materials, respectively. These results show that irradiation induced stresses at edges of bonded interface between an armor and a substrate/heat sink, become higher with increase of dpa and reach up to the critical values of the materials at 0 and 1 dpa. This indicates that drop-off of armor tiles from substrate structure is one of very serious problems for the safety design of target plate; thus the reduction of service conditions and change of divertor materials are important to extend lifetime of the model.

  20. Chemical Speciation of Neptunium in Spent Fuel. 1st Progress Report

    SciTech Connect

    Czerwinski, Ken; Sherman, Christi; Reed, Don

    2000-03-02

    This project will examine the chemical speciation of neptunium in spent nuclear fuel. The R&D fields covered by the project include waste host materials and actinide chemistry. Examination of neptunium is chosen since it was identified as a radionuclide of concern by the NERI workshop. Additionally, information on the chemical form of neptunium in spent fuel is lacking. The identification of the neptunium species in spent fuel would allow a greater scientific based understanding of its long-term fate and behavior in waste forms. Research to establish the application and development of X-ray synchrotrons radiation (XSR) techniques to determine the structure of aqueous, adsorbed, and solid actinide species of importance to nuclear considerations is being conducted at Argonne. These studies extend current efforts within the Chemical Technology Division at Argonne National Laboratory to investigate actinide speciation with more conventional spectroscopic and solids characterization (e.g. SEM, TEM, and XRD) methods. Our project will utilize all these techniques for determining neptunium speciation in spent fuel. We intend to determine the chemical species and oxidation state of neptunium in spent fuel and alteration phases. Different types of spent fuel will be examined. Once characterized, the chemical behavior of the identified neptunium species will be evaluated if it is not present in the literature. Special attention will be given to the behavior of the neptunium species under typical repository near-field conditions (elevated temperature, high pH, varying Eh). This will permit a timely inclusion of project results into near-field geochemical models. Additionally, project results and methodologies have applications to neptunium in the environment, or treatment of neptunium containing waste.

  1. Energy plasma-target coupling in the case a periodical structure is formed within the irradiation spot as an effect of powerful laser irradiation

    NASA Astrophysics Data System (ADS)

    Ursu, I.; Apostol, I.; Craciun, D.; Dinescu, M.; Mihailescu, L. N.

    1985-10-01

    In an earlier paper (Ursu et al., 1985), it has been suggested that surface electromagnetic waves propagating on the surface of laser-irradiated samples in the presence of periodic structures formed within the beam spot may provide a competitive mechanism for supplementary energy transfer. Such a mechanism could account for the high absorptivity observed in the case of high-power laser irradiation of some metallic materials, sometimes characterized as anomalous. Here, new experimental determinations of the dependence of the energy coupling coefficient on the incident energy density are reported for TEA-CO2 and ruby laser sources and copper targets. The results are found to be consistent with the proposed supplementary energy transfer mechanism.

  2. Results of the six-and-a-half day electron-accelerator irradiation of enriched Mo-100 targets for the production of Mo-99

    SciTech Connect

    Chemerisov, S.; Bailey, J.; Heltemes, T.; Jonah, C.; Makarashvili, V.; Tkac, P.; Rotsch, D.; Virgo, M.; Vandegrift, G. F.

    2016-10-01

    A six-and-a-half day irradiation of enriched Mo-100 target disks was performed by Argonne’s electron linac. This report describes the irradiation conditions and the means used to process the targets for shipment to NorthStar Medical Isotopes, LLC, for feed to their RadioGenixTM technetium generator.

  3. Systematic trends in the237neptunium Mössbauer isomer shift: Overlap of IV, V and VI neptunium oxidation states and correlation between isomer shift and crystal structure

    NASA Astrophysics Data System (ADS)

    Jové, J.; Cousson, A.; Abazli, H.; Tabuteau, A.; Thévenin, T.; Pagès, M.

    1988-01-01

    The influence of the neptunium ion environment on the237Np Mössbauer isomer shifts has been studied in various metal coordination complexes: fluorides, oxides, oxide fluorides and polycarboxylates. A linear dependence between the isomer shift and the mean neptunium-ligand distance in a series of hexavalent Np compounds has been evidenced and the feasibility of overlapped isomer shift areas, namely Np(IV), Np(V) and Np(VI) has been established.

  4. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    PubMed

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  5. Targeted irradiation of biological cells using an ion microprobe - Why a small beam spot is not sufficient for success

    NASA Astrophysics Data System (ADS)

    Fischer, B. E.; Voss, K.-O.; Du, G.

    2009-06-01

    When people plan to adapt their ion microprobe for the targeted irradiation of biological cells, they often claim that they expect a targeting accuracy in the range of their beam spot diameter, because they assume that reaching a sub-μm beam spot is the most difficult part of the job. Although many microprobes have now a beam spot diameter of some hundred nano-meters or less, nobody reached a targeting accuracy below 1 μm. Besides obvious reasons, like mechanical or thermal instabilities, there is a more difficult problem to overcome: one still needs a light microscope to locate both the microbeam and the cells to be irradiated, and there are various light-optical effects, which can give misleading information about the position of the beam and the cells.

  6. Application of AnaLig resin for (99m)Tc separation from (100)Mo target irradiated in cyclotron.

    PubMed

    Pawlak, D W; Wojdowska, W; Parus, L J; Mikołajczak, R

    2016-07-01

    The purpose of this study was the development of procedure for molybdenum metallic target processing after its irradiation in a cyclotron. As a first step the dissolution of molybdenum in various physical forms was investigated. The concentrations of NaOH and (NH4)2CO3 allowing the highest sorption of Tc on AnaLig Tc-02 resin had been found. Based on these results the sintered irradiated Mo pellet was processed. The radionuclidic and radiochemical purities of separated Tc product were evaluated.

  7. Study of ablation by laser irradiation of plane targets at wavelengths 1. 05, 0. 53, and 0. 35. mu. m

    SciTech Connect

    Key, M.H.; Toner, W.T.; Goldsack, T.J.; Kilkenny, J.D.; Veats, S.A.; Cunningham, P.F.; Lewis, C.L.S.

    1983-07-01

    Ablation by laser irradiation at wavelengths lambda = 1.05, 0.53, and 0.35 ..mu..m has been studied from analysis of time-resolved x-ray spectra of layered targets and of ion emission. Irradiance was varied in the range 2 x 10/sup 13/ to 2 x 10/sup 15/ W cm/sup -2/ with constant laser power and variable focal spot size. Deductions include the effect of lateral energy transport from small focal spots and ablation rates and ablation pressures obtained both in the limit of negligible transport and when lateral transport is significant. Advantages of short wavelengths for ablatively driven implosions are quantified.

  8. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    SciTech Connect

    McAuley, GA; Slater, JM; Slater, JD; Wroe, AJ

    2015-06-15

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged.

  9. WE-D-17A-04: Magnetically Focused Proton Irradiation of Small Volume Targets

    SciTech Connect

    McAuley, G; Slater, J; Wroe, A

    2014-06-15

    Purpose: To explore the advantages of magnetic focusing for small volume proton irradiations and the potential clinical benefits for radiosurgery targets. The primary goal is to create narrow elongated proton beams of elliptical cross section with superior dose delivery characteristics compared to current delivery modalities (eg, collimated beams). In addition, more general beam shapes are also under investigation. Methods: Two prototype magnets consisting of 24 segments of samarium-cobalt (Sm2Co17) permanent magnetic material adhered into hollow cylinders were manufactured for testing. A single focusing magnet was placed on a positioning track on our Gantry 1 treatment table and 15 mm diameter proton beams with energies and modulation relevant to clinical radiosurgery applications (127 to 186 MeV, and 0 to 30 mm modulation) were delivered to a terminal water tank. Beam dose distributions were measured using a PTW diode detector and Gafchromic EBT2 film. Longitudinal and transverse dose profiles were analyzed and compared to data from Monte Carlo simulations analogous to the experimental setup. Results: The narrow elongated focused beam spots showed high elliptical symmetry indicating high magnet quality. In addition, when compared to unfocused beams, peak-to-entrance depth dose ratios were 11 to 14% larger (depending on presence or extent of modulation), and minor axis penumbras were 11 to 20% smaller (again depending on modulation) for focused beams. These results suggest that the use of rare earth magnet assemblies is practical and could improve dose-sparing of normal tissue and organs at risk while delivering enhanced dose to small proton radiosurgery targets. Conclusion: Quadrapole rare earth magnetic assemblies are a promising and inexpensive method to counteract particle out scatter that tends to degrade the peak to entrance performance of small field proton beams. Knowledge gained from current experiments will inform the design of a prototype treatment

  10. Intrafractional Target Motions and Uncertainties of Treatment Setup Reference Systems in Accelerated Partial Breast Irradiation

    SciTech Connect

    Yue, Ning J.; Goyal, Sharad; Zhou Jinghao; Khan, Atif J.; Haffty, Bruce G.

    2011-04-01

    Purpose: This study investigated the magnitude of intrafractional motion and level of accuracy of various setup strategies in accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy. Methods and Materials: At lumpectomy, gold fiducial markers were strategically sutured to the surrounding walls of the cavity. Weekly fluoroscopy imaging was conducted at treatment to investigate the respiration-induced target motions. Daily pre- and post-RT kV imaging was performed, and images were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion magnitudes over the course of treatment. The positioning differences of the laser tattoo- and the bony anatomy-based setups compared with those of the marker-based setup (benchmark) were also determined. The study included 21 patients. Results: Although lung exhibited significant motion, the average marker motion amplitude on the fluoroscopic image was about 1 mm. Over a typical treatment time period, average intrafractional motion magnitude was 4.2 mm and 2.6 mm based on the marker and bony anatomy matching, respectively. The bony anatomy- and laser tattoo-based interfractional setup errors, with respect to the fiducial marker-based setup, were 7.1 and 9.0 mm, respectively. Conclusions: Respiration has limited effects on the target motion during APBI. Bony anatomy-based treatment setup improves the accuracy relative to that of the laser tattoo-based setup approach. Since fiducial markers are sutured directly to the surgical cavity, the marker-based approach can further improve the interfractional setup accuracy. On average, a seroma cavity exhibits intrafractional motion of more than 4 mm, a magnitude that is larger than that which is otherwise derived based on bony anatomy matching. A seroma-specific marker-based approach has the potential to improve treatment accuracy by taking the true inter

  11. Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin

    SciTech Connect

    Polla, L.L.; Margolis, R.J.; Dover, J.S.; Whitaker, D.; Murphy, G.F.; Jacques, S.L.; Anderson, R.R.

    1987-09-01

    The specific targeting of melanosomes may allow for laser therapy of pigmented cutaneous lesions. The mechanism of selective destruction of pigmented cells by various lasers, however, has not been fully clarified. Black, brown, and albino guinea pigs were exposed to optical pulses at various radiant exposure doses from a Q-switched, 40 nsec, 694 nm ruby laser. Biopsies were analyzed by light and electron microscopy (EM). Albino animals failed to develop clinical or microscopic evidence of cutaneous injury after irradiation. In both black and brown animals, the clinical threshold for gross change was 0.4 J/cm2, which produced an ash-white spot. By light microscopy, alterations appeared at 0.3 J/cm2 and included separation at the dermoepidermal junction, and the formation of vacuolated epidermal cells with a peripheral cytoplasmic condensation of pigment. By EM, enlarged melanosomes with a central lucent zone were observed within affected epidermal cells at 0.3 J/cm2. At 0.8 and 1.2 J/cm2, individual melanosomes were more intensely damaged and disruption of melanosomes deep in the hair papillae was observed. Dermal-epidermal blisters were formed precisely at the lamina lucida, leaving basal cell membranes and hemidesmosomes intact. Possible mechanisms for melanosomal injury are discussed. These observations show that the effects of the Q-switched ruby laser are melanin-specific and melanin-dependent, and may be useful in the selective destruction of pigmented as well as superficial cutaneous lesions.

  12. A mechanistic study of gold nanoparticle radiosensitisation using targeted microbeam irradiation

    PubMed Central

    Ghita, Mihaela; McMahon, Stephen J.; Taggart, Laura E.; Butterworth, Karl T.; Schettino, Giuseppe; Prise, Kevin M.

    2017-01-01

    Gold nanoparticles (GNPs) have been demonstrated as effective radiosensitizing agents in a range of preclinical models using broad field sources of various energies. This study aimed to distinguish between these mechanisms by applying subcellular targeting using a soft X-ray microbeam in combination with GNPs. DNA damage and repair kinetics were determined following nuclear and cytoplasmic irradiation using a soft X-ray (carbon K-shell, 278 eV) microbeam in MDA-MB-231 breast cancer and AG01522 fibroblast cells with and without GNPs. To investigate the mechanism of the GNP induced radiosensitization, GNP-induced mitochondrial depolarisation was quantified by TMRE staining, and levels of DNA damage were compared in cells with depolarised and functional mitochondria. Differential effects were observed following radiation exposure between the two cell lines. These findings were validated 24 hours after removal of GNPs by flow cytometry analysis of mitochondrial depolarisation. This study provides further evidence that GNP radiosensitisation is mediated by mitochondrial function and it is the first report applying a soft X-ray microbeam to study the radiobiological effects of GNPs to enable the separation of physical and biological effects. PMID:28300190

  13. Clinical target volume delineation including elective nodal irradiation in preoperative and definitive radiotherapy of pancreatic cancer

    PubMed Central

    2012-01-01

    Background Radiotherapy (RT) is widely used in the treatment of pancreatic cancer. Currently, recommendation has been given for the delineation of the clinical target volume (CTV) in adjuvant RT. Based on recently reviewed pathologic data, the aim of this study is to propose criteria for the CTV definition and delineation including elective nodal irradiation (ENI) in the preoperative and definitive treatment of pancreatic cancer. Methods The anatomical structures of interest, as well as the abdominal vasculature were identified on intravenous contrast-enhanced CT scans of two different patients with pancreatic cancer of the head and the body. To delineate the lymph node area, a margin of 10 mm was added to the arteries. Results We proposed a set of guidelines for elective treatment of high-risk nodal areas and CTV delineation. Reference CT images were provided. Conclusions The proposed guidelines could be used for preoperative or definitive RT for carcinoma of the head and body of the pancreas. Further clinical investigations are needed to validate the defined CTVs. PMID:22691275

  14. A mechanistic study of gold nanoparticle radiosensitisation using targeted microbeam irradiation.

    PubMed

    Ghita, Mihaela; McMahon, Stephen J; Taggart, Laura E; Butterworth, Karl T; Schettino, Giuseppe; Prise, Kevin M

    2017-03-16

    Gold nanoparticles (GNPs) have been demonstrated as effective radiosensitizing agents in a range of preclinical models using broad field sources of various energies. This study aimed to distinguish between these mechanisms by applying subcellular targeting using a soft X-ray microbeam in combination with GNPs. DNA damage and repair kinetics were determined following nuclear and cytoplasmic irradiation using a soft X-ray (carbon K-shell, 278 eV) microbeam in MDA-MB-231 breast cancer and AG01522 fibroblast cells with and without GNPs. To investigate the mechanism of the GNP induced radiosensitization, GNP-induced mitochondrial depolarisation was quantified by TMRE staining, and levels of DNA damage were compared in cells with depolarised and functional mitochondria. Differential effects were observed following radiation exposure between the two cell lines. These findings were validated 24 hours after removal of GNPs by flow cytometry analysis of mitochondrial depolarisation. This study provides further evidence that GNP radiosensitisation is mediated by mitochondrial function and it is the first report applying a soft X-ray microbeam to study the radiobiological effects of GNPs to enable the separation of physical and biological effects.

  15. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation

    PubMed Central

    Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk

    2016-01-01

    Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material. PMID:26869457

  16. Sensing device and method for measuring emission time delay during irradiation of targeted samples utilizing variable phase tracking

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2006-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  17. Proton-induced polonium production in massive lead bismuth target irradiated by 660 MeV protons

    NASA Astrophysics Data System (ADS)

    Polanski, Aleksander; Petrochenkov, Sergey; Pohorecki, Wladyslaw

    2006-06-01

    The paper presents study of polonium production in bismuth foils placed in lead target. Proton-induced production of residual nuclei 206Po, 207Po, 208Po, 209Po, 210Po in 209Bi foils placed in lead target irradiated by 660 MeV protons was calculated. A comparison with calculated spatial distribution of polonium production using an MCNPX code and experimental results has been performed. The results of calculation will be useful for design of target of Subcritical Assembly in Dubna (SAD).

  18. Optical emission of a plasma from low-density targets irradiated with coherence-controllable laser radiation

    NASA Astrophysics Data System (ADS)

    Fronya, A. A.; Borisenko, N. G.; Puzyrev, V. N.; Sahakyan, A. T.; Starodub, A. N.; Yakushev, O. F.

    2017-03-01

    The results of experiments on the interaction of nanosecond laser radiation with low-density volume-structured targets of different density and thickness are reported. The targets were irradiated by laser radiation with controllable coherence. The primary objective was to investigate the effect of target parameters on the characteristics of radiation scattered by the plasma. The spectral characteristics of the radiation scattered by the plasma in the backward direction and in the direction of laser beam propagation were obtained. Also the radiation scattering patterns were recorded.

  19. Self-overcoming of the boiling condition by pressure increment in a water target irradiated by proton beam

    NASA Astrophysics Data System (ADS)

    Hong, Bong Hwan; Kang, Joonsun; Jung, In Su; Ram, Han Ga; Park, Yeun Soo; Cho, Hyung Hee

    2013-11-01

    An experiment was conducted to examine and visualize the boiling phenomena inside a water target by irradiating it with a proton beam from MC-50 cyclotron. The boiling phenomena were recorded with a CMOS camera. While an increase of the fraction of the water vapor volume is generally considered to be normal when water is boiled by a proton beam, our experiment showed the opposite result. The volume expansion of the liquid water exceeded the compressibility of the initial air volume. A grid structure in front of the entrance window foil held the target volume constant. Therefore, the phenomena inside the target underwent an isochoric process, and the pressure inside the target was increased rapidly beyond the pressure at the boiling point. Consequently, there was no more bulk boiling in the Bragg-peak region in the target water. Our results show that the boiling of the water can be controlled by controlling the equilibrium pressure of the water target.

  20. Radiochemistry of uranium, neptunium and plutonium: an updating

    SciTech Connect

    Roberts, R.A.; Choppin, G.R.; Wild, J.F.

    1986-02-01

    This report presents some procedures used in the radiochemical isolation, purification and/or analysis of uranium, neptunium, and plutonium. In this update of the procedures, we have not attempted to discuss the developments in the chemistry of U, Np, and Pu but have restricted the report to the newer procedures, most of which have resulted from the increased emphasis in environmental concern which requires analysis of extremely small amounts of the actinide element in quite complex matrices. The final section of this report describes several schemes for isolation of actinides by oxidation state.

  1. Atomic Mass and Nuclear Binding Energy for Np-237 (Neptunium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Np-237 (Neptunium, atomic number Z = 93, mass number A = 237).

  2. Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation

    NASA Astrophysics Data System (ADS)

    Priegnitz, M.; Helmbrecht, S.; Janssens, G.; Perali, I.; Smeets, J.; Vander Stappen, F.; Sterpin, E.; Fiedler, F.

    2015-06-01

    Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation.

  3. Recovery of 131I from alkaline solution of n-irradiated tellurium target using a tiny Dowex-1 column.

    PubMed

    Chattopadhyay, Sankha; Saha Das, Sujata

    2010-10-01

    A simple and inexpensive ion-exchange chromatography method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed and tested using (131)I. The radiochemical separation was performed using a very small Dowex-1x8 ion-exchange column. The overall radiochemical yield for the complete separation of (131)I was 92+/-1.8 (standard deviation) % (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purity and did not contain detectable amounts of the target material. This method may be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation.

  4. Enhancement of laser to X-ray conversion by counter-propagating laser beams irradiating thin gold targets

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ge, Z. Y.; Ma, Y. Y.; Yang, X. H.; Xu, B. B.; Ramis, R.

    2017-03-01

    X-ray emission from laser irradiating solid target is an important X-ray source for various potential applications. Counter-propagating (C-P) laser beams configuration is proposed to enhance the laser to X-ray conversion efficiency (CE) from laser irradiating solid targets. One-dimensional radiation hydrodynamics simulations show that the total X-ray CE for the C-P lasers case is as high as 65%, which has a 13% improvement compared with the single laser case. The improvement is mainly caused by the enlarged radiation region, and the enhancement of X-ray emission is from soft X-ray. Detailed energy term distributions and influences of the foil thickness on the X-ray CEs for both cases are presented. It is found that the enhancement of radiation is attributed to lower thermal and kinetic energy of the C-P lasers scheme.

  5. Differences in Effective Target Volume Between Various Techniques of Accelerated Partial Breast Irradiation

    SciTech Connect

    Shaitelman, Simona F.; Vicini, Frank A.; Grills, Inga S.; Martinez, Alvaro A.; Yan Di; Kim, Leonard H.

    2012-01-01

    Purpose: Different cavity expansions are used to define the clinical target volume (CTV) for accelerated partial breast irradiation (APBI) delivered via balloon brachytherapy (1 cm) vs. three-dimensional conformal radiotherapy (3D-CRT) (1.5 cm). Previous studies have argued that the CTVs generated by these different margins are effectively equivalent. In this study, we use deformable registration to assess the effective CTV treated by balloon brachytherapy on clinically representative 3D-CRT planning images. Methods and Materials: Ten patients previously treated with the MammoSite were studied. Each patient had two computed tomography (CT) scans, one acquired before and one after balloon implantation. In-house deformable registration software was used to deform the MammoSite CTV onto the balloonless CT set. The deformed CTV was validated using anatomical landmarks common to both CT scans. Results: The effective CTV treated by the MammoSite was on average 7% {+-} 10% larger and 38% {+-} 4% smaller than 3D-CRT CTVs created using uniform expansions of 1 and 1.5 cm, respectively. The average effective CTV margin was 1.0 cm, the same as the actual MammoSite CTV margin. However, the effective CTV margin was nonuniform and could range from 5 to 15 mm in any given direction. Effective margins <1 cm were attributable to poor cavity-balloon conformance. Balloon size relative to the cavity did not significantly correlate with the effective margin. Conclusion: In this study, the 1.0-cm MammoSite CTV margin treated an effective volume that was significantly smaller than the 3D-CRT CTV based on a 1.5-cm margin.

  6. Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields.

    PubMed

    Lindegren, S; Bäck, T; Jensen, H J

    2001-08-01

    Astatine-211 was produced via the 209Bi(alpha,2n) 211At reaction. The radionuclide was isolated with a novel procedure employing dry-distillation of the irradiated target material. The astatine was condensed as a dry residue in a PEEK-capillary cryotrap. Distillation was completed within 1-2 min with isolation yields of 92 +/- 3%. Subsequent work-up of the nuclide resulted in final recovery yields of 79 +/- 3%.

  7. The biodistribution and toxicity of plutonium, americium and neptunium.

    PubMed

    Taylor, D M

    1989-07-15

    In the nuclear fuel cycle the transuranic radionuclides plutonium-239, americium-241 and neptunium-237 would probably present the most serious hazard to human health if released into the environment. Despite differences in their solution chemistry the three elements exhibit remarkable similarity in their biochemical behaviour, apparently sharing similar transport pathways in blood and cells. After entering the blood the elements deposit predominantly in liver and skeleton, where retention appears to be prolonged, with half-times of the order of years. The principal late effects of all three radionuclides are the induction of cancers of bone, lung or liver. For the latter tumours the induction risk per unit radiation dose appears similar for the three radionuclides. But in bone there are indications that, due to microscopic differences in the distribution of the alpha-particle radiation dose, the efficiency of bone cancer induction may increase in the order americium-241 less than plutonium-239 less than neptunium-237. No case of human cancer induced by these radionuclides is known.

  8. Transmutation of 129I, 237Np, 238Pu, 239Pu, and 241Am using neutrons produced in target-blanket system 'Energy plus Transmutation' by relativistic protons

    NASA Astrophysics Data System (ADS)

    Adam, J.; Katovsky, K.; Balabekyan, A.; Kalinnikov, V. G.; Krivopustov, M. I.; Kumawat, H.; Solnyshkin, A. A.; Stegailov, V. I.; Stetsenko, S. G.; Tsoupko-Sitnikov, V. M.; Westmeier, W.

    2007-02-01

    Target-blanket facility `Energy + Transmutation' was irradiated by proton beam extracted from the Nuclotron Accelerator in Laboratory of High Energies of Joint Institute for Nuclear Research in Dubna, Russia. Neutrons generated by the spallation reactions of 0.7, 1.0, 1.5 and 2 GeV protons and lead target interact with subcritical uranium blanket. In the neutron field outside the blanket, radioactive iodine, neptunium, plutonium and americium samples were irradiated and transmutation reaction yields (residual nuclei production yields) have been determined using g-spectroscopy. Neutron field's energy distribution has also been studied using a set of threshold detectors. Results of transmutation studies of 129I, 237Np, 238Pu, 239Pu and 241Am are presented.

  9. Possible version of the compression degradation of the thermonuclear indirect-irradiation targets at the national ignition facility and a reason for the failure of ignition

    NASA Astrophysics Data System (ADS)

    Rozanov, V. B.; Vergunova, G. A.

    2017-01-01

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the "failure of ignition" of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions under which ignition does not occur.

  10. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still

  11. Inductively Coupled Plasma Mass Spectrometry and the Determination of Neptunium and Plutonium in the Marine Environment

    NASA Astrophysics Data System (ADS)

    Sampson, Kate

    This project is concerned with the application of inductively coupled plasma mass spectrometry (ICP-MS) to the determination of neptunium-237, plutonium-239 and plutonium-240 concentrations in the marine environment…

  12. Solvent-extraction purification of neptunium

    SciTech Connect

    Kyser, E.A.; Hudlow, S.L.

    2008-07-01

    The Savannah River Site (SRS) has recovered {sup 237}Np from reactor fuel that is currently being processed into NpO{sub 2} for future production of {sup 238}Pu. Several purification flowsheets have been utilized. An oxidizing solvent-extraction (SX) flowsheet was used to remove Fe, sulfate ion, and Th while simultaneously {sup 237}Np, {sup 238}Pu, u, and nonradioactive Ce(IV) was extracted into the tributyl phosphate (TBP) based organic solvent. A reducing SX flowsheet (second pass) removed the Ce and Pu and recovered both Np and U. The oxidizing flowsheet was necessary for solutions that contained excessive amounts of sulfate ion. Anion exchange was used to perform final purification of Np from Pu, U, and various non-actinide impurities. The Np(IV) in the purified solution was then oxalate-precipitated and calcined to an oxide for shipment to other facilities for storage and future target fabrication. Performance details of the SX purification and process difficulties are discussed. (authors)

  13. Existing Evidence for the Fate of Neptunium in the Yucca Mountain Repository

    SciTech Connect

    Friese, Judah I. ); Buck, Edgar C. ); McNamara, Bruce K. ); Hanson, Brady D. ); Marschman, Steven C. )

    2003-06-18

    Neptunium, because of its long half life, is an element of long-term interest to the Yucca Mountain repository. The fate of neptunium under repository settings is unknown. This report provides a review and new interpretation of past tests on commercial spent nuclear fuel and experimental evidence on the fate of neptunium. Tests on commercial spent nuclear fuel preformed previously at Pacific Northwest National Laboratory (PNNL) used a bathtub setup by immersing spent fuel in either deionized water or a groundwater typical of those at Yucca Mountain. The main goal of the tests was to determine the different concentrations of radionuclides in solution with different types of cladding defects. Neptunium was not the focus of these tests, nor were the tests designed to study neptunium. Drip tests performed at Argonne National Laboratory (ANL) are unsaturated tests that drip water at different rates on spent fuel. Relatively new tests at ANL examine the corrosion of Np-doped U3O8 in humid air at various temperatures. This review concludes that all tests reported here have analytical problems (i.e., relatively high detection limits for Np) and have been configured such that they limit the ability to interpret the available neptunium data. Past tests on spent nuclear fuel do not unambiguously describe neptunium chemistry as there are multiple mechanisms that may explain the observed behavior in each test. One apparently major shortcoming of most tests is that the extent of fuel reaction was limited by the amount of oxygen present in the system. Further detailed studies under repository-relevant conditions, which include the assumption of a constant 20 percent oxygen atmosphere, are needed to provide the data necessary for the development and validation of models used to predict the long-term fate of neptunium and other radionuclides at Yucca Mountain.

  14. Thorium silicate compound as a solid-state target for production of isomeric thorium-229 nuclei by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Borisyuk, P. V.; Vasilyev, O. S.; Lebedinskii, Y. Y.; Krasavin, A. V.; Tkalya, E. V.; Troyan, V. I.; Habibulina, R. F.; Chubunova, E. V.; Yakovlev, V. P.

    2016-09-01

    In this paper, we discuss an idea of the experiment for excitation of the isomeric transition in thorium-229 nuclei by irradiating with electron beam targets with necessary physical characteristics. The chemical composition and bandgap of ThSi10O22 were determined by X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. It was found that the energy gap is equal to 7.7 eV and does not change when the target is exposed to a medium energy electron beam for a long time. This indicates that the compound possesses high electron-beam resistance. A quantitative estimation of the output function of isomeric thorium-229 nuclei generated by interaction of nuclei with the secondary electron flow formed by irradiating the solid-state ThSi10O22-based target is given. The estimation shows that ThSi10O22 is a promising thorium-containing target for investigating excitation of the nuclear low-lying isomeric transition in the thorium-229 isotope using medium-energy electrons.

  15. Reduction and precipitation of neptunium(V) by sulfate-reducing bacteria.

    SciTech Connect

    Banaszak, J. E.; Rittmann, B. E.; Reed, D. T.

    1999-10-21

    Migration of neptunium, as NpO{sub 2}{sup +}, has been identified as a potentially important pathway for actinide release at nuclear waste repositories and existing sites of subsurface contamination. Reduction of Np(V) to Np(IV) will likely reduce its volubility, resulting in lowered subsurface migration. The ability of sulfate-reducing bacteria (SRB) to utilize Np(V) as an electron acceptor was investigated, because these bacteria are active in many anaerobic aquifers and are known to facilitate the reduction of metals and radionuclides. Pure and mixed cultures of SRB were able to precipitate neptunium during utilization of pyruvate, lactate, and hydrogen as electron donors in the presence and absence of sulfate. The neptunium in the precipitate was identified as Np(IV) using X-ray absorption near edge spectroscopy (XANES) analysis. In mixed-culture studies, the addition of hydrogen to consortia grown by pyruvate fermentation stimulated neptunium reduction and precipitation. Experiments with pure cultures of Desulfovibrio vulgaris, growing by lactate fermentation in the absence of sulfate or by sulfate reduction, confirm that the organism is active in neptunium reduction and precipitation. Based on our results, the activity of SRB in the subsurface may have a significant, and potentially beneficial, impact on actinide mobility by reducing neptunium volubility.

  16. SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS

    SciTech Connect

    Oji, L; Bill Wilmarth, B; David Hobbs, D

    2008-05-30

    Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

  17. Complexation of Neptunium(V) with Fluoride at Elevated Temperatures

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin; Xia, Yuanxian; Friese, Judah I.

    2008-06-16

    Complexation of neptunium(V) with fluoride at elevated temperatures was studied by spectrophotometry and microcalorimetry. Two successive complexes, NpO{sub 2}F(aq) and NpO{sub 2}F{sub 2}{sup -}, were identified by spectrophotometry in the temperature range of 10-70 C. Thermodynamic parameters, including the equilibrium constants and enthalpy of complexation between Np(V) and fluoride at 10-70 C were determined. Results show that the complexation of Np(V) with fluoride is endothermic and that the complexation is enhanced by the increase in temperature - a two-fold increase in the stability constants of NpO{sub 2}F(aq) and more than five-fold increase in the stability constants of NpO{sub 2}F{sub 2}{sup -} as the temperature is increased from 10 to 70 C.

  18. Thermodynamics of neptunium(V) fluoride and sulfate at elevatedtemperatures

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin; Xia, Yuanxian; Friese, Judah I.

    2006-10-31

    Complexation of neptunium(V) with fluoride and sulfate at elevated temperatures was studied by microcalorimetry. Thermodynamic parameters, including the equilibrium constants and enthalpy of protonation of fluoride and sulfate, and the enthalpy of complexation between Np(V) and fluoride and sulfate at 25 - 70 C were determined. Results show that the complexation of Np(V) with fluoride and sulfate is endothermic and that the complexation is enhanced by the increase in temperature - a three-fold increase in the stability constants of NpO{sub 2}F(aq) and NpO{sub 2}SO{sub 4}{sup -} as the temperature is increased from 25 to 70 C.

  19. Geomicrobiological redox cycling of the transuranic element neptunium.

    PubMed

    Law, Gareth T W; Geissler, Andrea; Lloyd, Jonathan R; Livens, Francis R; Boothman, Christopher; Begg, James D C; Denecke, Melissa A; Rothe, Jörg; Dardenne, Kathy; Burke, Ian T; Charnock, John M; Morris, Katherine

    2010-12-01

    Microbial processes can affect the environmental behavior of redox sensitive radionuclides, and understanding these reactions is essential for the safe management of radioactive wastes. Neptunium, an alpha-emitting transuranic element, is of particular importance because of its long half-life, high radiotoxicity, and relatively high solubility as Np(V)O(2)(+) under oxic conditions. Here, we describe experiments to explore the biogeochemistry of Np where Np(V) was added to oxic sediment microcosms with indigenous microorganisms and anaerobically incubated. Enhanced Np removal to sediments occurred during microbially mediated metal reduction, and X-ray absorption spectroscopy showed this was due to reduction to poorly soluble Np(IV) on solids. In subsequent reoxidation experiments, sediment-associated Np(IV) was somewhat resistant to oxidative remobilization. These results demonstrate the influence of microbial processes on Np solubility and highlight the critical importance of radionuclide biogeochemistry in nuclear legacy management.

  20. Application of the underscreened Kondo lattice model to neptunium compounds

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; da Rosa Simoes, Acirete S.; Iglesias, J. R.; Lacroix, C.; Coqublin, B.

    2012-12-01

    The coexistence of Kondo effect and ferromagnetic order has been observed in many uranium and neptunium compounds such as UTe or Np2PdGa3. This coexistence can be described within the underscreened Anderson lattice model with two f-electrons and S = 1 spins on each site. After performing the Schrieffer-Wolff transformation on this model, we have obtained an effective Hamiltonian with a f-band term in addition to the Kondo interaction for S = 1 spins. The results indicate a coexistence of Kondo effect and ferromagnetic order, with different relative values of the Kondo TK and Curie TC temperatures. We emphasize here especially the case TK < TC where there is a Kondo behavior below TC and a clear decrease of the magnetization below TK. Such a behavior has been observed in the magnetization curves of NpNiSi2 at low temperatures.

  1. Nuclear forensics of a non-traditional sample: Neptunium

    DOE PAGES

    Doyle, Jamie L.; Schwartz, Daniel; Tandon, Lav

    2016-05-16

    Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. Here, the results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditionalmore » actinide materials in order to determine potential processing and point-of-origin.« less

  2. Nuclear forensics of a non-traditional sample: Neptunium

    SciTech Connect

    Doyle, Jamie L.; Schwartz, Daniel; Tandon, Lav

    2016-05-16

    Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. Here, the results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditional actinide materials in order to determine potential processing and point-of-origin.

  3. Development of a Charged Particle Microbeam for Targeted and Single Particle Subcellular Irradiation

    SciTech Connect

    Yanch, Jacquelyn C.

    2004-03-12

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube.

  4. Small punch tests on martensitic/ferritic steels F82H, T91 and Optimax-A irradiated in SINQ Target-3

    NASA Astrophysics Data System (ADS)

    Jia, X.; Dai, Y.

    2003-12-01

    Small punch (SP) tests were conducted in a temperature range from -190 to 80 °C on martensitic/ferritic steels F82H, T91 and Optimax-A irradiated in SINQ Target-3 up to 9.4 dpa in a irradiation temperature range of 90-275 °C. Results demonstrate: (a) the irradiation hardening deduced from SP tests is reasonably consistent with the results obtained by tensile tests; (b) with increasing irradiation dose, the SP yield load increases at all test temperatures, while the displacement at the maximum load and the total displacement at failure decrease; (c) the ductile-to-brittle transition temperature (DBTT SP) increases with increasing irradiation dose, and does so more quickly at irradiation doses above ˜6-7 dpa; in addition, the ΔDBTT SP increases linearly with helium content.

  5. Monitoring and managing of cyclotron beam distribution on the surface of irradiated targets

    NASA Astrophysics Data System (ADS)

    Kirsanov, B. N.; Obleukhov, A. B.; Razbash, A. A.

    2016-12-01

    A system for monitoring and managing of the proton-beam distribution on the surface of the targets in the cyclotrons of the Cyclotron Co. is presented in this report. Parameters of proton beams, designs of the target and target devices, used for isotope production, and the system of the managing of the beam distribution on the target are given. The control is fulfilled via monitoring of the temperature distributions using infrared radiation from the target surface. The need in such system for increasing of the isotope productivity and reducing of the likelihood of the target damage is substantiated.

  6. Comparison of Irradiation and Wolbachia Based Approaches for Sterile-Male Strategies Targeting Aedes albopictus

    PubMed Central

    Atyame, Célestine M.; Labbé, Pierrick; Lebon, Cyrille; Weill, Mylène; Moretti, Riccardo; Marini, Francesca; Gouagna, Louis Clément; Calvitti, Maurizio; Tortosa, Pablo

    2016-01-01

    The global expansion of Aedes albopictus together with the absence of vaccines for most of the arboviruses transmitted by this mosquito has stimulated the development of sterile-male strategies aiming at controlling disease transmission through the suppression of natural vector populations. In this context, two environmentally friendly control strategies, namely the Sterile Insect Technique (SIT) and the Wolbachia-based Incompatible Insect Technique (IIT) are currently being developed in several laboratories worldwide. So far however, there is a lack of comparative assessment of these strategies under the same controlled conditions. Here, we compared the mating capacities, i.e. insemination capacity, sterilization capacity and mating competitiveness of irradiated (35 Gy) and incompatible Ae. albopictus males at different ages and ratios under laboratory controlled conditions. Our data show that there was no significant difference in insemination capacity of irradiated and incompatible males, both male types showing lower capacities than untreated males at 1 day but recovering full capacity within 5 days following emergence. Regarding mating competitiveness trials, a global observed trend is that incompatible males tend to induce a lower hatching rate than irradiated males in cage controlled confrontations. More specifically, incompatible males were found more competitive than irradiated males in 5:1 ratio regardless of age, while irradiated males were only found more competitive than incompatible males in the 1:1 ratio at 10 days old. Overall, under the tested conditions, IIT seemed to be slightly more effective than SIT. However, considering that a single strategy will likely not be adapted to all environments, our data stimulates the need for comparative assessments of distinct strategies in up-scaled conditions in order to identify the most suitable and safe sterilizing technology to be implemented in a specific environmental setting and to identify the

  7. Comparison of Irradiation and Wolbachia Based Approaches for Sterile-Male Strategies Targeting Aedes albopictus.

    PubMed

    Atyame, Célestine M; Labbé, Pierrick; Lebon, Cyrille; Weill, Mylène; Moretti, Riccardo; Marini, Francesca; Gouagna, Louis Clément; Calvitti, Maurizio; Tortosa, Pablo

    2016-01-01

    The global expansion of Aedes albopictus together with the absence of vaccines for most of the arboviruses transmitted by this mosquito has stimulated the development of sterile-male strategies aiming at controlling disease transmission through the suppression of natural vector populations. In this context, two environmentally friendly control strategies, namely the Sterile Insect Technique (SIT) and the Wolbachia-based Incompatible Insect Technique (IIT) are currently being developed in several laboratories worldwide. So far however, there is a lack of comparative assessment of these strategies under the same controlled conditions. Here, we compared the mating capacities, i.e. insemination capacity, sterilization capacity and mating competitiveness of irradiated (35 Gy) and incompatible Ae. albopictus males at different ages and ratios under laboratory controlled conditions. Our data show that there was no significant difference in insemination capacity of irradiated and incompatible males, both male types showing lower capacities than untreated males at 1 day but recovering full capacity within 5 days following emergence. Regarding mating competitiveness trials, a global observed trend is that incompatible males tend to induce a lower hatching rate than irradiated males in cage controlled confrontations. More specifically, incompatible males were found more competitive than irradiated males in 5:1 ratio regardless of age, while irradiated males were only found more competitive than incompatible males in the 1:1 ratio at 10 days old. Overall, under the tested conditions, IIT seemed to be slightly more effective than SIT. However, considering that a single strategy will likely not be adapted to all environments, our data stimulates the need for comparative assessments of distinct strategies in up-scaled conditions in order to identify the most suitable and safe sterilizing technology to be implemented in a specific environmental setting and to identify the

  8. Deuteron irradiation of W and WO3 for production of high specific activity 186Re: Challenges associated with thick target preparation

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.; ...

    2016-06-28

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n)186Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were mademore » on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less

  9. Deuteron irradiation of W and WO3 for production of high specific activity 186Re: Challenges associated with thick target preparation

    SciTech Connect

    Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.; Smith, Bennett E.; Dorman, Eric F.; Emery, Robert C.; Pauzauskie, Peter J.; Fassbender, Michael E.; Cutler, Cathy S.; Ketring, Alan R.; Jurisson, Silvia S.; Wilbur, D. Scott

    2016-06-28

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n)186Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.

  10. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  11. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.

    PubMed

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-02-07

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  12. Arcing and rf signal generation during target irradiation by a high-energy, pulsed neutral particle beam

    SciTech Connect

    Robiscoe, R.T.

    1988-02-01

    We present a theory describing the dynamics of arc discharges in bulk dielectric materials on board space-based vehicles. Such ''punch-through'' arcs can occur in target satellites irradiated by high-energy (250 MeV), pulsed (100 mA x 10 ms) neutral particle beams. We treat the arc as a capacitively limited avalanche current in the target dielectric material, and we find expressions for the arc duration, charge transport, currents, and discharge energy. These quantities are adjusted to be consistent with known scaling laws for the area of charge depleted by the arc. After a brief account of the statistical distribution of voltages at which the arc starts and stops, we calculate the signal strength and frequency spectrum of the electromagnetic radiation broadcast by the arc. We find that arcs from thick ()similarreverse arrowto)1 cm) targets can generate rf signals detectable up to 1000 km from the target, bu a radio receiver operating at frequency 80 MHz, bandwidth 100 kHz, and detection threshold -105 dBm. These thick-target arc signals are 10 to 20 dB above ambient noise at the receiver, and they provide target hit assessment if the signal spectrum can be sampled at several frequencies in the nominal range 30-200 MHz. Thin-target ()similarreverse arrowto)1 mm) arc signals are much weaker, but when they are detecable in conjunction with thick-target signals, target discrimination is possible by comparing the signal frequency spectra. 24 refs., 12 figs.

  13. Three-dimensional thermal response numerical simulation of laser irradiating simulative warhead target

    NASA Astrophysics Data System (ADS)

    Chen, Minsun; Jiang, Houman

    2015-05-01

    The thermal response of a cylindrical simulative warhead consisting of the steel casing and the TNT explosive irradiated by laser is simulated, basing on the smoothed particle hydrodynamics method. Preliminary computational simulation results show that, when the power density of 500W/cm2 continuous laser irradiation on a sealed explosive device consisting of the type 304 steel casing with thickness of 5mm and TNT explosive, compared with no airflow, the speed of 200m/s tangential airflow can reduce the thermal initiation time of 0.6s. In the case of incident laser power density is high, the convection cooling effect of tangential airflow can be neglected. The oxidation of airflow can significantly shorten the thermal initiation time of internal explosive.

  14. Neptunium Solubility in the Near-Field Environment of A Proposed Yucca Mountain Repository

    SciTech Connect

    D.C. Sassani

    2004-05-14

    For representing the source-term of a proposed repository at Yucca Mountain, NV, total system performance assessment models evaluate the disequilibrium degradation of the waste forms to capture a bounding rate for radionuclide source-term availability and use solubility constraints that are more representative of longer-term, equilibrium processes to limit radionuclide mass transport from the source-term. These solubility limits capture precipitation processes occurring either as the waste forms alter, or in the near-field environment as chemical conditions evolve. A number of alternative models for solubility controls on dissolved neptunium concentrations have been evaluated. These include idealized models based on precipitation of neptunium as separate oxide minerals and more complex considerations of trace amounts of neptunium being incorporated into the secondary uranyl phases from waste form alteration. Thermodynamic models for neptunium under oxidizing conditions indicate that tetravalent neptunium (NpO{sub 2}) solids are more stable relative to pentavalent (Np{sub 2}O{sub 5}) phases, and thereby set lower dissolved concentrations of neptunyl species. Data on solids and solutions from slow flow through (dripping) tests on spent fuel grains indicate that neptunium is tetravalent in the spent fuel and that over {approx}9 years the neptunium concentrations are near to or below calculated NpO{sub 2} solubility. The possibility of kinetic rate limitations to NpO{sub 2} precipitation has led to temperature-dependent studies of NpO{sub 2} precipitation kinetics and solubility to reduce uncertainties and confirm application of the model.

  15. Metabolism and gastrointestinal absorption of neptunium and protactinium in adult baboons

    SciTech Connect

    Ralston, L.G.; Cohen, N.; Bhattacharyya, M.H.; Larsen, R.P.; Ayres, L.; Oldham, R.D.; Moretti, E.S.

    1985-01-01

    The metabolism of neptunium and protactinium was studied in adult female baboons following intravenous injection and intragastric intubation. Immediately following intravenous injection (10/sup -1/ to 10/sup -10/ mg Np per kg body wt), neptunium cleared rapidly from blood, deposited primarily in the skeleton (54 +- 5%) and liver (3 +- 0.2%), and was excreted predominantly via urine (40 +- 3%). For the first year post injection, neptunium was retained with a biological half-time of approx.100 days in liver and 1.5 +- 0.2 yr in bone. In comparison, injected protactinium (10/sup -9/ mg/kg) was retained in blood in higher concentrations and was initially eliminated in urine to a lesser extent (6 +- 3%). In vivo measurements indicated that protactinium was retained in bone (65 +- 0.3%) with a half-time of 3.5 +- 0.6 yr. Differences in the physicochemical states of the neptunium or protactinium solutions injected did not alter the metabolic behavior of these nuclides. The gastrointestinal absorption value for neptunium in two fasted baboons, sacrificed at 1 day post administration, was determined to be 0.92 +- 0.04%. Of the total amount of neptunium absorbed, 52 +- 3% was retained in bone, 6 +- 2% was in liver, and 42 +- 0.1% was excreted in urine. A method was developed to estimate GI absorption values for both nuclides in baboons which were not sacrificed. Absorption values calculated by this method for neptunium and protactinium in fasted baboons were 1.8 +- 0.8% and 0.65 +- 0.01%, respectively. Values for fed animals were 1 to 2 orders of magnitude less than those for fasted animals. 14 refs., 3 figs., 4 tabs. (DT)

  16. High e+/e– ratio dense pair creation with 1021W.cm–2 laser irradiating solid targets

    DOE PAGES

    Liang, E.; Clarke, T.; Henderson, A.; ...

    2015-09-14

    In this study, we report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 1021 W.cm–2 and pulse durations as short as ~130 fs. Positron to electron (e+/e–) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e– ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×1010 with emerging pair density reaching ~1015/cm3 so that the pair skin depth becomes < pair jet transverse size. These results represent major milestonesmore » towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e– approaching 100% and pair skin depth << pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.« less

  17. High e+/e− Ratio Dense Pair Creation with 1021W.cm−2 Laser Irradiating Solid Targets

    PubMed Central

    Liang, E.; Clarke, T.; Henderson, A.; Fu, W.; Lo, W.; Taylor, D.; Chaguine, P.; Zhou, S.; Hua, Y.; Cen, X.; Wang, X.; Kao, J.; Hasson, H.; Dyer, G.; Serratto, K.; Riley, N.; Donovan, M.; Ditmire, T.

    2015-01-01

    We report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 1021 W.cm−2 and pulse durations as short as ~130 fs. Positron to electron (e+/e−) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e− ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×1010 with emerging pair density reaching ~1015/cm3 so that the pair skin depth becomes < pair jet transverse size. These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e− approaching 100% and pair skin depth ≪ pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics. PMID:26364764

  18. Measurement and modelling of radionuclide production in thick spherical targets irradiated isotropically with 1600 MeV protons

    SciTech Connect

    Michel, R.; Lange, H.J.; Leya, I.; Luepke, M.; Herpers, U.; Meltzow, B.; Roesel, R.; Filges, D.; Cloth, P.; Dragovitsch, P.

    1994-12-31

    Two thick spherical targets made of gabbro and of steel with radii of 25 and 10 cm, respectively, were isotropically irradiated with 1.6 GeV protons at the Saturne accelerator at Laboratoire National Saturne/Saclay in order to simulate the interactions of galactic cosmic ray (GCR) protons with stony and iron meteoroids. The artificial meteoroids contained large numbers of individual small targets of up to 27 elements, in which the depth-dependent production of residual nuclides was measured by {gamma}-, accelerator and conventional mass spectrometry. Theoretical production depth profiles were derived by folding depth-dependent spectra of primary and secondary particles calculated by the HERMES code system with experimental and theoretical production rates shortcomings of the cross section data base can be distinguished and medium-energy neutron cross sections can be improved.

  19. Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse

    SciTech Connect

    Wang, H. Y.; Yan, X. Q.; Chen, J. E.; He, X. T.; Ma, W. J.; Bin, J. H.; Schreiber, J.; Tajima, T.; Habs, D.

    2013-01-15

    We report an efficient and stable scheme to generate {approx}200 MeV proton bunch by irradiating a two-layer targets (near-critical density layer+solid density layer with heavy ions and protons) with a linearly polarized Gaussian pulse at intensity of 6.0 Multiplication-Sign 10{sup 20} W/cm{sup 2}. Due to self-focusing of laser and directly accelerated electrons in the near-critical density layer, the proton energy is enhanced by a factor of 3 compared to single-layer solid targets. The energy spread of proton is also remarkably reduced. Such scheme is attractive for applications relevant to tumor therapy.

  20. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    SciTech Connect

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-30

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo{sup 99} used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 10{sup 6} cm{sup −1}) in a tube, their delta

  1. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device

    SciTech Connect

    Zarghami, Niloufar Jensen, Michael D.; Talluri, Srikanth; Dick, Frederick A.; Foster, Paula J.; Chambers, Ann F.; Wong, Eugene

    2015-11-15

    Purpose: Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. Methods: A mouse head holder was designed for a microCT couch using CAD software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Results: Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14 ± 0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2° ± 1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. Conclusions: The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.

  2. Reevaluation of Neptunium-Nitric Acid Radiation Chemistry by Multiscale Modeling.

    PubMed

    Horne, G P; Grimes, T S; Mincher, B J; Mezyk, S P

    2016-12-15

    Multiscale modeling has been used to quantitatively reevaluate the radiation chemistry of neptunium in a range of aerated nitric acid solutions (0.1-6.0 mol dm(-3)). Exact calculation of initial radiolytic yields accounting for changes in radiation track chemistry was found to be crucial for reproducing experimental data. The γ irradiation induces changes in the Np(VI)/Np(V) oxidation-state distribution, predominantly driven by reactions involving HNO2, H2O2, NO2(•), and NO3(•) from the radiolysis of aqueous nitric acid. Oxidation of Np(V) by NO3(•) (k = 8.1 × 10(8) dm(3) mol(-1) s(-1)) provides the initial increase in Np(VI) concentration, while also delaying net reduction of Np(VI) by consuming HNO2. Reduction of Np(VI) is dominated by thermal reactions with HNO2 (k = 0.7-73 dm(3) mol(-1) s(-1)) and H2O2 (k = 1.9 dm(3) mol(-1) s(-1)). A steady state is eventually established once the concentration of Np(V) is sufficiently high to be oxidized by NO2(•) (k = 2.4 × 10(2)-3.1 × 10(4) dm(3) mol(-1) s(-1)). An additional thermal oxidation reaction between Np(V) and HNO3 (k = 2.0 × 10(3) dm(3) mol(-1) s(-1)) is required for nitric acid concentrations >4.0 mol dm(-3). For 0.1 mol dm(-3) HNO3, the rate of Np(VI) reduction is in excess of that which can be accounted for by radiolytic product mass balance, suggesting the existence of a catalytic-acid-dependent reduction process.

  3. The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium

    NASA Astrophysics Data System (ADS)

    Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.

    2013-06-01

    The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering

  4. Batch sorption and spectroscopic speciation studies of neptunium uptake by montmorillonite and corundum

    NASA Astrophysics Data System (ADS)

    Elo, O.; Müller, K.; Ikeda-Ohno, A.; Bok, F.; Scheinost, A. C.; Hölttä, P.; Huittinen, N.

    2017-02-01

    Detailed information on neptunium(V) speciation on montmorillonite and corundum surfaces was obtained by batch sorption and desorption studies combined with surface complexation modelling using the Diffuse Double-Layer (DDL) model, in situ time-resolved Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) and X-ray absorption (XAS) spectroscopies. The pH-dependent batch sorption studies and the spectroscopic investigations were conducted under carbonate-free conditions in 10 mM NaClO4 or 10 mM NaCl. Solid concentrations of 0.5 g/l and 5 g/l were used depending on the experiment. The neptunium(V) desorption from the two mineral surfaces was investigated at pH values ranging from 8 to 10, using the replenishment technique. Neptunium(V) was found to desorb from the mineral surface, however, the extent of desorption was dependent on the solution pH. The desorption of neptunium(V) was confirmed in the ATR FT-IR spectroscopic studies at pH 10, where all of the identified inner-sphere complexed neptunium(V), characterized by a vibrational band at 790 cm-1, was desorbed from both mineral surfaces upon flushing the mineral films with a blank electrolyte solution. In XAS investigations of neptunium(V) uptake by corundum, the obtained structural parameters confirm the formation of an inner-sphere complex adsorbed on the surface in a bidentate fashion. As the inner-sphere complexes found in the IR-studies are characterized by identical sorption bands on both corundum and montmorillonite, we tentatively assigned the neptunium(V) inner-sphere complex on montmorillonite to the same bidentate complex found on corundum in the XAS investigations. Finally, the obtained batch sorption and spectroscopic results were modelled with surface complexation modelling to explain the neptunium(V) speciation on montmorillonite over the entire investigated pH range. The modelling results show that cation exchange in the interlayer space as well as two pH-dependent surface complexes

  5. Effect of Precipitation Conditions on the Specific Surface Area of Neptunium Oxide

    SciTech Connect

    HILL, BENJAMINC.

    2004-06-01

    Neptunium oxalate was precipitated under nominal and bounding HB-Line flowsheet conditions. The nominal case represents expected normal HB-Line operation. The bounding case represents process flowsheet extremes that could occur which are anticipated to decrease particle size and increase surface area. The neptunium oxalate produced under bounding conditions was used to validate the effectiveness of HB-Line calcination conditions. The maximum specific surface area of the neptunium oxide (NpO2) used in gas generation testing was 5.34 m2/g. Experiments were conducted to verify that even under bounding precipitation conditions the SSA of NpO2 produced would remain within the range evaluated during gas generation testing. The neptunium oxalate from nominal and bounding precipitation conditions was calcined at 600 degrees Celsius and 625 degrees Celsius, respectively, to form NpO2. Samples from each batch of neptunium oxalate were calcined for one, two, or four hours. Results indicate that the SSA of NpO2 continues to decrease between one and four hours. After two hours of calcination at 625 degrees Celsius, the SSA of NpO2 from the bounding case meets the surface area requirements for limiting moisture uptake.

  6. Results of four one-day electron-accelerator irradiations of enriched Mo-100 targets for the production of Mo-99

    SciTech Connect

    Chemerisov, S.; Bailey, J.; Heltemes, T.; Jonah, C.; Gromov, R.; Makarashvili, V.; Tkac, P.; Rotsch, D.; Virgo, M.; Vandegrift, G. F.

    2016-10-01

    A series of four one-day irradiations was conducted with 100Mo-enriched disk targets. After irradiation, the enriched disks were removed from the target and dissolved. The resulting solution was processed using a NorthStar RadioGenix 99mTc generator either at Argonne National Laboratory or at the NorthStar Medical Radioisotopes facility. Runs on the RadioGenix system produced inconsistent analytical results for 99mTc in the Tc/Mo solution. These inconsistencies were attributed to the impurities in the solution or improper column packing. During the irradiations, the performance of the optic transitional radiation (OTR) and infrared cameras was tested in high radiation field. The OTR cameras survived all irradiations, while the IR cameras failed every time. The addition of X-ray and neutron shielding improved camera survivability and decreased the number of upsets.

  7. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells.

    PubMed

    Liu, Yu; Kobayashi, Alisa; Maeda, Takeshi; Fu, Qibin; Oikawa, Masakazu; Yang, Gen; Konishi, Teruaki; Uchihori, Yukio; Hei, Tom K; Wang, Yugang

    2015-03-01

    Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy.

  8. Measurement of Volatile Radionuclides Production and Release Yields followed by a Post-Irradiation Analysis of a Pb/Bi Filled Ta Target at ISOLDE

    NASA Astrophysics Data System (ADS)

    Zanini, L.; Köster, U.; David, J. C.; Tall, Y.; Andersson, M.; Berg, K.; Cormon, S.; Fallot, M.; Foucher, Y.; Frånberg, H.; Gröschel, F.; Guertin, A.; Kirchner, T.; Leray, S.; Manfrin, E.; Noah, E.; Ravn, H.; Stora, T.; Thiollière, N.; Wohlmuther, M.

    2014-05-01

    A crucial requirement in the development of liquid-metal spallation neutron target is knowledge of the composition and amount of volatile radionuclides that are released from the target during operation. It is also important to know the total amount produced, which could be released if there was an accident. One type is the lead-bismuth eutectic (LBE) target where different radionuclides can be produced following interaction with a high-energy proton beam, notably noble gases (Ar, Kr, Xe isotopes) and other relative volatile isotopes such as Hg and At. The results of an irradiation experiment performed at ISOLDE on a LBE target are compared with predictions from the MCNPX code using the latest developments on the Liège Intranuclear Cascade model (INCL4.6) and the CEM03 model. The calculations are able to reproduce the mass distribution of the radioisotopes produced, including the At production, where there is a significant contribution from secondary reactions. Subsequently, a post-irradiation examination of the irradiated target was performed. Investigations of both the tantalum target structure, in particular the beam window, and the lead-bismuth eutectic were performed using several experimental techniques. No sign of severe irradiation damage, previously observed in other ISOLDE targets, was found.

  9. Inter- and Intrafraction Target Motion in Highly Focused Single Vocal Cord Irradiation of T1a Larynx Cancer Patients

    SciTech Connect

    Kwa, Stefan L.S. Al-Mamgani, Abrahim; Osman, Sarah O.S.; Gangsaas, Anne; Levendag, Peter C.; Heijmen, Ben J.M.

    2015-09-01

    Purpose: The purpose of this study was to verify clinical target volume–planning target volume (CTV-PTV) margins in single vocal cord irradiation (SVCI) of T1a larynx tumors and characterize inter- and intrafraction target motion. Methods and Materials: For 42 patients, a single vocal cord was irradiated using intensity modulated radiation therapy at a total dose of 58.1 Gy (16 fractions × 3.63 Gy). A daily cone beam computed tomography (CBCT) scan was performed to online correct the setup of the thyroid cartilage after patient positioning with in-room lasers (interfraction motion correction). To monitor intrafraction motion, CBCT scans were also acquired just after patient repositioning and after dose delivery. A mixed online-offline setup correction protocol (“O2 protocol”) was designed to compensate for both inter- and intrafraction motion. Results: Observed interfraction, systematic (Σ), and random (σ) setup errors in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions were 0.9, 2.0, and 1.1 mm and 1.0, 1.6, and 1.0 mm, respectively. After correction of these errors, the following intrafraction movements derived from the CBCT acquired after dose delivery were: Σ = 0.4, 1.3, and 0.7 mm, and σ = 0.8, 1.4, and 0.8 mm. More than half of the patients showed a systematic non-zero intrafraction shift in target position, (ie, the mean intrafraction displacement over the treatment fractions was statistically significantly different from zero; P<.05). With the applied CTV-PTV margins (for most patients 3, 5, and 3 mm in LR, CC, and AP directions, respectively), the minimum CTV dose, estimated from the target displacements observed in the last CBCT, was at least 94% of the prescribed dose for all patients and more than 98% for most patients (37 of 42). The proposed O2 protocol could effectively reduce the systematic intrafraction errors observed after dose delivery to almost zero (Σ = 0.1, 0.2, 0.2 mm). Conclusions: With

  10. A method to achieve rapid localised deep heating in a laser irradiated solid density target

    NASA Astrophysics Data System (ADS)

    Schmitz, H.; Robinson, A. P. L.

    2016-09-01

    Rapid heating of small buried regions by laser generated fast electrons may be useful for applications such as extreme ultraviolet (XUV) radiation sources or as drivers for shock experiments. In non-structured targets, the heating profile possesses a global maximum near the front surface. This paper presents a new target design that uses resistive guiding to concentrate the fast electron current density at a finite depth inside the target. The choice of geometry uses principles of non-imaging optics. A global temperature maximum at depths up to 50 μ m into the target is achieved. Although theoretical calculations suggest that small source sizes should perform better than large ones, simulations show that a large angular spread at high intensities results in significant losses of the fast electrons to the sides. A systematic parameter scan suggests an optimal laser intensity. A ratio of 1.6 is demonstrated between the maximum ion temperature and the ion temperature at the front surface.

  11. The Role of Non-Targeted Effects as Mediators in the Biological Effects of Proton Irradiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Dicello, John F.

    2006-01-01

    In recent years, the hypothesis that non-DNA targets are primary initiators and mediators of the biological effects of ionizing radiation, such as proton beams and heavy ions, has gained much interest. These phenomena have been denoted as non-targeted or bystander effects to distinguish them from the more traditionally studied model that focuses on direct damage to DNA causing chromosomal rearrangements and mutations as causative of most biological endpoints such as cell killing, tissue damage, and cancer. We review cellular and extra-cellular structures and signal transduction pathways that have been implemented in these recent studies. Non-targeted effects of interest include oxidative damage to the cytoplasm and mitochondria, disruption of the extra-cellular matrix, and modification of cytokine signaling including TGF-beta, and gap junction communication. We present an introduction to these targets and pathways, and contrast there role with DNA damage pathways.

  12. Uniform irradiation of adjustable target spots in high-power laser driver

    SciTech Connect

    Jiang Xiujuan; Li Jinghui; Li Huagang; Li Yang; Lin Zunqi

    2011-09-20

    For smoothing and shaping the on-target laser patterns flexibly in high-power laser drivers, a scheme has been developed that includes a zoom lens array and two-dimensional smoothing by spectral dispersion (SSD). The size of the target pattern can be controlled handily by adjusting the focal length of the zoom lens array, while the profile of the pattern can be shaped by fine tuning the distance between the target and the focal plane of the principal focusing lens. High-frequency stripes inside the pattern caused by beamlet interference are wiped off by spectral dispersion. Detailed simulations indicate that SSD works somewhat differently for spots of different sizes. For small spots, SSD mainly smooths the intensity modulation of low-to-middle spatial frequency, while for large spots, SSD sweeps the fine speckle structure to reduce nonuniformity of middle-to-high frequency. Spatial spectra of the target patterns are given and their uniformity is evaluated.

  13. Chemical isolation of .sup.82 Sr from proton-irradiated Mo targets

    DOEpatents

    Grant, Patrick M.; Kahn, Milton; O'Brien, Jr., Harold A.

    1976-01-01

    Spallation reactions are induced in Mo targets with 200-800 MeV protons to produce microcurie to millicurie amounts of a variety of radionuclides. A six-step radiochemical procedure, incorporating precipitation, solvent extractions, and ion exchange techniques, has been developed for the separation and purification of Sr radioactivities from other spallation products and the bulk target material. Radiostrontium can be quantitatively recovered in a sufficiently decontaminated state for use in biomedical generator development.

  14. Neutron yield from a thick 13C target irradiated by 90 MeV protons

    NASA Astrophysics Data System (ADS)

    Alyakrinskiy, O.; Andrighetto, A.; Barbui, M.; Brandenburg, S.; Cinausero, M.; Dalena, B.; Dendooven, P.; Fioretto, E.; Lhersonneau, G.; Lyapin, W.; Prete, G.; Simonetti, G.; Stroe, L.; Tecchio, L. B.; Trzaska, W. H.

    2005-08-01

    In the context of the design of an intense source of low and intermediate energy neutrons, the angular and energy distributions of neutrons produced in the interaction of 90 MeV protons in a 13C target, in which the protons are stopped, have been measured by time-of-flight and activation techniques. As compared to 12C the yield is less than a factor two higher, while it is somewhat less than for a 9Be target.

  15. Efficient plasma production by intense laser irradiation of low density foam targets

    SciTech Connect

    Tripathi, S.; Chaurasia, S.; Munda, D. S.; Gupta, N. K.; Dhareshwar, L. J.; Nataliya, B.

    2010-12-01

    Experimental investigations conducted on low density structured materials, such as foams have been presented in this paper. These low density foam targets having a density greater than the critical density of the laser produced plasma ({rho}{sub cr{approx_equal}}3 mg{center_dot}cm{sup -3} at laser wavelength 1.06 {mu}m) have been envisaged to have enhanced laser absorption. Experiments were done with an indigenously developed, focused 15 Joule/500 ps Nd: Glass laser at {lambda} = 1064 nm. The focused laser intensity on the target was in the range of I{approx_equal}10{sup 13}-2x10{sup 14} W/cm{sup 2}. Laser absorption was determined by energy balance experiments. Laser energy absorption was observed to be higher than 85%. In another set of experiments, low density carbon foam targets of density 150 mg/cc were compared with the solid carbon targets. The x-ray emission in the soft x-ray region was observed to increase in foam target by about 1.8 times and 2.3 times in carbon foam and Pt doped foam as compared to solid carbon. Further, investigations were also carried out to measure the energy transmitted through the sub-critical density TAC foam targets having a density less than 3 mg/cc. Such targets have been proposed to be used for smoothening of intensity ripples in a high power laser beam profile. Transmission exceeding 1.87% has been observed and consistent with results from other laboratories.

  16. Speciation of neptunium during sorption and diffusion in natural clay

    NASA Astrophysics Data System (ADS)

    Reich, T.; Amayri, S.; Bӧrner, P. J. B.; Drebert, J.; Frӧhlich, D. R.; Grolimund, D.; Kaplan, U.

    2016-05-01

    In argillaceous rocks, which are considered as a potential host rock for nuclear waste repositories, sorption and diffusion processes govern the migration behaviour of actinides like neptunium. For the safety analysis of such a repository, a molecular-level understanding of the transport and retardation phenomena of radioactive contaminants in the host rock is mandatory. The speciation of Np during sorption and diffusion in Opalinus Clay was studied at near neutral pH using a combination of spatially resolved synchrotron radiation techniques. During the sorption and diffusion experiments, the interaction of 8 μM Np(V) solutions with the clay lead to the formation of spots at the clay-water interface with increased Np concentrations as determined by μ-XRF. Several of these spots are correlated with areas of increased Fe concentration. Np L3-edge μ-XANES spectra revealed that up to 85% of the initial Np(V) was reduced to Np(IV). Pyrite could be identified by μ-XRD as a redox-active mineral phase responsible for the formation of Np(IV). The analysis of the diffusion profile within the clay matrix after an in-diffusion experiment for two months showed that Np(V) is progressively reduced with diffusion distance, i.e. Np(IV) amounted to ≈12% and ≈26% at 30 μm and 525 μm, respectively.

  17. Report on neptunium speciation by NMR and optical spectroscopies

    SciTech Connect

    Tait, C.D.; Palmer, P.D.; Ekberg, S.A.; Clark, D.L.

    1995-11-01

    Hydrolysis and carbonate complexation reactions were examined for NpO{sub 2}{sup 2+} and NpO{sub 2}{sup +} ions by a variety of techniques including potentiometric titration, UV-Vis-NIR and NMR spectroscopy. The equilibrium constant for the reaction 3NpO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} + 3H{sup +} {rightleftharpoons} (NpO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} + 3HCO{sub 3}{sup {minus}} was determined to be logK = 19.7 ({plus_minus} 0.8) (I = 2.5 m). {sup 17}O NMR spectroscopy of NpO{sub 2}{sup n+} ions (n = 1,2) reveals a readily observable {sup 17}O resonance for n = 2, but not for n = 1. The first hydrolysis constant for NpO{sub 2}{sup +} was studied as a function of temperature, and the functional form for the temperature-dependent equilibrium constant for the reaction written as NpO{sub 2}{sup +} + H{sub 2}O {rightleftharpoons} NpO{sub 2}OH + H{sup +} was found to be logK = 2.28 {minus} 3780/T, where T is in {degree}K. Finally, the temperature dependence of neptunium(V) carbonate complexation constants was studied. For the first carbonate complexation constant, the appropriate functional form was found to be log{beta}{sub 01} = 1.47 + 786/T.

  18. Gastrointestinal absorption of protactinium, uranium, and neptunium in the hamster

    SciTech Connect

    Harrison, J.D.; Stather, J.W.

    1981-10-01

    The gastrointestinal absorption of protactinium, uranium, and neptunium in adult hamsters was measured. The actinide preparations were administered intragastrically and animals were kept 2 to 4 weeks prior to the radiochemical analysis of selected tissue samples. Total absorption was estimated using data for the distribution of the actinides after intravenous injection in soluble form. The values obtained were 3.9 and 0.22% for /sup 231/Pa citrate and /sup 231/Pa fluoride, respectively; 0.77 and 0.11% for /sup 233/U (uranyl) nitrate and /sup 233/U dioxide, respectively; and 0.06 and 0.05% for /sup 237/Np citrate and /sup 237/Np nitrate, respectively. The absorption factors recommended by the International Commission on Radiological Protection for use in calculating annual limits on intake for occupationally exposed workers are: 0.1% for all compounds of Pa; 5 and 0.2% for soluble hexavalent and relatively insoluble tetravalent forms of U, respectively; and 1.0% for all chemical forms of Np. The experimental basis for these values is discussed.

  19. Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses

    SciTech Connect

    Cai Hongbo; Zhu Shaoping; Wu Sizhong; Chen Mo; Zhou Cangtao; He, X. T.; Yu Wei; Nagatomo, Hideo

    2011-02-15

    The efficient magnetic collimation of fast electron flow transporting in overdense plasmas is investigated with two-dimensional collisional particle-in-cell numerical simulations. It is found that the specially engineered targets exhibiting either high-resistivity-core-low-resistivity-cladding structure or low-density-core-high-density-cladding structure can collimate fast electrons. Two main mechanisms to generate collimating magnetic fields are found. In high-resistivity-core-low-resistivity-cladding structure targets, the magnetic field at the interfaces is generated by the gradients of the resistivity and fast electron current, while in low-density-core-high-density-cladding structure targets, the magnetic field is generated by the rapid changing of the flow velocity of the background electrons in transverse direction (perpendicular to the flow velocity) caused by the density jump. The dependences of the maximal magnetic field on the incident laser intensity and plasma density, which are studied by numerical simulations, are supported by our analytical calculations.

  20. Prediction of production of 22Na in a gas-cell target irradiated by protons using Monte Carlo tracking

    NASA Astrophysics Data System (ADS)

    Eslami, M.; Kakavand, T.; Mirzaii, M.; Rajabifar, S.

    2015-01-01

    The 22Ne(p,n)22Na is an optimal reaction for the cyclotron production of 22Na. This work tends to monitor the proton induced production of 22Na in a gas-cell target, containing natural and enriched neon gas, using Monte Carlo method. The excitation functions of reactions are calculated by both TALYS-1.6 and ALICE/ASH codes and then the optimum energy range of projectile for the high yield production is selected. A free gaseous environment of neon at a particular pressure and temperature is prearranged and the proton beam is transported within it using Monte Carlo codes MCNPX and SRIM. The beam monitoring performed by each of these codes indicates that the gas-cell has to be designed as conical frustum to reach desired interactions. The MCNPX is also employed to calculate the energy distribution of proton in the designed target and estimation of the residual nuclei during irradiation. The production yield of 22Na in 22Ne(p,n)22Na and natNe(p,x)22Na reactions are estimated and it shows a good agreement with the experimental results. The results demonstrate that Monte Carlo makes available a beneficial manner to design and optimize the gas targets as well as calibration of detectors, which can be used for the radionuclide production purposes.

  1. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.

  2. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Renner, O.; Šmíd, M.; Batani, D.; Antonelli, L.

    2016-07-01

    In a series of experiments performed with laser-irradiated planar targets at the PALS laser facility, the generation of suprathermal electrons has been studied at conditions relevant for the development of a shock ignition approach to inertial confinement fusion. A simultaneous application of high-collection-efficiency K-shell imaging with high resolution x-ray spectroscopy offers a novel approach to hot electron diagnosis at non-coated or moderately coated, medium-atomic-number targets, where the contribution of suprathermal-electron-generated, frequency-shifted Kα emission from highly ionized atoms cannot be neglected. Based on experimental data provided by these combined techniques and their interpretation via collisional-radiative atomic codes and Monte Carlo modeling of hot electron energy deposition in heated Cu targets, the fraction of the energy converted to hot electrons at laser intensities  ≈1016 W cm-2 was measured to be at the level of 0.1-0.8%. The higher values of conversion efficiency found for frequency tripled radiation support a theoretical conjecture of enhanced laser energy absorption by a resonance mechanism and its transport to a flow of fast electrons.

  3. In-target electron thermalization by the Weibel instability during intense irradiation of a thin aluminum foil

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Ruyer, C.; Albertazzi, B.; Lancia, L.; Dervieux, V.; Antici, P.; Bocker, J.; Chen, S. N.; Nakatsutsumi, M.; Romagnani, L.; Shepherd, R.; Swantusch, M.; Borghesi, M.; Willi, O.; Pepin, H.; Grech, M.; Riconda, C.; Gremillet, L.

    2015-11-01

    Proton-radiography of the electromagnetic fields developing after irradiation of a 3 μm-thick Al foil by a high-intensity laser (5 ×1019 W.cm-2, 700fs, 8 μm focal spot) was performed at the Titan facility. The obtained radiographs evidence filamentary structures which develop inside the dense target, 300 μ m away from the focal spot, a few picoseconds after the laser drive. We will demonstrate that the radiographs' structures are due to magnetic fields triggered by the so-called Weibel instability, inside the dense target. For this purpose, large scale particle-in-cell simulations of hot electrons thermalization in a dense, cold and collisional target have been performed. They demonstrate the ability of the laser-heated electrons to sustain a strong temperature anisotropy during their relaxation in the thin foil. This hot electron anisotropy results in a Weibel instability, thus triggering magnetic fluctuations of spectrum consistent with the experiment over 10 picoseconds.

  4. Density profile steepening due to self-generated magnetic fields in plasmas produced by laser irradiation of spherical targets

    SciTech Connect

    Vyas, P.; Srivastava, M.P.

    1995-07-01

    The density variation of plasmas produced by irradiation with laser beams on spherical targets has been studied in the steady state. This study used an adiabatic plasma model with self-generated magnetic fields included in a phenomenological manner. The density variation with a radial coordinate is found to have a steep rise through the critical density, which reaches a plateau in the overdense region, then a density minimum and finally, a rise. This variation has been compared with experimentally observed values in earlier works and is found to be in fairly good agreement. The variation of plateau density with the intensity of the laser is also compared with the experimentally observed variation. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  5. Production of isotopes and isomers with irradiation of Z = 47–50 targets by 23-MeV bremsstrahlung

    SciTech Connect

    Karamian, S. A.; Carroll, J. J.; Aksenov, N. V.; Albin, Yu. A.; Belov, A. G.; Bozhikov, G. A.; Dmitriev, S. N.; Starodub, G. Ya.

    2015-09-15

    The irradiations of Ag to Sn targets by bremsstrahlung generated with 23-MeV electron beams are performed at the MT-25 microtron. Gamma spectra of the induced activities have been measured and the yields of all detected radionuclides and isomers are carefully measured and analyzed. A regular dependence of yields versus changed reaction threshold is confirmed. Many isomers are detected and the suppression of the production probability is observed with growing product spin. Special peculiarities for the isomer-to-ground state ratios were deduced for the {sup 106m}Ag, {sup 108m}Ag, {sup 113m}In, {sup 115m}In, and {sup 123m}Sn isomers. The production of such nuclides as {sup 108m}Ag, {sup 115m}In, {sup 117g}In, and {sup 113m}Cd is of interest for applications, especially when economic methods are available.

  6. FY-15 Progress Report on Cleanup of irradiated SHINE Target Solutions Containing 140g-U/L Uranyl Sulfate

    SciTech Connect

    Bennett, Megan E.; Bowers, Delbert L.; Vandegrift, George F.

    2015-09-01

    During FY 2012 and 2013, a process was developed to convert the SHINE Target Solution (STS) of irradiated uranyl sulfate (140 g U/L) to uranyl nitrate. This process is necessary so that the uranium solution can be processed by the UREX (Uranium Extraction) separation process, which will remove impurities from the uranium so that it can be recycled. The uranyl sulfate solution must contain <0.02 M SO42- so that the uranium will be extractable into the UREXsolvent. In addition, it is desired that the barium content be below 0.0007 M, as this is the limit in the Resource Conservation and Recovery Act (RCRA).

  7. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    SciTech Connect

    Paulenova, Alena; Vandegrift, III, George F.

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  8. Intrinsic formation of nanocrystalline neptunium dioxide under neutral aqueous conditions relevant to deep geological repositories.

    PubMed

    Husar, Richard; Hübner, René; Hennig, Christoph; Martin, Philippe M; Chollet, Mélanie; Weiss, Stephan; Stumpf, Thorsten; Zänker, Harald; Ikeda-Ohno, Atsushi

    2015-01-25

    The dilution of aqueous neptunium carbonate complexes induces the intrinsic formation of nanocrystalline neptunium dioxide (NpO2) particles, which are characterised by UV/Vis and X-ray absorption spectroscopies and transmission electron microscopy. This new route of nanocrystalline NpO2 formation could be a potential scenario for the environmental transport of radionuclides from the waste repository (i.e. under near-field alkaline conditions) to the geological environment (i.e. under far-field neutral conditions).

  9. Apparent diffusion coefficients and chemical species of neptunium (V) in compacted Na-montmorillonite.

    PubMed

    Kozai, N; Inada, K; Kozaki, T; Sato, S; Ohashi, H; Banba, T

    2001-02-01

    Diffusion of neptunium (V) in compacted Na-montmorillonite was studied through the non-steady state diffusion method. In this study, two experimental attempts were carried out to understand the diffusion mechanism of neptunium. One was to establish the diffusion activation energy, which was then used to determine the diffusion process in the montmorillonite. The other was the measurement of the distribution of neptunium in the montmorillonite by a sequential batch extraction. The apparent diffusion coefficients of neptunium in the montmorillonite at a dry density of 1.0 Mg m-3 were from 3.7 x 10(-12) m2 s-1 at 288 K to 9.2 x 10(-12) m2 s-1 at 323 K. At a dry density of 1.6 Mg m-3, the apparent diffusion coefficients ranged between 1.5 x 10(-13) m2 s-1 at 288 K and 8.7 x 10(-13) m2 s-1 at 323 K. The activation energy for the diffusion of neptunium at a dry density of 1.0 Mg m-3 was 17.5 +/- 1.9 kJ mol-1. This value is similar to those reported for diffusion of other ions in free water, e.g., 18.4 and 17.4 kJ mol-1 for Na+ and Cl-, respectively. At a dry density of 1.6 Mg.m-3, the activation energy was 39.8 +/- 1.9 kJ mol-1. The change in the activation energy suggests that the diffusion process changes depending on the dry density of the compacted montmorillonite. A characteristic distribution profile was obtained by the sequential extraction procedure for neptunium diffused in compacted montmorillonite. The estimated fraction of neptunium in the pore water was between 3% and 11% at a dry density of 1.6 Mg m-3 and at a temperature of 313 K. The major fraction of the neptunium in the montmorillonite was identified as neptunyl ions sorbed on the outer surface of the montmorillonite. These findings suggested that the activation energy for diffusion and the distribution profile of the involved nuclides could become powerful parameters in understanding the diffusion mechanism.

  10. Retention of neptunium in uranyl alteration phases formed during spent fuel corrosion

    SciTech Connect

    Buck, E.C.; Finch, R.J.; Finn, P.A.; Bates, J.K.

    1997-09-01

    Uranyl oxide hydrate phases are known to form during contact of oxide spent nuclear fuel with water under oxidizing conditions; however, less is known about the fate of fission and neutron capture products during this alteration. We describe, for the first time, evidence that neptunium can become incorporated into the uranyl secondary phase, dehydrated schoepite (UO{sub 3}.8H{sub 2}O). Based on the long term durability of natural schoepite, the retention of neptunium in this alteration phase may be significant during spent fuel corrosion in an unsaturated geologic repository.

  11. Ultrastructural apoptotic lesions induced in bone marrow after neptunium-237 contamination.

    PubMed

    Pusset, D; Boulahdour, H; Fromm, M; Poncy, J L; Kantelip, B; Griffond, B; Baud, M; Galle, P

    2003-01-01

    This study describes the ultrastructure of lesions induced by neptunium-237 (237Np), a by-product of uranium in nuclear reactors, in the bone marrow. A group of rats were given a single injection of 237Np-nitrate solution in order to observe the acute toxicity effects of this actinide. Electron microscopy was used to describe the different lesions. Observations included the swelling of the cell membrane, nuclear membrane lyses, abnormal chromatin condensation or nucleus convolution. These ultrastructural alterations of the nucleus and the cellular membrane appeared shortly after treatment. This study demonstrates the toxic effects of neptunium and its implication in the induction of apoptosis in bone marrow.

  12. Waste Treatment of Acidic Solutions from the Dissolution of Irradiated LEU Targets for 99-Mo Production

    SciTech Connect

    Bakel, Allen J.; Conner, Cliff; Quigley, Kevin; Vandegrift, George F.

    2016-10-01

    One of the missions of the Reduced Enrichment for Research and Test Reactors (RERTR) program (and now the National Nuclear Security Administrations Material Management and Minimization program) is to facilitate the use of low enriched uranium (LEU) targets for 99Mo production. The conversion from highly enriched uranium (HEU) to LEU targets will require five to six times more uranium to produce an equivalent amount of 99Mo. The work discussed here addresses the technical challenges encountered in the treatment of uranyl nitrate hexahydrate (UNH)/nitric acid solutions remaining after the dissolution of LEU targets. Specifically, the focus of this work is the calcination of the uranium waste from 99Mo production using LEU foil targets and the Modified Cintichem Process. Work with our calciner system showed that high furnace temperature, a large vent tube, and a mechanical shield are beneficial for calciner operation. One- and two-step direct calcination processes were evaluated. The high-temperature one-step process led to contamination of the calciner system. The two-step direct calcination process operated stably and resulted in a relatively large amount of material in the calciner cup. Chemically assisted calcination using peroxide was rejected for further work due to the difficulty in handling the products. Chemically assisted calcination using formic acid was rejected due to unstable operation. Chemically assisted calcination using oxalic acid was recommended, although a better understanding of its chemistry is needed. Overall, this work showed that the two-step direct calcination and the in-cup oxalic acid processes are the best approaches for the treatment of the UNH/nitric acid waste solutions remaining from dissolution of LEU targets for 99Mo production.

  13. A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation.

    PubMed

    Gruber, Florian; Bicker, Wolfgang; Oskolkova, Olga V; Tschachler, Erwin; Bochkov, Valery N

    2012-06-01

    Oxidized phospholipids (OxPLs) are increasingly recognized as signaling mediators that are not only markers of oxidative stress but are also "makers" of pathology relevant to disease pathogenesis. Understanding the biological role of individual molecular species of OxPLs requires the knowledge of their concentration kinetics in cells and tissues. In this work, we describe a straightforward "fingerprinting" procedure for analysis of a broad spectrum of molecular species generated by oxidation of the four most abundant species of polyunsaturated phosphatidylcholines (OxPCs). The approach is based on liquid-liquid extraction followed by reversed-phase HPLC coupled to electrospray ionization MS/MS. More than 500 peaks corresponding in retention properties to polar and oxidized PCs were detected within 8 min at 99 m/z precursor values using a single diagnostic product ion in extracts from human dermal fibroblasts. Two hundred seventeen of these peaks were fluence-dependently and statistically significantly increased upon exposure of cells to UVA irradiation, suggesting that these are genuine oxidized or oxidatively fragmented species. This method of semitargeted lipidomic analysis may serve as a simple first step for characterization of specific "signatures" of OxPCs produced by different types of oxidative stress in order to select the most informative peaks for identification of their molecular structure and biological role.

  14. Synergistic combination of near-infrared irradiation and targeted gold nanoheaters for enhanced photothermal neural stimulation

    PubMed Central

    Eom, Kyungsik; Im, Changkyun; Hwang, Seoyoung; Eom, Seyoung; Kim, Tae-Seong; Jeong, Hae Sun; Kim, Kyung Hwan; Byun, Kyung Min; Jun, Sang Beom; Kim, Sung June

    2016-01-01

    Despite a potential of infrared neural stimulation (INS) for modulating neural activities, INS suffers from limited light confinement and bulk tissue heating. Here, a novel methodology for an advanced optical stimulation is proposed by combining near-infrared (NIR) stimulation with gold nanorods (GNRs) targeted to neuronal cell membrane. We confirmed experimentally that in vitro and in vivo neural activation is associated with a local heat generation based on NIR stimulation and GNRs. Compared with the case of NIR stimulation without an aid of GNRs, combination with cell-targeted GNRs allows photothermal stimulation with faster neural response, lower delivered energy, higher stimulation efficiency and stronger behavior change. Since the suggested method can reduce a requisite radiant exposure level and alleviate a concern of tissue damage, it is expected to open up new possibilities for applications to optical neuromodulations for diverse excitable tissues and treatments of neurological disorders. PMID:27446678

  15. Enhanced dense attosecond electron bunch generation by irradiating an intense laser on a cone target

    SciTech Connect

    Hu, Li-Xiang; Yu, Tong-Pu Shao, Fu-Qiu; Zou, De-Bin; Yin, Yan

    2015-03-15

    By using two-dimensional particle-in-cell simulations, we demonstrate enhanced spatially periodic attosecond electron bunches generation with an average density of about 10n{sub c} and cut-off energy up to 380 MeV. These bunches are acquired from the interaction of an ultra-short ultra-intense laser pulse with a cone target. The laser oscillating field pulls out the cone surface electrons periodically and accelerates them forward via laser pondermotive force. The inner cone wall can effectively guide these bunches and lead to their stable propagation in the cone, resulting in overdense energetic attosecond electron generation. We also consider the influence of laser and cone target parameters on the bunch properties. It indicates that the attosecond electron bunch acceleration and propagation could be significantly enhanced without evident divergency by attaching a plasma capillary to the original cone tip.

  16. A quantitative and comparative study of radionuclidic and chemical impurities in water samples irradiated in a niobium target with Havar vs. niobium-sputtered Havar as entrance foils.

    PubMed

    Avila-Rodriguez, Miguel A; Wilson, John S; McQuarrie, Steve A

    2008-12-01

    Enriched and natural abundance water samples were irradiated in a niobium (Nb) chamber target with Havar and Nb-sputtered Havar foils. Irradiations were performed with 17.5MeV protons at currents from 35 to 100microA lasting for 1-2.5h. Radionuclidic and chemical (cationic) impurities were determined via gamma spectroscopy and ICP-MS, respectively. Anionic impurities were evaluated by ion chromatography. Impurities in water samples irradiated with the Havar-Nb foils were much lower than the samples irradiated with an unmodified Havar foil. No significant differences were observed in the impurity levels between samples of H(2)(18)O-enriched and natural abundance water. Radionuclidic impurities were observed to decrease after 3-4 irradiations on a fresh Havar entrance foil, and reached a constant value for subsequent irradiations with the same integrated current. For targets covered with Havar foil, radionuclidic impurities were found to be proportional to the beam-integrated current regardless of the beam power and, unexpectedly, dependant of the beam power when using a Havar-Nb foil.

  17. Treatment Optimization Using Computed Tomography-Delineated Targets Should be Used for Supraclavicular Irradiation for Breast Cancer

    SciTech Connect

    Liengsawangwong, Raweewan; Yu, T.-K.; Sun, T.-L.; Erasmus, Jeremy J.; Perkins, George H.; Tereffe, Welela; Oh, Julia L.; Woodward, Wendy A.; Strom, Eric A.; Salephour, Mohammad; Buchholz, Thomas A.

    2007-11-01

    Background: The purpose of this study was to determine whether the use of optimized CT treatment planning offered better coverage of axillary level III (LIII)/supraclavicular (SC) targets than the empirically derived dose prescription that are commonly used. Materials/Methods: Thirty-two consecutive breast cancer patients who underwent CT treatment planning of a SC field were evaluated. Each patient was categorized according to body mass index (BMI) classes: normal, overweight, or obese. The SC and LIII nodal beds were contoured, and four treatment plans for each patient were generated. Three of the plans used empiric dose prescriptions, and these were compared with a CT-optimized plan. Each plan was evaluated by two criteria: whether 98% of target volume receive >90% of prescribed dose and whether < 5% of the irradiated volume received 105% of prescribed dose. Results: The mean depth of SC and LIII were 3.2 cm (range, 1.4-6.7 cm) and 3.1 (range, 1.7-5.8 cm). The depth of these targets varied according across BMI classes (p = 0.01). Among the four sets of plans, the CT-optimized plans were the most successful at achieving both of the dosimetry objectives for every BMI class (normal BMI, p = .003; overweight BMI, p < .0001; obese BMI, p < .001). Conclusions: Across all BMI classes, routine radiation prescriptions did not optimally cover intended targets for every patient. Optimized CT-based treatment planning generated the most successful plans; therefore, we recommend the use of routine CT simulation and treatment planning of SC fields in breast cancer.

  18. Thermal diffusion of ⁶⁷Ga from irradiated Zn targets.

    PubMed

    Andrade Martins, Patricia de; Osso, João Alberto

    2013-12-01

    Gallium-67 is a cyclotron produced radionuclide and ⁶⁷Ga-citrate complex scans are performed in a variety of applications in Nuclear Medicine. The aim of this study was to evaluate a new method for the chemical separation of ⁶⁷Ga from Zn targets. The method has 2 steps, first the thermal diffusion of ⁶⁷Ga with concentrated acetic acid and then purification by cation exchange in ammonium medium. The final ⁶⁷Ga solution was obtained in 0.1 mol L⁻¹ HCl with the desirable high purity.

  19. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    SciTech Connect

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-15

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  20. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  1. Triton Emission Spectra in Some Target Nuclei Irradiated by Ultra-Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Tel, E.; Kaplan, A.; Aydın, A.; Büyükuslu, H.; Demirkol, İ.; Arasoğlu, A.

    2010-08-01

    High-current proton accelerator technologies make use of spallation neutrons produced in ( p,xn) and ( n,xn) nuclear reactions on high-Z targets. The produced neutrons are moderated by heavy water. These moderated neutrons are subsequently captured on 3He to produce tritium via the ( n,p) reaction. Tritium self-sufficiency must be maintained for a commercial power plant. So, working out the systematics of ( n,t) reaction cross sections and triton emission differential data are important for the given reaction taking place on various nuclei at different energies. In this study, triton emission spectra by using ultra-fast neutrons (incident neutron energy >50 MeV), the ( n,xt) reactions for some target nuclei as 16O, 27Al, 56Fe, 59Co, 208Pb and 209Bi have been investigated. In the calculations, the pre-equilibrium and equilibrium effects have been used. The calculated results have been compared with the experimental data taken from the literature.

  2. Sensitive redox speciation of neptunium by CE-ICP-MS.

    PubMed

    Stöbener, Nils; Amayri, Samer; Gehl, Aaron; Kaplan, Ugras; Malecha, Kurtis; Reich, Tobias

    2012-11-01

    Capillary electrophoresis (CE) was used to separate the neptunium oxidation states Np(IV) and Np(V), which are the only oxidation states of Np that are stable under environmental conditions. The CE setup was coupled to an inductively coupled plasma mass spectrometer (Agilent 7500ce) using a Mira Mist CE nebulizer and a Scott-type spray chamber. The combination of the separation capacity of CE with the detection sensitivity of inductively coupled plasma mass spectrometry (ICP-MS) allows identification and quantification of Np(IV) and Np(V) at the trace levels expected in the far field of a nuclear waste repository. Limits of detection of 1 × 10(-9) and 5 × 10(-10) mol L(-1) for Np(IV) and Np(V), respectively, were achieved, with a linear range from 10(-9) to 10(-6) mol L(-1). The method was applied to study the redox speciation of the Np remaining in solution after interaction of 5 × 10(-7) mol L(-1) Np(V) with Opalinus Clay. Under mildly oxidizing conditions, a Np sorption of 31% was found, with all the Np remaining in solution being Np(V). A second sorption experiment performed in the presence of Fe(2+) led to complete sorption of the Np onto the clay. After desorption with HClO(4), a mixture of Np(IV) and Np(V) was found in solution by CE-ICP-MS, indicating that some of the sorbed Np had been reduced to Np(IV) by Fe(2+).

  3. Uranium (VI) and Neptunium (V) Transport Fractured, Hydrothermally Altered Concrete

    SciTech Connect

    Matzen, S.L.; Beiriger, J.M.; Torretto, P.C.; Zhao, P.

    1999-11-04

    In a high level waste repository in which temperatures are elevated due to waste decay, concrete structures will be subjected to hydrothermal conditions that will alter their physical and chemical properties. Virtually no studies have examined the interaction of hydrothermally altered concrete with radionuclides. We present the results of experiments in which soluble and colloid-associated actinides, uranium (U) and neptunium (Np), were eluted into a fractured, hydrothermally altered concrete core. Although the fluid residence time in the fracture was estimated to be on the order of 1 minute, U and Np were below detection (10{sup -9}-10{sup -8} M) in the effluent from the core, for both soluble and colloid-associated species. Inorganic colloids and latex microspheres were similarly immobilized within the core. Post-test analysis of the core identified the immobilized U and Np at or near the fracture surface, with a spatial distribution similar to that of the latex microspheres. Because hydrothermal alteration followed fracturing, the growth of crystalline calcium silicate hydrate and clay mineral alteration products on, and possibly across the fracture, resulted in a highly reactive fracture that was effective at capturing both soluble and colloidal radionuclides. Comparison of results from batch experiments [1] with these experiments indicate that partitioning of U and Np to the solid phase, and equilibration of the incoming fluid with the concrete, occurs rapidly in the fractured system. Transport of U through the concrete may be solubility and/or sorption limited; transport of Np appears to be limited primarily by sorption.

  4. Experimental study on neptunium migration under in situ geochemical conditions

    NASA Astrophysics Data System (ADS)

    Kumata, M.; Vandergraaf, T. T.

    1998-12-01

    Results are reported for migration experiments performed with Np under in situ geochemical conditions over a range of groundwater flow rates in columns of crushed rock in a specially designed facility at the 240-level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. This laboratory is situated in an intrusive granitic rock formation, the Lac du Bonnet batholith. Highly altered granitic rock and groundwater were obtained from a major subhorizontal fracture zone at a depth of 250 m in the URL. The granite was wet-crushed and wet-sieved with groundwater from this fracture zone. The 180-850-μm size fraction was selected and packed in 20-cm long, 2.54-cm in diameter Teflon™-lined stainless steel columns. Approximately 30-ml vols of groundwater containing 3HHO and 237Np were injected into the columns at flow rates of 0.3, 1, and 3 ml/h, followed by elution with groundwater, obtained from the subhorizontal fracture, at the same flow rates, for a period of 95 days. Elution profiles for 3HHO were obtained, but no 237Np was detected in the eluted groundwater. After terminating the migration experiments, the columns were frozen, the column material was removed and cut into twenty 1-cm thick sections and each section was analyzed by gamma spectrometry. Profiles of 237Np were obtained for the three columns. A one-dimensional transport model was fitted to the 3HHO breakthrough curves to obtain flow parameters for this experiment. These flow parameters were in turn applied to the 237Np concentration profiles in the columns to produce sorption and dispersion coefficients for Np. The results show a strong dependence of retardation factors ( Rf) on flow rate. The decrease in the retarded velocity of the neptunium ( Vn) varied over one order of magnitude under the geochemical conditions for these experiments.

  5. Boronic acid flux synthesis and crystal growth of uranium and neptunium boronates and borates: a low-temperature route to the first neptunium(V) borate.

    PubMed

    Wang, Shuao; Alekseev, Evgeny V; Miller, Hannah M; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2010-11-01

    Molten methylboronic acid has been used as a reactive flux to prepare the first neptunium(V) borate, NpO(2)[B(3)O(4)(OH)(2)] (NpBO-1), and the first actinide boronate, UO(2)(CH(3)BO(2))(H(2)O) (UCBO-1). NpBO-1 contains cation-cation interactions between the neptunyl units. In contrast, the presence of the methyl groups in the uranyl boronate leads to a one-dimensional structure.

  6. Mixed-valent neptunium(IV/V) compound with cation-cation-bound six-membered neptunyl rings.

    PubMed

    Jin, Geng Bang

    2013-11-04

    A new mixed-valent neptunium(IV/V) compound has been synthesized by evaporation of a neptunium(V) acidic solution. The structure of the compound features cation-cation-bound six-membered neptunyl(V) rings. These rings are further connected by Np(IV) ions through cation-cation interactions (CCIs) into a three-dimensional neptunium cationic open framework. This example illustrates the possibility of isolating neptunyl(V) CCI oligomers in inorganic systems using other cations to compete with Np(V) in bonding with the neptunyl oxygen.

  7. The influence of phonon anharmonicity on thermal and elastic properties of neptunium

    NASA Astrophysics Data System (ADS)

    Filanovich, A.; Povzner, A.

    2013-06-01

    A self-consistent thermodynamic model describing the thermal and elastic properties of α- and β-phases of neptunium was developed. The presence of strong phonon anharmonicity of Np is established. The obtained results are in good agreement with the experimental data and enable to predict the Np properties in wide temperature range.

  8. High-temperature X-ray diffraction study of uranium-neptunium mixed oxides.

    PubMed

    Chollet, Mélanie; Belin, Renaud C; Richaud, Jean-Christophe; Reynaud, Muriel; Adenot, Frédéric

    2013-03-04

    Incorporating minor actinides (MAs = Am, Np, Cm) in UO2 fertile blankets is a viable option to recycle them. Despite this applied interest, phase equilibria between uranium and MAs still need to be thoroughly investigated, especially at elevated temperatures. In particular, few reports on the U-Np-O system are available. In the present work, we provide for the first time in situ high-temperature X-ray diffraction results obtained during the oxidation of (U1-yNpy)O2 uranium-neptunium mixed oxides up to 1373 K and discuss subsequent phase transformations. We show that (i) neptunium stabilizes the UO2-type fluorite structure at high temperature and that (ii) the U3O8-type orthorhombic structure is observed in a wide range of compositions. We clearly demonstrate the incorporation of neptunium in this phase, which was a controversial question in previous studies up to now. We believe it is the particular stability of the tetravalent state of neptunium that is responsible for the observed phase relationships.

  9. Gastrointestinal absorption of neptunium in primates: effect of ingested mass, diet, and fasting

    SciTech Connect

    Metivier, H.; Bourges, J.; Fritsch, P.; Nolibe, D.; Masse, R.

    1986-05-01

    Absorption and retention of neptunium were determined in baboons after intragastric administration of neptunium nitrate solutions at pH 1. The effects of mass, diet, and fasting on absorption were studied. At higher mass levels (400-800 micrograms Np/kg), absorption was about 1%; at lower mass intakes (0.0009-0.005 micrograms Np/kg), absorption was reduced by 10- to 20-fold. The addition of an oxidizing agent (Fe3+) increased gastrointestinal absorption and supported the hypothesis of a reduction of Np (V) when loss masses were ingested. Diets depleted of or enriched with hydroxy acids did not modify retention of neptunium but increased urinary excretion with increasing hydroxy acid content. The diet enriched with milk components reduced absorption by a factor of 5. Potatoes increased absorption and retention by a factor 5, not necessarily due to the effect of phytate. Fasting for 12 or 24 h increased retention and absorption by factors of about 3 and 10, respectively. Data obtained in baboons when low masses of neptunium were administered suggest that the f1 factor used by ICRP should be decreased. However, fasting as encountered in certain nutritional habits is a factor to be taken into consideration.

  10. Criticality of a Neptunium-237 sphere surrounded with highly enriched uranium shells and an iron reflector

    SciTech Connect

    Sanchez, R. G.; Loaiza, D. J.; Hayes, D. K.; Kimpland, R. H.

    2004-01-01

    An additional experiment has been performed using the recently cast 6-kg {sup 237}Np sphere. The experiment consisted of surrounding the neptunium sphere with highly enriched uranium and an iron reflector. The purpose of the critical experiment is to provide additional criticality data that can be used to validate criticality safety evaluations involving the deposition of neptunium. It is well known that {sup 237}Np is primarily produced by successive neutron capture events in {sup 235}U or through the (n, 2n) reaction in {sup 238}U. These nuclear reactions lead to the production of {sup 237}U, which decays by beta emission into {sup 237}Np. In addition, in the spent fuel, {sup 241}Am decays by alpha emission into {sup 237}Np. Because {sup 237}Np is a threshold fissioner, the best reflectors for critical systems containing neptunium are those materials that exhibit good neutron scattering properties such as low carbon steel (99 wt % Fe). In this experiment, the iron reflector reduced the amount of uranium used in the critical experiment and increased the importance of the neptunium sphere.

  11. UV-C irradiation of HSV-1 infected fibroblasts (HSV-FS) enhances human natural killer (NK) cell activity against these targets

    SciTech Connect

    Pettera, L.; Fitzgerald-Bocarsly, P. )

    1991-03-11

    Expression of Herpes Simplex Virus Type 1 (HSV-1) immediate early gene products has been bound to be sufficient for NK cell mediated lysis of HSV-1 infected FS. To block the targets at various stages in the infectious cycle, HSV-FS were irradiated with UV light for 1 min at 2, 6, and 20 hr post-infection. NK mediated lysis of 2 hr and 5 hr UV treated HSV-FS was 2-fold higher than non-UV treated HSV-FS despite a {gt}99% inhibition in virus yield. In contrast, 20 hr infected targets were lysed less well than 2 and 6 hr targets despite strong glycoprotein expression and induction of high levels of interferon-alpha (IFN-{alpha}) production by effector PBMC's; this lysis was not enhanced by UV treatment. Since NK lysis of HSV-FS has been found to be dependent on an HLA-DR{sup +} accessory cell (AC), lysis of irradiated HSV-FS by PBMC's depleted of AC was measured. Such depletion eradicated NK lysis of the UV treated HSV-FS indicating that irradiation does not overcome the AC requirement for NK lysis. UV irradiation of another HLA-DR{sup +} dependent target, Vesicular Stomatitis Virus (VSV) infected FS led to a dramatic reduction in both NK lysis and IFN-{alpha} induction. HSV-1 is a DNA virus whose genes are expressed in a cascade fashion whereas VSV is an RNA virus. The authors hypothesize that the enhancement in AC dependent NK activity observed for UV irradiated HSV-FS, but not VSV-FS, targets is due to overproduction of either a cellular or viral gene product which specifically occurs early in the HSV-1 infectious cycle and is downregulated by 20 hr post-infection.

  12. Fast targeted gene transfection and optogenetic modification of single neurons using femtosecond laser irradiation

    PubMed Central

    Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Witts, Emily C.; Miles, Gareth B.; Dholakia, Kishan; Gunn-Moore, Frank J.

    2013-01-01

    A prevailing problem in neuroscience is the fast and targeted delivery of DNA into selected neurons. The development of an appropriate methodology would enable the transfection of multiple genes into the same cell or different genes into different neighboring cells as well as rapid cell selective functionalization of neurons. Here, we show that optimized femtosecond optical transfection fulfills these requirements. We also demonstrate successful optical transfection of channelrhodopsin-2 in single selected neurons. We extend the functionality of this technique for wider uptake by neuroscientists by using fast three-dimensional laser beam steering enabling an image-guided “point-and-transfect” user-friendly transfection of selected cells. A sub-second transfection timescale per cell makes this method more rapid by at least two orders of magnitude when compared to alternative single-cell transfection techniques. This novel technology provides the ability to carry out large-scale cell selective genetic studies on neuronal ensembles and perform rapid genetic programming of neural circuits. PMID:24257461

  13. Study of neutron spectra in a water bath from a Pb target irradiated by 250 MeV protons

    NASA Astrophysics Data System (ADS)

    Li, Yan-Yan; Zhang, Xue-Ying; Ju, Yong-Qin; Ma, Fei; Zhang, Hong-Bin; Chen, Liang; Ge, Hong-Lin; Wan, Bo; Luo, Peng; Zhou, Bin; Zhang, Yan-Bin; Li, Jian-Yang; Xu, Jun-Kui; Wang, Song-Lin; Yang, Yong-Wei; Yang, Lei

    2015-04-01

    Spallation neutrons were produced by the irradiation of Pb with 250 MeV protons. The Pb target was surrounded by water which was used to slow down the emitted neutrons. The moderated neutrons in the water bath were measured by using the resonance detectors of Au, Mn and In with a cadmium (Cd) cover. According to the measured activities of the foils, the neutron flux at different resonance energies were deduced and the epithermal neutron spectra were proposed. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data to check the validity of the code. The comparison showed that the simulation could give a good prediction for the neutron spectra above 50 eV, while the finite thickness of the foils greatly effected the experimental data in low energy. It was also found that the resonance detectors themselves had great impact on the simulated energy spectra. Supported by National Natural Science Foundation and Strategic Priority Research Program of the Chinese Academy of Sciences (11305229, 11105186, 91226107, 91026009, XDA03030300)

  14. Space-resolved K α emission measurement of warm dense titanium targets irradiated by intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bae, Leejin; Cho, Minsang; Kang, Gyeongbo; Kim, Minju; Kim, Young Hoon; Lee, Jong-Won; Cho, Byoung-Ick; Zastrau, Ulf

    2016-10-01

    Measurements of characteristic inner-shell K α emission have been widely used and reliable spectroscopic plasma diagnostics. Intense laser-plasma interactions on the solid target generate multiple electron distributions, i.e. hot relativistic and low energy bulk electrons. The bulk electrons create warm dense (10 100 eV and solid density) conditions in titanium foil and induce the shifts of K α emission spectra by creating M-shell vacancies. Therefore, modified K α emission spectra can be served as a bulk electron temperature. In this contribution, we present the titanium K α imaging spectroscopy experiment using a toroidally bent crystal, and the K-shell emission spectrum simulations using the collisional-radiative code SCFLY, for various bulk electron temperatures. The spatial distribution of electron temperature in the titanium foil which is irradiated by an intense laser pulse could be obtained, and possible electron transport mechanism will be discussed. This work was supported by NRF of Korea (No. NRF-2016R1A2B4009631 and NRF-2016H1A2A1909533), and the TBP research project of GIST.

  15. Niobium-based sputtered thin films for corrosion protection of proton-irradiated liquid water targets for [18F] production

    NASA Astrophysics Data System (ADS)

    Skliarova, H.; Azzolini, O.; Cherenkova-Dousset, O.; Johnson, R. R.; Palmieri, V.

    2014-01-01

    Chemically inert coatings on Havar® entrance foils of the targets for [18F] production via proton irradiation of enriched water at pressurized conditions are needed to decrease the amount of ionic contaminants released from Havar®. In order to find the most effective protective coatings, the Nb-based coating microstructure and barrier properties have been correlated with deposition parameters such as substrate temperature, applied bias, deposition rate and sputtering gas pressure. Aluminated quartz used as a substrate allowed us to verify the protection efficiency of the desirable coatings as diffusion barriers. Two modelling corrosion tests based on the extreme susceptibility of aluminum to liquid gallium and acid corrosion were applied. Pure niobium coatings have been found to be less effective barriers than niobium-titanium coatings. But niobium oxide films, according to the corrosion tests performed, showed superior barrier properties. Therefore multi-layered niobium-niobium oxide films have been suggested, since they combine the high thermal conductivity of niobium with the good barrier properties of niobium oxide.

  16. An Investigation into the Transportation of Irradiated Uranium/Aluminum Targets from a Foreign Nuclear Reactor to the Chalk River Laboratories Site in Ontario, Canada - 12249

    SciTech Connect

    Clough, Malcolm; Jackson, Austin

    2012-07-01

    This investigation required the selection of a suitable cask and development of a device to hold and transport irradiated targets from a foreign nuclear reactor to the Chalk River Laboratories in Ontario, Canada. The main challenge was to design and validate a target holder to protect the irradiated HEU-Al target pencils during transit. Each of the targets was estimated to have an initial decay heat of 118 W prior to transit. As the targets have little thermal mass the potential for high temperature damage and possibly melting was high. Thus, the primary design objective was to conceive a target holder to dissipate heat from the targets. Other design requirements included securing the targets during transportation and providing a simple means to load and unload the targets while submerged five metres under water. A unique target holder (patent pending) was designed and manufactured together with special purpose experimental apparatus including a representative cask. Aluminum dummy targets were fabricated to accept cartridge heaters, to simulate decay heat. Thermocouples were used to measure the temperature of the test targets and selected areas within the target holder and test cask. After obtaining test results, calculations were performed to compensate for differences between experimental and real life conditions. Taking compensation into consideration the maximum target temperature reached was 231 deg. C which was below the designated maximum of 250 deg. C. The design of the aluminum target holder also allowed generous clearance to insert and unload the targets. This clearance was designed to close up as the target holder is placed into the cavity of the transport cask. Springs served to retain and restrain the targets from movement during transportation as well as to facilitate conductive heat transfer. The target holder met the design requirements and as such provided data supporting the feasibility of transporting targets over a relatively long period of time

  17. Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus.

    PubMed

    Badger, Jonathan H; Hoover, Timothy R; Brun, Yves V; Weiner, Ronald M; Laub, Michael T; Alexandre, Gladys; Mrázek, Jan; Ren, Qinghu; Paulsen, Ian T; Nelson, Karen E; Khouri, Hoda M; Radune, Diana; Sosa, Julia; Dodson, Robert J; Sullivan, Steven A; Rosovitz, M J; Madupu, Ramana; Brinkac, Lauren M; Durkin, A Scott; Daugherty, Sean C; Kothari, Sagar P; Giglio, Michelle Gwinn; Zhou, Liwei; Haft, Daniel H; Selengut, Jeremy D; Davidsen, Tanja M; Yang, Qi; Zafar, Nikhat; Ward, Naomi L

    2006-10-01

    The dimorphic prosthecate bacteria (DPB) are alpha-proteobacteria that reproduce in an asymmetric manner rather than by binary fission and are of interest as simple models of development. Prior to this work, the only member of this group for which genome sequence was available was the model freshwater organism Caulobacter crescentus. Here we describe the genome sequence of Hyphomonas neptunium, a marine member of the DPB that differs from C. crescentus in that H. neptunium uses its stalk as a reproductive structure. Genome analysis indicates that this organism shares more genes with C. crescentus than it does with Silicibacter pomeroyi (a closer relative according to 16S rRNA phylogeny), that it relies upon a heterotrophic strategy utilizing a wide range of substrates, that its cell cycle is likely to be regulated in a similar manner to that of C. crescentus, and that the outer membrane complements of H. neptunium and C. crescentus are remarkably similar. H. neptunium swarmer cells are highly motile via a single polar flagellum. With the exception of cheY and cheR, genes required for chemotaxis were absent in the H. neptunium genome. Consistent with this observation, H. neptunium swarmer cells did not respond to any chemotactic stimuli that were tested, which suggests that H. neptunium motility is a random dispersal mechanism for swarmer cells rather than a stimulus-controlled navigation system for locating specific environments. In addition to providing insights into bacterial development, the H. neptunium genome will provide an important resource for the study of other interesting biological processes including chromosome segregation, polar growth, and cell aging.

  18. Conversion of Molybdenum-99 production process to low enriched uranium: Neutronic and thermal hydraulic analyses of HEU and LEU target plates for irradiation in Pakistan Research Reactor-1

    NASA Astrophysics Data System (ADS)

    Mushtaq, Ahmad; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab; Muhammad, Atta

    2012-09-01

    Technetium-99m, the daughter product of Molybdenum-99 is the most widely needed radionuclide for diagnostic studies in Pakistan. Molybdenum-99 Production Facility has been established at PINSTECH. Highly enriched uranium (93% 235U) U/Al alloy targets have been irradiated in Pakistan Research Reactor-1 (PARR-1) for the generation of fission Mo-99, while basic dissolution technique is used for separation of Mo-99 from target matrix activity. In line with the international objective of minimizing and eventually eliminating the use of HEU in civil commerce, national and international efforts have been underway to shift the production of medical isotopes from HEU to LEU (LEU; <20% 235U enrichment) targets. To achieve the equivalent amount of 99Mo with LEU targets, approximately 5 times uranium is needed. LEU aluminum uranium dispersion target has been developed, which may replace existing HEU aluminum/uranium alloy targets for production of 99Mo using basic dissolution technique. Neutronic and thermal hydraulic calculations were performed for safe irradiation of targets in the core of PARR-1.

  19. Membrane-Dependent Bystander Effect Contributes to Amplification of the Response to Alpha-Particle Irradiation in Targeted and Nontargeted Cells

    SciTech Connect

    Hanot, Maite; Hoarau, Jim; Carriere, Marie; Angulo, Jaime F.; Khodja, Hicham

    2009-11-15

    Purpose: Free radicals are believed to play an active role in the bystander response. This study investigated their origin as well as their temporal and spatial impacts in the bystander effect. Methods and Materials: We employed a precise alpha-particle microbeam to target a small fraction of subconfluent osteoblastic cells (MC3T3-E1). gammaH2AX-53BP1 foci, oxidative metabolism changes, and micronuclei induction in targeted and bystander cells were assessed. Results: Cellular membranes and mitochondria were identified as two distinct reactive oxygen species producers. The global oxidative stress observed after irradiation was significantly attenuated after cells were treated with filipin, evidence for the primal role of membrane in the bystander effect. To determine the membrane's impact at a cellular level, micronuclei yield was measured when various fractions of the cell population were individually targeted while the dose per cell remained constant. Induction of micronuclei increased in bystander cells as well as in targeted cells and was attenuated by filipin treatment, demonstrating a role for bystander signals between irradiated cells in an autocrine/paracrine manner. Conclusions: A complex interaction of direct irradiation and bystander signals leads to a membrane-dependent amplification of cell responses that could influence therapeutic outcomes in tissues exposed to low doses or to environmental exposure.

  20. Mechanical properties of modified 9Cr 1Mo (T91) irradiated at 300 °C in SINQ Target-3

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Jia, X. J.; Farrell, K.

    2003-05-01

    Specimens of martensitic steel T91 were irradiated in the Swiss spallation neutron source (SINQ) Target-3 in a temperature range of 90-300 °C to displacement doses between 3 and 9.8 dpa. Tensile tests were performed at 22, 250 and 350 °C, and small punch (SP) tests were conducted in a temperature range of -186 to 22 °C to derive the change of the ductile-brittle transition temperature (ΔDBTT SP) of the steel after irradiation. The tensile test results demonstrate that the irradiation hardening increases with dose. The uniform elongation falls to less than 1%, while the total elongation is greater than 5% in all cases. All the tensile samples broke in a ductile fracture mode. In the present dose range the irradiation hardening does not saturate and increases even more rapidly at doses above about 6 dpa. The SP tests indicate that the DBTT SP of 0.25 mm thick T91 discs is about -153 °C for the unirradiated condition. After irradiation the DBTT SP increases significantly to -35 °C at 9.4 dpa, corresponding to an estimated DBTT CVN shift of 295 °C; and meanwhile the upper energies decrease. The ΔDBTT SP has a linear dependence on helium content. Analyses of the data indicate that the radiation hardening and the occurrence of intergranular fracture mode in the higher dose SP tests are dependent on gas content.

  1. Non-targeted transcriptomic effects upon thyroid irradiation: similarity between in-field and out-of-field responses varies with tissue type

    PubMed Central

    Langen, Britta; Rudqvist, Nils; Spetz, Johan; Swanpalmer, John; Helou, Khalil; Forssell-Aronsson, Eva

    2016-01-01

    Non-targeted effects can induce responses in tissues that have not been exposed to ionizing radiation. Despite their relevance for risk assessment, few studies have investigated these effects in vivo. In particular, these effects have not been studied in context with thyroid exposure, which can occur e.g. during irradiation of head and neck tumors. To determine the similarity between in-field and out-of-field responses in normal tissue, we used a partial body irradiation setup with female mice where the thyroid region, the thorax and abdomen, or all three regions were irradiated. After 24 h, transcriptional regulation in the kidney cortex, kidney medulla, liver, lungs, spleen, and thyroid was analyzed using microarray technology. Thyroid irradiation resulted in transcriptional regulation in the kidney medulla and liver that resembled regulation upon direct exposure of these tissues regarding both strength of response and associated biological function. The kidney cortex showed fewer similarities between the setups, while the lungs and spleen showed little similarity between in-field and out-of-field responses. Interestingly, effects were generally not found to be additive. Future studies are needed to identify the molecular mechanisms that mediate these systemic effects, so that they may be used as targets to minimize detrimental side effects in radiotherapy. PMID:27779251

  2. Non-targeted transcriptomic effects upon thyroid irradiation: similarity between in-field and out-of-field responses varies with tissue type.

    PubMed

    Langen, Britta; Rudqvist, Nils; Spetz, Johan; Swanpalmer, John; Helou, Khalil; Forssell-Aronsson, Eva

    2016-10-25

    Non-targeted effects can induce responses in tissues that have not been exposed to ionizing radiation. Despite their relevance for risk assessment, few studies have investigated these effects in vivo. In particular, these effects have not been studied in context with thyroid exposure, which can occur e.g. during irradiation of head and neck tumors. To determine the similarity between in-field and out-of-field responses in normal tissue, we used a partial body irradiation setup with female mice where the thyroid region, the thorax and abdomen, or all three regions were irradiated. After 24 h, transcriptional regulation in the kidney cortex, kidney medulla, liver, lungs, spleen, and thyroid was analyzed using microarray technology. Thyroid irradiation resulted in transcriptional regulation in the kidney medulla and liver that resembled regulation upon direct exposure of these tissues regarding both strength of response and associated biological function. The kidney cortex showed fewer similarities between the setups, while the lungs and spleen showed little similarity between in-field and out-of-field responses. Interestingly, effects were generally not found to be additive. Future studies are needed to identify the molecular mechanisms that mediate these systemic effects, so that they may be used as targets to minimize detrimental side effects in radiotherapy.

  3. Chemical speciation of neptunium in spent fuel. Annual report for period 15 August 1999 to 15 August 2000

    SciTech Connect

    Ken Czerwinski; Don Reed

    2000-09-01

    (B204) This project will examine the chemical speciation of neptunium in spent nuclear fuel. The R&D fields covered by the project include waste host materials and actinide chemistry. Examination of neptunium is chosen since it was identified as a radionuclide of concern by the NERI workshop. Additionally, information on the chemical form of neptunium in spent fuel is lacking. The identification of the neptunium species in spent fuel would allow a greater scientific based understanding of its long-term fate and behavior in waste forms. Research to establish the application and development of X-ray synchrotrons radiation (XSR) techniques to determine the structure of aqueous, adsorbed, and solid actinide species of importance to nuclear considerations is being conducted at Argonne. These studies extend current efforts within the Chemical Technology Division at Argonne National Laboratory to investigate actinide speciation with more conventional spectroscopic and solids characterization (e.g. SEM, TEM, and XRD) methods. Our project will utilize all these techniques for determining neptunium speciation in spent fuel. We intend to determine the chemical species and oxidation state of neptunium in spent fuel and alteration phases. Different types of spent fuel will be examined. Once characterized, the chemical behavior of the identified neptunium species will be evaluated if it is not present in the literature. Special attention will be given to the behavior of the neptunium species under typical repository near-field conditions (elevated temperature, high pH, varying Eh). This will permit a timely inclusion of project results into near-field geochemical models. Additionally, project results and methodologies have applications to neptunium in the environment, or treatment of neptunium containing waste. Another important aspect of this project is the close cooperation between a university and a national laboratory. The PI has a transuranic laboratory at MIT where

  4. Transportation risk assessment for the shipment of irradiated FFTF tritium target assemblies from the Hanford Site to the Savannah River Site

    SciTech Connect

    Nielsen, D. L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This report examines the potential health and safety impacts associated with transportation of irradiated tritium targets from FFTF to the Savannah River Site for processing at the Tritium Extraction Facility. Potential risks to workers and members of the public during normal transportation and accident conditions are assessed.

  5. Boronic Acid Flux Synthesis and Crystal Growth of Uranium and Neptunium Boronates and Borates: A Low Temperature Route to the First Neptunium(V) Borate

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Miller, Hannah M.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2010-10-04

    Molten methylboronic acid has been used as a reactive flux to prepare the first neptunium(V) borate, NpO2[B3O4(OH)2] (NpBO-1), and the first actinide boronate, UO2(CH3BO2)(H2O) (UCBO-1). NpBO-1 contains cation-cation interactions between the neptunyl units. In contrast, the presence of the methyl groups in the uranyl boronate leads to a one-dimensional structure.

  6. Long-term desorption behavior of uranium and neptunium in heterogeneous volcanic tuff materials /

    SciTech Connect

    Dean, Cynthia A.

    2010-05-01

    Uranium and neptunium desorption were studied in long-term laboratory experiments using four well-characterized volcanic tuff cores collected from southeast of Yucca Mountain, Nevada. The objectives of the experiments were to 1. Demonstrate a methodology aimed at characterizing distributions of sorption parameters (attributes of multiple sorption sites) that can be applied to moderately-sorbing species in heterogeneous systems to provide more realistic reactive transport parameters and a more realistic approach to modeling transport in heterogeneous systems. 2. Focus on uranium and neptunium because of their high solubility, relatively weak sorption, and high contributions to predicted dose in Yucca Mountain performance assessments. Also, uranium is a contaminant of concern at many DOE legacy sites and uranium mining sites.

  7. 237Np Mössbauer spectroscopy on neptunium doped borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Bogé, M.; Blaise, A.; Bonnisseau, D.; Fournier, J. M.; Thérond, P. G.; Poirot, I.; Beauvy, M.

    1986-02-01

    Mössbauer and magnetization measurements have been carried out on borosilicate glasses containing neptunium. Different melting and annealing times, in various crucibles have been investigated. Using the 59.5 keV Mössbauer resonance in237Np we have characterized valency states of neptunium ions in glasses and studied hyperfine interactions. Roughly, absorption spectra show two sites easily differenciated above 50 K by two lines. Isomer shifts (relative to NpAl2) are respectively: - 10.0 (1.0) and + 32.5(.5) mm/s. These resonance lines can be assigned, the first at Np4+, the second at Np3+ species. The intensity ratio Np4+/Np3+ varies with elaboration conditions. At 4.2 K, Np4+ ions exhibit a hyperfine splitting arising from relaxation phenomenon. Magnetization measurements do not show any magnetic ordering.

  8. INTERACTION OF LASER RADIATION WITH MATTER: Effect of a target size on the recoil momentum upon laser irradiation of absorbing materials

    NASA Astrophysics Data System (ADS)

    Chumakou, A. N.; Petrenko, A. M.; Bosak, N. A.

    2004-10-01

    The dependence of a recoil momentum on the radius of a target irradiated by a single-pulse Nd3+:YAG laser (λ=1.064 μm, τ=20 ns, E<=300 mJ) in the air is studied. The recoil momentum decreases three-fold with increasing the relative target radius from 0.3 to 5 and tends to saturation for r>3. The calculation of the recoil momentum on the basis of the Euler and Navier—Stokes equations gave understated values for r>1, which lowered to negative values. The reasons for the qualitative discrepancy between the experimental and calculated data is discussed.

  9. Comparison of sample preparation methods for reliable plutonium and neptunium urinalysis using automatic extraction chromatography.

    PubMed

    Qiao, Jixin; Xu, Yihong; Hou, Xiaolin; Miró, Manuel

    2014-10-01

    This paper describes improvement and comparison of analytical methods for simultaneous determination of trace-level plutonium and neptunium in urine samples by inductively coupled plasma mass spectrometry (ICP-MS). Four sample pre-concentration techniques, including calcium phosphate, iron hydroxide and manganese dioxide co-precipitation and evaporation were compared and the applicability of different techniques was discussed in order to evaluate and establish the optimal method for in vivo radioassay program. The analytical results indicate that the various sample pre-concentration approaches afford dissimilar method performances and care should be taken for specific experimental parameters for improving chemical yields. The best analytical performances in terms of turnaround time (6h) and chemical yields for plutonium (88.7 ± 11.6%) and neptunium (94.2 ± 2.0%) were achieved by manganese dioxide co-precipitation. The need of drying ashing (≥ 7h) for calcium phosphate co-precipitation and long-term aging (5d) for iron hydroxide co-precipitation, respectively, rendered time-consuming analytical protocols. Despite the fact that evaporation is also somewhat time-consuming (1.5d), it endows urinalysis methods with better reliability and repeatability compared with co-precipitation techniques. In view of the applicability of different pre-concentration techniques proposed previously in the literature, the main challenge behind relevant method development is pointed to be the release of plutonium and neptunium associated with organic compounds in real urine assays. In this work, different protocols for decomposing organic matter in urine were investigated, of which potassium persulfate (K2S2O8) treatment provided the highest chemical yield of neptunium in the iron hydroxide co-precipitation step, yet, the occurrence of sulfur compounds in the processed sample deteriorated the analytical performance of the ensuing extraction chromatographic separation with chemical

  10. Theoretical studies on level structures and transition properties of neptunium ions

    NASA Astrophysics Data System (ADS)

    Zhou, W. D.; Dong, C. Z.; Wang, Q. M.; Wang, X. L.; Saber, I. A.

    2012-10-01

    Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the ionization potentials, ionic radii, excitation energies and oscillator strengths for neptunium ions. In the calculations, main valence correlation effects, Breit interaction and QED effects were taken into account. The good consistency with other available theoretical values demonstrates the validity of the present calculations. These theoretical results therefore can be used to predict some physicochemical properties of Np and its oxides.

  11. Comparison of line x-ray emission from solid and porous nano-layer coated targets irradiated by double laser pulses

    SciTech Connect

    Fazeli, R.; Mahdieh, M. H.

    2015-11-15

    Enhancement of line x-ray emission from both solid and porous iron targets induced by irradiation of single and double laser pulses is studied numerically. The line emission from laser produced plasma is calculated within the extreme ultra-violet lithography wavelength range of 13.5–13.7 nm. The effects of pre-pulse intensity and delay time between two pulses (pre-pulse and main pulse) are examined. The results show that using double pulses irradiation in the conditions of porous target can reduce the x-ray enhancement. According to the results, the use of both pre-pulse and porous target leads to efficient absorption of the laser energy. Calculations also show that such enhanced laser absorption can ionize atoms of the target material to very high degrees of ionization, leading to decrease of the density of appropriate ions that are responsible for line emission in the selected wavelength region. By increasing the target porosity, x-ray yield was more reduced.

  12. Dynamics of the peptidoglycan biosynthetic machinery in the stalked budding bacterium Hyphomonas neptunium.

    PubMed

    Cserti, Emöke; Rosskopf, Sabine; Chang, Yi-Wei; Eisheuer, Sabrina; Selter, Lars; Shi, Jian; Regh, Christina; Koert, Ulrich; Jensen, Grant J; Thanbichler, Martin

    2017-03-01

    Most commonly studied bacteria grow symmetrically and divide by binary fission, generating two siblings of equal morphology. An exception to this rule are budding bacteria, in which new offspring emerges de novo from a morphologically invariant mother cell. Although this mode of proliferation is widespread in diverse bacterial lineages, the underlying mechanisms are still incompletely understood. Here, we report the first molecular-level analysis of growth and morphogenesis in the stalked budding alphaproteobacterium Hyphomonas neptunium. Peptidoglycan labeling shows that, in this species, buds originate from a stalk-like extension of the mother cell whose terminal segment is gradually remodeled into a new cell compartment. As a first step toward identifying the machinery mediating the budding process, we performed comprehensive mutational and localization studies of predicted peptidoglycan biosynthetic proteins in H. neptunium. These analyses identify factors that localize to distinct zones of dispersed and zonal growth, and they suggest a critical role of the MreB-controlled elongasome in cell morphogenesis. Collectively, our work shows that the mechanism of growth in H. neptunium is distinct from that in related, polarly growing members of the order Rhizobiales, setting the stage for in-depth analyses of the molecular principles regulating the fascinating developmental cycle of this species.

  13. Influence of dissolved organic substances in groundwater on sorption behavior of americium and neptunium

    SciTech Connect

    Boggs, S. Jr.; Seitz, M.G.

    1984-01-01

    Groundwaters typically contain dissolved organic carbon consisting largely of high molecular weight compounds of humic and fulvic acids. To evaluate whether these dissolved organic substances can enhance the tranport of radionuclides through the groundwater system, experiments were conducted to examine the sorption of americium and neptunium onto crushed basalt in the presence of dissolved humic- and fulvic-acid organic carbon introduced into synthetic groundwater. The partitioning experiments with synthetic groundwater show that increasing the concentration of either humic or fulvic acid in the water has a significant inhibiting effect on sorption of both americium and neptunium. At 22/sup 0/C, adsorption of these radionuclides, as measured by distribution ratios (the ratio of nuclide sorbed onto the solid to nuclide in solution at the end of the experiment), decreased by 25% to 50% by addition of as little as 1 mg/L dissolved organic carbon and by one to two orders of magnitude by addition of 100 to 200 mg/L dissolved organic carbon. Distribution ratios measured in solutions reacted at 90/sup 0/C similarly decreased with the addition of dissolved organic carbon but generally ranged from one to two orders of magnitude higher than those determined in the 22/sup 0/C experiment. These results suggest that organic carbon dissolved in deep groundwaters may significantly enhance the mobility of radionuclides of americium and neptunium. 23 references, 5 figures, 11 tables.

  14. Sorption kinetics of uranium-238 and neptunium-237 on a glacial sediment

    NASA Astrophysics Data System (ADS)

    Braithwaite, A.; Richardson, S.; Moyes, L. N.; Livens, F. R.; Bunker, D. J.; Hughes, C. R.; Smith, J. T.; Hilton, J.

    2000-02-01

    Studies of uptake of radionuclides by natural materials have shown that sorption may occur via fast equilibrium exchange and/or slow kinetic processes, which can be described using a series of box models. This paper describes the use of such models to evaluate the solid-solution partitioning of 238U and 237Np on a clay rich sediment. Experimental data are obtained using the batch sorption technique, which are then analysed using 1, 2, and 3 box kinetic models. Uptake of 238U is initially rapid, with approximately 90% sorbed within the first 30 minutes. Sorption continues, but at a slower rate. Uptake of 237Np is initially slower than U, with approximately 30% sorbed within the first 30 minutes. Sorption again continues, at a slower rate. Analysis of the experimental data indicates that sorption can be described using 2 and 3 box kinetic models. The results demonstrate that sorption of uranium and neptunium on clay rich sediments occurs via equilibrium and kinetically controlled pathways, with neptunium being controlled by kinetics to a greater extent than uranium. The 2 or 3 box model can describe sorption of neptunium, uranium requires the 3 box model.

  15. Effects of Titanium Doping in Titanomagnetite on Neptunium Sorption and Speciation.

    PubMed

    Wylie, E Miller; Olive, Daniel T; Powell, Brian A

    2016-02-16

    Neptunium-237 is a radionuclide of great interest owing to its long half-life (2.14 × 10(6) years) and relative mobility as the neptunyl ion (NpO2(+)) under many surface and groundwater conditions. Reduction to tetravalent neptunium (Np(IV)) effectively immobilizes the actinide in many instances due to its low solubility and strong interactions with natural minerals. One such mineral that may facilitate the reduction of neptunium is magnetite (Fe(2+)Fe(3+)2O4). Natural magnetites often contain titanium impurities which have been shown to enhance radionuclide sorption via titanium's influence on the Fe(2+)/Fe(3+) ratio (R) in the absence of oxidation. Here, we provide evidence that Ti-substituted magnetite reduces neptunyl species to Np(IV). Titanium-substituted magnetite nanoparticles were synthesized and reacted with NpO2(+) under reducing conditions. Batch sorption experiments indicate that increasing Ti concentration results in higher Np sorption/reduction values at low pH. High-resolution transmission electron microscopy of the Ti-magnetite particles provides no evidence of NpO2 nanoparticle precipitation. Additionally, X-ray absorption spectroscopy confirms the nearly exclusive presence of Np(IV) on the titanomagnetite surface and provides supporting data indicating preferential binding of Np to terminal Ti-O sites as opposed to Fe-O sites.

  16. The uneven irradiation of a target cell and its dynamic movement can mathematically explain incubation period for the induction of cancer by internally deposited radionuclides.

    PubMed

    Yamamoto, Yoichiro; Usuda, Nobuteru; Oghiso, Yoichi; Kuwahara, Yoshikazu; Fukumoto, Manabu

    2010-09-01

    Irradiation from internally deposited radionuclides induces malignant tumors. Ingested radionuclides accumulate in specific organs, which are irradiated over a lifelong period. Our aim is to elucidate why the development of malignant tumors requires long-term internal exposure, on the order of decades, despite the fact that irradiation is continuous over this period. Three major factors are considered to be responsible for the long incubation time in carcinogenesis caused by internally deposited alpha-emitters: uneven distribution of radionuclides, limited range of irradiation, and dynamic movement of tumor precursor cells. We hypothesized that target cells susceptible to malignant transformation may undergo one event by alpha particles and may then migrate outside of the range of alpha particles, thereby avoiding immediate induction of successive additional events that would lead to cell death or neoplastic changes. Based on this hypothesis, we further proposed a mathematical model to predict the relationship between dose rate and incubation period of tumors induced by internally deposited alpha-emitters. The function was non-linear and included terms of both direct and indirect radiation effects. It well fitted both human Th-ICC cases and rat Pu-induced lung cancer, suggesting that indirect radiation effects are independent from dose rate. The significance of parameters of the model is discussed.

  17. Mineralogic controls on aqueous neptunium(V) concentrations in silicate systems

    NASA Astrophysics Data System (ADS)

    Alessi, Daniel S.; Szymanowski, Jennifer E. S.; Forbes, Tori Z.; Quicksall, Andrew N.; Sigmon, Ginger E.; Burns, Peter C.; Fein, Jeremy B.

    2013-02-01

    The presence of radioactive neptunium in commercially spent nuclear fuel is problematic due to its mobility in environmental systems upon oxidation to the pentavalent state. As uranium is the major component of spent fuel, incorporation of neptunium into resulting U(VI) mineral phases would potentially influence its release into environmental systems. Alternatively, aqueous neptunium concentrations may be buffered by solid phase Np2O5. In this study, we investigate both of these controls on aqueous neptunium(V) concentrations. We synthesize two uranyl silicates, soddyite, (UO2)2SiO4·2H2O, and boltwoodite, (K, Na)(UO2)(SiO3OH)·1.5H2O, each in the presence of two concentrations of aqueous Np(V). Electron microscopy and electron diffraction analyses of the synthesized phases show that while significant neptunyl incorporation occurred into soddyite, the Np(V) in the boltwoodite systems largely precipitated as a secondary phase, Np2O5(s). The release of Np(V) from each system into aqueous solution was measured for several days, until steady-state concentrations were achieved. Using existing solubility constants (Ksp) for pure soddyite and boltwoodite, we compared predicted equilibrium aqueous U(VI) concentrations with the U(VI) concentrations released in the solubility experiments. Our experiments reveal that Np(V) incorporation into soddyite increases the concentration of aqueous U in equilibrium with the solid phase, perhaps via the formation of a metastable phase. In the mixed boltwoodite - Np2O5(s) system, the measured aqueous U(VI) activities are consistent with those predicted to be in equilibrium with boltwoodite under the experimental conditions, a result that is consistent with our conclusion that little Np(V) incorporation occurred into the boltwoodite. In the boltwoodite systems, the measured Np concentrations are likely controlled by the presence of Np2O5 nanoparticles, suggesting an additional potential mobility vector for Np in geologic systems. Our

  18. Complexation of neptunium(V) with fluoride in aqueous solutions at elevated temperatures

    SciTech Connect

    Tian, Guoxin; Rao, Linfeng; Xia, Yuanxian; Friese, Judah I.

    2009-02-01

    Over the past several decades, the production and testing of nuclear weapons in the U.S. have created significant amounts of high-level nuclear wastes (HLW) that are currently stored in underground tanks across the U.S. DOE (Department of Energy) sites. Eventually, the HLW will be made into the waste form and disposed of in geological repositories for HLW. Among the radioactive materials, neptunium is of great concern in the post-closure chemical environment in the repository because of the long half-life of 237Np (2.14•106 years) and the high mobility of Np(V), the most stable oxidation state of neptunium. It is estimated that 237Np, together with 129I and 99Tc, will be the major contributors to the potential total annual dose from the repository beyond 10000 years [1]. Due to the high radiation energy released from the HLW, the postclosure repository is expected to remain at elevated temperatures for thousands of years [1]. If the waste package is breached and becomes in contact with groundwater, neptunium, as well as other radioactive materials will be in aqueous solutions at elevated temperatures. Interactions of radioactive materials with the chemical components in groundwater play an important role in determining their migration in the repository. To predict the migration behavior of neptunium, it is necessary to have sufficient and reliable thermodynamic data on its complexation with the ligands that are present in the groundwater of the repository (e.g., OH–, F–, SO42– ,PO43– and CO32) at elevated temperatures. However, such data are scarce and scattered for 25°C, and nearly nonexistent for elevated temperatures [2]. To provide reliable thermodynamic data, we have conducted investigations of the complexation of actinides, including thorium, uranium, neptunium and plutonium, at elevated temperatures. Thermodynamic parameters, including formation constants, enthalpy and heat capacity of complexation are experimentally determined. This paper

  19. Hydrolysis of neptunium(V) at variable temperatures (10 85°C)

    NASA Astrophysics Data System (ADS)

    Rao, Linfeng; Srinivasan, Thandankorai G.; Garnov, Alexander Yu; Zanonato, PierLuigi; Di Bernardo, Plinio; Bismondo, Arturo

    2004-12-01

    Neptunium is one of the few radioactive elements that are of great concern in the disposal of nuclear wastes in the geological repository, due to its hazards and the long half-life of the isotope, 237Np ( t1/2 = 2.14 × 10 6 years). To understand and predict the migration behavior of neptunium in the geological media, it is of importance to study its hydrolysis at elevated temperatures, because the temperature in the waste package and the vicinity of the repository could be high. Moreover, the chemical analogy between neptunium(V) and plutonium(V) adds even greater value to this investigation, because the latter could exist at tracer levels in neutral and slightly oxidizing waters but is difficult to study due to its rather labile redox behavior. In this work, the hydrolysis of neptunium(V) was studied at variable temperatures (10 to 85°C) in tetramethylammonium chloride (1.12 mol kg -1). Two hydrolyzed species of neptunium(V), NpO 2OH(aq) and NpO 2(OH) 2-, were identified by potentiometry and Near-IR absorption spectroscopy. The hydrolysis constants (* βn) and enthalpy of hydrolysis (Δ Hn) for the reaction NpO 2+ + nH 2O = NpO 2(OH) n(1-n)+ + nH + ( n = 1 and 2) were determined by titration potentiometry and microcalorimetry. The hydrolysis constants, * β1 and * β2, increased by 0.8 and 3.4 orders of magnitude, respectively, as the temperature was increased from 10 to 85°C. The enhancement of hydrolysis at elevated temperatures is mainly due to the significant increase of the degree of ionization of water as the temperature is increased. The hydrolysis reactions are endothermic but become less endothermic as the temperature is increased. The heat capacities of hydrolysis, Δ Cp1 and Δ Cp2 , are calculated to be -(71 ± 17) J K -1 mol -1 and -(127 ± 17) J K -1 mol -1, respectively. Approximation approaches to predict the effect of temperature, including the constant enthalpy approach, the constant heat capacity approach and the DQUANT equation, have been

  20. An X-ray absorption spectroscopy study of neptunium(V) reactions with Mackinawite (FeS).

    PubMed

    Moyes, Lesley N; Jones, Mark J; Reed, Wendy A; Livens, Francis R; Charnock, John M; Mosselmans, J Frederick W; Hennig, Christoph; Vaughan, David J; Pattrick, Richard A D

    2002-01-15

    Neptunium is a transuranium element, produced in tonne quantities in nuclear reactors. Because it has access to a range of oxidation states, neptunium may undergo redox transformations in the environment and these can have far-reaching effects on its environmental mobility. Here, the reaction of NpO2+ (the soluble and thermodynamically stable neptunium species in oxic systems) with microcrystalline mackinawite is studied. Uptake of neptunium from solution is relatively low (approximately 10% of the total initially present in solution) and independent of initial solution concentration over the range 0.27-2.74 mM and of equilibration time. X-ray absorption spectroscopy (XAS) of the solid sulfide samples indicates nearest neighbor oxygen atoms at distances around 2.25-2.26 A, sulfur atoms at around 2.61-2.64 A, and two more distant shells fitted with iron, at 3.91-3.95 A and 4.15-4.16 A. These observations suggest that on interaction with the sulfide surface reduction of Np(V) to Np(IV) occurs, accompanied by loss of axial oxygen atoms. Neptunium coordinates directly to surface sulfide atoms, in contrast to the behavior previously observed for uranium under similar conditions. These results demonstrate the importance and variability of the speciation of redox sensitive actinides under anoxic conditions.

  1. EVALUATING EFFECTS OF NEPTUNIUM ON THE SRS METHOD FOR CONTROLLED POTENTIAL COULOMETRIC ASSAY OF PLUTONIUM IN SULFURIC ACID SUPPORTING ELECTROLYTE

    SciTech Connect

    Holland, M; Sheldon Nichols, S

    2008-05-09

    A study of the impact of neptunium on the coulometric assay of plutonium in dilute sulfuric acid was performed. Weight aliquots of plutonium standard solutions were spiked with purified neptunium solution to evaluate plutonium measurement performance for aliquots with Pu:Np ratios of 50:1, 30:1, 20:1, 15:1, and 10:1. Weight aliquots of the pure plutonium standard solution were measured as controls. Routine plutonium instrument control standards were also measured. The presence of neptunium in plutonium aliquots significantly increases the random uncertainty associated with the plutonium coulometric measurement performed in accordance with ISO12183:2005.7 However, the presence of neptunium does not appear to degrade electrode performance and conditioning as aliquots of pure plutonium that were interspersed during the measurement of the mixed Pu:Np aliquots continued to achieve the historical short-term random uncertainty for the method. Lack of adequate control of the neptunium oxidation state is suspected to be the primary cause of the elevated measurement uncertainty and will be pursued in a future study.

  2. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    SciTech Connect

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A.; Solomon, Benjamin

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  3. High K-alpha X-ray Conversion Efficiency From Extended Source Gas Jet Targets Irradiated by Ultra Short Laser Pulses

    SciTech Connect

    Kugland, N L; Constantin, C; Collette, A; Dewald, E; Froula, D; Glenzer, S H; Kritcher, A; Neumayer, P; Ross, J S; Niemann, C

    2007-11-01

    The absolute laser conversion efficiency to K{sub {alpha}}-like inner shell x-rays (integrated from K{sub {alpha}} to K{sub {beta}}) is observed to be an order of magnitude higher in argon gas jets than in solid targets due to enhanced emission from higher ionization stages following ultra short pulse laser irradiation. Excluding the higher ionization stages, the conversion efficiency to near-cold K{sub {alpha}} is the same in gas jets as in solid targets. These results demonstrate that gas jet targets are bright, high conversion efficiency, high repetition rate, debris-free multi-keV x-ray sources for spectrally resolved scattering and backlighting of rapidly evolving dense matter.

  4. INTERACTION OF LASER RADIATION WITH TARGETS Tomographic imaging of a target directly irradiated in experiments on the Iskra-5 iodine laser facility

    NASA Astrophysics Data System (ADS)

    Bondarenko, S. V.; Garanin, R. V.; Garanin, Sergey G.; Zhidkov, N. V.; Oreshkov, O. V.; Potapov, S. V.; Suslov, N. A.; Frolova, N. V.

    2010-12-01

    We set forth the data of experiments involving direct microtarget irradiation by the 12 second-harmonic beams (λ = 0.66 μm) of iodine laser radiation carried out on the Iskra-5 facility. For microtargets we employed glass shells ~500 μm in diameter with ~1-μm thick walls, which were filled with a DT mixture at a pressure pDT approx 3-4 atm. In one of these experiments, a tomographic image of the microtarget was recorded from the images obtained using pinhole cameras, which were arranged along seven different directions. The pinhole images were acquired in the X-ray radiation with photon energies above 1.5 keV. The procedure used for reconstructing the volume luminosity of the microtarget is described. An analysis of the tomographic image suggests that the compressed microtarget domain possesses a complex asymmetric shape; 20-30 μm sized structural elements being clearly visible. The resultant data set allowed us to estimate the initial nonuniformity of microtarget surface irradiation by the laser radiation. The rms nonuniformity of microtarget irradiance was estimated at ~60 %.

  5. An automated flow system incorporating in-line acid dissolution of bismuth metal from a cyclotron irradiated target assembly for use in the isolation of astatine-211.

    PubMed

    O'Hara, Matthew J; Krzysko, Anthony J; Niver, Cynthia M; Morrison, Samuel S; Owsley, Stanley L; Hamlin, Donald K; Dorman, Eric F; Scott Wilbur, D

    2017-04-01

    Astatine-211 ((211)At) is a promising cyclotron-produced radionuclide being investigated for use in targeted alpha therapy. The wet chemical isolation of trace quantities of (211)At, produced within several grams of Bi metal deposited onto an aluminum cyclotron target assembly, involves a multi-step procedure. Because the (211)At isolation method is labor-intensive and complex, automation of the method is being developed to facilitate routine processing at the University of Washington and to make it easier to transfer the process to other institutions. As part of that automation effort, a module useful in the initial step of the isolation procedure, dissolution of the Bi target, was designed and tested. The computer-controlled module performs in-line dissolution of Bi metal from the target assembly using an enclosed target dissolution block, routing the resulting solubilized (211)At/Bi mixture to the subsequent process step. The primary parameters involved in Bi metal solubilization (influent HNO3 concentration and flow rate) were optimized prior to evaluation of the system using replicate (211)At-bearing cyclotron irradiated targets. The results indicate that the system performs in a predictable and reproducible manner, with cumulative Bi and (211)At recoveries following a sigmoidal function.

  6. Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse

    SciTech Connect

    Nishimura, H.; Nakamura, H.; Tanabe, M.; Fujiwara, T.; Yamamoto, N.; Fujioka, S.; Mima, K.; Mishra, R.; Sentoku, Y.; Mancini, R.; Hakel, P.; Ohshima, S.; Batani, D.; Veltcheva, M.; Desai, T.; Jafer, R.; Kawamura, T.; Koike, F.

    2011-02-15

    Heat transport in reduced-mass targets irradiated with a high intensity laser pulse was studied. K{alpha} lines from partially ionized chlorine embedded in the middle of a triple-layered plastic target were measured to evaluate bulk electron temperature in the tracer region inside the target. Two groups of K{alpha} lines, one from Cl{sup +}-Cl{sup 6+} (hereby called ''cold K{alpha}''), and the other from Cl{sup 9+} and Cl{sup 10+} (''shifted K{alpha}'') are observed from different regions within the target. Two-dimensional collisional particle-in-cell simulations show two distinct heating mechanisms occurring concurrently: uniform heating by refluxing electrons and local heating by diffusive electrons in the central region. These two heating processes, which made the target temperature distribution nonuniform, are responsible for producing the two groups of K{alpha} lines in the experiment. The blue-shift of cold K{alpha} lines in the experiment is the signature of higher temperatures achieved by the refluxing heating in smaller-mass targets.

  7. Comparison of the (p,xn) cross sections from /sup 238/U, /sup 235/U, and /sup 232/Th targets irradiated with 200-MeV protons

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1982-01-01

    We have measured absolute cross sections for (p,xn) reactions (x ranges from 0 to 8) from /sup 238/U, /sup 235/U, and /sup 232/Th targets irradiated with 200-MeV protons at the Brookhaven AGS Linac injector. Chemical yields were determined by using /sup 239/Np and /sup 233/Pa as tracers. Yield patterns obtained in this work can be compared to the experimental results and theoretical calculations from earlier work, and they are consistent within the framework of intranuclear cascade followed by neutron evaporation and fission competition.

  8. INTERACTION OF LASER RADIATION WITH MATTER AND OTHER LASER APPLICATIONS: Changes in the emission properties of metal targets during pulse-periodic laser irradiation

    NASA Astrophysics Data System (ADS)

    Konov, Vitalii I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.

    1988-02-01

    A scanning electron microscope was used with a pulse-periodic CO2 laser to discover the laws governing the correlation of the modified microrelief of metal surfaces, subjected to the action of multiple laser pulses, with the emission of charged particles and the luminescence of the irradiated zone. It was established that the influence of sorption and laser-induced desorption on the emission signals may be manifested differently depending on the regime of current generation in the "target-vacuum chamber" circuit.

  9. EFFECT OF COMPOSITION OF SELECTED GROUNDWATERS FROM THE BASIN AND RANGE PROVINCE ON PLUTONIUM, NEPTUNIUM, AND AMERICIUM SPECIATION.

    USGS Publications Warehouse

    Rees, Terry F.; Cleveland, Jess M.; Nash, Kenneth L.

    1984-01-01

    The speciation of plutonium, neptunium, and americium was determined in groundwaters from four sources in the Basin and Range Province: the lower carbonate aquifer, Nevada Test Site (NTS) (Crystal Pool); alluvial fill, Frenchman Flat, NTS (well 5C); Hualapai Valley, Arizona (Red Lake south well); and Tularosa Basin, New Mexico (Rentfrow well). The results were interpreted to indicate that plutonium and, to a lesser extent, neptunium are least soluble in reducing groundwaters containing a large concentration of sulfate ion and a small concentration of strongly complexing anions. The results further emphasize the desirability of including studies such as this among the other site-selection criteria for nuclear waste repositories.

  10. Methods for chemical recovery of non-carrier-added radioactive tin from irradiated intermetallic Ti-Sb targets

    DOEpatents

    Lapshina, Elena V [Troitsk, RU; Zhuikov, Boris L [Troitsk, RU; Srivastava, Suresh C [Setauket, NY; Ermolaev, Stanislav V [Obninsk, RU; Togaeva, Natalia R [Obninsk, RU

    2012-01-17

    The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.

  11. Crystal and electronic structures of neptunium nitrides synthesized using a fluoride route.

    PubMed

    Silva, G W Chinthaka; Weck, Philippe F; Kim, Eunja; Yeamans, Charles B; Cerefice, Gary S; Sattelberger, Alfred P; Czerwinski, Kenneth R

    2012-02-15

    A low-temperature fluoride route was utilized to synthesize neptunium mononitride, NpN. Through the development of this process, two new neptunium nitride species, NpN(2) and Np(2)N(3), were identified. The NpN(2) and Np(2)N(3) have crystal structures isomorphous to those of UN(2) and U(2)N(3), respectively. NpN(2) crystallizes in a face-centered cubic CaF(2)-type structure with a space group of Fm3m and a refined lattice parameter of 5.3236(1) Å. The Np(2)N(3) adopts the body-centered cubic Mn(2)O(3)-type structure with a space group of Ia3. Its refined lattice parameter is 10.6513(4) Å. The NpN synthesis at temperatures ≤900 °C using the fluoride route discussed here was also demonstrated. Previous computational studies of the neptunium nitride system have focused exclusively on the NpN phase because no evidence was reported experimentally on the presence of NpN(x) systems. Here, the crystal structures of NpN(2) and Np(2)N(3) are discussed for the first time, confirming the experimental results by density functional calculations (DFT). These DFT calculations were performed within the local-density approximation (LDA+U) and the generalized-gradient approximation (GGA+U) corrected with an effective Hubbard parameter to account for the strong on-site Coulomb repulsion between Np 5f electrons. The effects of the spin-orbit coupling in the GGA+U calculations have also been investigated for NpN(2) and NpN.

  12. Crystal and Electronic Structures of Neptunium Nitrides Synthesized Using a Fluoride Route

    SciTech Connect

    Silva, G W Chinthaka M; Weck, Dr. Phil F.; Eunja, Dr. Kim; Yeamans, Dr. Charles B.; Cerefice, Gary S.; Sattelberger, Alfred P; Czerwinski, Ken R.

    2012-01-01

    A low-temperature fluoride route was utilized to synthesize neptunium mononitride, NpN. Through the development of this process, two new neptunium nitride species, NpN{sub 2} and Np{sub 2}N{sub 3}, were identified. The NpN{sub 2} and Np{sub 2}N{sub 3} have crystal structures isomorphous to those of UN{sub 2} and U{sub 2}N{sub 3}, respectively. NpN{sub 2} crystallizes in a face-centered cubic CaF{sub 2}-type structure with a space group of Fm3m and a refined lattice parameter of 5.3236(1) {angstrom}. The Np{sub 2}N{sub 3} adopts the body-centered cubic Mn{sub 2}O{sub 3}-type structure with a space group of Ia{bar 3}. Its refined lattice parameter is 10.6513(4) {angstrom}. The NpN synthesis at temperatures {le} 900 C using the fluoride route discussed here was also demonstrated. Previous computational studies of the neptunium nitride system have focused exclusively on the NpN phase because no evidence was reported experimentally on the presence of NpN{sub x} systems. Here, the crystal structures of NpN{sub 2} and Np{sub 2}N{sub 3} are discussed for the first time, confirming the experimental results by density functional calculations (DFT). These DFT calculations were performed within the local-density approximation (LDA+U) and the generalized-gradient approximation (GGA+U) corrected with an effective Hubbard parameter to account for the strong on-site Coulomb repulsion between Np 5f electrons. The effects of the spin-orbit coupling in the GGA+U calculations have also been investigated for NpN{sub 2} and NpN.

  13. Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation

    NASA Astrophysics Data System (ADS)

    Epstein, R.

    1997-09-01

    In inertial confinement fusion (ICF) experiments, irradiation uniformity is improved by passing laser beams through distributed phase plates (DPPs), which produce focused intensity profiles with well-controlled, reproducible envelopes modulated by fine random speckle. [C. B. Burckhardt, Appl. Opt. 9, 695 (1970); Y. Kato and K. Mima, Appl. Phys. B 29, 186 (1982); Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984); Laboratory for Laser Energetics LLE Review 33, NTIS Document No. DOE/DP/40200-65, 1987 (unpublished), p. 1; Laboratory for Laser Energetics LLE Review 63, NTIS Document No. DOE/SF/19460-91, 1995 (unpublished), p. 1.] A uniformly ablating plasma atmosphere acts to reduce the contribution of the speckle to the time-averaged irradiation nonuniformity by causing the intensity distribution to move relative to the absorption layer of the plasma. This occurs most directly as the absorption layer in the plasma moves with the ablation-driven flow, but it is shown that the effect of the accumulating ablated plasma on the phase of the laser light also makes a quantitatively significant contribution. Analytical results are obtained using the paraxial approximation applied to the beam propagation, and a simple statistical model is assumed for the properties of DPPs. The reduction in the time-averaged spatial spectrum of the speckle due to these effects is shown to be quantitatively significant within time intervals characteristic of atmospheric hydrodynamics under typical ICF irradiation intensities.

  14. Unusual redox stability of neptunium in the ionic liquid [Hbet][Tf(2)N].

    PubMed

    Long, Kristy; Goff, George; Runde, Wolfgang

    2014-07-25

    The behavior of neptunium in the ionic liquid betaine bistriflimide, [Hbet][Tf2N], has been studied spectroscopically at room temperature and 60 °C for the first time. An unprecedented complex redox chemistry is observed, with up to three oxidation states (iv, v and vi) and up to six Np species existing simultaneously. Both redox reactions and coordination of betaine are observed for Np(iv), (v) and (vi). Elevating the temperature accelerates the coordination of Np(v) with betaine and reduction reactions slow down.

  15. Determination of neptunium in environmental samples by extraction chromatography after valence adjustment.

    PubMed

    Guérin, Nicolas; Langevin, Marc-Antoine; Nadeau, Kenny; Labrecque, Charles; Gagné, Alexandre; Larivière, Dominic

    2010-12-01

    Neptunium(V) ions are unstable in acid media, which limits their extraction on chromatographic resins. We developed a novel analytical method to measure Np by either α-spectrometry or inductively coupled plasma mass spectrometry (ICP-MS) after extraction chromatography as Np(VI). We investigated the reactivity of various oxidizing reagents, and determined the retention capacity of Np(IV, V, and VI) on various extraction chromatographic supports. A simple method using two UTEVA resins was used to rapidly detect Np in soil and sediment samples.

  16. Gastrointestinal absorption of plutonium, uranium and neptunium in fed and fasted adult baboons: Application to humans

    SciTech Connect

    Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.; Moretti, E.S.; Cohen, N.; Ralston, L.G.; Ayres, L.

    1992-03-01

    Gastrointestinal (GI) absorption values of plutonium, uranium, and neptunium were determined in fed and fasted adult baboons. A dual isotope method of determining GI absorption, which does not require animal sacrifice, was validated and shown to compare well with the sacrifice method (summation of oral isotope in urine with that in tissues at sacrifice). For all three elements, mean GI absorption values were significantly high (5- to 50-fold) in 24-hour (h)-fasted animals than in fed animals, and GI absorption values for baboons agreed well with those for humans.

  17. Subcellular and intranuclear localization of neptunium-237 (V) in rat liver.

    PubMed

    Paquet, F; Verry, M; Grillon, G; Landesman, C; Masse, R; Taylor, D M

    1995-08-01

    The present investigation was aimed at establishing the distribution of 237Np within the different structures of hepatocytes. Rats were contaminated experimentally by intravenous injection of 237Np (V) and the subcellular structures of the liver were separated by ultracentrifugation. Twenty-four hours after contamination, the nuclear and cytosolic fractions bound 54 and 32%, respectively, of the total radionuclide. Purification of the nuclei followed by dissociation of the protein components in medium of increasing ionic strength showed a specific binding of neptunium to the structural proteins of the nuclear matrix.

  18. Extension of excitation functions up to 50 MeV for activation products in deuteron irradiations of Pr and Tm targets

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.

    2016-09-01

    Extension up to 50 MeV incident deuteron energy is presented for excitation functions of activation products formed in monoisotopic Tm (169Tm) and Pr (141Pr). By stacked foil irradiations direct and/or cumulative production of 140,139m,138Nd, 138mPr, 141,139,137m,135Ce on Pr and 166,169Yb, 166,167,168Tm on Tm targets were measured. Confirmation of earlier experimental results for all investigated radionuclides is found and the influence of the higher energy on thick target yields and batch production of medically relevant radionuclides (140Nd, 139Pr (as decay product of 139mNd), 166,169Yb, 167Tm) is discussed. A comparison of experimental values with TALYS1.6 code results (predicted values from TENDL-2015 on-line library) shows a better description of the (d,pxn) reactions than older ones.

  19. Potentiating antilymphoma efficacy of chemotherapy using a liposome for integration of CD20 targeting, ultra-violet irradiation polymerizing, and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Wu, Cong; Li, Huafei; Zhao, He; Zhang, Weiwei; Chen, Yan; Yue, Zhanyi; Lu, Qiong; Wan, Yuxiang; Tian, Xiaoyu; Deng, Anmei

    2014-08-01

    Unlike most malignancies, chemotherapy but not surgery plays the most important role in treating non-Hodgkin lymphoma (NHL). Currently, liposomes have been widely used to encapsulate chemotherapeutic drugs in treating solid tumors. However, higher in vivo stability owns a much more important position for excellent antitumor efficacy in treating hematological malignancies. In this study, we finely fabricated a rituximab Fab fragment-decorated liposome based on 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), which can form intermolecular cross-linking through the diacetylenic group by ultra-violet (UV) irradiation. Our experimental results demonstrated that after the UV irradiation, the liposomes exhibit better serum stability and slower drug release with a decreased mean diameter of approximately 285 nm. The cellular uptake of adriamycin (ADR) by this Fab-navigated liposome was about four times of free drugs. Cytotoxicity assays against CD20+ lymphoma cells showed that the half maximal (50%) inhibitory concentration (IC50) of ADR-loaded immunoliposome was only one fourth of free ADR at the same condition. In vivo studies were evaluated in lymphoma-bearing SCID mice. With the high serum stability, finely regulated structure, active targeting strategy via antigen-antibody reaction and passive targeting strategy via enhanced permeability and retention (EPR) effect, our liposome exhibits durable and potent antitumor activities both in the disseminated and localized human NHL xeno-transplant models.

  20. Computational simulation of (nat)UO2, (232)ThO2 and U3O8-Al pills to estimate (p,fission) (99)Mo yield in the modeled targets irradiated by CYCLONE30 accelerator.

    PubMed

    Jozvaziri, Atieh; Gholamzadeh, Zohreh; Yousefi, Kamran; Mirvakili, Seyed Mohammad; Alizadeh, Masoomeh; Aboudzadeh, Mohammadreza

    2017-03-01

    (99)Mo is important for both therapy and imaging purposes. Accelerator and reactor-based procedures are applied to produce it. Newly proton-fission method has been taken in attention by some research centers. In the present work, computationally investigation of the (99)Mo yield in different fissionable targets irradiated by proton was aimed. The results showed UO2 pill target could be efficiently used to produce 11.12Ci/g-U saturation yield of (99)Mo using 25MeV proton irradiation of the optimized-dimension target with 70µA current.

  1. Mechanism of pain relief by low-power infrared irradiation: ATP is an IR-target molecule in nociceptive neurons.

    PubMed

    Yachnev, Igor L; Plakhova, Vera B; Podzorova, Svetlana A; Shelykh, Tatiana N; Rogachevsky, Ilya V; Krylov, Boris V

    2012-01-01

    Effects of infrared (IR) radiation generated by a low-power CO2-laser on the membrane of cultured dissociated nociceptive neurons of newborn rat spinal ganglia were investigated using the whole-cell patch-clamp method. Low-power IR radiation diminished the voltage sensitivity of activation gating machinery of slow sodium channels (Na(v)1.8). Ouabain known to block both transducer and pumping functions of Na+,K+-ATPase eliminated IR irradiation effects. The molecular mechanism of interaction of CO2-laser radiation with sensory membrane was proposed. The primary event of this interaction is the process of energy absorption by ATP molecules. The transfer of vibrational energy from Na+,K+- ATPase-bound and vibrationally excited ATP molecules to Na+,K+-ATPase activates this enzyme and converts it into a signal transducer. This effect leads to a decrease in the voltage sensitivity of Na(v)1.8 channels. The effect of IR-radiation was elucidated by the combined application of a very sensitive patch-clamp method and an optical facility with a controlled CO2-laser. As a result, the mechanism of interaction of non-thermal low-power IR radiation with the nociceptive neuron membrane is suggested.

  2. Electronic structure of the Np MT 5 ( M = Fe, Co, Ni; T = Ga, In) series of neptunium compounds

    NASA Astrophysics Data System (ADS)

    Lukoyanov, A. V.; Shorikov, A. O.; Anisimov, V. I.

    2016-03-01

    Evolution of the electronic structure of the Np MGa5 ( M = Fe, Co, Ni) series of neptunium compounds, whose crystal structure is similar to that of the known family of Pu115 superconductors, was studied by the LDA + U + SO method. The calculations took into account both the strong electron correlations and the spin‒orbit coupling in the 5 f shell of neptunium. For the first time, the electronic structure was calculated for a hypothetical series of compounds in which gallium is replaced with indium. Parameters of the crystal structure of the given series were obtained using the relationship between the parameters of the crystal structure of the earlier-studied compounds PuCoGa5 and PuCoIn5. The analysis of the electronic structure and characteristics of neptunium ions calculated in the framework of the LDA + U + SO method showed that the neptunium ions in Np MIn5 with M = Fe, Co, and Ni should have an electron configuration closer to f 4, but a spin and magnetic characteristics close to those in Np MGa5.

  3. PROCESS FOR EXTRACTING NEPTUNIUM AND PLUTONIUM FROM NITRIC ACID SOLUTIONS OF SAME CONTAINING URANYL NITRATE WITH A TERTIARY AMINE

    DOEpatents

    Sheppard, J.C.

    1962-07-31

    A process of selectively extracting plutonium nitrate and neptunium nitrate with an organic solution of a tertiary amine, away from uranyl nitrate present in an aqueous solution in a maximum concentration of 1M is described. The nitric acid concentration is adjusted to about 4M and nitrous acid is added prior to extraction. (AEC)

  4. X-ray absorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite.

    PubMed

    Livens, Francis R; Jones, Mark J; Hynes, Amanda J; Charnock, John M; Mosselmans, J Fred W; Hennig, Christoph; Steele, Helen; Collison, David; Vaughan, David J; Pattrick, Richard A D; Reed, Wendy A; Moyes, Lesley N

    2004-01-01

    Technetium, uranium and neptunium may all occur in the environment in more than one oxidation state (IV or VII, IV or VI and IV or V respectively). The surface of mackinawite, the first-formed iron sulfide phase in anoxic conditions, can promote redox changes so a series of laboratory experiments were carried out to explore the interactions of Tc, U and Np with this mineral. The products of reaction were characterised using X-ray absorption spectroscopy. Technetium, added as TcO4(-), is reduced to oxidation state IV and forms a TcS(2)-like species. On oxidation of the mackinawite in air to form goethite, Tc remains in oxidation state IV but in an oxide, rather than a sulfide environment. At low concentrations, uranium forms uranyl surface complexes on oxidised regions of the mackinawite surface but at higher concentrations, the uranium promotes surface oxidation and forms a mixed oxidation state oxide phase. Neptunium is reduced to oxidation IV and forms a surface complex with surface sulfide ions. The remainder of the Np coordination sphere is filled with water molecules or hydroxide ions.

  5. Peak Stripping Methodology for Plutonium Analysis in the Presence of Neptunium

    SciTech Connect

    Hodge, Christ

    2005-05-17

    Quantitative Plutonium analysis depends upon the accurate identification of the assay peak. The Np[Pa] equilibrium pair introduces interfering peaks in {sup 239}Pu, {sup 238}Pu, and {sup 235}U assay peak region. When an interfering peak is present, it negates the assay unless an appropriate technique can be developed to deal with the interference. Peak Stripping is one such technique. Peak stripping involves an algorithm to strip an entire peak from another, resulting in a spectrum that can then be analyzed for the isotope of interest. A simpler method is a ''pseudo-peak-stripping'' whereby the effects of the interfering peak are quantified and those effects are stripped from the assay data. In this case the integrated peak areas are analyzed and corrected. There are two methods presented in this paper. Both assimilate the integrated data for the assay peak regions (in this case {sup 238}Pu, {sup 239}Pu, and {sup 235}U) and for the Neptunium/Protactinium secular equilibrium pair (Np[Pa]). Using Np[Pa] assumes that the Protactinium has come to equilibrium with Neptunium. This requires only {approx}6 months from the time chemical purification. Therefore it is a valid assumption in most cases. A correction is then applied to the assay peak areas to ''strip'' the underlying effects of Np[Pa].

  6. Generation of plasma intrinsic oscillation at the front surface of a target irradiated by a circularly polarized laser pulse

    SciTech Connect

    Zhang Xiaomei; Shen Baifei; Jin Zhangying; Wang Fengchao; Ji Liangliang

    2009-03-15

    In laser-target interaction, the effects of laser intensity on plasma oscillation at the front surface of targets have been investigated by one-dimensional particle in cell simulations. The periodical oscillations of the ion density and electrostatic field at the front surface of the targets are reported for the first time, which is considered as an intrinsic property of the target excited by the laser. The oscillation period depends only on initial plasma density and is irrelevant with laser intensity. Flattop structures with curves in ion phase space are found with a more intense laser pulse due to the larger amplitude variation of the electrostatic field. A simple but valid model is proposed to interpret the curves.

  7. L-shell emission from high-Z solid targets by intense 10{sup 19}W/cm{sup 2} irradiation with a 248nm laser

    SciTech Connect

    Nelson, T.R.; Borisov, A.B.; Boyer, K.

    2000-01-05

    Efficient (1.2% yield) multikilovolt x-ray emission from Ba(L) (2.4--2.8{angstrom}) and Gd(L) (1.7--2.1{angstrom}) is produced by ultraviolet (248nm) laser-excited BaF{sub 2} and Gd solids. The high efficiency is attributed to an inner shell-selective collisional electron ejection. Much effort has been expended recently in attempts to develop an efficient coherent x-ray source suitable for high-resolution biological imaging. To this end, many experiments have been performed studying the x-ray emissions from high-Z materials under intense (>10{sup 18}W/cm{sup 2}) irradiation, with the most promising results coming from the irradiation of Xe clusters with a UV (248nm) laser at intensities of 10{sup 18}--10{sup 19}W/cm{sup 2}. In this paper the authors report the production of prompt x-rays with energies in excess of 5keV with efficiencies on the order of 1% as a result of intense irradiation of BaF{sub 2} and Gd targets with a terawatt 248nm laser. The efficiency is attributed to an inner shell-selective collisional electron ejection mechanism in which the previously photoionized electrons are ponderomotively driven into an ion while retaining a portion of their atomic phase and symmetry. This partial coherence of the laser-driven electrons has a pronounced effect on the collisional cross-section for the electron ion interaction.

  8. Production and separation of no-carrier-added radioactive tracers of yttrium, strontium and rubidium from heavy-ion irradiated germanium target: applicability to the standardization of a separation technique for production of positron-emitting radionuclide 86Y.

    PubMed

    Pal, Sujit; Chattopadhyay, Sankha; Das, M K; Sudersanan, M

    2006-12-01

    Among various positron-emitting radionuclides, certain radioisotopes of Y, Sr and Rb have important applications in diagnostic and therapeutic nuclear medicine. In the present work, an attempt has been made to produce some of those radioisotopes by irradiating a natural Ge-target material with heavy-ion oxygen ((16)O(+6)) projectiles. An effective radiochemical separation scheme was developed to isolate Y, Sr and Rb radiotracers from the irradiated Ge-matrix in no-carrier-added form with a view to applying those radiotracers for standardization of a technique for the radiochemical separation of Y from natural Sr target. The standardized separation technique could be utilized for the production of the positron-emitting (86)Y from an enriched (86)Sr target irradiated at a medical cyclotron.

  9. Two-dimensional of uniform irradiation on target with the use of the concentricity deviation lens arrays focus system of variable focus length

    NASA Astrophysics Data System (ADS)

    Zheng, Jian-zhou; Yu, Qing-xu; Lu, Yong-jun; Guan, Shou-hua; Dong, Bin

    2012-10-01

    An optical system consisted of lens array with variable focus width has been proposed for providing uniform irradiation on targets in inertial confinement fusion. This system was composed of two lenses arrays and the aspheric lens. Based on the adaxial matrix optics and the generalized diffraction integral theory, the principle of controllable focus profile was analyzed and the optimum design of the system parameters were presented, respectively. The simulated results showed that two-dimensional uniform focusing of laser beams with controllable width in the range of several hundred microns to several millimeters can be achieved by choosing appropriate system parameters. The system converted a circular laser beam into a flat-top square focused spot, presenting the transformation of beamshape and the uniform distribution of the spatial intensity at the same time. Appropriate concentricity deviation of LA was made in the design of LA focus system, so that the diffraction patterns of different beamlets did not completely overlap and the large-scale intensity fluctuation reduced effectively, and a well-irradiated laser spot and great energy efficiency can be obtained in this scheme.

  10. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    SciTech Connect

    Lar'kin, A. Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-15

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  11. Joint Experiments on X-ray/Particle Emission from Plasmas Produced by Laser Irradiating Nano Structured Targets

    NASA Astrophysics Data System (ADS)

    Hegazy, H.; Allam, S. H.; Chaurasia, S.; Dhareshwar, L.; El-Sherbini, Th. M.; Kunze, H.-J.; Mank, G.; McDaniel, D. H.; Rosinski, M.; Ryc, L.; Stewart, B.; Wolowski, J.; Abd El-Ghany, H.; Abd El-Latif, G.; Abd El-Rahim, F. M.; Bedrane, Z.; Diab, F.; Farrag, A.; Hedwig, R.; Helal, A.; Pardede, M.; Refaie, A.; Sharkawy, H.; El-khatim, A., Sir

    2008-04-01

    The 1st Joint (Host Laboratory) Experiment on laser plasma involving more than twenty scientists from eight countries has been carried out at the Laser and New Materials Laboratory, Faculty of Science, Cairo University, Egypt. It was co-ordinated by the International Atomic Energy Agency (IAEA) and supported through the IAEA and the ICTP (International Centre for Theoretical Physics, Trieste). The main experimental programme was aimed at characterising the possible enhancement of x-ray and particle emission from plasmas produced by laser incidence on nano-structured targets. Laser beams at 1.064 μm of 250 mJ and 532 nm of 165 mJ focused at the target surface using a nanosecond laser type Quantel were used in the present study. In the present experiments nano-copper structures evaporated onto copper bulk disks and nano-gold structures evaporated onto gold ones were used. The thickness of the nano-materials on their bulk material was 1 μm. An ion collector and x-ray semiconductor diode were used to study the ion and x-ray emission, respectively. Both were positioned at the same port at 90° with respect to the target surface and at 90 cm from the surface in the case of the ion collector and 55 cm in the case of the x-ray detector. These experiments were performed at vacuum pressures of (5—8)×10-6 mbar. Comparison of both studies in the case of nano structured targets and bulk targets were performed at different laser fluencies (1×109-1×1012 W/cm2) on the target. A 20% increase of the X-ray emission for nano gold with respect to bulk gold was observed, however, the x-ray emission in the of nano copper and copper was the same.

  12. Joint Experiments on X-ray/Particle Emission from Plasmas Produced by Laser Irradiating Nano Structured Targets

    SciTech Connect

    Hegazy, H.; Diab, F.; Allam, S. H.; El-Sherbini, Th. M.; Abd El-Latif, G.; Farrag, A.; Helal, A.; Refaie, A.; Sharkawy, H.; Chaurasia, S.; Dhareshwar, L.; Kunze, H.-J.; Mank, G.; McDaniel, D. H.; Rosinski, M.; Ryc, L.; Wolowski, J.; Stewart, B.; Abd El-Ghany, H.; Abd El-Rahim, F. M.

    2008-04-07

    The 1st Joint (Host Laboratory) Experiment on laser plasma involving more than twenty scientists from eight countries has been carried out at the Laser and New Materials Laboratory, Faculty of Science, Cairo University, Egypt. It was co-ordinated by the International Atomic Energy Agency (IAEA) and supported through the IAEA and the ICTP (International Centre for Theoretical Physics, Trieste). The main experimental programme was aimed at characterising the possible enhancement of x-ray and particle emission from plasmas produced by laser incidence on nano-structured targets. Laser beams at 1.064 {mu}m of 250 mJ and 532 nm of 165 mJ focused at the target surface using a nanosecond laser type Quantel were used in the present study. In the present experiments nano-copper structures evaporated onto copper bulk disks and nano-gold structures evaporated onto gold ones were used. The thickness of the nano-materials on their bulk material was 1 {mu}m. An ion collector and x-ray semiconductor diode were used to study the ion and x-ray emission, respectively. Both were positioned at the same port at 90 deg. with respect to the target surface and at 90 cm from the surface in the case of the ion collector and 55 cm in the case of the x-ray detector. These experiments were performed at vacuum pressures of (5--8)x10{sup -6} mbar. Comparison of both studies in the case of nano structured targets and bulk targets were performed at different laser fluencies (1x10{sup 9}-1x10{sup 12} W/cm{sup 2}) on the target. A 20% increase of the X-ray emission for nano gold with respect to bulk gold was observed, however, the x-ray emission in the of nano copper and copper was the same.

  13. [Margin determination from clinical to planning target volume for lung cancer treated with conformal or intensity-modulated irradiation].

    PubMed

    Berthelot, K; Thureau, S; Giraud, P

    2016-10-01

    Technological progress in radiotherapy enables more precision for treatment planning and delivery. The margin determination between the clinical target volume and the planning target volumes stem from the estimation of geometric uncertainties of the tumour localization into the radiation beam. The inner motion complexity of lung tumours has led to the use of 4D computed tomography and nurtures specific dosimetric concerns. Few strategies consisting in integrating tumour motion allow margin reduction regarding inner movements. The patient immobilization and onboard imagery improvement decrease the setup uncertainties. Each step between the initial planning imagery and treatment delivery has to be analysed as systematic or random errors to calculate the optimal planning margin.

  14. A TPD and AR based comparison of accelerator neutron irradiation fields between (7)Li and W targets for BNCT.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Yonai, Shunsuke; Baba, Mamoru; Hoshi, Masaharu

    2014-06-01

    The characteristics of moderator assembly dimension was investigated for the usage of (7)Li(p,n) neutrons by 2.3-2.8MeV protons and W(p,n) neutrons by 50MeV protons. The indexes were the treatable protocol depth (TPD) and advantage depth (AD). Consequently, a configuration for W target with the Fe filter, Fluental moderator, Pb reflector showed the TPD of 5.8cm and AD of 9.3cm. Comparable indexes were found for the Li target in a geometry with the MgF2 moderator and Teflon reflector.

  15. Niobium sputtered Havar foils for the high-power production of reactive [18F]fluoride by proton irradiation of [18O]H2O targets.

    PubMed

    Wilson, J S; Avila-Rodriguez, M A; Johnson, R R; Zyuzin, A; McQuarrie, S A

    2008-05-01

    Niobium sputtered Havar entrance foils were used for the production of reactive [(18)F]fluoride by proton irradiation of [(18)O]H(2)O targets under pressurized conditions. The synthesis yield in the routine production of 2-[(18)F]fluoro-2-deoxy-glucose (FDG) was used as an indicative parameter of the reactivity of (18)F. The yield of FDG obtained with (18)F produced in a target with Havar foil was used as a baseline. No statistically significant difference was found in the saturated yields of (18)F when using Havar or Havar-Nb sputtered entrance foils. However, the amount of long-lived radionuclidic impurities decreased more than 10-fold using the Havar-Nb entrance foil. The average decay corrected synthesis yield of FDG, evaluated over a period of more than 2 years, was found to be approximately 5% higher when using a Havar-Nb entrance foil and a marked improvement on the FDG yield consistency was noted. In addition, the frequency of target rebuilding was greatly diminished when using the Nb sputtered entrance foil.

  16. The role of repair in the survival of mammalian cells from heavy ion irradiation - Approximation to the ideal case of target theory

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Story, M. D.

    1989-01-01

    Experiments are discussed in which the cell-cycle dependency of the repair deficiency of the S/S variant of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, Ne-20, Si-28, Ar-40, Fe-56, and Nb-93. Evidence from those studies provide support for the notion that as the linear energy transfer of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until it is eliminated around 500 keV/micron. In the region of the latter linear energy transfer value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism does not influence cell survival.

  17. INSTRUMENTS AND METHODS OF INVESTIGATION: Generation of high-order harmonics of high-power lasers in plasmas produced under irradiation of solid target surfaces by a prepulse

    NASA Astrophysics Data System (ADS)

    Ganeev, Rashid A.

    2009-01-01

    Research on high-order harmonic generation in laser-produced plasmas is reviewed. We analyze the conditions for the generation of harmonics (up to the 101st order, λ = 7.9 nm) in the propagation of laser radiation through a weakly ionized plasma prepared by irradiating the surfaces of different targets with a laser prepulse. We discuss the findings of investigations into the resonance intensity enhancement of individual harmonics in a number of plasma formations, which have demonstrated a substantial increase in the conversion efficiency in the plateau region of the harmonic-order distribution (in particular, of the 13th harmonic in indium plasmas with the efficiency 10-4). We review the results of investigations of harmonic generation in nanoparticle-containing plasmas. Different techniques for increasing the intensity and order of the generated harmonics are discussed.

  18. LIBS Spectral Data for a Mixed Actinide Fuel Pellet Containing Uranium, Plutonium, Neptunium and Americium

    SciTech Connect

    Judge, Elizabeth J.; Berg, John M.; Le, Loan A.; Lopez, Leon N.; Barefield, James E.

    2012-06-18

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze a mixed actinide fuel pellet containing 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2}. The preliminary data shown here is the first report of LIBS analysis of a mixed actinide fuel pellet, to the authors knowledge. The LIBS spectral data was acquired in a plutonium facility at Los Alamos National Laboratory where the sample was contained within a glove box. The initial installation of the glove box was not intended for complete ultraviolet (UV), visible (VIS) and near infrared (NIR) transmission, therefore the LIBS spectrum is truncated in the UV and NIR regions due to the optical transmission of the window port and filters that were installed. The optical collection of the emission from the LIBS plasma will be optimized in the future. However, the preliminary LIBS data acquired is worth reporting due to the uniqueness of the sample and spectral data. The analysis of several actinides in the presence of each other is an important feature of this analysis since traditional methods must chemically separate uranium, plutonium, neptunium, and americium prior to analysis. Due to the historic nature of the sample fuel pellet analyzed, the provided sample composition of 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2} cannot be confirm without further analytical processing. Uranium, plutonium, and americium emission lines were abundant and easily assigned while neptunium was more difficult to identify. There may be several reasons for this observation, other than knowing the exact sample composition of the fuel pellet. First, the atomic emission wavelength resources for neptunium are limited and such techniques as hollow cathode discharge lamp have different dynamics than the plasma used in LIBS which results in different emission spectra. Secondly, due to the complex sample of four actinide elements, which all have very dense electronic energy levels, there may be reactions and

  19. Structural variability in neptunium(V) oxalate compounds: synthesis and structural characterization of Na2NpO2(C2O4)OH.H2O.

    PubMed

    Bean, Amanda C; Garcia, Eduardo; Scott, Brian L; Runde, Wolfgang

    2004-10-04

    Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.

  20. WE-EF-BRA-07: High Performance Preclinical Irradiation Through Optimized Dual Focal Spot Dose Painting and Online Virtual Isocenter Radiation Field Targeting

    SciTech Connect

    Stewart, J; Lindsay, P; Jaffray, D

    2015-06-15

    Purpose: Advances in radiotherapy practice facilitated by collimation systems to shape radiation fields and image guidance to target these conformal beams have motivated proposals for more complex dose patterns to improve the therapeutic ratio. Recent progress in small animal radiotherapy platforms has provided the foundation to validate the efficacy of such interventions, but robustly delivering heterogeneous dose distributions at the scale and accuracy demanded by preclinical studies remains challenging. This work proposes a dual focal spot optimization method to paint spatially heterogeneous dose regions and an online virtual isocenter targeting method to accurately target the dose distributions. Methods: Two-dimensional dose kernels were empirically measured for the 1 mm diameter circular collimator with radiochromic film in a solid water phantom for the small and large x-ray focal spots on the X-RAD 225Cx microirradiator. These kernels were used in an optimization framework which determined a set of animal stage positions, beam-on times, and focal spot settings to optimally deliver a given desired dose distribution. An online method was developed which defined a virtual treatment isocenter based on a single image projection of the collimated radiation field. The method was demonstrated by optimization of a 6 mm circular 2 Gy target adjoining a 4 mm semicircular avoidance region. Results: The dual focal spot technique improved the optimized dose distribution with the proportion of avoidance region receiving more than 0.5 Gy reduced by 40% compared to the large focal spot technique. Targeting tests performed by irradiating ball bearing targets on radiochromic film pieced revealed the online targeting method improved the three-dimensional accuracy from 0.48 mm to 0.15 mm. Conclusion: The dual focal spot optimization and online virtual isocenter targeting framework is a robust option for delivering dose at the preclinical level and provides a new experimental

  1. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  2. Neptunium(V) adsorption to bacteria at low and high ionic strength

    SciTech Connect

    Ams, David A; Swanson, Juliet S; Reed, Donald T; Fein, Jeremy B

    2010-12-08

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO{sub 2}{sup +} aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO{sub 2}{sup +}) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than

  3. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway

    PubMed Central

    Jia-Quan, Qu; Hong-Mei, Yi; Xu, Ye; Li-Na, Li; Jin-Feng, Zhu; Ta, Xiao; Li, Yuan; Jiao-Yang, Li; Yuan-Yuan, Wang; Juan, Feng; Qiu-Yan, He; Shan-Shan, Lu; Hong, Yi; Zhi-Qiang, Xiao

    2015-01-01

    Radioresistance poses a major challenge in nasopharyngeal carcinoma (NPC) treatment, but little is known about how miRNA regulates this phenomenon. In this study, we investigated the function and mechanism of miR-23a in NPC radioresistance, one of downregulated miRNAs in the radioresistant NPC cells identified by our previous microarray analysis. We observed that miR-23a was frequently downregulated in the radioresistant NPC tissues, and its decrement correlated with NPC radioresistance and poor patient survival, and was an independent predictor for reduced patient survival. In vitro radioresponse assays showed that restoration of miR-23a expression markedly increased NPC cell radiosensitivity. In a mouse model, therapeutic administration of miR-23a agomir dramatically sensitized NPC xenografts to irradiation. Mechanistically, we found that reduced miR-23a promoted NPC cell radioresistance by activating IL-8/Stat3 signaling. Moreover, the levels of IL-8 and phospho-Stat3 were increased in the radioresistance NPC tissues, and negatively associated with miR-23a level. Our data demonstrate that miR-23a is a critical determinant of NPC radioresponse and prognostic predictor for NPC patients, and its decrement enhances NPC radioresistance through activating IL-8/Stat3 signaling, highlighting the therapeutic potential of miR-23a/IL-8/Stat3 signaling axis in NPC radiosensitization. PMID:26314966

  4. Multi-facet concentrator of solar setup for irradiating the objects placed in a target plane with solar light

    DOEpatents

    Lewandowski, Allan A.; Yampolskiy, Vladislav; Alekseev, Valerie; Son, Valentin

    2001-01-01

    According to the proposed invention, this technical result is achieved so that many-facet concentrator of a solar setup for exposure of objects, placed in a target plane, to the action of solar radiation containing a supporting frame and facets differing by that the facets of the concentrator are chosen with spherical focusing reflective surfaces of equal focal lengths and with selective coatings reflecting a desired spectral fraction of solar radiation, and are arranged on the supporting frame symmetrically with respect to the common axis of the concentrator, their optical axes being directed to the single point on the optical axis of the concentrator located before the nominal focus point of the concentrator and determining the position of arranging the target plane.

  5. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    SciTech Connect

    Halfon, S.; Feinberg, G.; Arenshtam, A.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z.; Paul, M. Tessler, M.

    2014-05-15

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  6. Experimental Study on Fast Electrons Transport in Ultra-intense Laser Irradiated Solid Targets by Transition Radiation

    NASA Astrophysics Data System (ADS)

    Zhijian, Zheng; Guangcan, Wang; Yuqiu, Gu

    2008-11-01

    The experiment was performed with SILEX laser facility(Ti-saphhire) at LFRC in China. The SILEX parameter: wavelength 0.8μm, duration 35fs, output power 280TW, contrast 5*105, The focal spot φ10μm(F/1.7), intensity on target surface 1*10^19W/cm^2(F/3). The main diagnostic equipments are the electron spectrometer, OMA spectrometer, optical streak camera. Some experimental results are given: The spectrum of optical emission from rear surface is rather narrow around some particular frequencies(1φ, 2φ, 3φ), We ascribe and confirm that the spike-like spectral line that is coherent transition radiation; The coherent light is also seen on time-integrated image with ring-patter due to Weibel instability of the fast electron transport; Obtained experimental cure of target thickness vs OTR image intensity is relative to mean free path of fast electron; The measuring optical transition radiation(OTR) duration of 171ps much longer than 1ps duration of fast electron transport target, the possible explanation is that the OTR duration to be determined magnetic diffusion time.

  7. High Resolution Monochromatic X-Ray Imaging of Targets Irradiated by the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Lehecka, T.; Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Holland, G.

    1996-11-01

    Planar CH foils were accelerated by the main Nike laser driving beams and were backlit by Si plasmas. A spherically-bent quartz crystal (R=25cm, 2d=6.68703 Åimaged the radiation of He-like Si resonance line that was transmitted through the target foil. The intensity of the backlighted image (6 beams, 250 J) was 160 times greater than the self emission from a driven CH foil. The magnified (X9.6) images on DEF film had the resolution about 5 μ m (3 μ m with R=10cm). The resulting 10 μ m spatial resolution in the gated images was determined by 100 μ m resolution of the framing camera. Images of CH targets were recorded 2 nsec after the peak of the laser pulse and revealed the growth of Rayleigh-Taylor instabilities that were seeded by patterns with amplitude as small as 0.25 μ m. The image of driven smooth CH target was quite smooth compared to those of the patterned CH foil. A future imaging instrument will have multiple backlighter plasmas and better quality bent crystals that can be bent into a toroidal shape. Up to four images with higher magnification and spatial resolution of 5 μ m may be recorded on the framing camera. This work supported by the US Department of Energy

  8. Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL

    SciTech Connect

    Freels, James D; Jain, Prashant K; Hobbs, Randy W

    2012-01-01

    The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

  9. Young geologist trades neptunium for newspapers as 2012 AGU Mass Media Fellow

    NASA Astrophysics Data System (ADS)

    Adams, Mary Catherine

    2012-05-01

    Though the lure of rocks, minerals, and radioactive elements took her away from her original studies, one geology Ph.D. candidate is returning to her journalism roots this summer as AGU's 2012 Mass Media Science and Engineering Fellow. Jessica Morrison is one of 12 young scientists nationwide who are trading in their lab coats for reporters' notebooks in mid-June as part of the program coordinated by the American Association for the Advancement of Science, which helps young scientists cultivate communication skills to help disseminate scientific information to general audiences. Morrison is a Ph.D. student in the Department of Civil Engineering and Geological Sciences at the University of Notre Dame. She spends her days in a laboratory investigating the geochemistry of actinides, the radioactive elements in the "no man's land" of the periodic table—the section that often gets left off or moved to the bottom. These are elements like uranium, neptunium, and plutonium.

  10. Straightforward reductive routes to air-stable uranium(III) and neptunium(III) materials.

    PubMed

    Cross, Justin N; Villa, Eric M; Darling, Victoria R; Polinski, Matthew J; Lin, Jian; Tan, Xiaoyan; Kikugawa, Naoki; Shatruk, Michael; Baumbach, Ryan; Albrecht-Schmitt, Thomas E

    2014-07-21

    Studies of trivalent uranium (U(3+)) and neptunium (Np(3+)) are restricted by the tendency of these ions to oxidize in the presence of air and water, requiring manipulations to be carried out in inert conditions to produce trivalent products. While the organometallic and high-temperature reduction chemistry of U(3+) and, to a much smaller extent, Np(3+) has been explored, the study of the oxoanion chemistry of these species has been limited despite their interesting optical and magnetic properties. We report the synthesis of U(3+) and Np(3+) sulfates by utilizing zinc amalgam as an in situ reductant with absolutely no regard to the exclusion of O2 or water. By employing this method we have developed a family of alkali metal U(3+) and Np(3+) sulfates that are air and water stable. The structures, electronic spectra, and magnetic behavior are reported.

  11. THERMODYNAMICS OF NEPTUNIUM(V) FLOURIDE AND SULFATE AT ELEVATED TEMPERATURES

    SciTech Connect

    L. Rao; G. Tian; Y. Xia; J.I. Friese

    2006-03-06

    Complexation of neptunium(V) with fluoride and sulfate at elevated, temperatures was studied by microcalorimetry. Thermodynamic parameters, including the equilibrium constants and enthalpy of protonation of fluoride and sulfate, and the enthalpy of complexation between Np(V) and fluoride and sulfate at 25-70 C were determined. Results show that the complexation of Np(V) with fluoride and sulfate is endothermic and that the complexation is enhanced by the increase in temperature--a threefold increase in the stability constants of NpO{sub 2}F(aq) and NpO{sub 2}SO{sub 4}{sup -} as the temperature is increased from 25 to 70 C.

  12. Mineralogical Charecteristics of Yucca Mountain Alluvium and Effects on Neptunium (V) Sorption

    SciTech Connect

    M. Ding; S.J. Chipera; P.W. Reimus

    2006-09-05

    Saturated alluvium is expected to serve as an important natural barrier to radionuclide transport at Yucca Mountain, the proposed geological repository for disposal of high-level nuclear wastes. {sup 237}Np(V) (half-life = 2.4 x 10{sup 5} years) has been identified as one of the radionuclides that could potentially contribute the greatest dose to humans because of its relatively high solubility and weak adsorption to volcanic tuffs under oxidizing conditions. The previous studies suggested that the mineralogical characteristics of the alluvium play an important role in the interaction between Np(V) and the alluvium. The purpose of this study is to further evaluate the mineralogical basis for Neptunium (V) sorption by saturated alluvium located down-gradient of Yucca Mountain.

  13. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Ballard, B; Birnbaum, E R; Bitteker, L J; Couture, A; Fassbender, M E; Goff, G S; Gritzo, R; Hemez, F M; Runde, W; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for the formation of (225,227)Ac, (223,225)Ra, and (227)Th via the proton bombardment of natural thorium targets were measured at a nominal proton energy of 800 MeV. No earlier experimental cross section data for the production of (223,225)Ra, (227)Ac and (227)Th by this method were found in the literature. A comparison of theoretical predictions with the experimental data shows agreement within a factor of two. Results indicate that accelerator-based production of (225)Ac and (223)Ra is a viable production method.

  14. Neptunium(V) sorption on quartz and albite in aqueous suspension; Annual progress report

    SciTech Connect

    Kohler, M.; Leckie, J.O.

    1991-10-01

    The behavior of neptunium in the subsurface environment is of interest since neptunium isotopes are included in nuclear waste. Previous work investigated the sorption behavior of Np onto {alpha}-Fe{sub 2}O{sub 3} (hematite), an accessory mineral of the Yucca Mountain repository. The work reported herein involves the much more abundant silicate minerals quartz and albite, and is a logical continuation of the ongoing task. In previous work increased sorption was observed in systems containing hematite and EDTA, a ligand which acts as a surrogate for organic complexing agents. In addition, increased partial pressures of CO{sub 2} are common in many ground waters and the effects of carbonate on sorption of radionuclides have to be studied as well. At concentration levels of 10{sup {minus}7} M, Np(V) does not adsorb strongly on quartz and albite up to pH values of approximately 9 at solid/solution ratios of 30 to 40 g/l. Significant adsorption (> 20%) occurs on both minerals only at pH > 9. Pretreatment of albite affects the sorption behavior of this mineral at pH > 9, possibly due to the formation of secondary mineral phases at the albite surface. EDTA does not adsorb on quartz at concentrations of 10{sup {minus}6} M. In the presence of 50 {mu}M EDTA, Np(V) sorption seems to be restricted. EDTA at the 10{sup {minus}6} M level adsorbs onto albite to an appreciable degree at pH values < 7.5. One {mu}M EDTA has no effect on Np(V) adsorption onto albite. Carbonate species adsorb on quartz and albite, both cases showing a maximum in sorption at pH 6.5 to 7 where HCO{sub 3}{sup {minus}} is the predominant solution species.

  15. High e+/e– ratio dense pair creation with 1021W.cm–2 laser irradiating solid targets

    SciTech Connect

    Liang, E.; Clarke, T.; Henderson, A.; Fu, W.; Lo, W.; Taylor, D.; Chaguine, P.; Zhou, S.; Hua, Y.; Cen, X.; Wang, X.; Kao, J.; Hasson, H.; Dyer, G.; Serratto, K.; Riley, N.; Donovan, M.; Ditmire, T.

    2015-09-14

    In this study, we report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 1021 W.cm–2 and pulse durations as short as ~130 fs. Positron to electron (e+/e–) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e– ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×1010 with emerging pair density reaching ~1015/cm3 so that the pair skin depth becomes < pair jet transverse size. These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e– approaching 100% and pair skin depth << pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.

  16. Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser irradiated Cu foil targets

    SciTech Connect

    Theobald, W; Akli, K; Clarke, R; Delettrez, J A; Freeman, R R; Glenzer, S; Green, J; Gregori, G; Heathcote, R; Izumi, N; King, J A; Koch, J A; Kuba, J; Lancaster, K; MacKinnon, A J; Key, M; Mileham, C; Myatt, J; Neely, D; Norreys, P A; Park, H; Pasely, J; Patel, P; Regan, S P; Sawada, H; Shepherd, R; Snavely, R; Stephens, R B; Stoeckl, C; Storm, M; Zhang, B; Sangster, T C

    2005-12-13

    A hot, T{sub e} {approx} 2- to 3-keV surface plasma was observed in the interaction of a 0.7-ps petawatt laser beam with solid copper-foil targets at intensities >10{sup 20} W/cm{sup 2}. Copper K-shell spectra were measured in the range of 8 to 9 keV using a single-photon-counting x-ray CCD camera. In addition to K{sub {alpha}} and K{sub {beta}} inner-shell lines, the emission contained the Cu He{sub {alpha}} and Ly{sub {alpha}} lines, allowing the temperature to be inferred. These lines have not been observed previously with ultrafast laser pulses. For intensities less than 3 x 10{sup 18} W/cm{sup 2}, only the K{sub {alpha}} and K{sub {beta}} inner-shell emissions are detected. Measurements of the absolute K{sub {alpha}} yield as a function of the laser intensity are in agreement with a model that includes refluxing and confinement of the suprathermal electrons in the target volume.

  17. Direct detection of delayed high energy electrons from the 181Ta target irradiated by a moderate intensity femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Savel’ev, A.; Chefonov, O.; Ovchinnikov, A.; Agranat, M.; Spohr, K. M.

    2017-03-01

    We depict an experimental study of delayed fast, negatively charged particles from femtosecond laser-plasma interaction at an intensity of I ∼ 1017 W cm‑2. Plates of 2 mm thickness made of 181Ta (∼100% abundance) and natural W were used as targets. We distinguished certain delayed events due to detection of negative H‑, C‑ and O‑ ions. However, most events which were delayed by 0.5–5 μs with respect to the instantaneous plasma formation caused by the laser pulses, were identified as electrons with energies of 3–7 keV. A comparative analysis between the tantalum and tungsten spectra was undertaken. This revealed a close similarity between the measured spectrum for tantalum and the predicted spectrum for electrons arising from to the internal conversion decay of the 6.237 keV nuclear isomeric state in 181Ta.

  18. Influence of the local atomic structure in the X-ray absorption near edge spectroscopy of neptunium oxo ions.

    PubMed

    Lozano, Janeth M; Clark, David L; Conradson, Steven D; Den Auwer, Christophe; Fillaux, Clara; Guilaumont, Dominique; Keogh, D Webster; Mustre de Leon, Jose; Palmer, Phillip D; Simoni, Eric

    2009-11-28

    Experimental L(III) X-ray absorption near edge structure (XANES) spectra of the distorted octahedral neptunium oxo ions NpO(2)(OH)(4)(2-), NpO(4)(OH)(2)(3-), and NpO(6)(6-) are interpreted using relativistic full multiple scattering calculations of the X-ray absorption process. In this series of compounds, the neptunium cation exhibits two different oxidation states, VI and VII, with coordination spheres from di- to tetra oxo for the first two compounds. The comparison between calculated XANES spectra using the feff code and experimental ones shows that the main features in the spectra are determined by the local coordination around the actinide metal center. Furthermore, the projected density of electronic states (DOS) calculated from the XANES simulations using the feff code are compared to calculations using ADF code. They are both discussed in terms of molecular orbitals and qualitative evolution of bonding within this series of compounds.

  19. Radioactive waste forms stabilized by ChemChar gasification: characterization and leaching behavior of cerium, thorium, protactinium, uranium, and neptunium.

    PubMed

    Marrero, T W; Morris, J S; Manahan, S E

    2004-02-01

    The uses of a thermally reductive gasification process in conjunction with vitrification and cementation for the long-term disposal of low level radioactive materials have been investigated. gamma-ray spectroscopy was used for analysis of carrier-free protactinium-233 and neptunium-239 and a stoichiometric amount of cerium (observed cerium-141) subsequent to gasification and leaching, up to 48 days. High resolution ICP-MS was used to analyze the cerium, thorium, and uranium from 46 to 438 days of leaching. Leaching procedures followed the guidance of ASTM Procedure C 1220-92, Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste. The combination of the thermally reductive pretreatment, vitrification and cementation produced a highly non-leachable form suitable for long-term disposal of cerium, thorium, protactinium, uranium, and neptunium.

  20. Resistance induced by normal and irradiated Schistosoma mansoni: ability of various worm stages to serve as inducers and targets in mice

    SciTech Connect

    Dean, D.A.; Cioli, D.; Bukowski, M.A.

    1981-09-01

    Lung stage schistosomula exposed to 50 kilorads of gamma irradiation induced significant resistance to challenge infection with Schistosoma mansoni following intravenous (tail or mesenteric vein), intramuscular, or intraperitoneal injection into mice. Similar or higher levels were induced with irradiated cercariae, while irradiated 3- or 4-week-old worms induced little resistance. Non-irradiated day 6 and day 12 lung schistosomula injected into mice immunized with irradiated cercariae were susceptible to elimination, though to a lesser extent than a challenge infection administered at the cercarial stage. Day 20 liver worms injected into a mesenteric vein were not susceptible to irradiated cercaria-induced resistance. In contrast, cercariae, day 6 lung schistosomula, day 12 lung schistosomula and day 20 liver worms were all susceptible to the resistance induced by a chronic (non-irradiated) infection.

  1. Verifying the presence of low levels of neptunium in a uranium matrix with electron energy-loss spectroscopy.

    PubMed

    Buck, Edgar C; Douglas, Matt; Wittman, Rick S

    2010-01-01

    This paper examines the problems associated with analysis of low levels of neptunium in a uranium matrix with electron energy-loss spectroscopy (EELS) on the transmission electron microscope (TEM). The detection of neptunium in a matrix of uranium can be impeded by the occurrence of a plural scattering event from uranium (U-M(5)+U-O(4,5)) that results in severe overlap on the Np-M(5) edge at 3665 eV. Low levels of Np (1600-6300 ppm) can be detected in a uranium solid, uranophane [Ca(UO(2))(2)(SiO(3)OH)(2)(H(2)O)(5)], by confirming that the energy gap between the Np-M(5) and Np-M(4) edges is at 184 eV and showing that the M(4)/M(5) ratio for the neptunium is smaller than that for uranium. The Richardson-Lucy deconvolution method was applied to energy-loss spectral images and was shown to increase the signal to noise ratio.

  2. The effect of the mass and initial chemical form of neptunium on its molecular associations in blood and liver.

    PubMed

    Paquet, F; Ramounet, B; Métivier, H; Taylor, D M

    1996-09-01

    The present investigation was aimed at establishing the distribution of neptunium in blood and liver cells as a function of the mass and chemical form of the radionuclide injected. Four groups of rats received intravenous injections of 237Np(V), 237Np(IV), 239Np(V) or 239Np(IV). Twenty-four hours after injection of the radionuclide, subcellular structures of the liver were separated by ultracentrifugation and serum and liver cytosol were subjected to gel permeation chromatography. The intracellular distribution of neptunium in liver depends on the mass of the radionuclide injected; the relative specific activity for 237Np compared to 239Np was 2 in nuclei and 0.5-0.9 in cytosol. By contrast, the initial chemical form of the radionuclide has no significant effect on its intracellular distribution. In cytosol, neptunium was bound mainly by two proteins of molecular weight 450 and 200 kDa, respectively. The former was identified as ferritin, but the latter remains unidentified. In this compartment, no effect of mass or chemical form was seen. In blood, the bulk of the radionuclide was bound to transferrin whatever the mass and initial chemical form injected.

  3. Targeted Therapy Against VEGFR and EGFR With ZD6474 Enhances the Therapeutic Efficacy of Irradiation in an Orthotopic Model of Human Non-Small-Cell Lung Cancer

    SciTech Connect

    Shibuya, Keiko; Komaki, Ritsuko; Shintani, Tomoaki; Itasaka, Satoshi; Ryan, Anderson; Juergensmeier, Juliane M.; Milas, Luka; Ang, Kian; Herbst, Roy S.; O'Reilly, Michael S.

    2007-12-01

    Purpose: Conventional therapies for patients with lung cancer have reached a therapeutic plateau. We therefore evaluated the feasibility of combined vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and epidermal growth factor (EGF) receptor (EGFR) targeting with radiation therapy in an orthotopic model that closely recapitulates the clinical presentation of human lung cancer. Methods and Materials: Effects of irradiation and/or ZD6474, a small-molecule inhibitor of VEGFR2 and EGFR tyrosine kinases, were studied in vitro for human lung adenocarcinoma cells by using proliferation and clonogenic assays. The feasibility of combining ZD6474 with radiation therapy was then evaluated in an orthotopic model of human lung adenocarcinoma. Lung tumor burden and spread within the thorax were assessed, and tumor and adjacent tissues were analyzed by means of immunohistochemical staining for multiple parameters, including CD31, VEGF, VEGFR2, EGF, EGFR, matrix metalloproteinase-2 and -9, and basic fibroblast growth factor. Results: ZD6474 enhanced the radioresponse of NCI-H441 human lung adenocarcinoma cells by a factor of 1.37 and markedly inhibited sublethal damage repair. In vivo, the combined blockade of VEGFR2 and EGFR by ZD6474 blocked pleural effusion formation and angiogenesis and enhanced the antivascular and antitumor effects of radiation therapy in the orthotopic human lung cancer model and was superior to chemoradiotherapy. Conclusions: When radiation therapy is combined with VEGFR2 and EGFR blockade, significant enhancement of antiangiogenic, antivascular, and antitumor effects are seen in an orthotopic model of lung cancer. These data provide support for clinical trials of biologically targeted and conventional therapies for human lung cancer.

  4. Performance of a new Electron-Tracking Compton Camera under intense radiations from a water target irradiated with a proton beam

    NASA Astrophysics Data System (ADS)

    Matsuoka, Y.; Tanimori, T.; Kubo, H.; Takada, A.; Parker, J. D.; Mizumoto, T.; Mizumura, Y.; Iwaki, S.; Sawano, T.; Komura, S.; Kishimoto, T.; Oda, M.; Takemura, T.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kabuki, S.; Kurosawa, S.

    2015-01-01

    We have developed an electron-tracking Compton camera (ETCC) for use in next-generation MeV gamma ray telescopes. An ETCC consists of a gaseous time projection chamber (TPC) and pixel scintillator arrays (PSAs). Since the TPC measures the three dimensional tracks of Compton-recoil electrons, the ETCC can completely reconstruct the incident gamma rays. Moreover, the ETCC demonstrates efficient background rejection power in Compton-kinematics tests, identifies particle from the energy deposit rate (dE/dX) registered in the TPC, and provides high quality imaging by completely reconstructing the Compton scattering process. We are planning the ``Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment'' (SMILE) for our proposed all-sky survey satellite. Performance tests of a mid-sized (30 cm)3 ETCC, constructed for observing the Crab nebula, are ongoing. However, observations at balloon altitudes or satellite orbits are obstructed by radiation background from the atmosphere and the detector itself [1]. The background rejection power was checked using proton accelerator experiments conducted at the Research Center for Nuclear Physics, Osaka University. To create the intense radiation fields encountered in space, which comprise gamma rays, neutrons, protons, and other energetic entities, we irradiated a water target with a 140 MeV proton beam and placed a SMILE-II ETCC near the target. In this situation, the counting rate was five times than that expected at the balloon altitude. Nonetheless, the ETCC stably operated and identified particles sufficiently to obtain a clear gamma ray image of the checking source. Here, we report the performance of our detector and demonstrate its effective background rejection based in electron tracking experiments.

  5. Postirradiation evaluations of capsules HANS-1 and HANS-2 irradiated in the HFIR target region in support of fuel development for the advanced neutron source

    SciTech Connect

    Hofman, G.L.; Snelgrove, J.L.; Copeland, G.L.

    1995-08-01

    This report describes the design, fabrication, irradiation, and evaluation of two capsule tests containing U{sub 3}Si{sub 2} fuel particles in contact with aluminum. The tests were in support of fuel qualification for the Advanced Neutron Source (ANS) reactor, a high-powered research reactor that was planned for the Oak Ridge National Laboratory. At the time of these tests, the fuel consisted of U{sub 3}Si{sub 2}, containing highly enriched uranium dispersed in aluminum at a volume fraction of {approximately}0.15. The extremely high thermal flux in the target region of the High Flux Isotope Reactor provided up to 90% burnup in one 23-d cycle. Temperatures up to 450{degrees}C were maintained by gamma heating. Passive SiC temperature monitors were employed. The very small specimen size allowed only microstructural examination of the fuel particles but also allowed many specimens to be tested at a range of temperatures. The determination of fission gas bubble morphology by microstructural examination has been beneficial in developing a fuel performance model that allows prediction of fuel performance under these extreme conditions. The results indicate that performance of the reference fuel would be satisfactory under the ANS conditions. In addition to U{sub 3}Si{sub 2}, particles of U{sub 3}Si, UAl{sub 2}, UAl{sub x}, and U{sub 3}O{sub 8} were tested.

  6. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer

    PubMed Central

    Zhang, Lianru; Li, Rutian; Chen, Hong; Wei, Jia; Qian, Hanqing; Su, Shu; Shao, Jie; Wang, Lifeng; Qian, Xiaoping; Liu, Baorui

    2017-01-01

    Cell membrane-derived nanoparticles are becoming more attractive because of their ability to mimic many features of their source cells. This study reports on a biomimetic delivery platform based on human cytotoxic T-lymphocyte membranes. In this system, the surface of poly-lactic-co-glycolic acid nanoparticles was camouflaged using T-lymphocyte membranes, and local low-dose irradiation (LDI) was used as a chemoattractant for nanoparticle targeting. The T-lymphocyte membrane coating was verified using dynamic light scattering, transmission electron microscopy, and confocal laser scanning microscopy. This new platform reduced nanoparticle phagocytosis by macrophages to 23.99% (P=0.002). Systemic administration of paclitaxel-loaded T-lymphocyte membrane-coated nanoparticles inhibited the growth of human gastric cancer by 56.68% in Balb/c nude mice. Application of LDI at the tumor site significantly increased the tumor growth inhibition rate to 88.50%, and two mice achieved complete remission. Furthermore, LDI could upregulate the expression of adhesion molecules in tumor vessels, which is important in the process of leukocyte adhesion and might contribute to the localization of T-lymphocyte membrane-encapsulated nanoparticles in tumors. Therefore, this new drug-delivery platform retained both the long circulation time and tumor site accumulation ability of human cytotoxic T lymphocytes, while local LDI could significantly enhance tumor localization. PMID:28360520

  7. Separation of plutonium and neptunium species by capillary electrophoresis-inductively coupled plasma-mass spectrometry and application to natural groundwater samples.

    PubMed

    Kuczewski, Bernhard; Marquardt, Christian M; Seibert, Alice; Geckeis, Horst; Kratz, Jens Volker; Trautmann, Norbert

    2003-12-15

    Capillary electrophoresis (CE) was coupled to ICPMS in order to combine the good performance of this separation technique with the high sensitivity of the ICPMS for the analysis of plutonium and neptunium oxidation states. The combination of a fused-silica capillary with a MicroMist AR 30-I-FM02 nebulizer and a Cinnabar small-volume cyclonic spray chamber yielded the best separation results. With this setup, it was possible to separate a model element mixture containing neptunium (NpO2(+)), uranium (UO2(2+)), lanthanum (La3+), and thorium (Th4+) in 1 M acetic acid. The same conditions were also suitable for the separation of various oxidation states of plutonium and neptunium in different aqueous samples. All separations were obtained within less than 15 min. A detection limit of 50 ppb identical with 2 x 10(-7) M (3-fold standard deviation of a blank) was achieved. To prove the negligible disturbance of the plutonium and neptunium redox equilibria during the CE separations, plutonium and neptunium speciation by CE-ICPMS in acidic solutions was compared with the results of UV/visible absorption spectroscopy and was found to be in good agreement. The CE-ICPMS system was also applied to study the reduction of Pu(VI) in a humic acid-containing groundwater at different pH values.

  8. WE-G-BRE-09: Targeted Radiotherapy Enhancement During Accelerated Partial Breast Irradiation (ABPI) Using Controlled Release of Gold Nanoparticles (GNPs)

    SciTech Connect

    Cifter, G; Ngwa, W; Chin, J; Cifter, F; Sajo, E; Sinha, N; Bellon, J

    2014-06-15

    Purpose: Several studies have demonstrated low rates of local recurrence with brachytherapy-based accelerated partial breast irradiation (APBI). However, long-term outcomes on toxicity (e.g. telangiectasia), and cosmesis remain a major concern. The purpose of this study is to investigate the dosimetric feasibility of using targeted non-toxic radiosensitizing gold nanoparticles (GNPs) for localized dose enhancement to the planning target volume (PTV) during APBI while reducing dose to normal tissue. Methods: Two approaches for administering the GNPs were considered. In one approach, GNPs are assumed to be incorporated in a micrometer-thick polymer film on the surface of routinely used mammosite balloon applicators, for sustained controlled in-situ release, and subsequent treatment using 50-kVp Xoft devices. In case two, GNPs are administered directly into the lumpectomy cavity e.g. via injection or using fiducials coated with the GNP-loaded polymer film. Recent studies have validated the use of fiducials for reducing the PTV margin during APBI with 6 MV beams. An experimentally determined diffusion coefficient was used to determine space-time customizable distribution of GNPs for feasible in-vivo concentrations of 43 mg/g. An analytic calculational approach from previously published work was employed to estimate the dose enhancement due to GNPs (2 and 10 nm) as a function of distance up to 1 cm from lumpectomy cavity. Results: Dose enhancement due to GNP was found to be about 130% for 50-kVp x-rays, and 110% for 6-MV external beam radiotherapy, 1 cm away from the lumpectomy cavity wall. Higher customizable dose enhancement could be achieved at other distances as a function of nanoparticle size. Conclusion: Our preliminary results suggest that significant dose enhancement can be achieved to residual tumor cells targeted with GNPs during APBI with electronic brachytherapy or external beam therapy. The findings provide a useful basis for developing nanoparticle

  9. Quantitative NDA measurements of advanced reprocessing product materials containing uranium, neptunium, plutonium, and americium

    NASA Astrophysics Data System (ADS)

    Goddard, Braden

    The ability of inspection agencies and facility operators to measure powders containing several actinides is increasingly necessary as new reprocessing techniques and fuel forms are being developed. These powders are difficult to measure with nondestructive assay (NDA) techniques because neutrons emitted from induced and spontaneous fission of different nuclides are very similar. A neutron multiplicity technique based on first principle methods was developed to measure these powders by exploiting isotope-specific nuclear properties, such as the energy-dependent fission cross sections and the neutron induced fission neutron multiplicity. This technique was tested through extensive simulations using the Monte Carlo N-Particle eXtended (MCNPX) code and by one measurement campaign using the Active Well Coincidence Counter (AWCC) and two measurement campaigns using the Epithermal Neutron Multiplicity Counter (ENMC) with various (alpha,n) sources and actinide materials. Four potential applications of this first principle technique have been identified: (1) quantitative measurement of uranium, neptunium, plutonium, and americium materials; (2) quantitative measurement of mixed oxide (MOX) materials; (3) quantitative measurement of uranium materials; and (4) weapons verification in arms control agreements. This technique still has several challenges which need to be overcome, the largest of these being the challenge of having high-precision active and passive measurements to produce results with acceptably small uncertainties.

  10. Thermodynamic modeling of neptunium(V)-acetate complexation in concentrated NaCl media

    SciTech Connect

    Novak, C.F.; Borkowski, M.; Choppin, G.R.

    1995-09-01

    The complexation of neptunium(V), Np(V), with the acetate anion, Ac{sup -}, was measured in sodium chloride media to high concentration using an extraction technique. The data were interpreted using the thermodynamic formalism of Pitzer, which is valid to high electrolyte concentrations. A consistent model for the deprotonation constants of acetic acid in NaCl and NaClO{sub 4} media was developed. For the concentrations of acetate expected in a waste repository, only the neutral complex NpO{sub 2}Ac(aq) was important in describing the interactions between the neptunyl ion and acetate. The thermodynamic stability constant log {beta}{sup 0}{sub 101} for the reaction NpO{sub 2}{sup +} + Ac{sup -} {leftrightarrow} NpO{sub 2}Ac was calculated to be 1.46{plus_minus}0.11. This weak complexing behavior between the neptunyl ion and acetate indicates that acetate will not significantly enhance dissolved Np(V) concentrations in ground waters associated with nuclear waste repositories that may contain acetate.

  11. Application of the S=1 underscreened Anderson lattice model to Kondo uranium and neptunium compounds

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; da Rosa Simões, Acirete S.; Iglesias, J. R.; Lacroix, C.; Perkins, N. B.; Coqblin, B.

    2011-01-01

    Magnetic properties of uranium and neptunium compounds showing the coexistence of the Kondo screening effect and ferromagnetic order are investigated within the Anderson lattice Hamiltonian with a two-fold degenerate f level in each site, corresponding to 5f2 electronic configuration with S=1 spins. A derivation of the Schrieffer-Wolff transformation is presented and the resulting Hamiltonian has an effective f-band term, in addition to the regular exchange Kondo interaction between the S=1 f spins and the s=1/2 spins of the conduction electrons. The resulting effective Kondo lattice model can describe both the Kondo regime and a weak delocalization of the 5f electrons. Within this model we compute the Kondo and Curie temperatures as a function of model parameters, namely the Kondo exchange interaction constant JK, the magnetic intersite exchange interaction JH, and the effective f bandwidth. We deduce, therefore, a phase diagram of the model which yields the coexistence of the Kondo effect and ferromagnetic ordering and also accounts for the pressure dependence of the Curie temperature of uranium compounds such as UTe.

  12. Electronic structure properties of neptunium intermetallics under pressure from Moessbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalvius, G. M.; Potzel, W.; Zwirner, S.; Gal, J.; Nowik, I.

    1994-10-01

    Electronic structure properties of neptunium intermetallics obtained by the 60 keV Moessbauer resonance in Np-237 in the pressure range up to 9 GPa and at temperatures from 1.5 K to about 150 K together with X-ray determinations of the bulk modulus are discussed. Samples of the NaCl compounds NpX, the Laves phases NpX2 and the AuCu3 materials NpX3 as well as the tetragonal series NpX2S2 have been studied. The volume coefficients of magnetic moment and magnetic transition temperature allow the classification in terms of 5f bandwidth arising either from 5f-5f overlap or hybridization with ligand s, p, or d electrons. The pressure-temperature magnetic phase diagram of some of these compounds has also been investigated. In NpGa3 and NpIn3 we find a preference for ferromagnetic order under reduced volume. Finally we address the question of crystal field interactions and show that even in a somewhat delocalized case (NpAl2) they are decisive in determining the high pressure Moessbauer spectra.

  13. In-situ small-angle x-ray scattering study of nanoparticles in the plasma plume induced by pulsed laser irradiation of metallic targets

    SciTech Connect

    Lavisse, L.; Jouvard, J.-M.; Girault, M.; Potin, V.; Andrzejewski, H.; Marco de Lucas, M. C.; Bourgeois, S.; Le Garrec, J.-L.; Carles, S.; Mitchell, J. B. A.; Hallo, L.; Perez, J.; Decloux, J.

    2012-04-16

    Small angle x-ray scattering was used to probe in-situ the formation of nanoparticles in the plasma plume generated by pulsed laser irradiation of a titanium metal surface under atmospheric conditions. The size and morphology of the nanoparticles were characterized as function of laser irradiance. Two families of nanoparticles were identified with sizes on the order of 10 and 70 nm, respectively. These results were confirmed by ex-situ transmission electron microscopy experiments.

  14. The effect of temperature on the sorption of technetium, uranium, neptunium and curium on bentonite, tuff and granodiorite

    SciTech Connect

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; Tweed, C.J.; Yui, M.

    1997-12-31

    A study of the sorption of the radioelements technetium; uranium; neptunium; and curium onto geological materials has been carried out as part of the PNC program to increase confidence in the performance assessment for a high-level radioactive waste repository in Japan. Batch sorption experiments have been performed in order to study the sorption of the radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water under strongly-reducing conditions at both room temperature and at 60 C. Mathematical modelling using the geochemical speciation program HARPHRQ in conjunction with the HATCHES database has been undertaken in order to interpret the experimental results.

  15. The properties of 235Np as a tracer and yield monitor in studies of the environmental behaviour of neptunium

    NASA Astrophysics Data System (ADS)

    Harvey, B. R.; Sutton, G. A.

    1987-02-01

    The production, detection and decay scheme of 235Np are discussed with reference to the potential application of this nuclide as a tracer and alternative yield monitor for the analysis of 237Np in environmental materials. Improved detection efficiency, which results from assay by counting the L X-ray emissions on an Si(Li) detector, is shown to reduce substantially the problem caused by contamination of the tracer by 237Np. A most important use for 235Np is seen to be in the study of the oxidation states of neptunium in the environment.

  16. Inhibition of homologous recombination repair with Pentoxifylline targets G2 cells generated by radiotherapy and induces major enhancements of the toxicity of cisplatin and melphalan given after irradiation

    PubMed Central

    Bohm, Lothar

    2006-01-01

    The presentation reviews the modus operandi of the dose modifying drug Pentoxifylline and the dose enhancement factors which can be achieved in different cell types. Preclinical and clinical data show that Pentoxifylline improves the oxygenation of hypoxic tumours and enhances tumour control by irradiation. In vitro experiments demonstrate that Pentoxifylline also operates when oxygen is not limiting and produces dose modifying factors in the region of 1.2 – 2.0. This oxygen independent effect is poorly understood. In p53 mutant cells irradiation induces a G2 block which is abrogated by Pentoxifylline. The enhancement of cell kill observed when Pentoxifylline and irradiation are given together could arise from rapid entry of damaged tumour cells into mitosis and propagation of DNA lesions as the result of curtailment of repair time. Recovery ratios and repair experiments using CFGE after high dose irradiation demonstrate that Pentoxifylline inhibits repair directly and that curtailment of repair time is not the explanation. Use of the repair defective xrs1 and the parental repair competent CHO-K1 cell line shows that Pentoxifylline inhibits homologous recombination repair which operates predominantly in the G2 phase of the cell cycle. When irradiated cells residing in G2 phase are exposed to very low doses of cisplatin at a toxic dose of 5 %. (TC: 0.05) massive toxicity enhancements up to a factor of 80 are observed in melanoma, squamous carcinoma and prostate tumour cell lines. Enhancements of radiotoxicity seen when Pentoxifylline and radiation are applied together are small and do not exceed a factor of 2.0. The capacity of Pentoxifyline to inhibit homologous recombination repair has not as yet been clinically utilized. A suitable application could be in the treatment of cervical carcinoma where irradiation and cisplatin are standard modality. In vitro data also strongly suggest that regimes where irradiation is used in combination with alkylating drugs may

  17. Inhibition of homologous recombination repair with Pentoxifylline targets G2 cells generated by radiotherapy and induces major enhancements of the toxicity of cisplatin and melphalan given after irradiation.

    PubMed

    Bohm, Lothar

    2006-05-03

    The presentation reviews the modus operandi of the dose modifying drug Pentoxifylline and the dose enhancement factors which can be achieved in different cell types. Preclinical and clinical data show that Pentoxifylline improves the oxygenation of hypoxic tumours and enhances tumour control by irradiation. In vitro experiments demonstrate that Pentoxifylline also operates when oxygen is not limiting and produces dose modifying factors in the region of 1.2-2.0. This oxygen independent effect is poorly understood. In p53 mutant cells irradiation induces a G2 block which is abrogated by Pentoxifylline. The enhancement of cell kill observed when Pentoxifylline and irradiation are given together could arise from rapid entry of damaged tumour cells into mitosis and propagation of DNA lesions as the result of curtailment of repair time. Recovery ratios and repair experiments using CFGE after high dose irradiation demonstrate that Pentoxifylline inhibits repair directly and that curtailment of repair time is not the explanation. Use of the repair defective xrs1 and the parental repair competent CHO-K1 cell line shows that Pentoxifylline inhibits homologous recombination repair which operates predominantly in the G2 phase of the cell cycle. When irradiated cells residing in G2 phase are exposed to very low doses of cisplatin at a toxic dose of 5%. (TC: 0.05) massive toxicity enhancements up to a factor of 80 are observed in melanoma, squamous carcinoma and prostate tumour cell lines. Enhancements of radiotoxicity seen when Pentoxifylline and radiation are applied together are small and do not exceed a factor of 2.0. The capacity of Pentoxifyline to inhibit homologous recombination repair has not as yet been clinically utilized. A suitable application could be in the treatment of cervical carcinoma where irradiation and cisplatin are standard modality. In vitro data also strongly suggest that regimes where irradiation is used in combination with alkylating drugs may also

  18. Kinetics of neptunium(V) sorption and desorption on goethite: An experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Tinnacher, Ruth M.; Zavarin, Mavrik; Powell, Brian A.; Kersting, Annie B.

    2011-11-01

    Various sorption phenomena, such as aging, hysteresis and irreversible sorption, can cause differences between contaminant (ad)sorption and desorption behavior and lead to apparent sorption 'asymmetry'. We evaluate the relevance of these characteristics for neptunium(V) (Np(V)) sorption/desorption on goethite using a 34-day flow-cell experiment and kinetic modeling. Based on experimental results, the Np(V) desorption rate is much slower than the (ad)sorption rate, and appears to decrease over the course of the experiment. The best model fit with a minimum number of fitting parameters was achieved with a multi-reaction model including (1) an equilibrium Freundlich site (site 1), (2) a kinetically-controlled, consecutive, first-order site (site 2), and (3) a parameter ψ, which characterizes the desorption rate on site 2 based on a concept related to transition state theory (TST). This approach allows us to link differences in adsorption and desorption kinetics to changes in overall reaction pathways, without assuming different adsorption and desorption affinities (hysteresis) or irreversible sorption behavior a priori. Using modeling as a heuristic tool, we determined that aging processes are relevant. However, hysteresis and irreversible sorption behavior can be neglected within the time-frame (desorption over 32 days) and chemical solution conditions evaluated in the flow-cell experiment. In this system, desorption reactions are very slow, but they are not irreversible. Hence, our data do not justify an assumption of irreversible Np(V) sorption to goethite in transport models, which effectively limits the relevance of colloid-facilitated Np(V) transport to near-field environments. However, slow Np(V) desorption behavior may also lead to a continuous contaminant source term when metals are sorbed to bulk mineral phases. Additional long-term experiments are recommended to definitely rule out irreversible Np(V) sorption behavior at very low surface loadings and

  19. Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma

    SciTech Connect

    DeKalb, E.L. and Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  20. Neptunium(V) sorption to goethite at attomolar to micromolar concentrations.

    PubMed

    Snow, Mathew S; Zhao, Pihong; Dai, Zurong; Kersting, Annie B; Zavarin, Mavrik

    2013-01-15

    Sorption of 10(-18)-10(-5)M neptunium (Np) to goethite was examined using liquid scintillation counting and gamma spectroscopy. A combination approach using (239)Np and long lived (237)Np was employed to span this wide concentration range. (239)Np detection limits were determined to be 2×10(-18)M and 3×10(-17)M for liquid scintillation counting and gamma spectroscopy, respectively. Sorption was found to be linear below 10(-11)M, in contrast to the non-linear behavior observed at higher concentrations both here and in the literature. 2-site and 3-site Langmuir models were used to simulate sorption behavior over the entire 10(-18)-10(-5)M range. The 3-site model fit yielded Type I and II site densities of 3.56 sites/nm(2) (99.6%) and 0.014±0.007 sites/nm(2) (0.4±0.1%), consistent with typical "high affinity" and "low affinity" sites reported in the literature [21]. Modeling results for both models suggest that sorption below ~10(-11)M is controlled by a third (Type III) site with a density on the order of ~7×10(-5)sites/nm(2) (~0.002%). While the nature of this "site" cannot be determined from isotherm data alone, the sorption data at ultra-low Np concentrations indicate that Np(V) sorption to goethite at environmentally relevant concentrations will be (1) linear and (2) higher than previous (high concentration) laboratory experiments suggest.

  1. ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY

    SciTech Connect

    Cordaro, J.; Holland, M.; Reeves, G.; Nichols, S.; Kruzner, A.

    2011-07-08

    The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptunium standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.

  2. Kinetics of reduction of plutonium(VI) and neptunium(VI) by sulfide in neutral and alkaline solutions

    USGS Publications Warehouse

    Nash, K.L.; Cleveland, J.M.; Sullivan, J.C.; Woods, M.

    1986-01-01

    The rate of reduction of plutonium(VI) and neptunium(VI) by bisulfide ion in neutral and mildly alkaline solutions has been investigated by the stopped-flow technique. The reduction of both of these ions to the pentavalent oxidation state appears to occur in an intramolecular reaction involving an unusual actinide(VI)-hydroxide-bisulfide complex. For plutonium the rate of reduction is 27.4 (??4.1) s-1 at 25??C with ??H* = +33.2 (??1.0) kJ/mol and ??S* = -106 (??4) J/(mol K). The apparent stability constant for the transient complex is 4.66 (??0.94) ?? 103 M-1 at 25??C with associated thermodynamic parameters of ??Hc = +27.7 (??0.4) kJ/mol and ??Sc = +163 (??2) J/(mol K). The corresponding rate and stability constants are determined for the neptunium system at 25??C (k3 = 139 (??30) s-1, Kc. = 1.31 (??0.32) ?? 103 M-1), but equivalent parameters cannot be determined at reduced temperatures. The reaction rate is decreased by bicarbonate ion. At pH > 10.5, a second reaction mechanism, also involving a sulfide complex, is indicated. ?? 1986 American Chemical Society.

  3. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  4. Transmutation of neptunium and americium in a fast neutron flux: EPMA results and KORIGEN predictions for the superfact fuels

    NASA Astrophysics Data System (ADS)

    Walker, C. T.; Nicolaou, G.

    1995-02-01

    In the Superfact Experiment four oxide targets containing high and low concentrations of 237Np and 241Am and representing the homogeneous and heterogeneous in-pile recycling concepts were irradiated in the PHENIX reactor. The burnup reached 6.4% FIMA in the targets with low concentrations of Np and Am and 4.5% FIMA in the targets with high concentrations of Np and Am. About 25% of initial concentration of 237Np and 241Am was transmuted. Generally, the radial distribution of Np and Am was quite flat indicating an even rate of transmutation over the pellet cross section. In the targets with 45% and 20% Np, 10 and 12 wt% Pu was created; most of this was 238Pu with a half-life of 88 y. All the targets exhibited high fission gas release of 67 to 77%. As with standard LMFBR oxide fuel, Cr 2O 3 was the main product of fuel-cladding chemical interaction. In the target containing 20% Am, an FePd alloy was present in all the major radial cracks.

  5. Development of activity pencil beam algorithm using measured distribution data of positron emitter nuclei generated by proton irradiation of targets containing {sup 12}C, {sup 16}O, and {sup 40}Ca nuclei in preparation of clinical application

    SciTech Connect

    Miyatake, Aya; Nishio, Teiji; Ogino, Takashi

    2011-10-15

    Purpose: The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. Methods: The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. {sup 12}C, {sup 16}O, and {sup 40}Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, ''virtual positron emitter nuclei'' was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data

  6. Chemical speciation of neptunium(VI) under strongly alkaline conditions. Structure, composition, and oxo ligand exchange.

    PubMed

    Clark, David L; Conradson, Steven D; Donohoe, Robert J; Gordon, Pamela L; Keogh, D Webster; Palmer, Phillip D; Scott, Brian L; Tait, C Drew

    2013-04-01

    Hexavalent neptunium can be solubilized in 0.5-3.5 M aqueous MOH (M = Li(+), Na(+), NMe4(+) = TMA(+)) solutions. Single crystals were obtained from cooling of a dilute solution of Co(NH3)6Cl3 and NpO2(2+) in 3.5 M [N(Me)4]OH to 5 °C. A single-crystal X-ray diffraction study revealed the molecular formula of [Co(NH3)6]2[NpO2(OH)4]3·H2O, isostructural with the uranium analogue. The asymmetric unit contains three distinct NpO2(OH)4(2-) ions, each with pseudooctahedral coordination geometry with trans-oxo ligands. The average Np═O and Np-OH distances were determined to be 1.80(1) and 2.24(1) Å, respectively. EXAFS data and fits at the Np L(III)-edge on solid [Co(NH3)6]2[NpO2(OH)4]3·H2O and aqueous solutions of NpO2(2+) in 2.5 and 3.5 M (TMA)OH revealed bond lengths nearly identical with those determined by X-ray diffraction but with an increase in the number of equatorial ligands with increasing (TMA)OH concentration. Raman spectra of single crystals of [Co(NH3)6]2[NpO2(OH)4]3·H2O reveal a ν1(O═Np═O) symmetric stretch at 741 cm(-1). Raman spectra of NpO2(2+) recorded in a 0.6-2.2 M LiOH solution reveal a single ν1 frequency of 769 cm(-1). Facile exchange of the neptunyl oxo ligands with the water solvent was also observed with Raman spectroscopy performed with (16)O- and (18)O-enriched water solvent. The combination of EXAFS and Raman data suggests that NpO2(OH)4(2-) is the dominant solution species under the conditions of study and that a small amount of a second species, NpO2(OH)5(3-), may also be present at higher alkalinity. Crystal data for [Co(NH3)6]2[NpO2(OH)4]3·H2O: monoclinic, space group C2/c, a = 17.344(4) Å, b = 12.177(3) Å, c = 15.273 Å, β = 120.17(2)°, Z = 4, R1 = 0.0359, wR2 = 0.0729.

  7. Surface complexation of neptunium (V) onto whole cells and cell componets of Shewanella alga

    SciTech Connect

    Reed, Donald Timothy; Deo, Randhir P; Rittmann, Bruce E; Songkasiri, Warinthorn

    2008-01-01

    We systematically quantified surface complexation of neptunium(V) onto whole cells of Shewanella alga strain BrY and onto cell wall and extracellular polymeric substances (EPS) of S. alga. We first performed acid and base titrations and used the mathematical model FITEQL with constant-capacitance surface-complexation to determine the concentrations and deprotonation constants of specific surface functional groups. Deprotonation constants most likely corresponded to a carboxyl site associated with amino acids (pK{sub a} {approx} 2.4), a carboxyl group not associated with amino acids (pK{sub a} {approx} 5), a phosphoryl site (pK{sub a} {approx} 7.2), and an amine site (pK{sub a} > 10). We then carried out batch sorption experiments with Np(V) and each of the S. alga components at different pHs. Results show that solution pH influenced the speciation of Np(V) and each of the surface functional groups. We used the speciation sub-model of the biogeochemical model CCBATCH to compute the stability constants for Np(V) complexation to each surface functional group. The stability constants were similar for each functional group on S. alga bacterial whole cells, cell walls, and EPS, and they explain the complicated sorption patterns when they are combined with the aqueous-phase speciation of Np(V). For pH < 8, NpO{sub 2}{sup +} was the dominant form of Np(V), and its log K values for the low-pK{sub a} carboxyl, other carboxyl, and phosphoryl groups were 1.75, 1.75, and 2.5 to 3.1, respectively. For pH greater than 8, the key surface ligand was amine >XNH3+, which complexed with NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-}. The log K for NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-} complexed onto the amine groups was 3.1 to 3.6. All of the log K values are similar to those of Np(V) complexes with aqueous carboxyl and N-containing carboxyl ligands. These results point towards the important role of surface complexation in defining key actinide-microbiological interactions in the subsurface.

  8. New Synthetic Methods and Structure-Property Relationships in Neptunium, Plutonium, and Americium Borates. Final report

    SciTech Connect

    Albrecht-Schmitt, Thomas Edward

    2013-09-14

    The past three years of support by the Heavy Elements Chemistry Program have been highly productive in terms of advanced degrees awarded, currently supported graduate students, peer-reviewed publications, and presentations made at universities, national laboratories, and at international conferences. Ph.D. degrees were granted to Shuao Wang and Juan Diwu, who both went on to post-doctoral appointments at the Glenn T. Seaborg Center at Lawrence Berkeley National Laboratory with Jeff Long and Ken Raymond, respectively. Pius Adelani completed his Ph.D. with me and is now a post-doc with Peter C. Burns. Andrea Alsobrook finished her Ph.D. and is now a post-doc at Savannah River with Dave Hobbs. Anna Nelson completed her Ph.D. and is now a post-doc with Rod Ewing at the University of Michigan. As can be gleaned from this list, students supported by the Heavy Elements Chemistry grant have remained interested in actinide science after leaving my program. This follows in line with previous graduates in this program such as Richard E. Sykora, who did his post-doctoral work at Oak Ridge National Laboratory with R. G. Haire, and Amanda C. Bean, who is a staff scientist at Los Alamos National Laboratory, and Philip M. Almond and Thomas C. Shehee, who are both staff scientists at Savannah River National Laboratory, Gengbang Jin who is a staff scientist at Argonne National Lab, and Travis Bray who has been a post-doc at both LBNL and ANL. Clearly this program is serving as a pipe-line for students to enter into careers in the national laboratories. About half of my students depart the DOE complex for academia or industry. My undergraduate researchers also remain active in actinide chemistry after leaving my group. Dan Wells was a productive undergraduate of mine, and went on to pursue a Ph.D. on uranium and neptunium chalcogenides with Jim Ibers at Northwestern. After earning his Ph.D., he went directly into the nuclear industry.

  9. Effect of Oxalate on the Recycle of Neptunium Filtrate Solution by Anion Exchange

    SciTech Connect

    Kyser, E

    2004-11-18

    A series of laboratory column runs has been performed that demonstrates the recovery of neptunium (Np) containing up to 0.05 M oxalate. Np losses were generally less than one percent to the raffinate for feed solutions that contained 2 to 10 g Np/L. Up to 16 percent Np losses were observed with lower Np feed concentrations, but those losses were attributed to the shortened residence times rather than the higher oxalate to Np ratios. Losses in the plant are expected to be significantly less due to the lower cross-section flowrate possible with existing plant pumps. Elimination of the permanganate treatment of filtrates appears to be reasonable since the amount of Np in those filtrates does not appear to be practical to recover. Combination of untreated filtrates with other actinide rich solutions is not advisable as precipitation problems are likely. If untreated filtrates are kept segregated from other actinide rich streams, the recovery of the remaining Np is probably still possible, but could be limited due to the excessively high oxalate to Np ratio. The persistence of hydrazine/hydrazoic acid in filtrate solutions dictates that the nitrite treatment be retained to eliminate those species from the filtrates prior to transfer to the canyon. Elimination of the permanganate treatment of precipitator flushes and recovery by anion exchange does not appear to be limited by the oxalate effect on anion exchange. Np from solutions with higher oxalate to Np molar ratios than expected in precipitator flushes was recovered with low to modest losses. Solubility problems appear to be unlikely when the moles of oxalate involved are less than the total number of moles of Np due to complexation effects. The presence of significant concentrations of iron (Fe) in the solutions will further decrease the probability of Np oxalate precipitation due the formation of Fe oxalate complexes. Np oxalate solubility data in 8 M HNO{sub 3} with from one to six times as much oxalate as Np have

  10. AFCI Fuel Irradiation Test Plan, Test Specimens AFC-1Æ and AFC-1F

    SciTech Connect

    D. C. Crawford; S. L. Hayes; B. A. Hilton; M. K. Meyer; R. G. Ambrosek; G. S. Chang; D. J. Utterbeck

    2003-11-01

    The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository (DOE, 2003). One important component of the technology development is actinide-bearing transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. There are little irradiation performance data available on non-fertile fuel forms, which would maximize the destruction rate of plutonium, and low-fertile (i.e., uranium-bearing) fuel forms, which would support a sustainable nuclear energy option. Initial scoping level irradiation tests on a variety of candidate fuel forms are needed to establish a transmutation fuel form design and evaluate deployment of transmutation fuels.

  11. Synthesis of Coordination Polymers of Tetravalent Actinides (Uranium and Neptunium) with a Phthalate or Mellitate Ligand in an Aqueous Medium.

    PubMed

    Martin, Nicolas P; März, Juliane; Volkringer, Christophe; Henry, Natacha; Hennig, Christoph; Ikeda-Ohno, Atsushi; Loiseau, Thierry

    2017-03-06

    Four metal-organic coordination polymers bearing uranium or neptunium have been hydrothermally synthesized from a tetravalent actinide chloride (AnCl4) and phthalic (1,2-H2bdc) or mellitic (H6mel) acid in aqueous media at 130 °C. With the phthalate ligand, two analogous assemblies ([AnO(H2O)(1,2-bdc)]2·H2O; An = U(4+) (1) or Np(4+) (2)) have been isolated, in which the square-antiprismatic polyhedra of AnO8 are linked to each other via μ3-oxo groups with an edge-sharing mode to materialize infinite zigzag ribbons. The phthalate molecules play a role in connecting the adjacent zigzag chains to build a two-dimensional (2D) network. Water molecules are bonded to the actinide center or found intercalated between the layers. With the mellitate ligand, two distinct structures have been identified. The uranium-based compound [U2(OH)2(H2O)2(mel)] (3) exhibits a three-dimensional (3D) structure composed of the dinuclear units of UO8 polyhedra (square antiprism), which are further linked via the μ2-hydroxo groups. The mellitate linkers use their carboxylate groups to connect the dinuclear units, eventually building a 3D framework. The compound obtained for the neptunium mellitate ([(NpO2)10(H2O)14(Hmel)2]·12H2O (4)) reveals oxidation of the initial Np(IV) to Np(V) under the applied hydrothermal synthetic conditions, yielding the neptunyl(V) (NpO2(+)) unit with a pentagonal-bipyramidal NpO7 environment. This further leads to the formation of a layered assembly of the square-frame NpO7 sheets via the bridging oxygen atoms from the neptunyl oxo groups, which further coordinate to the pentagonal equatorial coordination plane of the adjacent neptunium unit (i.e., cation-cation interactions). In compound 4, the mellitate molecules act as bridging linkers between the NpO7 sheets by using four of their carboxylage groups, eventually building up a 3D structure.

  12. Computer modelling of the chemical speciation of caesium, uranium(VI) and neptunium(V) in human duodenal fluids under fasting conditions.

    PubMed

    Jones, Paul W; Taylor, David M; Webb, Louise M; Williams, David R

    2002-08-01

    A model simulating the human duodenal contents under physiologically realistic, fasting conditions was developed using the joint expert speciation system (JESS) computer program and database and used to investigate the chemical speciation of caesium, uranium(VI) and neptunium(V). Over the pH range 5.0-9.0, and the concentration range 5 x 10(-15) x 10(-5) mol dm(-3), caesium was predicted to occur predominantly as the absorbable free monovalent cation Cs+ (approximately 95%) with species such as CsHPO4- and CsCl representing the remainder. The presence or absence of sulphate at 2.1 x 10(-3) mol dm(-3) did not influence the predicted speciation. Uranium was predicted to be present entirely as a soluble, highly charged species, both in the absence and in the presence of sulphate. Between pH 5.0 and approximately 6.5 the UO2H2(PO4)2(2-) predominated, above this pH carbonate species, either UO2(CO3)4(6-) or, possibly, UO2(CO3)5(8-). At pH 8.0, and in the presence of sulphate, neptunium(V) was predicted to exist solely as the tetrasulphate species, whilst in the absence of sulphate, an array of negatively charged soluble carbonate species predominated. Studies over the pH range 5.0-9.0 predicted the formation of a spectrum of negatively charged carbonate and phosphate species, approximately 40% of the total neptunium was predicted to be present as the electrically net-neutral species NpO2HCO3 at pH6.0, approximately 20% at pH 7.0, approximately 10% at pH 7.5 and approximately 1% at pH 8.0. The observed speciation patterns of uranium and neptunium did not change over the concentration range 5 x 10(-15) - 5 x 10(-5) mol dm(-3) and no solid species were predicted to occur under the conditions simulated. Whether the predicted electrically net-neutral neptunium species or the uranium pentacarbonate species do actually occur under true physiological conditions remains to be established. The observed speciation patterns for caesium and uranium are consistent with the observed

  13. A theoretical study of the structures and chemical bonds of neptunium (III) molecules by a density functional method

    NASA Astrophysics Data System (ADS)

    Yin, Yao-Peng; Dong, Chen-Zhong; Du, Lei-Qiang; Wu, Fang-Xian; Ding, Xiao-Bin

    2014-10-01

    In this paper, equilibrium structures and chemical bond characteristics of neptunium trihalide molecules NpX3 (X = F, Cl, Br and I) have been investigated by using density functional theory (DFT). The influences of the size of the relativistic effective core potential (RECP) have been examined on the molecular structures. The chemical bond characteristics have also been systematically studied by calculating the density of states (DOS), bond length differences and electronic charge distributions. We have determined that the chemical bonds are mainly ionic in those molecules, and the covalency is enhancing while ionicity decreases from NpF3 to NpI3. The calculated bond energies show that the interaction strength in NpX3 molecules becomes weaker as the halogen atoms becoming heavier.

  14. Formation of neptunium(IV)-silica colloids at near-neutral and slightly alkaline pH.

    PubMed

    Husar, Richard; Weiss, Stephan; Hennig, Christoph; Hübner, René; Ikeda-Ohno, Atsushi; Zänker, Harald

    2015-01-06

    The reducing conditions in a nuclear waste repository render neptunium tetravalent. Thus, Np is often assumed to be immobile in the subsurface. However, tetravalent actinides can also become mobile if they occur as colloids. We show that Np(IV) is able to form silica-rich colloids in solutions containing silicic acid at concentrations of both the regions above and below the "mononuclear wall" of silicic acid at 2 × 10(-3) M (where silicic acid is expected to start polymerization). These Np(IV)-silica colloids have a size of only very few nanometers and can reach significantly higher concentrations than Np(IV) oxyhydroxide colloids. They can be stable in the waterborne form over longer spans of time. In the Np(IV)-silica colloids, the actinide--oxygen--actinide bonds are increasingly replaced by actinide--oxygen--silicon bonds due to structural incorporation of Si. Possible implications of the formation of such colloids for environmental scenarios are discussed.

  15. ESTIMATED NEPTUNIUM SEDIMENT SORPTION VALUES AS A FUNCTION OF PH AND MEASURED BARIUM AND RADIUM KD VALUES

    SciTech Connect

    Kaplan, D.

    2011-01-13

    The objective of this document is to provide traceability and justification for a select few new geochemical data used in the Special Analysis entitled 'Special Analysis for the Dose Assessment of the Final Inventories in Center Slit Trenches One through Five'. Most values used in the Special Analysis came from the traditional geochemical data package, however, some recent laboratory measurements have made it possible to estimate barium K{sub d} values. Additionally, some recent calculations were made to estimate neptunium K{sub d} values as a function of pH. The assumptions, justifications, and calculations needed to generate these new values are presented in this document, and the values are summarized.

  16. Subcellular localization of neptunium-237 in lung and kidney after intratracheal administration in the rat: an ultrastructural and microanalytical study.

    PubMed

    Boulahdour, H; Poncy, J L; Berry, J P; Galle, P

    1996-12-01

    Chronic intratracheal administration of 237Np to rate was performed during 6 weeks. The total dose administered was 45.8 kBq. Two methods, electron microscopy and electron probe X-ray microanalysis, were used to determine the intracellular sites of localization of 237Np. Clusters of dense granules were observed in nuclei of pneumocytes and proximal tubular cells of the kidneys. These clusters have been shown to contain neptunium associated with phosphorus, sulfur and calcium. Alterations of nuclei and ultrastructural cytoplasmic lesions were observed. The absorbed doses in lungs and kidneys were very low. These results suggest that the chemical toxicity of 237Np is more important than its radiological toxicity.

  17. [Food irradiation].

    PubMed

    Migdał, W

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by Codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and the World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Institute of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19MeV, 1 kW) and an industrial unit Elektronika (10MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permission for irradiation for: spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables.

  18. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  19. Efficient multi-keV x-ray source generated by nanosecond laser pulse irradiated multi-layer thin foils target

    SciTech Connect

    Tu, Shao-yong; Hu, Guang-yue Zhao, Bin; Zheng, Jian; Miao, Wen-yong; Yuan, Yong-teng; Zhan, Xia-yu; Hou, Li-fei; Jiang, Shao-en; Ding, Yong-kun

    2014-04-15

    A new target configuration is proposed to generate efficient multi-keV x-ray source using multiple thin foils as x-ray emitters. The target was constructed with several layers of thin foils, which were placed with a specific, optimized spacing. The thin foils are burned though one by one by a nanosecond-long laser pulse, which produced a very large, hot, underdense plasma. One-dimensional radiation hydrodynamic simulations show that the emission region and the multi-keV x-ray flux generated by multi-layer thin foil target are similar to that of the low-density gas or foam target, which is currently a bright multi-keV x-ray source generated by laser heating. Detailed analysis of a range of foil thicknesses showed that a layer-thickness of 0.1 μm is thin enough to generate an efficient multi-keV x-ray source. Additionally, this type of target can be easily manufactured, compared with the complex techniques for fabrication of low-density foam targets. Our preliminary experimental results also verified that the size of multi-keV x-ray emission region could be enhanced significantly by using a multi-layer Ti thin foil target.

  20. Accelerator target

    DOEpatents

    Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.

    1999-06-29

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.

  1. Accelerator target

    DOEpatents

    Schlyer, David J.; Ferrieri, Richard A.; Koehler, Conrad

    1999-01-01

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

  2. Critical role of water content in the formation and reactivity of uranium, neptunium, and plutonium iodates under hydrothermal conditions: implications for the oxidative dissolution of spent nuclear fuel.

    PubMed

    Bray, Travis H; Ling, Jie; Choi, Eun Sang; Brooks, James S; Beitz, James V; Sykora, Richard E; Haire, Richard G; Stanbury, David M; Albrecht-Schmitt, Thomas E

    2007-04-30

    The reactions of 237NpO2 with excess iodate under acidic hydrothermal conditions result in the isolation of the neptunium(IV), neptunium(V), and neptunium(VI) iodates, Np(IO3)4, Np(IO3)4.nH2O.nHIO3, NpO2(IO3), NpO2(IO3)2(H2O), and NpO2(IO3)2.H2O, depending on both the pH and the amount of water present in the reactions. Reactions with less water and lower pH favor reduced products. Although the initial redox processes involved in the reactions between 237NpO2 or 242PuO2 and iodate are similar, the low solubility of Pu(IO3)4 dominates product formation in plutonium iodate reactions to a much greater extent than does Np(IO3)4 in the neptunium iodate system. UO2 reacts with iodate under these conditions to yield uranium(VI) iodates solely. The isotypic structures of the actinide(IV) iodates, An(IO3)4 (An=Np, Pu), are reported and consist of one-dimensional chains of dodecahedral An(IV) cations bridged by iodate anions. The structure of Np(IO3)4.nH2O.nHIO3 is constructed from NpO9 tricapped-trigonal prisms that are bridged by iodate into a polar three-dimensional framework structure. Second-harmonic-generation measurements on a polycrystalline sample of the Th analogue of Np(IO3)4.nH2O.nHIO3 reveal a response of approximately 12x that of alpha-SiO2. Single-crystal magnetic susceptibility measurements of Np(IO3)4 show magnetically isolated Np(IV) ions.

  3. Synthesis of bimetallic uranium and neptunium complexes of a binucleating macrocycle and determination of the solid-state structure by magnetic analysis.

    PubMed

    Arnold, Polly L; Potter, Natalie A; Magnani, Nicola; Apostolidis, Christos; Griveau, Jean-Christophe; Colineau, Eric; Morgenstern, Alfred; Caciuffo, Roberto; Love, Jason B

    2010-06-21

    Syntheses of the bimetallic uranium(III) and neptunium(III) complexes [(UI)(2)(L)], [(NpI)(2)(L)], and [{U(BH(4))}(2)(L)] of the Schiff-base pyrrole macrocycles L are described. In the absence of single-crystal structural data, fitting of the variable-temperature solid-state magnetic data allows the prediction of polymeric structures for these compounds in the solid state.

  4. High-throughput sequential injection method for simultaneous determination of plutonium and neptunium in environmental solids using macroporous anion-exchange chromatography, followed by inductively coupled plasma mass spectrometric detection.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel

    2011-01-01

    This paper reports an automated analytical method for rapid and simultaneous determination of plutonium and neptunium in soil, sediment, and seaweed, with detection via inductively coupled plasma mass spectrometry (ICP-MS). A chromatographic column packed with a macroporous anion exchanger (AG MP-1 M) was incorporated in a sequential injection (SI) system for the efficient retrieval of plutonium, along with neptunium, from matrix elements and potential interfering nuclides. The sorption and elution behavior of plutonium and neptunium onto AG MP-1 M resin was compared with a commonly utilized AG 1-gel-type anion exchanger. Experimental results reveal that the pore structure of the anion exchanger plays a pivotal role in ensuring similar separation behavior of plutonium and neptunium along the separation protocol. It is proven that plutonium-242 ((242)Pu) performs well as a tracer for monitoring the chemical yield of neptunium when using AG MP-1 M resin, whereby the difficulties in obtaining a reliable and practicable isotopic neptunium tracer are overcome. An important asset of the SI setup is the feasibility of processing up to 100 g of solid substrates using a small-sized (ca. 2 mL) column with chemical yields of neptunium and plutonium being ≥79%. Analytical results of three certified/standard reference materials and two solid samples from intercomparison exercises are in good agreement with the reference values at the 0.05 significance level. The overall on-column separation can be completed within 3.5 h for 10 g of soil samples. Most importantly, the anion-exchange mini-column suffices to be reused up to 10-fold with satisfactory chemical yields (>70%), as demanded in environmental monitoring and emergency scenarios, making the proposed automated assembly well-suited for unattended and high-throughput analysis.

  5. Incorporation of neptunium(V) and iodate into a uranyl phosphate: implications for mitigating the release of 237Np and 129I in repositories.

    PubMed

    Wu, Shijun; Chen, Fanrong; Simonetti, Antonio; Albrecht-Schmitt, Thomas E

    2010-04-15

    The simultaneous incorporation of IO3(-) and NpO2+ into Ba3(UO2)2(HPO4)2(PO4)2 (BaUP), which serves as a model for uranyl alteration phases, was investigated. LA-ICP-MS data demonstrate that the incorporation of both of these species is significantly enhanced when they are present together. The most probable explanation is that charge balance is obtained by the coupled substitutions of NpO2+ <--> UO2(2+) and IO3(-) <--> HPO4(2-). According to the LA-ICP-MS results, in the absence of iodate as much as 2.91 +/- 0.14 to 3.44 +/- 0.25% of the uranium in BaUP can be replaced by neptunium. When iodate is present in the reaction, the amount of uranium substitution by neptunium increases to 6.05 +/- 0.65% to 7.93 +/- 0.83%. The net increase for neptunium is 116 +/- 0.30% to 225 +/- 0.25%. Similarly, in the absence of NpO2+, iodate incorporation into BaUP reaches an I/U level of 0.0021 +/- 0.0004 to 0.0038 +/- 0.0005; whereas in its presence there is an increase to as much as 100 +/- 0.11% to 0.0042 +/- 0.0008.

  6. New scheme for enhancement of maximum proton energy with a cone-hole target irradiated by a short intense laser pulse

    NASA Astrophysics Data System (ADS)

    Yang, Siqian; Zhou, Weimin; Jiao, Jinlong; Zhang, Zhimeng; Cao, Leifeng; Gu, Yuqiu; Zhang, Baohan

    2017-03-01

    Improvement of proton energy from short intense laser interaction with a new proposal of a cone-hole target is investigated via two-dimensional particle-in-cell simulations. The configuration of the target is a cone structure with a hole of changeable diameter through the center of the tip, with proton layers contaminated both on the target rear surface and at the rear part of the hole. In the interacting process, the cone-hole geometry enables the focus of the laser pulse by the cone structure and the consequent penetration of the intensified laser through the tip along the hole instead of reflection, which can increase the energy coupling from laser field to plasmas. The heated electrons, following the target normal sheath acceleration scheme, induce a much stronger electrostatic field in the longitudinal direction at the rear surface of the target than that in the traditional foil case. The simulation results indicate that the accelerated proton beam from the cone-hole target has a cutoff energy about 5.7 and 2.1 times larger than the foil case and the hollow cone case, respectively. Furthermore, the case of the cone-hole target without the proton layer in the hole is also analyzed to demonstrate the effect of the proton layer position and the results show that not only can the existence of the central proton layer improve the proton energy but also lead to a better collimation. The dependence of proton energy on the hole diameter and the scaling law of the maximum proton energy relative to laser intensity are also presented.

  7. Irradiation subassembly

    DOEpatents

    Seim, O.S.; Filewicz, E.C.; Hutter, E.

    1973-10-23

    An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)

  8. Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate

    NASA Astrophysics Data System (ADS)

    Girault, M.; Le Garrec, J.-L.; Mitchell, J. B. A.; Jouvard, J.-M.; Carvou, E.; Menneveux, J.; Yu, J.; Ouf, F.-X.; Carles, S.; Potin, V.; Pillon, G.; Bourgeois, S.; Perez, J.; Marco de Lucas, M. C.; Lavisse, L.

    2016-06-01

    The influence of a reactive atmosphere on the formation of nanoparticles (NPs) in the plasma plume generated by nanosecond pulsed laser irradiation of metal targets (Ti, Al, Ag) was probed in situ using Small Angle X-ray Scattering (SAXS). Air and different O2-N2 gas mixtures were used as reactive gas within atmospheric pressure. SAXS results showed the formation of NPs in the plasma-plume with a mean radius varying in the 2-5 nm range. A decrease of the NPs size with increasing the O2 percentage in the O2-N2 gas mixture was also showed. Ex situ observations by transmission electron microscopy and structural characterizations by X-ray diffraction and Raman spectroscopy were also performed for powders collected in experiments done using air as ambient gas. The stability of the different metal oxides is discussed as being a key parameter influencing the formation of NPs in the plasma-plume.

  9. Laboratory And Lysimeter Experimentation And Transport Modeling Of Neptunium And Strontium In Savannah River Site Sediments

    SciTech Connect

    Kaplan, Daniel I.; Powell, B. A.; Miller, Todd J.

    2012-09-24

    The Savannah River Site (SRS) conducts performance assessment (PA) calculations to determine the appropriate amount of low-level radiological waste that can be safely disposed on site. Parameters are included in these calculations that account for the interaction between the immobile solid phase and the mobile aqueous phase. These parameters are either the distribution coefficient (K{sub d} value) or the apparent solubility value (K{sub sp}). These parameters are readily found in the literature and are used throughout the DOE complex. One shortcoming of K{sub d} values is that they are only applicable to a given set of solid and aqueous phase conditions. Therefore, a given radionuclide may have several K{sub d} values as it moves between formations and comes into contact with different solids and different aqueous phases. It is expected that the K{sub d} construct will be appropriate to use for a majority of the PA and for a majority of the radionuclides. However, semi-mechanistic models would be more representative in isolated cases where the chemistry is especially transitory or the radionuclide chemistry is especially complex, bringing to bear multiple species of varying sorption tendencies to the sediment. Semi-mechanistic models explicitly accommodate the dependency of K{sub d} values, or other sorption parameters, on contaminant concentration, competing ion concentrations, pH-dependent surface charge on the adsorbent, and solute species distribution. Incorporating semi-mechanistic concepts into geochemical models is desirable to make the models more robust and technically defensible. Furthermore, these alternative models could be used to augment or validate a Kd?based DOE Order 435.1 Performance Assessment. The objectives of this study were to: 1) develop a quantitative thermodynamically-based model for neptunium sorption to SRS sediments, and 2) determine a sorption constant from an SRS 11-year lysimeter study. The modeling studies were conducted with

  10. High-Linear Energy Transfer Irradiation Targeted to Skeletal Metastases by the Alpha Emitter Ra-223: Adjuvant or Alternative to Conventional Modalities?

    SciTech Connect

    Bruland, Oyvind S.; Nilsson, Sten; Fisher, Darrell R.; Larsen, Roy H.

    2006-10-15

    The bone-seeking, alpha-particle emitting radiopharmaceutical Alpharadin, 223RaCl2 (t1/2 = 11.4 days) is under clinical development as a novel treatment for skeletal metastases from breast and prostate cancer. This paper summarizes the current status of preclinical and clinical research on 223RaCl2. Potential advantages of 223Ra to that of external beam irradiation or registered beta-emitting bone-seekers are discussed. Published data of 223Ra dosimetry in mice and a therapeutic study in a skeletal metastases model in nude rats have indicated significant therapeutic potential of bone-seeking alpha-emitters. This paper provides short-term and long-term results from the first clinical single dosage trial. We present data from a repeated dosage study of five consecutive injections of 50 kBq/kg bodyweight, once every third week, or two injections of 125 kBq/kg bodyweight, six weeks apart. Furthermore, preliminary results are given for a randomized phase II trial involving 64 patients with hormone-refractory prostate cancer and painful skeletal metastases who received four monthly injections of 223Ra or saline as an adjuvant to external beam radiotherapy. Also presented are preliminary dose estimates for 223Ra in humans. Results indicate that repeated dosing is feasible and that opportunities are available for combined treatment strategies.

  11. FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity Investigations

    SciTech Connect

    Howard, Richard H.; Yan, Yong; Wang, Jy-An John; Ott, Larry J.; Howard, Rob L.

    2013-10-01

    This report documents ongoing work performed at Oak Ridge National Laboratory (ORNL) for the Department of Energy, Office of Fuel Cycle Technology Used Fuel Disposition Campaign (UFDC), and satisfies the deliverable for milestone M2FT-13OR0805041, “Data Report on Hydrogen Doping and Irradiation in HFIR.” This work is conducted under WBS 1.02.08.05, Work Package FT-13OR080504 ST “Storage and Transportation-Experiments – ORNL.” The objectives of work packages that make up the S&T Experiments Control Account are to conduct the separate effects tests (SET) and small-scale tests that have been identified in the Used Nuclear Fuel Storage and Transportation Data Gap Prioritization (FCRD-USED-2012-000109). In FY 2013, the R&D focused on cladding and container issues and small-scale tests as identified in Sections A-2.9 and A-2.12 of the prioritization report.

  12. Irradiated foods

    MedlinePlus

    ... it reduces the risk of food poisoning . Food irradiation is used in many countries. It was first approved in the U.S. to prevent sprouts on white potatoes, and to control insects on wheat and in certain spices and seasonings.

  13. Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Lai, Cui; Wang, Man-Man; Zeng, Guang-Ming; Liu, Yun-Guo; Huang, Dan-Lian; Zhang, Chen; Wang, Rong-Zhong; Xu, Piao; Cheng, Min; Huang, Chao; Wu, Hai-Peng; Qin, Lei

    2016-12-01

    The molecular imprinted TiO2/graphene photocatalyst (MIP-TiO2/GR) was successfully prepared with bisphenol A (BPA) as the template molecule (target pollutant) and o-phenylenediamine (OPDA) as functional monomers by the surface molecular imprinting method. The combination between BPA and OPDA led to the formation of the precursor, and the subsequent polymerization of OPDA initiated by ultraviolet radiation can ensure the realization of MIP-TiO2/GR. The samples were characterized by SEM, EDS, XRD, BET, UV-vis DRS and Zeta potential. In addition, adsorption capacities, adsorption selectivity and visible light photocatalytic performances of MIP-TiO2/GR and non-imprinted TiO2/graphene (NIP-TiO2/GR) were evaluated. Moreover, the effects of pH and initial BPA concentration on removal efficiency of BPA were also investigated. The results showed that MIP-TiO2/GR exhibited better adsorption capacity and adsorption selectivity towards the template molecule compared to NIP-TiO2/GR due to the imprinted cavities on the surface of MIP-TiO2/GR. Moreover, the photocatalytic activity of MIP-TiO2/GR toward the target molecules was stronger than that of NIP-TiO2/GR as a result of large adsorption capacity to target molecules and narrow band gap energy on MIP-TiO2/GR. Therefore, modifying the photocatalyst by the surface molecular imprinting is a promising method to improve the molecule recognition and photocatalytic efficiency of photocatalyst for target pollutant.

  14. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Plasma-mediated surface evaporation of an aluminium target in vacuum under UV laser irradiation

    NASA Astrophysics Data System (ADS)

    Mazhukin, V. I.; Nosov, V. V.

    2005-05-01

    Mathematical simulation is employed to investigate the dynamics of evaporation and condensation on the surface of a metal target under the conditions of plasma production in the vaporised material exposed to the 0.248-μm UV radiation of a KrF laser with the intensity G0= 2×108—109 W cm-2, and a pulse duration τ= 20 ns. A transient two-dimensional mathematical model is used, which includes, for the condensed medium, the heat conduction equation with the Stefan boundary condition and additional kinetic conditions at the evaporation surface and, for the vapour, the equations of radiative gas dynamics and laser radiation transfer supplemented with tabular data for the parameters of the equations of state and absorption coefficients. The target evaporation in vacuum induced by the UV radiation was found to occur during the laser pulse and is divided into two characteristic stages: initial evaporation with a sound velocity and subsonic evaporation after the plasma production. At the subsonic evaporation stage, one part of the laser radiation passes through the plasma and is absorbed by the target surface and another part is absorbed in a thin plasma layer near the surface to produce a high pressure, which significantly moderates the vapour ejection. After completion of the pulse, a part of the vaporised material is condensed on the surface, both in the evaporation region and some distance away from it due to the lateral expansion of the plasma cloud.

  15. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    SciTech Connect

    Field, Kevin G.; Yamamoto, Yukinori; Howard, Richard H.

    2016-09-29

    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early-generation powder-metallurgy (PM) oxide dispersion-strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonable matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C, but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, To, in alloys irradiated to 7 dpa and higher.

  16. Proton irradiation of simple gas mixtures: Influence of irradiation parameters

    NASA Technical Reports Server (NTRS)

    Sack, Norbert J.; Schuster, R.; Hofmann, A.

    1990-01-01

    In order to get information about the influence of irradiation parameters on radiolysis processes of astrophysical interest, methane gas targets were irradiated with 6.5 MeV protons at a pressure of 1 bar and room temperature. Yields of higher hydrocarbons like ethane or propane were found by analysis of irradiated gas samples using gas chromatography. The handling of the proton beam was of great experimental importance for determining the irradiation parameters. In a series of experiments current density of the proton beam and total absorbed energy were shown to have a large influence on the yields of produced hydrocarbons. Mechanistic interpretations of the results are given and conclusions are drawn with regard to the chemistry and the simulation of various astrophysical systems.

  17. Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation.

    PubMed

    Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders

    2013-09-07

    The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.

  18. Verifying the Presence of Low Levels of Neptunium in a Uranium Matrix with Electron Energy-Loss Spectroscopy

    SciTech Connect

    Buck, Edgar C.; Douglas, Matthew; Wittman, Richard S.

    2010-01-01

    This paper examines the problems associated with the analysis of low levels of neptunium (Np) in a uranium (U) matrix with electron energy-loss spectroscopy (EELS) on the transmission electron microscope (TEM). The detection of Np in a matrix of uranium (U) can be impeded by the occurrence of a plural scattering event from U (U-M5 + U-O4,5) that results in severe overlap on the Np-M5 edge at 3665 eV. Low levels (1600 - 6300 ppm) of Np can be detected in U solids by confirming the energy gap between the Np-M5 and Np-M4 edges is at 184 eV and showing that the M4/M5 ratio for the Np is smaller than that for U. The Richardson-Lucy deconvolution method was applied to energy-loss spectral images and was shown to increase the signal to noise. This method also improves the limits of detection for Np in a U matrix.

  19. Potential for radionuclide immobilization in the EBS/NFE: solubility limiting phases for neptunium, plutonium, and uranium

    SciTech Connect

    Rard, J. A., LLNL

    1997-10-01

    Retardation and dispersion in the far field of radionuclides released from the engineered barrier system/near field environment (EBS/NFE) may not be sufficient to prevent regulatory limits being exceeded at the accessible environment. Hence, a greater emphasis must be placed on retardation and/or immobilization of radionuclides in the EBS/NFE. The present document represents a survey of radionuclide-bearing solid phases that could potentially form in the EBS/NFE and immobilize radionuclides released from the waste package and significantly reduce the source term. A detailed literature search was undertaken for experimental solubilities of the oxides, hydroxides, and various salts of neptunium, plutonium, and uranium in aqueous solutions as functions of pH, temperature, and the concentrations of added electrolytes. Numerous solubility studies and reviews were identified and copies of most of the articles were acquired. However, this project was only two months in duration, and copies of some the identified solubility studies could not be obtained at short notice. The results of this survey are intended to be used to assess whether a more detailed study of identified low- solubility phase(s) is warranted, and not as a data base suitable for predicting radionuclide solubility. The results of this survey may also prove useful in a preliminary evaluation of the efficacy of incorporating chemical additives to the EBS/NFE that will enhance radionuclide immobilization.

  20. Phytosanitary irradiation - Development and application

    NASA Astrophysics Data System (ADS)

    Hallman, Guy J.; Loaharanu, Paisan

    2016-12-01

    Phytosanitary irradiation, the use of ionizing radiation to disinfest traded agricultural commodities of regulated pests, is a growing use of food irradiation that has great continued potential for increase in commercial application. In 2015 approximately 25,000 t of fresh fruits and vegetables were irradiated globally for phytosanitary purposes. Phytosanitary irradiation has resulted in a paradigm shift in phytosanitation in that the final burden of proof of efficacy of the treatment has shifted from no live pests upon inspection at a port of entry (as for all previous phytosanitary treatments) to total dependence on certification that the treatment for target pests is based on adequate science and is commercially conducted and protected from post-treatment infestation. In this regard phytosanitary irradiation is managed more like a hazard analysis and critical control point (HACCP) approach more consistent with food safety than phytosanitation. Thus, phytosanitary irradiation offers a more complete and rigorous methodology for safeguarding than other phytosanitary measures. The role of different organizations in achieving commercial application of phytosanitary irradiation is discussed as well as future issues and applications, including new generic doses.

  1. Structure determination of neptunium(VI) mu3-hydroxobenzoate, [(NpO2)2(mu3-OH)2(H5C6COO)2] x 2 H2O.

    PubMed

    Charushnikova, Iraida A; Krot, Nikolai N; Makarenkov, Vadim I

    2010-09-06

    Neptunium(VI) benzoate with mu(3)-OH(-) has been isolated and studied by the X-ray method. The main structural motive in the crystal is corrugated ribbons [(NpO(2))(2)(mu(3)-OH)(2)(C(7)H(5)O(2))(2)](n) extended along the c axes in which three neptunium pentagonal bipyramids are linked through the mu(3)-OH(-) ligand. The benzoate ions are arranged at both sides of the ribbons, and each anion binds two adjacent NpO(2). The water molecules are arranged in the channels along the c axis.

  2. 2-alkylcyclobutanones as irradiation dose indicators in irradiated ground beef patties.

    PubMed

    Gadgil, Priyadarshini; Hachmeister, Kathleen A; Smith, J Scott; Kropf, Donald H

    2002-09-25

    Alkylcyclobutanones have been recognized as chemical markers of irradiated lipid-containing foods since 1970. They are important because they are produced solely as a result of irradiation and not any other processing method. This study investigated the formation of 2-dodecylcyclobutanone (2-DCB) and 2-tetradec-5'-enylcyclobutanone (2-TDCB) in irradiated ground beef patties from commercial and noncommercial sources. Patties were irradiated using a (60)C source (gamma-irradiation) and electron beam irradiation, at five targeted absorbed doses of 0.5, 1.0, 2.5, 5.0, and 7.0 kGy. Commercially available irradiated patties were also studied. A supercritical fluid extraction (SFE) procedure was optimized and used for the extraction and isolation of the alkylcyclobutanones. Samples can be used for extraction without a prior cleanup step, which makes this procedure rapid and convenient to use. Identification and quantitation of the cyclobutanones were done by gas chromatography-mass spectroscopy. 2-DCB was detected in all of the irradiated samples (including commercial patties), and its concentration increased linearly with the irradiation dose. Electron beam irradiation produced a greater amount of 2-DCB compared to gamma-irradiation at dose levels >2.5 kGy. 2-TDCB was detected only at the two higher irradiation doses, whereas both marker compounds were not detected in the non-irradiated samples.

  3. Gas generation during waste treatment of acidic solutions from the dissolution of irradiated LEU targets for 99Mo production

    SciTech Connect

    Bakel, Allen J.; Conner, Cliff; Quigley, Kevin; Vandegrift, George F.

    2017-01-01

    The goal of the Reduced Enrichment for Research and Test Reactors Program is to limit the use of high-enriched uranium (HEU) in research and test reactors by substituting low-enriched uranium (LEU) wherever possible. The work reported here documents our work to develop the calcining technologies and processes that will be needed for 99Mo production using LEU foil targets and the Modified Cintichem Process. The primary concern with the conversion to LEU from HEU targets is that it would result in a five- to six-fold increase in the total uranium. This increase results in more liquid waste from the process. We have been working to minimize the increase in liquid waste and to minimize the impact of any change in liquid waste. Direct calcination of uranium-rich nitric acid solutions generates NO2 gas and UO3 solid. We have proposed two processes for treating the liquid waste from a Modified Cintichem Process with a LEU foil. One is an optimized direct calcination process that is similar to the process currently in use. The other is a uranyl oxalate precipitation process. The specific goal of the work reported here was to characterize and compare the chemical reactions that occur during these two processes. In particular, the amounts and compositions of the gaseous and solid products were of interest. A series of experiments was carried out to show the effects of temperature and the redox potential of the reaction atmosphere. The primary products of the direct calcination process were mixtures of U3O8 and UO3 solids and NO2 gas. The primary products of the oxalate precipitation process were mixtures of U3O8 and UO2 solid and CO2 gas. Higher temperature and a reducing atmosphere tended to favor quadrivalent over hexavalent uranium in the solid product. These data will help producers to decide between the two processes. In addition, the data can be used to design

  4. Measurement of the High Energy Neutron Flux on the Surface of the Natural Uranium Target Assembly QUINTA Irradiated by Deuterons of 4 and 8 GeV Energy

    NASA Astrophysics Data System (ADS)

    Adam, J.; Baldin, A. A.; Chilap, V.; Furman, W.; Katovsky, K.; Khushvaktov, J.; Kumar, V.; Pronskikh, V.; Mar'in, I.; Solnyshkin, A.; Suchopar, M.; Tsupko-Sitnikov, V.; Tyutyunnikov, S.; Vrzalova, J.; Wagner, V.; Zavorka, L.

    Experiments with the natural uranium target assembly "QUINTA" exposed to 4 and 8 GeV deuteron beams of the Nuclotron accelerator at the Joint Institute for Nuclear Research (Dubna) are analyzed. The reaction rates of 27Al(n,y1)24Na, 27Al(n,y2)22Na and 27Al(n,y3)7Be reactions with effective threshold energies of 5, 27, and 119 MeV were measured at both 4 GeV and 8 GeV deuteron beam energies. The average neutron fluxes between the effective threshold energies and the effective ends of the neutron spectra (which are 800 or 1000 MeV for 4 or 8 GeV deuterons) were determined. The evidence for the intensity shift of the neutron spectra to higher neutron energies with the increase of the deuteron energy from 4 GeV to 8 GeV was found from the ratios of the average neutron fluxes. The reaction rates and the average neutron fluxes were calculated with the MCNPX 2.7 code.

  5. PLUTONIUM-238 PRODUCTION TARGET DESIGN STUDIES

    SciTech Connect

    Hurt, Christopher J; Wham, Robert M; Hobbs, Randall W; Owens, R Steven; Chandler, David; Freels, James D; Maldonado, G Ivan

    2014-01-01

    A new supply chain is planned for plutonium-238 using existing reactors at the Oak Ridge National Laboratory (ORNL) and Idaho National Laboratory (INL) and existing chemical recovery facilities at ORNL. Validation and testing activities for new irradiation target designs have been conducted in three phases over a 2 year period to provide data for scale-up to production. Target design, qualification, target fabrication, and irradiation of fully-loaded targets have been accomplished. Data from post-irradiation examination (PIE) supports safety analysis and irradiation of future target designs.

  6. Sequential injection approach for simultaneous determination of ultratrace plutonium and neptunium in urine with accelerator mass spectrometry.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Lachner, Johannes; Christl, Marcus; Xu, Yihong

    2013-09-17

    An analytical method was developed for simultaneous determination of ultratrace level plutonium (Pu) and neptunium (Np) using iron hydroxide coprecipitation in combination with automated sequential injection extraction chromatography separation and accelerator mass spectrometry (AMS) measurement. Several experimental parameters affecting the analytical performance were investigated and compared including sample preboiling operation, aging time, amount of coprecipitating reagent, reagent for pH adjustment, sedimentation time, and organic matter decomposition approach. The overall analytical results show that preboiling and aging are important for obtaining high chemical yields for both Pu and Np, which is possibly related to the aggregation and adsorption behavior of organic substances contained in urine. Although the optimal condition for Np and Pu simultaneous determination requires 5-day aging time, an immediate coprecipitation without preboiling and aging could also provide fairly satisfactory chemical yields for both Np and Pu (50-60%) with high sample throughput (4 h/sample). Within the developed method, (242)Pu was exploited as chemical yield tracer for both Pu and Np isotopes. (242)Pu was also used as a spike in the AMS measurement for quantification of (239)Pu and (237)Np concentrations. The results show that, under the optimal experimental condition, the chemical yields of (237)Np and (242)Pu are nearly identical, indicating the high feasibility of (242)Pu as a nonisotopic tracer for (237)Np determination in real urine samples. The analytical method was validated by analysis of a number of urine samples spiked with different levels of (237)Np and (239)Pu. The measured values of (237)Np and (239)Pu by AMS exhibit good agreement (R(2) ≥ 0.955) with the spiked ones confirming the reliability of the proposed method.

  7. Phytosanitary Irradiation

    PubMed Central

    Hallman, Guy J.; Blackburn, Carl M.

    2016-01-01

    Phytosanitary treatments disinfest traded commodities of potential quarantine pests. Phytosanitary irradiation (PI) treatments use ionizing radiation to accomplish this, and, since their international commercial debut in 2004, the use of this technology has increased by ~10% annually. Generic PI treatments (one dose is used for a group of pests and/or commodities, although not all have been tested for efficacy) are used in virtually all commercial PI treatments, and new generic PI doses are proposed, such as 300 Gy, for all insects except pupae and adult Lepidoptera (moths). Fresh fruits and vegetables tolerate PI better than any other broadly used treatment. Advances that would help facilitate the use of PI include streamlining the approval process, making the technology more accessible to potential users, lowering doses and broadening their coverage, and solving potential issues related to factors that might affect efficacy. PMID:28231103

  8. Effect of the electron decay of metallic fission products on the chemical and phase compositions of an uranium-plutonium fuel irradiated by fast neutrons

    NASA Astrophysics Data System (ADS)

    Bondarenko, G. G.; Bulatov, G. S.; Gedgovd, K. N.; Lyubimov, D. Yu.; Yakushkin, M. M.

    2011-11-01

    After fast-neutron irradiation, uranium-plutonium nitride U0.8Pu0.2N is shown to acquire a complex structure consisting of a solid solution that is based on the nitrides of uranium, plutonium, americium, neptunium, zirconium, yttrium, and lanthanides and contains condensed phases U2N3, CeRu2, BaTe, Ba3N2, CsI, Sr3N2, LaSe, metallic molybdenum, technetium, and U(Ru, Rh, Pd)3 intermetallics. The contents and compositions of these phases are calculated at a temperature of 900 K and a burn-up fraction up to 14% (U + Pu). The change in the composition of the irradiated uranium-plutonium nitride is studied during the electron decay of metallic radionuclides. The kinetics of transformation of U103Ru3, 137CsI, 140Ba3N2, and 241PuN is calculated.

  9. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the ATR. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    S. L. Hayes; D. J. Utterbeck; T. A. Hyde

    2007-03-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  10. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the Advanced Test Reactor. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    Hayes, Steven L.

    2006-12-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  11. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the ATR. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    S. L. Hayes; D. J. Utterbeck; T. A. Hyde

    2006-11-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  12. Complex formation of neptunium(V) with 4-hydroxy-3-methoxybenzoic acid studied by time-resolved laser-induced fluorescence spectroscopy with ultra-short laser pulses.

    PubMed

    Vulpius, D; Geipel, G; Baraniak, L; Bernhard, G

    2006-03-01

    The complex formation of neptunium(V) with 4-hydroxy-3-methoxybenzoic acid (vanillic acid) was studied by time-resolved laser-induced fluorescence spectroscopy with ultra-short laser pulses using the fluorescence properties of 4-hydroxy-3-methoxybenzoic acid. A 2:1 complex of neptunium(V) with 4-hydroxy-3-methoxybenzoic acid was found. The stability constant of this complex was determined to be logbeta(210) = 7.33 +/- 0.10 at an ionic strength of 0.1 mol/l (NaClO(4)) and at 21 degrees C. The determination of the stability constant required an investigation of the excited-state proton transfer of 4-hydroxy-3-methoxybenzoic acid over the whole pH range. It was realized that 4-hydroxy-3-methoxybenzoic acid undergoes excited-state reactions only at pH values below 5. At pH values above 5 stability constants can be determined without kinetic calculation of the proton transfer.

  13. Effects of fasting and/or oxidizing and reducing agents on absorption of neptunium from the gastrointestinal tract of mice and adult or neonatal rats.

    PubMed

    Sullivan, M F; Ruemmler, P S; Ryan, J L

    1984-12-01

    Neptunium-237(V) nitrate was administered by gavage to groups of fed or fasted adult and 5-day-old rats. Some groups also received the oxidants quinhydrone or ferric iron, and others received the reducing agent ferrous iron. Adult mice received ferric or ferrous iron and 235Np. When the adult rats were killed at 7 days after gavage, measurements showed that, compared with rats that were fed, a 24-hr fast caused a fivefold increase in 237Np absorption and retention. Both quinhydrone and ferric iron caused an even greater increase in absorption in both fed and fasted rats. Ferrous iron, on the other hand, decreased absorption in fasted rats to values lower than those obtained in fed rats. Similar results were obtained in mice treated with 235Np and either ferric or ferrous iron. The highest absorption obtained after gavage of ferric iron to fasted rats and mice was about two orders of magnitude higher than the value obtained in animals that were fed before gavage. The effects of ferric and ferrous iron on neptunium absorption by neonatal rats were similar to their effects on adult animals but of lesser magnitude. These results are consistent with the hypothesis that Np(V), when given in small mass quantities to fed animals, is reduced in the gastrointestinal tract to Np(IV), which is less well absorbed than Np(V).

  14. Advanced Fuel Cycle Initiative AFC-1D, AFC-1G, and AFC-1H End of FY-07 Irradiation Report

    SciTech Connect

    Debra J Utterbeck; Gray S Chang; Misit A Lillo

    2007-09-01

    The purpose of the U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), is to develop and demonstrate the technologies needed to transmute the long-lived transuranic isotopes contained in spent nuclear fuel into shorter-lived fission products. Success in this undertaking could potentially dramatically decrease the volume of material requiring disposal with attendant reductions in long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is investigation of irradiation/transmutation effects on actinide-bearing metallic fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. Goals of this initiative include addressing the limited irradiation performance data available on metallic fuels with high concentrations of Pu, Np and Am, as are envisioned for use as actinide transmutation fuels. The AFC-1 irradiation experiments of transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. The metallic fuel experiments and nitride experiment are high burnup analogs to previously irradiated experiments and are to be irradiated to = 40 at.% burnup.

  15. Irradiation Test of Fuel Containing Minor Actinides in the Experimental Fast Reactor Joyo

    NASA Astrophysics Data System (ADS)

    Soga, Tomonori; Sekine, Takashi; Tanaka, Kosuke; Kitamura, Ryoichi; Aoyama, Takafumi

    The mixed oxide containing minor actinides (MA-MOX) fuel irradiation program is being conducted using the experimental fast reactor Joyo of the Japan Atomic Energy Agency to research early thermal behavior of MA-MOX fuel. Two irradiation experiments were conducted in the Joyo MK-III 3rd operational cycle. Six prepared fuel pins included MOX fuel containing 3% or 5% americium (Am-MOX), MOX fuel containing 2% americium and 2% neptunium (Np/Am-MOX), and reference MOX fuel. The first test was conducted with high linear heat rates of approximately 430 W/cm maintained during only 10 minutes in order to confirm whether or not fuel melting occurred. After 10 minutes irradiation in May 2006, the test subassembly was transferred to the hot cell facility and an Am-MOX pin and a Np/Am-MOX pin were replaced with dummy pins including neutron dosimeters. The test subassembly loaded with the remaining four fuel pins was re-irradiated in Joyo for 24-hours in August 2006 at nearly the same linear power to obtain re-distribution data on MA-MOX fuel. Linear heat rates for each pin were calculated using MCNP accounting for both prompt and delayed heating components, and then adjusted using E/C for 10B (n, α) reaction rates measured in the MK-III core neutron field characterization test. Post irradiation examination of these pins to confirm the fuel melting and the local concentration under irradiation of NpO2-x or AmO2-x in the (U, Pu)O2-x fuel are underway. The test results are expected to reduce uncertainties on the design margin in the thermal design for MA-MOX fuel.

  16. A SU-8 dish for cell irradiation

    NASA Astrophysics Data System (ADS)

    Arteaga-Marrero, N.; Auzelyte, V.; Olsson, M. G.; Pallon, J.

    2007-10-01

    The objective of the CELLION project is radiation research at low doses. The main cell responses to low dose irradiation are bystander effects, genomic instability and adaptive responses. In order to study these effects it is convenient to make the cells addressable in space and time through locking the cell position. A new alternative dish has been developed for irradiation procedures at the Lund Nuclear Probe. The versatile dish can be used both to cultivate and to hold the cells during the irradiation procedure. The irradiation dish is made of an epoxy-based photopolymer named SU-8 chosen by its flexibility, non-toxicity and biological compatibility to cell attachment. It has been fabricated using a UV lithographic technique. The irradiation dish forms a 2 × 2 mm 2 grid which contains 400 squares. Each square has 80 μm side and is separated from neighbouring ones by 20 μm wide walls. The location of each square is marked by a row letter and column number patterned outside the grid. The Cell Irradiation Facility at the Lund Nuclear Probe utilizes protons to irradiate living cells. A post-cell detection set up is used to control the applied dose, detecting the number of protons after passing through the targeted cell. The transmission requirement is fulfilled by our new irradiation dish. So far, the dish has been used to perform non-targeted irradiation of Hepatoma cells. The cells attach and grow easily on the SU-8 surface. In addition, the irradiation procedure can be performed routinely and faster since the cells are incubated and irradiated in the same surface.

  17. Intensity Modulated Radiotherapy Improves Target Coverage and Parotid Gland Sparing When Delivering Total Mucosal Irradiation in Patients With Squamous Cell Carcinoma of Head and Neck of Unknown Primary Site

    SciTech Connect

    Bhide, Shreerang Clark, Catherine; Harrington, Kevin; Nutting, Christopher M.

    2007-10-01

    Head and neck squamous cell carcinoma with occult primary site represents a controversial clinical problem. Conventional total mucosal irradiation (TMI) maximizes local control, but at the expense of xerostomia. IMRT has been shown to spare salivary tissue in head and cancer patients. This study has been performed to investigate the potential of IMRT to perform nodal and TMI and also allow parotid gland sparing in this patient group. Conventional radiotherapy (CRT) and IMRT plans were produced for six patients to treat the ipsilateral (involved) post-operative neck (PTV1) and the un-operated contralateral neck and mucosal axis (PTV2). Plans were produced with and without the inclusion of nasopharynx in the PTV2. The potential to improve target coverage and spare the parotid glands was investigated for the IMRT plans. There was no significant difference in the mean doses to the PTV1 using CRT and IMRT (59.7 and 60.0 respectively, p = 0.5). The maximum doses to PTV1 and PTV2 were lower for the IMRT technique as compared to CRT (P = 0.008 and P < 0.0001), respectively, and the minimum doses to PTV1 and PTV2 were significantly higher for IMRT as compared to CRT (P = 0.001 and P = 0.001), respectively, illustrating better dose homogeneity with IMRT. The mean dose to the parotid gland contralateral to PTV1 was significantly lower for IMRT (23.21 {+-} 0.7) as compared to CRT (50.5 {+-} 5.8) (P < 0.0001). There was a significant difference in parotid dose between plans with and without the inclusion of the nasopharynx. IMRT offers improved dose homogeneity in PTV1 and PTV2 and allows for parotid sparing.

  18. Bend-fatigue properties of 590 MeV proton irradiated JPCA and 316F SS

    NASA Astrophysics Data System (ADS)

    Saito, S.; Kikuchi, K.; Usami, K.; Ishikawa, A.; Nishino, Y.; Kawai, M.; Dai, Y.

    2004-08-01

    A beam window of a spallation target will be subjected to proton/neutron irradiation, pressure wave and thermal stresses accompanied by high-energy proton beam injection. To obtain irradiation data, the SINQ target irradiation program (STIP) was initiated in 1996 at PSI. JAERI takes part in STIP and conducted the post-irradiation examination of JPCA, 316F. Irradiation conditions of JAERI specimens were as follows: proton energy was 590 MeV. Irradiation temperature ranged from 135 to 360 °C and irradiation dose from 6.3 to 12.5 dpa. The fatigue life of irradiated specimens is almost the same as that of unirradiated specimens. On the other hand, fracture surfaces varied with irradiation conditions. Specimens irradiated at low temperature fractured in a ductile manner. However, intergranular fractured surfaces were observed for 316F irradiated up to 12.5 dpa at 360 °C.

  19. Backlighting prospects for ICF targets

    SciTech Connect

    Rupert, V.; Matthews, D.; Ahlstrom, H.; Attwood, D.; Price, R.; Coleman, L.; Manes, K.; Slivinsky, V.

    1981-01-01

    High energy x-ray backlighters are necessary to diagnose the implosion symmetry and stability of intermediate and high density targets. Synchronization requirements between the target irradiating pulse and the radiograph place severe constraints on the type of x-ray sources which can be used and favors laser irradiated backlighters. Data gathered on line emitters as a function of laser pulselength, wavelength and intensity in the 5 to 10 keV region are used to determine which diagnostic instruments will be feasible for ICF target experiments, and the requirements for backlighter irradiation.

  20. Use of Irradiated Foods

    NASA Technical Reports Server (NTRS)

    Brynjolfsson, A.

    1985-01-01

    The safety of irradiated foods is reviewed. Guidelines and regulations for processing irradiated foods are considered. The radiolytic products formed in food when it is irradiated and its wholesomeness is discussed. It is concluded that food irradiation processing is not a panacea for all problems in food processing but when properly used will serve the space station well.

  1. Sensitive redox speciation of iron, neptunium, and plutonium by capillary electrophoresis hyphenated to inductively coupled plasma sector field mass spectrometry.

    PubMed

    Graser, Carl-Heinrich; Banik, Nidhu Lal; Bender, Kerstin Anne; Lagos, Markus; Marquardt, Christian Michael; Marsac, Rémi; Montoya, Vanessa; Geckeis, Horst

    2015-10-06

    The long-term safety assessment for nuclear waste repositories requires a detailed understanding of actinide (geo)chemistry. Advanced analytical tools are required to gain insight into actinide speciation in a given system. The geochemical conditions in the vicinity of a nuclear repository control the redox state of radionuclides, which in turn has a strong impact on their mobility. Besides the long-lived radionuclides plutonium (Pu) and neptunium (Np), which are key elements in high level nuclear waste, iron (Fe) represents a main component in natural systems controlling redox-related geochemical processes. Measuring the oxidation state distribution for redox sensitive radionuclides and other metal ions is challenging at trace concentrations below the detection limit of most available spectroscopic methods (≥10(-6) M). Consequently, ultrasensitive new analytical techniques are required. Capillary electrophoresis (CE) is a suitable separation method for metal cations. CE hyphenated to inductively coupled plasma sector field mass spectrometry (CE-ICP-SF-MS) was used to measure the redox speciation of Pu (III, IV, V, VI), Np (IV, V, VI), and Fe (II, III) at concentrations lower than 10(-7) M. CE coupling and separation parameters such as sample gas pressure, make up flow rate, capillary position, auxiliary gas flow, as well as the electrolyte system were optimized to obtain the maximum sensitivity. We obtain detection limits of 10(-12) M for Np and Pu. The various oxidation state species of Pu and Np in different samples were separated by application of an acetate-based electrolyte system. The separation of Fe (II) and Fe (III) was investigated using different organic complexing ligands, EDTA, and o-phenanthroline. For the Fe redox system, a limit of detection of 10(-8) M was calculated. By applying this analytical system to sorption studies, we were able to underline previously published results for the sorption behavior of Np in highly diluted concentrations, and

  2. Expansion of the rich structures and magnetic properties of neptunium selenites: soft ferromagnetism in Np(SeO3)2.

    PubMed

    Diefenbach, Kariem; Lin, Jian; Cross, Justin N; Dalal, Naresh S; Shatruk, Michael; Albrecht-Schmitt, Thomas E

    2014-07-21

    Two new neptunium selenites with different oxidation states of the metal centers, Np(IV)(SeO3)2 and Np(VI)O2(SeO3), have been synthesized under mild hydrothermal conditions at 200 °C from the reactions of NpO2 and SeO2. Np(SeO3)2 crystallizes as brown prisms (space group P21/n, a = 7.0089(5) Å, b = 10.5827(8) Å, c = 7.3316(5) Å, β = 106.953(1)°); whereas NpO2(SeO3) crystals are garnet-colored with an acicular habit (space group P21/m, a = 4.2501(3) Å, b = 9.2223(7) Å, c = 5.3840(4) Å, β = 90.043(2)°). Single-crystal X-ray diffraction studies reveal that the structure of Np(SeO3)2 features a three-dimensional (3D) framework consisting of edge-sharing NpO8 units that form chains that are linked via SeO3 units to create a 3D framework. NpO2(SeO3) possesses a lamellar structure in which each layer is composed of NpO8 hexagonal bipyramids bridged via SeO3(2-) anions. Bond-valence sum calculations and UV-vis-NIR absorption spectra support the assignment of tetravalent and hexavalent states of neptunium in Np(SeO3)2 and NpO2(SeO3), respectively. Magnetic susceptibility data for Np(SeO3)2 deviates substantially from typical Curie-Weiss behavior, which can be explained by large temperature-independent paramagnetic (TIP) effects. The Np(IV) selenite shows weak ferromagnetic ordering at 3.1(1) K with no detectable hysteresis, suggesting soft ferromagnetic behavior.

  3. Identifying Sources of Non-fallout Nuclear Contamination in Hudson River Sediments by Plutonium and Neptunium isotope ratios.

    NASA Astrophysics Data System (ADS)

    Kenna, T. C.; Chillrud, S. N.

    2002-12-01

    In an effort to identify and characterize nuclear contaminants released from sources contained within the Hudson River drainage basin, Pu isotopes and 237Np have been measured in a series of sediment cores collected from various locations within the region. During the last several decades, the Hudson River has received input of radioactive contamination from several sources. The first and most significant, has been global fallout, which was a result of atmospheric testing of nuclear weapons primarily by governments of the United States and Former Soviet Union in the 1950s and 1960s. The second, is contamination resulting from reactor releases at the Indian Point Nuclear Power Plant (IPNPP) located on the Hudson River about 35 miles north of New York City. This facility began operation in 1962. A third source of radioactive contamination to the region is contamination resulting from activities at the Knolls Atomic Power Laboratory (KAPL) located on the Mohawk River, which began operation in 1946. Our research entails identifying different sources of nuclear contamination by measurement of plutonium and neptunium isotopic ratios by inductively coupled plasma mass spectrometry (ICP-MS). The isotopic composition of a nuclear contaminant is a sensitive indicator of its origin. By comparing the isotopic composition measured in fluvial sediments to mean values reported for global fallout (i.e. 240Pu/239Pu = 0.18 ñ 0.014, 237Np/239Pu = 0.48 ñ 0.07, and 241Pu/239Pu = .00194 ñ 00028) it is possible to identify contaminants as non-fallout in origin. To date, we have analyzed selected samples from 3 sediment cores collected from the following locations: 1) the Mohawk River downstream of KAPL, 2) the Hudson River above its confluence with the Mohawk River, and 3) the lower Hudson River at a location in close proximity to IPNPP. Isotopic analysis of sediments from the Mohawk River indicates contamination that is clearly non-fallout in origin (240Pu/239Pu ranges between 0

  4. Commercial food irradiation

    SciTech Connect

    Black, E.F.; Libby, L.M.

    1983-06-01

    Food irradiation is discussed. Irradiation exposes food to gamma rays from a cobalt-60 or a cesium-137 source, or to high-energy electrons emitted by an electron accelerator. A major advantage is that food can be packaged either before or after treatment. FDA regulations with regard to irradiation are discussed. Comments on an 'Advance Notice' on irradiation, published by the FDA in 1981 are summarized.

  5. Cd - Np (Cadmium - Neptunium)

    NASA Astrophysics Data System (ADS)

    Predel, B.

    This document is part of Volume 12 Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys', Subvolume B 'B - Ba … Cu - Zr, Supplement to Subvolumes IV/5B, IV/5C and IV/5D', of Landolt-Börnstein - Group IV 'Physical Chemistry'.

  6. B - Np (Boron - Neptunium)

    NASA Astrophysics Data System (ADS)

    Predel, B.

    This document is part of Volume 12 Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys', Subvolume B 'B - Ba … Cu - Zr, Supplement to Subvolumes IV/5B, IV/5C and IV/5D', of Landolt-Börnstein - Group IV 'Physical Chemistry'.

  7. Welding irradiated stainless steel

    SciTech Connect

    Kanne, W.R. Jr.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-12-31

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials.

  8. Irradiation exposure modulates central opioid functions

    SciTech Connect

    Dougherty, P.M.; Dafny, N.

    1987-11-01

    Exposure to low doses of gamma irradiation results in the modification of both the antinociceptive properties of morphine and the severity of naloxone-precipitated withdrawal in morphine-dependent rats. To better define the interactions between gamma irradiation and these opiate-mediated phenomena, dose-response studies were undertaken of the effect of irradiation on morphine-induced antinociception, and on the naloxone-precipitated withdrawal syndrome of morphine-dependent rats. In addition, electrophysiologic studies were conducted in rats after irradiation exposure and morphine treatment correlating with the behavioral studies. The observations obtained demonstrated that the antinociceptive effects of morphine as well as naloxone-precipitated withdrawal were modified in a dose-dependent manner by irradiation exposure. In addition, irradiation-induced changes in the evoked responses obtained from four different brain regions demonstrated transient alterations in both baseline and morphine-treated responses that may reflect the alterations observed in the behavioral paradigms. These results suggest that the effects of irradiation on opiate activities resulted from physiologic alterations of central endogenous opioid systems due to alterations manifested within peripheral targets.

  9. Structural Properties and Charge Distribution of the Sodium Uranium, Neptunium, and Plutonium Ternary Oxides: A Combined X-ray Diffraction and XANES Study.

    PubMed

    Smith, Anna L; Martin, Philippe; Prieur, Damien; Scheinost, Andreas C; Raison, Philippe E; Cheetham, Anthony K; Konings, Rudy J M

    2016-02-15

    The charge distributions in α-Na2UO4, Na3NpO4, α-Na2NpO4, Na4NpO5, Na5NpO6, Na2PuO3, Na4PuO5, and Na5PuO6 are investigated in this work using X-ray absorption near-edge structure (XANES) spectroscopy at the U-L3, Np-L3, and Pu-L3 edges. In addition, a Rietveld refinement of monoclinic Na2PuO3, in space group C2/c, is reported for the first time, and the existence of the isostructural Na2NpO3 phase is revealed. In contrast to measurements in solution, the number of published XANES data for neptunium and plutonium solid phases with a valence state higher than IV is very limited. The present results cover a wide range of oxidation states, namely, IV to VII, and can serve as reference for future investigations. The sodium actinide series show a variety of local coordination geometries, and correlations between the shape of the XANES spectra and the local structural environments are discussed herein.

  10. Experimental and theoretical study of anion-exchange preparative chromatography for neptunium: the first application to thorium(IV) and its equilibrium and kinetics.

    PubMed

    Yamamura, Tomoo; Miyakoshi, Takeshi; Shiokawa, Yoshinobu; Mitsugashira, Toshiaki

    2007-10-26

    In order to study equilibrium and kinetic parameters in anion-exchange chromatography for preparatory purpose, a quantitative model for nonlinear anion-exchange chromatography in porous media was constructed, by paying special attention to interstitial length along void structure (cm) distinguished from apparent length (cm*). Langmuir-type adsorption isotherm for thorium(IV), as a natural substitution for neptunium(IV), in 6 mol dm(-3) nitric acid to anion-exchanger MSA-1 (200-400 mesh) was investigated in batch-wise and chromatographic experiments. The equilibrium parameters determined by batch-wise experiments determined as k=2.4x10(2) mol(-1) dm3 s(-1) and s0=0.5 mol dm(-3) agrees very well with the values of k=222 mol(-1) dm3 s(-1) and s0=0.5 mol dm(-3) derived from fitting by the numerical calculation. Kinetic parameters of ks and D affect band profile similarly, thereby maximum value of each parameter was evaluated as ks=1.3 mol(-1) dm3 s(-1) and D=9x10(-4) cm2 s(-1) by the numerical calculations.

  11. Synthesis, phase structure and microstructure of monazite-type Ce1-xPrxPO4 solid solutions for immobilization of minor actinide neptunium

    NASA Astrophysics Data System (ADS)

    Zeng, Pan; Teng, Yuancheng; Huang, Yi; Wu, Lang; Wang, Xiaohuan

    2014-09-01

    Praseodymium was used as the surrogate for trivalent minor actinide neptunium, and a complete series of pure monazite-type Ce1-xPrxPO4 (x = 0-1) solid solutions were successfully prepared by the solid state reaction. The effects of calcining temperature, holding time and Pr content on the structure of Ce1-xPrxPO4 solid solutions were investigated. The results show that although Pr6O11 (Pr23+Pr44+O11) exists two stabilized oxidation states, there has been no tetravalent praseodymium phosphate during the synthesis process. The optimized temperature for the synthesis of Ce0.8Pr0.2PO4 solid solution is more than 1100 °C, and a hypothetical reaction mechanism is also proposed. Besides, the crystalline grains coarsen as the increasing of holding time. The linear variation of unit cell parameters and a gradual hypsochromic shift in the Raman spectra are observed with the increase of Pr content, indicating that cerium is progressively replaced by praseodymium and Ce1-xPrxPO4 solid solutions were prepared.

  12. Method for determination of neptunium in large-sized urine samples using manganese dioxide coprecipitation and 242Pu as yield tracer.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2013-02-05

    A novel method for bioassay of large volumes of human urine samples using manganese dioxide coprecipitation for preconcentration was developed for rapid determination of (237)Np. (242)Pu was utilized as a nonisotopic tracer to monitor the chemical yield of (237)Np. A sequential injection extraction chromatographic (SI-EC) system coupled with inductively coupled plasma mass spectrometry (ICPMS) was exploited to facilitate the rapid column separation and quantification. The analytical results demonstrated satisfactory performance of the MnO(2) coprecipitation as indicated by the high chemical yields close to 100% and high separation capacity of processing up to 5 L of human urine samples. The MnO(2) coprecipitation process is simple and straightforward in which a batch (8-12) of samples can be pretreated within 4 h (i.e., <0.5 h/sample). In connection with the automated column separation and ICPMS quantification, which takes less than 1.5 h in total, the overall analytical time was on average less than 2 h for each sample. The high effectiveness and sample throughput make the developed method well suited for urine bioassay of (237)Np in routine monitoring of occupationally internal radiation exposure and rapid analysis of neptunium contamination level for emergency preparedness.

  13. Antioxidant Approaches to Management of Ionizing Irradiation Injury

    PubMed Central

    Greenberger, Joel; Kagan, Valerian; Bayir, Hulya; Wipf, Peter; Epperly, Michael

    2015-01-01

    Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1) radiation counter measures against total or partial body irradiation; (2) normal tissue protection against acute organ specific ionizing irradiation injury; and (3) prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD) transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response. PMID:26785339

  14. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  15. Perspective on food irradiation

    SciTech Connect

    Not Available

    1987-02-01

    Recent US Food and Drug Administration approval of irradiation treatment for fruit, vegetables and pork has stimulated considerable discussion in the popular press on the safety and efficacy of irradiation processing of food. This perspective is designed to summarize the current scientific information available on this issue.

  16. MASSIVE LEAKAGE IRRADIATOR

    DOEpatents

    Wigner, E.P.; Szilard, L.; Christy, R.F.; Friedman, F.L.

    1961-05-30

    An irradiator designed to utilize the neutrons that leak out of a reactor around its periphery is described. It avoids wasting neutron energy and reduces interference with the core flux to a minimum. This is done by surrounding all or most of the core with removable segments of the material to be irradiated within a matrix of reflecting material.

  17. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  18. Targets and methods for target preparation for radionuclide production

    DOEpatents

    Zhuikov, Boris L; Konyakhin, Nicolai A; Kokhanyuk, Vladimir M; Srivastava, Suresh C

    2012-10-16

    The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti--Sb, Al--Sb, Cu--Sb, or Ni--Sb in order to produce radionuclides (e.g., tin-117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.

  19. [Dosimetric comparison of external partial breast irradiation with whole breast irradiation and partial breast brachytherapy].

    PubMed

    Bodács, István; Polgár, Csaba; Major, Tibor

    2014-06-01

    Different techniques exist for the delivery of radiotherapy after breast conserving surgery. The conventional method is whole breast irradiation. However, in selected patients partial breast irradiation can be performed, either with external beams or brachytherapy. In the current study three irradiation techniques are compared regarding dosimetric aspects. Treatment plans of thirty women treated with external beam conformal partial breast irradiation (CONF) were evaluated using dose-volume histograms. For the same patients whole breast irradiation plans (WBI) were made and compared with the CONF ones. Breast and lung of both sides, and heart at left sided lesions were contoured as organs at risk. After this, dose plans of another thirty patients treated with interstitial brachytherapy (IBT) were analyzed and compared with the CONF plans. According to our results the 90% isodose curve covered at least 97% of the target volume at all three techniques, and this value was 100% for CONF. The maximal dose within target volume was 106% in CONF and 115% in WBI plans. Volume of ipsilateral breast receiving the prescribed dose was 66%, 15% and 13% in the WBI, CONF and IBT plans, respectively. The dose to the contralateral breast was less for CONF compared to WBI. Volume of the ipsilateral lung receiving 30% of the prescribed dose was 15%, 8% and 1%, the maximal dose was 105%, 94% and 47% in the WBI, CONF and IBT plans, respectively. In the same order the maximal dose to the heart was 82%, 49% and 25%, while the dose irradiated to 5% of the heart volume was 27%, 19% and 14% at left sided lesions. Regarding target coverage, the conformal technique was the best, and the dose was more homogeneous than at WBI. With respect to dose to organs at risk the partial breast irradiation techniques were much more favorable than WBI, and the lowest doses occurred in the IBT treatment plans.

  20. Alaskan Commodities Irradiation Project

    SciTech Connect

    Zarling, J.P.; Swanson, R.B.; Logan, R.R.; Das, D.K.; Lewis, C.E.; Workman, W.G.; Tumeo, M.A.; Hok, C.I.; Birklid, C.A.; Bennett, F.L.

    1988-12-01

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology. 40 refs., 50 figs., 53 tabs.

  1. Food irradiation in perspective

    NASA Astrophysics Data System (ADS)

    Henon, Y. M.

    1995-02-01

    Food irradiation already has a long history of hopes and disappointments. Nowhere in the world it plays the role that it should have, including in the much needed prevention of foodborne diseases. Irradiated food sold well wherever consumers were given a chance to buy them. Differences between national regulations do not allow the international trade of irradiated foods. While in many countries food irradiation is still illegal, in most others it is regulated as a food additive and based on the knowledge of the sixties. Until 1980, wholesomeness was the big issue. Then the "prerequisite" became detection methods. Large amounts of money have been spent to design and validate tests which, in fact, aim at enforcing unjustified restrictions on the use of the process. In spite of all the difficulties, it is believed that the efforts of various UN organizations and a growing legitimate demand for food safety should in the end lead to recognition and acceptance.

  2. [The irradiation process].

    PubMed

    Barillot, I; Chauvet, B; Hannoun Lévi, J M; Lisbona, A; Leroy, T; Mahé, M A

    2016-09-01

    The purpose of this article is to describe the regulatory framework of the radiotherapy practice in France, the external irradiation and brachytherapy process and the guidelines for patient follow-up.

  3. Total lymphoid irradiation

    SciTech Connect

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-05-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen.

  4. Quantum chemistry study of uranium(VI), neptunium(V), and plutonium(IV,VI) complexes with preorganized tetradentate phenanthrolineamide ligands.

    PubMed

    Xiao, Cheng-Liang; Wu, Qun-Yan; Wang, Cong-Zhi; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-10-20

    The preorganized tetradentate 2,9-diamido-1,10-phenanthroline ligand with hard-soft donors combined in the same molecule has been found to possess high selectivity toward actinides in an acidic aqueous solution. In this work, density functional theory (DFT) coupled with the quasi-relativistic small-core pseudopotential method was used to investigate the structures, bonding nature, and thermodynamic behavior of uranium(VI), neptunium(V), and plutonium(IV,VI) with phenanthrolineamides. Theoretical optimization shows that Et-Tol-DAPhen and Et-Et-DAPhen ligands are both coordinated with actinides in a tetradentate chelating mode through two N donors of the phenanthroline moiety and two O donors of the amide moieties. It is found that [AnO2L(NO3)](n+) (An = U(VI), Np(V), Pu(VI); n = 0, 1) and PuL(NO3)4 are the main 1:1 complexes. With respect to 1:2 complexes, the reaction [Pu(H2O)9](4+)(aq) + 2L(org) + 2NO3(-)(aq) → [PuL2(NO3)2](2+)(org) + 9H2O(aq) might be another probable extraction mechanism for Pu(IV). From the viewpoint of energy, the phenanthrolineamides extract actinides in the order of Pu(IV) > U(VI) > Pu(VI) > Np(V), which agrees well with the experimental results. Additionally, all of the thermodynamic reactions are more energetically favorable for the Et-Tol-DAPhen ligand than the Et-Et-DAPhen ligand, indicating that substitution of one ethyl group with one tolyl group can enhance the complexation abilities toward actinide cations (anomalous aryl strengthening).

  5. Blood irradiation: Rationale and technique

    SciTech Connect

    Lewis, M.C. )

    1990-01-01

    Upon request by the local American Red Cross, the Savannah Regional Center for Cancer Care irradiates whole blood or blood components to prevent post-transfusion graft-versus-host reaction in patients who have severely depressed immune systems. The rationale for blood irradiation, the total absorbed dose, the type of patients who require irradiated blood, and the regulations that apply to irradiated blood are presented. A method of irradiating blood using a linear accelerator is described.

  6. Effects of irradiation on Planococcus minor (Hemiptera: Pseudococcidae).

    PubMed

    Ravuiwasa, Kaliova Tavou; Lu, Kuang-Hui; Shen, Tse-Chi; Hwang, Shaw-Yhi

    2009-10-01

    Irradiation has been recognized and endorsed as a potential phytosanitary measure that could be an alternative to current quarantine treatments. Dosages of 50, 100, 150, 200, and 250 Gy were used to irradiate three different life stages (eggs, immatures, and adults) of Planococcus minor (Maskell) (Hemiptera: Pseudococcidae), focusing on females due to its parthenogenesis ability, with an aim to find the most tolerant stage and the most optimal dose to control P. minor. Cobalt 60 was the source of irradiation used. Irradiation of 150-250 Gy has a significant effect on all life stages of P. minor, decreasing its survival rate, percentage of adult reproduction, oviposition, and fertility rate. The adult was the most tolerant life stage in both mortality and fertility rate. All the different irradiated target life stage groups oviposited eggs, but none of the F2 eggs hatched at the most optimal dosage of 150-250 Gy.

  7. RERTR-7 Irradiation Summary Report

    SciTech Connect

    D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-12-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

  8. ROS-Responsive Mitochondria-Targeting Blended Nanoparticles: Chemo- and Photodynamic Synergistic Therapy for Lung Cancer with On-Demand Drug Release upon Irradiation with a Single Light Source.

    PubMed

    Yue, Caixia; Yang, Yuming; Zhang, Chunlei; Alfranca, Gabriel; Cheng, Shangli; Ma, Lijun; Liu, Yanlei; Zhi, Xiao; Ni, Jian; Jiang, Weihua; Song, Jie; de la Fuente, Jesús M; Cui, Daxiang

    2016-01-01

    Mitochondria in cancer cells maintain a more negative membrane potential than normal cells. Mitochondria are the primary source of cellular reactive oxygen species (ROS), which are necessary for photodynamic therapy. Thus, the strategy of targeting mitochondria can maximize the photodynamic therapeutic efficiency for cancer. Here we report, for the first time, synthesis of a new mitochondria-targeting drug delivery system, ZnPc/CPT-TPPNPs. To synthesize this novel compound, polyethylene glycol was functionalized with thioketal linker-modified camptothecin (TL-CPT) and triphenylphosphonium to form the block copolymer, TL-CPT-PEG1K-TPP. The ZnPc/CPT-TPPNPs was constructed for delivery of the photosensitizer Zinc phthalocyanine (ZnPc) by blending the block copolymer TL-CPT-PEG1K-TPP with 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)] (DSPE-PEG).Triphenylphosphine can accumulate selectively several hundred-fold within mitochondria. The thioketal linker is ROS-responsive and CPT can be released upon ROS cleavage. We also show that the ZnPc loaded in ZnPc/CPT-TPPNPs absorbed the 633 nm laser to produce ROS, which could be utilized both in photodynamic therapy and to cleave the thioketal linker thereby releasing camptothecin for chemotherapy. Thus, the mitochondria-targeting nanoparticles could elevate photodynamic therapeutic efficacy. Our results showed that surface modification of the nanoparticles with triphenylphosphine cations facilitated efficient subcellular delivery of the photosensitizer to mitochondria. The nanoparticles had a good ROS-responsive effect to release CPT, which could transfer to the nucleus and interfere with DNA replication as a topoisomeraseⅠinhibitor. Thus, the blended nanoparticles provide a new promising approach as a mitochondria-targeting ROS-activated chemo- and photodynamic therapy with a single light source for lung cancer.

  9. ROS-Responsive Mitochondria-Targeting Blended Nanoparticles: Chemo- and Photodynamic Synergistic Therapy for Lung Cancer with On-Demand Drug Release upon Irradiation with a Single Light Source

    PubMed Central

    Yue, Caixia; Yang, Yuming; Zhang, Chunlei; Alfranca, Gabriel; Cheng, Shangli; Ma, Lijun; Liu, Yanlei; Zhi, Xiao; Ni, Jian; Jiang, Weihua; Song, Jie; de la Fuente, Jesús M.; Cui, Daxiang

    2016-01-01

    Mitochondria in cancer cells maintain a more negative membrane potential than normal cells. Mitochondria are the primary source of cellular reactive oxygen species (ROS), which are necessary for photodynamic therapy. Thus, the strategy of targeting mitochondria can maximize the photodynamic therapeutic efficiency for cancer. Here we report, for the first time, synthesis of a new mitochondria-targeting drug delivery system, ZnPc/CPT-TPPNPs. To synthesize this novel compound, polyethylene glycol was functionalized with thioketal linker-modified camptothecin (TL-CPT) and triphenylphosphonium to form the block copolymer, TL-CPT-PEG1K-TPP. The ZnPc/CPT-TPPNPs was constructed for delivery of the photosensitizer Zinc phthalocyanine (ZnPc) by blending the block copolymer TL-CPT-PEG1K-TPP with 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)] (DSPE-PEG).Triphenylphosphine can accumulate selectively several hundred-fold within mitochondria. The thioketal linker is ROS-responsive and CPT can be released upon ROS cleavage. We also show that the ZnPc loaded in ZnPc/CPT-TPPNPs absorbed the 633 nm laser to produce ROS, which could be utilized both in photodynamic therapy and to cleave the thioketal linker thereby releasing camptothecin for chemotherapy. Thus, the mitochondria-targeting nanoparticles could elevate photodynamic therapeutic efficacy. Our results showed that surface modification of the nanoparticles with triphenylphosphine cations facilitated efficient subcellular delivery of the photosensitizer to mitochondria. The nanoparticles had a good ROS-responsive effect to release CPT, which could transfer to the nucleus and interfere with DNA replication as a topoisomeraseⅠinhibitor. Thus, the blended nanoparticles provide a new promising approach as a mitochondria-targeting ROS-activated chemo- and photodynamic therapy with a single light source for lung cancer. PMID:27877240

  10. Tensile properties of CLAM steel irradiated up to 20.1 dpa in STIP-V

    NASA Astrophysics Data System (ADS)

    Ge, Hongen; Peng, Lei; Dai, Yong; Huang, Qunying; Ye, Minyou

    2016-01-01

    Specimens of China low activation martensitic steel (CLAM) were irradiated in the fifth experiment of SINQ Target Irradiation Program (STIP-V) up to 20.1 dpa/1499 appm He/440 °C. Tensile tests were performed at room temperature (R.T) and irradiation temperatures (Tirr) in the range of 25-450 °C. The tensile results demonstrated strong effect of irradiation dose and irradiation temperature on hardening and embrittlement. With Tirr below ˜314 °C, CLAM steel specimens tested at R.T and Tirr showed similar evolution trend with irradiation dose, compared to other reduced activation ferritic/martensitic (RAFM) steels in similar irradiation conditions. At higher Tirr above ˜314 °C, it is interesting that the hardening effect decreases and the ductility seems to recover, probably due to a strong effect of high irradiation temperature.

  11. ORNL irradiation creep facility

    SciTech Connect

    Reiley, T.C.; Auble, R.L.; Beckers, R.M.; Bloom, E.E.; Duncan, M.G.; Saltmarsh, M.J.; Shannon, R.H.

    1980-09-01

    A machine was developed at ORNL to measure the rates of elongation observed under irradiation in stressed materials. The source of radiation is a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). This choice allows experiments to be performed which simulate the effects of fast neutrons. A brief review of irradiation creep and experimental constraints associated with each measurement technique is given. Factors are presented which lead to the experimental choices made for the Irradiation Creep Facility (ICF). The ICF consists of a helium-filled chamber which houses a high-precision mechanical testing device. The specimen to be tested must be thermally stabilized with respect to the temperature fluctuations imposed by the particle beam which passes through the specimen. Electrical resistance of the specimen is the temperature control parameter chosen. Very high precision in length measurement and temperature control are required to detect the small elongation rates relevant to irradiation creep in the test periods available (approx. 1 day). The apparatus components and features required for the above are presented in some detail, along with the experimental procedures. The damage processes associated with light ions are discussed and displacement rates are calculated. Recent irradiation creep results are given, demonstrating the suitability of the apparatus for high resolution experiments. Also discussed is the suitability of the ICF for making high precision thermal creep measurements.

  12. Development of annular targets for {sup 99}MO production.

    SciTech Connect

    Conner, C.; Lewandowski, E. F.; Snelgrove, J. L.; Liberatore, M. W.; Walker, D. E.; Wiencek, T. C.; McGann, D. J.; Hofman, G. L.; Vandegrift, G. F.

    1999-09-30

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of {sup 99}Mo.

  13. TH-C-12A-11: Target Correlation of a 3D Surface Surrogate for Left Breast Irradiation Using the Respiratory-Gated Deep-Inspiration Breath-Hold Technique

    SciTech Connect

    Rong, Y; Walston, S

    2014-06-15

    Purpose: To evaluate the use of 3D optical surface imaging as a new surrogate for respiratory motion gated deep-inspiration breath-hold (DIBH) technique for left breast cancer patients. Methods: Patients with left-sided breast cancer after lumpectomy or mastectomy were selected as candidates for DIBH technique for their external beam radiation therapy. Treatment plans were created on both free breathing (FB) and DIBH CTs to determine whether DIBH was beneficial in reducing heart doses. The Real-time Position Management (RPM) system was used to acquire patient's breathing trace during DIBH CT acquisition and treatment delivery. The reference 3D surface models from FB and DIBH CTs were generated and transferred to the “AlignRT” system for patient positioning and real-time treatment monitoring. MV Cine images were acquired for each beam as quality assurance for intra-fractional position verification. The chest wall excursions measured on these images were used to define the actual target position during treatment, and to investigate the accuracy and reproducibility of RPM and AlignRT. Results: Reduction in heart dose can be achieved for left-sided breast patients using DIBH. Results showed that RPM has poor correlation with target position, as determined by the MV Cine imaging. This indicates that RPM may not be an adequate surrogate in defining the breath-hold level when used alone. Alternatively, the AlignRT surface imaging demonstrated a better correlation with the actual CW excursion during DIBH. Both the vertical and magnitude real-time deltas (RTDs) reported by AlignRT can be used as the gating parameter, with a recommend threshold of ±3 mm and 5 mm, respectively. Conclusion: 3D optical surface imaging serves as a superior target surrogate for the left breast treatment when compared to RPM. Working together with the realtime MV Cine imaging, they ensure accurate patient setup and dose delivery, while minimizing the imaging dose to patients.

  14. Radiation target analysis of RNA.

    PubMed

    Benstein, S L; Kempner, E

    1996-06-25

    Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of intact RNA remaining was determined from the same irradiated samples by scanning the RNA band following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 kDa and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity versus structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. We concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule. Radiation target analysis should be a useful technique for evaluating local RNA:RNA and RNA:protein interactions in vitro.

  15. Radiation target analysis of RNA.

    PubMed Central

    Benstein, S L; Kempner, E

    1996-01-01

    Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of intact RNA remaining was determined from the same irradiated samples by scanning the RNA band following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 kDa and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity versus structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. We concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule. Radiation target analysis should be a useful technique for evaluating local RNA:RNA and RNA:protein interactions in vitro. Images Fig. 2 PMID:8692828

  16. FOOD IRRADIATION REACTOR

    DOEpatents

    Leyse, C.F.; Putnam, G.E.

    1961-05-01

    An irradiation apparatus is described. It comprises a pressure vessel, a neutronic reactor active portion having a substantially greater height than diameter in the pressure vessel, an annular tank surrounding and spaced from the pressure vessel containing an aqueous indium/sup 1//sup 1//sup 5/ sulfate solution of approximately 600 grams per liter concentration, means for circulating separate coolants through the active portion and the space between the annular tank and the pressure vessel, radiator means adapted to receive the materials to be irradiated, and means for flowing the indium/sup 1//sup 1//sup 5/ sulfate solution through the radiator means.

  17. Fuel or irradiation subassembly

    DOEpatents

    Seim, O.S.; Hutter, E.

    1975-12-23

    A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.

  18. Project Plan Remote Target Fabrication Refurbishment Project

    SciTech Connect

    Bell, Gary L; Taylor, Robin D

    2009-08-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and

  19. Studies of metal-carbonate complexes. 14. Composition and equilibria of trinuclear neptunium(VI)- and plutonium(VI)-carbonate complexes

    SciTech Connect

    Grenthe, I.; Riglet, C.; Vitorge, P.

    1986-05-07

    The chemical composition of the trinuclear complexes (MO/sub 2/)/sub 3/(CO/sub 3/)/sub 6//sup 6 -/ and the equilibrium constants for the reaction 3MO/sub 2/(CO/sub 3/)/sub 3//sup 4 -/ in equilibrium (MO/sub 2/)/sub 3/(CO/sub 3/)/sub 6//sup 6 -/ + 3CO/sub 3//sup 2 -/, where M = Np or Pu, have been determined by spectrophotometric and emf methods. The values of the equilibrium constants at I = 3 M (NaClO/sub 4/) and T = 22 +/- 1 /sup 0/C are log K/sub 3,6/(Np) = -10.1 +/- 0.1 and log K/sub 3,6/(Pu) = -7.4 +/- 0.2; the constant for U determined previously is -11.3 +/- 0.1. The range of stability of the trinuclear plutonium complex is much larger than those of uranium and neptunium, a fact that might be due to a lower stability of the limiting PuO/sub 2/(CO/sub 3/)/sub 3//sup 4 -/ complex. The formation of mixed complexes of the type (MO/sub 2/)/sub x/(M'O/sub 2/)/sub 3-x/(CO/sub 3/)/sub 6//sup 6 -/ in the U(VI)-Np-(VI)-Pu(VI)-carbonate system, formed by the isomorphic substitution of U(VI) b another actinide is demonstrated. Spectral characteristics and estimated stabilities are given for (UO/sub 2/)/sub 2/(MO/sub 2/)(CO/sub 3/)/sub 6//sup 6 -/ (M = Np, Pu). The equilibrium constants for the reaction 2UO/sub 2/(CO/sub 3/)/sub 3//sup 4 -/ + MO/sub 2/(CO/sub 3/)/sub 3//sup 4 -/ in equilibrium (UO/sub 2/)/sub 2/(MO/sub 2/)(CO/sub 3/)/sub 6//sup 6 -/ + 3CO/sub 3//sup 2 -/, where M = Np or Pu, are equal to log K(Np) = -10.0 +/- 0.1 and log K(Pu) = -8.8. 14 references, 6 figures, 1 table.

  20. Electrical resistance and magnetic properties of the neptunium monopnictides NpAs, NpSb, and NpBi at high pressures

    NASA Astrophysics Data System (ADS)

    Ichas, V.; Zwirner, S.; Braithwaite, D.; Spirlet, J. C.; Rebizant, J.; Potzel, W.

    1997-12-01

    We report on high-pressure studies performed on the neptunium pnictides NpAs and NpBi via electrical resistance up to ~25 GPa between 1.3 K and room temperature, and on a high-pressure investigation up to 9 GPa and at 4.2 K on NpSb using 237Np Mössbauer spectroscopy. This work extends previous high-pressure studies carried out on NpAs via Mössbauer spectroscopy, on NpSb via resistance, and on all pnictides via x-ray study. In NpX (X=As,Sb,Bi) crystallizing in the cubic-NaCl phase the ground state is antiferromagnetic and displays a noncollinear 3k spin structure. The strong increase of the resistivity with decreasing temperature observed in the temperature range of the 3k order at ambient pressure collapses at 0.23 (NpAs), 2.7 (NpSb), and 3.9 GPa (NpBi). No significant change of the hyperfine interactions is found in NpAs or NpSb at the pressure where the resistance collapse is observed. The Kondo anomaly of the resistivity observed at ambient pressure disappears above 25 GPa (NpAs), 2.7 GPa (NpSb), and 3 GPa (NpBi). The Néel temperature TN of all compounds and the ordered moment of NpAs and NpSb decrease with reduced volume. For NpAs and NpBi the resistance indicates the presence of magnetic order at least up to 16 GPa. The compounds undergo a pressure-induced structural transition with a volume reduction by ~10%. Although in the resistance of NpSb the signature of magnetic order is lost already at 8 GPa in the high-pressure phase, a magnetic hyperfine field is present, which is reduced by ~30% relative to the NaCl phase. It is suggested that the resistance collapse is caused by a change of the magnetic structure, that the decrease of TN is due to a modification of the Fermi surface besides a small 5f delocalization, and that in NpSb the volume reduction in the structural high-pressure phase leads to an enhanced 5f delocalization.

  1. Irradiating insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a non-technical article focusing on phytosanitary uses of irradiation. In a series of interview questions, I present information on the scope of the invasive species problem and the contribution of international trade in agricultural products to the movement of invasive insects. This is foll...

  2. Update on meat irradiation

    SciTech Connect

    Olson, D.G.

    1997-12-01

    The irradiation of meat and poultry in the United States is intended to eliminate pathogenic bacteria from raw product, preferably after packaging to prevent recontamination. Irradiation will also increase the shelf life of raw meat and poultry products approximately two to three times the normal shelf life. Current clearances in the United States are for poultry (fresh or frozen) at doses from 1.5 to 3.0 kGy and for fresh pork at doses from 0.3 to 1.0 kGy. A petition for the clearance of all red meat was submitted to the Food and Drug Administration (FDA) in July 1994. The petition is for clearances of fresh meat at doses from 1.5 to 4.5 kGy and for frozen meat at {approximately}2.5 to 7.5 kGy. Clearance for red meat is expected before the end of 1997. There are 28 countries that have food irradiation clearances, of which 18 countries have clearances for meat or poultry. However, there are no uniform categories or approved doses for meat and poultry among the countries that could hamper international trade of irradiated meat and poultry.

  3. Phytosanitary applications of irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytosanitary treatments are used to disinfest agricultural commodities of quarantine pests so the commodities can be shipped across quarantine barriers to trade. Ionizing irradiation is a promising treatment that is increasing in use. Almost 19,000 tons of sweet potatoes and several fruits, plus ...

  4. Generic phytosanitary irradiation treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The history of the development of generic phytosanitary irradiation (PI) treatments is discussed beginning with its initial proposal in 1986. Generic PI treatments in use today are 150 Gy for all hosts of Tephritidae, 250 Gy for all arthropods on mango and papaya shipped from Australia to New Zeala...

  5. NSUF Irradiated Materials Library

    SciTech Connect

    Cole, James Irvin

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  6. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  7. LRCS calculation and imaging of complex target based on GRECO

    NASA Astrophysics Data System (ADS)

    Wu, Wen; Xu, Fu-chang; Han, Xiang'e.

    2013-09-01

    The research on Laser Radar Cross Section(LRCS) is of great significance in many research fields, such as defense, aviation, aerospace, meteorology etc. Current study of LRCS focuses mainly on the full-size target. The LRCS of full-size target, characterized by the scattering properties of the target, is influenced by target material, shape, size, and the wavelength of laser, but it is independent on the size of irradiation beam. In fact, when the target is in large size, and the beam emitted from laser radar is very narrow, it may be in a local rather than a full-size irradiation. In this case, the scattering properties of a target are dependent on not only the size of irradiation beam on the target, but also the direction of irradiation beam. Therefore, it is essential to analyze the scattering properties of a complex target in a local irradiation. Based on the basic theory of Graphic-electromagnetic Computing(GRECO), we improved the method used in the processing of electromagnetic scattering, calculated the monostatic and bistatic LRCS of several targets. The results are consistent with that in the early work done by other researchers. In addition, by changing the divergence angle of the incident beam, the situation of narrow beam in a local irradiation was presented. Under different sizes of irradiation beam, analysis and calculation of local cross section was made in detail. The results indicate that the size of irradiation beam can greatly affect the LRCS for targets. Finally, we calculated scattering cross section per unit of each location point; with color tag, scattering intensity distribution of every location point on the target was displayed, which can be revealed by the color of every pixel point. On the basis of scattering intensity distribution of every location point, the imaging of a target was realized, which provides a reference for quick identification of the target.

  8. METAPHIX-1 non destructive post irradiation examinations in the irradiated elements cell at Phenix

    SciTech Connect

    Breton, Laurent; Masson, M.; Garces, E.; Desjardins, S.; Fontaine, B.; Lacroix, B.; Martella, T.; Loubet, L.; Ohta, H.; Yokoo, T.; Ougier, M.; Glatz, J.P.

    2007-07-01

    Central Research Institute of Electric Power Industry (CRIEPI) has been developing minor actinide (MA) transmutation technology in homogeneous loading mode by use of metal fuel fast reactors in cooperation with Institute for Transuranium Elements (ITU) and Commissariat a l'Energie Atomique (CEA). Fast reactor metal fuel pins of Uranium- Plutonium-Zirconium (U-Pu-Zr) alloy containing 2 wt% MAs and 2 wt% rare earth elements (REs), 5 wt% MAs, and 5 wt% MAs and 5 wt% REs were irradiated in the PHENIX French fast reactor as METAPHIX experiments. In these METAPHIX experiments, three rigs each consisting of three metal fuel experimental pins and sixteen oxide fuel driver pins were irradiated. The target burnup of the three rigs is 2.4 at%, 7 at% and 11 at% which corresponds to 120, 360 and 600 equivalent full power days (EFPD) in terms of irradiation periods, respectively. The low burnup rig of 2.4 at%, METAPHIX-1, was discharged from the core in August 2004. After cooling, the non-destructive post irradiation examinations (PIEs) of the rig (visual examination, measurement of rig length and deformation) and of the metal fuel pins (visual examination, measurement of pin length and deformation, {gamma}-spectrometry and neutron radiography) were conducted in the Irradiated Elements Cell (IEC) at PHENIX. (authors)

  9. Food irradiation: Activities and potentialities

    NASA Astrophysics Data System (ADS)

    Doellstaedt, R.; Huebner, G.

    After the acceptance of food irradiation up to an overall average dose of 10 kGy recommended by the Joint FAO/IAEA/WHO Expert Committee on the Wholesomeness of Irradiated Food in October 1980, the G.D.R. started a programme for the development of techniques for food irradiation. A special onion irradiator was designed and built as a pilot plant for studying technological and economic parameters of the irradiation of onions. The new principle of bulk-cargo irradiation allows the integration of this technology into the usual harvest technology for onions on the way from field to storage. Scientific and applied research work has been carried out in the past 3 yr on the irradiation of spices, potatoes, eviscerated chicken, animal feeds, fodder yeast, drugs and vaccines. In connection with the irradiation of eviscerated chicken, fodder yeast and animal feeds the basis of an antisalmonella programme has been discussed. Germ-count-reduced spices were employed for the production of test charges of preserves and tinned products. The results have led to the decision to design and build a new multipurpose irradiator for food irradiation. In order to cover the legal aspects of food irradiation the Ministry of Health issued regulations concerning the recommendation of irradiated food in the G.D.R.

  10. Effect of the β decay of metallic fission products on the chemical and phase compositions of the uranium-plutonium nitride nuclear fuel irradiated by fast neutrons

    NASA Astrophysics Data System (ADS)

    Bondarenko, G. G.; Androsov, A. V.; Bulatov, G. S.; Gedgovd, K. N.; Lyubimov, D. Yu.; Yakunkin, M. M.

    2016-09-01

    Thermodynamic analysis of the chemical and phase compositions of uranium-plutonium nitride (U0.8Pu0.2)N0.995 irradiated by fast neutrons to a burn-up fraction of 14% shows that a structure, which consists of a solid solution based on uranium and plutonium nitrides and containing some elements (americium, neptunium, zirconium, yttrium, lanthanides), individual condensed phases (U2N3, CeRu2, Ba3N2, CsI, Sr3N2, LaSe), metallic molybdenum and technetium, and U(Ru, Rh, Pd)3 intermetallics, forms due to the accumulation of metallic fission products. The contents and compositions of these phases are calculated. The change in the chemical and phase compositions of the irradiated uranium-plutonium nitride during the β decay of metallic radioactive fission products is studied. The kinetics of the transformations of 95Nb41N, 143Pr59N, 151Sm62N, and 147NdN into 95Mo42 + Ns.s., 143Nd60N, 151Eu63N, and 147SmN, respectively, is calculated.

  11. Hydrogen retention in ion irradiated steels

    SciTech Connect

    Hunn, J.D.; Lewis, M.B.; Lee, E.H.

    1998-11-01

    In the future 1--5 MW Spallation Neutron Source, target radiation damage will be accompanied by high levels of hydrogen and helium transmutation products. The authors have recently carried out investigations using simultaneous Fe/He,H multiple-ion implantations into 316 LN stainless steel between 50 and 350 C to simulate the type of radiation damage expected in spallation neutron sources. Hydrogen and helium were injected at appropriate energy and rate, while displacement damage was introduced by nuclear stopping of 3.5 MeV Fe{sup +}, 1 {micro}m below the surface. Nanoindentation measurements showed a cumulative increase in hardness as a result of hydrogen and helium injection over and above the hardness increase due to the displacement damage alone. TEM investigation indicated the presence of small bubbles of the injected gases in the irradiated area. In the current experiment, the retention of hydrogen in irradiated steel was studied in order to better understand its contribution to the observed hardening. To achieve this, the deuterium isotope ({sup 2}H) was injected in place of natural hydrogen ({sup 1}H) during the implantation. Trapped deuterium was then profiled, at room temperature, using the high cross-section nuclear resonance reaction with {sup 3}He. Results showed a surprisingly high concentration of deuterium to be retained in the irradiated steel at low temperature, especially in the presence of helium. There is indication that hydrogen retention at spallation neutron source relevant target temperatures may reach as high as 10%.

  12. Aluminum-lithium target behavior

    SciTech Connect

    McDonell, W.R.

    1989-10-01

    Information on physical properties and irradiation behavior of aluminum-lithium target alloys employed for the production of tritium in Savannah River reactors has been reviewed to support development of technology for the New Production Reactor (NPR). Phase compositions and microstructures, thermal conductivity, mechanical properties, and constituent diffusion phenomena of the alloys, established in prior site studies, are presented. Irradiation behavior, including distributions of product tritium and helium and related exposure limits due to swelling and cracking of the target alloys is discussed, along with gas release processes occurring during subsequent product recovery operations. The property review supports designation of the aluminum-lithium alloys as ideally well-suited target materials for low-temperature, tritium-producing reactors, demonstrated over 35 years of Savannah River reactor operation. Low temperature irradiation and reaction with lithium in the alloy promotes tritium retention during reactor exposure, and the aluminum provides a matrix from which the product is readily recovered on heating following irradiation. 33 refs., 26 figs., 8 tabs.

  13. Laser ablation of carbon targets placed in a liquid

    SciTech Connect

    Antipov, A A; Arakelyan, S M; Kutrovskaya, S V; Kucherik, A O; Nogtev, D S; Osipov, A V; Garnov, S V

    2015-08-31

    We report experimental results on laser formation of carbon nanostructures produced during irradiation of a target placed in water. We have performed comparative experiments on laser heating of carbon targets by millisecond and femtosecond laser pulses. It is shown that under different conditions of laser irradiation of targets made of schungite, glassy carbon and pyrolytic graphite, different morphological types of micro- and nanostructured carbon are formed. (interaction of laser radiation with matter)

  14. Laboratory simulation of irradiation-induced dielectric breakdown in spacecraft charging

    NASA Technical Reports Server (NTRS)

    Yadlowsky, E. J.; Churchill, R. J.; Hazelton, R. C.

    1980-01-01

    The discharging of dielectric samples irradiated by a beam of monoenergetic electrons is investigated. The development of a model, or models, which describe the discharge phenomena occuring on the irradiated dielectric targets is discussed. The electrical discharge characteristics of irradiated dielectric samples are discussed and the electrical discharge paths along dielectric surfaces and within the dielectric material are determined. The origin and destination of the surface emitted particles is examined and the charge and energy balance in the system is evaluated.

  15. A Longitudinal Evaluation of Partial Lung Irradiation in Mice by Using a Dedicated Image-Guided Small Animal Irradiator

    SciTech Connect

    Granton, Patrick V.; Dubois, Ludwig; Elmpt, Wouter van; Hoof, Stefan J. van; Lieuwes, Natasja G.; De Ruysscher, Dirk

    2014-11-01

    Purpose: In lung cancer radiation therapy, the dose constraints are determined mostly by healthy lung toxicity. Preclinical microirradiators are a new tool to evaluate treatment strategies closer to clinical irradiation devices. In this study, we quantified local changes in lung density symptomatic of radiation-induced lung fibrosis (RILF) after partial lung irradiation in mice by using a precision image-guided small animal irradiator integrated with micro-computed tomography (CT) imaging. Methods and Materials: C57BL/6 adult male mice (n=76) were divided into 6 groups: a control group (0 Gy) and groups irradiated with a single fraction of 4, 8, 12, 16, or 20 Gy using 5-mm circular parallel-opposed fields targeting the upper right lung. A Monte Carlo model of the small animal irradiator was used for dose calculations. Following irradiation, all mice were imaged at regular intervals over 39 weeks (10 time points total). Nonrigid deformation was used to register the initial micro-CT scan to all subsequent scans. Results: Significant differences could be observed between the 3 highest (>10 Gy) and 3 lowest irradiation (<10 Gy) dose levels. A mean difference of 120 ± 10 HU between the 0- and 20-Gy groups was observed at week 39. RILF was found to be spatially limited to the irradiated portion of the lung. Conclusions: The data suggest that the severity of RILF in partial lung irradiation compared to large field irradiation in mice for the same dose is reduced, and therefore higher doses can be tolerated.

  16. ELECTRON IRRADIATION OF SOLIDS

    DOEpatents

    Damask, A.C.

    1959-11-01

    A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

  17. Low-oxygen atmospheric treatment improves the performance of irradiation-sterilized male cactus moths used in SIT.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of Sterile Insect Technique (SIT) programs, irradiation can effectively induce sterility in insects by damaging genomic DNA. However, irradiation also induces other off-target side effects that reduce the quality and performance of sterilized males. Thus, treatments that reduce off-target ef...

  18. BIOLOGICAL IRRADIATION FACILITY

    DOEpatents

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  19. Identification of irradiated refrigerated poultry with the DNA comet assay

    NASA Astrophysics Data System (ADS)

    Villavicencio, A. L. C. H.; Araújo, M. M.; Marin-Huachaca, N. S.; Mancini-Filho, J.; Delincée, H.

    2004-09-01

    Food irradiation could make a significant contribution to the reduction of food-borne diseases caused by harmful bacteria such as Salmonella and parasites. In fact these organisms cause an increasing number of diseases and eventually deaths all over the world, also in industrialized countries. Radiation processing has the advantage that in addition to eliminating pathogens, thereby enhancing food safety, it also extends shelf life through destruction of spoilage organisms. The DNA molecule because of its big size is an easy target for ionizing radiation, therefore, changes in DNA offer potential to be used as a detection method for the irradiation treatment. In our study, poultry has been irradiated and changes in DNA analyzed by the Comet Assay. Samples were packed in plastic bags and irradiated. Doses were 0, 1.5, 3.0 and 4.5kGy. Immediately after irradiation the samples were returned to the refrigerator (4°C). Samples were analyzed 1 and 10 days after irradiation. This method proved to be an inexpensive and rapid screening technique for qualitative detection of irradiation treatment.

  20. Understanding the Irradiation Behavior of Zirconium Carbide

    SciTech Connect

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

    2013-10-11

    -induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.