Science.gov

Sample records for irradiated rat brain

  1. Labile iron pool and ferritin content in developing rat brain gamma-irradiated in utero.

    PubMed

    Robello, Elizabeth; Galatro, Andrea; Puntarulo, Susana

    2009-05-01

    This study was aimed to assess the content of total Fe, Ferritin (Ft) and labile Fe pool (LIP) in developing rat brain exposed in utero to 1 Gy of gamma-irradiation. A significant increase (2.3-fold) in the total Fe content of the fetal rat brain irradiated in utero was observed from 1 to 4h post-irradiation, as compared to the content in non-irradiated brain. Ft was analyzed by immunoblotting. The Ft protein was composed by 20 kDa subunits. According to the analysis of the band density in the Western blot, the Ft content decreased by 77+/-15% 2h after gamma-irradiation, as compared to the values in non-irradiated samples. The effect of gamma-irradiation on the LIP was studied by both electron paramagnetic resonance (EPR) and by a fluorescence technique employing calcein (CA). A reduction on the LIP was detected at 2h post-irradiation, independently of the methodology employed for the assay. Since NO content increased in the same time frame of LIP decreasing, a protective role for NO is suggested in fetal rat brain exposed to gamma-irradiation. The data presented in this work are the first experimental evidence suggesting that, as part of the network of the cellular response to limit irradiation-dependent injury, a complex interaction between Fe and NO could be triggered.

  2. Irradiation of rat brain reduces P-glycoprotein expression and function.

    PubMed

    Bart, J; Nagengast, W B; Coppes, R P; Wegman, T D; van der Graaf, W T A; Groen, H J M; Vaalburg, W; de Vries, E G E; Hendrikse, N H

    2007-08-06

    The blood-brain barrier (BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P-glycoprotein (P-gp), expressed on brain capillary endothelial cells, is part of the BBB. P-gp expression on capillary endothelium decreases 5 days after brain irradiation, which may reduce P-gp function and increase brain levels of P-gp substrates. To elucidate whether radiation therapy reduces P-gp expression and function in the brain, right hemispheres of rats were irradiated with single doses of 2-25 Gy followed by 10 mg kg(-1) of the P-gp substrate cyclosporine A (CsA) intravenously (i.v.), with once 15 Gy followed by CsA (10, 15 or 20 mg kg(-1)), or with fractionated irradiation (4 x 5 Gy) followed by CsA (10 mg kg(-1)) 5 days later. Additionally, four groups of three rats received 25 Gy once and were killed 10, 15, 20 or 25 days later. The brains were removed and P-gp detected immunohistochemically. P-gp function was assessed by [(11)C]carvedilol uptake using quantitative autoradiography. Irradiation increased [(11)C]carvedilol uptake dose-dependently, to a maximum of 20% above non irradiated hemisphere. CsA increased [(11)C]carvedilol uptake dose-dependently in both hemispheres, but more (P<0.001) in the irradiated hemisphere. Fractionated irradiation resulted in a lost P-gp expression 10 days after start irradiation, which coincided with increased [(11)C]carvedilol uptake. P-gp expression decreased between day 15 and 20 after single dose irradiation, and increased again thereafter. Rat brain irradiation results in a temporary decreased P-gp function.

  3. Late behavioural and neuropathological effects of local brain irradiation in the rat.

    PubMed

    Hodges, H; Katzung, N; Sowinski, P; Hopewell, J W; Wilkinson, J H; Bywaters, T; Rezvani, M

    1998-03-01

    The delayed consequences of radiation damage on learning and memory in rats were assessed over a period of 44 weeks, commencing 26 weeks after local irradiation of the brain with single doses of X-rays. Doses were set at levels known to produce vascular changes alone (20 Gy) or vascular changes followed by necrosis (25 Gy). Following T-maze training, 29 weeks after irradiation, irradiated and sham control groups performed equally well on the forced choice alternation task. When tested 35 weeks after irradiation, treated rats achieved a much lower percentage of correct choices than controls in T-maze alternation, with no difference between the two irradiated groups. At 38-40 weeks after irradiation, rats receiving both doses showed marked deficits in water maze place learning compared with age-matched controls; performance was more adversely affected by the higher dose. The extent of impairment was equivalent in the two groups of rats irradiated with 25 Gy, those trained or not previously trained in the T-maze, suggesting that water maze acquisition deficits were not influenced by prior experience in a different spatial task. In contrast to water maze acquisition, rats irradiated with 20 Gy showed no deficits in working memory assessed in the water maze 44 weeks after irradiation, whereas rats receiving 25 Gy showed substantial impairment. Rats receiving 25 Gy irradiation showed marked necrosis of the fimbria and degeneration of the corpus callosum, damage to the callosum occurring in animals examined histologically 46 weeks after irradiation, but in only a third of the animals examined at 41 weeks. However, there was no evidence of white matter necrosis in rats irradiated with 20 Gy, examined 46 weeks after irradiation. These findings demonstrated that local cranial irradiation with single doses of 20 and 25 Gy of X-rays produced delayed impairment of spatial learning and working memory in the rat. The extent of these deficits appears to be task- and dose

  4. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour.

    PubMed

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-26

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects.We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model.Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males.

  5. SU-E-T-492: Implementing a Method for Brain Irradiation in Rats Utilizing a Commercially Available Radiosurgery Irradiator

    SciTech Connect

    Cates, J; Drzymala, R

    2014-06-01

    Purpose: The purpose of the study was to implement a method for accurate rat brain irradiation using the Gamma Knife Perfexion unit. The system needed to be repeatable, efficient, and dosimetrically and spatially accurate. Methods: A platform (“rat holder”) was made such that it is attachable to the Leskell Gamma Knife G Frame. The rat holder utilizes two ear bars contacting bony anatomy and a front tooth bar to secure the rat. The rat holder fits inside of the Leskell localizer box, which utilizes fiducial markers to register with the GammaPlan planning system. This method allows for accurate, repeatable setup.A cylindrical phantom was made so that film can be placed axially in the phantom. We then acquired CT image sets of the rat holder and localizer box with both a rat and the phantom. Three treatment plans were created: a plan on the rat CT dataset, a phantom plan with the same prescription dose as the rat plan, and a phantom plan with the same delivery time as the rat plan. Results: Film analysis from the phantom showed that our setup is spatially accurate and repeatable. It is also dosimetrically accurate, with an difference between predicted and measured dose of 2.9%. Film analysis with prescription dose equal between rat and phantom plans showed a difference of 3.8%, showing that our phantom is a good representation of the rat for dosimetry purposes, allowing for +/- 3mm diameter variation. Film analysis with treatment time equal showed an error of 2.6%, which means we can deliver a prescription dose within 3% accuracy. Conclusion: Our method for irradiation of rat brain has been shown to be repeatable, efficient, and accurate, both dosimetrically and spatially. We can treat a large number of rats efficiently while delivering prescription doses within 3% at millimeter level accuracy.

  6. Effects of single-dose and fractionated cranial irradiation on rat brain accumulation of methotrexate

    SciTech Connect

    Kamen, B.A.; Moulder, J.E.; Kun, L.E.; Ring, B.J.; Adams, S.M.; Fish, B.L.; Holcenberg, J.S.

    1984-11-01

    The effects of single-dose and fractionated whole-brain irradiation on brain methotrexate (MTX) has been studied in a rat model. The amount of MTX present in the brain 24 hr after a single i.p. dose (100 mg/kg) was the same whether animals were sham irradiated or given a single dose of 2000 rads 6 or 48 hr prior to the drug (6.9, 8.3, and 6.8 pmol MTX/g, wet weight, respectively). Animals sham irradiated or given 2000 rads in 10 fractions over 11 days and treated with an average dose of 1.2 mg MTX/kg i.p. twice a week for 24 weeks did not differ significantly in their brain MTX concentration (7.9 and 8.3 pmol MTX/g, wet weight, respectively). Chronically MTX-treated animals became folate deficient whether they were irradiated or not (450 and 670 pmol folate/g, wet weight, brain in MTX-treated and control animals). Thus, MTX accumulates in the brain with acute or chronic administration, and this accumulation is not altered by this amount of brain irradiation.

  7. Cerebrovascular and metabolic effects on the rat brain of focal Nd:YAG laser irradiation

    SciTech Connect

    Kiessling, M.; Herchenhan, E.; Eggert, H.R. )

    1990-12-01

    To investigate the effects of focal neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation (lambda = 1060 nm) on regional cerebral blood flow, cerebral protein synthesis, and blood-brain barrier permeability, the parietal brain surface of 44 rats was irradiated with a focused laser beam at a constant output energy of 30 J. Survival times ranged from 5 minutes to 48 hours. Laser irradiation immediately caused well-defined cortical coagulation necrosis. Within 5 minutes after unilateral irradiation, 14C-iodoantipyrine autoradiographs demonstrated severely reduced blood flow to the irradiation site and perilesional neocortex, but a distinct reactive hyperemia in all other areas of the forebrain. Apart from a persistent ischemic focus in the vicinity of the cortical coagulation necrosis, blood flow alterations in remote areas of the brain subsided within 3 hours after irradiation. Autoradiographic assessment of 3H-tyrosine incorporation into brain proteins revealed rapid onset and prolonged duration of protein synthesis inhibition in perifocal morphologically intact cortical and subcortical structures. Impairment of amino acid incorporation proved to be completely reversible within 48 hours. Immunoautoradiographic visualization of extravasated plasma proteins using 3H-labeled rabbit anti-rat immunoglobulins-showed that, up to 1 hour after irradiation, immunoreactive proteins were confined to the neocortex at the irradiation site. At 4 hours, vasogenic edema was present in the vicinity of the irradiation site and the subcortical white matter, and, at later stages (16 to 36 hours), also extended into the contralateral hemisphere. Although this was followed by a gradual decrease in labeling intensity, resolution of edema was still not complete after 48 hours.

  8. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    SciTech Connect

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.

  9. Electroacupuncture Prevents Cognitive Impairments by Regulating the Early Changes after Brain Irradiation in Rats

    PubMed Central

    Fan, Xing-Wen; Chen, Fu; Chen, Yan; Chen, Guan-Hao; Liu, Huan-Huan; Guan, Shi-Kuo; Deng, Yun; Liu, Yong; Zhang, Sheng-Jian; Peng, Wei-Jun; Jiang, Guo-Liang; Wu, Kai-Liang

    2015-01-01

    Cognitive impairments severely affect the quality of life of patients who undergo brain irradiation, and there are no effective preventive strategies. In this study, we examined the therapeutic potential of electroacupuncture (EA) administered immediately after brain irradiation in rats. We detected changes in cognitive function, neurogenesis, and synaptic density at different time points after irradiation, but found that EA could protect the blood-brain barrier (BBB), inhibit neuroinflammatory cytokine expression, upregulate angiogenic cytokine expression, and modulate the levels of neurotransmitter receptors and neuropeptides in the early phase. Moreover, EA protected spatial memory and recognition in the delayed phase. At the cellular/molecular level, the preventative effect of EA on cognitive dysfunction was not dependent on hippocampal neurogenesis; rather, it was related to synaptophysin expression. Our results suggest that EA applied immediately after brain irradiation can prevent cognitive impairments by protecting against the early changes induced by irradiation and may be a novel approach for preventing or ameliorating cognitive impairments in patients with brain tumors who require radiotherapy. PMID:25830357

  10. Mitochondrial activity assessed by cytofluorescence after in-vitro-irradiation of primary rat brain cultures

    SciTech Connect

    Cervos-Navarro, J.; Hamdorf, G. )

    1993-05-01

    Mitochondria play a key role in cell homeostasis and are the first cell organells affected by ionizing irradiation, as it was proved by previous electron microscopic investigations. In order to observe functional parameters of mitochondria after low-dose irradiation, primary rat brain cultures (prepared from 15-day-old rat fetuses) were irradiated from a [sup 60]Co-source with 0.5 and 1 Gy at the age of 2 or 7 days in vitro (div). Cytofluorescence measurement was made by a Cytofluor[sup [trademark]2350] using Rhodamine 123. This fluorescent dye is positively charged and accumulates specifically in the mitochondria of living cells without cytotoxic effect. Since its retention depends on the negative membrane potential as well as the proton gradient that exists across the inner mitochondrial membrane, Rhodamine 123 accumulation reflects the status of mitochondrial activity as a whole. After irradiation with 0.5 and 1 Gy on day 2 in culture there was a decrease in Rhodamine uptake in the irradiated cultures during the first week after the irradiation insult which reached minimum values after 3 days. Rhodamine uptake increased during the following period and finally reached the values of the control cultures. In the second experiment with irradiated cultures on day 7 and the same doses of 0.5 and 1 Gy the accumulation of Rhodamine decreased only initially then increased tremendously. After both doses values of Rhodamine-accumulation were higher than the control level. The results demonstrated that irradiation caused a change in mitochondrial activity depending on the time of irradiation. The dramatic increase over the control levels after irradiation on day 7 in vitro is attributed to the fact that at this time synapses have already developed. Deficiency of mitochondrial activity as well as hyperactivity and the consequent change in energy production may lead to changes in neuronal metabolism including an increase in production of free radicals.

  11. Tissue structure of rat brain after microwave irradiation using maximum magnetic field component.

    PubMed

    Ikarashi, Y; Okada, M; Maruyama, Y

    1986-05-14

    A novel microwave instrument has recently been designed by New Japan Radio Co. Ltd., to provide more homogeneous distribution of the rapidly deposited heat in the rodent brain. Being the first commercial unit which concentrates the maximum magnetic field component of irradiation, rather than the usual electric field, it provides complete enzymatic inactivation in a typical rat brain when a power of 9 kW (90% of maximum) is applied for 0.80 s at the standard operating frequency of 2450 MHz. Tissue structural integrity was investigated in animals sacrificed by this approach or by the usual decapitation to see if any tissue disruption or pressure-induced spreading, a major problem with other microwave devices, might also be of concern for this new unit. Histological examination of tissue samples employed both light and electron microscopy. Using Luxol Fast Blue in the light microscopy, the microwave irradiated tissues exhibited a decreased affinity for the staining agent, an appearance of slight vacuoles, and the disappearance of fine fibrils in the parenchyma. However, the interfacial areas between distinct brain regions remained well preserved. Electron microscopic observation indicated that microwave irradiated tissue caused protein denaturation accompanied by the aggregation of nuclear chromatin, the disappearance of Nissl bodies, ribosomes and neurofilaments, and noticeably irregular myelin sheaths. However, the essential structure of nerve cell membranes and synaptic membranes were maintained, and synaptic vesicles were clearly defined. These results indicated that the rapid heating of brain tissue with maximal magnetic field concentration of the irradiation does not result in significant tissue disruption, pressure-induced spreading or cell breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Effect of Alpha-Particle Irradiation on Brain Glycogen in the Rat

    NASA Technical Reports Server (NTRS)

    Wolfe, L. S.; Klatzo, Igor; Miquel, Jaime; Tobias, Cornelius; Haymaker, Webb

    1962-01-01

    The studies of Klatzo, Miquel, Tobias and Haymaker (1961) have shown that one of the earliest and most sensitive indications of the effects of alpha-particle irradiation on rat bran is the appearance of glycogen granules mainly in the neuroglia of the exposed area of the brain. Periodic acid-Schiff (PAS) positive, alpha-amylase soluble granules were demonstrated within 12 hr after irradiation, preceding by approximately 36 hr the first microscopically detectable vascular permeability disturbances, as shown by the fluorescein labeled serum protein technique. These studies suggested that the injurious effects of alpha-particle energy were on cellular elements primarily, according to the physical properties and distribution of the radiation in the tissue, and that the vascular permeability disturbances played a secondary role in pathogenesis. The purpose of this study was to correlate the histochemical observations on glycogen with a quantitative assessment of the glycogen in the irradiated brain tissue. It is felt that such a study may contribute to the understanding of radiation injury at the molecular level. A practical aspect of this problem is that the information on biological radiation effects due to accelerated particles from the cyclotron source, is employed in this study, is applicable to radiation from cosmic particles both in free space and entrapped in the Van Allen belts.

  13. Effect of whole-brain irradiation on the specific brain regions in a rat model: Metabolic and histopathological changes.

    PubMed

    Bálentová, Soňa; Hnilicová, Petra; Kalenská, Dagmar; Murín, Peter; Hajtmanová, Eva; Lehotský, Ján; Adamkov, Marian

    2017-03-19

    Effect of ionizing radiation on the brain affects neuronal, glial, and endothelial cell population and lead to significant morphological, metabolic, and functional deficits. In the present study we investigated a dose- and time-dependent correlation between radiation-induced metabolic and histopathological changes. Adult male Wistar rats received a total dose of 35Gy delivered in 7 fractions (dose 5Gy per fraction) once per week in the same weekday during 7 consecutive weeks. Proton magnetic resonance spectroscopy ((1)H MRS), histochemistry, immunohistochemistry and confocal microscopy were used to determine whether radiation-induced alteration of the brain metabolites correlates with appropriate histopathological changes of neurogenesis and glial cell response in 2 neurogenic regions: the hippocampal dentate gyrus (DG) and the subventricular zone-olfactory bulb axis (SVZ-OB axis). Evaluation of the brain metabolites 18-19 weeks after irradiation performed by (1)H MRS revealed a significant decrease in the total N-acetylaspartate to total creatine (tNAA/tCr) ratio in the striatum and OB. A significant decline of gamma-aminobutyric acid to tCr (GABA/tCr) ratio was seen in the OB and hippocampus. MR revealed absence of gross inflammatory or necrotic lesions in these regions. Image analysis of the brain sections 18-21 weeks after the exposure showed a radiation-induced increase of neurodegeneration, inhibition of neurogenesis and strong resemblance to the reactive astrogliosis. Results showed that fractionated whole-brain irradiation led to the changes in neurotransmission and to the loss of neuronal viability in vivo. Metabolic changes were closely associated with histopathological findings, i.e. initiation of neuronal cell death, inhibition of neurogenesis and strong response of astrocytes indicated development of late radiation-induced changes.

  14. Increased CD147 and MMP-9 expression in the normal rat brain after gamma irradiation.

    PubMed

    Li, Hong; Wei, Ming; Li, Shenghui; Zhou, Ziwei; Xu, Desheng

    2013-01-01

    Radiation-induced vascular injury is a major complication of Gamma knife surgery (GKS). Previous studies have shown that CD147 and MMP-9 are closely associated with vascular remodeling and pathological angiogenesis. Thus, we analysed changes in CD147 and MMP-9 expression in the cerebral cortex to investigate the correlation between CD147 and MMP-9 in the rat following GKS. Adult male Wistar rats were subjected to GKS at a maximum dose of 75 Gy and then euthanized 1 to 12 weeks later. Using immunohistochemistry and western blot analysis, we found that CD147 and MMP-9 expression were markedly upregulated in the target area 8-12 weeks after GKS when compared with the control group. Immunofluorescent double staining demonstrated that CD147 signals colocalized with CD31, GFAP and MMP-9-positive cells. Importantly, CD147 levels correlated with increased MMP-9 expression in irradiated brain tissue. For the first time, these data demonstrate a potential relationship between CD147 and MMP-9 following GKS. In addition, our study also suggests that CD147 and MMP-9 may play a role in vascular injury after GKS.

  15. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    PubMed

    Hua, Kun; Schindler, Matthew K; McQuail, Joseph A; Forbes, M Elizabeth; Riddle, David R

    2012-01-01

    Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and

  16. Protective mechanism of grape seed oil on carbon tetrachloride-induced brain damage in γ-irradiated rats.

    PubMed

    Ismail, Amel F M; Moawed, Fatma S M; Mohamed, Marwa Abdelhameed

    2015-12-01

    This study investigated the possible beneficial effects of grape seed oil (GSO) on carbon tetrachloride (CCl4)-induced acute neurotoxicity in γ-irradiated rats. A statistical significant decrease in superoxide-dismutase (SOD), catalase (CAT), and glutathione-peroxidase (GPx) activities and reduced glutathione (GSH) content were exhibited. Further, a significant elevation in malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and transforming growth factor-beta-1 (TGF-β1) levels was observed. Furthermore, xanthine oxidase (XO) and inducible nitric oxide synthase (iNOS) gene expression were elevated in the γ-irradiated animals treated with an acute dose of CCl4. The pretreatment of GSO exerts significant amelioration of the studied parameters. In conclusion, this study demonstrated that GSO has a neuroprotective effect against CCl4-induced brain injury in γ-irradiated rats, which is likely attributed to its ability to scavenge the free radicals, suppress the inflammatory responses, improve the activity of the antioxidant enzymes and inhibit the XO and iNOS gene expression levels.

  17. Histologic effects of high energy electron and proton irradiation of rat brain detected with a silver-degeneration stain

    NASA Astrophysics Data System (ADS)

    Switzer, R. C.; Bogo, V.; Mickley, G. A.

    1994-10-01

    Application of the degeneration sensitive, cupric-silver staining method to brain sections of male Sprague-Dawley rats irradiated 4 days before sacrifice with 155 Mev protons, 2-8 Gy at 1 Gy/min (N=6) or 22-101Gy at 20 Gy/min (N=16) or with 18.6 Mev electrons, 32-67 Gy at 20 Gy/min (N=20), doses which elicit behavioral changes (accelerod or conditioned taste aversion), resulted in a display of degeneration of astrocyte-like cell profiles which were not uniformly distributed. Plots of `degeneration scores' (counts of profiles in 29 areas) vs. dose for the proton and electron irradiations displayed a linear dose response for protons in the range of 2-8 Gy. In the 20-100 Gy range, for both electrons and protons the points were distributed in a broad band suggesting a saturation curve. The dose range in which these astrocyte-like profiles becomes maximal corresponds well with the dose range for the X-ray eradication of a subtype of astrocytes, `beta astrocytes`.

  18. Expression of TNF-alpha and TGF-beta 1 in the rat brain after a single high-dose irradiation.

    PubMed Central

    Kim, Se-Hoon; Lim, Dong-Jun; Chung, Yong-Gu; Cho, Tai-Hyoung; Lim, Seong-Jun; Kim, Woo-Jae; Suh, Jung-Keun

    2002-01-01

    Cytokines and growth factors are important regulatory proteins controlling the growth and differentiation of normal and malignant glial cells. In this study, we investigated the expression and origin of tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta 1 (TGF-beta 1) in the subacute brain injury after a single high-dose irradiation using 60 Sprague-Dawley rats. The right cerebral hemispheres of rats were exposed to a single 10 Gy dose of gamma rays using Ir-192. The radiation effect was assessed at 1 week, 2 weeks, 4 weeks, 6 weeks, and 8 weeks after irradiation, and the results were compared with those in sham operation group. Histological changes characteristic of radiation injury were correlated with the duration after the single dose irradiation. The loss of cortical thickness also increased with the lapse of time after irradiation. The TNF-alpha expression in the irradiated cerebral hemispheres was significantly increased compared with that in the sham operation group. TGF-beta 1 expression was also increased in the irradiated hemispheres. Immunohistochemical study revealed that TGF-beta 1 was expressed predominantly by infiltrating macrophages and astrocytes around the necrotic areas. These findings indicate that TNF-alpha and TGF-beta 1 may play prominent roles in the radiation injuries after a single high-dose irradiation. PMID:11961311

  19. Local brain heavy ion irradiation induced Immunosuppression

    NASA Astrophysics Data System (ADS)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  20. Effects of naltrexone in postnatal rats on the recovery of disturbed brain and lymphatic tissues after X-irradiation or ethylnitrosourea treatment in utero

    SciTech Connect

    Schmahl, W.G.; Plendl, J.; Reinoehl-Kompa, S.

    1987-01-01

    The role of endogenous opioid systems in preweaning development after intrauterine exposure to X-irradiation or ethylnitrosourea (ENU) was explored in rats using naltrexone, a potent antagonist of beta-endorphin. After daily s.c. injections of 50 mg/kg naltrexone only the prenatally untreated controls had body weights increased by 11% from control level on day 28 (weaning). In the X-irradiated as well as the ENU-treated pups no significant effects of naltrexone on body weight gain were observed. However, brain weight increased in all animals under the influence of naltrexone, irrespective of prenatal treatment or the severity of brain lesions: 9.5% above control values in untreated offspring and 14% after X-irradiation (1 Gy) on gestation day 14. The brain weight of ENU-treated rats (50 mg/kg on gest. day 14) was 13% higher after postnatal naltrexone application than that of their postnatally untreated counterparts. ENU (80 mg/kg) effects on the brain when given on gestation day 18 were ameliorated to 9.2% by naltrexone in the weaning period. Naltrexone significantly increased the thymus weight in controls. Prenatally treated animals also showed an increased thymus weight at weaning, presumably due to compensatory growth. In these cases naltrexone revealed a suppressive effect on the thymus, whereas spleen weight was apparently not influenced by naltrexone treatment. These results provide compelling evidence that endogenous opioid systems play a crucial role not only in normal development, but also in reparative growth events of the brain after prenatal injuries. The thymus, predominantly containing T-lymphocytes, seems to represent another sensitive system which is regulated under the influence of opioids.

  1. Washout rate in rat brain irradiated by a 11C beam after acetazolamide loading using a small single-ring OpenPET prototype

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshiyuki; Takuwa, Hiroyuki; Yoshida, Eiji; Nishikido, Fumihiko; Nakajima, Yasunori; Wakizaka, Hidekatsu; Yamaya, Taiga

    2016-03-01

    In dose verification techniques of particle therapies based on in-beam positron emission tomography (PET), the causes of washout of positron emitters by physiological effects should be clarified to correct washout for accurate verification. As well, the quantitative washout rate has a potential usefulness as a diagnostic index which should be explored. Therefore, we measured washout rates of rat brain after vasodilator acetazolamide loading to investigate the possible effects of blood flow on washout. Six rat brains were irradiated by a radioisotope 11C beam and time activity curves on the whole brains were obtained with a small single-ring OpenPET prototype. Then, washout rates were calculated with the Mizuno model, where two washout rates (k 2m and k 2s ) were assumed, and a two-compartment model including efflux from tissue to blood (k 2) and influx (k 3) and efflux (k 4) between the two tissue compartments. Before the irradiations, we used laser-Doppler flowmetry to confirm that acetazolamide increased cerebral blood flow (CBF) of a rat. We compared means of k 2m , k 2s and k 2, k 3 and k 4 without acetazolamide loading (Rest) and with acetazolamide loading (ACZ). For all k values, ACZ values were lower than Rest values. In other words, though CBF increased, washout rates were decreased. This may be attributed to the implanted 11C reacting to form 11CO2. Because acetazolamide increased the concentration of CO2 in brain, suppressed diffusion of 11CO2 and decomposition of 11CO2 into ions were prevented.

  2. Time-course of hypothalamic-pituitary-adrenal axis activity and inflammation in juvenile rat brain after cranial irradiation.

    PubMed

    Veličković, Nataša; Drakulić, Dunja; Petrović, Snježana; Grković, Ivana; Milošević, Maja; Stanojlović, Miloš; Horvat, Anica

    2012-10-01

    Recent studies reported that exposure of juvenile rats to cranial irradiation affects hypothalamic-pituitary-adrenal (HPA) axis stability, leading to its activation along with radiation-induced inflammation. In the present study, we hypothesized whether inflammatory reaction in the CNS could be a mediator of HPA axis response to cranial irradiation (CI). Therefore, we analyzed time-course changes of serum corticosterone level, as well IL-1β and TNF-α level in the serum and hypothalamus of juvenile rats after CI. Protein and gene expression of the glucocorticoid receptor (GR) and nuclear factor kappaB (NFκB) were examined in the hippocampus within 24 h postirradiation interval. Cranial irradiation led to rapid induction of both GR and NFκB mRNA and protein in the hippocampus at 1 h. The increment in NFκB protein persisted for 2 h, therefore NFκB/GR protein ratio was turned in favor of NFκB. Central inflammation was characterized by increased IL-1β in the hypothalamus, with maximum levels at 2 and 4 h after irradiation, while both IL-1β and TNF-α were undetectable in the serum. Enhanced hypothalamic IL-1β probably induced the relocation of hippocampal NFκB to the nucleus and decreased NFκB mRNA at 6 h, indicating promotion of inflammation in the key tissue for HPA axis regulation. Concomitant increase of corticosterone level and enhanced GR nuclear translocation in the hippocampus at 6 h might represent a compensatory mechanism for observed inflammation. Our results indicate that acute radiation response is characterized by increased central inflammation and concomitant HPA axis activation, most likely having a role in protection of the organism from overwhelming inflammatory reaction.

  3. Effects of chronic postnatal opioid receptor blockade by naltrexone upon proliferation capacity in the prenatally x-irradiated brain of the rat

    SciTech Connect

    Schmahl, W.; Miaskowski, U. )

    1991-01-01

    We recently reported that in rats prenatally x-irradiated on gestation day 14 with 1 Gy, postnatal chronic application of the opioid antagonist naltrexone (Nx) led to a remarkable growth spurt of the microencephalic brain. In the present study we present histological and autoradiographic results found in the subependymal layer (SEL) of the forebrain lateral ventricles. Nx led to an intermittent augmentation of the mitotic index of the x-irradiated brains within a postnatal observation period of 24 weeks. The most conspicuous finding was transient hyperplasia of the SEL at 4-6 weeks of age which occurred in close proximity to an intact ependymal lining. Districts of the lateral ventricles which were denuded from ependyme and where the rest of the ependymal layer (EL) was dislocated peripherally showed upon Nx treatment a long-lasting SEL hyperplasia with a tendency towards dysplasia. These results revealed that repair proliferation of embryotoxic x-irradiation is normally under strong control by the opioid system. If that system, which exerts a suppressing effect upon glial growth, is blocked by Nx, prominent hyperplastic reactions occur which may be useful for repairing the lesion pattern.

  4. Iron-56 irradiation diminishes muscarinic but not {alpha}{sub 1}-adrenergic-stimulated low-K{sub m} GTPase in rat brain

    SciTech Connect

    Villalobos-Molina, R.; Joseph, J.A.; Rabin, B.M.; Kandasamy, S.B.; Dalton, T.K.; Roth, G.S.

    1994-12-01

    Initial findings from our laboratory have indicated that muscarinic enhancement of K{sup +}-evoked release of dopamine from perifused striatal slices is reduced after exposure to {sup 56}Fe-particle irradiation. This finding suggested that there is a radiation-induced deficit in muscarinic receptor sensitivity. Subsequent findings have indicated that at least part of the loss in sensitivity may occur as a result of alterations in the initial steps of the signal transduction process and involve muscarinic receptor-G protein coupling/uncoupling. The present study was carried out to localize this deficit further by determining carbachol-stimulated low-K{sub m} guanosine triphosphatase (GTPase) activity in striatal and hippocampal tissue obtained from rats exposed to 0, 0.1 or 1.0 Gy of {sup 56}Fe-particle irradiation. In addition, to examine the specificity of the effect of {sup 56}Fe-particle irradiation, {alpha}{sub 1}-adrenergic-stimulated low-K{sub m} GTPase activity was also examined in these tissues. The results showed that there was a high degree of specificity in the effects of {sup 56}Fe particles. Decrements were observed in muscarinic-stimulated low-K{sub m} GTPase in striatum but not in hippocampus, and {sup 56}Fe-particle irradiation did not affect {alpha}{sub 1}-adrenergic low-K{sub m} GTPase activity in either brain tissue. 24 refs., 2 figs.

  5. Brain fibronectin expression in prenatally irradiated mice

    SciTech Connect

    Meznarich, H.K.; McCoy, L.S.; Bale, T.L.; Stiegler, G.L.; Sikov, M.R. )

    1993-01-01

    Activation of gene transcription by radiation has been recently demonstrated in vivo. However, little is known on the specificity of these alterations on gene transcription. Prenatal irradiation is a known teratogen that affects the developing mammalian central nervous system (CNS). Altered neuronal migration has been suggested as a mechanism for abnormal development of prenatally irradiated brains. Fibronectin (FN), an extracellular glycoprotein, is essential for neural crest cell migration and neural cell growth. In addition, elevated levels of FN have been found in the extracellular matrix of irradiated lung. To test whether brain FN is affected by radiation, either FN level in insoluble matrix fraction or expression of FN mRNA was examined pre- and postnatally after irradiation. Mice (CD1), at 13 d of gestation (DG), served either as controls or were irradiated with 14 DG, 17 DG, or 5,6, or 14 d postnatal. Brain and liver were collected from offspring and analyzed for either total FN protein levels or relative mRNAs for FN and tubulin. Results of prenatal irradiation on reduction of postnatal brain weight relative to whole are comparable to that reported by others. Insoluble matrix fraction (IMF) per gram of brain, liver, lung, and heart weight was not significantly different either between control and irradiated groups or between postnatal stages, suggesting that radiation did not affect the IMF. However, total amounts of FN in brain IMF at 17 DG were significantly different (p < .02) between normal (1.66 [+-] 0.80 [mu]g) and irradiated brains (0.58 [+-] 0.22 [mu]g). FN mRNA was detectable at 13, 14, and 17 DG, but was not detectable at 6 and 14 d postnatal, indicating that FN mRNA is developmentally regulated. 41 refs., 4 figs., 3 tabs.

  6. Brain tumors in irradiated monkeys.

    NASA Technical Reports Server (NTRS)

    Haymaker, W.; Miquel, J.; Rubinstein, L. J.

    1972-01-01

    A study was made of 32 monkeys which survived one to seven years after total body exposure to protons or to high-energy X rays. Among these 32 monkeys there were 21 which survived two years or longer after exposure to 200 to 800 rad. Glioblastoma multiforme developed in 3 of the 10 monkeys surviving three to five years after receiving 600 or 800 rad 55-MeV protons. Thus, the incidence of tumor development in the present series was far higher than the incidence of spontaneously developing brain tumors in monkeys cited in the literature. This suggests that the tumors in the present series may have been radiation-induced.

  7. Radiation protection from whole-body gamma irradiation (6.7 Gy): behavioural effects and brain protein-level changes by an aminothiol compound GL2011 in the Wistar rat.

    PubMed

    Ganesan, Minu Karthika; Jovanovic, Milos; Secerov, Bojana; Ignjatovic, Marija; Bilban, Martin; Andjus, Pavle; Pavle, Andjus; Refaei, Amal El; Jung, Gangsoo; Li, Lin; Sase, Ajinkya; Chen, Weiqiang; Bacic, Goran; Lubec, Gert

    2014-07-01

    GL2011 is a naturally occurring thiol compound and a series of thiol compounds have been proposed as radioprotectors. Radioprotective efficacy of a triple intraperitoneal dose of GL2011 of 100 mg/kg body weight of Wistar rats, 30 min prior to and 3 and 6 h following irradiation (6.7 Gy) was evaluated. Four groups of animals were used, vehicle-treated non-irradiated (VN), GL2011-treated and irradiated (GI), GL2011-treated and non-irradiated (GN) and vehicle-treated and irradiated (VI) (n = 30 per group). The radioprotective efficacy of GL2011 was determined by measuring 28-day survival and intestinal crypt cell survival. Neuroprotection in terms of behaviour was evaluated using the behavioural observational battery, open field test and elevated plus maze paradigm. An RNA microarray was carried out in order to show differences at the RNA level between VI and VN groups. Brain protein changes were identified using a gel-based proteomics method and major brain receptor complex levels were determined by blue-native gels followed by immunoblotting. 28-Day survival rate in VI was 30 %, in GI survival was 93 %, survival of VN and GN was 100 %. Jejunal crypt cell survival was significantly enhanced in GI. Protein-level changes of peroxiredoxin-5, Mn-superoxide dismutase 2, voltage-dependent anion-selective channel protein 1, septin 5 and dopamine D2 receptor complex levels were paralleling radiation damage and protection. Taken together, the findings demonstrate that GL2011 improves survival rates and jejunal crypt survival, provides partial neuroprotection at the behavioural level and modulates proteins known to be involved in protection against oxidative stress-mediated cell damage.

  8. Adjustable compensators for whole-brain irradiation.

    PubMed

    Lerch, I A; Newall, J

    1979-02-01

    A compensator for use in irradiating the whole brain with parellel opposed lateral fields was made from a stack of thin tempered aluminum plates. This configuration gives a wide latitude of degrees of compensation and can accommodate a broad range of head sizes. Dosimetry studies indicate that overcompensation may be desirable to reduce the dose to the mid-coronal plane of the skull and scalp without seriously affecting the dose uniformity in the treatment volume.

  9. Damage and repair of irradiated mammalian brain

    SciTech Connect

    Frankel, K.; Lo, E.; Phillips, M.; Fabrikant, J.; Brennan, K.; Valk, P.; Poljak, A.; Delapaz, R.; Woodruff, K.; Stanford Univ., CA . Medical Center; Brookside Hospital, San Pablo, CA )

    1989-07-01

    We have demonstrated that focal charged particle irradiation of the rabbit brain can create well-defined lesions which are observable by nuclear magnetic resonance imaging (NMR) and positron emission tomography (PET) imaging techniques. These are similar, in terms of location and characteristic NMR and PET features, to those that occur in the brain of about 10% of clinical research human subjects, who have been treated for intracranial vascular malformations with stereotactic radiosurgery. These lesions have been described radiologically as vasogenic edema of the deep white matter,'' and the injury is of variable intensity and temporal duration, can recede or progress to serious neurologic sequelae, and persist for a considerable period of time, frequently 18 mon to 3 yr. 8 refs., 6 figs.

  10. Head and neck tumors after energetic proton irradiation in rats

    NASA Astrophysics Data System (ADS)

    Wood, D.; Cox, A.; Hardy, K.; Salmon, Y.; Trotter, R.

    1994-10-01

    This is a two-year progress report on a life span dose-response study of brain tumor risk at moderate to high doses of energetic protons. It was initiated because a joint NASA/USAF life span study of rhesus monkeys that were irradiated with 55-MeV protons (average surface dose, 3.5 Gy) indicated that the incidence of brain tumors per unit surface absorbed dose was over 19 times that of the human tinea capitis patients whose heads were exposed to 100 kv x-rays. Examination of those rats that died in the two-year interval after irradiation of the head revealed a linear dose-response for total head and neck tumor incidence in the dose range of 0-8.5 Gy. The exposed rats had a greater incidence of pituitary chromophobe adenomas, epithelial and mesothelial cell tumors than the unexposed controls but the excessive occurrence of malignant gliomas that was observed in the monkeys was absent in the rats. The estimated dose required to double the number of all types of head and neck tumors was 5.2 Gy. The highest dose, 18 Gy, resulted in high mortality due to obstructive squamous metaplasia at less than 50 weeks, prompting a new study of the relative bological effectiveness of high energy protons in producing this lesion.

  11. Neuroprotective effects of erythropoietin against oxidant injury following brain irradiation: an experimental study

    PubMed Central

    Cebi, Aysegul; Mert, Handan; Mert, Nihat; Serin, Meltem; Erkal, Haldun Sukru

    2016-01-01

    Introduction Radiation therapy (RT) is a major treatment modality, and the central nervous system is a dose-limiting organ in clinical RT. This experimental study aims to present the evaluation of the neuroprotective effects of erythropoietin (EPO) against oxidant injury following brain irradiation in rats. Material and methods Forty Wistar rats were randomly assigned to four groups (n = 10 each). In group 1 the rats received no EPO and underwent sham RT. The rats in groups 2 and 3 received EPO. In group 2 rats underwent sham RT, while in group 3 rats received RT. The rats in group 4 received no EPO and underwent RT. Rats were irradiated using a Cobalt-60 teletherapy machine using a single fraction of 20 Gy covering the whole brain. Cervical dislocation euthanasia was performed. The nitrite and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) and glutathione peroxidase (GSHPX) activities were evaluated in dissected brain tissues. Results The nitrite and MDA levels were higher in the RT group (2.10 ±0.62 ppm, 26.02 ±2.16 nmol/ml; p < 0.05) and lower in the EPO + RT group (1.45 ±0.12 ppm, 25.49 ±1.90 nmol/ml; p < 0.05). The SOD and GSHPX activity was higher in the EPO + RT group (2.62 ±0.49 U/mg, 1.75 ±0.25 U/mg, p < 0.05). Conclusions This study supports the probable neuroprotective effects of EPO against oxidant injury following brain irradiation in a rat model, presumably through decreasing free radical production and increasing expression of antioxidant enzymes. PMID:27904528

  12. Hypothalamic dysfunction following whole-brain irradiation

    SciTech Connect

    Mechanick, J.I.; Hochberg, F.H.; LaRocque, A.

    1986-10-01

    The authors describe 15 cases with evidence of hypothalamic dysfunction 2 to 9 years following megavoltage whole-brain x-irradiation for primary glial neoplasm. The patients received 4000 to 5000 rads in 180- to 200-rad fractions. Dysfunction occurred in the absence of computerized tomography-delineated radiation necrosis or hypothalamic invasion by tumor, and antedated the onset of dementia. Fourteen patients displayed symptoms reflecting disturbances of personality, libido, thirst, appetite, or sleep. Hyperprolactinemia (with prolactin levels up to 70 ng/ml) was present in all of the nine patients so tested. Of seven patients tested with thyrotropin-releasing hormone, one demonstrated an abnormal pituitary gland response consistent with a hypothalamic disorder. Seven patients developed cognitive abnormalities. Computerized tomography scans performed a median of 4 years after tumor diagnosis revealed no hypothalamic tumor or diminished density of the hypothalamus. Cortical atrophy was present in 50% of cases and third ventricular dilatation in 58%. Hypothalamic dysfunction, heralded by endocrine, behavioral, and cognitive impairment, represents a common, subtle form of radiation damage.

  13. Experimental assessment of the safety and potential efficacy of high irradiance photostimulation of brain tissues

    PubMed Central

    Suhan, Senova; Ilona, Scisniak; Chih-Chieh, Chiang; Isabelle, Doignon; Stéphane, Palfi; Antoine, Chaillet; Claire, Martin; Frédéric, Pain

    2017-01-01

    Optogenetics is widely used in fundamental neuroscience. Its potential clinical translation for brain neuromodulation requires a careful assessment of the safety and efficacy of repeated, sustained optical stimulation of large volumes of brain tissues. This study was performed in rats and not in non-human primates for ethical reasons. We studied the spatial distribution of light, potential damage, and non-physiological effects in vivo, in anesthetized rat brains, on large brain volumes, following repeated high irradiance photo-stimulation. We generated 2D irradiance and temperature increase surface maps based on recordings taken during optical stimulation using irradiance and temporal parameters representative of common optogenetics experiments. Irradiances of 100 to 600 mW/mm2 with 5 ms pulses at 20, 40, and 60 Hz were applied during 90 s. In vivo electrophysiological recordings and post-mortem histological analyses showed that high power light stimulation had no obvious phototoxic effects and did not trigger non-physiological functional activation. This study demonstrates the ability to illuminate cortical layers to a depth of several millimeters using pulsed red light without detrimental thermal damages. PMID:28276522

  14. The rat brain hippocampus proteome.

    PubMed

    Fountoulakis, Michael; Tsangaris, George T; Maris, Antony; Lubec, Gert

    2005-05-05

    The hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In humans, the CA1 area of hippocampus is one of the first brain areas to display pathology in Alzheimer's disease. A comprehensive analysis of the hippocampus proteome has not been accomplished yet. We applied proteomics technologies to construct a two-dimensional database for rat brain hippocampus proteins. Hippocampus samples from eight months old animals were analyzed by two-dimensional electrophoresis and the proteins were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The database comprises 148 different gene products, which are in the majority enzymes, structural proteins and heat shock proteins. It also includes 39 neuron specific gene products. The database may be useful in animal model studies of neurological disorders.

  15. Profound and Sexually Dimorphic Effects of Clinically-Relevant Low Dose Scatter Irradiation on the Brain and Behavior

    PubMed Central

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Yaroslav; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kolb, Bryan; Kovalchuk, Olga

    2016-01-01

    Irradiated cells can signal damage and distress to both close and distant neighbors that have not been directly exposed to the radiation (naïve bystanders). While studies have shown that such bystander effects occur in the shielded brain of animals upon body irradiation, their mechanism remains unexplored. Observed effects may be caused by some blood-borne factors; however they may also be explained, at least in part, by very small direct doses received by the brain that result from scatter or leakage. In order to establish the roles of low doses of scatter irradiation in the brain response, we developed a new model for scatter irradiation analysis whereby one rat was irradiated directly at the liver and the second rat was placed adjacent to the first and received a scatter dose to its body and brain. This work focuses specifically on the response of the latter rat brain to the low scatter irradiation dose. Here, we provide the first experimental evidence that very low, clinically relevant doses of scatter irradiation alter gene expression, induce changes in dendritic morphology, and lead to behavioral deficits in exposed animals. The results showed that exposure to radiation doses as low as 0.115 cGy caused changes in gene expression and reduced spine density, dendritic complexity, and dendritic length in the prefrontal cortex tissues of females, but not males. In the hippocampus, radiation altered neuroanatomical organization in males, but not in females. Moreover, low dose radiation caused behavioral deficits in the exposed animals. This is the first study to show that low dose scatter irradiation influences the brain and behavior in a sex-specific way. PMID:27375442

  16. Profound and Sexually Dimorphic Effects of Clinically-Relevant Low Dose Scatter Irradiation on the Brain and Behavior.

    PubMed

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Yaroslav; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kolb, Bryan; Kovalchuk, Olga

    2016-01-01

    Irradiated cells can signal damage and distress to both close and distant neighbors that have not been directly exposed to the radiation (naïve bystanders). While studies have shown that such bystander effects occur in the shielded brain of animals upon body irradiation, their mechanism remains unexplored. Observed effects may be caused by some blood-borne factors; however they may also be explained, at least in part, by very small direct doses received by the brain that result from scatter or leakage. In order to establish the roles of low doses of scatter irradiation in the brain response, we developed a new model for scatter irradiation analysis whereby one rat was irradiated directly at the liver and the second rat was placed adjacent to the first and received a scatter dose to its body and brain. This work focuses specifically on the response of the latter rat brain to the low scatter irradiation dose. Here, we provide the first experimental evidence that very low, clinically relevant doses of scatter irradiation alter gene expression, induce changes in dendritic morphology, and lead to behavioral deficits in exposed animals. The results showed that exposure to radiation doses as low as 0.115 cGy caused changes in gene expression and reduced spine density, dendritic complexity, and dendritic length in the prefrontal cortex tissues of females, but not males. In the hippocampus, radiation altered neuroanatomical organization in males, but not in females. Moreover, low dose radiation caused behavioral deficits in the exposed animals. This is the first study to show that low dose scatter irradiation influences the brain and behavior in a sex-specific way.

  17. The Effect of Photoluminescence of Bioceramic Irradiation on Middle Cerebral Arterial Occlusion in Rats

    PubMed Central

    Zhang, Lei; Chan, Paul; Liu, Zhong-Min; Hwang, Ling-Ling; Lin, Kuo-Chi; Chan, Wing P.; Leung, Ting-Kai; Choy, Cheuk Sing

    2016-01-01

    The purpose of this study is to determine the possible effect of photoluminescence of bioceramic (PLB) on ischemic cerebral infarction (stroke), by using an animal model of transient middle cerebral artery occlusion (MCAO). Sprague-Dawley rats were used to induce MCAO to block the origin of the left MCAO; three months later, the positive chronic stroke rats were selected by running tunnel maze; the MCAO rats with significant chronic stroke and neurological defects were used for treadmill experiments with varying speed settings to test their capability for restoration after muscular fatigue under conditions of with and without PLB irradiation. As a result, PLB irradiation could improve exercise completion rate and average running speed during slow and fast treadmill settings. After PLB irradiation, the selected MCAO rats successfully completed all the second-round treadmill exercises at the maximum speed setting, and they had better restoration from muscular fatigue. An in vitro cell study on astrocytes of rats by bioceramic irradiation further demonstrated increased intracellular nitric oxide. To explain these results, we suggest that cortical brain stimulation of microcirculation and enhancement of peripheral muscular activity are the main causes of the improved exercise performance in MCAO rats by PLB. PMID:27375765

  18. The Effect of Photoluminescence of Bioceramic Irradiation on Middle Cerebral Arterial Occlusion in Rats.

    PubMed

    Zhang, Lei; Chan, Paul; Liu, Zhong-Min; Hwang, Ling-Ling; Lin, Kuo-Chi; Chan, Wing P; Leung, Ting-Kai; Choy, Cheuk Sing

    2016-01-01

    The purpose of this study is to determine the possible effect of photoluminescence of bioceramic (PLB) on ischemic cerebral infarction (stroke), by using an animal model of transient middle cerebral artery occlusion (MCAO). Sprague-Dawley rats were used to induce MCAO to block the origin of the left MCAO; three months later, the positive chronic stroke rats were selected by running tunnel maze; the MCAO rats with significant chronic stroke and neurological defects were used for treadmill experiments with varying speed settings to test their capability for restoration after muscular fatigue under conditions of with and without PLB irradiation. As a result, PLB irradiation could improve exercise completion rate and average running speed during slow and fast treadmill settings. After PLB irradiation, the selected MCAO rats successfully completed all the second-round treadmill exercises at the maximum speed setting, and they had better restoration from muscular fatigue. An in vitro cell study on astrocytes of rats by bioceramic irradiation further demonstrated increased intracellular nitric oxide. To explain these results, we suggest that cortical brain stimulation of microcirculation and enhancement of peripheral muscular activity are the main causes of the improved exercise performance in MCAO rats by PLB.

  19. Effects of Irradiation on Brain Vasculature Using an In Situ Tumor Model

    SciTech Connect

    Zawaski, Janice A.; Gaber, M. Waleed; Sabek, Omaima M.; Wilson, Christy M.; Duntsch, Christopher D.; Merchant, Thomas E.

    2012-03-01

    Purpose: Damage to normal tissue is a limiting factor in clinical radiotherapy (RT). We tested the hypothesis that the presence of tumor alters the response of normal tissues to irradiation using a rat in situ brain tumor model. Methods and Materials: Intravital microscopy was used with a rat cranial window to assess the in situ effect of rat C6 glioma on peritumoral tissue with and without RT. The RT regimen included 40 Gy at 8 Gy/day starting Day 5 after tumor implant. Endpoints included blood-brain barrier permeability, clearance index, leukocyte-endothelial interactions and staining for vascular endothelial growth factor (VEGF) glial fibrillary acidic protein, and apoptosis. To characterize the system response to RT, animal survival and tumor surface area and volume were measured. Sham experiments were performed on similar animals implanted with basement membrane matrix absent of tumor cells. Results: The presence of tumor alone increases permeability but has little effect on leukocyte-endothelial interactions and astrogliosis. Radiation alone increases tissue permeability, leukocyte-endothelial interactions, and astrogliosis. The highest levels of permeability and cell adhesion were seen in the model that combined tumor and irradiation; however, the presence of tumor appeared to reduce the volume of rolling leukocytes. Unirradiated tumor and peritumoral tissue had poor clearance. Irradiated tumor and peritumoral tissue had a similar clearance index to irradiated and unirradiated sham-implanted animals. Radiation reduces the presence of VEGF in peritumoral normal tissues but did not affect the amount of apoptosis in the normal tissue. Apoptosis was identified in the tumor tissue with and without radiation. Conclusions: We developed a novel approach to demonstrate that the presence of the tumor in a rat intracranial model alters the response of normal tissues to irradiation.

  20. Hippocampal Neuron Number Is Unchanged 1 Year After Fractionated Whole-Brain Irradiation at Middle Age

    SciTech Connect

    Shi Lei Molina, Doris P.; Robbins, Michael E.; Wheeler, Kenneth T.; Brunso-Bechtold, Judy K.

    2008-06-01

    Purpose: To determine whether hippocampal neurons are lost 12 months after middle-aged rats received a fractionated course of whole-brain irradiation (WBI) that is expected to be biologically equivalent to the regimens used clinically in the treatment of brain tumors. Methods and Materials: Twelve-month-old Fischer 344 X Brown Norway male rats were divided into WBI and control (CON) groups (n = 6 per group). Anesthetized WBI rats received 45 Gy of {sup 137}Cs {gamma} rays delivered as 9 5-Gy fractions twice per week for 4.5 weeks. Control rats were anesthetized but not irradiated. Twelve months after WBI completion, all rats were anesthetized and perfused with paraformaldehyde, and hippocampal sections were immunostained with the neuron-specific antibody NeuN. Using unbiased stereology, total neuron number and the volume of the neuronal and neuropil layers were determined in the dentate gyrus, CA3, and CA1 subregions of hippocampus. Results: No differences in tissue integrity or neuron distribution were observed between the WBI and CON groups. Moreover, quantitative analysis demonstrated that neither total neuron number nor the volume of neuronal or neuropil layers differed between the two groups for any subregion. Conclusions: Impairment on a hippocampal-dependent learning and memory test occurs 1 year after fractionated WBI at middle age. The same WBI regimen, however, does not lead to a loss of neurons or a reduction in the volume of hippocampus.

  1. Stereotaxic interstitial irradiation of malignant brain tumors

    SciTech Connect

    Gutin, P.H.; Leibel, S.A.

    1985-11-01

    The authors discuss the feasibility of treatment of malignant tumors with brachytherapy. The history of brain tumor brachytherapy, its present day use, and future directions are detailed. 24 references.

  2. Hypertension after bilateral kidney irradiation in young and adult rats

    SciTech Connect

    Jongejan, H.T.; van der Kogel, A.J.; Provoost, A.P.; Molenaar, J.C.

    1987-09-01

    The mechanism of a rise in blood pressure after kidney irradiation is unclear but most likely of renal origin. We have investigated the role of the renin-angiotensin system and dietary salt restriction in the development of systolic hypertension after bilateral kidney irradiation in young and adult rats. Three to 12 months after a single X-ray dose of 7.5 or 12.5 Gy to both kidneys of young and adult rats, the systolic blood pressure (SBP) and plasma renin concentration (PRC) were measured regularly. A single X-ray dose of 12.5 Gy caused a moderate rise in SBP and a slight reduction in PRC in both young and adult rats. A dose of 7.5 Gy did not significantly alter the SBP or PRC during the follow-up period of 1 year. In a second experiment, the kidneys of young rats received an X-ray dose of 20 Gy. Subsequently, rats were kept on a standard diet (110 mmol sodium/kg) or a sodium-poor diet (10 mmol sodium/kg). On both diets, SBP started to rise rapidly 3 months after kidney irradiation. Sodium balance studies carried out at that time revealed an increased sodium retention in the irradiated rats compared to controls on the same diet. In rats on a low sodium intake, there was neither a delay nor an alleviation in the development of hypertension. Compared to controls, the PRC tended to be lower in irradiated rats up to 4 months after irradiation. Subsequently, malignant hypertension developed in all 20 Gy rats, resulting in pressure natriuresis, stimulating the renin-angiotensin system. Our findings indicated that hypertension after bilateral kidney irradiation was not primarily the result of an activation of the renin-angiotensin system. Although there were some indications that sodium retention played a role, dietary sodium restriction did not influence the development of hypertension.

  3. Physiologic consequences of local heart irradiation in rats

    SciTech Connect

    Geist, B.J.; Lauk, S.; Bornhausen, M.; Trott, K.R. )

    1990-05-01

    Noninvasive methods have been used to study the long-term cardiovascular and pulmonary functional changes at rest and after exercise in adult rats following local heart irradiation with single x-ray doses of 15, 17.5 or 20 Gy, and in non-irradiated control animals. Rats that had undergone a chronic exercise program were compared with untrained cohorts. The earliest dysfunction detected was an increased respiratory rate (f) at 10 weeks after irradiation in the highest dose group. In contrast, both telemetric heart-rate (HR) and rhythm and indirect systolic blood pressure measurements performed at rest only revealed changes starting at 43 weeks after irradiation with 20 Gy, up to which point the rats showed no clinical signs of heart failure. However, the number of minutes required for the recovery of the HR to pre-exercise levels following the implementation of a standardized exercise challenge was elevated in untrained rats compared with their trained cohorts at 18 weeks after irradiation with 20 Gy. Increases in recovery times were required in the two lowest dose groups, starting at 26 weeks after irradiation. It was concluded that the reserve capacity of the cardiopulmonary system masks functional decrements at rest for many months following local heart irradiation, necessitating the use of techniques which reveal reductions in reserve capacities. Further, the influence of local irradiation to the heart and lungs deserves closer scrutiny due to mutual interactions.

  4. Prenatal irradiation-induced brain neuropathology and cognitive impairment.

    PubMed

    Yang, Bo; Ren, Bo Xu; Tang, Feng Ru

    2017-01-01

    Embryo/fetus is much more radiosensitive than neonatal and adult human being. The main potential effects of pre-natal radiation exposure on the human brain include growth retardation, small head/brain size, mental retardation, neocortical ectopias, callosal agenesis and brain tumor which may result in a lifetime poor quality of life. The patterns of prenatal radiation-induced effects are dependent not only on the stages of fetal development, the sensitivity of tissues and organs, but also on radiation sources, doses, dose rates. With the increased use of low dose radiation for diagnostic or radiotherapeutic purposes in recent years, combined with postnatal negative health effect after prenatal radiation exposure to fallout of Chernobyl nuclear power plant accident, the great anxiety and unnecessary termination of pregnancies after the nuclear disaster, there is a growing concern about the health effect of radiological examinations or therapies in pregnant women. In this paper, we reviewed current research progresses on pre-natal ionizing irradiation-induced abnormal brain structure changes. Subsequent postnatal neuropsychological and neurological diseases were provided. Relationship between irradiation and brain aging was briefly mentioned. The relevant molecular mechanisms were also discussed. Future research directions were proposed at the end of this paper. With limited human data available, we hoped that systematical review of animal data could relight research interests on prenatal low dose/dose rate irradiation-induced brain microanatomical changes and subsequent neurological and neuropsychological disorders.

  5. [Lipogenesis and gluconeogenesis in the liver of irradiated rats].

    PubMed

    Sedlakova, A; Paulikova, E; Diatelinka, I

    1984-01-01

    The incorporation of 14C from [U-14C] glucose and 3H from 3H2O into the total lipids fatty acids and glycogen of the liver incorporation of 3H from 3H2O into blood glucose was studied in rats totally irradiated in a dose of 14.4 Gy. It is shown that in the liver of irradiated rats glucose is accumulated in considerable amounts as glycogen but it is slightly used as a source of carbon for lipid synthesis. The study of 3H incorporation shows that irradiation stimulates glucogenesis, glyconeogenesis and lipogenesis in the liver.

  6. Growth hormone reduces mortality and bacterial translocation in irradiated rats.

    PubMed

    Gómez-de-Segura, I A; Prieto, I; Grande, A G; García, P; Guerra, A; Mendez, J; De Miguel, E

    1998-01-01

    Growth hormone stimulates the growth of intestinal mucosa and may reduce the severity of injury caused by radiation. Male Wistar rats underwent abdominal irradiation (12 Gy) and were treated with either human growth hormone (hGH) or saline, and sacrificed at day 4 or 7 post-irradiation. Bacterial translocation, and the ileal mucosal thickness, proliferation, and disaccharidase activity were assessed. Mortality was 65% in irradiated animals, whereas hGH caused a decrement (29%, p < 0.05). Bacterial translocation was also reduced by hGH (p < 0.05). Treating irradiated rats with hGH prevented body weight loss (p < 0.05). Mucosal thickness increased faster in irradiated hGH-treated animals. The proliferative index showed an increment in hGH-treated animals (p < 0.05). Giving hGH to irradiated rats prevented decrease in sucrose activity, and increment in lactase activity. In conclusion, giving hGH to irradiated rats promotes the adaptative process of the intestine and acute radiation-related negative effects, including mortality, bacterial translocation, and weight loss.

  7. Interaction of ethanol and microwaves on the blood-brain barrier of rats

    SciTech Connect

    Neilly, J.P.; Lin, J.C.

    1986-01-01

    The combined effects of ethanol and microwaves on the permeation of Evans blue dye through the mammalian blood-brain barrier was studied in male Wistar rats. Anesthetized rats were infused through a cannula in the left femoral vein with 0.1, 0.3, 0.5 or 0.7 grams of absolute ethanol per kilogram of body mass. A control group was given 0.7 g/kg of isotonic saline. The left hemisphere of the brain was irradiated by 3.15-GHz microwave energy at 3.0 W/cm2 rms for 15 min. The rat's rectal temperature was maintained at 37.0 degrees C. Immediately after irradiation, 2% Evans blue dye in saline (2.0 ml/kg body mass) was injected through the cannula. The results show that as the quantity of alcohol was increased, the degree of staining was decreased or eliminated. The temperature of the irradiated area of the brain increased for the first 4 to 5 minutes of irradiation and then stabilized for the remainder of the irradiation period. The steady-state temperature was highest in animals receiving saline or the smallest dose of alcohol. As the quantity of alcohol was increased, the steady-state temperature was reduced. These results indicate that ethanol inhibits microwave-induced permeation of the blood-brain barrier through reduced heating of the brain.

  8. Neurosarcoidosis associated with hypersomnolence treated with corticosteroids and brain irradiation

    SciTech Connect

    Rubinstein, I.; Gray, T.A.; Moldofsky, H.; Hoffstein, V.

    1988-07-01

    Narcoleptic features developed in a young man with CNS sarcoidosis. This was associated with a structural lesion in the hypothalamus as demonstrated on CT scans of the head. The diagnosis of narcolepsy was established by compatible clinical history and the Multiple Sleep Latency Test. Treatment with high-dose corticosteroids was ineffective, but when the low-dose, whole-brain irradiation was added, complete resolution of the narcoleptic features ensued.

  9. Progesterone and estradiol plasma levels in neonatally irradiated cycling rats

    SciTech Connect

    Freud, A.; Sod-Moriah, U.A. )

    1990-01-01

    Female rats which were exposed to a single low dose of gamma irradiation (6R or 15R) at the age of 8 days produce smaller litters when mature than untreated controls. The possibility that the impaired fertility resulted from altered ovarian activity as reflected by changes in plasma levels of progesterone or estardiol was investigated. Plasma levels of both steroids were determined throughout the day of proestrus. Progesterone level was also determined in 6R animals on the day of weaning. The maturity of such irradiated rats was assessed by observing the time of vaginal opening. The results indicated that the preovulatory peak of progesterone was delayed in the 6R rats whereas in the 15R group its levels were significantly lower. On the other hand no differences in estradiol plasma levels were noticed between the groups. The higher level of progesterone in the 6R animals was not evident on the day of weaning and was even in both groups, but vaginal opening in the irradiated rats was significantly delayed. The elevated level of progesterone might be responsible, among other endocrine changes, for the lower fertility of neonatally irradiated mature female rats.

  10. Deformation-based brain morphometry in rats.

    PubMed

    Gaser, Christian; Schmidt, Silvio; Metzler, Martin; Herrmann, Karl-Heinz; Krumbein, Ines; Reichenbach, Jürgen R; Witte, Otto W

    2012-10-15

    Magnetic resonance imaging (MRI)-based morphometry provides in vivo evidence for macro-structural plasticity of the brain. Experiments on small animals using automated morphometric methods usually require expensive measurements with ultra-high field dedicated animal MRI systems. Here, we developed a novel deformation-based morphometry (DBM) tool for automated analyses of rat brain images measured on a 3-Tesla clinical whole body scanner with appropriate coils. A landmark-based transformation of our customized reference brain into the coordinates of the widely used rat brain atlas from Paxinos and Watson (Paxinos Atlas) guarantees the comparability of results to other studies. For cross-sectional data, we warped images onto the reference brain using the low-dimensional nonlinear registration implemented in the MATLAB software package SPM8. For the analysis of longitudinal data sets, we chose high-dimensional registrations of all images of one data set to the first baseline image which facilitate the identification of more subtle structural changes. Because all deformations were finally used to transform the data into the space of the Paxinos Atlas, Jacobian determinants could be used to estimate absolute local volumes of predefined regions-of-interest. Pilot experiments were performed to analyze brain structural changes due to aging or photothrombotically-induced cortical stroke. The results support the utility of DBM based on commonly available clinical whole-body scanners for highly sensitive morphometric studies on rats.

  11. Cranial irradiation modulates hypothalamic-pituitary-adrenal axis activity and corticosteroid receptor expression in the hippocampus of juvenile rat.

    PubMed

    Velickovic, Natasa; Djordjevic, Ana; Drakulic, Dunja; Stanojevic, Ivana; Secerov, Bojana; Horvat, Anica

    2009-01-01

    Glucocorticoids, essential for normal hypothalamic-pituitary-adrenal (HPA) axis activity, exert their action on the hippocampus through two types of corticosteroid receptors: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Recent studies report that exposure of juvenile rats to cranial irradiation adversely affects HPA axis stability leading to its activation along with radiation- induced inflammation. This study was aimed to examine the acute effects of radiation on HPA axis activity and hippocampal corticosteroid receptor expression in 18-day-old rats. Since immobilization was part of irradiation procedure, both irradiated and sham-irradiated animals were exposed to this unavoidable stress. Our results demonstrate that the irradiated rats exhibited different pattern of corticosteroid receptor expression and hormone levels compared to respective controls. These differences included upregulation of GR protein in the hippocampus with a concomitant elevation of GR mRNA and an increase in circulating level of corticosterone. In addition, the expression of MR, both at the level of protein and gene expression, was not altered. Taken together, this study demonstrates that cranial irradiation in juvenile rats leads to enhanced HPA axis activity and increased relative GR/MR ratio in hippocampus. The present paper intends to show that neuroendocrine response of normal brain tissue to localized irradiation comprise both activation of HPA axis and altered corticosteroid receptor balance, probably as consequence of innate immune activation.

  12. The Extent of Irradiation-Induced Long-Term Visceral Organ Damage Depends on Cranial/Brain Exposure

    PubMed Central

    Boittin, François-Xavier; Denis, Josiane; Mayol, Jean-François; Martigne, Patrick; Raffin, Florent; Coulon, David; Grenier, Nancy; Drouet, Michel; Hérodin, Francis

    2015-01-01

    In case of high-dose radiation exposure, mechanisms controlling late visceral organ damage are still not completely understood and may involve the central nervous system. To investigate the influence of cranial/brain irradiation on late visceral organ damage in case of high-dose exposure, Wistar rats were irradiated at 12 Gy, with either the head and fore limbs or the two hind limbs protected behind a lead wall (head- and hind limbs-protected respectively), which allows long-term survival thanks to bone marrow protection. Although hind limbs- and head-protected irradiated rats exhibited similar hematopoietic and spleen reconstitution, a late body weight loss was observed in hind limbs-protected rats only. Histological analysis performed at this time revealed that late damages to liver, kidney and ileum were attenuated in rats with head exposed when compared to animals whose head was protected. Plasma measurements of inflammation biomarkers (haptoglobin and the chemokine CXCL1) suggest that the attenuated organ damage in hind limbs-protected rats may be in part related to reduced acute and chronic inflammation. Altogether our results demonstrate the influence of cranial/brain exposure in the onset of organ damage. PMID:25836679

  13. Reductions in Calcium Uptake Induced in Rat Brain Synaptosomes by Ionizing Radiation

    DTIC Science & Technology

    1991-01-01

    was also reduced by radiation exposure. Nimodipine binding to dihydropyridine (DHP) L-type calcium uptake after irradiation in wh31e-brain, cortical...TERIz. and L.. GANDIA. Dihydropyridine Bay K 8644 aetivates chro- 2-32-286 (1950). mall’in cell calcium channels.Nature 309. 69-71 (1984). 33. E. L...TRIGGLE. Bay K 8644. a I .4-dihv- of dihydropyridine -sensitive calcium channels in rat brain synapto- dropyridinc Ca> channel activator: Dissociation

  14. Superoxide dismutase levels in various radioresistant and radiosensitive tissues of irradiated rats.

    PubMed

    Krízala, J; Kovárová, H; Stoklasová, A; Ledvina, M

    1982-01-01

    The activity of superoxide dismutase (E.C. 1.15.1.1; SOD) was determined in male Wistar rats in order to evaluate the possible relationship between both the enzyme content in tissue and the resistance of this tissue to ionizing radiation (8,0 Gy, 60Co). Our results showed that some non-irradiated radioresistant organs (liver) had a high SOD activity and on the contrary, in some radiosensitive tissue (bone marrow) the SOD content was low. In spite of this observation it is not possible to generalize the statement that the radiosensitivity is directly conditioned by the SOD level without any exception. The SOD content in the spleen was higher than in the brain, but the spleen is remarkably radiosensitive, whereas the brain is not. The radiosensitivity of individual tissues probably reflected the changes of SOD activity after the irradiation.

  15. Induction of acute phase gene expression by brain irradiation

    SciTech Connect

    Hong, Ji-Hong |; Sun, Ji-Rong; Withers, H.R.

    1995-10-15

    To investigate the in vivo acute phase molecular response of the brain to ionizing radiation, C3Hf/Sed/Kam mice were given midbrain or whole-body irradiation. Cerebral expression of interleukins (IL-1{alpha}, IL-1{beta}, IL-2, IL-3, IL-4, IL-5, IL-6), interferon (IFN-{gamma}), tumor necrosis factors (TNF-{alpha} and TNF-{beta}), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthetase (iNOS), von Willebrand factor (vWF), {alpha}1-antichymotrypsin (EB22/5.3), and glial fibrillary acidic protein (GFAP) was measured at various times after various radiation doses by ribonuclease (RNase) protection assay. The effects of dexamethasone or pentoxifylline treatment of mice on radiation-induced gene expression were also examined. Levels of TNF-{alpha}, IL-1{beta}, ICAM-1, EB22/5.3, and to a lesser extent IL-1{alpha} and GFAP, messenger RNA were increased in the brain after irradiation, whether the dose was delivered to the whole body or only to the midbrain. Responses were radiation dose dependent, but were not found below 7 Gy; the exception being ICAM-1, which was increased by doses as low as 2 Gy. Most responses were rapid, peaking within 4-8 h, but antichymotrypsin and GFAP responses were delayed and still elevated at 24 h, by which time the others had subsided. Pretreatment of mice with dexamethasone or pentoxifylline suppressed radiation-induced gene expression, either partially or completely. Dexamethasone was more inhibitory than pentoxifylline at the doses chosen. The initial response of the brain to irradiation involves expression of inflammatory gene products, which are probably responsible for clinically observed early symptoms of brain radiotherapy. This mechanism explains the beneficial effects of the clinical use of steroids in such circumstances. 64 refs., 4 figs.

  16. Melatonin protects rat liver against irradiation-induced oxidative injury.

    PubMed

    Koc, Mehmet; Taysi, Seyithan; Buyukokuroglu, Mehmet Emin; Bakan, Nuri

    2003-09-01

    The aim of this study was to investigate the antioxidant roles of different doses of melatonin (5 and 10 mg x kg (-1) ) against gamma-irradiation-caused oxidative damage in liver tissue after total body irradiation (TBI) with a single dose of 6.0 Gy. Fifty adult rats were divided into 5 equal groups, 10 rats each. Groups I and II were injected with 5 and 10 mg x kg (-1) of melatonin, and group III was injected with an isotonic NaCl solution. Group IV was injected with only 5 mg x kg (-1) of melatonin. Group V was reserved as a sham control. Following a 30-min-period, 6.0 Gy TBI was given to groups 1, 2 and 3 in a single fraction. The liver malondialdehyde (MDA) levels, super oxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were measured in all groups. TBI resulted in a significant increase in the liver tissue MDA levels and a decrease of SOD and GSH-Px activities. The results demonstrated that the liver tissue MDA levels in irradiated rats that were pretreated with melatonin (5 or 10 mg x kg (-1) ) were significantly decreased, while the SOD and GSH-Px activities were significantly increased. Decreasing the MDA levels by melatonin was dose dependent, but the liver tissue SOD and GSH activities were not. The data obtained in this study suggest that melatonin administration prior to irradiation may prevent liver damage by irradiation.

  17. Gastroprotective effect of kefir on ulcer induced in irradiated rats.

    PubMed

    Fahmy, Hanan A; Ismail, Amel F M

    2015-03-01

    The current study was designed to investigate the protective effect of kefir milk on ethanol-induced gastric ulcers in γ-irradiated rats. The results of the present study revealed that treatment with γ-irradiation and/or ethanol showed a significant increase in ulcers number, total acidity, peptic, H(+)K(+)ATPase, MMP-2 and MMP-9 activities and MDA level, which were accompanied by a significant decrease in the mucus content, the stomach GSH level, the GSH-Px activity and DNA damage. Pre-treatment with kefir milk exert significant improvement in all the tested parameters. Kefir milk exerts comparable effect to that of the antiulcer drug ranitidine. In conclusion, the present study revealed that oral administration of kefir milk prevents ethanol-induced gastric ulcer in γ-irradiated rats that could attribute to its antioxidant, anti-apoptotic and radio-protective activities.

  18. Hepatic injury after whole-liver irradiation in the rat

    SciTech Connect

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.; Leitch, J.M.

    1985-03-01

    Radiation-induced hepatic injury in rats, which is characterized by marked ascites accompanied by liver necrosis, fibrosis, and vein lesions, is described in this study. These adverse sequelae are produced within 30 days after irradiation if there is surgical removal of two-thirds of the liver immediately after whole-liver irradiation. The LD/sub 50/30/ day and median survival time after liver irradiation and two-thirds partial hepatectomy is 24 Gy and 17 days, respectively. Death is preceded by reduction in liver function as measured by (/sup 131/I)-labeled rose bengal clearance. Prior to death, liver sepsis and endotoxemia were detected in most irradiated, partially hepatectomized animals. Pretreatment of the animals with endotoxin and/or antibiotic decontamination of the GI tract resulted in increased survival time, but no irradiated, partially hepatectomized animal survived beyond 63 days. This suggests that sepsis and endotoxemia resulting from the bacteria in the intestine are the immediate cause of death after 30-Gy liver irradiation and partial hepatectomy. It is concluded that the hepatectomized rat model is an economical and scientifically manageable experimental system to study a form of radiation hepatitis that occurs in compromised human livers.

  19. Laser scattering by transcranial rat brain illumination

    NASA Astrophysics Data System (ADS)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Suzuki, Luis C.; Ribeiro, Martha S.; Yoshimura, Elisabeth M.

    2012-06-01

    Due to the great number of applications of Low-Level-Laser-Therapy (LLLT) in Central Nervous System (CNS), the study of light penetration through skull and distribution in the brain becomes extremely important. The aim is to analyze the possibility of precise illumination of deep regions of the rat brain, measure the penetration and distribution of red (λ = 660 nm) and Near Infra-Red (NIR) (λ = 808 nm) diode laser light and compare optical properties of brain structures. The head of the animal (Rattus Novergicus) was epilated and divided by a sagittal cut, 2.3 mm away from mid plane. This section of rat's head was illuminated with red and NIR lasers in points above three anatomical structures: hippocampus, cerebellum and frontal cortex. A high resolution camera, perpendicularly positioned, was used to obtain images of the brain structures. Profiles of scattered intensities in the laser direction were obtained from the images. There is a peak in the scattered light profile corresponding to the skin layer. The bone layer gives rise to a valley in the profile indicating low scattering coefficient, or frontal scattering. Another peak in the region related to the brain is an indication of high scattering coefficient (μs) for this tissue. This work corroborates the use of transcranial LLLT in studies with rats which are subjected to models of CNS diseases. The outcomes of this study point to the possibility of transcranial LLLT in humans for a large number of diseases.

  20. Genetic influence on brain catecholamines: high brain norepinephrine in salt-sensitive rats

    SciTech Connect

    Iwai, J; Friedman, R; Tassinari, L

    1980-01-01

    Rats genetically sensitive to salt-induced hypertension evinced higher levels of plasma norepinephrine and epinephrine than rats genetically resistant to hypertension. The hypertension-sensitive rats showed higher hypothalamic norepinephrine and lower epinephrine than resistant rats. In response to a high salt diet, brain stem norepinephrine increased in sensitive rats while resistant rats exhibited a decrease on the same diet.

  1. Teratogenic effect of californium-252 irradiation in rats.

    PubMed

    Satow, Y; Lee, J Y; Hori, H; Okuda, H; Tsuchimoto, S; Sawada, S; Yokoro, K

    1989-06-01

    The teratogenicity of californium-252 (Cf-252) irradiation which generates approximately 70% 2.3 MeV fast neutron and 30% gamma rays was evaluated. A single whole body exposure of Cf-252 at various doses was given to pregnant rats on day 8 or 9 of pregnancy, followed by microscopic autopsy of the fetuses at the terminal stage of pregnancy to search for external and internal malformations. For comparison, pregnant rats were irradiated with various doses of cobalt-60 (Co-60) standard gamma rays at the same dose rate (1 rad/min.). The doses were 20-120 rad of Cf-252 and 80-220 rad of Co-60. Using frequency of radiation induced malformations observed on day 8 of pregnancy as an index, relative biological effectiveness (RBE) of 2.3-2.7 was obtained from the straight line obtained by modifying by the least squares method the frequency curves of malformed fetuses in total implants and in surviving fetuses. The types of malformations induced by Cf-252 and Co-60 irradiation were alike. Using fetal LD50 as an index, 2.4 was obtained as RBE when irradiated on day 8 of pregnancy and 3.1 as that when irradiated on day 9. The results showed that Cf-252 had stronger a teratogenic effect than Co-60 gamma rays.

  2. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction

    PubMed Central

    Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p < 0.01). Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery. PMID:27579317

  3. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction.

    PubMed

    Xu, Yali; Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing; Liu, Zheng

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p < 0.01). Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  4. Distinct Expression of Various Angiogenesis Factors in Mice Brain After Whole-Brain Irradiation by X-ray.

    PubMed

    Deng, Zhezhi; Huang, Haiwei; Wu, Xiaohong; Wu, Mengmeng; He, Guoyong; Guo, Junjie

    2017-02-01

    Radiation-induced brain injury (RBI) is the most serious complication after radiotherapy. However, the etiology of RBI remains elusive. In order to evaluate the effect of X-rays on normal brain tissue, adult male BALB/C mice were subjected to whole-brain exposure with a single dose of 10 Gy or sham radiation. The structure and number of mice brain vessels were investigated 1, 7, 30, 90 and 180 days after irradiation by H&E staining and immune-fluorescence staining. Compared with sham control mice, in addition to morphological changes, a significant reduction of microvascular density was detected in irradiated mice brains. Whole-brain irradiation also caused damage in tight junction (TJ). Increased expression of glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) was observed in irradiated mouse brains showed by Western Blot. Immune-fluorescence staining results also verified the co-labeling of GFAP and VEGF after whole-brain irradiation. Furthermore, the protein expression levels of other angiogenesis factors, angiopoietin-1 (Ang-1), endothelial-specific receptor tyrosine kinase (Tie-2), and angiopoietin-2 (Ang-2) in brain were determined by Western Blot. Increased expression of Ang-2 was shown in irradiated mouse brains. In contrast, whole-brain irradiation significantly decreased Ang-1 and Tie-2 expression. Our data indicated that X-rays induced time-dependent microvascular injury and activation of astrocytes after whole-brain irradiation in mouse brain. Distinct regulation of VEGF/Ang2 and Ang-1/Tie-2 are closely associated with RBI, suggesting that angiogenesis interventions might be beneficial for patients with RBI.

  5. Reductions in calcium uptake induced in rat brain synaptosomes by ionizing radiation

    SciTech Connect

    Kandasamy, S.B.; Howerton, T.C.; Hunt, W.A. )

    1991-02-01

    Gamma irradiation (60Co) reduced KCl-stimulated voltage-dependent 45Ca2+ uptake in whole-brain, cortical, and striatal synaptosomes. The time course (3, 10, 30, and 60 s) of calcium uptake by irradiated (3 Gy) and nonirradiated synaptosomes, as well as the effect of KCl (15-65 mM), was measured in whole-brain synaptosomes. The fastest and highest rate of depolarization-dependent calcium uptake occurred at 3 s with 65 mM KCl. Irradiation reduced calcium uptake at all incubation times and KCl concentrations. Bay K 8644 enhancement of KCl-stimulated calcium influx was also reduced by radiation exposure. Nimodipine binding to dihydropyridine (DHP) L-type calcium channel receptors was not altered following radiation exposure. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive calcium channels in rat brain synaptosomes that are not mediated by DHP receptors.

  6. EVALUATION OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT BRAIN

    EPA Science Inventory

    This study examined whether there is a differential distribution of PFOS within the brain, and compares adult rats with neonatal rats at an age when formation of the blood-brain barrier is not yet complete (postnatal day 7). Male and female Sprague-Dawley rats (60-70 day old, 4/...

  7. Thromboxane and prostacyclin synthesis following whole body irradiation in rats

    SciTech Connect

    Schneidkraut, M.J.; Kot, P.A.; Ramwell, P.W.; Rose, J.C.

    1984-01-01

    The effect of radiation on the mechanism and source of in vivo thromboxane B/sub 2/ (TxB/sub 2/) and 6-keto-prostaglandin F/sub 1..cap alpha../ (6-keto-PGF/sub 1..cap alpha..) synthesis was evaluated. Rats were irradiated with 2, 10, or 20 gray (Gy) whole body gamma irradiation and showed an increase in urine TxB/sup 2/ after either 10 or 20 Gy. Urine 6-keto-PGF/sub 1..cap alpha../ was elevated only after exposure to 20 Gy. Irradiation did not alter urine volume and osmolarity, nor was there a correlation between urine osmolarity and the urinary concentration of TxB/sup 2/ or 6-keto-PGF/sub 1..cap alpha../. Rats were pretreated with indomethacin to determine if radiation-induced alterations in urine TxB/sup 2/ and 6-keto-PGF/sub 1..cap alpha../ could be suppressed. Pretreatment with indomethacin significantly decreased urine TxB..cap alpha.. and 6-keto-PFG/sub 1..cap alpha../ in both irradiated and nonirradiated animals. Finally, the sources of urinary cyclooxygenase products were investigated using an isogravitometric cross-perfusion system. These experiments demonstrated that urine TxB..cap alpha.. is derived from extrarenal sources, whereas 6-keto-PGF/sub 1..cap alpha.. is synthesized primarily by the kidney. It may be concluded that radiation exposure increases in vivo cyclooxygenase pathway activity by both renal and ultrarenal tissues.

  8. Activity of respiratory system during laser irradiation of brain structures

    NASA Astrophysics Data System (ADS)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  9. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats.

    PubMed

    El-Ghazaly, M A; Fadel, N; Rashed, E; El-Batal, A; Kenawy, S A

    2017-02-01

    Selenium (Se) has been reported to possess anti-inflammatory properties, but its bioavailability and toxicity are considerable limiting factors. The present study aimed to investigate the possible anti-inflammatory and analgesic effects of selenium nanoparticles (Nano-Se) on inflammation induced in irradiated rats. Paw volume and nociceptive threshold were measured in carrageenan-induced paw edema and hyperalgesia model. Leukocytic count, tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), thiobarbituric acid reactive substances (TBAR), and total nitrate/nitrite (NOx) were estimated in the exudate collected from 6 day old air pouch model. Irradiated rats were exposed to 6 Gy gamma (γ)-irradiation. Nano-Se were administered orally in a dose of 2.55 mg/kg once before carrageenan injection in the first model and twice in the second model. The paw volume but not the nociceptive response produced by carrageenan in irradiated rats was higher than that induced in non-irradiated rats. Nano-Se were effective in reducing the paw volume in non-irradiated and irradiated rats but it did not alter the nociceptive threshold. The inflammation induced in irradiated rats increased all the estimated parameters in the exudate whereas; Nano-Se decreased their elevation in non-irradiated and irradiated rats. Nano-Se possess a potential anti-inflammatory activity on inflammation induced in irradiated rats.

  10. Congenital hydrocephalus following X-irradiation of pregnant rats on an early gestational day

    SciTech Connect

    Takeuchi, I.K.; Takeuchi, Y.K.

    1986-03-01

    When pregnant rats were X-irradiated at a dose of 100 R on gestational day 9.5, a considerable number of postnatally-viable hydrocephalic offspring resulted, all of which were accompanied with bilateral micro- or anophthalmia. Histological studies revealed that the cerebral aqueduct of the congenital hydrocephalic brain was severely stenosed, and the subcommissural organ was reduced in size and displaced at some distance from the anterior end of the cerebral aqueduct. From embryological studies, it was considered that the maldevelopment of the subcommissural organ in the X-irradiated fetus might cause a reduction in the amount of its secretions which function as a cushion preventing complete closure of the cerebral aqueduct during fetal life, resulting in stenosis of the cerebral aqueduct.

  11. Dichloroacetate increases glucose use and decreases lactate in developing rat brain

    SciTech Connect

    Miller, A.L.; Hatch, J.P.; Prihoda, T.J. )

    1990-12-01

    Dichloroacetate (DCA) activates pyruvate dehydrogenase (PDH) by inhibiting PDH kinase. Neutralized DCA (100 mg/kg) or saline was intravenously administered to 20 to 25-day-old rats (50-75g). Fifteen minutes later a mixture of {sup 6-14}C glucose and {sup 3}H fluorodeoxyglucose (FDG) was administered intravenously and the animals were sacrificed by microwave irradiation (2450 MHz, 8.0 kW, 0.6-0.8 sec) after 2 or 5 min. Brain regional rates of glucose use and metabolite levels were determined. DCA-treated rats had increased rates of glucose use in all regions studied (cortex, thalamus, striatum, and brain stem), with an average increase of 41%. Lactate levels were lower in all regions, by an average of 35%. There were no significant changes in levels of ATP, creatine phosphate, or glycogen in any brain region. Blood levels of lactate did not differ significantly between the DCA- and the saline-treated groups. Blood glucose levels were higher in the DCA group. In rats sacrificed by freeze-blowing, DCA treatment caused lower brain levels of both lactate and pyruvate. These results cannot be explained by any systemic effect of DCA. Rather, it appears that in the immature rat, DCA treatment results in activation of brain PDH, increased metabolism of brain pyruvate and lactate, and a resulting increase in brain glycolytic rate.

  12. Brain damage following prophylactic cranial irradiation in lung cancer survivors.

    PubMed

    Simó, Marta; Vaquero, Lucía; Ripollés, Pablo; Jové, Josep; Fuentes, Rafael; Cardenal, Felipe; Rodríguez-Fornells, Antoni; Bruna, Jordi

    2016-03-01

    Long-term toxic effects of prophylactic cranial irradiation (PCI) on cognition in small cell lung cancer (SCLC) patients have not yet been well-established. The aim of our study was to examine the cognitive toxic effects together with brain structural changes in a group of long-term SCLC survivors treated with PCI. Eleven SCLC patients, who underwent PCI ≥ 2 years before, were compared with an age and education matched healthy control group. Both groups were evaluated using a neuropsychological battery and multimodal structural magnetic resonance imaging. Voxel-based morphometry and Tract-based Spatial Statistics were used to study gray matter density (GMD) and white matter (WM) microstructural changes. Cognitive deterioration was correlated with GMD and Fractional Anisotropy (FA). Finally, we carried out a single-subject analysis in order to evaluate individual structural brain changes. Nearly half of the SCLC met criteria for cognitive impairment, all exhibiting a global worsening of cognitive functioning. Patients showed significant decreases of GMD in basal ganglia bilaterally (putamen and caudate), bilateral thalamus and right insula, together with WM microstructural changes of the entire corpus callosum. Cognitive deterioration scores correlated positively with mean FA values in the corpus callosum. Single-subject analysis revealed that GMD and WM changes were consistently observed in nearly all patients. This study showed neuropsychological deficits together with brain-specific structural differences in long-term SCLC survivors. Our results suggest that PCI therapy, possibly together with platinum-based chemotherapy, was associated to permanent long-term cognitive and structural brain effects in a SCLC population.

  13. Studies of aluminum in rat brain

    SciTech Connect

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  14. Total lymphoid irradiation in the Wistar rat: technique and dosimetry

    SciTech Connect

    Hoogenhout, J.; Kazem, I.; de Jong, J.

    1983-01-01

    The technical and dosimetric aspects of total lymphoid irradiation (TLI) in the Wistar rat were evaluated as part of a set-up to develop a new model for tumor xenotransplantation. Information obtained from anatomical dissections, radionuclide imaging of the spleen, lymphography and chromolymphography was used to standardize the localization portals cut out in a lead plate. The two portals encompassed the lymphoid tissue above and below the diaphragm. A specially designed masonite phantom was used to measure the dose distribution in the simulated target volumes. Ionization chamber dosimetery, thermoluminescence dosimetry and film densitometry were used for measuring exposure and absorbed dose. Irradiation was performed with 250 kV X rays (HVL 3.1 mm Cu). The dose rate was regulated by adjusting the treatment distance. The dose inhomogeneity measured in the target volumes varied between 80-100%. The side scatter dose to non target tissues under the shielded area between the two portals ranged between 20-30%. The technique and dosimetry of total lymphoid irradiation in Wistar rats are now standardized and validated and pave the way for tumor xenotransplantation experiments.

  15. Comparative effects of neutron irradiation and X irradiation on the embryonic development of the rat

    SciTech Connect

    Solomon, H.M. ); Beckman, D.A.; Buck, S.J.; Brent, R.L. Thomas Jefferson Univ., Philadelphia, PA ); Gorson, R.O. ); Mills, R.E. )

    1994-02-01

    Our aim was to compare the dose-response relationship for the embryotoxic effects of 0.43 MeV neutrons with those of 240 kVp X rays after in utero exposures during early organogenesis in the rat. At 9.5 days after conception, pregnant rats were exposed to 0.025 to 0.35 Gy 0.43 MeV neutrons at a dose rate of 0.04 to 0.07 Gy/h. Comparable biological effects were produced using 0.50 to 2.05 Gy 240 kVp X rays. Neutron irradiation produced a greater proportion of offspring with very low body weight than with malformations when compared to X rays. There were no embryotoxic effects observed at neutron exposures of 0.025, 0.049, 0.079, 0.10, 0.15, and 0.20 Gy or X-ray exposures of 0.50 and 0.96 Gy. Taken together, the results suggest that the mechanisms by which neutron irradiation affects embryonic development may, in part, be both quantitatively and qualitatively different from those by which X irradiation affects development. These results support the generalization that the embryo exhibits a nonlinear response to increasing doses of ionizing radiations during the period of early organogenesis. 25 refs., 3 tabs.

  16. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    SciTech Connect

    Lee, Won Hee; Warrington, Junie P.; Sonntag, William E.; Lee, Yong Woo

    2012-04-01

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  17. Validation of the quantification of histamine in rat brain using the radioenzymatic assay

    SciTech Connect

    Russell, W.L.; Henry, D.P.

    1986-03-01

    Quantification of histamine (Hm) in rat brain is problematic. The authors have evaluated tissue extraction procedures and validated a new Hm radioenzymatic assay for brain. Brain was extracted twice with either 0.1M perchloric acid (PCA), boiling water, or water. Sacrifice by microwave irradiation increased whole brain Hm from 64.4 +/- 16.5 to 450.9 +/- 90.8 ng/g. The validity of the assay was demonstrated by isolating the product formed by the radioenzymatic assay and subjecting it to TLC and autoradiography. The sensitivity of this assay permitted the quantification of Hm in as little as 4.3 ..mu..g of hypothalamus. The authors conclude: 1) The preferred method for sacrifice is decapitation; 2) homogenization in PCA effectively extracts Hm from brain tissue; 3) the radioenzymatic assay is specific for Hm in this tissue.

  18. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    PubMed

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  19. Apparent target size of rat brain benzodiazepine receptor, acetylcholinesterase, and pyruvate kinase is highly influenced by experimental conditions

    SciTech Connect

    Nielsen, M.; Braestrup, C.

    1988-08-25

    Radiation inactivation is a method to determine the apparent target size of molecules. In this report we examined whether radiation inactivation of various enzymes and brain receptors is influenced by the preparation of samples preceding irradiation. The apparent target sizes of endogenous acetylcholinesterase and pyruvate kinase from rat brain and from rabbit muscle and benzodiazepine receptor from rat brain were investigated in some detail. In addition the target sizes of alcohol dehydrogenase (from yeast and horse liver), beta-galactosidase (from Escherichia coli), lactate dehydrogenase (endogenous from rat brain), and 5-HT2 receptors, acetylcholine muscarine receptors, and (/sup 35/S) butyl bicyclophosphorothionate tertiary binding sites from rat brain were determined. The results show that apparent target sizes are highly influenced by the procedure applied for sample preparation before irradiation. The data indicate that irradiation of frozen whole tissue as opposed to lyophilized tissue or frozen tissue homogenates will estimate the smallest and most relevant functional target size of a receptor or an enzyme.

  20. The incidence of second brain tumors related to cranial irradiation.

    PubMed

    Marta, Gustavo Nader; Murphy, Erin; Chao, Samuel; Yu, Jennifer S; Suh, John H

    2015-03-01

    Secondary brain tumor (SBT) is a devastating complication of cranial irradiation (CI). We reviewed the literature to determine the incidence of SBT as related to specific radiation therapy (RT) treatment modalities. The relative risk of radiation-associated SBT after conventional and conformal RT is well established and ranges from 5.65 to 10.9; latent time to develop second tumor ranges from 5.8 to 22.4 years, depending on radiation dose and primary disease. Theories and dosimetric models suggest that intensity-modulated radiation therapy may result in an increased risk of SBT, but clinical evidence is limited. The incidence of stereotactic radiosurgery-related SBT is low. Initial data suggest that no increased risk from proton therapy and dosimetric models predict a lower incidence of SBT compared with photons. In conclusion, the incidence of SBT related to CI is low. Longer follow-up is needed to clarify the impact of intensity-modulated radiation therapy, proton therapy and other developing technologies.

  1. Effects of Xylopia aethiopica (Annonaceae) fruit methanol extract on gamma-radiation-induced oxidative stress in brain of adult male Wistar rats.

    PubMed

    Adaramoye, O A; Popoola, Bosede O; Farombi, E O

    2010-09-01

    Xylopia aethiopica (XA) (Annonaceae) possesses great nutritional and medicinal values. This study was designed to investigate the effects of XA fruit methanol extract on oxidative stress in brain of rats exposed to whole body gamma-radiation (5 Gy). Vitamin C (VC) served as standard antioxidant. Forty-four rats were divided into 4 groups of 11 rats each. One group served as control, two different groups were treated with XA and VC (250 mg/kg), 6 weeks before and 8 weeks after irradiation, and fourth group was only irradiated. Rats were sacrificed 1 and 8 weeks after irradiation. The antioxidant status, viz. Lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione-s-transferase (GST) and glutathione (GSH) were estimated. Results indicate a significant increase (p < 0.05) in levels of brain LPO after irradiation. LPO increased by 90% and 151%, after 1 and 8 weeks of irradiation, respectively. Irradiation caused significant (p < 0.05) decreases in levels of GSH and GST by 61% and 43% after 1 week and, 75% and 73%, respectively, after 8 weeks of exposure. CAT and SOD levels were decreased by 62% and 68%, respectively, after 8 weeks of irradiation. Treatment with XA and VC ameliorated the radiation-induced decreases in antioxidant status of the animals. These suggest that XA could have beneficial effect by inhibiting oxidative damage in brain of exposed rats.

  2. Hepatic regeneration after sublethal partial liver irradiation in cirrhotic rats.

    PubMed

    Gu, Ke; Lai, Song-Tao; Ma, Ning-Yi; Zhao, Jian-Dong; Ren, Zhi-Gang; Wang, Jian; Liu, Jin; Jiang, Guo-Liang

    2011-01-01

    Our previous animal study had demonstrated that partial liver irradiation (IR) could stimulate regeneration in the protected liver, which supported the measurements adopted in radiotherapy planning for hepatocellular carcinoma. The purpose of this present study is to investigate whether cirrhotic liver repopulation could be triggered by partial liver IR. The cirrhosis was induced by thioacetamide (TAA) in rats. After cirrhosis establishment, TAA was withdrawn. In Experiment 1, only right-half liver was irradiated with single doses of 5 Gy, 10 Gy and 15 Gy, respectively. In Experiment 2, right-half liver was irradiated to 15 Gy, and the left-half to 2.5 Gy, 5 Gy and 7.5 Gy, respectively. The regeneration endpoints, including liver index (LI); mitotic index (MI); liver proliferation index (LPI); PCNA-labeling index (PCNA-LI); serum HGF, VEGF, TGF-α and IL-6, were evaluated on 0 day, 30-day, 60-day, 90-day, 120-day and 150-day after IR. Serum and in situ TGF-β1 were also measured. In both experimental groups, the IR injuries were sublethal, inducing no more than 9% animal deaths. Upon TAA withdrawal, hepatic regeneration decelerated in the controls. In Experiment 1 except for LI, all other regeneration parameters were significantly higher than those in controls for both right-half and left-half livers. In Experiment 2 all regeneration parameters were also higher compared with those in controls for both half livers. Serum HGF and VEGF were increased compared with that of controls. Both unirradiated and low dose-irradiated cirrhotic liver were able to regenerate triggered by sublethal partial liver IR and higher doses and IR to both halves liver triggered a more enhanced regeneration.

  3. Antiapoptotic effect of L-carnitine on testicular irradiation in rats.

    PubMed

    Kanter, Mehmet; Topcu-Tarladacalisir, Yeter; Parlar, Sule

    2010-04-01

    We evaluated the effects of L-carnitine on apoptosis of germ cells in the rat testis following irradiation. Male Wistar rats were divided into three groups. Control group received sham irradiation plus physiological saline. Radiotherapy group received scrotal gamma-irradiation of 10 Gy as a single dose plus physiological saline. Radiotherapy + L-carnitine group received scrotal irradiation plus 200 mg/kg intraperitoneally L-carnitine. Twenty-four hours post-irradiation, the rats were sacrificed and testes were harvested. Testicular damage was examined by light and electron microscopy, and germ cell apoptosis was determined by terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate in situ nick end-labeling (TUNEL) technique. Morphologically, examination of irradiated testis revealed presence of disorganization and desquamation of germinal cells and the reduction in sperm count in seminiferous tubule lumen. Under electron microscopy, the morphological signs of apoptosis were frequently detected in spermatogonia. Apoptotic spermatogonia showed the marginal condensation of chromatin onto the nuclear lamina, nucleus and cytoplasm shrinkage and still functioning cell organelles. TUNEL-positive cells were significantly more numerous in irradiated rats than in control rats. L-carnitine treatment significantly attenuated the radiation-induced morphological changes and germ cell apoptosis in the irradiated rat testis. In conclusion, these results suggested that L-carnitine supplementation during the radiotherapy may be beneficial for spermatogenesis following testicular irradiation by decreasing germ cell apoptosis.

  4. ALA-PDT of glioma cell micro-clusters in BD-IX rat brain

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Angell-Petersen, Even; Spetalen, Signe; Carper, Stephen W.; Ziegler, Sarah A.; Hirschberg, Henry

    2006-02-01

    A significant contributory factor to the poor prognosis of patients with glioblastoma multiforme is the inability of conventional treatments to eradicate infiltrating glioma cells. A syngeneic rat brain tumor model is used to investigate the effects of aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) on small clusters of tumor cells sequestered in normal brain. The intrinsic sensitivity of rat glioma cells to PDT was investigated by exposing ALA-incubated cells to a range of radiant exposures and irradiances using 635 nm light. Biodistribution studies were undertaken on tumor-bearing animals in order to determine the tumor selectivity of the photosensitizer following systemic administration (i.p.) of ALA. Effects of ALA-PDT on normal brain and gross tumor were evaluated using histopathology. Effects of PDT on isolated glioma cells in normal brain were investigated by treating animals 48 h after tumor cell implantation: a time when the micro-clusters of cells are protected by an intact blood-brain-barrier (BBB). Rat glioma cells in monolayer are susceptible to ALA-PDT - lower irradiances are more effective than higher ones. Fluorescence microscopy of frozen tissue sections showed that photosensitizer is produced with better than 200:1 tumor-to-normal tissue selectivity following i.p. ALA administration. ALA-PDT resulted in significant damage to both gross tumor and normal brain, however, the treatment failed to prolong survival of animals with newly implanted glioma cells compared to non-treated controls if the drug was delivered either i.p. or directly into the brain. In contrast, animals inoculated with tumor cells pre-incubated in vitro with ALA showed a significant survival advantage in response to PDT.

  5. Hybridizable ribonucleic acid of rat brain

    PubMed Central

    Bondy, S. C.; Roberts, Sidney

    1968-01-01

    1. Cerebral RNA of adult and newborn rats was labelled in vivo by intracervical injection of [5-3H]uridine or [32P]phosphate. Hepatic RNA of similar animals was labelled by intraperitoneal administration of [6-14C]orotic acid. Nuclear and cytoplasmic fractions were isolated and purified by procedures involving extraction with phenol and repeated precipitation with ethanol. 2. The fraction of pulse-labelled RNA from cerebral nuclei that hybridized to homologous DNA exhibited a wide range of turnover values and was heterogeneous in sucrose density gradients. 3. Base composition of the hybridizable RNA was similar to that of the total pulse-labelled material; both were DNA-like. 4. Pulse-labelled cerebral nuclear RNA hybridized to a greater extent than cytoplasmic RNA for at least a week after administration of labelled precursor. This finding suggested that cerebral nuclei contained a hybridizable component that was not transferred to cytoplasm. 5. The rates of decay of the hybridizable fractions of cerebral nuclei and cytoplasm were faster in the newborn animal than in the adult. Presumably a larger proportion of labile messenger RNA molecules was present in the immature brain. 6. Cerebral nuclear and cytoplasmic RNA fractions from newborn or adult rats, labelled either in vivo for periods varying from 4min. to 7 days or in vitro by exposure to [3H]-dimethyl sulphate, uniformly hybridized more effectively than the corresponding hepatic preparation. These data suggested that a larger proportion of RNA synthesis was oriented towards messenger RNA formation in brain than in liver. PMID:5683505

  6. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    SciTech Connect

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  7. Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice.

    PubMed

    Gan, Lu; Wang, Zhen Hua; Zhang, Hong; Zhou, Rong; Sun, Chao; Liu, Yang; Si, Jing; Liu, Yuan Yuan; Wang, Zhen Guo

    2015-02-01

    Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction. Our previous work had proved that a natural antioxidant shikonin possessed protective effect on cerebral ischemic injury. Here we investigated the effects of shikonin on carbon ion beam induced radiation brain injury in mice. Pretreatment with shikonin significantly increased the SOD and CAT activities and the ratio of GSH/GSSG in mouse brain tissues compared with irradiated group (P<0.01), while obviously reduced the MDA and PCO contents and the ROS levels derived from of the brain mitochondria. The shikonin also noticeably improved the spatial memory deficits caused by carbon ion beam irradiation. All results demonstrated that shikonin could improve the irradiated brain injury which might resulted from its modulation effects on the oxidative stress induced by the 12C6+ ion beam.

  8. Royal jelly modulates oxidative stress and tissue injury in gamma irradiated male Wister Albino rats

    PubMed Central

    Azab, Khaled Shaaban; Bashandy, Mohamed; Salem, Mahmoud; Ahmed, Osama; Tawfik, Zaki; Helal, Hamed

    2011-01-01

    Background: Royal jelly is a nutritive secretion produced by the worker bees, rich in proteins, carbohydrates, vitamins and minerals. Aim: The present study was designed to determine the possible protective effects of royal jelly against radiation induced oxidative stress, hematological, biochemical and histological alterations in male Wister albino rats. Materials and Methods: Male Wister albino rats were exposed to a fractionated dose of gamma radiation (2 Gy every 3 days up to 8 Gy total doses). Royal jelly was administrated (g/Kg/day) by gavages 14 days before exposure to the 1st radiation fraction and the treatment was continued for 15 days after the 1st irradiation fraction till the end of the experiment. The rats were sacrificed 3rd, equivalent to 3rd post 2nd irradiation fraction, and equivalent to 3rd day post last irradiation fraction. Results: In the present study, gamma- irradiation induced hematological, biochemical and histological effects in male Wister albino rats. In royal jelly treated irradiated group, there was a noticeable decrease recorded in thiobarbituric reactive substances concentration when compared to γ-irradiated group. Also, the serum nitric oxide concentration was significantly improved. The administration of royal jelly to irradiated rats according to the current experimental design significantly ameliorates the changes induced in serum lipid profile. Moreover, in royal jelly treated irradiated group, there was a noticeable amelioration recorded in all hematological parameters along the three experimental intervals. The microscopic examination of cardiac muscle of royal jelly treated irradiated rats demonstrated structural amelioration, improved nuclei and normal features of capillaries and veins in endomysium when compared to gamma-irradiated rats. Conclusion: It was suggested that the biochemical, hematological and histological amelioration observed in royal jelly (g/Kg/day) treated irradiated rats might be due to the antioxidant

  9. Experimental study on rat NK cell activity improvement by laser acupoint irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Dongxiao; Chen, Xiufeng; Ruan, Buqing; Yang, Feng

    1998-08-01

    To study the improvement of the natural killer (NK) cell activity by semiconductor laser acupoint irradiation, rats were used in this experiment and were injected immunosuppressant in their abdomen. The immunoassay was made after the surface irradiation and inner irradiation at Baihui point by semiconductor laser. The NK cell activity is an important index of immunologic function. The results showed that the NK cell activity after laser acupoint irradiation was enhanced. This enhancement is relatively important in the clinical therapy of tumor.

  10. Brain adaptation to acute hyponatremia in young rats.

    PubMed

    Silver, S M; Schroeder, B M; Bernstein, P; Sterns, R H

    1999-06-01

    Brain swelling after acute hyponatremia in prepubescent rats, in contrast to adults, has recently been associated with an increase in brain sodium and a high mortality that could be prevented by preadministration of testosterone. To reexamine the effect of acute hyponatremia in young brain, we measured brain water and solute content in prepubescent rats after induction of hyponatremia over 4 h with water and arginine vasopressin. An 18% decrease in plasma sodium was associated with a 13% increase in brain water and a decrease in brain sodium and glutamate contents. No animals died. To assess the effect of sex hormones on brain adaptation, prepubescent rats were pretreated with estrogen or testosterone before acute hyponatremia. Brain sodium and potassium contents were significantly reduced in comparison to normonatremia in testosterone-pretreated but not estrogen-pretreated animals. However, there was no difference between estrogen-pretreated and testosterone-pretreated groups in mortality or in brain contents of water, electrolytes, or major organic osmolytes. In conclusion, we found that brain adaptation to acute hyponatremia in prepubescent rats is similar to that observed in adults.

  11. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    SciTech Connect

    Schindler, Matthew K. Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-03-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals.

  12. Aluminium toxicity in the rat liver and brain

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ishikawa, A.; Kobayashi, K.; Ogawa, Y.; Ishii, K.

    1993-04-01

    To investigate the etiology of Alzheimer's disease, we examined the brain and liver tissue uptake of aluminium 5-75 days after aluminium injection into healthy rats. Ten days after the last injection, Al was detected in the brain and the brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Al was also demonstrated in the liver and the liver cell nuclei by PIXE analysis and electron energy loss spectrometry (EELS). The morphological changes of the rat brain examined 75 days after the injection were similar to those which have been reportedly observed in the brain of patients with Alzheimer's disease. These results support the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium in the brain, as well as in the nuclei of brain cells.

  13. 26Al uptake and accumulation in the rat brain

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Nagai, H.; Imamura, M.; Matsuzaki, H.; Hayashi, K.; Masuda, A.; Kumazawa, H.; Ohashi, H.; Kobayashi, K.

    1997-03-01

    To investigate the cause of Alzheimer's disease (senile dementia), 26Al incorporation in the rat brain was studied by accelerator mass spectrometry (AMS). When 26Al was injected into healthy rats, a considerable amount of 26Al entered the brain (cerebrum) through the blood-brain barrier 5 days after a single injection, and the brain 26Al level remained almost constant from 5 to 270 days. On the other hand, the level of 26Al in the blood decreased remarkably 75 days after injection. Approximately 89% of the 26Al taken in by the brain cell nuclei bound to chromatin. This study supports the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium (Al) in the brain, and brain cell nuclei.

  14. Preserving effects of melatonin on the levels of glutathione and malondialdehyde in rats exposed to irradiation.

    PubMed

    Yildirim, O; Comoğlu, S; Yardimci, S; Akmansu, M; Bozkurt, G; Sürücü, S

    2008-03-01

    In this study we investigated whether pretreatment with melatonin was protective against the injury of the central nervous system (CNS) in rats receiving LD(50) whole body irradiation. The wistar rats were randomized into four groups: i) the control group (CG), ii) melatonin-administered group (MG; 1 mg/kg body weight), iii) irradiated group (RG; 6.75 Gy, one dose), and iv) melatonin-administered and irradiated group (MRG). Blood samples were drawn from the rats 24 h after the treatment and plasma glutathione levels were assayed. Plasma glutathione level was significantly higher in RG than CG. The melatonin pretreatment prevented GSH increase induced by irradiation. Lipid peroxidation and glutathione levels of rat cerebral cortex were determined in all groups after 24 h. Cortical malondialdehyde (MDA) was significantly higher in the RG. The melatonin pretreatment prevented cortical MDA increase induced by irradiation. Cortical GSH was significantly lower in RG than the CG. The melatonin pretreatment prevented cortical GSH decrease induced by irradiation. Tissue samples were obtained from cerebral cortex and hypothalamus which also were affected by ionizing irradiation in the CNS and were evaluated with electron microscopy. Histopathological findings showed that LD(50) whole body irradiation resulted in damage of the neuronal cells of CNS. The results obtained from this study demonstrated that pretreatment with melatonin prevented the damage that develops in CNS following irradiation. The beneficial effect of melatonin can be related to protection of the CNS from oxidative injury and preventing the decrease in the level of cortical glutathione.

  15. Transcranial Photoacoustic Measurements of Cold-Injured Brains in Rats

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshinori; Sato, Shunichi; Hasegawa, Makoto; Nawashiro, Hiroshi; Saitoh, Daizoh; Shima, Katsuji; Ashida, Hiroshi; Obara, Minoru

    2005-09-01

    We performed transcranial photoacoustic measurements of cold-injured brains in rats. Before inducing injury, a signal peak was observed at two locations corresponding to the surfaces of the skull and brain, while after injury, a third peak appeared at a location corresponding to the back surface of the skull; the third peak was found to be caused by subdural hematoma. The signal peak for the brain surface shifted to a deeper region with elapse of time after injury, indicating deformation of the brain. These findings suggest that small hemorrhage and morphological change of the brain can be transcranially detected by photoacoustic measurement.

  16. Actin purification from a gel of rat brain extracts.

    PubMed

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  17. Ameliorative effect of septilin, an ayurvedic preparation against gamma-irradiation-induced oxidative stress and tissue injury in rats.

    PubMed

    Mansour, Heba Hosny; Ismael, Naglaa El-Sayed Rifaat; Hafez, Hafez Farouk

    2014-04-01

    Ionizing radiation is known to induce multiple organ dysfunctions directly related to an increase of cellular oxidative stress, due to overproduction of reactive oxygen species (ROS). This study was aimed to investigate the effect of septilin (an ayurvedic poly-herbal formulation containing the principal herbs, namely Commiphora wightii, Trinospora cordifolia, Rubia cardifolia, Emblica officinalis, Saussurea lappa and Glycyrrhiza glabra) against whole body gamma-irradiation-induced oxidative damage in hepatic and brain tissues in rats. Administration of septilin for 5 days (100 mg/kg) prior to radiation resulted in a significant increase in both superoxide dismutase (SOD) activity and total glutathione (GSH) level in hepatic and brain tissues, while serum high-density lipoprotein-cholesterol (HDL) was reduced by gamma-irradiation. Also, septilin resulted in a significant decrease in NO(x), nitric oxide and malondialdehyde (MDA) levels in hepatic and brain tissues and a significant decrease in serum triglycerides, low-density lipoprotein-cholesterol (LDL) and total cholesterol levels and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels and alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT) activities, as well as serum tumor necrosis factor-alpha (TNF-alpha), compared to irradiated group. In conclusion, data obtained from this study indicated that septilin exhibited potential antioxidant activity and showed radioprotective effect against gamma-radiation by preventing oxidative stress and scavenging free radicals.

  18. Wearable 3-D Photoacoustic Tomography for Functional Brain Imaging in Behaving Rats

    PubMed Central

    Tang, Jianbo; Coleman, Jason E.; Dai, Xianjin; Jiang, Huabei

    2016-01-01

    Understanding the relationship between brain function and behavior remains a major challenge in neuroscience. Photoacoustic tomography (PAT) is an emerging technique that allows for noninvasive in vivo brain imaging at micrometer-millisecond spatiotemporal resolution. In this article, a novel, miniaturized 3D wearable PAT (3D-wPAT) technique is described for brain imaging in behaving rats. 3D-wPAT has three layers of fully functional acoustic transducer arrays. Phantom imaging experiments revealed that the in-plane X-Y spatial resolutions were ~200 μm for each acoustic detection layer. The functional imaging capacity of 3D-wPAT was demonstrated by mapping the cerebral oxygen saturation via multi-wavelength irradiation in behaving hyperoxic rats. In addition, we demonstrated that 3D-wPAT could be used for monitoring sensory stimulus-evoked responses in behaving rats by measuring hemodynamic responses in the primary visual cortex during visual stimulation. Together, these results show the potential of 3D-wPAT for brain study in behaving rodents. PMID:27146026

  19. Wearable 3-D Photoacoustic Tomography for Functional Brain Imaging in Behaving Rats.

    PubMed

    Tang, Jianbo; Coleman, Jason E; Dai, Xianjin; Jiang, Huabei

    2016-05-05

    Understanding the relationship between brain function and behavior remains a major challenge in neuroscience. Photoacoustic tomography (PAT) is an emerging technique that allows for noninvasive in vivo brain imaging at micrometer-millisecond spatiotemporal resolution. In this article, a novel, miniaturized 3D wearable PAT (3D-wPAT) technique is described for brain imaging in behaving rats. 3D-wPAT has three layers of fully functional acoustic transducer arrays. Phantom imaging experiments revealed that the in-plane X-Y spatial resolutions were ~200 μm for each acoustic detection layer. The functional imaging capacity of 3D-wPAT was demonstrated by mapping the cerebral oxygen saturation via multi-wavelength irradiation in behaving hyperoxic rats. In addition, we demonstrated that 3D-wPAT could be used for monitoring sensory stimulus-evoked responses in behaving rats by measuring hemodynamic responses in the primary visual cortex during visual stimulation. Together, these results show the potential of 3D-wPAT for brain study in behaving rodents.

  20. Effects of photoradiation therapy on normal rat brain

    SciTech Connect

    Cheng, M.K.; McKean, J.; Boisvert, D.; Tulip, J.; Mielke, B.W.

    1984-12-01

    Laser photoradiation of the brain via an optical fiber positioned 5 mm above a burr hole was performed after the injection of hematoporphyrin derivative (HpD) in 33 normal rats and 6 rats with an intracerebral glioma. Normal rats received HpD, 5 or 10 mg/kg of body weight, followed by laser exposure at various doses or were exposed to a fixed laser dose after the administration of HpD, 2.5 to 20 mg/kg. One control group received neither HpD nor laser energy, and another was exposed to laser energy only. The 6 rats bearing an intracranial 9L glioma were treated with HpD, 5 mg/kg, followed by laser exposure at various high doses. The temperature in the cortex or tumor was measured with a probe during laser exposure. The rats were killed 72 hours after photoradiation, and the extent of necrosis of cerebral tissue was measured microscopically. In the normal rats, the extent of brain damage correlated with increases in the dose of both the laser and the HpD. In all 6 glioma-bearing rats, the high laser doses produced some focal necrosis in the tumors but also damaged adjacent normal brain tissue. The authors conclude that damage to normal brain tissue may be a significant complication of high dose photoradiation therapy for intracranial tumors.

  1. Increased metallothionein content in rat liver induced by x irradiation and exposure to high oxygen tension

    SciTech Connect

    Shiraishi, N.; Aono, K.; Utsumi, K.

    1983-08-01

    X irradiation and exposure to high oxygen tension are known to induce lipid peroxidation. The effects of these stresses on hepatic content of metallothionein, which may be involved in the regulation of zinc and copper metabolism, have been studied. The amount of metallothionein in rat liver was increased 11-fold by a high dose of X irradiation (1000 R). Increased metallothionein content (about 15 times) was also observed in liver of rats exposed to high oxygen tension for 3 days.

  2. Induction of oxidative stress in rat brain by acrylonitrile (ACN).

    PubMed

    Jiang, J; Xu, Y; Klaunig, J E

    1998-12-01

    Chronic treatment with acrylonitrile (ACN) has been shown to produce a dose-related increase in glial cell tumors (astrocytomas) in rats. The mechanism(s) for ACN-induced carcinogenicity remains unclear. While ACN has been reported to induce DNA damage in a number of short-term systems, evidence for a genotoxic mechanism of tumor induction is the brain is not strong. Other toxic mechanisms appear to participate in the induction of tumor or induce the astrocytomas solely. In particular, nongenotoxic mechanisms of carcinogen induction have been implicated in this ACN-induced carcinogenic effect in the rat brain. One major pathway of ACN metabolism is through glutathione (GSH) conjugation. Extensive utilization and depletion of GSH, an important intracellular antioxidant, by ACN may lead to cellular oxidative stress. The present study examined the ability of ACN to induce oxidative stress in male Sprague-Dawley rats. Rats were administered ACN at concentrations of 0, 5, 10, 100, or 200 ppm in the drinking water and sampled after 14, 28, or 90 days of continuous treatment. Oxidative DNA damage indicated by the presence of 8-hydroxy-2'-deoxyguanosine (OH8dG) and lipid peroxidation indicated by the presence of malondialdehyde (MDA), a lipid peroxidation product, in rat brains and livers were examined. The levels of reactive oxygen species (ROS) were also determined in different rat tissues. Both the levels of nonenzymatic antioxidants (GSH, vitamin E) and the activities of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase) in rat brains and livers were measured. Increased levels of OH8dG, MDA, and ROS were found in the brains of ACN-treated rats. Decreased levels of GSH and activities of catalase and SOD were also observed in the brains of ACN-treated rats compared to the control group. Interestingly, there were no changes of these indicators of oxidative stress in the livers of ACN-treated rats. Rat liver is not a target for ACN

  3. [Sequencing of low-molecular-weight DNA in blood plasma of irradiated rats].

    PubMed

    Vasilieva, I N; Bespalov, V G; Zinkin, V N; Podgornaya, O I

    2015-01-01

    Extracellular low-molecular-weight DNA in blood of irradiated rats was sequenced for the first time. The screening of sequences in the DDBJ database displayed homology of various parts of the rodent genome. Sequences of low-molecular-weight DNA in rat's plasma are enriched with G/C pairs and long interspersed elements relative to rat genome. DNA sequences in blood of rats irradiated at the doses of 8 and 100 Gy have marked distinctions. Data of sequencing of extracellular DNA from normal humans and with pathology were analyzed. DNA sequences of irradiated rats differ from the human ones by a wealth of long interspersed elements. This new knowledge lays the foundation for development of minimally invasive technologies of diagnosing the probability of pathology and controlling the adaptive resources of people in extreme environments.

  4. The changes in pharmacokinetics and conjugation of chloramphenicol in irradiated rats.

    PubMed

    Stoklasová, A; Krízala, J; Ledvina, M

    1978-11-01

    In the serum and the liver of rats levels of chloramphenicol (CAP) following its i.v. administration (200 mg/kg) in the control groups and in the rats irradiated with whole-body air exposure to 500 R were determined with spectrophotometric methods. The CAP-levels in the serum increased in the group of rats 3 days after irradiation, but only during the 1st hour. At later time intervals the values were lower than in the controls. This decrease at the 60th min is striking even in the groups 6 and 9 days after exposure. Free CAP in the liver of rats irradiated 6 and 9 days before was lower at interval 30 min after CAP-administration, but the group irradiated 9 days before was unaltered. However, 120 min after CAP-administration the values of free CAP decreased at all intervals investigated following the irradiation. The levels of conjugated CAP in the liver of the rats 3 and 6 days after exposure were lower than in controls in both intervals after drug administration; but in rats 9 days after irradiation they increased. Our results indicate that the kinetics of CAP is altered and corresponding changes in its conjugation are effected under the condition of acute radiation syndrome.

  5. Microwave irradiation of human brain tissue: production of microscopic slides within one day.

    PubMed Central

    Boon, M E; Marani, E; Adriolo, P J; Steffelaar, J W; Bots, G T; Kok, L P

    1988-01-01

    A three step method using microwave irradiation enabled microscopic slides of human brain tissue to be obtained within one working day: steps 1 and 2 hardened and solidified brain tissue; step 3 completed formalin fixation. The efficacy and precision of the method was compared with slides of conventionally processed brain tissue that had been fixed in formalin for six weeks. The microscopic quality of the sections was excellent with good presentation of brain tissue and equalled that of conventionally processed slides. Images Fig 1 Fig 2 Fig 3 PMID:3290268

  6. Transcranial measurement of diffuse light reflectance from brain edema in rats: effect of change in the blood flow

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshinori; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Saitoh, Daizoh; Shima, Katsuji; Okada, Yoshiaki; Ashida, Hiroshi; Obara, Minoru

    2005-04-01

    We assumed that edema causes a decrease in the scattering coefficient of brain tissue and hence a decrease in the intensity of diffuse reflectance from the brain. On the basis of this assumption, we attempted to transcranially detect a formation of brain edema by measuring diffuse light reflectance. In rats, edema was induced by making a cold injury in the brain. The skull was irradiated with 633-nm and 532-nm laser light delivered through an optical fiber, and the diffuse light reflectance from the brain was collected with another optical fiber. We observed that reflectance intensities were significantly decreased around the cold injury both at 633 nm and 532 nm, suggesting that scattering coefficient of brain tissue was reduced due to a formation of edema in this area. In the injury, reflectance intensity was increased at 532 nm, indicating that cerebral blood volume was decreased in this region.

  7. Differentiation in boron distribution in adult male and female rats' normal brain: a BNCT approach.

    PubMed

    Goodarzi, Samereh; Pazirandeh, Ali; Jameie, Seyed Behnamedin; Khojasteh, Nasrin Baghban

    2012-06-01

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection.

  8. Transport of 3-hydroxybutyrate by cultured rat brain astrocytes

    SciTech Connect

    McKenna, M.C.; Tildon, J.T.; Stevenson, J.H.; Couto, R.; Caprio, F.J. )

    1990-02-26

    Studies by a number of investigators have shown that 3-hydroxybutyrate is a preferred energy substrate for brain during early development. Since recent studies by the authors group suggest that the utilization of oxidizable substrates by brain may be regulated in part by transport across the plasma membrane, the authors investigated the transport of ({sup 3}H) D- and L-3-hydroxybutyrate and 3-hydroxy-(3-{sup 14}C) butyrate by primary cultures of rat brain astrocytes. The data is consistent with the hypothesis that 3-hydroxybutyrate is taken up into cultured rat brain astrocytes by both diffusion and a carrier mediated transport system, and further support the concept that transport at the cellular level contributes to the regulation of substrate utilization by brain cells.

  9. Evidence of Zinc in Affording Protection Against X-Ray-Induced Brain Injury in Rats.

    PubMed

    Sharma, Priyanka; Singla, Neha; Dhawan, D K

    2017-03-06

    In the present world, X-rays have been regarded as one of the most efficient tools in medicine, industry and research. On the contrary, extensive human exposure to these rays is responsible for causing detrimental effects on physiological system. The aim of the present study was to investigate the role of zinc (Zn), if any, in mitigating the adverse effects induced by fractionated X-irradiation on rat brain. Female Sprague-Dawley rats weighing 170-200 g were divided into four different groups viz.: (a) normal control, (b) X-irradiated (21Gy), (c) zinc treated (227 mg/L in drinking water) and (d) X-irradiated + zinc treated. The skulls of animals belonging to groups (b) and (d) were exposed to X-rays in 30 fractions. Each fraction delivered a radiation dose of 70 rads, and rats were exposed to two fractions every day for 15 days, consecutively. X-ray treatment resulted in significant alterations in the neurobehavior, neurotransmitter levels and neuro-histoarchitecture of rats, whereas zinc co-treatment with X-rays resulted in significant improvement in these parameters. X-ray exposure also caused a significant increase in the levels of lipid peroxidation as well as activities of catalase and superoxide dismutase, which however were decreased upon simultaneous Zn treatment. On the contrary, X-ray treatment down-regulated the glutathione system, which were found to be up-regulated by zinc co-treatment. Further, protein expressions of p53 and NF-ҚB were found to be significantly elevated after X-irradiation, which were reversed following Zn supplementation. Hence, Zn seems to be an effective agent in mitigating the detrimental effects caused by exposure to X-rays.

  10. Therapeutic irradiation and brain injury. [/sup 60/Co, x-rays

    SciTech Connect

    Sheline, G.E.; Wara, W.M.; Smith, V.

    1980-09-01

    This is a review and reanalysis of the literature on adverse effects of therapeutic irradiation on the brain. Reactions have been grouped and considered according to time of appearance. The emphasis of the analysis is on delayed reactions, especially those that occur from a few months to several years after irradiation. All dose specifications were converted into equivalent megavoltage rads. The data were analyzed in terms of total dose, overall treatment time and number of treatment fractions. Also discussed were acute radiation reactions, early delayed radiation reactions, somnolence and leukoencephalopathy post-irradiation/chemotherapy and combined effects of radiation and chemotherapy.

  11. Non-signalling energy use in the developing rat brain

    PubMed Central

    Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N

    2016-01-01

    Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain. PMID:27170699

  12. Non-signalling energy use in the developing rat brain.

    PubMed

    Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N; Attwell, David

    2017-03-01

    Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain.

  13. Effect of carnosine on rats under experimental brain ischemia.

    PubMed

    Gallant, S; Kukley, M; Stvolinsky, S; Bulygina, E; Boldyrev, A

    2000-06-01

    The effect of dietary carnosine on the behavioral and biochemical characteristics of rats under experimental ischemia was studied. Carnosine was shown to improve the animals orientation and learning in "Open Field" and "T-Maze" tests, and this effect was accompanied with an increase in glutamate binding to N-methyl-D-aspartate (NMDA) receptors in brain synaptosomes. Long-term brain ischemia induced by both sides' occlusion of common carotid arteries resulted in 55% mortality of experimental rats, and those who survived were characterized by partial suppression of orientation in T-maze. In the group of rats treated with carnosine, mortality after ischemic attack was decreased (from 55% to 17%) and most of the learning parameters were kept at the pre-ischemic level. Monoamine oxidase B (MAO B) activity in brain of the carnosine treated rats was not changed by ischemia significantly (compared to that of ischemic untreated rats) but NMDA binding to brain synaptosomal membranes being increased by ischemic attack was significantly suppressed and reached the level characteristic of normal brain. The suggestion was made that carnosine possesses a dual effect on NMDA receptors resulting in increase in their amount after long-term treatment but decrease the capacity to bind NMDA after ischemic attack.

  14. Induction of acute brain injury in mice by irradiation with high-LET charged particles

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Hong

    The present study was performed to evaluate the induction of acute brain injury in mice after 235 Mev/u carbon ion irradiation. In our study, young outbred Kunming mice were divided into four treatment groups according to the penetration depth of carbon ions. Animals were irradiated with a sublethal dose of carbon ion beams prior to the Bragg curve. An experiment was performed to evaluate the acute alterations in histology, DNA double-strand breaks (DNA DSBs) as well as p53and Bax expression in the brain 96 h post-irradiation. The results demonstrated that various histopathological changes, a significant number of DNA DSBs and elevated p53 and Bax protein expression were induced in the brain following exposure to carbon ions. This was particularly true for mice irradiated with ions having a 9.1 cm-pentration depth, indicating that carbon ions can led to deleterious lesions in the brain of young animals within 96 h. Moreover, there was a remarkable increase in DNA DSBs and in the severity of histopathological changes as the penetration depths of ions increased, which may be associated with the complex track structure of heavy ions. These data reveal that carbon ions can promote serious neuropathological degeneration in the cerebral cortex of young mice. Given that damaged neurons cannot regenerate, these findings warrant further investigation of the adverse effects of the space radiation and the passage of a therapeutic heavy ion beam in the plateau region of the Bragg curve through healthy brain tissue.

  15. SEROTONIN BINDING TO PREPARATIONS FROM RAT BRAIN,

    DTIC Science & Technology

    BRAIN , SEROTONIN, SEROTONIN, OXIDOREDUCTASES, LYSERGIC ACIDS, RESERPINE, CHLORPROMAZINE, ACETYLCHOLINE, FATTY ACIDS, NOREPINEPHRINE, LEARNING, PERMEABILITY, MITOCHONDRIA, MORPHOLOGY(BIOLOGY), DRUGS, PHYSIOLOGY.

  16. Enhanced heat shock protein 25 immunoreactivity in cranial nerve motoneurons and their related fiber tracts in rats prenatally-exposed to X-irradiation.

    PubMed

    Sawada, Kazuhiko; Saito, Shigeyoshi; Horiuchi-Hirose, Miwa; Murase, Kenya

    2014-05-01

    Alterations in histoarchitecture of the brainstem were examined immunohistochemically in 4-week-old rats with a single whole body X-irradiation at a dose of 0.5, 1.0, or 1.5 Gy on embryonic day (ED) 15 using anti-heat shock protein 25 (HSP25). HSP25 immunostaining was seen in the neuronal perikarya of cranial nerve motoneurons, that is, the motor and mesencephalic nuclei of the trigeminal nerve, facial nucleus, abducens nucleus and accessory facial nucleus in the pons, and the ambiguous nucleus, dorsal nucleus of vagus nerve and hypoglossus nucleus in the medulla oblongata of intact controls. In 0.5 to 1.5 Gy-irradiated rats, HSP25 immunostaining in those neurons was more intense than in controls, while the most intense immunostaining was marked in 1.5 Gy-irradiated rats. HSP25 immunostaining was also apparent in the spinal tract of the trigeminal nerve and facial nerve tracts in 0.5 to 1.5 Gy-irradiated rats, but was faint in controls. Interestingly, HSP25 immunostaining was aberrantly enhanced in dendritic arbors in the magnocellular region of medial vestibular nucleus of 0.5-1.5 Gy-irradiated rats. Those arbors were identified as excitatory secondary vestibulo-ocular neurons by double immunofluorescence for HSP25 and SMI-32. The results suggest an increase of HSP25 expression in cranial nerve motoneurons and their related fiber tracts from prenatal exposure to ionizing irradiation. This may be an adaptive response to chronic hypoxia due to malformed brain arteries caused by prenatal ionizing irradiation.

  17. Responses to Selection for Body Weight in Descendants of X-Irradiated Rats

    PubMed Central

    Gianola, Daniel; Chapman, A. B.; Rutledge, J. J.

    1979-01-01

    The effectiveness of selection for high and low body weight at six weeks of age was studied in descendants of X-irradiated (R) and nonirradiated (C) inbred rats. There were two replicates of each of the direction of selection-irradiation treatments. In C lines, there were no consistent responses to selection, probably due to a low level of genetic variability. In R rats, selection was effective only for decreased body weight. The results of this experiment do not suggest the use of irradiation combined with selection as a means of enhancing responses to selection in animals. PMID:456888

  18. [Radioprotective effect of drinking sulfate mineral water on spermatogenesis in offspring of irradiated male rats].

    PubMed

    Korolev, Iu N; Geniatulina, M S; Nikulina, L A; Kurilo, L F

    2003-01-01

    Histological and electron-microscopic studies of a radioprotective action of drinking sulphate mineral water (SMW) on spermatogenesis of irradiated male rats' progeny have found that SMW used before radiation (2 Gy) and 10 days after it is able to reduce postradiation sequelae in the progeny (2-5 month and 1.5 year old rats) testes.

  19. Radiation induces progenitor cell death, microglia activation, and blood-brain barrier damage in the juvenile rat cerebellum

    PubMed Central

    Zhou, Kai; Boström, Martina; Ek, C. Joakim; Li, Tao; Xie, Cuicui; Xu, Yiran; Sun, Yanyan; Blomgren, Klas; Zhu, Changlian

    2017-01-01

    Posterior fossa tumors are the most common childhood intracranial tumors, and radiotherapy is one of the most effective treatments. However, irradiation induces long-term adverse effects that can have significant negative impacts on the patient’s quality of life. The purpose of this study was to characterize irradiation-induced cellular and molecular changes in the cerebellum. We found that irradiation-induced cell death occurred mainly in the external germinal layer (EGL) of the juvenile rat cerebellum. The number of proliferating cells in the EGL decreased, and 82.9% of them died within 24 h after irradiation. Furthermore, irradiation induced oxidative stress, microglia accumulation, and inflammation in the cerebellum. Interestingly, blood-brain barrier damage and blood flow reduction was considerably more pronounced in the cerebellum compared to other brain regions. The cerebellar volume decreased by 39% and the migration of proliferating cells to the internal granule layer decreased by 87.5% at 16 weeks after irradiation. In the light of recent studies demonstrating that the cerebellum is important not only for motor functions, but also for cognition, and since treatment of posterior fossa tumors in children typically results in debilitating cognitive deficits, this differential susceptibility of the cerebellum to irradiation should be taken into consideration for future protective strategies. PMID:28382975

  20. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats.

    PubMed

    Tian, Runfa; Hou, Zonggang; Hao, Shuyu; Wu, Weichuan; Mao, Xiang; Tao, Xiaogang; Lu, Te; Liu, Baiyun

    2016-04-15

    Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients.

  1. Proinflammatory cytokines in injured rat brain following perinatal asphyxia.

    PubMed

    Maślińska, Danuta; Laure-Kamionowska, Milena; Kaliszek, Agnieszka; Makarewicz, Dorota

    2002-01-01

    In contrast to astrogliosis, which is common to injuries of the adult CNS, in the developing brain this process is minimal. Reasons postulated for this include the relative immaturity of the immune system and the consequent insufficient production of cytokines to evoke astrogliosis. To explore this hypothesis, the study was undertaken to detect the presence of some proinflammatory cytokines in the injured rat brain following perinatal asphyxia (ischaemia/hypoxia). The localisation of TNF-alpha, IL-15, IL-17 and IL-17 receptors was visualised by means of immunohistochemistry. In numerous neurones of the rat brain, the IL-17 appeared to be constitutively expressed. In the early period of inflammation the IL-15 was produced mainly by the blood cells penetrating the injured brain but later it was synthesised also by reactive astrocytes surrounding brain cysts and forming dense astrogliosis around necrotic brain regions. The direct effect on astrogliosis of other estimated cytokines seems to be negligible. All the results lead to the conclusion that from all cytokines identified in the injured immature rat brain the IL-15 plays the most important role during inflammatory response and participates in the gliosis of reactive astrocytes.

  2. Thermal imaging of brain tumors in a rat glioma model

    NASA Astrophysics Data System (ADS)

    Papaioannou, Thanassis; Thompson, Reid C.; Kateb, Babak; Sorokoumov, Oleg; Grundfest, Warren S.; Black, Keith L.

    2002-05-01

    We have explored the capability of thermal imaging for the detection of brain tumors in a rat glioma mode. Fourteen Wistar rats were injected stereotactically with 100,000 C6 glioma cells. Approximately one and two weeks post implantation, the rats underwent bilateral craniotomy and the exposed brain surface was imaged with a short wave thermal camera. Thermal images were obtained at both low (approximately 28.7 degree(s)C) and high (approximately 38 degree(s)C) core temperatures. Temperature gradients between the tumor site and the contralateral normal brain were calculated. Overall, the tumors appeared cooler than normal brain, for both high and low core temperatures. Average temperature difference between tumor and normal brain were maximal in more advanced tumors (two weeks) and at higher core temperatures. At one week (N equals 6), the average temperature gradient between tumor and normal sites was 0.1 degree(s)C and 0.2 degree(s)C at low and high core temperatures respectively (P(greater than)0.05). At two weeks (N equals 8), the average temperature gradient was 0.3 degree(s)C and 0.7 degree(s)C at low and high core temperatures respectively (P<0.05). We conclude that thermal imaging can detect temperature differences between tumor and normal brain tissue in this model, particularly in more advanced tumors. Thermal imaging may provide a novel means to identify brain tumors intraoperatively.

  3. Low-level laser irradiation promotes the recovery of atrophied gastrocnemius skeletal muscle in rats.

    PubMed

    Nakano, Jiro; Kataoka, Hideki; Sakamoto, Jyunya; Origuchi, Tomoki; Okita, Minoru; Yoshimura, Toshiro

    2009-09-01

    Low-level laser (LLL) irradiation promotes proliferation of muscle satellite cells, angiogenesis and expression of growth factors. Satellite cells, angiogenesis and growth factors play important roles in the regeneration of muscle. The objective of this study was to examine the effect of LLL irradiation on rat gastrocnemius muscle recovering from disuse muscle atrophy. Eight-week-old rats were subjected to hindlimb suspension for 2 weeks, after which they were released and recovered. During the recovery period, rats underwent daily LLL irradiation (Ga-Al-As laser; 830 nm; 60 mW; total, 180 s) to the right gastrocnemius muscle through the skin. The untreated left gastrocnemius muscle served as the control. In conjunction with LLL irradiation, 5-bromo-2-deoxyuridine (BrdU) was injected subcutaneously to label the nuclei of proliferating cells. After 2 weeks, myofibre diameters of irradiated muscle increased in comparison with those of untreated muscle, but did not recover back to normal levels. Additionally, in the superficial region of the irradiated muscle, the number of capillaries and fibroblast growth factor levels exhibited significant elevation relative to those of untreated muscle. In the deep region of irradiated muscle, BrdU-positive nuclei of satellite cells and/or myofibres increased significantly relative to those of the untreated muscle. The results of this study suggest that LLL irradiation can promote recovery from disuse muscle atrophy in association with proliferation of satellite cells and angiogenesis.

  4. In vivo pink-beam imaging and fast alignment procedure for rat brain lesion microbeam radiation therapy

    PubMed Central

    Serduc, Raphaël; Berruyer, Gilles; Brochard, Thierry; Renier, Michel; Nemoz, Christian

    2010-01-01

    A fast 50 µm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy. In vivo imaging was performed using the pink beam (35–60 keV) produced by the ID17 wiggler at the ESRF opened at 120 mm and filtered. A graphical user interface has been developed in order to define the irradiation field size and to position the target with respect to the skull structures observed in X-ray images. The method proposed here allows tremendous time saving by skipping the swap from white beam to monochromatic beam and vice versa. To validate the concept, the somatosensory cortex or thalamus of GAERS rats were irradiated under several ports using this alignment procedure. The magnetic resonance images acquired after contrast agent injection showed that the irradiations were selectively performed in these two expected brain regions. Image-guided microbeam irradiations have therefore been realised for the first time ever, and, thanks to this new development, the ID17 biomedical beamline provides a major tool allowing brain radiosurgery trials on animal patients. PMID:20400830

  5. Mechanical properties of UV irradiated rat tail tendon (RTT) collagen.

    PubMed

    Sionkowska, Alina; Wess, Tim

    2004-04-01

    The mechanical properties of RTT collagen tendon before and after UV irradiation have been investigated by mechanical testing (Instron). Air-dried tendon were submitted to treatment with UV irradiation (wavelength 254 nm) for different time intervals. The changes in such mechanical properties as breaking strength and percentage elongation have been investigated. The results have shown, that the mechanical properties of the tendon were greatly affected by time of UV irradiation. Ultimate tensile strength and ultimate percentage elongation decreased after UV irradiation of the tendon. Increasing UV irradiation leads to a decrease in Young's modulus of the tendon.

  6. Separate effects of irradiation and of graft-versus-host reaction on rat mucosal mast cells.

    PubMed Central

    Cummins, A G; Munro, G H; Huntley, J F; Miller, H R; Ferguson, A

    1989-01-01

    T cell mediated immune responses in the gut can produce enteropathy and malabsorption. We have investigated the relevance of mucosal mast cells (MMC) to the mechanisms of this enteropathy by using graft-versus-host reaction (GvHR) in the rat as a model of mucosal delayed type hypersensitivity. Measurements of mucosal architecture, intraepithelial lymphocytes (IEL) and MMC counts were performed in control and experimental rats, and release of rat mast cell protease II (RMCPII) into the bloodstream was used as an index of MMC activation. In unirradiated rats, jejunal MMC count was increased on day 14 of the GvHR (mean 272/mm2 v 182 in controls, p less than 0.01), as was serum RMCPII (p less than 0.01). Irradiated rats (4.5 Gy, reconstituted with isogeneic spleen cells) had low counts of IEL and crypt hyperplasia seven to 14 days after irradiation. Irradiated rats with GvHR (induced by ip injection of parental strain spleen cells) and studied on days 7, 10 and 14, had significant enteropathy with longer crypts and higher CCPR than matched irradiated animals (p less than 0.05 on day 14 when compared with irradiation alone). Intraepithelial lymphocytes counts, however, reflected only the effect of radiation. Irradiation, with or without GvHR, led to the virtual disappearance of jejunal MMC, undetectable jejunal RMCPII and very low levels of RMCPII in serum (all p less than 0.01 when compared with unirradiated controls). These experiments show that there is a modest expansion in jejunal MMC in unirradiated rats with semiallogeneic GvHR, whereas irradiation, alone or associated with GvHR, profoundly depletes MMC for at least two weeks. The enteropathy of GvHR can evolve in the virtual absence of MMC. PMID:2707634

  7. Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts

    SciTech Connect

    Prokic, Vesna; Wiedenmann, Nicole; Fels, Franziska; Schmucker, Marianne; Nieder, Carsten; Grosu, Anca-Ligia

    2013-01-01

    Purpose: To develop a new treatment planning strategy in patients with multiple brain metastases. The goal was to perform whole brain irradiation (WBI) with hippocampal sparing and dose escalation on multiple brain metastases. Two treatment concepts were investigated: simultaneously integrated boost (SIB) and WBI followed by stereotactic fractionated radiation therapy sequential concept (SC). Methods and Materials: Treatment plans for both concepts were calculated for 10 patients with 2-8 brain metastases using volumetric modulated arc therapy. In the SIB concept, the prescribed dose was 30 Gy in 12 fractions to the whole brain and 51 Gy in 12 fractions to individual brain metastases. In the SC concept, the prescription was 30 Gy in 12 fractions to the whole brain followed by 18 Gy in 2 fractions to brain metastases. All plans were optimized for dose coverage of whole brain and lesions, simultaneously minimizing dose to the hippocampus. The treatment plans were evaluated on target coverage, homogeneity, and minimal dose to the hippocampus and organs at risk. Results: The SIB concept enabled more successful sparing of the hippocampus; the mean dose to the hippocampus was 7.55 {+-} 0.62 Gy and 6.29 {+-} 0.62 Gy, respectively, when 5-mm and 10-mm avoidance regions around the hippocampus were used, normalized to 2-Gy fractions. In the SC concept, the mean dose to hippocampus was 9.8 {+-} 1.75 Gy. The mean dose to the whole brain (excluding metastases) was 33.2 {+-} 0.7 Gy and 32.7 {+-} 0.96 Gy, respectively, in the SIB concept, for 5-mm and 10-mm hippocampus avoidance regions, and 37.23 {+-} 1.42 Gy in SC. Conclusions: Both concepts, SIB and SC, were able to achieve adequate whole brain coverage and radiosurgery-equivalent dose distributions to individual brain metastases. The SIB technique achieved better sparing of the hippocampus, especially when a10-mm hippocampal avoidance region was used.

  8. Hydrophilic solute transport across the rat blood-brain barrier

    SciTech Connect

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.

  9. Laser irradiation affects enzymatic antioxidant system of streptozotocin-induced diabetic rats.

    PubMed

    Ibuki, Flavia Kazue; Simões, Alyne; Nicolau, José; Nogueira, Fernando Neves

    2013-05-01

    The aim of the present study was to analyze the effect of low-power laser irradiation in the antioxidant enzymatic system of submandibular (SMG) and parotid (PG) salivary glands of streptozotocin-induced diabetic rats. The animals were randomly divided into six groups: three diabetic groups (D0, D5, and D20) and three non-diabetic groups (C0, C5, and C20), according to laser dose received (0, 5, and 20 J/cm(2), respectively). Areas of approximately 1 cm(2) were demarcated in the salivary glands (each parotid and both submandibular glands) and after irradiated according to Simões et.al. (Lasers Med Sci 24:202-208, 2009). A diode laser (660 nm/100 mW) was used, with laser beam spot of 0.0177 cm(2). The group treated with 5 J/cm(2) laser dose was subjected to irradiation for 1 min and 4 s (total irradiation time) and the group treated with 20 J/cm(2) laser dose was subjected to irradiation for 4 min and 16 s. Twenty-four hours after irradiation the animals were euthanized and the salivary glands were removed for biochemical analysis. The total antioxidant values (TA), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase enzymes were determined. SOD and CAT activities, as well as TA were higher in SMG of irradiated diabetic rats. However, in SMG of non-diabetic rats, laser irradiation decreased TA values and led to an increase in the CAT activity. In addition, there was a decrease in the activity of CAT in PG of diabetic and non-diabetic animals after laser irradiation. According to the results of the present study, low-power laser irradiation can affect the enzymatic antioxidant system of salivary glands of streptozotocin-induced diabetic rats.

  10. Developmental disturbance of rat cerebral cortex following prenatal low-dose gamma-irradiation: a quantitative study

    SciTech Connect

    Fukui, Y.; Hoshino, K.; Hayasaka, I.; Inouye, M.; Kameyama, Y. )

    1991-06-01

    Pregnant rats were exposed to a single whole-body gamma-irradiation on Day 15 of gestation at a dose of 0.27, 0.48, 1.00, or 1.46 Gy. They were allowed to give birth and the offspring were killed at 6 or 12 weeks of age for microscopic and electron microscopic examinations of the cerebrum. Their body weight, brain weight, cortical thickness, and numerical densities of whole cells and synapses in somatosensory cortex were examined. Growth of the dendritic arborization of layer V pyramidal cells was also examined quantitatively with Golgi-Cox specimens. A significant dose-related reduction in brain weight was found in all irradiated groups. Neither gross malformation nor abnormality of cortical architecture was observed in the groups exposed to 0.27 Gy. A significant change was found in thickness of cortex in the groups exposed to 0.48 Gy or more. Cell packing density increased significantly in the group exposed to 1.00 Gy. Significant reduction in the number of intersections of dendrites with the zonal boundaries were found in the groups exposed to 0.27 Gy or more. There was no difference in the numerical density of synapses in layer I between the control and irradiated groups. These results suggested that doses as low as 0.27 Gy could cause a morphologically discernible change in the mammalian cerebrum.

  11. The AT{sub 1} Receptor Antagonist, L-158,809, Prevents or Ameliorates Fractionated Whole-Brain Irradiation-Induced Cognitive Impairment

    SciTech Connect

    Robbins, Mike E. Payne, Valerie B.S.; Tommasi, Ellen B.S.; Diz, Debra I.; Hsu, Fang-Chi; Brown, William R.; Wheeler, Kenneth T.; Olson, John; Zhao Weiling

    2009-02-01

    Purpose: We hypothesized that administration of the angiotensin type 1 (AT1) receptor antagonist, L-158,809, to young adult male rats would prevent or ameliorate fractionated whole-brain irradiation (WBI)-induced cognitive impairment. Materials and Methods: Groups of 80 young adult male Fischer 344 x Brown Norway (F344xBN) rats, 12-14 weeks old, received either: (1) fractionated WBI; 40 Gy of {gamma} rays in 4 weeks, 2 fractions/week, (2) sham-irradiation; (3) WBI plus L-158,809 (20 mg/L drinking water) starting 3 days prior, during, and for 14, 28, or 54 weeks postirradiation; and (4) sham-irradiation plus L-158,809 for 14, 28, or 54 weeks postirradiation. An additional group of rats (n = 20) received L-158,809 before, during, and for 5 weeks postirradiation, after which they received normal drinking water up to 28 weeks postirradiation. Results: Administration of L-158,809 before, during, and for 28 or 54 weeks after fractionated WBI prevented or ameliorated the radiation-induced cognitive impairment observed 26 and 52 weeks postirradiation. Moreover, giving L-158,809 before, during, and for only 5 weeks postirradiation ameliorated the significant cognitive impairment observed 26 weeks postirradiation. These radiation-induced cognitive impairments occurred without any changes in brain metabolites or gross histologic changes assessed at 28 and 54 weeks postirradiation, respectively. Conclusions: Administering L-158,809 before, during, and after fractionated WBI can prevent or ameliorate the chronic, progressive, cognitive impairment observed in rats at 26 and 52 weeks postirradiation. These findings offer the promise of improving the quality of life for brain tumor patients.

  12. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat.

    PubMed

    Feng, Yangzheng; Paul, Ian A; LeBlanc, Michael H

    2006-03-31

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 +/- 3.6% in vehicle pups (n = 28) to 11.9 +/- 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2alpha measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 +/- 7 pg/g in the shams (n = 6), 175 +/- 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 +/- 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity.

  13. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat

    PubMed Central

    Feng, Yangzheng; Paul, Ian A.; LeBlanc, Michael H.

    2011-01-01

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 ± 3.6% in vehicle pups (n = 28) to 11.9 ± 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2α measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 ± 7 pg/g in the shams (n = 6), 175 ± 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 ± 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity. PMID:16533659

  14. Isatin, regional distribution in rat brain and tissues.

    PubMed

    Watkins, P; Clow, A; Glover, V; Halket, J; Przyborowska, A; Sandler, M

    1990-01-01

    Isatin has recently been identified in rat tissues and normal human urine, where it forms the major proportion of the endogenous monoamine oxidase inhibitor, tribulin. In this paper, we show that isatin, measured by gas chromatography/mass spectrometry, has a distinct regional distribution in rat tissues, with highest concentrations in seminal vesicles (1.6 ?g/g) and vas deferens (3.4 ?g/g). There was also a discontinuous distribution within rat brain, concentrations being highest in the hippocampus (0.13 ?g/g).

  15. Irradiated human chondrocytes expressing bone morphogenetic protein 2 promote healing of osteoporotic bone fracture in rats.

    PubMed

    Yi, Youngsuk; Choi, Kyoung Baek; Lim, Chae-Lyul; Hyun, Jong-Pil; Lee, Hyeon-Youl; Lee, Kun Bok; Yun, Lillian; Ayverdi, Asli; Hwang, Sally; Yip, Vivian; Noh, Moon Jong; Lee, Kwan Hee

    2009-10-01

    Bone morphogenetic protein 2 (BMP2) was selected as a transgene to regenerate osteoporotic bone defects after several BMPs were tested using a bone formation study in nude mice. Human chondrocytes were transduced with a BMP2-containing retroviral vector, and single clones were selected. The cells were characterized over numerous passages for growth and BMP2 expression. The single clones were irradiated and tested for viability. BMP2 expression lasted for 3 weeks before dying off completely after approximately 1 month. Irradiated and non-irradiated transduced chondrocytes successfully healed fractures in osteoporotic rats induced by ovariectomy. The osteoinducing effect of irradiated cells was better than that of their non-irradiated counterparts or a chondrocytes-only control. This study showed that delivering BMP2 from the transduced and irradiated chondrocytes could be an effective and safe method of repairing osteoporotic bone fractures.

  16. Thermal denaturation of UV-irradiated wet rat tail tendon collagen.

    PubMed

    Sionkowska, Alina

    2005-04-01

    The thermal helix-coil transition of UV irradiated collagen in rat tail tendon has been investigated by differential scanning calorimetry. During UVB irradiation the tendons were immersed in water to keep the collagen fibers in a fully hydrated condition at all times. UV irradiation induced changes in collagen which caused both stabilization and destabilization of the triple helix in fibers. The helix-coil transition for non-irradiated collagen occurred near 64 degrees C, for irradiated 1 and 3 h at 66 and 67 degrees C, respectively. After irradiating for longer times (20-66 h) the helix-coil transition peak occurred at much lower temperatures. The peak was very broad and suggested that collagen was reduced by UV to different polypeptides of different molecular weight and different lower thermal stabilities. It was caused by the disruption of a network of hydrogen-bonded water molecules surrounding the collagen macromolecule.

  17. Inhibition of recovery of spermatogenesis in irradiated rats by different androgens.

    PubMed

    Shetty, Gunapala; Wilson, Gene; Hardy, Matthew P; Niu, Enmei; Huhtaniemi, Ilpo; Meistrich, Marvin L

    2002-09-01

    We previously showed that exogenous testosterone (T) inhibited GnRH-antagonist-stimulated spermatogenic recovery in irradiated rats through an androgen-receptor-mediated action. In the present study, we tested whether the inhibition is attributable to T, a specific androgenic metabolite of T, or a general property of androgens in this system. In addition, we also tested whether estradiol-17beta (E2), a metabolite of T, is similarly inhibitory. Rats irradiated with 5 Gy were treated with a GnRH antagonist during wk 3-7. Neither irradiation nor GnRH-antagonist treatment produced biologically significant changes in the relative intratesticular levels of several androgenic metabolites. Next, groups of rats, irradiated and treated with GnRH antagonist as above, were given various doses of one of the following androgens: T, 5alpha-dihydrotestosterone, 7alpha-methyl-19-nortestosterone, methyltrienolone, or E2. The percentage of tubules showing differentiation (tubule differentiation index) was increased to 68% by the GnRH antagonist, from a value of 0.1% in irradiated-only rats at 13 wk after irradiation. All of the added androgens inhibited spermatogenic recovery, lowering the tubule differentiation index to between 0.4-36%, but no inhibition was observed with the addition of E2. Of all the androgen treatments tested, T (given as daily injections of T propionate) minimally inhibited spermatogenic recovery while maintaining androgen-responsive tissue weights, and might be most useful in clinical studies. Hormonal measurements in androgen-treated rats were most consistent with the androgen inhibition of spermatogenic recovery in irradiated rats being a combined result of a direct inhibitory effect of all androgens on the testis and an indirect effect through the pituitary by raising levels of FSH, which seems to add to the inhibition of spermatogenic recovery.

  18. Oxidative damage to rat brain in iron and copper overloads.

    PubMed

    Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Semprine, Jimena; Fuda, Julián; Torti, Horacio; Boveris, Alberto; Repetto, Marisa G

    2014-08-01

    This study reports on the acute brain toxicity of Fe and Cu in male Sprague-Dawley rats (200 g) that received 0 to 60 mg kg(-1) (ip) FeCl2 or CuSO4. Brain metal contents and time-responses were determined for rat survival, in situ brain chemiluminescence and phospholipid and protein oxidation products. Metal doses hyperbolically defined brain metal content. Rat survival was 91% and 60% after Fe and Cu overloads. Brain metal content increased from 35 to 114 μg of Fe per g and from 3.6 to 34 μg of Cu per g. Brain chemiluminescence (10 cps cm(-2)) increased 3 and 2 times after Fe and Cu overloads, with half maximal responses (C50) of 38 μg of Fe per g of brain and 15 μg of Cu per g of brain, and with half time responses (t1/2) of 12 h for Fe and 20 h for Cu. Phospholipid peroxidation increased by 56% and 31% with C50 of 40 μg of Fe per g and 20 μg of Cu per g and with t1/2 of 9 h and 14 h. Protein oxidation increased by 45% for Fe with a C50 of 40 μg of Fe per g and 18% for Cu with a C50 of 10 μg of Cu per g and a t1/2 of 12 h for both metals. Fe and Cu brain toxicities are likely mediated by Haber-Weiss type HO˙ formation with subsequent oxidative damage.

  19. Regulation of atrial natriuretic peptide receptors in the rat brain

    SciTech Connect

    Saavedra, J.M.

    1987-06-01

    We have studied the localization, kinetics, and regulation of receptors for the circulating form of the atrial natriuretic peptide (ANP; 99-126) in the rat brain. Quantitative autoradiographic techniques and a /sup 125/I-labeled ligand, /sup 125/I-ANP (99-126), were employed. After in vitro autoradiography, quantification was achieved by computerized microdensitometry followed by comparison with /sup 125/I-standards. ANP receptors were discretely localized in the rat brain, with the highest concentrations in circumventricular organs, the choroid plexus, and selected hypothalamic nuclei involved in the production of the antidiuretic hormone vasopressin and in blood-pressure control. Spontaneously (genetic) hypertensive rats showed much lower numbers of ANP receptors than normotensive controls in the subfornical organ, the area postrema, the nucleus of the solitary tract, and the choroid plexus. These changes are in contrast to those observed for receptors of angiotensin II, another circulating peptide with actions opposite to those of ANP. Under conditions of acute dehydration after water deprivation, as well as under conditions of chronic dehydration such as those present in homozygous Brattleboro rats, there was an up-regulation of ANP receptors in the subfornical organ. Our results indicate that in the brain, circumventricular organs contain ANP receptors which could respond to variations in the concentration of circulating ANP. In addition, brain areas inside the blood-brain barrier contain ANP receptors probably related to the endogenous, central ANP system. The localization of ANP receptors and the alterations in their regulation present in genetically hypertensive rats and after dehydration indicate that brain ANP receptors are probably related to fluid regulation, including the secretion of vasopressin, and to cardiovascular function.

  20. Continuous gamma-irradiation of rats: dose-rate effect on loss and recovery of spermatogenesis.

    PubMed

    Pinon-Lataillade, G; Maas, J

    1985-07-01

    Male Sprague Dawley rats were continuously irradiated at a dose-rate of either 5 or 7 cGy/day, up to a total dose of 900 cGy. Changes in spermatogenesis with irradiation and the recovery of the testis during 33 weeks after irradiation were studied. No clear dose-rate effect with testicular weight occurred. During the irradiation time, increased dose and dose-rate induced a decrease in A spermatogonia and preleptotene spermatocyte number. In our experimental conditions germ cell production did not plateau, as shown by the increasing number of tubular cross sections devoid of germ cells beyond 500 cGy. The recovery of seminiferous epithelium occurred essentially within nine weeks. It was not dose-rate dependent and was still incomplete after 33 weeks. This lack of recovery might be due to limited compensatory division ability of the stem cells. Clusters of Sertoli cells were observed in the lumen of the seminiferous tubules; impaired function of these cells could also prevent the complete recovery of the seminiferous epithelium. By 16 weeks after the end of irradiation 67% of 5 cGy/day irradiated rats and 34% of 7 cGy/day irradiated rats recovered fertility.

  1. Demonstration of endogenous imipramine like material in rat brain

    SciTech Connect

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-02-18

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits (/sup 3/H) imipramine specific binding and mimics the inhibitory effect of imipramine on (/sup 3/H) serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits (/sup 3/H) imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum.

  2. Effects of Microwave Irradiation on Embryonic Brain Tissue.

    DTIC Science & Technology

    1979-03-01

    deeply staining cells did not extend into the 3rd ventricle, aqueduct, etc., which were lined by a wel. - organized layer of large ependymal cells . The...brains showed the typical cell types and distribution. The cranial nerve nuclei were distinct, the cerebellum was well developed, and the large fiber...systems (pyramids, medial lemnisci, brachia conjunctiva, brachia pontis, restiform bodies, and so on) could be readily delineated. The different cell

  3. Relationship between oxidative damage and colon carcinogenesis in irradiated rats: influence of dietary countermeasures

    NASA Astrophysics Data System (ADS)

    Turner, Nancy; Sanders, Lisa; Wu, Guoyao; Davidson, Laurie; Ford, John; Braby, Leslie; Carroll, Raymond; Chapkin, Robert; Lupton, Joanne

    Galactic cosmic radiation not only kills colon epithelial cells, it also generates a cellular environment that can lead to oxidative DNA damage. We previously demonstrated that a diet containing fish oil and pectin protects against initiation of colon cancer by enhancing apoptotic removal of cells with oxidative DNA adducts (8-OHdG), and that apoptosis was highly correlated with colon cancer suppression. We hypothesized this diet combination will mitigate the oxidative damage occurring from radiation and thus reduce colon cancer. The experiment tested the effect of radiation (± 1 Gy, 1 GeV/n Fe ions) on redox balance, apoptosis, and 8-OHdG levels at initiation and colon tumor incidence. Diets contained fish oil or corn oil, and cellulose or pectin (2x2 factorial design). Rats received the diets 3 wk before irradiation (half of the rats), followed by azoxymethane (AOM) injections 10 and 17 d later (all rats). Just prior to AOM injection, irradiated fish oil/pectin rats had a more reduced redox state in colonocytes (lower GSSG, P < 0.05; higher GSH/GSSG ratio), which was not observed in irradiated corn oil/cellulose rats. A shift to a more oxidative state (lower GSH and GSH/GSSG ratio, P < 0.05) occurred between 6 and 12 h after AOM in the fish oil/pectin irradiated rats. Changes in redox balance likely contributed to lower 8-OHdG levels in colonocytes from rats consuming the fish oil diets. Dietary pectin enhanced (P < 0.04) apoptosis induction 12 h after AOM injection in irradiated rats. Similar to the 8-OHdG results, colon tumor incidence was 42% higher (P < 0.05) in rats fed corn oil vs fish oil diets. In summary, fish oil/pectin diets created a more reduced colon environment in irradiated rats that was evident 10 d after irradiation. The ensuing oxidative shift in those rats after AOM injection may have enhanced apoptosis; effectively eliminating more DNA damaged cells. Thus, inclusion of fish oil and pectin in diets for long-duration space flights should help

  4. DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia.

    PubMed

    Malyapa, R S; Ahern, E W; Bi, C; Straube, W L; LaRegina, M; Pickard, W F; Roti Roti, J L

    1998-06-01

    The present study was done to confirm the reported observation that low-intensity acute exposure to 2450 MHz radiation causes DNA single-strand breaks (Lai and Singh, Bioelectromagnetics 16, 207-210, 1995). Male Sprague-Dawley rats weighing approximately 250 g were irradiated with 2450 MHz continuous-wave (CW) microwaves for 2 h at a specific absorption rate of 1.2 W/kg in a cylindrical waveguide system (Guy et al., Radio Sci. 14, 63-74, 1979). There was no associated rise in the core body temperature of the rats. After the irradiation or sham treatments, rats were euthanized by either CO2 asphyxia or decapitation by guillotine (eight pairs of animals per euthanasia group). After euthanasia the brains were removed and immediately immersed in cold Ames medium and the cells of the cerebral cortex and the hippocampus were dissociated separately and subjected to the alkaline comet assay. Irrespective of whether the rats were euthanized by CO2 asphyxia or decapitated by guillotine, no significant differences were observed between either the comet length or the normalized comet moment of cells from either the cerebral cortex or the hippocampus of sham-treated rats and those from the irradiated rats. However, the data for the rats asphyxiated with CO2 showed more intrinsic DNA damage and more experiment-to-experiment variation than did the data for rats euthanized by guillotine. Therefore, the guillotine method of euthanasia is the most appropriate in studies relating to DNA damage. Furthermore, we did not confirm the observation that DNA damage is produced in cells of the rat cerebral cortex or the hippocampus after a 2-h exposure to 2450 MHz CW microwaves or at 4 h after the exposure.

  5. Waxholm Space atlas of the Sprague Dawley rat brain.

    PubMed

    Papp, Eszter A; Leergaard, Trygve B; Calabrese, Evan; Johnson, G Allan; Bjaalie, Jan G

    2014-08-15

    Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 μm isotropic voxels for the MRI volume and 78 μm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in the brain. Delineation criteria are provided for each structure. We have applied a spatial reference system based on internal brain landmarks according to the Waxholm Space standard, previously developed for the mouse brain, and furthermore connected this spatial reference system to the widely used stereotaxic coordinate system by identifying cranial sutures and related stereotaxic landmarks in the template using contrast given by the active staining technique applied to the tissue. With the release of the present atlasing template and anatomical delineations, we provide a new tool for spatial orientation analysis of neuroanatomical location, and planning and guidance of experimental procedures in the rat brain. The use of Waxholm Space and related infrastructures will connect the atlas to interoperable resources and services for multi-level data integration and analysis across reference spaces.

  6. EVALUATION OF PERFLUOROOCTANE SULFONATE IN THE RAT BRAIN

    EPA Science Inventory

    Perfluorooctane Sulfonate (PFOS) is an environmentally persistent chemical that has been detected in humans and wildlife. PFOS is primarily distributed in liver and blood. The current study evaluated the level of PFOS in the adult and neonatal rat brain and determined whether t...

  7. Experimental induction of corpora amylacea in adult rat brain.

    PubMed

    Schipper, H M

    1998-10-01

    Corpora amylacea (CA) are glycoproteinaceous inclusions that accumulate in astroglia and other brain cells as a function of advancing age and, to an even greater extent, in several human neurodegenerative conditions. The mechanisms responsible for their biogenesis and their subcellular origin(s) remain unclear. We previously demonstrated that the sulfhydryl agent, cysteamine (CSH), promotes the accumulation of CA-like inclusions in cultured rat astroglia. In the present study, we show that subcutaneous administration of CSH to adult rats (150 mg/kg for 6 weeks followed by a 5-week drug-washout period) elicits the accumulation of CA in many cortical and subcortical brain regions. As in the aging human brain and in CSH-treated rat astrocyte cultures, the inclusions are periodic acid-Schiff -positive and are consistently immunostained with antibodies directed against mitochondrial epitopes and ubiquitin. Our findings support our contention that mitochondria are important structural precursors of CA, and that CSH accelerates aging-like processes in rat astroglia both in vitro and in the intact brain.

  8. Thyroid insufficiency in developing rat brain: A genomic analysis.

    EPA Science Inventory

    Thyroid Insufficiency in the Developing Rat Brain: A Genomic Analysis. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption (ED) is an area of major concern in environmental neurotoxicity. Severe deficits in thyroid hormone (TH) levels have bee...

  9. Autoradiographic localization of relaxin binding sites in rat brain

    SciTech Connect

    Osheroff, P.L.; Phillips, H.S. )

    1991-08-01

    Relaxin is a member of the insulin family of polypeptide hormones and exerts its best understood actions in the mammalian reproductive system. Using a biologically active 32P-labeled human relaxin, the authors have previously shown by in vitro autoradiography specific relaxin binding sites in rat uterus, cervix, and brain tissues. Using the same approach, they describe here a detailed localization of human relaxin binding sites in the rat brain. Displaceable relaxin binding sites are distributed in discrete regions of the olfactory system, neocortex, hypothalamus, hippocampus, thalamus, amygdala, midbrain, and medulla of the male and female rat brain. Characterization of the relaxin binding sites in the subfornical organ and neocortex reveals a single class of high-affinity sites (Kd = 1.4 nM) in both regions. The binding of relaxin to two of the circumventricular organs (subfornical organ and organum vasculosum of the lamina terminalis) and the neurosecretory magnocellular hypothalamic nuclei (i.e., paraventricular and supraoptic nuclei) provides the anatomical and biochemical basis for emerging physiological evidence suggesting a central role for relaxin in the control of blood pressure and hormone release. They conclude that specific, high-affinity relaxin binding sites are present in discrete regions of the rat brain and that the distribution of some of these sites may be consistent with a role for relaxin in control of vascular volume and blood pressure.

  10. FACS purification of immunolabeled cell types from adult rat brain.

    PubMed

    Guez-Barber, Danielle; Fanous, Sanya; Harvey, Brandon K; Zhang, Yongqing; Lehrmann, Elin; Becker, Kevin G; Picciotto, Marina R; Hope, Bruce T

    2012-01-15

    Molecular analysis of brain tissue is greatly complicated by having many different classes of neurons and glia interspersed throughout the brain. Fluorescence-activated cell sorting (FACS) has been used to purify selected cell types from brain tissue. However, its use has been limited to brain tissue from embryos or transgenic mice with promoter-driven reporter genes. To overcome these limitations, we developed a FACS procedure for dissociating intact cell bodies from adult wild-type rat brains and sorting them using commercially available antibodies against intracellular and extracellular proteins. As an example, we isolated neurons using a NeuN antibody and confirmed their identity using microarray and real time PCR of mRNA from the sorted cells. Our FACS procedure allows rapid, high-throughput, quantitative assays of molecular alterations in identified cell types with widespread applications in neuroscience.

  11. Pencilbeam irradiation technique for whole brain radiotherapy: technical and biological challenges in a small animal model.

    PubMed

    Schültke, Elisabeth; Trippel, Michael; Bräuer-Krisch, Elke; Renier, Michel; Bartzsch, Stefan; Requardt, Herwig; Döbrössy, Máté D; Nikkhah, Guido

    2013-01-01

    We have conducted the first in-vivo experiments in pencilbeam irradiation, a new synchrotron radiation technique based on the principle of microbeam irradiation, a concept of spatially fractionated high-dose irradiation. In an animal model of adult C57 BL/6J mice we have determined technical and physiological limitations with the present technical setup of the technique. Fifty-eight animals were distributed in eleven experimental groups, ten groups receiving whole brain radiotherapy with arrays of 50 µm wide beams. We have tested peak doses ranging between 172 Gy and 2,298 Gy at 3 mm depth. Animals in five groups received whole brain radiotherapy with a center-to-center (ctc) distance of 200 µm and a peak-to-valley ratio (PVDR) of ∼ 100, in the other five groups the ctc was 400 µm (PVDR ∼ 400). Motor and memory abilities were assessed during a six months observation period following irradiation. The lower dose limit, determined by the technical equipment, was at 172 Gy. The LD50 was about 1,164 Gy for a ctc of 200 µm and higher than 2,298 Gy for a ctc of 400 µm. Age-dependent loss in motor and memory performance was seen in all groups. Better overall performance (close to that of healthy controls) was seen in the groups irradiated with a ctc of 400 µm.

  12. Prenatal ethanol exposure increases brain cholesterol content in adult rats.

    PubMed

    Barceló-Coblijn, Gwendolyn; Wold, Loren E; Ren, Jun; Murphy, Eric J

    2013-11-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content are known to occur in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43 %, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total polyunsaturated fatty acids (PUFA), in the n-3/n-6 ratio, and in the 22:6n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of postnatal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats.

  13. Perinatal manganese exposure and hydroxyl radical formation in rat brain.

    PubMed

    Bałasz, Michał; Szkilnik, Ryszard; Brus, Ryszard; Malinowska-Borowska, Jolanta; Kasperczyk, Sławomir; Nowak, Damian; Kostrzewa, Richard M; Nowak, Przemysław

    2015-01-01

    The present study was designed to investigate the role of pre- and postnatal manganese (Mn) exposure on hydroxyl radical (HO(•)) formation in the brains of dopamine (DA) partially denervated rats (Parkinsonian rats). Wistar rats were given tap water containing 10,000 ppm manganese chloride during the duration of pregnancy and until the time of weaning. Control rat dams consumed tap water without added Mn. Three days after birth, rats of both groups were treated with 6-hydroxydopamine at one of three doses (15, 30, or 67 µg, intraventricular on each side), or saline vehicle. We found that Mn content in the brain, kidney, liver, and bone was significantly elevated in dams exposed to Mn during pregnancy. In neonates, the major organs that accumulated Mn were the femoral bone and liver. However, Mn was not elevated in tissues in adulthood. To determine the possible effect on generation of the reactive species, HO(•) in Mn-induced neurotoxicity, we analyzed the contents of 2.3- and 2.5-dihydroxybenzoic acid (spin trap products of salicylate; HO(•) being an index of in vivo HO(•) generation), as well as antioxidant enzyme activities of superoxide dismutase (SOD) isoenzymes and glutathione S-transferase (GST). 6-OHDA-depletion of DA produced enhanced HO(•) formation in the brain tissue of newborn and adulthood rats that had been exposed to Mn, and the latter effect did not depend on the extent of DA denervation. Additionally, the extraneuronal, microdialysate, content of HO(•) in neostriatum was likewise elevated in 6-OHDA-lesioned rats. Interestingly, there was no difference in extraneuronal HO(•) formation in the neostriatum of Mn-exposed versus control rats. In summary, findings in this study indicate that Mn crosses the placenta but in contrast to other heavy metals, Mn is not deposited long term in tissues. Also, damage to the dopaminergic system acts as a "trigger mechanism," initiating a cascade of adverse events leading to a protracted increase in

  14. Inducible Gene Manipulations in Brain Serotonergic Neurons of Transgenic Rats

    PubMed Central

    Tews, Björn; Bartsch, Dusan

    2011-01-01

    The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system. PMID:22140568

  15. Effect of high-dose total body irradiation on ACTH, corticosterone, and catecholamines in the rat.

    PubMed

    Cohen, Eric P; Bruder, Eric D; Cullinan, William E; Ziegler, Dana; Raff, Hershel

    2011-01-01

    Total body irradiation (TBI) or partial body irradiation is a distinct risk of accidental, wartime, or terrorist events. Total body irradiation is also used as conditioning therapy before hematopoietic stem cell transplantation. This therapy can result in injury to multiple tissues and might result in death as a result of multiorgan failure. The hypothalamic-pituitary-adrenal (HPA) axis could play a causative role in those injuries, in addition to being activated under conditions of stress. In a rat model of TBI, we have established that radiation nephropathy is a significant lethal complication, which is caused by hypertension and uremia. The current study assessed HPA axis function in rats undergoing TBI. Using a head-shielded model of TBI, we found an enhanced response to corticotropin-releasing hormone (CRH) in vitro in pituitaries from irradiated compared with nonirradiated rats at both 8 and 70 days after 10-Gy single fraction TBI. At 70, but not 8 days, plasma adrenocorticotrophic hormone (ACTH) and corticosterone levels were increased significantly in irradiated compared with nonirradiated rats. Plasma aldosterone was not affected by TBI at either time point, whereas plasma renin activity was decreased in irradiated rats at 8 days. Basal and stimulated adrenal steroid synthesis in vitro was not affected by TBI. In addition, plasma epinephrine was decreased at 70 days after TBI. The hypothalamic expression of CRH messenger RNA (mRNA) and hippocampal expression of glucocorticoid receptor mRNA were unchanged by irradiation. We conclude that the hypertension of radiation nephropathy is not aldosterone or catecholamine-dependent but that there is an abscopal activation of the HPA axis after 10 Gy TBI. This activation was attributable at least partially to enhanced pituitary ACTH production.

  16. In vitro γ Irradiation of Leukemic Cells in Mice, Rats, and Guinea Pigs

    NASA Astrophysics Data System (ADS)

    Gross, Ludwik; Dreyfuss, Yolande; Ehrenreich, Theodore; Feldman, Dorothy; Limbert, Lorraine M.

    1980-12-01

    In vitro γ irradiation of virus-induced (Gross) mouse leukemia cells at doses of 350-1600 rads (1 rad = 0.01 gray) had no effect on their ability to induce leukemia, usually within 2 weeks, after transplantation into syngeneic mice. However, when cells irradiated at doses of 2000-20,000 rads were transplanted, they induced leukemia after a latency period exceeding 2.5 months, similar to the result observed in mice inoculated with filtered mouse leukemia extracts. Similar results were also obtained after irradiation of leukemic cells derived from rats in which leukemia had been induced by rat-adapted mouse leukemia virus. Apparently, γ irradiation at a dose of, or exceeding, 2000 rads, inhibits the ability of mouse and rat leukemic cells to induce leukemia after transplantation into syngeneic hosts; however, it does not inactivate the virus carried by such cells nor prevent it from inducing leukemia. [In previous experiments, doses of more than 4,500,000 rads were needed to inactivate the passage A (Gross) leukemia virus carried in either mouse or rat leukemic cells.] In vitro γ irradiation of L2C guinea pig leukemic cells at doses of 750--2500 rads had no apparent effect on their ability to induce leukemia after transplantation into strain 2 guinea pigs. However, irradiation at doses of 3250-20,000 rads inactivated their ability to do so. The morphology of mouse, rat, and guinea pig leukemic cells and the virus particles present in such cells was not affected by irradiation at doses of 20,000 rads.

  17. Anesthesia-induced neurodegeneration in fetal rat brains

    PubMed Central

    Wang, Shouping; Peretich, Kelly; Zhao, Yifan; Liang, Ge; Meng, Qingcheng; Wei, Huafeng

    2011-01-01

    Summary We investigated the extent of isoflurane induced neurodegeneration on the fetuses of pregnant rats exposed in utero. Pregnant rats at gestational day 21 were divided into three experimental groups. Rats in the control group spontaneously breathed 100% oxygen for one hour. Rats in the treatment groups breathed either 1.3% or 3% isoflurane in 100% oxygen through an endotracheal tube with mechanical ventilation for one hour. Rat pups were delivered by Caesarian section six hours after treatment and fetal blood was sampled from the left ventricle of each fetal heart and evaluated for S100β. Fetal brains were then evaluated for apoptosis using caspase-3 immunohistochemistry in the CA1 region of the hippocampus and the retrosplenial cortex (RS). The 3% isoflurane treatment group showed significantly higher levels of S100β levels and significantly increased average densities of total caspase-3 positive cells in the CA1 hippocampus and RS cortex as compared to the control and 1.3% isoflurane groups. There were no differences in S100β levels or densities of caspase-3 positive cells between the control and 1.3% isoflurane groups. Isoflurane at a concentration of 3% for one hour increased neurodegeneration in the hippocampal CA1 area and the retrosplenial cortex in the developing brain of fetal rats. PMID:20016413

  18. Pharmacological modulation of blood-brain barrier increases permeability of doxorubicin into the rat brain.

    PubMed

    Sardi, Iacopo; la Marca, Giancarlo; Cardellicchio, Stefania; Giunti, Laura; Malvagia, Sabrina; Genitori, Lorenzo; Massimino, Maura; de Martino, Maurizio; Giovannini, Maria G

    2013-01-01

    Our group recently demonstrated in a rat model that pretreatment with morphine facilitates doxorubicin delivery to the brain in the absence of signs of increased acute systemic toxicity. Morphine and other drugs such as dexamethasone or ondansetron seem to inhibit MDR proteins localized on blood-brain barrier, neurons and glial cells increasing the access of doxorubicin to the brain by efflux transporters competition. We explored the feasibility of active modification of the blood-brain barrier protection, by using morphine dexamethasone or ondansetron pretreatment, to allow doxorubicin accumulation into the brain in a rodent model. Rats were pretreated with morphine (10 mg/kg, i.p.), dexamethasone (2 mg/kg, i.p.) or ondansetron (2 mg/kg, i.p.) before injection of doxorubicin (12 mg/kg, i.p.). Quantitative analysis of doxorubicin was performed by mass spectrometry. Acute hearth and kidney damage was analyzed by measuring doxorubicin accumulation, LDH activity and malondialdehyde plasma levels. The concentration of doxorubicin was significantly higher in all brain areas of rats pretreated with morphine (P < 0.001) or ondansetron (P < 0.05) than in control tissues. The concentration of doxorubicin was significantly higher in cerebral hemispheres and brainstem (P < 0.05) but not in cerebellum of rats pretreated with dexamethasone than in control tissues. Pretreatment with any of these drugs did not increase LDH activity or lipid peroxidation compared to controls. Our data suggest that morphine, dexamethasone or ondansetron pretreatment is able to allow doxorubicin penetration inside the brain by modulating the BBB. This effect is not associated with acute cardiac or renal toxicity. This finding might provide the rationale for clinical applications in the treatment of refractory brain tumors and pave the way to novel applications of active but currently inapplicable chemotherapeutic drugs.

  19. Administration of the peroxisomal proliferator-activated receptor {gamma} agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment

    SciTech Connect

    Zhao Weiling; Payne, Valerie; Tommasi, Ellen; Diz, Debra I.; Hsu, F.-C.; Robbins, Mike E. . E-mail: mrobbins@wfubmc.edu

    2007-01-01

    Purpose: We hypothesized that administration of the anti-inflammatory peroxisomal proliferator-activated receptor {gamma} (PPAR{gamma}) agonist pioglitazone (Pio) to adult male rats would inhibit radiation-induced cognitive impairment. Methods and Materials: Young adult male F344 rats received one of the following: (1) fractionated whole brain irradiation (WBI); 40 or 45 Gy {gamma}-rays in 4 or 4.5 weeks, respectively, two fractions per week and normal diet; (2) sham-irradiation and normal diet; (3) WBI plus Pio (120 ppm) before, during, and for 4 or 54 weeks postirradiation; (4) sham-irradiation plus Pio; or (5) WBI plus Pio starting 24h after completion of WBI. Results: Administration of Pio before, during, and for 4 or 54 weeks after WBI prevented Radiation-induced cognitive impairment. Administration of Pio for 54 weeks starting after completion of fractionated WBI substantially but not significantly reduced Radiation-induced cognitive impairment. Conclusions: These findings offer the promise of improving the quality of life and increasing the therapeutic window for brain tumor patients.

  20. A high frequency of induction of chromosome aberrations in the fibroblasts of LEC strain rats by X-irradiation.

    PubMed

    Okui, T; Endoh, D; Arai, S; Hayashi, M

    1996-08-01

    The LEC strain of rats (LEC rats), originally developed as a model for hereditary fulminant hepatitis, is highly sensitive to whole-body X-irradiation when compared to WKAH strain of rats (WKAH rats). The present results showed that frequencies of certain types of chromosome aberrations induced by in vitro X-irradiation in the fibroblasts of LEC rats were higher than those of WKAH rats. In particular, frequencies of chromatid gaps and chromosome exchanges in LEC cells were higher approximately 4- to 5-fold and 6- to 8-fold, respectively, than those of WKAH cells.

  1. Avoidance behaviour and anxiety in rats irradiated with a sublethal dose of gamma-rays.

    PubMed

    Tomášová, Lenka; Smajda, B; Bona, M

    2011-12-01

    The aim of this study was to assess, whether a sublethal dose of gamma-rays will influence the avoidance behaviour and anxiety in rats and whether the response to radiation depends on time of day of its application. Adult male Wistar rats were tested in elevated plus-maze, in hot plate test and in the light/dark box in 4 regular intervals during a day. After two weeks the animals were irradiated with a whole-body dose 6 Gy of gamma-rays. One day after irradiation the animals were repeatedly tested in the same way, as before irradiation. In the plus-maze test an increased level of anxiety was established. The irradiation significantly decreased the locomotor activity of rats, but the extent of exploratory and comfortable behaviour were not altered. After irradiation, an elevated aversion to the thermal stimulus was observed in the hot plate test. The effects of radiation were more pronounced in the light period of the day, than in the dark one. No significant differences in aversion to light were detected after irradiation. The obtained results indicate, that sublethal doses of ionizing radiation can markedly influence the reactivity of animals to adverse stimuli, their motoric activity and emotional status, as well.

  2. Schisandrin B protects against solar irradiation-induced oxidative stress in rat skin tissue.

    PubMed

    Lam, Philip Y; Yan, Chung Wai; Chiu, Po Yee; Leung, Hoi Yan; Ko, Kam Ming

    2011-04-01

    Schisandrin B (Sch B) and schisandrin C (Sch C), but not schisandrin A and dimethyl diphenyl bicarboxylate, protected rat skin tissue against solar irradiation-induced oxidative injury, as evidenced by a reversal of solar irradiation-induced changes in cellular reduced glutathione and α-tocopherol levels, as well as antioxidant enzyme activities and malondialdehyde production. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production in rat skin microsomes. Taken together, Sch B or Sch C, by virtue of its pro-oxidant action and the subsequent eliciting of a glutathione antioxidant response, may prevent photo-aging of skin.

  3. Radio-protective effects of melatonin against irradiation-induced oxidative damage in rat peripheral blood.

    PubMed

    Shirazi, Alireza; Mihandoost, Ehsan; Mohseni, Mehran; Ghazi-Khansari, Mahmoud; Rabie Mahdavi, Seied

    2013-01-01

    During radiotherapy, ionizing irradiation interacts with biological systems to produce free radicals, which attacks various cellular components. The hematopoietic system is well-known to be radiosensitive and its damage may be life-threatening. Melatonin synergistically acts as an immunostimulator and antioxidant. In this study we used a total of 120 rats with 20 rats in each group. Group 1 did not receive melatonin or irradiation (Control group), Group 2 received only 10 mg/kg melatonin (Mel group), Group 3 exposed to dose of 2 Gy irradiation (2 Gy Rad group), Group 4 exposed to 8 Gy irradiation (8 Gy Rad group), Group 5 received 2 Gy irradiation plus 10 mg/kg melatonin (Mel +2 Gy Rad group) and Group 6 received 8 Gy irradiation plus 10 mg/kg melatonin (Mel+8 Gy Rad group). Following exposure to radiation, five rats from each group were sacrificed at 4, 24, 48 and 72 h. Exposure to different doses of irradiation resulted in a dose-dependent decline in the antioxidant enzymes activity and lymphocyte count (LC) and an increase in the nitric oxide (NO) levels of the serum. Pre-treatment with melatonin (10 mg/kg) ameliorates harmful effects of 2 and 8 Gy irradiation by increasing lymphocyte count(LC) as well as antioxidant enzymes activity and decreasing NO levels at all time-points. In conclusion 10 mg/kg melatonin is likely to be a threshold concentration for significant protection against lower dose of 2 Gy gamma irradiation compared to higher dose of 8 Gy. Therefore, it seems that radio-protective effects of melatonin are dose-dependent.

  4. Rat umbilical cord blood cells attenuate hypoxic–ischemic brain injury in neonatal rats

    PubMed Central

    Nakanishi, Keiko; Sato, Yoshiaki; Mizutani, Yuka; Ito, Miharu; Hirakawa, Akihiro; Higashi, Yujiro

    2017-01-01

    Increasing evidence has suggested that human umbilical cord blood cells (hUCBC) have a favorable effect on hypoxic–ischemic (HI) brain injury. However, the efficacy of using hUCBCs to treat this injury has been variable and the underlying mechanism remains elusive. Here, we investigated its effectiveness using stereological analysis in an allogeneic system to examine whether intraperitoneal injection of cells derived from UCBCs of green fluorescent protein (GFP)-transgenic rats could ameliorate brain injury in neonatal rats. Three weeks after the HI event, the estimated residual brain volume was larger and motor function improved more in the cell-injected rats than in the control (PBS-treated) rats. The GFP-positive cells were hardly detectable in the brain (0.0057% of injected cells) 9 days after injection. Although 60% of GFP-positive cells in the brain were Iba1-positive, none of these were positive for NeuroD or DCX. While the number of proliferating cells increased in the hippocampus, that of activated microglia/macrophages decreased and a proportion of M2 microglia/macrophages increased in the ipsilateral hemisphere of cell-injected rats. These results suggest that intraperitoneal injection of cells derived from UCBCs could ameliorate HI injury, possibly through an endogenous response and not by supplying differentiated neurons derived from the injected stem cells. PMID:28281676

  5. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    SciTech Connect

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye

    2014-01-10

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non-irradiation

  6. Chronic Methamphetamine Effects on Brain Structure and Function in Rats

    PubMed Central

    Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  7. Chronic Methamphetamine Effects on Brain Structure and Function in Rats.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  8. Effects of environmental tobacco smoke on adult rat brain biochemistry.

    PubMed

    Fuller, Brian F; Gold, Mark S; Wang, Kevin K W; Ottens, Andrew K

    2010-05-01

    Environmental tobacco smoke (ETS) has been linked to deleterious health effects, particularly pulmonary and cardiac disease; yet, the general public considers ETS benign to brain function in adults. In contrast, epidemiological data have suggested that ETS impacts the brain and potentially modulates neurodegenerative disease. The present study begins to examine yet unknown biochemical effects of ETS on the adult mammalian brain. In the developed animal model, adult male rats were exposed to ETS 3 h a day for 3 weeks. Biochemical data showed altered glial fibrillary acid protein levels as a main treatment effect of ETS, suggestive of reactive astrogliosis. Yet, markers of oxidative and cell stress were unaffected by ETS exposure in the brain regions examined. Increased proteolytic degradation of alphaII-spectrin by caspase-3 and the dephosphorylation of serine(116) on PEA-15 indicated greater apoptotic cell death modulated by the extrinsic pathway in the brains of ETS-exposed animals. Further, beta-synuclein was upregulated by ETS, a neuroprotective protein previously reported to exhibit anti-apoptotic and anti-fibrillogenic properties. These findings demonstrate that ETS exposure alters the neuroproteome of the adult rat brain, and suggest modulation of inflammatory and cell death processes.

  9. Prolongation of rat heart allografts by donor-specific blood transfusion treated with ultraviolet irradiation

    SciTech Connect

    Oluwole, S.F.; Iga, C.; Lau, H.; Hardy, M.A.

    1985-07-01

    The effect of donor-specific blood transfusion was compared to that of UVB-irradiated donor-specific blood transfusion on heart allograft survival in inbred rats with major histocompatibility differences. In one series ACI rats received heterotopic heart grafts from Lewis rats and 1 mL transfusion of donor-type blood at 1, 2, and 3 weeks prior to the transplantation. Fifty percent of the grafts were permanently accepted (survival greater than 200 days). Following UVB-irradiated donor-specific blood transfusion, 55% of the grafts survived indefinitely. In a mixed lymphocyte reaction ACI lymphocytes are weak responders to Lewis lymphocytes. In another series, Lewis rats received ACI hearts. Donor-specific transfusions at 1, 2, and 3 weeks prior to transplantation did not significantly alter the survival of heart allografts. Lewis lymphocytes react strongly to ACI stimulator cells in a mixed lymphocyte reaction. However, when the donor blood was UVB-irradiated prior to transfusion, the ACI allograft survival was significantly prolonged in this ACI-to-Lewis strain combination. When Lewis rats received W/F hearts following either donor-specific or UVB-irradiated donor-specific transfusions, the hearts' survival was similarly and significantly prolonged, but did not become permanent. Mixed lymphocyte reaction reveals that the stimulation index of Lewis lymphocytes against W/F lymphocytes is greater than that of ACI versus Lewis, but is less than that between Lewis responder cells against ACI stimulators.

  10. Neuronal damage in chick and rat embryos following X-irradiation

    SciTech Connect

    Schneider, B.F.; Norton, S.

    1980-12-01

    Exposure of rat and chick embryos to X-irradiation at the time of development of neurons at the telencephalic-diencephalic border results in prolonged damage to neurons in this area as measured by neuronal nuclear size. A dose of 100 rads to the seven-day-old chick embryo has about the same effect as 125 rads to the 15-day-old rat fetus. The nuclear volume of large, multipolar neurons in the chick paleostriatum primitivum and the rat lateral preoptic area are reduced from 10 to 15%. Larger doses of X-irradiation to the chick (150 and 200 rads) cause progressively greater reductions in nuclear size. The large neurons which were measured in the rat and chick are morphologically similar in the two species. Both contain cytoplasmic acetylcholinesterase and have several branched, spiny dendritic processes. The similarity of response of chick and rat neurons to X-irradiation diminishes the significance of maternal factors as the cause of the effects of fetal irradiation in these experiments.

  11. Serum copper concentration as an index of lung injury in rats exposed to hemithorax irradiation

    SciTech Connect

    Ward, W.F.; Molteni, A.; Fitzsimons, E.J.; Hinz, J.

    1988-06-01

    Serum copper concentration was evaluated as an index of lung injury (monitored by lung prostacyclin production) with respect to the effects of time, dose, dose fractionation, and penicillamine dose modification in rats irradiated to the right hemithorax. Both lung PGI2 production and serum Cu concentration increased with increasing /sup 60/Co gamma-ray dose in animals sacrificed 2 or 6 months postirradiation, and the highest values for both responses were observed at the latter autopsy time. At 2 months postirradiation, the elevations in lung PGI2 production and serum Cu concentration also were spared similarly when total radiation doses were delivered in five equal daily fractions as compared to single doses. Finally, the ability of D-penicillamine to ameliorate the radiation-induced hyperproduction of PGI2 by rat lung was accompanied by an attenuation of the dose-dependent increase in serum Cu concentration at 2 months postirradiation in the drug-treated rats. In contrast, serum iron concentration was independent of time, dose, and penicillamine. At 2 months after irradiation, there also was a dose-dependent increase in lung hydroxyproline (collagen) content, the magnitude of which correlated closely with serum copper concentration in individual animals. Thus serum copper concentration is an accurate and minimally invasive index of lung injury in rats irradiated to the hemithorax and can predict lung hydroxyproline (collagen) content in individual irradiated rats.

  12. Differential protection by WR2721 of skin versus growing cartilage following irradiation in weanling rats

    SciTech Connect

    Constine, L.S.; Rubin, P.; Gregory, P.

    1987-04-01

    The potential for radioprotection of growing cartilage by the thiophosphate WR2721 was evaluated in weanling rats using single fractions of irradiation. Protection of acute skin toxicity was monitored simultaneously. Single doses of 600, 1200, 1800, or 2400 cGy were administered to the left tibia of CrL:CD(SD)BR female rats in groups of 12. Identically treated groups were injected with 310 mg/kg WR2721 (2/3 the determined LD50/30) in a concentration of 26 mg/ml intraperitoneally 15 min prior to irradiation. Rats untreated or given WR2721 without radiation served as control groups. Radiographs of the irradiated and unirradiated tibiae for each animal were obtained weekly to the date of sacrifice at 80 days following the initial treatment. Skin toxicity was assessed weekly starting on the second week using Moulder's scale. No significant difference in bone growth as measured by tibial lengths for the WR2721-treated or untreated animals was observed. Skin toxicity including moist desquamation occurred in irradiated limbs and was substantially less in rats treated with WR2721. As opposed to previous work with cysteamine, WR2721 as administered had no significant radioprotective effect on tibial growth in weanling rats but substantially reduced the accompanying skin toxicity.

  13. Imaging the efficacy of UVC irradiation on superficial brain tumors and metastasis in live mice at the subcellular level.

    PubMed

    Momiyama, Masashi; Suetsugu, Atsushi; Kimura, Hiroaki; Kishimoto, Hiroyuki; Aki, Ryoichi; Yamada, Akimitsu; Sakurada, Harumi; Chishima, Takashi; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2013-02-01

    The effect of UVC irradiation was investigated on a model of brain cancer and a model of experimental brain metastasis. For the brain cancer model, brain cancer cells were injected stereotactically into the brain. For the brain metastasis model, lung cancer cells were injected intra-carotidally or stereotactically. The U87 human glioma cell line was used for the brain cancer model, and the Lewis lung carcinoma (LLC) was used for the experimental brain metastasis model. Both cancer cell types were labeled with GFP in the nucleus and RFP in the cytoplasm. A craniotomy open window was used to image single cancer cells in the brain. This double labeling of the cancer cells with GFP and RFP enabled apoptosis of single cells to be imaged at the subcellular level through the craniotomy open window. UVC irradiation, beamed through the craniotomy open window, induced apoptosis in the cancer cells. UVC irradiation was effective on LLC and significantly extended survival of the mice with experimental brain metastasis. In contrast, the U87 glioma was relatively resistant to UVC irradiation. The results of this study suggest the use of UVC for treatment of superficial brain cancer or metastasis.

  14. The effect of melatonin on peripheral blood cells during total body irradiation in rats.

    PubMed

    Koc, Mehmet; Buyukokuroglu, Mehmet Emin; Taysi, Seyithan

    2002-05-01

    Melatonin, has been reported to participate in the regulation of a number of important physiological and pathological process. It has also the ability to protect the genetic material of hematopoietic cells of mice from damaging effects of acute total body irradiation. The objective of this study was to the potential radioprotective effects of pharmacological doses of melatonin in total body irradiated rat's peripheral blood cells. Forty adult rats were divided into 4 equal groups. Group 1 received no melatonin or irradiation (control group), while group 2 received only melatonin (5 mg/kg, i.p.). Group 3 received only total body irradiation (RT) by 5 Gy of gamma irradiation only and group 4 received RT plus melatonin (5 mg/kg, i.p., 30 min before RT). An hour and a half following RT, blood samples were taken. Leukocytes and thrombocytes number and hemoglobin levels were measured in all groups. Five mg/kg dose of melatonin significantly protected leukocytes and as well as thrombocytes number against y irradiation. There were no significant differences between Hb levels. Our results suggest that melatonin administration prior to irradiation prevented radiation damage on peripheral blood cells. Melatonin radioprotection is achieved by its ability as a scavenger for free radicals generated by ionizing radiation and acts probably as a growth factor, especially for granulocytes in bone marrow.

  15. Increased EZH2 and decreased osteoblastogenesis during local irradiation-induced bone loss in rats

    PubMed Central

    Guo, Changjun; Li, Changwei; Yang, Kai; Kang, Hui; Xu, Xiaoya; Xu, Xiangyang; Deng, Lianfu

    2016-01-01

    Radiation therapy is commonly used to treat cancer patients but exhibits adverse effects, including insufficiency fractures and bone loss. Epigenetic regulation plays an important role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Here, we reported local bone changes after single-dose exposure to 137CS irradiation in rats. Femur bone mineral density (BMD) and trabecular bone volume in the tibia were significantly decreased at 12 weeks after irradiation. Micro-CT results showed that tBMD, Tb.h and Tb.N were also significantly reduced at 12 weeks after irradiation exposure. ALP-positive OB.S/BS was decreased by 42.3% at 2 weeks after irradiation and was decreased by 50.8% at 12 weeks after exposure. In contrast to the decreased expression of Runx2 and BMP2, we found EZH2 expression was significantly increased at 2 weeks after single-dose 137CS irradiation in BMSCs. Together, our results demonstrated that single-dose 137CS irradiation induces BMD loss and the deterioration of bone microarchitecture in the rat skeleton. Furthermore, EZH2 expression increased and osteoblastogenesis decreased after irradiation. The underlying mechanisms warrant further investigation. PMID:27499068

  16. Induction of Lipocalin2 in a Rat Model of Lung Irradiation

    PubMed Central

    Sultan, Sadaf; Ahmad, Shakil; Rave-Fränk, Margret; Malik, Ihtzaz Ahmed; Hess, Clemens F.; Christiansen, Hans; Cameron, Silke

    2016-01-01

    Previously, we showed that lipocalin2 (LCN2) serum levels increased after liver irradiation and during acute-phase conditions. Here, we evaluate LCN2 expression and serum levels after single-dose lung irradiation with 25 Gy, percutaneously administered to the lung of randomly-paired male Wistar rats. Due to the concave anatomy of the lung recesses, the irradiation field included the upper part of the liver. No rat died due to irradiation. In control tissue, lung immunohistochemistry showed a high constitutive expression of LCN2+ granulocytes. LCN2 mRNA levels in lung tissue increased up to 24 h (9 ± 2.3-fold) after irradiation. However, serum LCN2 levels remained undetectable after lung irradiation. LCN2 expression in the upper part of the liver increased up to 4.2-fold after lung irradiation, but the lower liver showed an early decrease. Acute-phase cytokines (IL-1β and TNF-α) showed a significant increase on transcript level in both lung and upper liver, whilst the lower liver did not show any considerable increase. In conclusion, constitutive expression of LCN2 in local immune cells demonstrates its local role during stress conditions in the lung. The absence of LCN2 in the serum strengthens our previous findings that the liver is the key player in secreting LCN2 during stress conditions with liver involvement. PMID:27136530

  17. Effects of low intensity laser irradiation during healing of infected skin lesions in the rat

    NASA Astrophysics Data System (ADS)

    Nussbaum, Ethne L.; Lilge, Lothar; Mazzulli, Tony; Pritzker, Kenneth P.

    2006-02-01

    Purpose: To determine the effect of low intensity laser therapy (LILT) on healing of infected skin wounds in the rat. Methods: Wounds on the dorsum of Sprague-Dawley rats (14 per group) were inoculated or sham-inoculated with P. aeruginosa. Wounds were irradiated or sham-irradiated three times weekly from Day 1-19 using 635nm or 808nm diode lasers at radiant exposure of 1 or 20 J/cm2 delivered in continuous wave (CW) or at an intensity modulation frequency of 3800Hz. Wound area and bacterial growth were evaluated three times weekly. Results: CW 808 nm (1 and 20 J/cm2) irradiation generally delayed healing in acute wounds. However, from Day 10 onwards CW 808 nm (1 J/cm2 and 20 J/cm2) and 808 nm 3800 Hz (1 J/cm2) irradiation improved healing in inoculated wounds. Healing in acute wounds improved using 635 nm irradiation at low radiant exposure (1 J/cm2); however, using 635 nm irradiation at high radiant exposure (20 J/cm2) delayed healing. Bacterial balance in wounds was significantly altered using 635 nm (20 J/cm2) and CW 808 nm irradiation (1 and 20 J/cm2). Conclusion: Clearing wounds of normal flora was not associated with improved healing. Proliferation of staphylococcal species in wounds was associated with delayed healing.

  18. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  19. Re-irradiation of brain metastases and metastatic spinal cord compression: clinical practice suggestions.

    PubMed

    Maranzano, Ernesto; Trippa, Fabio; Pacchiarini, Diamante; Chirico, Luigia; Basagni, Maria Luisa; Rossi, Romina; Bellavita, Rita; Schiavone, Concetta; Italiani, Marco; Muti, Marco

    2005-01-01

    The recent improvements of therapeutic approaches in oncology have allowed a certain number of patients with advanced disease to survive much longer than in the past. So, the number of cases with brain metastases and metastatic spinal cord compression has increased, as has the possibility of developing a recurrence in areas of the central nervous system already treated with radiotherapy. Clinicians are reluctant to perform re-irradiation of the brain, because of the risk of severe side effects. The tolerance dose for the brain to a single course of radiotherapy is 50-60 Gy in 2 Gy daily fractions. New metastases appear in 22-73% of the cases after whole brain radiotherapy, but the percentage of reirradiated patients is 3-10%. An accurate selection must be made before giving an indication to re-irradiation. Patients with Karnofsky performance status > 70, age < 65 years, controlled primary and no extracranial metastases are those with the best prognosis. The absence of extracranial disease was the most significant factor in conditioning survival, and maximum tumor diameter was the only variable associated with an increased risk of unacceptable acute and/or chronic neurotoxicity. Re-treatment of brain metastases can be done with whole brain radiotherapy, stereotactic radiosurgery or fractionated stereotactic radiotherapy. Most patients had no relevant radiation-induced toxicity after a second course of whole brain radiotherapy or stereotactic radiosurgery. There are few data on fractionated stereotactic radiotherapy in the re-irradiation of brain metastases. In general, the incidence of an "in-field" recurrence of spinal metastasis varies from 2.5-11% of cases and can occur 2-40 months after the first radiotherapy cycle. Radiation-induced myelopathy can occur months or years (6 months-7 years) after radiotherapy, and the pathogenesis remains obscure. Higher radiotherapy doses, larger doses per fraction, and previous exposure to radiation could be associated with a

  20. Alterations of amino Acid level in depressed rat brain.

    PubMed

    Yang, Pei; Li, Xuechun; Ni, Jian; Tian, Jingchen; Jing, Fu; Qu, Changhai; Lin, Longfei; Zhang, Hui

    2014-10-01

    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and γ-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-α-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant.

  1. Human and rat brain lipofuscin proteome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of an autofluorescent pigment called lipofuscin in neurons is an invariable hallmark of brain aging. So far, this material has been considered to be waste material without particular relevance for cellular pathology. However, two lines of evidence argue that lipofuscin may have yet ...

  2. Alcohol induced changes in phosphoinositide signaling system in rat brain

    SciTech Connect

    Pandey, S.; Piano, M.; Schwertz, D.; Davis, J.; Pandey, G. )

    1991-03-11

    Agonist-induced phosphoinositide break down functions as a signal generating system in a manner similar to the C-AMP system. In order to examine if the changes produced by chronic ethanol treatment on membrane lipid composition and metabolism effect the cellular functions of the neuron, the authors have examined the effect of chronic ethanol exposure on norepinephrine (NE) serotonin (5HT) and calcium ionophore (CI) stimulated phosphoinositide (PI) hydrolysis in rat cortical slices. Rats were maintained on liber-decarli diet alcohol and control liquid diet containing isocaloric sucrose substitute for two months. They were then sacrificed and brain was removed for determination of PI turnover. 5HT stimulated {sup 3}H- inositol monophosphate ({sup 3}H-IPI) formation was significantly lower in the cortex of alcohol treated rats as compared to control rats. However, neither CI nor NE stimulated IP1 formation was significantly different from control rats. The results thus indicate that chronic exposure to ethanol decreases 5HT induced PI breakdown in rat cortex. In order to examine if this decrease is related to a decrease in 5HT2 receptors, or decreased in coupling of receptor to the effector pathway, the authors are currently determining the number and affinity of 5HT2 receptors in alcohol treated rats.

  3. Regional development of glutamate dehydrogenase in the rat brain.

    PubMed

    Leong, S F; Clark, J B

    1984-07-01

    The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant.

  4. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    SciTech Connect

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. )

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  5. Effect of glycolysis inhibition on mitochondrial function in rat brain.

    PubMed

    Cano-Ramírez, D; Torres-Vargas, C E; Guerrero-Castillo, S; Uribe-Carvajal, S; Hernández-Pando, R; Pedraza-Chaverri, J; Orozco-Ibarra, M

    2012-05-01

    Inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase enhances the neural vulnerability to excitotoxicity both in vivo and in vitro through an unknown mechanism possibly related to mitochondrial failure. However, as the effect of glycolysis inhibition on mitochondrial function in brain has not been studied, the aim of the present work was to evaluate the effect of glycolysis inhibition induced by iodoacetate on mitochondrial function and oxidative stress in brain. Mitochondria were isolated from brain cortex, striatum and cerebellum of rats treated systemically with iodoacetate (25 mg/kg/day for 3 days). Oxygen consumption, ATP synthesis, transmembrane potential, reactive oxygen species production, lipoperoxidation, glutathione levels, and aconitase activity were assessed. Oxygen consumption and aconitase activity decreased in the brain cortex and striatum, showing that glycolysis inhibition did not trigger severe mitochondrial impairment, but a slight mitochondrial malfunction and oxidative stress were present.

  6. Determination of boron distribution in rat's brain, kidney and liver.

    PubMed

    Pazirandeh, Ali; Jameie, Behnam; Zargar, Maysam

    2009-07-01

    To determine relative boron distribution in rat's brain, liver and kidney, a mixture of boric acid and borax, was used. After transcardial injection of the solution, the animals were sacrificed and the brain, kidney and liver were removed. The coronal sections of certain areas of the brain were prepared by freezing microtome. The slices were sandwiched within two pieces of CR-39. The samples were bombarded in a thermal neutron field of the TRR pneumatic facility. The alpha tracks are registered on CR-39 after being etched in NaOH. The boron distribution was determined by counting these alpha tracks CR-39 plastics. The distribution showed non-uniformity in brain, liver and kidney.

  7. The effects of Pycnogenol(®) on colon anastomotic healing in rats given preoperative irradiation.

    PubMed

    Değer, K Cumhur; Şeker, Ahmet; Özer, Ilter; Bostancı, E Birol; Dalgıç, Tahsin; Akmansu, Müge; Ekinci, Özgür; Erçin, Uğur; Bilgihan, Ayşe; Akoğlu, Musa

    2013-01-01

    Pycnogenol(®) has excellent radical scavenging properties and enhances the production of antioxidative enzymes which contributes to the anti-inflammatory effect of the extract. Irradiation delivered to the abdominal region, typically results in severe damage to the intestinal mucosa. The effects of ionizing radiation are mediated by the formation of free radicals through radiolysis. Irradiation has local effects on tissues. These local effects of irradiation on the bowel are believed to involve a two-stage process which includes both short and long term components. In our study we aimed to investigate the short term effects of Pycnogenol(®) on the healing of colon anastomoses in irradiated bowel. Sixty male Wistar-Albino rats were used in this study. There were three groups: Group I, control group (n = 20); group II which received preoperative irradiation (n = 20); group III which received per oral Pycnogenol(®) before irradiation (n = 20). Only segmeter colonic resection and anastomosis was performed to the control group (Group I). The other groups (Group II, III) underwent surgery on the 5th day after pelvic irradiation. On postoperative days 3 and 7, half of the rats in each group were sacrificed and then relaparotomy was performed. There was no statistical difference between groups with respect to biochemical parameters. Bursting pressure was significantly higher in the Control and Group III compared with the Group II. In conclusion, the present study showed that preoperative irradiation effect negatively on colonic anastomoses in rats by means of mechanical parameters and administration of Pycnogenol(®) preoperatively ameliorates this unfavorable effect.

  8. Differential expression of sirtuins in the aging rat brain

    PubMed Central

    Braidy, Nady; Poljak, Anne; Grant, Ross; Jayasena, Tharusha; Mansour, Hussein; Chan-Ling, Tailoi; Smythe, George; Sachdev, Perminder; Guillemin, Gilles J.

    2015-01-01

    Although there are seven mammalian sirtuins (SIRT1-7), little is known about their expression in the aging brain. To characterize the change(s) in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of “physiologically” aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy aging. PMID:26005404

  9. Rat brains also have a default mode network

    PubMed Central

    Lu, Hanbing; Zou, Qihong; Gu, Hong; Raichle, Marcus E.; Stein, Elliot A.; Yang, Yihong

    2012-01-01

    The default mode network (DMN) in humans has been suggested to support a variety of cognitive functions and has been implicated in an array of neuropsychological disorders. However, its function(s) remains poorly understood. We show that rats possess a DMN that is broadly similar to the DMNs of nonhuman primates and humans. Our data suggest that, despite the distinct evolutionary paths between rodent and primate brain, a well-organized, intrinsically coherent DMN appears to be a fundamental feature in the mammalian brain whose primary functions might be to integrate multimodal sensory and affective information to guide behavior in anticipation of changing environmental contingencies. PMID:22355129

  10. HEPES prevents edema in rat brain slices.

    PubMed

    MacGregor, D G; Chesler, M; Rice, M E

    2001-05-11

    Brain slices gain water when maintained in bicarbonate-buffered artificial cerebro-spinal fluid (ACSF) at 35 degrees C. We previously showed that this edema is linked to glutamate receptor activation and oxidative stress. An additional factor that may contribute to swelling is acidosis, which arises from high CO2 tension in brain slices. To examine the role of acidosis in slice edema, we added N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) to osmotically balanced ACSF (HEPES-ACSF), thereby increasing buffering capacity beyond that provided by bicarbonate/CO2. Water gain was markedly inhibited in HEPES-ACSF. After 3 h incubation in HEPES-ACSF at 35 degrees C, water gain was limited to that of fresh slices after 1 h recovery in ACSF at room temperature. The effect of HEPES in decreasing slice water gain was concentration dependent from 0.3 to 20 mM. The inhibition of water gain by HEPES suggests that tissue acidosis is a contributing factor in brain slice edema.

  11. Donepezil for Irradiated Brain Tumor Survivors: A Phase III Randomized Placebo-Controlled Clinical Trial

    PubMed Central

    Rapp, Stephen R.; Case, L. Doug; Peiffer, Ann; Naughton, Michelle M.; Chan, Michael D.; Stieber, Volker W.; Moore, Dennis F.; Falchuk, Steven C.; Piephoff, James V.; Edenfield, William J.; Giguere, Jeffrey K.; Loghin, Monica E.; Shaw, Edward G.

    2015-01-01

    Purpose Neurotoxic effects of brain irradiation include cognitive impairment in 50% to 90% of patients. Prior studies have suggested that donepezil, a neurotransmitter modulator, may improve cognitive function. Patients and Methods A total of 198 adult brain tumor survivors ≥ 6 months after partial- or whole-brain irradiation were randomly assigned to receive a single daily dose (5 mg for 6 weeks, 10 mg for 18 weeks) of donepezil or placebo. A cognitive test battery assessing memory, attention, language, visuomotor, verbal fluency, and executive functions was administered before random assignment and at 12 and 24 weeks. A cognitive composite score (primary outcome) and individual cognitive domains were evaluated. Results Of this mostly middle-age, married, non-Hispanic white sample, 66% had primary brain tumors, 27% had brain metastases, and 8% underwent prophylactic cranial irradiation. After 24 weeks of treatment, the composite scores did not differ significantly between groups (P = .48); however, significant differences favoring donepezil were observed for memory (recognition, P = .027; discrimination, P = .007) and motor speed and dexterity (P = .016). Significant interactions between pretreatment cognitive function and treatment were found for cognitive composite (P = .01), immediate recall (P = .05), delayed recall (P = .004), attention (P = .01), visuomotor skills (P = .02), and motor speed and dexterity (P < .001), with the benefits of donepezil greater for those who were more cognitively impaired before study treatment. Conclusion Treatment with donepezil did not significantly improve the overall composite score, but it did result in modest improvements in several cognitive functions, especially among patients with greater pretreatment impairments. PMID:25897156

  12. Reversal of impaired wound healing in irradiated rats by platelet-derived growth factor-BB

    SciTech Connect

    Mustoe, T.A.; Purdy, J.; Gramates, P.; Deuel, T.F.; Thomason, A.; Pierce, G.F. )

    1989-10-01

    This study examined the potential influence of platelet-derived growth factor-BB homodimers (PDGF-BB) on surgical incisions in irradiated animals with depressed wound healing. Rats were irradiated with either 800 rads total body or 2,500 rads surface irradiation. Parallel dorsal skin incisions were made 2 days later, and PDGF-BB was applied topically a single time to one of two incisions. In total body-irradiated rats, bone marrow-derived elements were severely depressed, wound macrophages were virtually eliminated, and PDGF-BB treatment was ineffective. However, in surface-irradiated rats, PDGF-BB treatment recruited macrophages into wounds and partially reversed impaired healing on day 7 (p less than 0.005) and day 12 (p less than 0.001). PDGF-BB-treated wounds were 50 percent stronger than the paired control wounds. The results suggest PDGF requires bone marrow-derived cells, likely wound macrophages, for activity and that it may be useful as a topical agent in postirradiation surgical incisions.

  13. Kidney and lung injury in irradiated rats protected from acute death by partial-body shielding

    SciTech Connect

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.; Michieli, B.M. )

    1990-04-01

    Ninety-six CD-1 male rats were exposed to gamma-ray doses (0-25 Gy) in increments of 5 Gy. One femur, the surgically exteriorized GI tract, and the oral cavity were shielded during irradiation to protect against acute mortality from injury to the hematopoietic system, small intestine, and oral cavity. In addition, the thoraxes of half of the animals from each dose group were shielded. At approximately monthly intervals from 2 to 10 months after irradiation the hematocrit, plasma urea nitrogen (PUN), and {sup 51}Cr-EDTA clearance were measured. During the study 20 thorax-shielded and 19 thorax-irradiated animals died. All rats whose thoraxes received 25 Gy irradiation and three out of seven rats whose thoraxes received 20 Gy died 1 to 3 months postirradiation with massive pleural fluid accumulation. Shielding the thoraxes prevented this mode of death at these doses. Kidney injury was judged to be the primary cause of death of all thorax-shielded animals and 15- and 20-Gy thorax-irradiated animals. Animals with kidney damage had elevated PUN and reduced {sup 51}Cr-EDTA clearance and hematocrits. The relative merits of each of these end points in assessing radiation-induced kidney injury after total-body exposure are discussed.

  14. [Effect of irradiation on the degradation of rat thymocyte chromatin].

    PubMed

    Tsudzevich, B O; Parkhomets', Iu P; Andriĭchuk, T R; Iurkina, V V

    1998-01-01

    Genome instability of adaptive nature is formed under the experimental influence on a cell. Under critical conditions, strategy of organism is to damage the cells that cannot be restored and controlled by including the program of apoptosis. The ordered internucleosomal DNA degradation is considered to be one of the proof attributes of immunocompetent cell apoptosis. We investigated the effects of various doses of irradiation on the thymocytes chromatine fragmentation in 1,2,3 hours after a single X-ray exposure or after chronic influence in conditions of Chernobyl research base. By the means of electrophoresis in agarose and judging by polydeoxyribonucleotides accumulation we observed the "ladder pattern" of degradation in 3 hr after single 1 Gr irradiation (the smallest dose displaying the effect). We suppose that the influence of both chronic low-intensity irradiation taking place in Chernobyl and single X-ray exposure result in intensifying of DNA fragmentation in the cells of immunocompetent organs.

  15. Cloning and expression of a rat brain GABA transporter

    SciTech Connect

    Guastella, J.; Czyzyk, L.; Davidson, N.; Lester, H.A. ); Nelson, N.; Nelson, H.; Miedel, M.C. ); Keynan, S.; Kanner, B.I. )

    1990-09-14

    A complementary DNA clone (designated GAT-1) encoding a transporter for the neurotransmitter {gamma}-aminobutyric acid (GABA) has been isolated from rat brain, and its functional properties have been examined in Xenopus oocytes. Oocytes injected with GAT-1 synthetic messenger RNA accumulated ({sup 3}H)GABA to levels above control values. The transporter encoded by GAT-1 has a high affinity for GABA, is sodium- and chloride-dependent, and is pharmacologically similar to neuronal GABA transporters. The GAT-1 protein shares antigenic determinants with a native rat brain GABA transporter. The nucleotide sequence of GAT-1 predicts a protein of 599 amino acids with a molecular weight of 67 kilodaltons. Hydropathy analysis of the deduced protein suggests multiple transmembrane regions, a feature shared by several cloned transporters; however, database searches indicate that GAT-1 is not homologous to any previously identified proteins. Therefore, GAT-1 appears to be a member of a previously uncharacterized family of transport molecules.

  16. Effects of prenatal X-irradiation on postnatal testicular development and function in the Wistar rat: development/teratology/behavior/radiation.

    PubMed

    Jensh, R P; Brent, R L

    1988-11-01

    It is evident that significant permanent tissue hypoplasia can be produced following radiation exposure late in fetal development. Because two organs, brain and testes, are developmentally and functionally interrelated, it was of interest to determine whether fetal testicular hypoplasia was a primary or a secondary effect of fetal brain irradiation. Twenty-four pregnant Wistar strain rats were randomly assigned to one of four groups, and a laparotomy was performed on day 18 of gestation. The fetuses received sham irradiation, whole body irradiation, or only head/thorax or pelvic body irradiation at a dosage level of 1.5 Gy. Mothers were allowed to deliver and raise their offspring until postnatal day 30, when the offspring were weaned. At 60 days of age, 74 male offspring were allowed to mate with colony control females of similar age until successful insemination or until the males reached 90 days of age, when they were killed. Testes were weighed and processed for histologic examination. Direct radiation of testes, due to whole body or pelvic exposure, resulted in testicular growth retardation and significantly reduced spermatogenesis. Breeding activity of the males and the percent of positive inseminations were also slightly reduced. However, a significant percentage of male offspring receiving direct testicular radiation did produce offspring. Head/thorax-only irradiation did not adversely affect testicular growth or spermatogenesis. Therefore, the use of histologic analysis as the sole determinant of infertility may be misleading. This study indicates that testicular growth retardation and an increased infertility rate result from direct prenatal exposure of rat testes to X-radiation and are not necessarily mediated via X-irradiation effects on the central nervous system.

  17. Effects of prenatal X-irradiation on postnatal testicular development and function in the Wistar rat: development/teratology/behavior/radiation

    SciTech Connect

    Jensh, R.P.; Brent, R.L.

    1988-11-01

    It is evident that significant permanent tissue hypoplasia can be produced following radiation exposure late in fetal development. Because two organs, brain and testes, are developmentally and functionally interrelated, it was of interest to determine whether fetal testicular hypoplasia was a primary or a secondary effect of fetal brain irradiation. Twenty-four pregnant Wistar strain rats were randomly assigned to one of four groups, and a laparotomy was performed on day 18 of gestation. The fetuses received sham irradiation, whole body irradiation, or only head/thorax or pelvic body irradiation at a dosage level of 1.5 Gy. Mothers were allowed to deliver and raise their offspring until postnatal day 30, when the offspring were weaned. At 60 days of age, 74 male offspring were allowed to mate with colony control females of similar age until successful insemination or until the males reached 90 days of age, when they were killed. Testes were weighed and processed for histologic examination. Direct radiation of testes, due to whole body or pelvic exposure, resulted in testicular growth retardation and significantly reduced spermatogenesis. Breeding activity of the males and the percent of positive inseminations were also slightly reduced. However, a significant percentage of male offspring receiving direct testicular radiation did produce offspring. Head/thorax-only irradiation did not adversely affect testicular growth or spermatogenesis. Therefore, the use of histologic analysis as the sole determinant of infertility may be misleading. This study indicates that testicular growth retardation and an increased infertility rate result from direct prenatal exposure of rat testes to X-radiation and are not necessarily mediated via X-irradiation effects on the central nervous system.

  18. Serum protein concentration in low-dose total body irradiation of normal and malnourished rats.

    PubMed

    Viana, W C M; Lambertz, D; Borges, E S; Neto, A M O; Lambertz, K M F T; Amaral, A

    2016-12-01

    Among the radiotherapeutics' modalities, total body irradiation (TBI) is used as treatment for certain hematological, oncological and immunological diseases. The aim of this study was to evaluate the long-term effects of low-dose TBI on plasma concentration of total protein and albumin using prematurely and undernourished rats as animal model. For this, four groups with 9 animals each were formed: Normal nourished (N); Malnourished (M); Irradiated Normal nourished (IN); Irradiated Malnourished (IM). At the age of 28 days, rats of the IN and IM groups underwent total body gamma irradiation with a source of cobalt-60. Total protein and Albumin in the blood serum was quantified by colorimetry. This research indicates that procedures involving low-dose total body irradiation in children have repercussions in the reduction in body-mass as well as in the plasma levels of total protein and albumin. Our findings reinforce the periodic monitoring of total serum protein and albumin levels as an important tool in long-term follow-up of pediatric patients in treatments associated to total body irradiation.

  19. Neuroprotection of Selective Brain Cooling After Penetrating Ballistic-like Brain Injury in Rats.

    PubMed

    Wei, Guo; Lu, Xi-Chun M; Shear, Deborah A; Yang, Xiaofang; Tortella, Frank C

    2011-01-01

    Induced hypothermia has been reported to provide neuroprotection against traumatic brain injury. We recently developed a novel method of selective brain cooling (SBC) and demonstrated its safety and neuroprotection efficacy in a rat model of ischemic brain injury. The primary focus of the current study was to evaluate the potential neuroprotective efficacy of SBC in a rat model of penetrating ballistic-like brain injury (PBBI) with a particular focus on the acute cerebral pathophysiology, neurofunction, and cognition. SBC (34°C) was induced immediately after PBBI, and maintained for 2 hours, followed by a spontaneous re-warming. Intracranial pressure (ICP) and regional cerebral blood flow were monitored continuously for 3 hours, and the ICP was measured again at 24 hours postinjury. Brain swelling, blood-brain barrier permeability, intracerebral hemorrhage, lesion size, and neurological status were assessed at 24 hours postinjury. Cognitive abilities were evaluated in a Morris water maze task at 12-16 days postinjury. Results showed that SBC significantly attenuated PBBI-induced elevation of ICP (PBBI = 33.2 ± 10.4; PBBI + SBC = 18.8 ± 6.7 mmHg) and reduced brain swelling, blood-brain barrier leakage, intracerebral hemorrhage, and lesion volume by 40%-45% for each matrix, and significantly improved neurologic function. However, these acute neuroprotective benefits of SBC did not translate into improved cognitive performance in the Morris water maze task. These results indicate that 34°C SBC is effective in protecting against acute brain damage and related neurological dysfunction. Further studies are required to establish the optimal treatment conditions (i.e., duration of cooling and/or combined therapeutic approaches) needed to achieve significant neurocognitive benefits.

  20. [Effect of phenibut on interhemispheric transmission in the rat brain].

    PubMed

    Borodkina, L E; Molodavkin, G M; Tiurenkov, I N

    2009-01-01

    Effects of the nootropic drug phenibut on the transcallosal potential amplitude in the sensomotor brain cortex have been studied in rats. It is established that a single administration of phenibut in a dose of 25 mg/kg (i.p.) increases the transcallosal response amplitude, thus improving the interhemispheric transmission. This effect, being an objective evidence of the nootrope activity, confirms the drug status and corroborates the positive action of phenibut on the learning and memory processes.

  1. Identification of rat brain opioid (enkephalin) receptor by photoaffinity labeling

    SciTech Connect

    Yeung, C.W.

    1986-01-01

    A photoreactive, radioactive enkephalin derivative was prepared and purified by high performance liquid chromatography. Rat brain and spinal cord plasma membranes were incubated with this radioiodinated photoprobe and were subsequently photolysed. Autoradiography of the sodium dodecyl sulfate gel electrophoresis of the solubilized and reduced membranes showed that a protein having an apparent molecular weight of 46,000 daltons was specifically labeled, suggesting that this protein may be the opioid (enkephalin) receptor.

  2. Oxidative changes in brain of aniline-exposed rats

    SciTech Connect

    Kakkar, P.; Awasthi, S.; Viswanathan, P.N. )

    1992-10-01

    Oxidative stress in rat cerebellum, cortex and brain stem after a short-term high-dose exposure to aniline vapors under conditions akin to those after major chemical accidents, was studied. Significant increases in superoxide dismutase isozyme activities and formation of thiobarbituric acid reactive material along with depletion of ascorbic acid and non-protein sulfhydryl content suggest impairment of antioxidant defenses 24 h after single exposure to 15,302 ppm aniline vapors for 10 min.

  3. Development of specificity and stereoselectivity of rat brain dopamine receptors.

    PubMed

    Miller, J C; Friedhoff, A J

    1986-01-01

    Prenatal exposure to the neuroleptic haloperidol has been reported to produce an enduring decrement in the number of dopamine D2 receptors in rat striatum and a persistent diminution of a dopamine dependent behavior, stereotypy. The ontogeny of rat brain dopamine binding sites has been studied in terms of the kinetic properties and phenotypic specificity in rat fetal brain through early postnatal development. Sites showing some properties of the D2 binding site can be found prior to gestational day (GD) 18, can be labeled with [3H]dopamine or [3H]spiroperidol and can be displaced with dopaminergic agonists and antagonists. Saturation kinetics for specific [3H]spiroperidol has previously been found to occur on or about GD 18. It is of interest that the critical period for the prenatal effect of haloperidol to reduce striatal D2 binding sites, GD's 15-18, coincides with the period during which dopamine binding sites lack true specificity, but can be labeled with dopaminergic ligands. In these experiments the development of stereoselectivity of brain dopamine binding sites has been examined. When rat mothers were given either the neuroleptic (+)-butaclamol or its therapeutically inactive isomer (-)-butaclamol during the critical period GD's 15-18, the number of [3H]spiroperidol binding sites in striata of offspring was significantly reduced by both stereoisomers. This is in marked contrast to the postnatal treatment effect by a neuroleptic in which upregulation of striatal D2 binding sites occurs only by treatment with the therapeutically active isomer (+)-butaclamol. In vitro studies of the direct effect of the stereoisomers of butaclamol indicate that the recognition sites detected during fetal brain development with [3H]spiroperidol do not distinguish between the isomers of butaclamol.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Multiple opiate receptors in the brain of spontaneously hypertensive rats

    SciTech Connect

    Das, S.; Bhargava, H.N.

    1986-03-01

    The characteristics of ..mu.., delta and kappa -opiate receptors in the brain of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats were determined using the receptor binding assays. The ligands used were /sup 3/H-naltrexone (..mu..), /sup 3/H-ethylketocyclazocine (EKC, kappa) and /sup 3/H-Tyr-D-Ser-Gly-Phe-Leu-Thr (DSTLE, delta). Since EKC binds to ..mu.. and delta receptors in addition to kappa, the binding was done in the presence of 100 nM each of DAGO and DADLE to suppress ..mu.. and delta sites, respectively. All three ligands bound to brain membranes of WKY rats at a single high affinity site with the following B/sub max/ (fmol/mg protein) and K/sub d/ (nM) values: /sup 3/H-naltrexone (130.5; 0.43) /sup 3/H-EKC (19.8, 1.7) and /sup 3/H-DSTLE (139, 2.5). The binding of /sup 3/H-naltrexone and /sup 3/H-DSTLE in the brain of WKY and SH did not differ. A consistent increase (22%) in B/sub max/ of /sup 3/H-EKC was found in SHR compared to WKY rats. However, the K/sub d/ values did not differ. The increase in B/sub max/ was due to increases in hypothalamus and cortex. It is concluded that SH rats have higher density of kappa-opiate receptors, particularly in hypothalamus and cortex, compared to WKY rats, and that kappa-opiate receptors may be involved in the pathophysiology of hypertension.

  5. Gelation and fodrin purification from rat brain extracts.

    PubMed

    Levilliers, N; Péron-Renner, M; Coffe, G; Pudles, J

    1986-06-03

    Extracts from rat brain tissue have been shown to give rise to a gel which exhibits the following features. It is mainly enriched in actin and in a high-molecular-weight protein with polypeptide chains of 235 and 240 kDa, which we identified as fodrin. Tubulin is also a major component of the gel but it appears to be trapped non-specifically during the gelation process. Gelation is pH-, ionic strength- and Ca2+-concentration-dependent, and is optimal under the conditions which promote the interaction between polymerized actin and fodrin. In a similar way to that described for the purification of rat brain actin (Levilliers, N., Péron-Renner, M., Coffe, G. and Pudles, J. (1984) Biochimie 66, 531-537), we used the gelation system as a selective means of recovering fodrin from the mixture of a low-ionic-strength extract from whole rat brain and a high-ionic-strength extract of the particulate fraction. From this gel, fodrin was purified with a good yield by a simple procedure involving gel dissociation in 0.5 M KCl and depolymerization in 0.7 M KI, Bio-Gel A-15m chromatography, followed by ammonium sulfate precipitation.

  6. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  7. Brain oxidative stress induced by obstructive jaundice in rats.

    PubMed

    Chroni, Elisabeth; Patsoukis, Nikolaos; Karageorgos, Nikolaos; Konstantinou, Dimitris; Georgiou, Christos

    2006-02-01

    The effect of experimental obstructive jaundice on the oxidative status of brain tissues in rats was examined. Twenty-four male Wistar rats were divided into 4 groups: Group I was the control, group II was the sham operated, and groups III and IV were bile duct ligated and killed on the 5th and the 10th day, respectively. Oxidative stress was assessed by measuring the thiol redox state (protein and nonprotein components) and lipid peroxidation level variations in samples from the cerebral cortex, midbrain, and cerebellar tissue in all animals. Results indicated the presence of oxidative stress in the jaundiced animals that was more pronounced on the 10th day as indicated by a decrease in reduced glutathione and protein thiol and an increase in protein disulphide and lipid peroxidation. A dramatic elevation of the level of total nonprotein mixed disulphide level was found specifically in the midbrain in the 10th day group. This suggests an accumulation of nonprotein disulfides other than oxidized glutathione, which remained unchanged, in this particular brain area. This study showed a correlation between experimental obstructive jaundice and the oxidative stress in the rats' brain, implying that a similar pathogenetic mechanism may play a key role in cholestatic liver disease, resulting in hepatic encephalopathy in humans.

  8. Intrinsic optical signals of brains in rats during loss of tissue viability: effect of brain temperature

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Kikuchi, Makoto

    2007-07-01

    Noninvasive, real-time monitoring of brain tissue viability is crucial for the patients with stroke, traumatic brain injury, etc. For this purpose, measurement of intrinsic optical signal (IOS) is attractive because it can provide direct information about the viability of brain tissue noninvasively. We performed simultaneous measurements of IOSs that are related to morphological characteristics, i.e., light scattering, and energy metabolism for rat brains during saline infusion as a model with temporal loss of brain tissue viability. The results showed that the scattering signal was steady in an initial phase but showed a drastic, triphasic change in a certain range of infusion time, during which the reduction of CuA in cytochrome c oxidase started and proceeded rapidly. The start time of triphasic scattering change was delayed for about 100 s by lowering brain temperature from 29°C to 24°C, demonstrating the optical detection of cerebroprotection effect by brain cooling. Electron microscopic observation showed morphological changes of dendrite and mitochondria in the cortical surface tissue after the triphasic scattering change, which was thought to be associated with the change in light scattering we observed. These findings suggest that the simultaneous measurement of the intrinsic optical signals related to morphological characteristics and energy metabolism is useful for monitoring tissue viability in brain.

  9. A magnetic resonance imaging study on changes in rat mandibular bone marrow and pulp tissue after high-dose irradiation

    PubMed Central

    Lee, Wan; Lee, Byung-Do; Lee, Kang-Kyoo

    2014-01-01

    Purpose This study was designed to evaluate whether magnetic resonance imaging (MRI) is appropriate for detecting early changes in the mandibular bone marrow and pulp tissue of rats after high-dose irradiation. Materials and Methods The right mandibles of Sprague-Dawley rats were irradiated with 10 Gy (Group 1, n=5) and 20 Gy (Group 2, n=5). Five non-irradiated animals were used as controls. The MR images of rat mandibles were obtained before irradiation and once a week until week 4 after irradiation. From the MR images, the signal intensity (SI) of the mandibular bone marrow and pulp tissue of the incisor was interpreted. The MR images were compared with the histopathologic findings. Results The SI of the mandibular bone marrow had decreased on T2-weighted MR images. There was little difference between Groups 1 and 2. The SI of the irradiated groups appeared to be lower than that of the control group. The histopathologic findings showed that the trabecular bone in the irradiated group had increased. The SI of the irradiated pulp tissue had decreased on T2-weighted MR images. However, the SI of the MR images in Group 2 was high in the atrophic pulp of the incisor apex at week 2 after irradiation. Conclusion These patterns seen on MRI in rat bone marrow and pulp tissue were consistent with histopathologic findings. They may be useful to assess radiogenic sclerotic changes in rat mandibular bone marrow. PMID:24701458

  10. Effects of 0. 6-Gy prenatal X irradiation on postnatal neurophysiologic development in the Wistar rat

    SciTech Connect

    Jensh, R.P.; Brent, R.L.

    1986-04-01

    Forty-one pregnant Wistar strain rats were irradiated with 0.6-Gy X rays or were sham irradiated on the 9th or 17th days of gestation to determine if this dosage level would result in alterations in postnatal neurophysiologic development. Half of the mothers were sacrificed at term, and the developmental status of 221 newborns was evaluated. The remaining mothers delivered and raised their litters. The 161 offspring were observed for the age of attainment of the following physiologic parameters: pinna detachment, eye opening, testes opening. Offspring were also tested for the acquisition of the following selected reflexes: surface righting, negative geotaxis, auditory startle, air righting, and visual placing. Term fetal weight was lower than the controls in the group irradiated on the 9th day but was recuperable postnatally. None of the 9 developmental tests performed postnatally were abnormal in the animals irradiated on the 9th day. Thus, at least with regard to these measures, the surviving embryos exposed during the all-or-none period could not be differentiated from the controls. Offspring irradiated on the 17th day exhibited retarded growth which persisted during neonatal life. The three-day-mean neonatal weight was significantly lower in the group irradiated on the 17th day compared to controls. There were no significant maternal body weight or organ/weight differences between the groups. Rats exposed in utero on the 17th day had a significantly delayed acquisition of air righting. These results demonstrate that 0.6-Gy in utero irradiation on the 17th day of gestation can cause subtle alterations in growth and development of the Wistar strain rat during postnatal life.

  11. Encoding-based brain-computer interface controlled by non-motor area of rat brain.

    PubMed

    Lang, Yiran; Du, Ping; Shin, Hyung-Cheul

    2011-09-01

    As the needs of disabled patients are increasingly recognized in society, researchers have begun to use single neuron activity to construct brain-computer interfaces (BCI), designed to facilitate the daily lives of individuals with physical disabilities. BCI systems typically allow users to control computer programs or external devices via signals produced in the motor or pre-motor areas of the brain, rather than producing actual motor movements. However, impairments in these brain areas can hinder the application of BCI. The current paper demonstrates the feasibility of a one-dimensional (1D) machine controlled by rat prefrontal cortex (PFC) neurons using an encoding method. In this novel system, rats are able to quench thirst by varying neuronal firing rate in the PFC to manipulate a water dish that can rotate in 1D. The results revealed that control commands generated by an appropriate firing frequency in rat PFC exhibited performance improvements with practice, indicated by increasing water-drinking duration and frequency. These results demonstrated that it is possible for rats to understand an encoding-based BCI system and control a 1D machine using PFC activity to obtain reward.

  12. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  13. A 3D digital map of rat brain.

    PubMed

    Toga, A W; Santori, E M; Hazani, R; Ambach, K

    1995-01-01

    A three dimensional (3D) computerized map of rat brain anatomy created with digital imaging techniques is described. Six male Sprague-Dawley rats, weighing 270-320 g, were used in the generation of this atlas. Their heads were frozen, and closely spaced cryosectional images were digitally captured. Each serial data set was organized into a digital volume, reoriented into a flat skull position, and brought into register with each other. A volume representative of the group following registration was chosen based on its anatomic correspondence with the other specimens as measured by image correlation coefficients and landmark matching. Mean positions of lambda, bregma, and the interaural plane of the group within the common coordinate system were used to transform the representative volume into a 3D map of rat neuroanatomy. images reconstructed from this 3D map are available to the public via Internet with an anonymous file transfer protocol (FTP) and World Wide Web. A complete description of the digital map is provided in a comprehensive set of sagittal planes (up to 0.031 mm spacing) containing stereotaxic reference grids. Sets of coronal and horizontal planes, resampled at the same increment, also are included. Specific anatomic features are identified in a second collection of images. Stylized anatomic boundaries and structural labels were incorporated into selected orthogonal planes. Electronic sharing and interactive use are benefits afforded by a digital format, but the foremost advantage of this 3D map is its whole brain integrated representation of rat in situ neuroanatomy.

  14. The effects of 860 MHz radiofrequency radiation on the induction or promotion of brain tumors and other neoplasms in rats.

    PubMed

    Zook, B C; Simmens, S J

    2001-04-01

    Sprague-Dawley rats were irradiated with a continuous- wave (CW) or a pulsed-wave (P) radiofrequency (RF) for 6 h/day, 5 days/week from 2 up to 24 months of age. The RFs emanated from dipole antennas (1 W average output) 2.0 +/- 0.5 cm from the tip of each rat's nose. The RFs had an 860 MHz frequency, and the specific absorption rate was 1.0 W/ kg averaged over the brain. Fifteen groups of 60 rats (900 total) were formed from offspring of females injected i.v. with 0 (groups 1, 2, 9, 10, 13), 2.5 (groups 5, 6, 7, 8, 11, 12, 14) or 10 mg/kg (groups 3, 4, 15) ethylnitrosourea (ENU) to induce brain tumors. Groups 1, 3, 5 and 7 received the PRF, and groups 9 and 11 the CWRF; groups 2, 4, 6, 8, 10 and 12 were sham-irradiated, and groups 13-15 were cage controls. All rats but 2, totaling 898, were necropsied, and major tissues were studied histopathologically. There was no statistically significant evidence that the PRF or CWRF induced neoplasia in any tissues. Additionally, there was no significant evidence of promotion of cranial or spinal nerve or spinal cord tumors. The PRF or CWRF had no statistically significant effect on the number, volume, location, multiplicity, histological type, malignancy or fatality of brain tumors. There was a trend for the group that received a high dose of ENU and was exposed to the PRF to develop fatal brain tumors at a higher rate than its sham group; however, the result was not significant using the log-rank test (P = 0.14, 2-tailed). No statistically significant differences were related to the PRF or CWRF compared to controls in the low- or zero-dose groups regarding tumors of any kind.

  15. Effect of 2,450 MHz microwave radiation on the development of the rat brain

    SciTech Connect

    Inouye, M.; Galvin, M.J.; McRee, D.I.

    1983-12-01

    Male Sprague-Dawley rats were exposed to 2,450 MHz microwave radiation at an incident power density of 10 mW/cm2 daily for 3 hours from day 4 of pregnancy (in utero exposure) through day 40 postpartum, except for 2 days at the perinatal period. The animals were killed, and the brains removed, weighed, measured, and histologically examined at 15, 20, 30, and 40 days of age. The histologic parameters examined included the cortical architecture of the cerebral cortex, the decline of the germinal layer along the lateral ventricles, the myelination of the corpus callosum, and the decline of the external germinal layer of the cerebellar cortex. In 40-day-old rats, quantitative measurements of neurons were also made. The spine density of the pyramidal cells in layer III of the somatosensory cortex, and the density of basal dendritic trees of the pyramidal cells in layer V were measured in Golgi-Cox impregnated specimens. In addition, the density of Purkinje cells and the extent of the Purkinje cell layer in each lobule were measured in midsagittal sections of the cerebellum stained with thionin. There were no remarkable differences between microwave-exposed and control (sham-irradiated) groups for any of the histologic or quantitative parameters examined; however, the findings provide important information on quantitative measurements of the brain. The data from this study failed to demonstrate that there is a significant effect on rat brain development due to microwave exposure (10 mW/cm2) during the embryonic, fetal, and postnatal periods.

  16. Management of solitary metastasis to the brain: the role of elective brain irradiation following complete surgical resection. [/sup 60/Co; x-rays

    SciTech Connect

    Dosoretz, D.E.; Blitzer, P.H.; Russell, A.H.; Wang, C.C.

    1980-12-01

    We examined the records of 33 patients who presented with the clinico-radiological diagnosis of solitary brain metastasis and no other evidence of tumor dissemination. Length of survival of patients and patterns of treatment failure were analyzed according to the treatment modalities that were used. Both groups were comparable regarding major parameters that affect response and survival in patients with brain metastasis. There did not appear to be any significant advantage to the use of irradiation following excision, at least at the doses employed in this study. We advocate the use of higher doses of irradiation in any curative attempt following total excision of a solitary brain metastasis.

  17. Photoacoustic imaging for transvascular drug delivery to the rat brain

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  18. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway.

    PubMed

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye

    2014-01-10

    Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague-Dawley rats received a single dose of 20Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF-pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF-pCREB signaling in non-irradiation group. These results suggest that forced running exercise offers a potentially effective treatment for radiation-induced cognitive deficits.

  19. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg-1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg-1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  20. The PPARalpha Agonist Fenofibrate Preserves Hippocampal Neurogenesis and Inhibits Microglial Activation After Whole-Brain Irradiation

    SciTech Connect

    Ramanan, Sriram; Kooshki, Mitra; Zhao Weiling; Hsu, F.-C.; Riddle, David R.; Robbins, Mike E.

    2009-11-01

    Purpose: Whole-brain irradiation (WBI) leads to cognitive impairment months to years after radiation. Numerous studies suggest that decreased hippocampal neurogenesis and microglial activation are involved in the pathogenesis of WBI-induced brain injury. The goal of this study was to investigate whether administration of the peroxisomal proliferator-activated receptor (PPAR) alpha agonist fenofibrate would prevent the detrimental effect of WBI on hippocampal neurogenesis. Methods and Materials: For this study, 129S1/SvImJ wild-type and PPARalpha knockout mice that were fed either regular or 0.2% wt/wt fenofibrate-containing chow received either sham irradiation or WBI (10-Gy single dose of {sup 137}Cs gamma-rays). Mice were injected intraperitoneally with bromodeoxyuridine to label the surviving cells at 1 month after WBI, and the newborn neurons were counted at 2 months after WBI by use of bromodeoxyuridine/neuronal nuclei double immunofluorescence. Proliferation in the subgranular zone and microglial activation were measured at 1 week and 2 months after WBI by use of Ki-67 and CD68 immunohistochemistry, respectively. Results: Whole-brain irradiation led to a significant decrease in the number of newborn hippocampal neurons 2 months after it was performed. Fenofibrate prevented this decrease by promoting the survival of newborn cells in the dentate gyrus. In addition, fenofibrate treatment was associated with decreased microglial activation in the dentate gyrus after WBI. The neuroprotective effects of fenofibrate were abolished in the knockout mice, indicating a PPARalpha-dependent mechanism or mechanisms. Conclusions: These data highlight a novel role for PPARalpha ligands in improving neurogenesis after WBI and offer the promise of improving the quality of life for brain cancer patients receiving radiotherapy.

  1. Stimulation of post-traumatic regeneration of skeletal muscles of old rats after x-ray irradiation

    SciTech Connect

    Bulyakova, N.V.; Popova, M.F.

    1987-09-01

    The authors seek a method of stimulating restorative processes in irradiated muscles of old animals. Rats were used in the experiments. Different series of experiments were performed, including complete transverse section of the gastrocnemius muscle after local x-ray irradiation, and laser therapy of the transversly divided gastrocnemius muscle. Post-traumatic regeneration of the gastrocnemius muscle of old rats is illustrated schematically. The experimental data showed that pulsed laser therapy or grafting of minced unirradiated muscle tissue can largely restore the regenerative capacity of the gastrocnemius muscle of old rats when depressed by x-ray irradiation, but the method of grafting minced unirradiated muscle tissue was more effective.

  2. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    SciTech Connect

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  3. Effect of Previous Irradiation on Vascular Thrombosis of Microsurgical Anastomosis: A Preclinical Study in Rats

    PubMed Central

    Gallardo-Calero, Irene; López-Fernández, Alba; Romagosa, Cleofe; Vergés, Ramona; Aguirre-Canyadell, Marius; Soldado, Francisco; Velez, Roberto

    2016-01-01

    Background: The objective of the present investigation was to compare the effect of neoadjuvant irradiation on the microvascular anastomosis in cervical bundle using an experimental model in rats. Methods: One hundred forty male Sprague–Dawley rats were allocated into 4 groups: group I, control, arterial microanastomosis; group II, control, venous microanastomosis; group III, arterial microanastomosis with previous irradiation (20 Gy); and group IV, venous microanastomosis with previous irradiation (20 Gy). Clinical parameters, technical values of anastomosis, patency, and histopathological parameters were evaluated. Results: Irradiated groups (III and IV) and vein anastomosis groups (II and IV) showed significantly increased technical difficulties. Group IV showed significantly reduced patency rates (7/35) when compared with the control group (0/35). Radiotherapy significantly decreased the patency rates of the vein (7/35) when compared with the artery (1/35). Groups III and IV showed significantly reduced number of endothelial cells and also showed the presence of intimal thickening and adventitial fibrosis as compared with the control group. Conclusion: Neoadjuvant radiotherapy reduces the viability of the venous anastomosis in a preclinical rat model with a significant increase in the incidence of vein thrombosis. PMID:27975009

  4. Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain.

    PubMed

    Kobayashi, Megumi Sugahara; Asai, Satoshi; Ishikawa, Koichi; Nishida, Yayoi; Nagata, Toshihito; Takahashi, Yasuo

    2008-06-01

    Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we screened 24000 genes in the hippocampus under hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (39 degrees C) conditions in a rat ischemia-reperfusion model. When the ischemic group at each intra-ischemic brain temperature was compared to a sham-operated control group, genes whose expression levels changed more than three-fold with statistical significance could be detected. In our screening condition, thirty-three genes (some of them novel) were obtained after screening, and extensive functional surveys and literature reviews were subsequently performed. In the hypothermic condition, many neuroprotective factor genes were obtained, whereas cell death- and cell damage-associated genes were detected as the brain temperature increased. At all intra-ischemic brain temperatures, multiple molecular chaperone genes were obtained. The finding that intra-ischemic brain temperature affects the expression level of many genes related to neuroprotection or neurotoxicity coincides with the different pathological outcomes at different brain temperatures, demonstrating the utility of the genetic approach.

  5. Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats.

    PubMed

    Mohammed, Haitham S

    2016-11-01

    Transcranial low-level infrared laser is a modality of therapy based on the principle of photons delivered in a non-invasive manner through the skull for the treatment of some neurological conditions such as psychological disorders, traumatic brain injuries, and neurodegenerative diseases among others. In the present study, effects of low-level infrared laser irradiation with different radiation powers (80, 200, and 400 mW, continuous wave) were investigated on normal animals subjected to forced swimming test (FST). Results indicated that there are changes in FST parameters in animals irradiated with laser; the lowest dose provoked a significant increase in animal activity (swimming and climbing) and a significant decrease in animal's immobility, while the highest laser dose resulted in a complete inverse action by significantly increasing animal immobility and significantly decreasing animal activity with respect to control animals. The lowest dose (80 mW) of transcranial laser irradiation has then utilized on animals injected with a chronic dose of reserpine (0.2 mg/kg i.p. for 14 days) served as an animal model of depression. Laser irradiation has successfully ameliorated depression induced by reserpine as indicated by FST parameters and electrocorticography (ECoG) spectral analysis in irradiated animals. The findings of the present study emphasized the beneficial effects of low-level infrared laser irradiation on normal and healthy animals. Additionally, it indicated the potential antidepressant activity of the low dose of infrared laser irradiation.

  6. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    PubMed

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-02-20

    Δ(9)-Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [(18)F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of < 1 ng/ml (injected dose: ≤ 0.01 mg/kg) corresponded to an increased glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies.

  7. U. v. -enhanced reactivation of u. v. -irradiated herpes virus by primary cultures of rat hepatocytes

    SciTech Connect

    Zurlo, J.; Yager, J.D. )

    1984-04-01

    Carcinogen treatment of cultured mammalian cells prior to infection with u.v.-irradiated virus results in enhanced virus survival and mutagenesis suggesting the induction of SOS-type processes. The development of a primary rat hepatocyte culture system is reported to investigate cellular responses to DNA damage which may be relevant to hepatocarcinogenesis in vivo. Enhanced reactivation of u.v.-irradiated Herpes simplex virus type 1 (HSV-1) occurred in hepatocytes irradiated with u.v. Cultured hepatocytes were pretreated with u.v. at the time of enhanced DNA synthesis. These treatments caused an inhibition followed by a recovery of DNA synthesis. At various times after pretreatment, the hepatocytes were infected with control or u.v.-irradiated HSV-1 at low multiplicity, and virus survival was measured. U.v.-irradiated HSV-1 exhibited the expected two-component survival curve in control or u.v. pretreated hepatocytes. The magnitude of enhanced reactivation of HSV-1 was dependent on the u.v. dose to the hepatocytes, the time of infection following u.v. pretreatment, and the level of DNA synthesis at the time of pretreatment. These results suggest that u.v. treatment of rat hepatocytes causes the induction of SOS-type functions tht may have a role in the initiation of hepatocarcinogenesis.

  8. EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter waves.

    PubMed

    Xie, Taorong; Pei, Jian; Cui, Yibin; Zhang, Jie; Qi, Hongxing; Chen, Shude; Qiao, Dengjiang

    2011-06-01

    As the application of millimeter waves for civilian and military use increases, the possibility of overexposure to millimeter waves will also increase. This paper attempts to evaluate stress reactions evoked by 35 GHz millimeter waves. The stress reactions in Sprague-Dawley (SD) rats were quantitatively studied by analyzing electroencephalogram (EEG) changes induced by overexposure to 35 GHz millimeter waves. The relative changes in average energy of the EEG and its wavelet decompositions were used for extracting the stress reaction indicators. Incident average power densities (IAPDs) of 35 GHz millimeter waves from 0.5 W cm(-2) to 7.5 W cm(-2) were employed to investigate the relation between irradiation dose and the stress reactions in the rats. Different stress reaction periods evoked by irradiation were quantitatively evaluated by EEG results. The results illustrate that stress reactions are more intense during the first part of the irradiation than during the later part. The skin temperature increase produced by millimeter wave irradiation is the principle reason for stress reactions and skin injuries. As expected, at the higher levels of irradiation, the reaction time decreases and the reaction intensity increases.

  9. [Effect of External Irradiation and Immobilization Stress on the Reproductive System of Male Rats].

    PubMed

    Vereschako, G G; Tshueshova, N V; Gorokh, G A; Kozlov, I G; Naumov, A D

    2016-01-01

    We studied the state of the reproductive system of male rats after irradiation at a dose of 2.0 Gy, immobilization stress (6 hours/day for 7 days) and their combined effects. On the 30th day after the combined treatment (37 days after irradiation) a decrease in the testicular weight by almost 50% compared with the control and lesions connected with the process of spermatogenesis are observed. In the remote period--on the 60th day (67th after irradiation) the effect of irradiation and irradiation in combination with immobilization stress leads to a sharp drop in the number of epididymal sperm (up to 18% of the control), and a reduction of their viability. The reaction ofthe reproductive system to the immobilization stress is expressed in a certain increase in the mass of the testes and epididymis, moderate imbalances in the composition of spermatogenic cells in the testis tissue, and in the long term--in the increased number of epididymal sperm and the decrease in their viability. Changes of testosterone in the blood serum, especially significant for the combined effect, reflect impairments of the regulation of the reproductive system of males under these conditions. With regard to individual indicators of the reproductive system of male rats in some cases, the- combined effects of radiation and stress had a synergistic, or, on the contrary, antagonistic character.

  10. Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene

    PubMed Central

    Stefaniuk, Marzena; Gualda, Emilio J.; Pawlowska, Monika; Legutko, Diana; Matryba, Paweł; Koza, Paulina; Konopka, Witold; Owczarek, Dorota; Wawrzyniak, Marcin; Loza-Alvarez, Pablo; Kaczmarek, Leszek

    2016-01-01

    Whole-brain imaging with light-sheet fluorescence microscopy and optically cleared tissue is a new, rapidly developing research field. Whereas successful attempts to clear and image mouse brain have been reported, a similar result for rats has proven difficult to achieve. Herein, we report on creating novel transgenic rat harboring fluorescent reporter GFP under control of neuronal gene promoter. We then present data on clearing the rat brain, showing that FluoClearBABB was found superior over passive CLARITY and CUBIC methods. Finally, we demonstrate efficient imaging of the rat brain using light-sheet fluorescence microscopy. PMID:27312902

  11. Effect of low-energy laser (He-Ne) irradiation on embryo implantation rate in the rat

    NASA Astrophysics Data System (ADS)

    Stein, Anat; Kraicer, P. F.; Oron, Uri

    1997-12-01

    Attempts to date to increase the rate of embryo implantation, for example by assisting embryo hatching from the zona pellucida, have failed. Recently, several studies have suggested the biostimulating effect of low power laser irradiation. The objective of this study was therefore to examine the potential of low power laser irradiation of the uterus to enhance embryo implantation rate in the rat. Rat potential of low power laser irradiation of the uterus to enhance embryo implantation rate in the rat. Rat blastocysts were flushed from the uterus on day 5 of gestation. They were transferred to the uteri of pseudopregnant recipients on day 4 or 5 of pseudopregnancy. One cornu of the recipient uterus was irradiated; the other was used as control. On day 5 of pregnancy, irradiation did not change implantation rate after 10 or 30 sec of irradiation while 120 sec. of irradiation significantly decreased embryonic implantation. On the other hand, on day 4 of pregnancy, 120 sec. of radiation allowed embryonic implantation to a level similar to that seen after synchronized transfer. Conclusion: He-Ne laser irradiation of the exposed rat uterus can attenuate embryo implantation rate.

  12. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours.

    PubMed

    Medina, Daniel C; Li, Xin; Springer, Charles S

    2005-05-07

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against gamma-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 +/- 2% (p-value <0.001) was observed in the rat brain-this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as approximately 10% in the presence of a 9% water volume increase (oedema).

  13. Total-Body Irradiation Produces Late Degenerative Joint Damage in Rats

    PubMed Central

    Hutchinson, Ian D.; Olson, John; Lindburg, Carl A.; Payne, Valerie; Collins, Boyce; Smith, Thomas L.; Munley, Michael T.; Wheeler, Kenneth T.; Willey, Jeffrey S.

    2014-01-01

    Purpose Premature musculoskeletal joint failure is a major source of morbidity among childhood cancer survivors. Radiation effects on synovial joint tissues of the skeleton are poorly understood. Our goal was to assess long-term changes in the knee joint from skeletally mature rats that received total-body irradiation while skeletal growth was ongoing. Materials and Methods 14 week-old rats were irradiated with 1, 3 or 7 Gy total-body doses of 18 MV x-rays. At 53 weeks of age, structural and compositional changes in knee joint tissues (articular cartilage, subchondral bone, and trabecular bone) were characterized using 7T MRI, nanocomputed tomography (nanoCT), microcomputed tomography (microCT), and histology. Results T2 relaxation times of the articular cartilage were lower after exposure to all doses. Likewise, calcifications were observed in the articular cartilage. Trabecular bone microarchitecture was compromised in the tibial metaphysis at 7 Gy. Mild to moderate cartilage erosion was scored in the 3 and 7 Gy rats. Conclusions Late degenerative changes in articular cartilage and bone were observed after total body irradiation in adult rats exposed prior to skeletal maturity. 7T MRI, microCT, nanoCT, and histology identified potential prognostic indicators of late radiation-induced joint damage. PMID:24885745

  14. Lipopolysaccharide-induced inflammation aggravates irradiation-induced injury to the young mouse brain.

    PubMed

    Roughton, Karolina; Andreasson, Ulf; Blomgren, Klas; Kalm, Marie

    2013-01-01

    Radiotherapy is an effective treatment strategy in the treatment of brain tumors, but it is also a major cause of long-term complications, especially in survivors of pediatric brain tumors. Cognitive decline caused by cranial radiotherapy is thought, at least partly, to depend on injury to stem and progenitor cells in the dentate gyrus of the hippocampus. This study investigated the effects of lipopolysaccharide (LPS)-induced inflammation at the time of irradiation (IR) in the growing mouse brain. A single injection of LPS (0.3 mg/kg) was administered 24 h prior to cranial IR of 14-day-old male mice. LPS pretreatment increased the levels of the chemokine CCL2 and the cytokine IL-1β in the brain by 440 and 560%, respectively, compared to IR alone. IR disrupted hippocampal neurogenesis and the growth of the dentate gyrus, and the mice pretreated with LPS displayed an even more pronounced lack of growth than the vehicle-treated group 2 months after IR. The density of microglia was not affected, but LPS-pretreated mice displayed 48% fewer bromodeoxyuridine-positive cells and 43% fewer doublecortin-positive cells in the granule cell layer 2 months after IR compared with the vehicle-treated group. In conclusion, an ongoing inflammation in the brain at the time of IR further enhanced the IR-induced loss of neurogenesis, and may aggravate future cognitive deficits in patients treated with cranial radiotherapy.

  15. Thermal helix-coil transition in UV irradiated collagen from rat tail tendon.

    PubMed

    Sionkowska, A; Kamińska, A

    1999-05-01

    The thermal helix-coil transition in UV irradiated collagen solution, collagen film and pieces of rat tail tendon (RTT) were compared. Their thermal stability's were determined by differential scanning calorimeter (DSC) and by viscometric measurements. The denaturation temperatures of collagen solution, film and pieces of RTT were different. The helix-coil transition occur near 40 degrees C in collagen solution, near 112 degrees C in collagen film, and near 101 degrees C in pieces of RTT. After UV irradiation the thermal helix-coil transition of collagen samples were changed. These changes depend on the degree of hydratation.

  16. Enhanced lithium-induced brain recovery following cranial irradiation is not impeded by inflammation.

    PubMed

    Malaterre, Jordane; McPherson, Cameron S; Denoyer, Delphine; Lai, Emily; Hagekyriakou, Jim; Lightowler, Sally; Shudo, Koishi; Ernst, Matthias; Ashley, David M; Short, Jennifer L; Wheeler, Greg; Ramsay, Robert G

    2012-06-01

    Radiation-induced brain injury occurs in many patients receiving cranial radiation therapy, and these deleterious effects are most profound in younger patients. Impaired neurocognitive functions in both humans and rodents are associated with inflammation, demyelination, and neural stem cell dysfunction. Here we evaluated the utility of lithium and a synthetic retinoid receptor agonist in reducing damage in a model of brain-focused irradiation in juvenile mice. We found that lithium stimulated brain progenitor cell proliferation and differentiation following cranial irradiation while also preventing oligodendrocyte loss in the dentate gyrus of juvenile mice. In response to inflammation induced by radiation, which may have encumbered the optimal reparative action of lithium, we used the anti-inflammatory synthetic retinoid Am80 that is in clinical use in the treatment of acute promyelocytic leukemia. Although Am80 reduced the number of cyclooxygenase-2-positive microglial cells following radiation treatment, it did not enhance lithium-induced neurogenesis recovery, and this alone was not significantly different from the effect of lithium on this proinflammatory response. Similarly, lithium was superior to Am80 in supporting the restoration of new doublecortin-positive neurons following irradiation. These data suggest that lithium is superior in its restorative effects to blocking inflammation alone, at least in the case of Am80. Because lithium has been in routine clinical practice for 60 years, these preclinical studies indicate that this drug might be beneficial in reducing post-therapy late effects in patients receiving cranial radiotherapy and that blocking inflammation in this context may not be as advantageous as previously suggested.

  17. Gonadal steroid action and brain sex differentiation in the rat.

    PubMed

    Sakuma, Y

    2009-03-01

    Gonadal steroids that establish sexually dimorphic characteristics of brain morphology and physiology act at a particular stage of ontogeny. Testosterone secreted by the testes during late gestational and neonatal periods causes significant brain sexual dimorphism in the rat. This results in both sex-specific behaviour and endocrinology in adults. Sexual differentiation may be due to neurogenesis, migration or survival. Each mechanism appears to be uniquely regulated in a site-specific manner. Thus, the volume of an aggregate of neurones in the rat medial preoptic area (POA), termed the sexually dimorphic nucleus of the POA (SDN-POA), is larger in males than in females. The anteroventral periventricular nucleus (AVPV) is packed with neurones containing oestrogen receptor (ER)beta in female rats but, in males, ERbeta-positive neurones scatter into the more lateral portion of the POA. POA neurones are born up to embryonic days 16-17 and not after parturition. Therefore, neurogenesis is unlikely to contribute to the larger SDN-POA in males. DNA microarray analysis for oestrogen-responsive genes and western blotting demonstrated site-specific regulation of apoptosis- and migration-related genes in the SDN-POA and AVPV.

  18. Attempted protection of spermatogenesis from single doses of gamma-irradiation in the androgen pretreated rat.

    PubMed

    Schlappack, O K; Delic, J I; Harwood, J R; Stanley, J A

    1987-01-01

    Spermatogenic stem-cell survival after gamma-irradiation has been investigated in the adult Wistar rat. Single doses of 4.5 and 9 Gy gamma-rays were administered to the testes of rats who received arachis oil (0.1 ml/100 g body weight) or testosterone enanthate (240 micrograms/100 g body weight) subcutaneously three times weekly for 6 weeks prior to radiation and during the week in which the radiations were given. A mean percentage of regenerating seminiferous tubule cross-sections of 32.45% and 7.26% was found in the testes of androgen-pretreated rats at 8 weeks after 4.5 and 9 Gy, respectively. Similar values (33.4% and 6.2%) were obtained in arachis oil-pretreated controls. We therefore conclude that protection of rat spermatogenesis from single doses of gamma-rays cannot be achieved by androgen pretreatment.

  19. Tissue-protective effects of fullerenol C60(OH)24 and amifostine in irradiated rats.

    PubMed

    Trajković, Sanja; Dobrić, Silva; Jaćević, Vesna; Dragojević-Simić, Viktorija; Milovanović, Zoran; Dordević, Aleksandar

    2007-07-01

    Polyhydroxylated fullerenes, named fullerenols (C(60)(OH)(n); n=12-26) are excellent antioxidants. Harmful effects of ionizing radiation on living organism are mainly mediated by free radical species and fullerenols attract an attention as a potential radioprotectors. Our preliminary investigations on mice and rats subjected to radiation injury show that fullerenol C(60)(OH)(24) provides high survival rate of irradiated small rodents. Radioprotective effect was comparable to that of the standard radioprotector amifostine. The aim of this study was to compare the efficacy of fullerenol C(60)(OH)(24) (10 and 100mg/kg i.p.) and amifostine (300 mg/kg i.p.) in protection of rats against harmful effects of ionizing radiation. The animals were whole-body irradiated by X-rays (8 MV). Both compounds were given 30 min before irradiation. In order to evaluate the general radioprotective efficacy of fullerenol and amifostine rats were irradiated with an absolutely lethal dose of X-rays (8 Gy) and their survival and body mass gain were monitored during the period of 30 days after irradiation. The aim of the second part of the study is to investigate the tissue-protective effects of tested compounds (100 mg/kg i.p. of fullerenol and 300 mg/kg i.p. of amifostine, 30 min before irradiation). It was carried out on rats irradiated with a sublethal dose of X-rays (7 Gy). Influence of ionizing radiation on hematopoesis as well as the radioprotective efficiency of the compounds given were evaluated by determining blood cell count during 28 days after irradiation. For this purpose the blood was taken from tail vein before irradiation and on the 3rd, 7th, 14th, 21st and 28th day after irradiation. In order to estimate the radioprotective effects of fullerenol and amifostine on other rat tissue, the animals were sacrificed on the 7th and 28th day after irradiation and their main organs (lung, heart, liver, kidney, small intestine and spleen) were taken for histopathological analysis. In

  20. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    PubMed

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  1. Autoradiographic localization of angiotensin II receptors in rat brain.

    PubMed Central

    Mendelsohn, F A; Quirion, R; Saavedra, J M; Aguilera, G; Catt, K J

    1984-01-01

    The 125I-labeled agonist analog [1-sarcosine]-angiotensin II ( [Sar1]AII) bound with high specificity and affinity (Ka = 2 X 10(9) M-1) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. Images PMID:6324205

  2. Autoradiographic localization of angiotensin II receptors in rat brain

    SciTech Connect

    Mendelsohn, F.A.O.; Quirion, R.; Saavedra, J.M.; Aguilera, G.; Catt, K.J.

    1984-03-01

    The /sup 125/I-labeled agonist analog (1-sarcosine)-angiotensin II ((Sar/sup 1/)AII) bound with high specificity and affinity (K/sub a/ = 2 x 10/sup 9/ M/sup -1/) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. 75 references, 2 figures.

  3. [Effect of gamma-radiation on the activity of proteases associated with spleen and brain nuclear histones of young and old rats].

    PubMed

    Kutsyĭ, M P

    2011-01-01

    It has been found that proteases specifically splitting histones are associated with histones from spleen and brain nuclei of 4- and 26-month-old rats. The activity ofproteases isolated together with histones increases after irradiation of rats with 10 Gy The activation degree of these proteases depends on the animal age and postradiation period. Activation ofhistone-associated proteases by means of gamma-radiation is more pronounced in spleen nuclei from old rats than from the young ones. Irradiation of animals has been found to reduce histone H1 and core histone contents in the spleen and brain nuclei of both young and old rats. The radiation-induced proteolysis ofhistone H1 and core histones in spleen and brain nuclei leads to chromatin deconden-sation and DNA degradation by nucleases. The activity of histone-associated proteases is substantially higher in the nuclei of intensively proliferating spleen cells than in the brain nuclei. The experimental data indicate that histone-associated proteases participate in the regulation of DNA transcription, replication, and degradation.

  4. Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose.

    PubMed

    Serduc, Raphaël; Bouchet, Audrey; Bräuer-Krisch, Elke; Laissue, Jean A; Spiga, Jenny; Sarun, Sukhéna; Bravin, Alberto; Fonta, Caroline; Renaud, Luc; Boutonnat, Jean; Siegbahn, Erik Albert; Estève, François; Le Duc, Géraldine

    2009-11-07

    To analyze the effects of the microbeam width (25, 50 and 75 microm) on the survival of 9L gliosarcoma tumor-bearing rats and on toxicity in normal tissues in normal rats after microbeam radiation therapy (MRT), 9L gliosarcomas implanted in rat brains, as well as in normal rat brains, were irradiated in the MRT mode. Three configurations (MRT25, MRT50, MRT75), each using two orthogonally intersecting arrays of either 25, 50 or 75 microm wide microbeams, all spaced 211 microm on center, were tested. For each configuration, peak entrance doses of 860, 480 and 320 Gy, respectively, were calculated to produce an identical valley dose of 18 Gy per individual array at the center of the tumor. Two, 7 and 14 days after radiation treatment, 42 rats were killed to evaluate histopathologically the extent of tumor necrosis, and the presence of proliferating tumors cells and tumor vessels. The median survival times of the normal rats were 4.5, 68 and 48 days for MRT25, 50 and 75, respectively. The combination of the highest entrance doses (860 Gy per array) with 25 microm wide beams (MRT25) resulted in a cumulative valley dose of 36 Gy and was excessively toxic, as it led to early death of all normal rats and of approximately 50% of tumor-bearing rats. The short survival times, particularly of rats in the MRT25 group, restricted adequate observance of the therapeutic effect of the method on tumor-bearing rats. However, microbeams of 50 microm width led to the best median survival time after 9L gliosarcoma MRT treatment and appeared as the better compromise between tumor control and normal brain toxicity compared with 75 microm or 25 microm widths when used with a 211 microm on-center distance. Despite very high radiation doses, the tumors were not sterilized; viable proliferating tumor cells remained present at the tumor margin. This study shows that microbeam width and peak entrance doses strongly influence tumor responses and normal brain toxicity, even if valley doses are

  5. Synchrotron microbeam radiation therapy for rat brain tumor palliation—influence of the microbeam width at constant valley dose

    NASA Astrophysics Data System (ADS)

    Serduc, Raphaël; Bouchet, Audrey; Bräuer-Krisch, Elke; Laissue, Jean A.; Spiga, Jenny; Sarun, Sukhéna; Bravin, Alberto; Fonta, Caroline; Renaud, Luc; Boutonnat, Jean; Siegbahn, Erik Albert; Estève, François; Le Duc, Géraldine

    2009-11-01

    To analyze the effects of the microbeam width (25, 50 and 75 µm) on the survival of 9L gliosarcoma tumor-bearing rats and on toxicity in normal tissues in normal rats after microbeam radiation therapy (MRT), 9L gliosarcomas implanted in rat brains, as well as in normal rat brains, were irradiated in the MRT mode. Three configurations (MRT25, MRT50, MRT75), each using two orthogonally intersecting arrays of either 25, 50 or 75 µm wide microbeams, all spaced 211 µm on center, were tested. For each configuration, peak entrance doses of 860, 480 and 320 Gy, respectively, were calculated to produce an identical valley dose of 18 Gy per individual array at the center of the tumor. Two, 7 and 14 days after radiation treatment, 42 rats were killed to evaluate histopathologically the extent of tumor necrosis, and the presence of proliferating tumors cells and tumor vessels. The median survival times of the normal rats were 4.5, 68 and 48 days for MRT25, 50 and 75, respectively. The combination of the highest entrance doses (860 Gy per array) with 25 µm wide beams (MRT25) resulted in a cumulative valley dose of 36 Gy and was excessively toxic, as it led to early death of all normal rats and of ~50% of tumor-bearing rats. The short survival times, particularly of rats in the MRT25 group, restricted adequate observance of the therapeutic effect of the method on tumor-bearing rats. However, microbeams of 50 µm width led to the best median survival time after 9L gliosarcoma MRT treatment and appeared as the better compromise between tumor control and normal brain toxicity compared with 75 µm or 25 µm widths when used with a 211 µm on-center distance. Despite very high radiation doses, the tumors were not sterilized; viable proliferating tumor cells remained present at the tumor margin. This study shows that microbeam width and peak entrance doses strongly influence tumor responses and normal brain toxicity, even if valley doses are kept constant in all groups. The use of

  6. Fluid and sodium loss in whole-body-irradiated rats

    SciTech Connect

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.

    1987-09-01

    Whole-body and organ fluid compartment sizes and plasma sodium concentrations were measured in conventional, GI decontaminated, bile duct ligated, and choledochostomized rats at different times after various doses of gamma radiation. In addition, sodium excretion was measured in rats receiving lethal intestinal radiation injury. After doses which were sublethal for 3-5 day intestinal death, transient decreases occurred in all the fluid compartments measured (i.e., total body water, extracellular fluid space, plasma volume). No recovery of these fluid compartments was observed in rats destined to die from intestinal radiation injury. The magnitude of the decreases in fluid compartment sizes was dose dependent and correlated temporally with the breakdown and recovery of the intestinal mucosa but was independent of the presence or absence of enteric bacteria or bile acids. Associated with the loss of fluid was an excess excretion of 0.83 meq of sodium between 48 and 84 h postirradiation. This represents approximately 60% of the sodium lost from the extracellular fluid space in these animals during this time. The remaining extracellular sodium loss was due to redistribution of sodium to other spaces. It is concluded that radiation-induced breakdown of the intestinal mucosa results in lethal losses of fluid and sodium as evidenced by significant decreases in total body water, extracellular fluid space, plasma volume, and plasma sodium concentration, with hemoconcentration. These changes are sufficient to reduce tissue perfusion leading to irreversible hypovolemic shock and death.

  7. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    PubMed

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage.

  8. Changes of amino acid gradients in brain tissues induced by microwave irradiation and other means

    SciTech Connect

    Baxter, C.F.; Parsons, J.E.; Oh, C.C.; Wasterlain, C.G.; Baldwin, R.A. )

    1989-09-01

    Focused microwave irradiation to the head (FMI) has been used extensively by neurochemists for rapid inactivation of enzymatic activity in brain tissues and the preservation, for in vitro analysis, of in vivo substrate concentrations. Periodically the suitability of this technique for regional studies has been questioned. Evidence has now been obtained, on the basis of altered concentration gradients for GABA and taurine from the Substantia Nigra (SN) to an Adjacent Dorsal Area (ADJ), that FMI not only inactivates enzymes, but also facilitates rapid diffusion of small molecules from areas of high concentrations to adjacent areas of lower concentration. To a lesser extent, the implantation of plastic injection cannulas also decreased these concentration gradients. These results offer clear evidence that FMI is ill suited and unreliable for studies designed to map and compare the in vivo regional concentrations of diffusible organic molecules (such as amino acids) in brain tissues. Any invasive technique that compromises membrane barriers is likely to produce smaller similar effects.

  9. SU-E-T-457: Design and Characterization of An Economical 192Ir Hemi-Brain Small Animal Irradiator

    SciTech Connect

    Grams, M; Wilson, Z; Sio, T; Beltran, C; Tryggestad, E; Gupta, S; Blackwell, C; McCollough, K; Sarkaria, J; Furutani, K

    2014-06-01

    Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Methods: A high dose rate 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 centimeter thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit is equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film. The penumbra from the small animal irradiator was compared under similar collimating conditions to the penumbra from 6 MV photons, 6 MeV electrons, and 20 MeV electrons from a linear accelerator as well as 300 kVp photons from an orthovoltage unit and Monte Carlo simulated 90 MeV protons. Results: The tungsten collimator provides a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator. Additionally, the penumbra was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: The small animal irradiator described here can be built for under $1,000 and used in conjunction with any commercial brachytherapy afterloader to provide a convenient and cost-effective option for small animal irradiation experiments. The unit offers high dose rate delivery and sharp penumbra, which is ideal for hemi-brain irradiation of mice. With slight modifications to the design, irradiation of sites other than the brain could be accomplished easily. Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring a sharp penumbra.

  10. Increases in morphologically abnormal sperm in rats exposed to Co60 irradiation.

    PubMed

    Lock, L F; Soares, E R

    1980-01-01

    We have investigated the effects of testicular exposure to different doses of Co60 radiation on sperm morphology in F-344 rats. The results indicate that from 150 rad to 500 rad gamma irradiation causes statistically significant, dose-related increased in 1) the percent of morphologically aberrant sperm and 2) the frequency of tailless sperm. Both of these effects were detectable in sperm which were derived from treated spermatid, spermatocytes, and spermatogonial cells. These data indicate that the development of a sperm morphology assay in rats is feasible.

  11. Detection of cocaine induced rat brain activation by photoacoustic tomography

    PubMed Central

    Jo, Janggun; Yang, Xinmai

    2011-01-01

    Photoacoustic tomography (PAT) was used to detect the progressive changes on the cerebral cortex of Sprague Dawley rats after the administration of cocaine hydrochloride. Different concentrations (0, 2.5, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution were injected into Sprague Dawley rats through tail veins. Cerebral cortex images of the animals were continuously acquired by PAT. For continuous observation, PAT system used multi-transducers to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The obtained photoacoustic images were compared with each other and confirmed that changes in blood volume were induced by cocaine hydrochloride injection. The results demonstrate that PAT may be used to detect the effects of drug abuse-induced brain activation. PMID:21163301

  12. Neonatal low-dose gamma irradiation-induced impaired fertility in mature rats.

    PubMed

    Freud, A; Canfi, A; Sod-Moriah, U A; Chayoth, R

    1990-11-01

    The reproductive capacity of mature rats at the age of 8 days was studied following neonatal exposure to 0.06 Gy dose of gamma-radiation. Decreased litter size and reduced body weight of the pups on weaning day, but not at parturition, were observed in female rats. The reduced litter size was not associated with impaired ovulation, impaired uterine implantation or mortality in utero, but resulted from increased death rate or at near parturition. Of the neonatally irradiated males 29% were found to be sterile and had degenerated or necrotic testes. The testicular damage and the reduced growth rate of the offspring of the irradiated females demonstrate the extreme sensitivity of the immature reproductive system to ionizing radiation, even at very low doses.

  13. Pathophysiology of microwave radiation: effect on rat brain.

    PubMed

    Kesari, Kavindra Kumar; Kumar, Sanjay; Behari, Jitendra

    2012-01-01

    The study aims to investigate the effect of 2.45 GHz microwave radiation on Wistar rats. Rats of 35 days old with 130 ± 10 g body weight were selected for this study. Animals were divided into two groups: sham exposed and experimental (six animals each). Animals were exposed for 2 h a day for 45 days at 2.45 GHz frequency (power density, 0.21 mW/cm(2)). The whole body specific absorption rate was estimated to be 0.14 W/kg. Exposure took place in a ventilated plexiglas cage and kept in an anechoic chamber under a horn antenna. After completion of the exposure period, rats were killed, and pineal gland and whole brain tissues were isolated for the estimation of melatonin, creatine kinase, caspase 3, and calcium ion concentration. Experiments were performed in a blind manner and repeated. A significant decrease (P < 0.05) was recorded in the level of pineal melatonin of exposed group as compared with sham exposed. A significant increase (P < 0.05) in creatine kinase, caspase 3, and calcium ion concentration was observed in whole brain of exposed group of animals as compared to sham exposed. One-way analysis of variance method was adopted for statistical analysis. The study concludes that a reduction in melatonin or an increase in caspase-3, creatine kinase, and calcium ion may cause significant damage in brain due to chronic exposure of these radiations. These biomarkers clearly indicate possible health implications of such exposures.

  14. Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury.

    PubMed

    Cope, Elise C; Morris, Deborah R; Gower-Winter, Shannon D; Brownstein, Naomi C; Levenson, Cathy W

    2016-05-01

    There is great deal of debate about the possible role of adult-born hippocampal cells in the prevention of depression and related mood disorders. We first showed that zinc supplementation prevents the development of the depression-like behavior anhedonia associated with an animal model of traumatic brain injury (TBI). This work then examined the effect of zinc supplementation on the proliferation of new cells in the hippocampus that have the potential to participate in neurogenesis. Rats were fed a zinc adequate (ZA, 30ppm) or zinc supplemented (ZS, 180ppm) diet for 4wk followed by TBI using controlled cortical impact. Stereological counts of EdU-positive cells showed that TBI doubled the density of proliferating cells 24h post-injury (p<0.05), and supplemental zinc significantly increased this by an additional 2-fold (p<0.0001). While the survival of these proliferating cells decreased at the same rate in ZA and in ZS rats after injury, the total density of newly born cells was approximately 60% higher in supplemented rats 1wk after TBI. Furthermore, chronic zinc supplementation resulted in significant increases in the density of new doublecortin-positive neurons one week post-TBI that were maintained for 4wk after injury (p<0.01). While the effect of zinc supplementation on neuronal precursor cells in the hippocampus was robust, use of targeted irradiation to eliminate these cells after zinc supplementation and TBI revealed that these cells are not the sole mechanism through which zinc acts to prevent depression associated with brain injury, and suggest that other zinc dependent mechanisms are needed for the anti-depressant effect of zinc in this model of TBI.

  15. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  16. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    PubMed Central

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-01-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue. PMID:27456312

  17. 2-hydroxyestradiol modifies serotonergic processes in the male rat brain

    SciTech Connect

    Kowalik, S.

    1985-01-01

    The effects of chronic (5 day) 2-hydroxyestradiol or estradiol on catecholaminergic and serotonergic neurons in the male rat brain were studied. The results indicate estrogen to be specific is inducing changes in dopaminergic systems; whereas its hydroxymetabolite appears to have a preference for serotonergic processes. In particular, in vitro 2-hydroxyestradiol appears to be a potent inhibitor of /sup 3/H-imipramine binding in brain; this inhibition is especially potent in the cortex, where it is equal in potency to serotonin. However, unlike serotonin, which is a competitive inhibitor of imipramine, 2-hydroxyestradiol is an uncompetitive inhibitor of /sup 3/H-imipramine binding in cortex and hypothalamus and a noncompetitive inhibitor in the striatum; this suggests that the inhibition of binding takes place at a point other than the site of serotonin uptake. In vitro 2-hydroxyestradiol also appears to increase the uptake of serotonin into these tissues, a change which would be expected if the imipramine binding is blocked.

  18. Three-Staged Stereotactic Radiotherapy Without Whole Brain Irradiation for Large Metastatic Brain Tumors

    SciTech Connect

    Higuchi, Yoshinori Serizawa, Toru; Nagano, Osamu; Matsuda, Shinji; Ono, Junichi; Sato, Makoto; Iwadate, Yasuo; Saeki, Naokatsu

    2009-08-01

    Purpose: To evaluate the efficacy and toxicity of staged stereotactic radiotherapy with a 2-week interfraction interval for unresectable brain metastases more than 10 cm{sup 3} in volume. Patients and Methods: Subjects included 43 patients (24 men and 19 women), ranging in age from 41 to 84 years, who had large brain metastases (> 10 cc in volume). Primary tumors were in the colon in 14 patients, lung in 12, breast in 11, and other in 6. The peripheral dose was 10 Gy in three fractions. The interval between fractions was 2 weeks. The mean tumor volume before treatment was 17.6 {+-} 6.3 cm{sup 3} (mean {+-} SD). Mean follow-up interval was 7.8 months. The local tumor control rate, as well as overall, neurological, and qualitative survivals, were calculated using the Kaplan-Meier method. Results: At the time of the second and third fractions, mean tumor volumes were 14.3 {+-} 6.5 (18.8% reduction) and 10.6 {+-} 6.1 cm{sup 3} (39.8% reduction), respectively, showing significant reductions. The median overall survival period was 8.8 months. Neurological and qualitative survivals at 12 months were 81.8% and 76.2%, respectively. Local tumor control rates were 89.8% and 75.9% at 6 and 12 months, respectively. Tumor recurrence-free and symptomatic edema-free rates at 12 months were 80.7% and 84.4%, respectively. Conclusions: The 2-week interval allowed significant reduction of the treatment volume. Our results suggest staged stereotactic radiotherapy using our protocol to be a possible alternative for treating large brain metastases.

  19. Radiation effects on rat testes. IX. Studies on oxidative enzymes after partial body gamma irradiation.

    PubMed

    Gupta, G S; Bawa, S R

    1975-08-01

    Oxidative enzymes in the rat testes have been studied after gamma irradiation. The role of these enzymes in relation to spermatogenesis and steroidogenesis after radiation injury to testis has been discussed. Loss of succinic dehydrogenase and sorbitol dehydrogenase reflects the losts of germ cell population. Malic enzyme and malic dehydrogenase seem to the related to the deficiency of steroid hormones, whereas increase in glucose-6-phosphate dehydrogenase and NADP isocitric dehydrogenase is due to secondary stimulation of pituitary.

  20. Increased activity of tyrosine hydroxylase in the cerebellum of the x-irradiated dystonic rat

    SciTech Connect

    Dopico, A.M.; Rios, H.; Mayo, J.; Zieher, L.M. )

    1990-08-01

    The exposure of the cephalic end of rats to repeated doses of x-irradiation (150 rad) immediately after birth induces a long-term increase in the noradrenaline (NA) content of cerebellum (CE) (+ 37.8%), and a decrease in cerebellar weight (65.2% of controls), which results in an increased NA concentration (+ 109%). This increase in the neurotransmitter level is accompanied by a dystonic syndrome and histological abnormalities: Purkinje cells (the target cells for NA afferents to CE) fail to arrange in a characteristic monolayer, and their primary dendritic tree appears randomly oriented. The injection of reserpine 0.9 and 1.2 mg/kg ip to adult rats for 18 h depletes cerebellar NA content in both controls (15.7 {plus minus} 4 ng/CE and 2.8 {plus minus} 1.5 ng/CE, respectively) and x-irradiated rats (17.1 {plus minus} 1 ng/CE and 8.3 {plus minus} 2 ng/CE, respectively). The activity of tyrosine hydroxylase (TH) in CE of adult rats, measured by an in vitro assay, is significantly increased in neonatally x-irradiated animals when compared to age-matched controls (16.4 {plus minus} 1.4 vs 6.32 {plus minus} 0.6 nmol CO2/h/mg prot., p less than 0.01). As observed for NA levels, a net increase in TH activity induced by the ionizing radiation is also measured: 308.9 {plus minus} 23.8 vs 408.2 {plus minus} 21.5 nmol CO2/h/CE, p less than 0.01 (controls and x-treated, respectively). These results suggest that x-irradiation at birth may induce an abnormal sprouting of noradrenergic afferents to CE. The possibility that these changes represent a response of the NA system to the dystonic syndrome is discussed.

  1. The effects of celecoxib, a COX-2 selective inhibitor, on acute inflammation induced in irradiated rats.

    PubMed

    Khayyal, M T; El-Ghazaly, Mona A; El-Hazek, R M; Nada, A S

    2009-10-01

    The potential value of selective and non-selective COX-2 inhibitors in preventing some of the biochemical changes induced by ionizing radiation was studied in rats exposed to carrageenan-induced paw edema and 6-day-old air pouch models. The animals were exposed to different exposure levels of gamma-radiation, namely either to single doses of 2 and 7.5 Gy or a fractionated dose level of 7.5 Gy delivered as 0.5 Gy twice weekly for 7.5 weeks. The inflammatory response produced by carrageenan in irradiated rats was markedly higher than that induced in non-irradiated animals, and depended on the extent of irradiation. Celecoxib, a selective COX-2 inhibitor, in doses of 3, 5, 10, and 15 mg/kg was effective in reducing paw edema in irradiated and non-irradiated rats in a dose-dependent manner as well as diclofenac (3 mg/kg), a non-selective COX inhibitor. Irradiation of animals before the induction of the air pouch by an acute dose of 2 Gy led to a significant increase in leukocytic count, as well as in the level of interleukin-6 (IL-6), interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), LTB(4), PGE(2) (as an index of COX-2 activity), TXB(2) (as an index of COX-1 activity), and the plasma level of MDA. This increase in level of these parameters was more marked than that observed in the non-irradiated animals subjected to the inflammagen. The blood GSH level was not affected by the dose of irradiation used, whereas superoxide dismutase (SOD) activity was suppressed. In many respects, celecoxib (5 mg/kg) was as potent as diclofenac in decreasing the elevated levels of IL-6, IL-1beta, TNF-alpha, LTB(4), PGE(2), but lacked any significant effect on TXB(2) level. Since it is mostly selective for COX-2 with a rare effect on COX-1 enzyme, both drugs at the selected dose levels showed no effect on level of MDA, GSH, and SOD activity.

  2. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours

    NASA Astrophysics Data System (ADS)

    Medina, Daniel C.; Li, Xin; Springer, Charles S., Jr.

    2005-05-01

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain—this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ~10% in the presence of a 9% water volume increase (oedema). All three authors have contributed equally to this work.

  3. Neuroanatomical distribution of galectin-3 in the adult rat brain.

    PubMed

    Yoo, Hong-Il; Kim, Eu-Gene; Lee, Eun-Jin; Hong, Sung-Young; Yoon, Chi-Sun; Hong, Min-Ju; Park, Sang-Jin; Woo, Ran-Sook; Baik, Tai-Kyoung; Song, Dae-Yong

    2017-04-01

    Galectin-3 is a member of the lectin subfamily that enables the specific binding of β-galactosides. It is expressed in a broad spectrum of species and organs, and is known to have various functions related to cell adhesion, signal transduction, and proinflammatory responses. Although, expression of galectin-3 in some activated neuroglia under neuroinflammation has been well documented in the central nervous system, little is known about the neuronal expression and distribution of galectin-3 in normal brain. To describe the cellular and neuroanatomical expression map of galectin-3, we performed galectin-3 immunohistochemistry on the entire normal rat brain and subsequently analyzed the neuronal distribution. Galectin-3 expression was observed not only in some neuroglia but also in neurons. Neuronal expression of galectin-3 was observed in many functional parts of the cerebral cortex and various other subcortical nuclei in the hypothalamus and brainstem. Neuroanatomical analysis revealed that robust galectin-3 immuno-signals were present in many hypothalamic nuclei related to a variety of physiological functions responsible for mediating anxiety responses, energy balance, and neuroendocrine regulation. In addition, the regions highly connected with these hypothalamic nuclei also showed intense galectin-3 expression. Moreover, multiple key regions involved in regulating autonomic functions exhibited high levels of galectin-3 expression. In contrast, the subcortical nuclei responsible for the control of voluntary motor functions and limbic system exhibited no galectin-3 immunoreactivity. These observations suggest that galectin-3 expression in the rat brain seems to be regulated by developmental cascades, and that functionally and neuroanatomically related brain nuclei constitutively express galectin-3 in adulthood.

  4. Adjustment function among antioxidant substances in acatalasemic mouse brain and its enhancement by low-dose X-ray irradiation.

    PubMed

    Yamaoka, Kiyonori; Nomura, Takaharu; Wang, Da-Hong; Mori, Shuji; Taguchi, Takehito; Ishikawa, Tetsuya; Hanamoto, Katsumi; Kira, Shohei

    2002-01-01

    The catalase activities in blood and organs of the acatalasemic (C3H/AnLCsbCsb) mouse of the C3H strain are lower than those of the normal (C3H/AnLCsaCsa) mouse. We conducted a study to examine changes in the activities of antioxidant enzymes, such as catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPX), the total gluathione content, and the lipid peroxide level in the brain, which is more sensitive to oxidative stress than other organs, at 3, 6, or 24 hr following X-ray irradiation at doses of 0.25, 0.5, or 5.0 Gy to the acatalasemic and the normal mice. No significant change in the lipid peroxide level in the acatalasemic mouse brain was seen under non-irradiation conditions. However, the acatalasemic mouse brain was more damaged than the normal mouse brain by excessive oxygen stress, such as a high-dose (5.0 Gy) X-ray. On the other hand, we found that, unlike 5.0 Gy X-ray, a relatively low-dose (0.5 Gy) irradiation specifically increased the activities of both catalase and GPX in the acatalasemic mouse brain making the activities closer to those in the normal mouse brain. These findings may indicate that the free radical reaction induced by the lack of catalase is more properly neutralized by low dose irradiation.

  5. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  6. 19-Hydroxylation of androgens in the rat brain.

    PubMed Central

    Hahn, E F; Miyairi, S; Fishman, J

    1985-01-01

    Aromatization of androgens in the central nervous system is linked with sexual differentiation of the brain and, thus, determines the nature of sexual behavior and the control of gonadotropin secretion. The process of aromatization, as determined in the human placenta, proceeds through two successive hydroxylations at C-19, the products of which are then virtually completely converted via a third hydroxylation at C-2 to estrogens. We now report that in the rat brain, 19-hydroxylation of androgens greatly exceeds aromatization and the 19-hydroxy- and 19-oxoandrogen products accumulate in quantities 5 times greater than the estrogens. This relationship implies that the aromatization sequence in the brain is deficient in the terminal hydroxylase, and the process is distinct from that in other tissues. The function of 19-hydroxy- and 19-oxotestosterone in the central nervous system is unknown but, unlike the reduced or aromatized metabolites of the male hormone, these substances cannot be delivered from the circulation and their presence in the brain is totally dependent on in situ formation, making them logical candidates for modulators of neuronal functions. PMID:3857612

  7. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  8. The effect of melatonin against oxidative damage during total-body irradiation in rats.

    PubMed

    Koc, Mehmet; Taysi, Seyithan; Emin Buyukokuroglu, M; Bakan, Nuri

    2003-08-01

    Melatonin has been reported to participate in the regulation of a number of important physiological and pathological processes. Melatonin, which is a powerful endogenous antioxidant, may play a role in the prevention of oxidative damage. The aim of this study was to investigate the effect of pretreatment with melatonin (5 mg kg(-1) and 10 mg kg(-1)) on gamma-radiation-induced oxidative damage in plasma and erythrocytes after total-body irradiation with a single dose of 5 Gy. Total-body irradiation resulted in a significant increase in plasma and erythrocyte MDA levels. Melatonin alone increased the levels of SOD and GSH-Px. Erythrocyte and plasma MDA levels in irradiated rats that were pretreated with melatonin (5 or 10 mg kg(-1)) were significantly lower than those in rats that were not pretreated. There was no significant difference between the effects of 5 and 10 mg kg(-1) on plasma MDA activities and CAT activities. However, erythrocyte MDA levels showed a dose-dependent decrease, while GSH-Px activities increased with dose. Our study suggests that melatonin administered prior to irradiation may protect against the damage produced by radiation by the up-regulation of antioxidant enzymes and by scavenging free radicals generated by ionizing radiation.

  9. Variation in cyclic nucleotide levels and lysosomal enzyme activities in the irradiated rat

    SciTech Connect

    Trocha, P.J.; Catravas, G.N.

    1980-09-01

    Whole-body irradiation of rats causes not only a release of hydrolases from the lysosomes but also fluctuations in the cyclic nucleotide levels in spleen and liver tissues. Significant increases in lysosomal enzyme activities were further observed in spleen following radiation treatment. At 3 to 6 hr after rats were exposed to ..gamma.. radiation, transient increases in both cGMP and cAMP levels were accompanied with the release of ..beta..-glucuronidase and acid phosphatase enzymes from lysosomes in liver and spleen tissues. A second transitory release and activation of lysosomal hydrolases and an increase in cAMP levels occurred between 2 and 5 days after irradiation in spleen but not in liver. On Days 7 and 8, there was a third release of lysosomal hydrolases and a slight increase in the spleen cAMP concentration before they returned to near-control values. Cyclic GMP levels in the spleen decreased on the third day after irradiation, remained suppressed until Day 9, and then increased to levels higher than normal physiological values. The liver cGMP concentration remained unchanged between 9 hr and 11 days after irradiation.

  10. Phototherapeutic Effect of Low-Level Laser on Thyroid Gland of Gamma-Irradiated Rats.

    PubMed

    Morcos, Nadia; Omran, Manar; Ghanem, Hala; Elahdal, Mahmoud; Kamel, Nashwa; Attia, Elbatoul

    2015-01-01

    One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma-radiation and endocrine disrupters. Low-level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium-Neon laser to repair the damaged tissues of thyroid gland after gamma-irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser-irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm(2), 2.1 mW cm(-2) 120 s, 1.4 J, 0.252 J cm(-2)) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT.

  11. Possible modulating impact of glutathione disulfide mimetic on physiological changes in irradiated rats.

    PubMed

    Salama, S F; Montaser, S A

    2015-04-01

    Glutathione disulfide mimetic (NOV-002) is a complex of oxidized glutathione (GSSG) formulated with cisplatin at approximately 1000:1 molar ratio. Cisplatin serves to stabilize GSSG but does not assert any therapeutic effect. The objective of this study is to evaluate the impact of NOV-002 on hematological suppression, excessive free radical damage and DNA fragmentation in splenocytes, and metabolite disorders in whole-body γ-irradiated rats. The obtained data revealed that rats treated with 25 mg kg(-1) NOV-002 injected intraperitoneally (i.p.) for 5 days after whole-body γ-irradiation (IR) at 6.5 Gy attenuated the decrease of red blood cells, platelets, total white blood cells, absolute lymphocytes and neutrophils counts, hematocrit value, and hemoglobin content. NOV-002 treatment inhibits serum advanced oxidation protein products, malondialdehyde concentrations as well as cholesterol, triglycerides, urea, and creatinine levels, while enhances glutathione content and superoxide dismutase activity and improves DNA fragmentation in splenocytes. These findings provide a better understanding of the NOV-002 modulating impact in whole-body γ-rays-induced hematological toxicities, oxidative stress, and biological disturbances in γ-irradiated rats and could enhance the tolerance to high doses of ionizing IR utilized in radiotherapy.

  12. [Insulin function in rats at early terms after 4 Gy whole-body irradiation].

    PubMed

    Shkumatov, L M

    2004-01-01

    In the present study we made an attempt to estimate changes of insulin function at early terms after external irradiation of rats. Experimental conditions: male albino rats were studied 7; 14; 21; 28 days after the external whole-body gamma-irradiation (137Cs; 4 Gy). For this purpose the kinetics of 125I-insulin disappearance from blood plasma was investigated. Simultaneously dynamics of insulin blood concentration was studied in practically full and fasting animals. On the basis of the data received the following basic pharmacokinetic parameters were designed according to the two-compartmental model: central and peripheral compartment volumes, transfer and elimination rates, turnover and metabolic clearance rates. No substantial changes in insulin clearance were found compared to controls in all the postirradiation terms investigated. Hence, the changes in the turnover rate of insulin are proportional to blood hormone concentration. The significant increase of concentration and turnover was observed only 7 days after irradiation in rats with free access to food. The data received suggest that the insulin function of a pancreas in an organism exposed to a 4 Gy dose is maintained at a level sufficient for ensuring adequate regulation of the glucose homeostasis and of the carbohydrate metabolism.

  13. Effects of heavy particle irradiation and diet on object recognition memory in rats

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard M.; Carrihill-Knoll, Kirsty; Hinchman, Marie; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.

    2009-04-01

    On long-duration missions to other planets astronauts will be exposed to types and doses of radiation that are not experienced in low earth orbit. Previous research using a ground-based model for exposure to cosmic rays has shown that exposure to heavy particles, such as 56Fe, disrupts spatial learning and memory measured using the Morris water maze. Maintaining rats on diets containing antioxidant phytochemicals for 2 weeks prior to irradiation ameliorated this deficit. The present experiments were designed to determine: (1) the generality of the particle-induced disruption of memory by examining the effects of exposure to 56Fe particles on object recognition memory; and (2) whether maintaining rats on these antioxidant diets for 2 weeks prior to irradiation would also ameliorate any potential deficit. The results showed that exposure to low doses of 56Fe particles does disrupt recognition memory and that maintaining rats on antioxidant diets containing blueberry and strawberry extract for only 2 weeks was effective in ameliorating the disruptive effects of irradiation. The results are discussed in terms of the mechanisms by which exposure to these particles may produce effects on neurocognitive performance.

  14. Vascular Injury After Whole Thoracic X-Ray Irradiation in the Rat

    SciTech Connect

    Ghosh, S.N. Wu, Q. M.S.; Maeder, M.; Fish, B.L.; Moulder, J.E.; Jacobs, E.R.; Medhora, M.; Molthen, R.C.

    2009-05-01

    Purpose: To study vascular injury after whole thoracic irradiation with single sublethal doses of X-rays in the rat and to develop markers that might predict the severity of injury. Methods and Materials: Rats that received 5- or 10-Gy thorax-only irradiation and age-matched controls were studied at 3 days, 2 weeks, and 1, 2, 5, and 12 months. Several pulmonary vascular parameters were evaluated, including hemodynamics, vessel density, total lung angiotensin-converting enzyme activity, and right ventricular hypertrophy. Results: By 1 month, the rats in the 10-Gy group had pulmonary vascular dropout, right ventricular hypertrophy, increased pulmonary vascular resistance, increased dry lung weights, and decreases in total lung angiotensin-converting enzyme activity, as well as pulmonary artery distensibility. In contrast, irradiation with 5 Gy resulted in only a modest increase in right ventricular weight and a reduction in lung angiotensin-converting enzyme activity. Conclusion: In a previous investigation using the same model, we observed that recovery from radiation-induced attenuation of pulmonary vascular reactivity occurred. In the present study, we report that deterioration results in several vascular parameters for {<=}1 year after 10 Gy, suggesting sustained remodeling of the pulmonary vasculature. Our data support clinically relevant injuries that appear in a time- and dose-related manner after exposure to relatively low radiation doses.

  15. Pathologic findings in canine brain irradiated with fractionated fast neutrons or photons

    SciTech Connect

    Zook, B.C.; Bradley, E.W.; Casarett, G.W.; Rogers, C.C.

    1980-12-01

    Thirty-seven adult male purebred beagles received total doses of 1333, 2000, 3000, or 4500 rad of fast neutrons (15 MeV av) in 4 fractions/week for 7 weeks to the entire brain. Nineteen dogs received 4000, 6000, or 9000 rad of photons (/sup 60/Co) in an identical fractionation pattern. Dogs receiving 4500, 3000, and 2000 rad of neutrons and 9000 rad of photons developed neurologic signs and died or were euthanatized when moribund followed irradiation. Cerebrospinal fluid contained excess protein and erythrocytes during and sometimes before the generally brief course. The onset of neurologic symptoms was usually followed by a moribund state in less than 48 h. The relative biological effectiveness (RBE) as measured by onset of neurologic symptoms and mortality was greater than 4.5. Gross changes included hemorrhage, edema, and malacia primarily in the white matter, especially the corona radiata, cerebellar white matter, corpus callosum, and corpus fornicis. One beagle developed a brain tumor and died 1207 days following 1333-rad neutron irradiation.

  16. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  17. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    PubMed

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.

  18. Effect of electromagnetic radiofrequency radiation on the rats' brain, liver and kidney cells measured by comet assay.

    PubMed

    Trosić, Ivancica; Pavicić, Ivan; Milković-Kraus, Sanja; Mladinić, Marin; Zeljezić, Davor

    2011-12-01

    The goal of study was to evaluate DNA damage in rat's renal, liver and brain cells after in vivo exposure to radiofrequency/microwave (Rf/Mw) radiation of cellular phone frequencies range. To determine DNA damage, a single cell gel electrophoresis/comet assay was used. Wistar rats (male, 12 week old, approximate body weight 350 g) (N = 9) were exposed to the carrier frequency of 915 MHz with Global System Mobile signal modulation (GSM), power density of 2.4 W/m2, whole body average specific absorption rate SAR of 0.6 W/kg. The animals were irradiated for one hour/day, seven days/week during two weeks period. The exposure set-up was Gigahertz Transversal Electromagnetic Mode Cell (GTEM--cell). Sham irradiated controls (N = 9) were apart of the study. The body temperature was measured before and after exposure. There were no differences in temperature in between control and treated animals. Comet assay parameters such as the tail length and tail intensity were evaluated. In comparison with tail length in controls (13.5 +/- 0.7 microm), the tail was slightly elongated in brain cells of irradiated animals (14.0 +/- 0.3 microm). The tail length obtained for liver (14.5 +/- 0.3 microm) and kidney (13.9 +/- 0.5 microm) homogenates notably differs in comparison with matched sham controls (13.6 +/- 0.3 microm) and (12.9 +/- 0.9 microm). Differences in tail intensity between control and exposed animals were not significant. The results of this study suggest that, under the experimental conditions applied, repeated 915 MHz irradiation could be a cause of DNA breaks in renal and liver cells, but not affect the cell genome at the higher extent compared to the basal damage.

  19. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain

    PubMed Central

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS. PMID:26193653

  20. NO-Tryptophan: A New Small Molecule Located in the Rat Brain

    PubMed Central

    Mangas, A.; Yajeya, J.; González, N.; Duleu, S.; Geffard, M.; Coveñas, R.

    2016-01-01

    A highly specific monoclonal antibody directed against nitric oxide-tryptophan (NO-W) with good affinity (10-9 M) and specificity was developed. In the rat brain, using an indirect immunoperoxidase technique, cell bodies containing NO-W were exclusively found in the intermediate and dorsal parts of the lateral septal nucleus. No immunoreactive fibres were found in the rat brain. This work reports the first visualization and the morphological characteristics of cell bodies containing NO-W in the mammalian brain. The restricted distribution of NO-W in the rat brain suggests that this molecule could be involved in specific physiological mechanisms. PMID:27734994

  1. Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain

    PubMed Central

    2012-01-01

    Background Essential oil of Pimpinella anisum L. Apiaceae (anise oil) has been widely used in traditional Persian medicine to treat a variety of diseases, including some neurological disorders. This study was aimed to test the possible anti-seizure and anti-hypoxia effects of anise oil. Methods The effects of different concentrations of anise oil were tested on seizure attacks induced by pentylenetetrazol (PTZ) injection and neuronal hypoxia induced by oxygen withdrawal as well as on production of dark neurons and induction of long-term potentiation (LTP) in in vivo and in vitro experimental models of rat brain. Results Anise oil significantly prolonged the latency of seizure attacks and reduced the amplitude and duration of epileptiform burst discharges induced by injection of intraperitoneal PTZ. In addition, anise oil significantly inhibited production of dark neurons in different regions of the brain in epileptic rats. Anise oil also significantly enhanced the duration of the appearance of anoxic terminal negativity induced by oxygen withdrawal and inhibited induction of LTP in hippocampal slices. Conclusions Our data indicate the anticonvulsant and neuroprotective effects of anise oil, likely via inhibition of synaptic plasticity. Further evaluation of anise oil to use in the treatment of neurological disorders is suggested. PMID:22709243

  2. New protein extraction/solubilization protocol for gel-based proteomics of rat (female) whole brain and brain regions.

    PubMed

    Hirano, Misato; Rakwal, Randeep; Shibato, Junko; Agrawal, Ganesh Kumar; Jwa, Nam-Soo; Iwahashi, Hitoshi; Masuo, Yoshinori

    2006-08-31

    The rat is an accepted model for studying human psychiatric/neurological disorders. We provide a protocol for total soluble protein extraction using trichloroacetic acid/acetone (TCA/A) from rat (female) whole brain, 10 brain regions and the pituitary gland, and show that two-dimensional gel electrophoresis (2-DGE) using pre-cast immobilized pH (4-7) gradient (IPG) strip gels (13 cm) in the first dimension yields clean silver nitrate stained protein profiles. Though TCA/A precipitation may not be "ideal", the important choice here is the selection of an appropriate lysis buffer (LB) for solubilizing precipitated proteins. Our results reveal enrichment of protein spots by use of individual brain regions rather than whole brain, as well as the presence of differentially expressed spots in their proteomes. Thus individual brain regions provide improved protein coverage and are better suited for differential protein detection. Moreover, using a phosphoprotein-specific dye, in-gel detection of phosphoproteins was demonstrated. Representative high-resolution silver nitrate stained proteome profiles of rat whole brain total soluble protein are presented. Shortcomings apart (failure to separate membrane proteins), gel-based proteomics remains a viable option, and 2-DGE is the method of choice for generating high-resolution proteome maps of rat brain and brain regions.

  3. Synchrotron X ray induced axonal transections in the brain of rats assessed by high-field diffusion tensor imaging tractography.

    PubMed

    Serduc, Raphaël; Bouchet, Audrey; Pouyatos, Benoît; Renaud, Luc; Bräuer-Krisch, Elke; Le Duc, Géraldine; Laissue, Jean A; Bartzsch, Stefan; Coquery, Nicolas; van de Looij, Yohan

    2014-01-01

    Since approximately two thirds of epileptic patients are non-eligible for surgery, local axonal fiber transections might be of particular interest for them. Micrometer to millimeter wide synchrotron-generated X-ray beamlets produced by spatial fractionation of the main beam could generate such fiber disruptions non-invasively. The aim of this work was to optimize irradiation parameters for the induction of fiber transections in the rat brain white matter by exposure to such beamlets. For this purpose, we irradiated cortex and external capsule of normal rats in the antero-posterior direction with a 4 mm×4 mm array of 25 to 1000 µm wide beamlets and entrance doses of 150 Gy to 500 Gy. Axonal fiber responses were assessed with diffusion tensor imaging and fiber tractography; myelin fibers were examined histopathologically. Our study suggests that high radiation doses (500 Gy) are required to interrupt axons and myelin sheaths. However, a radiation dose of 500 Gy delivered by wide minibeams (1000 µm) induced macroscopic brain damage, depicted by a massive loss of matter in fiber tractography maps. With the same radiation dose, the damage induced by thinner microbeams (50 to 100 µm) was limited to their paths. No macroscopic necrosis was observed in the irradiated target while overt transections of myelin were detected histopathologically. Diffusivity values were found to be significantly reduced. A radiation dose ≤ 500 Gy associated with a beamlet size of < 50 µm did not cause visible transections, neither on diffusion maps nor on sections stained for myelin. We conclude that a peak dose of 500 Gy combined with a microbeam width of 100 µm optimally induced axonal transections in the white matter of the brain.

  4. Anticancer and antioxidant properties of terpinolene in rat brain cells.

    PubMed

    Aydin, Elanur; Türkez, Hasan; Taşdemir, Sener

    2013-09-01

    Terpinolene (TPO) is a natural monoterpene present in essential oils of many aromatic plant species. Although various biological activities of TPO have been demonstrated, its neurotoxicity has never been explored. In this in vitro study we investigated TPO's antiproliferative and/or cytotoxic properties using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) test, genotoxic damage potential using the single-cell gel electrophoresis (SCGE), and oxidative effects through total antioxidant capacity (TAC) and total oxidative stress (TOS) in cultured primary rat neurons and N2a neuroblastoma cells. Dose-dependent effects of TPO (at 10 mg L(-1), 25 mg L(-1), 50 mg L(-1), 100 mg L(-1), 200 mg L(-1), and 400 mg L(-1)) were tested in both cell types. Significant (P<0.05) decrease in cell proliferation were observed in cultured primary rat neurons starting with the dose of 100 mg L(-1) and in N2a neuroblastoma cells starting with 50 mg L(-1). TPO was not genotoxic in either cell type. In addition, TPO treatment at 10 mg L(-1), 25 mg L(-1), and 50 mg L(-1) increased TAC in primary rat neurons, but not in N2a cells. However, at concentrations above 50 mg L(-1) it increased TOS in both cell types. Our findings clearly demonstrate that TPO is a potent antiproliferative agent for brain tumour cells and may have potential as an anticancer agent, which needs to be further studied.

  5. Brain polyphosphoinositide metabolism during focal ischemia in rat cortex

    SciTech Connect

    Lin, T.N.; Liu, T.H.; Xu, J.; Hsu, C.Y.; Sun, G.Y. )

    1991-04-01

    Using a rat model of stroke, we examined the effects of focal cerebral ischemia on the metabolism of polyphosphoinositides by injecting {sup 32}Pi into both the left and right cortices. After equilibration of the label for 2-3 hours, ischemia induced a significant decrease (p less than 0.001) in the concentrations of labeled phosphatidyl 4,5-bisphosphates (66-78%) and phosphatidylinositol 4-phosphate (64-67%) in the right middle cerebral artery cortex of four rats. The phospholipid labeling pattern in the left middle cerebral artery cortex, which sustained only mild ischemia and no permanent tissue damage, was not different from that of two sham-operated controls. However, when {sup 32}Pi was injected 1 hour after the ischemic insult, there was a significant decrease (p less than 0.01) in the incorporation of label into the phospholipids in both cortices of four ischemic rats compared with four sham-operated controls. Furthermore, differences in the phospholipid labeling pattern were observed in the left cortex compared with the sham-operated controls. The change in labeling pattern was attributed to the partial reduction in blood flow following ligation of the common carotid arteries. We provide a sensitive procedure for probing the effects of focal cerebral ischemia on the polyphosphoinositide signaling pathway in the brain, which may play an important role in the pathogenesis of tissue injury.

  6. [Effect of space flight factors simulated in ground-based experiments on the behavior, discriminant learning, and exchange of monoamines in different brain structures of rats].

    PubMed

    Shtemberg, A S; Lebedeva-Georgievskaia, K V; Matveeva, M I; Kudrin, V S; Narkevich, V B; Klodt, P M; Bazian, A S

    2014-01-01

    Experimental treatment (long-term fractionated γ-irradiation, antiorthostatic hypodynamia, and the combination of these factors) simulating the effect of space flight in ground-based experiments rapidly restored the motor and orienting-investigative activity of animals (rats) in "open-field" tests. The study of the dynamics of discriminant learning of rats of experimental groups did not show significant differences from the control animals. It was found that the minor effect of these factors on the cognitive performance of animals correlated with slight changes in the concentration ofmonoamines in the brain structures responsible for the cognitive, emotional, and motivational functions.

  7. Numerous phosphates of microtubule-associated protein 2 in living rat brain

    SciTech Connect

    Tsuyama, S.; Terayama, Y.; Matsuyama, S.

    1987-08-05

    Microtubule-associated protein 2 (MAP 2) purified from microwave-irradiated rat head contained about 46 esterified phosphates (mole/mol), which were not bound covalently to lipids and did not assemble with microtubules. After some phosphates were released by calf intestinal alkaline phosphatase, the phosphate content of MAP-2 decreased to 16 mol of phosphate and the protein assembled in vitro. MAP-2 purified after microtubule assembly cycles and also the cytosolic heat-stable fraction without assembly cycles had 10 mol of phosphate, and both assembled with microtubules. The MAP-2 with 46 phosphates and that with 10 had different pI in isoelectric focusing, but the components, MAP-2a and -2b, were always near each other. In high-pressure liquid chromatography, MAP-2 containing 46 mol of phosphate appeared after that 10 mol of phosphate. Phosphoserine, phosphothreonine, and phosphotyrosine were recovered from tryptic digestion of MAP-2 with 46 mol of phosphate. These findings suggest that two kinds of MAP-2, one with 46 phosphates and not bound to tubulin and the other with 10-16 phosphates and bound to tubulin, are present in the living rat brain.

  8. [Effect of ATP and glutaminic acid on carbohydrate-energy and nitrogen metabolism in the rat brain and liver under the effect of pulsed electromagnetic field].

    PubMed

    Mishchenko, L I; Kolodub, F A

    1975-01-01

    Oxidative phosphorylation, content of lactate, creatine phosphate, ammonia and glutamine were studied as affected by ATP and glutaminic acid in the brain and liver of rat subjected to the action of the pulsed electromagnetic field of 7 kHz frequency (72 kA/m, 15 seances). ATP (1 mg per 100 g of weight) was found to have a normalizing effect on the processes of nitrogen metabolism in the rat brain, ATP increasing the intenstiy of the oxidative phosphorylation in the tissues of intact rats, has no analogous influence on the irradiated animals. With administration of glutaminic acid (5 mg per 100 g of weight) the processes of oxidative phosphorylation and nitrogen metabolism, disturbed under the effect of the pulsed electromagnetic field are normalized.

  9. Gene Expression Profiling during Pregnancy in Rat Brain Tissue

    PubMed Central

    Mann, Phyllis E.

    2014-01-01

    The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH) during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array) was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1) whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated. PMID:24961703

  10. Clinical Factors Asssociated with Treatment Outcomes following Whole-brain Irradiation in Patients with Prostate Cancer

    PubMed Central

    DZIGGEL, LIESA; E. SCHILD, STEVEN; VENINGA, THEO; BAJROVIC, AMIRA; RADES, DIRK

    2017-01-01

    Background/Aim: Patients with prostate cancer represent a small minority of cancer patients presenting with metastases to the brain. This study investigated the role of whole-brain irradiation (WBI) in this rare group. Patients and Methods: Eighteen such patients were included. Clinical factors including fractionation program of WBI, age at WBI, Karnofsky performance score (KPS), number of metastases to the brain, involvement of extracerebral metastatic sites, time from prostate cancer diagnosis to WBI and recursive-partitioning-analysis (RPA) class were investigated regarding local (intracerebral) control and survival. Results: On multivariate evaluation, longer time from prostate cancer diagnosis to WBI showed a trend towards improved local control (hazard ratio 2.77, p=0.098). Better KPS (hazard ratio 5.64, p=0.021) and longer time from prostate cancer diagnosis to WBI (hazard ratio 5.64, p=0.013) were significantly associated with better survival. Conclusion: Two independent predictors of survival were identified and should be considered when designing for personalized treatment regimens and clinical trials. PMID:28064217

  11. Citrobacter koseri brain abscess in the neonatal rat: survival and replication within human and rat macrophages.

    PubMed

    Townsend, Stacy M; Pollack, Harvey A; Gonzalez-Gomez, Ignacio; Shimada, Hiroyuki; Badger, Julie L

    2003-10-01

    A unique feature of Citrobacter koseri is the extremely high propensity to initiate brain abscesses during neonatal meningitis. Previous clinical reports and studies on infant rats have documented many Citrobacter-filled macrophages within the ventricles and brain abscesses. It has been hypothesized that intracellular survival and replication within macrophages may be a mechanism by which C. koseri subverts the host response and elicits chronic infection, resulting in brain abscess formation. In this study, we showed that C. koseri causes meningitis and brain abscesses in the neonatal rat model, and we utilized histology and magnetic resonance imaging technology to visualize brain abscess formation. Histology and electron microscopy (EM) revealed that macrophages (and not fibroblasts, astrocytes, oligodendrocytes, or neurons) were the primary target for long-term C. koseri infection. To better understand C. koseri pathogenesis, we have characterized the interactions of C. koseri with human macrophages. We found that C. koseri survives and replicates within macrophages in vitro and that uptake of C. koseri increases in the presence of human pooled serum in a dose-dependent manner. EM studies lend support to the hypothesis that C. koseri uses morphologically different methods of uptake to enter macrophages. FcgammaRI blocking experiments show that this receptor primarily facilitates the entry of opsonized C. koseri into macrophages. Further, confocal fluorescence microscopy demonstrates that C. koseri survives phagolysosomal fusion and that more than 90% of intracellular C. koseri organisms are colocalized within phagolysosomes. The ability of C. koseri to survive phagolysosome fusion and replicate within macrophages may contribute to the establishment of chronic central nervous system infection including brain abscesses.

  12. Quantitative Cortical Mapping of Fractional Anisotropy in Developing Rat Brains

    PubMed Central

    Huang, Hao; Yamamoto, Akria; Hossain, Mir Ahamed; Younes, Laurent; Mori, Susumu

    2010-01-01

    Cortical development is associated with a series of events that involve axon and dendrite growth and synaptic formation. Although these developmental processes have been investigated in detail with histology, three-dimensional and quantitative imaging methods for rodent brains may be useful for genetic and pharmacological studies in which cortical developmental abnormalities are suspected. It has been shown that diffusion tensor imaging (DTI) can delineate the columnar organization of the fetal and early neonatal cortex based on a high degree of diffusion anisotropy along the columnar structures. This anisotropy is known to decrease during brain development. In this study, we applied DTI to developing rat brains at five developmental stages, postnatal days 0, 3, 7, 11 and 19, and used diffusion anisotropy as an index to characterize the structural change. Statistical analysis reveals four distinctive cortical areas that demonstrate a characteristic time course of anisotropy loss. This method may provide a means to delineate specific cortical areas and a quantitative method to detect abnormalities in cortical development in rodent pathological models. PMID:18256263

  13. Actin- and myosin-like filaments in rat brain pericytes.

    PubMed

    Le Beux, Y J; Willemot, J

    1978-04-01

    Heavy meromyosin (HMM) labeling was used to identify the nature of the filaments which form bundles in the cytoplasm of the pericytes in brain tissue. Rat brain tissue pieces were incubated in glycerol solutions at 4 degrees and then transferred into buffer (pH 7.0), (1) without HMM, (2) with HMM, (3) with HMM + 5 mM ATP, and (4) with HMM + 2.5 mM Na+ pyrophosphate. In pericytes from untreated tissue, smooth-surfaced microfilaments, averaging 6 nm in diameter, appear to branch and anastomose and to anchor on the plasma membrane. After exposure to HMM, the number and the density of the microfilaments are strikingly increased. These tightly-packed microfilaments are now heavily coated with exogeneous HMM thus increasing in width to 18-20 mm. They intertwine in closely-woven networks. After incubation in HMM solutions containing ATP or Na+ phosphate, they are no longer coated with thick sidearms. It can thus be concluded that these microfilaments are of actin-like nature. In addition, after incubation in ATP, they are intermingled with, and converge onto the surfaces of, thick, tapered filaments, which we have tentatively identified as of myosin-like nature. Thus, it appears that certain of the major elements necessary for contraction are present in brain pericytes.

  14. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    SciTech Connect

    Periyasamy, S.; Hoss, W. )

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  15. A rat model for the treatment of melanoma metastatic to the brain by means of neutron capture therapy

    SciTech Connect

    Matalka, K.Z.; Bailey, M.Q.; Barth, R.F.; Staubus, A.E.; Adams, D.M.; Soloway, A.H.; James, S.M.; Goodman, J.H. ); Coderre, J.A.; Fairchild, R.G. ); Rofstad, E.K. )

    1991-01-01

    Melanoma metastatic to the brain is a serious clinical problem for which there currently is no satisfactory treatment. Boron neutron capture therapy (BNCT) has been shown by Mishima et al. to be clinically effective in the treatment of cutaneous melanoma using {sup 10}B-enriched boronophenylalaine (BPA) as the capture agent. In the present pilot study we have observed a significant prolongation in survival time of nude rats bearing intracerebral implants of the human melanoma cell line MRA 27 following administration of BPA and neutron irradiation. These findings suggest therapeutic efficacy, but unequivocal proof depends upon confirmation in a more definitive experiment using large numbers of animals with both solitary and multiple implants of melanoma. If our preliminary results are confirmed, then this will lay the groundwork for a clinical study of BNCT for the treatment of melanoma metastatic to the brain. 7 refs., 2 figs., 2 tabs.

  16. [Dominant lethality and translocations in the sex cells of male rats under low-intensity gamma irradiation].

    PubMed

    Baev, I A; Rupova, I M

    1978-11-01

    Adult male rats were given 1300 rad of chronic gamma-irradiation (0.08 rad/min) Dominant lethal rates were found to be high (ranging from 48 to 75%) in irradiated postmeiotic cells and clearly lower (6.8%) in spermatogonia. The chromosome aberration (reciprocal translocation) yields observed with 1300 rad chronic irradiation were comparatively low, averaging 1.6%. Spermatogonia irradiation at low dose rate resulted in a smaller effect as compared to the genetic effects of a single acute exposure.

  17. Long-term follow-up for brain metastases treated by percutaneous stereotactic single high-dose irradiation.

    PubMed

    Engenhart, R; Kimmig, B N; Höver, K H; Wowra, B; Romahn, J; Lorenz, W J; van Kaick, G; Wannenmacher, M

    1993-02-15

    Surgery is considered the treatment of choice for solitary brain lesions, and radiation therapy is indicated for metastases only in vital or sensitive regions that cannot be excised without risk of disabling neurologic defects. In these cases, radiosurgery may be an alternative to conventionally fractionated radiation therapy. At the Heidelberg linear accelerator-based radiosurgery facility, 69 patients were treated for 102 inoperable brain metastases. The primary tumor sites included non-small cell lung carcinoma (n = 24), renal cell carcinoma (n = 14), melanoma (skin) (n = 14), colorectal carcinoma (n = 6), carcinoma of unknown primary (n = 4), and others (n = 7). Eleven patients were treated for relapse after surgery or after conventional whole-brain irradiation. The doses at the isocenter varied from 15-50 Gy (mean, 21.5 Gy). Ten patients with multiple metastases received a planned combination of whole-brain irradiation plus a single boost of 15 Gy. The median survival time for the entire group was 6 months, with a 1-year-survival of 28.3%. Factors associated with significant improvement of survival were brain metastases without other metastatic disease and good response to radiation therapy. Five of 22 patients (22.9%) with metastases located only in the brain survived longer than 2 years. An improvement in neurologic function was found in 81% within a period of 3 months. With imaging techniques, complete remission was found in 20%, partial remission in 35%, stable disease in 40%, and relapse in 5%. The authors concluded that radiosurgery is an effective and safe therapy for brain metastases. It can be applied as primary treatment, as boost in combination with whole-brain irradiation, or as treatment for patients with relapse in a previously irradiated field.

  18. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  19. Continuous and simultaneous electrochemical measurements of glucose, lactate, and ascorbate in rat brain following brain ischemia.

    PubMed

    Lin, Yuqing; Yu, Ping; Hao, Jie; Wang, Yuexiang; Ohsaka, Takeo; Mao, Lanqun

    2014-04-15

    Developing new tools and technologies to enable recording the dynamic changes of multiple neurochemicals is the essence of better understanding of the molecular basis of brain functions. This study demonstrates a microfluidic chip-based online electrochemical system (OECS) for in vivo continuous and simultaneous monitoring of glucose, lactate, and ascorbate in rat brain. To fabricate the microfluidic chip-based detecting system, a microfluidic chip with patterned channel is developed into an electrochemical flow cell by incorporating the chip with three surface-modified indium-tin oxide (ITO) electrodes as working electrodes, a Ag/AgCl wire as reference electrode, and a stainless steel tube as counter electrode. Selective detection of ascorbate is achieved by the use of single-walled carbon nanotubes (SWNTs) to largely facilitate the electrochemical oxidation of ascorbate, while a dehydrogenase-based biosensing mechanism with methylene green (MG) adsorbed onto SWNTs as an electrocatalyst for the oxidation of dihydronicotiamide adenine dinucleotide (NADH) is employed for biosensing of glucose and lactate. To avoid the crosstalk among three sensors, the sensor alignment is carefully designed with the SWNT-modified electrode in the upstream channel and paralleled glucose and lactate biosensors in the downstream channels. With the microfluidic chip-based electrochemical flow cell as the detector, an OECS is successfully established by directly integrating the microfluidic chip-based electrochemical flow cell with in vivo microdialysis. The OECS exhibits a good linear response toward glucose, lactate, and ascorbate with less crosstalk. This property, along with the high stability and selectivity, enables the OECS for continuously monitoring three species in rat brain following brain ischemia.

  20. Induction of tolerance to cardiac allografts in lethally irradiated rats reconstituted with syngeneic bone marrow

    SciTech Connect

    Hartnett, L.C.

    1983-01-01

    Generally, organ grafts from one individual animal to another are rejected in one-two weeks. However, if the recipients are given Total Body Irradiation (TBI) just prior to grafting, followed by reconstitution of hemopoietic function with syngeneic (recipient-type) bone marrow cells, then vascularized organ grafts are permanently accepted. Initially after irradiation, it is possible to induce tolerance to many strain combinations in rats. This thesis examines the system of TBI as applied to the induction of tolerance in LEW recipients of WF cardiac allografts. These two rat strains are mismatched across the entire major histocompatibility complex. When the LEW recipient are given 860 rads, a WF cardiac allograft and LEW bone marrow on the same day, 60% of the grafts are accepted. Methods employed to improve the rate of graft acceptance include: treating either donor or recipient with small amounts of methotrexate, or waiting until two days after irradiation to repopulate with bone marrow. It seems from these investigations of some of the early events in the induction of tolerance to allografts following TBI and syngeneic marrow reconstitution that an immature cell population in the bone marrow interacts with a radioresistant cell population in the spleen to produce tolerance to completely MHC-mismatched allografts.

  1. Modulatory effects of new curcumin analogues on gamma-irradiation - Induced nephrotoxicity in rats.

    PubMed

    Ismail, Amel F M; Zaher, Nashwa H; El-Hossary, Ebaa M; El-Gazzar, Marwa G

    2016-12-25

    In the present study, a new series of 2-amino-pyran-3-carbonitrile derivatives of curcumin 2-7 have been synthesized via one-pot simple and efficient protocol, involving the reaction of curcumin 1 with substituted-benzylidene-malononitrile to modify the 1,3-diketone moiety. The structures of the synthesized compounds 2-7 were elucidated by microanalytical and spectral data, which were found consistent with the assigned structures. The nephroprotective mechanism of these new curcumin analogues was evaluated on the post-gamma-irradiation (7 Gy) - induced nephrotoxicity in rats. Activation of Nrf2 by these curcumin analogues is responsible for the amendment of the antioxidant status, impairment of NF-κB signal, thus attenuate the nephrotoxicity induced post-γ-irradiation exposure. 4-Chloro-phenyl curcumin analogue 7 showed the most potent activity. In conclusion, the results of the present study demonstrate a promising role of these new curcumin analogues to attenuate the early symptoms of nephrotoxicity induced by γ-irradiation in rats via activation of Nrf2 gene expression. These new curcumin analogues need further toxicological investigations to assess their therapeutic index.

  2. Genetic effects of acute spermatogonial X-irradiation of the laboratory rat.

    PubMed

    Chambers, J R; Chapman, A B

    1977-02-01

    The genetic effects of one generation of spermatogonial X-irradiation in rats, by a single dose of 600r in one experiment and by a fractionated dose of 450r in another, were measured in three generations of their descendants. Estimates of dominant lethal mutation rates--(2 to 3) X 10-4/gamete/r--from litter size differences between irradiated and nonirradiated stock were consistent with previous estimates from rats and mice. Similar consistency was found for estimates of sex-linked recessive mutation rates--(1 to 2) X 10-4 chromosome/r--from male proportions within strains; however, when measured in crossbreds the proportion of males was higher in the irradiated than in the nonirradiated lines. This inconsistency in results is in keeping with the contradictory results reported for recessive sex-linked lethal mutation rates in mice. The effects used to estimate recessive lethal mutation rates which were unusually high--(2 to 14) X 10-4/gamete/r--were not significant. Other factors that could have contributed to the observed effects are postulated.

  3. Reduction in brain immunoreactive corticotropin-releasing factor (CRF) in spontaneously hypertensive rats

    SciTech Connect

    Hashimoto, K.; Hattori, T.; Murakami, K.; Suemaru, S.; Kawada, Y.; Kageyama, J.; Ota, Z.

    1985-02-18

    The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of /sup 125/I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neurointermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR.

  4. Dietary choline deprivation impairs rat brain mitochondrial function and behavioral phenotype.

    PubMed

    Pacelli, Consiglia; Coluccia, Addolorata; Grattagliano, Ignazio; Cocco, Tiziana; Petrosillo, Giuseppe; Paradies, Giuseppe; De Nitto, Emanuele; Massaro, Antonio; Persichella, Michele; Borracci, Pietro; Portincasa, Piero; Carratù, Maria Rosaria

    2010-06-01

    Dietary choline deprivation (CD) is associated with behavioral changes, but mechanisms underlying these detrimental effects are not well characterized. For instance, no literature data are available concerning the CD effects on brain mitochondrial function related to impairment in cognition. Therefore, we investigated brain mitochondrial function and redox status in male Wistar rats fed a CD diet for 28 d. Moreover, the CD behavioral phenotype was characterized. Compared with rats fed a control diet (CTRL), CD rats showed lower NAD-dependent mitochondrial state III and state IV respiration, 40% lower complex I activity, and significantly higher reactive oxygen species production. Total glutathione was oxidatively consumed more in CD than in CTRL rats and the rate of protein oxidation was 40% higher in CD than in CTRL rats, reflecting an oxidative stress condition. The mitochondrial concentrations of cardiolipin, a phospholipid required for optimal activity of complex I, was 20% lower in CD rats than in CTRL rats. Compared with CTRL rats, the behavioral phenotype of CD rats was characterized by impairment in motor coordination and motor learning assessed with the rotarod/accelerod test. Furthermore, compared with CTRL rats, CD rats were less capable of learning the active avoidance task and the number of attempts they made to avoid foot shock was fewer. The results suggest that CD-induced dysfunction in brain mitochondria may be responsible for impairment in cognition and underline that, similar to the liver, the brain also needs an adequate choline supply for its normal functioning.

  5. Delayed cytokine expression in rat brain following experimental contusion.

    PubMed

    Holmin, S; Schalling, M; Höjeberg, B; Nordqvist, A C; Skeftruna, A K; Mathiesen, T

    1997-03-01

    Proinflammatory cytokines mediate brain injury in experimental studies. This study was undertaken to analyze the production of proinflammatory cytokines in experimental contusion. A brain contusion causing delayed edema was mimicked experimentally in rats using a weight-drop model. Intracerebral expression of the cytokines interleukin (IL)-1 beta, tumor necrosis factor-alpha (TNF alpha), IL-6, and interferon-gamma (IFN gamma) was studied by in situ hybridization and immunohistochemistry. The animals were killed at 6 hours or 1, 2, 4, 6, 8, or 16 days postinjury. In the injured area, no messenger (m)RNA expression was seen during the first 2 days after the trauma. On Days 4 to 6 posttrauma, however, strong IL-1 beta, TNF alpha, and IL-6 mRNA expression was detected in mononuclear cells surrounding the contusion. Expression of IFN gamma was not detected. Immunohistochemical double labeling confirmed the in situ hybridization results and demonstrated that mononuclear phagocytes and astrocytes produced IL-1 beta and that mainly astrocytes produced TNF alpha. The findings showed, somewhat unexpectedly, a late peak of intracerebral cytokine production in the injured area and in the contralateral corpus callosum, allowing for both local and global effects on the brain. An unexpected difference in the cellular sources of TNF alpha and IL-1 beta was detected. The cytokine pattern differs from that seen in other central nervous system inflammatory diseases and trauma models, suggesting that the intracerebral immune response is not a uniform event. The dominance of late cytokine production indicates that many cytokine effects are late events in an experimental contusion: Different pathogenic mechanisms may thus be operative at different times after brain injury.

  6. Interstitial irradiation and hyperthermia for the treatment of recurrent malignant brain tumors.

    PubMed

    Sneed, P K; Stauffer, P R; Gutin, P H; Phillips, T L; Suen, S; Weaver, K A; Lamb, S A; Ham, B; Prados, M D; Larson, D A

    1991-02-01

    Between June 1987 and June 1989, 29 recurrent malignant gliomas or recurrent solitary brain metastases in 28 patients were treated in a Phase I study of interstitial irradiation and hyperthermia. Patient age ranged from 18 to 65 years, and the Karnofsky Performance Status scores ranged from 40 to 90%. There were 13 glioblastomas, 10 anaplastic astrocytomas, 3 melanomas, and 3 adenocarcinomas. Catheters were implanted stereotactically after computed tomography-based preplanning. Hyperthermia was administered before and after brachytherapy, using one to six 2450- or 915-MHz helical coil microwave antennas and one to three multisensor fiberoptic thermometry probes. The goal was to heat as much of the tumor as possible to 42.5 degrees C for 30 minutes. Within 30 minutes after the first hyperthermia treatment, implant catheters were afterloaded with high-activity iodine-125 seeds delivering tumor doses of 32.6 to 61.0 Gy. Most patients had no sensation of heating. Complications included seizures in 5 patients, reversible neurological changes in 9 patients, a scalp burn in 1, and infections in 3. Of 28 evaluable 2-month follow-up scans, 11 showed definite improvement in the radiological appearance of the tumor, 4 were slightly improved, 7 were stable, and 6 showed tumor progression. Ten patients underwent reoperation for persistent tumor and/or necrosis. Eleven of 28 patients are alive 40 to 97 weeks after treatment. Thirteen patients died of a brain tumor, 2 died of extracranial melanoma metastases, 1 died of new brain melanoma metastases, and 1 died of a pulmonary embolus. The median survival was 55 weeks overall. Median survival has not yet been reached for the anaplastic astrocytoma subgroup. We conclude that interstitial brain hyperthermia using helical coil microwave antennas is technically feasible. The level of toxicity is acceptable, and the computed tomographic response rate is encouraging.

  7. The Impact of Heart Irradiation on Dose-Volume Effects in the Rat Lung

    SciTech Connect

    Luijk, Peter van Faber, Hette; Meertens, Harm; Schippers, Jacobus M.; Langendijk, Johannes A.; Brandenburg, Sytze; Kampinga, Harm H.; Coppes, Robert P. Ph.D.

    2007-10-01

    Purpose: To test the hypothesis that heart irradiation increases the risk of a symptomatic radiation-induced loss of lung function (SRILF) and that this can be well-described as a modulation of the functional reserve of the lung. Methods and Materials: Rats were irradiated with 150-MeV protons. Dose-response curves were obtained for a significant increase in breathing frequency after irradiation of 100%, 75%, 50%, or 25% of the total lung volume, either including or excluding the heart from the irradiation field. A significant increase in the mean respiratory rate after 6-12 weeks compared with 0-4 weeks was defined as SRILF, based on biweekly measurements of the respiratory rate. The critical volume (CV) model was used to describe the risk of SRILF. Fits were done using a maximum likelihood method. Consistency between model and data was tested using a previously developed goodness-of-fit test. Results: The CV model could be fitted consistently to the data for lung irradiation only. However, this fitted model failed to predict the data that also included heart irradiation. Even refitting the model to all data resulted in a significant difference between model and data. These results imply that, although the CV model describes the risk of SRILF when the heart is spared, the model needs to be modified to account for the impact of dose to the heart on the risk of SRILF. Finally, a modified CV model is described that is consistent to all data. Conclusions: The detrimental effect of dose to the heart on the incidence of SRILF can be described by a dose dependent decrease in functional reserve of the lung.

  8. Radioprotective effect of Curcuma longa extract on γ-irradiation-induced oxidative stress in rats.

    PubMed

    Nada, Ahmed S; Hawas, Asrar M; Amin, Nour El-Din; Elnashar, Magdy M; Abd Elmageed, Zakaria Y

    2012-04-01

    This study was conducted to evaluate the modulatory effect of aqueous extract of Curcuma longa (L.) against γ-irradiation (GR), which induces biochemical disorders in male rats. The sublethal dose of GR was determined in primary hepatocytes. Also, the effect of C. longa extract was examined for its activity against GR. In rats, C. longa extract was administered daily (200 mg/kg body mass) for 21 days before, and 7 days after GR exposure (6.5 Gy). The lipid profile and antioxidant status, as well as levels of transaminases, interleukin-6 (IL-6), and tumour necrosis factor α (TNFα) were assessed. The results showed that in hepatocytes, the aqueous extract exhibited radioprotective activity against exposure to GR. Exposure of untreated rats to GR resulted in transaminase disorders, lipid abnormalities, elevation of lipid peroxidation, trace element alterations, release of IL-6 and TNF, and decrease in glutathione and protein level of superoxide dismutase-1 (SOD-1) and peroxiredoxin-1 (PRDX-1). However, treatment of rats with this extract before and after GR exposure improved antioxidant status and minimized the radiation-induced increase in inflammatory cytokines. Changes occurred in the tissue levels of trace elements, and the protein levels of SOD-1 and PRDX-1 were also modulated by C. longa extract. Overall, C. longa exerted a beneficial radioprotective effect against radiation-induced oxidative stress in male rats by alleviating pathological disorders and modulating antioxidant enzymes.

  9. The effects of LED rectal irradiation on the experimental ulcerative colitis in rats

    NASA Astrophysics Data System (ADS)

    Zeng, Chang-Chun; Wang, Xian-Ju; Guo, Zhou-Yi; Liu, Song-Hao

    2006-01-01

    We evaluated the effects of light emitting diode(LED λ 632.8nm; power 4.0mw)applied directly to the colon on the experimental ulcerative colitis. 34 rats were divided into 3 groups, which was LED treatment group (n=12), model group (n=12), and normal control group (n=10). Given glacial acetic acid (5%) intra-anally so as to be replicated the rat model of ulcerative colitis. LED irradiation was used to curative group, with 30min each time, once per day. The period of treatment was one week. Then the activity of superoxide dismutase (SOD) and content of malondi-aldehyde (MDA) in the blood plasma were detected and the histopathological study in Colonic tissue was performed. The degree of the Colonic tissue injury in curative group was not as significant as that in the model group. Comparing with model group, the Content of MDA in LED curative group was reductive and the activity of SOD was increased significantly. We concluded that the LED irradiation can protect colonic mucosa from acetic acid induced damage in rats and the effects may be related to the photobiomodulation of LED.

  10. Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain.

    PubMed

    Wang, Yafeng; Zhou, Kai; Li, Tao; Xu, Yiran; Xie, Cuicui; Sun, Yanyan; Zhang, Yaodong; Rodriguez, Juan; Blomgren, Klas; Zhu, Changlian

    2017-03-23

    Radiotherapy is an effective tool in the treatment of malignant brain tumors. However, damage to brain stem and progenitor cells constitutes a major problem and is associated with long-term side effects. Autophagy has been shown to be involved in cell death, and the purpose of this study was to evaluate the effect of autophagy inhibition on neural stem and progenitor cell death in the juvenile brain. Ten-day-old selective Atg7 knockout (KO) mice and wild-type (WT) littermates were subjected to a single 6Gy dose of whole-brain irradiation. Cell death and proliferation as well as microglia activation and inflammation were evaluated in the dentate gyrus of the hippocampus and in the cerebellum at 6 h after irradiation. We found that cell death was reduced in Atg7 KO compared with WT mice at 6 h after irradiation. The number of activated microglia increased significantly in both the dentate gyrus and the cerebellum of WT mice after irradiation, but the increase was lower in the Atg7 KO mice. The levels of proinflammatory cytokines and chemokines decreased, especially in the cerebellum, in the Atg7 KO group. These results suggest that autophagy might be a potential target for preventing radiotherapy-induced neural stem and progenitor cell death and its associated long-term side effects.

  11. Inhibiting the repair of DNA damage induced by gamma irradiation in rat thymocytes

    SciTech Connect

    Smit, J.A.; Stark, J.H.

    1994-01-01

    This study assessed the ability of 11 established and potential radiosensitizing agents to retard the repair of radiation-induced DNA damage with a view to enhancing the immunosuppressive effects of in vivo lymphoid irradiation. The capability of irradiated rat thymocytes to repair DNA damage was assessed by an adaptation of the fluorimetric unwinding method. Three compounds, 3-aminobenzamide (3-AB), novobiocin and flavone-8-acetic acid (FAA), inhibited repair significantly. We also report the effect of low-dose irradiation combined with repair inhibitors on the relationship between DNA strand breaks, fragmentation, cell viability and use of nicotinamide adenine dinucleotide (NAD). DNA fragmentation was increased by 1 mM/l FAA, 1 mM/l novobiocin and 50 {mu}M/l RS-61443 within 3 h of incubation. The latter two compounds also proved cytotoxic. All three drugs augmented the effect of ionizing radiation on the use of NAD. Of the agents investigated, FAA showed the most promise for augmenting the immunosuppressive action of irradiation at nontoxic, pharmacokinetically achievable concentrations. 33 refs., 1 fig., 2 tabs.

  12. Thromboxane release from irradiated perfused rat lungs: role of oncotic agents

    SciTech Connect

    Heinz, T.R.; Kot, P.A.; Ramwell, P.W.; Schneidkraut, M.J.

    1987-07-27

    Isolated lungs from 20 Gray (Gy) whole body irradiated rats were perfused with Krebs-Ringer bicarbonate plus 3% bovine serum albumin (KRB-BSA). The pulmonary effluent showed a 99% (p < .05) increase in immunoassayable thromboxane B2 (iTXB2) release compared with non-irradiated lungs. Since both arachidonic acid and cyclooxygenase products bind to albumin, studies were performed to determine if omission or substitution of this protein oncotic agent would alter the radiation-induced increase in pulmonary iTXB2 release. Irradiated, isolated lungs perfused with media from which the BSA was omitted (KRB) did not demonstrate the radiation-induced increase in pulmonary iTXB2 release. Similarly, irradiated lungs perfused with media in which Dextran 70 (KRB plus 3% Dextran 70, KRB-Dextran 70) was substituted for BSA also did not show the radiation-induced increase in pulmonary effluent iTXB2 levels. These studies demonstrate the importance of including albumin as the oncotic agent in perfused organ systems when studying cyclooxygenase product release. 23 references, 2 tables.

  13. The megakaryocyte DNA content and platelet formation after the sublethal whole body irradiation of rats

    SciTech Connect

    Tanum, G.

    1984-04-01

    The DNA content of rat bone marrow megakaryocytes (MK) was studied by Feulgen photometry, following whole body irradiation with 2 Gy. The DNA measurements were preceded by acetylcholinesterase staining to avoid missing the smaller 2N-8N MK. The number of 2N-8N MK declined immediately following irradiation, whereas the number of 16N-64N MK remained normal for 4 days before decreasing. The number of 2N-8N and 16N-64N MK reached minimum around days 7 and 10, respectively, and thereafter increased to supranormal values at days 14 and 20, respectively. Platelet production, measured by /sup 35/S incorporation into platelets, increased during the first 4 days, then decreased to minimum about day 10. A rise to supranormal values was present at day 20. All values were about normal 30 days after exposure. The observed pattern may be explained as follows: Most of the 16N-64N MK survive the applied dose and maintain their ability to produce platelets. Some of the 2N-4N and 8N MK survive irradiation and transform into platelet-producing MK. No influx of cells from the MK stem cell compartment into the MK compartment can be observed before day 7 after irradiation. One explanation for this time lag may be that thrombocytopenia, which does not occur before then, is an essential stimulus for MK stem cell activation.

  14. Localization and labeling of rat brain in MR image based on Paxinos-Watson atlas

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Cai, Chao; Ding, Mingyue; Zhou, Chengping

    2006-03-01

    Localization and labeling of function regions in brain is an important topic in experimental brain sciences because the huge amount of data collected by neuroscientists will become meaningless if we cannot give them a precise description of their locations. In this paper, we proposed a localization and labelling method of 3D MR image of rat brain based on Paxinos-Watson atlas. Our objective is to use the specific atlas to accomplish localization and labeling of specified tissue of interest (TOI) to mimic a veteran expert such that invisible or unclear anatomic function regions in the MR images of rat brain can be automatically identified and marked. We proposed a multi-step method to locate and label the TOIs from the MR image of rat brain. Firstly, pre-processing. It aims at the digitization and 3D reconstruction of the atlas and MRI of rat brain. Secondly, two-step registration. The global registration is to eliminate the big misalign and section angle offset as well as the scale between the MRI and atlas. We can choose some unambiguous and characteristic points manually, and based on these correspondences a coarse registration is obtained using affine model. The local registration is to address individual variability of rat brain that can be performed by using Snake model. Thirdly, post-processing. The goal is to locate and label the TOIs in the selected MR image of rat brain slice guided by well-registered atlas. The experiments demonstrated the feasibility of our method.

  15. Connexin expression in electrically coupled postnatal rat brain neurons

    PubMed Central

    Venance, Laurent; Rozov, Andrei; Blatow, Maria; Burnashev, Nail; Feldmeyer, Dirk; Monyer, Hannah

    2000-01-01

    Electrical coupling by gap junctions is an important form of cell-to-cell communication in early brain development. Whereas glial cells remain electrically coupled at postnatal stages, adult vertebrate neurons were thought to communicate mainly via chemical synapses. There is now accumulating evidence that in certain neuronal cell populations the capacity for electrical signaling by gap junction channels is still present in the adult. Here we identified electrically coupled pairs of neurons between postnatal days 12 and 18 in rat visual cortex, somatosensory cortex, and hippocampus. Notably, coupling was found both between pairs of inhibitory neurons and between inhibitory and excitatory neurons. Molecular analysis by single-cell reverse transcription–PCR revealed a differential expression pattern of connexins in these identified neurons. PMID:10944183

  16. Kinetic characteristics of nitric oxide synthase from rat brain.

    PubMed Central

    Knowles, R G; Palacios, M; Palmer, R M; Moncada, S

    1990-01-01

    The relationship between the rate of synthesis of nitric oxide (NO) and guanylate cyclase stimulation was used to characterize the kinetics of the NO synthase from rat forebrain and of some inhibitors of this enzyme. The NO synthase had an absolute requirement for L-arginine and NADPH and did not require any other cofactors. The enzyme had a Vmax. of 42 pmol of NO formed.min-1.mg of protein-1 and a Km for L-arginine of 8.4 microM. Three analogues of L-arginine, namely NG-monomethyl-L-arginine, NG-nitro-L-arginine and NG-iminoethyl-L-ornithine inhibited the brain NO synthase. All three compounds were competitive inhibitors of the enzyme with Ki values of 0.7, 0.4 and 1.2 microM respectively. PMID:1695842

  17. Cholecystokinin octapeptide-like immunoreactivity: histochemical localization in rat brain.

    PubMed Central

    Innis, R B; Corrêa, F M; Uhl, G R; Schneider, B; Snyder, S H

    1979-01-01

    Cholecystokinin octapeptide-like (CCK-OP-like) immunoreactivity was localized in the rat brain by using the indirect immunofluorescence method. Specificity in immunohistochemical studies was demonstrated by the virtual elimination of staining with either preimmune sera or sera preadsorbed with CCK-OP and by the achievement of similar fluorescent patterns with two different primary anti-CCK-OP sera. CCK-OP-like fluorescence was localized in neuronal cell bodies, fibers, and varicose terminals. The most dense collections of CCK-OP cells occurred in the periaqueductal gray and in the dorsomedial hypothalamus. Substantial numbers of cells and fibers also were present in the medial/dorsal and perirhinal cortex; more limited groups of cells were found in the pyramidal layer of the hippocampus and in the dorsal raphe. Images PMID:284371

  18. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  19. Antioxidant effects of calcium antagonists in rat brain homogenates.

    PubMed

    Yao, K; Ina, Y; Nagashima, K; Ohmori, K; Ohno, T

    2000-06-01

    We studied the antioxidant activities of calcium antagonists against autoxidation in rat brain homogenates. The homogenates were incubated for 30 min at 37 degrees C with or without a calcium antagonist and subsequently assayed for lipid peroxide content. Percent inhibition of the lipid peroxidation was used as an index of the antioxidant effect. Dihydropyridine calcium antagonists exhibited concentration-dependent (3-300 micromol/l) inhibitory effects against lipid peroxidation. The relative order of antioxidant potency and associated IC50 values (micromol/l) of the calcium antagonists for inhibition of the lipid peroxidation were as follows: nifedipine (51.5)>barnidipine (58.6)>benidipine (71.2)>nicardipine (129.3)>amlodipine (135.5)>nilvadipine (167.3)>nitrendipine (252.1)> diltiazem (>300)=verapamil (>300). These results suggest that some dihydropyridine calcium antagonists show antioxidant properties. The antioxidant effects of the calcium antagonists may contribute to their pharmacological actions.

  20. Low level laser therapy on injured rat muscle: assessment of irradiation parameters

    NASA Astrophysics Data System (ADS)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-11-01

    Although studies show the clinical effectiveness of low level laser therapy (LLLT) in facilitating the muscle healing process, scientific evidence is still required to prove the effectiveness of LLLT and to clarify the cellular and molecular mechanisms triggered by irradiation. Here we evaluate the effect of different LLLT wavelengths, using continuous coherent Laser illumination (830 nm and 980 nm) and non-coherent LED illumination (850 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through the quantification of cytokines in systemic blood. We verified that all applied doses of coherent radiation produce an effect on reducing the concentration of pro-inflammatory TNF-α and IL-1β cytokines, while no treatment effect was observed after irradiation with non-coherent radiation. The best results were obtained for 40 mW at 830 nm. The results may suggest an important role of coherence properties of laser in LLLT.

  1. Transmission of a Filterable Agent from Rat Leukaemia Induced by X-Ray Irradiation and Treatment with Methylcholanthrene

    SciTech Connect

    Sveg, F.; Hlavay, E.

    2004-07-01

    Leukemia was induced in rats by combination of x irradiation and oral application of methylcholanthrene. The rats were irradiated by a single dose of 800 r, and methylcholanthrene was applied 3 times a week by stomach tube in a dose of 1 mg for 9 months. From 60 rats, myelogenous leukemia developed in 2 and lymphatic leukemia in 1. The myelobiastic leukemia proved to be transplantable and was maintained as MR-leukemia. After irtravenous injection of 1 to 10 x 10/ sup 6/ leukemic cells, obtained from the liver and spleen, the disease developed in adult rats in 6 to 10 days. As early as the 2nd or 3rd day after inoculation, leukemic infiltration of organs, especially liver and spleen, were seen. The rats died exhibiting signs of generalized leukemia within 10 days. If cell-free filtrates from the liver and spleen of rats bearing MR leukemia were injected into newborn and 4-week-old rats, myelogenous leukemia developed in the newborn group in 24% after a latency period of 520 days and in 33% of the 4-week-old group after 570 days, on an average. The induced leukemias were transplantable into both suckling and adult rats. Many of the injected animals, which did not develop leukemia, died of cirrhosis of the liver. The results suggest that the leukemia induced by irradiation and chemical carcinogen might be caused by a submicroscopic virus-like agent.

  2. Purification of the high-Km aldehyde reductase from rat brain and liver and from ox brain.

    PubMed Central

    Rivett, A J; Smith, I L; Tipton, K F

    1981-01-01

    A procedure is described that yields an apparently homogeneous preparation of the high-Km aldehyde reductase from rat brain. This procedure is also applicable to the purification of this enzyme from rat liver and ox brain. In the latter case, however, the purified preparation could be resolved into two protein bands, both of which had enzyme activity, by polyacrylamide-gel electrophoresis. Since a sample of the ox brain enzyme from an earlier step in the purification procedure only showed the presence of a single band of activity after electrophoresis, this apparent multiplicity probably results from modification of the enzyme, possibly by oxidation, during the final step of the purification. A number of properties of the rat brain enzyme were determined and these were compared with those of the enzyme from rat liver. The two preparations were similar in their stabilities, behaviour during purification, kinetic properties, electrophoretic mobilities and amino acid compositions. Antibodies to the rat liver enzyme cross-reacted with that from brain and the inhibition of both these preparations by the antiserum was similar, further supporting the view that the enzymes from these two sources were closely similar if not identical. PMID:6798966

  3. Methylglyoxal can mediate behavioral and neurochemical alterations in rat brain.

    PubMed

    Hansen, Fernanda; Pandolfo, Pablo; Galland, Fabiana; Torres, Felipe Vasconcelos; Dutra, Márcio Ferreira; Batassini, Cristiane; Guerra, Maria Cristina; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2016-10-01

    Diabetes is associated with loss of cognitive function and increased risk for Alzheimer's disease (AD). Advanced glycation end products (AGEs) are elevated in diabetes and AD and have been suggested to act as mediators of the cognitive decline observed in these pathologies. Methylglyoxal (MG) is an extremely reactive carbonyl compound that propagates glycation reactions and is, therefore, able to generate AGEs. Herein, we evaluated persistent behavioral and biochemical parameters to explore the hypothesis that elevated exogenous MG concentrations, induced by intracerebroventricular (ICV) infusion, lead to cognitive decline in Wistar rats. A high and sustained administration of MG (3μmol/μL; subdivided into 6days) was found to decrease the recognition index of rats, as evaluated by the object-recognition test. However, MG was unable to impair learning-memory processes, as shown by the habituation in the open field (OF) and Y-maze tasks. Moreover, a single high dose of MG induced persistent alterations in anxiety-related behavior, diminishing the anxiety-like parameters evaluated in the OF test. Importantly, MG did not alter locomotion behavior in the different tasks performed. Our biochemical findings support the hypothesis that MG induces persistent alterations in the hippocampus, but not in the cortex, related to glyoxalase 1 activity, AGEs content and glutamate uptake. Glial fibrillary acidic protein and S100B content, as well as S100B secretion (astroglial-related parameters of brain injury), were not altered by ICV MG administration. Taken together, our data suggest that MG interferes directly in brain function and that the time and the levels of exogenous MG determine the different features that can be seen in diabetic patients.

  4. Immunocytochemical localization of the GABA transporter in rat brain.

    PubMed

    Radian, R; Ottersen, O P; Storm-Mathisen, J; Castel, M; Kanner, B I

    1990-04-01

    Polyclonal antibodies were raised against the GABA transporter (GABA-Tp) purified from rat brain tissue (Radian et al., 1986) and used for immunocytochemical localization of the antigen in several rat brain areas, including the cerebellum, hippocampus, substantia nigra, and cerebral cortex. Light microscopic studies with the peroxidase-antiperoxidase and biotin-avidin-peroxidase techniques suggested that GABA-Tp is localized in the same types of axons and terminals that contain endogenous GABA, as judged by comparison with parallel sections incubated with antibodies against glutaraldehyde-conjugated GABA. However, as expected from biochemical results, different neurons differed in their relative contents of GABA-Tp and GABA; thus, GABA-Tp was relatively low in striatonigral and Purkinje axon terminals and relatively high in nerve plexus around the bases of cerebellar Purkinje cells and hippocampal pyramidal and granule cells. The GABA-Tp antiserum did not produce detectable labeling of nerve cell bodies. Electron microscopic studies supported the light microscopic observations and provided direct evidence of cellular co-localization of GABA-Tp and GABA (as visualized by the peroxidase-antiperoxidase technique and postembedding immunogold labeling, respectively). The ultrastructural studies indicated the presence of GABA-Tp also in glial processes but not in glial cell bodies. The relative intensity of the neuronal and glial staining varied among regions: glial staining predominated over neuronal staining in the substantia nigra, whereas the converse was true in the cerebellum and hippocampus. The present immunocytochemical data demonstrate directly what has previously been inferred from biochemical and autoradiographic evidence: that the mechanisms for high-affinity GABA uptake is selectively and differentially localized in GABAergic neurons and in glial cells.

  5. Gamma irradiation of isolated rat islets pretransplantation produces indefinite allograft survival in cyclosporine-treated recipients

    SciTech Connect

    James, R.F.; Lake, S.P.; Chamberlain, J.; Thirdborough, S.; Bassett, P.D.; Mistry, N.; Bell, P.R.

    1989-06-01

    In this study we have examined the use of low-dose gamma-irradiation for the reduction of islet immunogenicity in the strong allogeneic combination of WAG rat islets transplanted into diabetic AUG recipients. First, we determined that gamma-irradiation reduced immunogenicity in vitro by use of a modified MLR with WAG islets as stimulators and AUG splenocytes as responders. We then determined the maximum dose of gamma-irradiation that could be used (250 rads) before islet function was affected. As 250 rads islet pretreatment alone was ineffective in prolonging allograft survival, we combined the pretreatment with a short course (days 0, 1, 2; 30 mg/kg) of cyclosporine. We found that CsA was only effective in significantly prolonging allograft survival when given subcutaneously in olive oil. The CsA treatment alone gave a significantly prolonged survival time for the islet allografts (median, 37 days vs. 6 days for controls), but when combined with the 250 rads islet pretreatment a synergistic effect was seen with 100% becoming long-term survivors (greater than 100 days). The long-term surviving AUG rats from both the CsA alone group and the CsA plus 250 rads pretreated islets group were challenged with WAG dendritic cells (DC). The islets from the 250 rads pretreated group were subsequently rejected (day 6) while the CsA alone group were not affected. The role of low dose gamma-irradiation when combined with CsA treatment of islet graft recipients in inducing specific unresponsiveness will be discussed.

  6. Sleep deprivation has a neuroprotective role in a traumatic brain injury of the rat.

    PubMed

    Martinez-Vargas, Marina; Estrada Rojo, Francisco; Tabla-Ramon, Erika; Navarro-Argüelles, Hilda; Ortiz-Lailzon, Nathan; Hernández-Chávez, Alejandro; Solis, Barbara; Martínez Tapia, Ricardo; Perez Arredondo, Adan; Morales-Gomez, Julio; Gonzalez-Rivera, Ruben; Nava-Talavera, Karen; Navarro, Luz

    2012-11-07

    During the process of a brain injury, responses to produce damage and cell death are activated, but self-protective responses that attempt to maintain the integrity and functionality of the brain are also activated. We have previously reported that the recovery from a traumatic brain injury (TBI) is better in rats if it occurs during the dark phase of the diurnal cycle when rats are in the waking period. This suggests that wakefulness causes a neuroprotective role in this type of injury. Here we report that 24h of total sleep deprivation after a TBI reduces the morphological damage and enhances the recovery of the rats, as seen on a neurobiological scale.

  7. Effects of beta-hydroxybutyrate on brain vascular permeability in rats with traumatic brain injury.

    PubMed

    Orhan, Nurcan; Ugur Yilmaz, Canan; Ekizoglu, Oguzhan; Ahishali, Bulent; Kucuk, Mutlu; Arican, Nadir; Elmas, Imdat; Gürses, Candan; Kaya, Mehmet

    2016-01-15

    This study investigates the effect of beta-hydroxybutyrate (BHB) on blood-brain barrier (BBB) integrity during traumatic brain injury (TBI) in rats. Evans blue (EB) and horseradish peroxidase (HRP) were used as determinants of BBB permeability. Glutathione (GSH) and malondialdehyde (MDA) levels were estimated in the right (injury side) cerebral cortex of animals. The gene expression levels for occludin, glucose transporter (Glut)-1, aquaporin4 (AQP4) and nuclear factor-kappaB (NF-κB) were performed, and Glut-1 and NF-κB activities were analyzed. BHB treatment decreased GSH and MDA levels in intact animals and in those exposed to TBI (P<0.05). Glut-1 protein levels decreased in sham, BHB and TBI plus BHB groups (P<0.05). NF-κB protein levels increased in animals treated with BHB and/or exposed to TBI (P<0.05). The expression levels of occludin and AQP4 did not significantly change among experimental groups. Glut-1 expression levels increased in BHB treated and untreated animals exposed to TBI (P<0.05). While NF-κB expression levels increased in animals in TBI (P<0.01), a decrease was noticed in these animals upon BHB treatment (P<0.01). In animals exposed to TBI, EB extravasation was observed in the ipsilateral cortex regardless of BHB treatment. Ultrastructurally, BHB attenuated but did not prevent the presence of HRP in brain capillary endothelial cells of animals with TBI; moreover, the drug also led to the observation of the tracer when used in intact rats (P<0.01). Altogether, these results showed that BHB not only failed to provide overall protective effects on BBB in TBI but also led to BBB disruption in healthy animals.

  8. Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue.

    PubMed

    Hsieh, Yunsheng; Casale, Roger; Fukuda, Elaine; Chen, Jiwen; Knemeyer, Ian; Wingate, Julia; Morrison, Richard; Korfmacher, Walter

    2006-01-01

    Matrix-assisted laser desorption/ionization hyphenated with quadrupole time-of-flight (QTOF) mass spectrometry (MS) has been used to directly determine the distribution of pharmaceuticals in rat brain tissue slices which might unravel their disposition for new drug development. Clozapine, an antipsychotic drug, and norclozapine were used as model compounds to investigate fundamental parameters such as matrix and solvent effects and irradiance dependence on MALDI intensity but also to address the issues with direct tissue imaging MS technique such as (1) uniform coating by the matrix, (2) linearity of MALDI signals, and (3) redistribution of surface analytes. The tissue sections were coated with various matrices on MALDI plates by airspray deposition prior to MS detection. MALDI signals of analytes were detected by monitoring the dissociation of the individual protonated molecules to their predominant MS/MS product ions. The matrices were chosen for tissue applications based on their ability to form a homogeneous coating of dense crystals and to yield greater sensitivity. Images revealing the spatial localization in tissue sections using MALDI-QTOF following a direct infusion of (3)H-clozapine into rat brain were found to be in good correlation with those using a radioautographic approach. The density of clozapine and its major metabolites from whole brain homogenates was further confirmed using fast high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) procedures.

  9. The induction of insulinomas by X-irradiation to the gastric region in Otsuka Long-Evans Tokushima Fatty rats.

    PubMed

    Watanabe, Hiromitsu; Kamiya, Kenji

    2008-04-01

    The X-ray induction of tumors was examined in five-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF) rats, treated with two 10 Gy doses to the gastric region with a 3-day interval (total 20 Gy). After irradiation, the rats received the commercial diet MF and tap water and were maintained for up to 564 days. The mean serum glucose level in the X-irradiated group was significantly lower than that in the non-irradiated animals at the 18 month time point. The total tumor incidence was 27/30 (87.1%) in the treated rats (islet tumors, gastric tumors, sarcomas, seminomas, adrenal tumors, kidney tumors, papilloma, lymphomas and mammary tumors). Islet tumors, generally showed to be positive for insulin by immunohistochemistry, developed in 19 rats (63.3%), and were associated with low serum glucose. Since spontaneous tumors observed in 6/19 (31.6%) rats (sarcomas, kidney tumors, duodenum tumors, seminoma, adrenal tumor and squamous cell carcinoma) did not include any insulinomas, these are clearly induced by X-irradiation in OLETF rats.

  10. Expression of GABA receptor rho subunits in rat brain.

    PubMed

    Boue-Grabot, E; Roudbaraki, M; Bascles, L; Tramu, G; Bloch, B; Garret, M

    1998-03-01

    The GABA receptor rho1, rho2, and rho3 subunits are expressed in the retina where they form bicuculline-insensitive GABA(C) receptors. We used northern blot, in situ hybridization, and RT-PCR analysis to study the expression of rho subunits in rat brains. In situ hybridization allowed us to detect rho-subunit expression in the superficial gray layer of the superior colliculus and in the cerebellar Purkinje cells. RT-PCR experiments indicated that (a) in retina and in domains that may contain functional GABA(C) receptors, rho2 and rho1 subunits are expressed at similar levels; and (b) in domains and in tissues that are unlikely to contain GABA(C) receptors, rho2 mRNA is enriched relative to rho1 mRNA. These results suggest that both rho1 and rho2 subunits are necessary to form a functional GABA(C) receptor. The use of RT-PCR also showed that, except in the superior colliculus, rho3 is expressed along with rho1 and rho2 subunits. We also raised an antibody against a peptide sequence unique to the rho1 subunit. The use of this antibody on cerebellum revealed the rat rho1 subunit in the soma and dendrites of Purkinje neurons. The allocation of GABA(C) receptor subunits to identified neurons paves the way for future electrophysiological studies.

  11. Action of AF64A on rat brain muscarinic receptors

    SciTech Connect

    Eva, C.; Costa, E.

    1986-03-01

    ICV administration of compound AF64A (ethylcholine mustard aziridium ion) induces a long-term selective cholinergic hypofunction; however, it does not modify the characteristics of muscarinic receptors. In brain muscarinic receptor activation can either stimulate phosphoinositide turnover or inhibit adenylate cyclase. ICV infusion of AF64A (5 nmol/side/2.5 ..mu..l) reduced the hippocampal ACh content 10 or 30 days after the treatment to 75% of the control values. Under these conditions neither in the striatum nor in the frontal cortex ACh levels were decreased. The carbachol dose-dependent stimulation in hippocampal slices differed from that observed in control rats. The carbachol efficacy was increased but its potency was unchanged by AF64A. In contrast, ICV administration of AF64A failed to alter the oxotremorine efficacy or potency in inhibiting the forskolin stimulated adenylate cyclase in rat hippocampal membranes. These results suggest the two transducer systems coupled to muscarinic receptors may be differentially regulatable by cholinergic input.

  12. Expression of the c-fos gene in spinal cord and brain cells in rats subjected to stress in conditions of exposure to various types of halothane anesthesia.

    PubMed

    Novikova, N S; Kazakova, T B; Rogers, V; Korneva, E A

    2004-05-01

    The influences of different treatments on the expression of the c-fos gene in the spinal cord and brain (hypothalamus) was studied in rats using various types of anesthesia. Synthesis of c-Fos-like proteins occurred only in the spinal cord in conditions of constant 1.5% halothane anesthesia. Use of induction anesthesia with 1.5% halothane allowed detection of c-Fos-like protein expression in cells of the rat spinal cord (lumbar segments) and brain, both when animals were placed in a hammock and when mechanical pain stimulation or electromagnetic irradiation of the skin with UHF currents were applied. The pattern of brain structures reacting to mechanical pain stimulation with expression of c-Fos-like protein was identified. This type of stimulation was shown to induce increases in the quantity of c-Fos-positive cells in the lateral hypothalamic area (LHA), the ventromedial (VMH) and dorsomedial (DMH) hypothalamic nuclei, and in the ventral hypothalamic area (AHA) by 116%, 167%, 101%, and 157% respectively as compared with controls. Skin irradiation with UHF currents decreased the intensity of mechanical pain stimulation-induced synthesis of c-Fos-like protein in most structures (LHA, VMH, DMN, and AHA by 32.8%, 29%, 15%, and 33% respectively). Only induction halothane anesthesia allowed identification of hypothalamic structures reacting to mechanical pain stimulation and the modifying effects of irradiating the skin with UHF currents on the intensity of these reactions.

  13. [Lipids from gray and white rat brain matter in autolysis].

    PubMed

    Gribanov, G A; Il'iashenko, D V

    1993-01-01

    A decrease in relative content of phospholipids and cholesterol simultaneously with increase in cholesterol esters and free fatty acids were detected in tissues of rat brain gray and white matters during autolysis at 37 degrees within 6-7 min, 1, 4 and 24 hrs; the most distinct alterations were observed in lipids of the gray matter especially at early (6-7 min) and late (24 hrs) stages of autolysis. In the gray matter, relative content of all the lipid fractions studied was restored to initial level within 4 hrs of incubation. In the white matter, during autolysis the content of cholesterol varied, the content of phospholipids was only slightly increased, while the level of free fatty acids was increased only at 24 hrs of incubation with synchronous decrease in content of triacylglycerols, cholesterol and, partially, phospholipids. These experimental data are of importance in resuscitation. Both common and dissimilar mechanisms of these lipid alterations are discussed. Not only the complex of hydrolase reactions but also that of transacylase and other reactions, involved in the degradation and biotransformation of brain lipids in autolysis, were noted.

  14. Are soluble and membrane-bound rat brain acetylcholinesterase different

    SciTech Connect

    Andres, C.; el Mourabit, M.; Stutz, C.; Mark, J.; Waksman, A. )

    1990-11-01

    Salt-soluble and detergent-soluble acetylcholinesterases (AChE) from adult rat brain were purified to homogeneity and studied with the aim to establish the differences existing between these two forms. It was found that the enzymatic activities of the purified salt-soluble AChE as well as the detergent-soluble AChE were dependent on the Triton X-100 concentration. Moreover, the interaction of salt-soluble AChE with liposomes suggests amphiphilic behaviour of this enzyme. Serum cholinesterase (ChE) did not bind to liposomes but its activity was also detergent-dependent. Detergent-soluble AChE remained in solution below critical micellar concentrations of Triton X-100. SDS polyacrylamide gel electrophoresis of purified, Biobeads-treated and iodinated detergent-soluble 11 S AChE showed, under non reducing conditions, bands of 69 kD, 130 kD and greater than 250 kD corresponding, respectively, to monomers, dimers and probably tetramers of the same polypeptide chain. Under reducing conditions, only a 69 kD band was detected. It is proposed that an amphiphilic environment stabilizes the salt-soluble forms of AChE in the brain in vivo and that detergent-soluble Biobeads-treated 11 S AChE possess hydrophobic domain(s) different from the 20 kD peptide already described.

  15. The turnover of protein in discrete areas of rat brain

    PubMed Central

    Austin, Lawrence; Lowry, Oliver H.; Brown, Joseph G.; Carter, Joyce G.

    1972-01-01

    1. Rats were injected serially with [14C]glucose to obtain a constant specific radioactivity of brain amino acids. Measurements with this system for periods of up to 8h gave an apparent mean half-life for protein in whole brain of 85h (indicating the presence of a protein fraction with much more rapid turnover than this). 2. The half-lives of proteins in the granule-cell, molecular and white-matter layers of cerebellum were also determined. These had values of 33, 59 and 136h respectively. In addition, the incorporation into protein in six layers of the cerebral cortex, subjacent white matter and five layers of Ammon's horn was studied. All cell-body layers incorporated amino acids at about the same rate irrespective of location, and these rates were considerably higher than those for incorporation into proteins in areas rich in dendrites or fibre tracts. 3. A new method for measuring small amounts of glutamate with a cyclic enzyme system is presented. PMID:4341911

  16. Brain Metabolic Changes in Rats following Acoustic Trauma.

    PubMed

    He, Jun; Zhu, Yejin; Aa, Jiye; Smith, Paul F; De Ridder, Dirk; Wang, Guangji; Zheng, Yiwen

    2017-01-01

    Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive "tinnitus-causing" network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine

  17. Brain Metabolic Changes in Rats following Acoustic Trauma

    PubMed Central

    He, Jun; Zhu, Yejin; Aa, Jiye; Smith, Paul F.; De Ridder, Dirk; Wang, Guangji; Zheng, Yiwen

    2017-01-01

    Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive “tinnitus-causing” network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine

  18. Tumor xenotransplantation in Wistar rats after treatment with cyclophosphamide and total lymphoid irradiation. [X-ray

    SciTech Connect

    Hoogenhout, J.; Kazem, I.; Jerusalem, C.R.; Bakkeren, J.A.J.; de Jong, J.; Kal, H.B.; van Munster, P.J.J.

    1982-10-01

    Three-month-old male Wistar rats were treated with cyclophosphamide and total lymphoid irradiation, and C22LR mouse osteosarcoma was transplanted into the rats. The effects of immunosuppression were monitored by lymphocyte counts, serum IgG determinations, phytohemagglutinin (PHA) and concanavalin A (Con A) responses, measurement of the proportion of B cells, and histopathological studies of the lymphoid organs. At eight days after treatment, the lymphocyte counts, IgG levels, and PHA and Con A values were decreased. Mitotic activity started in the depleted B and T cell areas of the peripheral lymphatic organs two weeks after treatment. There was a 94% graft take of the osteosarcoma. It was determined that the optimum time for tumor xenograft transplantation is 4 days after treatment. The duration of growth was 11 days, and this was followed by regression up to day 21.

  19. Tumor xenotransplantation in Wistar rats after treatment with cyclophosphamide and total lymphoid irradiation

    SciTech Connect

    Hoogenhout, J.; Kazem, I.; Jerusalem, C.R.; Bakkeren, J.A.; de Jong, J.; Kal, H.B.; van Munster, P.J.

    1982-10-01

    Three-month-old male Wistar rats were treated with cyclophosphamide and total lymphoid irradiation, and C22LR mouse osteosarcoma was transplanted into the rats. The effects of immunosuppression were monitored by lymphocyte counts, serum IgG determinations, phytohemagglutinin (PHA) and concanavalin A (Con A) responses, measurement of the proportion of B cells, and histopathological studies of the lymphoid organs. At eight days after treatment, the lymphocyte counts, IgG levels, and PHA and Con A values were decreased. Mitotic activity started in the depleted B and T cell areas of the peripheral lymphatic organs two weeks after treatment. There was a 94% graft take of the osteosarcoma. It was determined that the optimum time for tumor xenograft transplantation is 4 days after treatment. The duration of growth was 11 days, and this was followed by regression up to day 21.

  20. Rat parotid cell function in vitro following x irradiation in vivo

    SciTech Connect

    Bodner, L.; Kuyatt, B.L.; Hand, A.R.; Baum, B.J.

    1984-02-01

    The effect of X irradiation on rat parotid acinar cell function was evaluated in vitro 1, 3, and 7 days following in vivo exposure to 2000 R. Several cellular functions were followed: protein secretion (amylase release), ion movement (K/sup +/ efflux and reuptake), amino acid transport (..cap alpha..-amino(/sup 14/C)isobutyric acid), and an intermediary metabolic response ((/sup 14/C)glucose oxidation). In addition both the morphologic appearance and in vivo saliva secretory ability of parotid cells were assessed. Our results demonstrate that surviving rat parotid acinar cells, isolated and studied in vitro 1-7 days following 2000 R, remain functionally intact despite in vivo diminution of secretory function.

  1. Apolipoprotein E Genotype-Dependent Paradoxical Short-Term Effects of {sup 56}Fe Irradiation on the Brain

    SciTech Connect

    Haley, Gwendolen E.; Villasana, Laura; Dayger, Catherine; Davis, Matthew J.; Raber, Jacob

    2012-11-01

    Purpose: In humans, apolipoprotein E (apoE) is encoded by three major alleles ({epsilon}2, {epsilon}3, and {epsilon}4) and, compared to apoE3, apoE4 increases the risk of developing Alzheimer disease and cognitive impairments following various environmental challenges. Exposure to irradiation, including that of {sup 56}Fe, during space missions poses a significant risk to the central nervous system, and apoE isoform might modulate this risk. Methods and Materials: We investigated whether apoE isoform modulates hippocampus-dependent cognitive performance starting 2 weeks after {sup 56}Fe irradiation. Changes in reactive oxygen species (ROS) can affect cognition and are induced by irradiation. Therefore, after cognitive testing, we assessed hippocampal ROS levels in ex vivo brain slices, using the ROS-sensitive fluorescent probe, dihydroethidium (DHE). Brain levels of 3-nitrotyrosine (3-NT), CuZn superoxide dismutase (CuZnSOD), extracellular SOD, and apoE were assessed using Western blotting analysis. Results: In the water maze, spatial memory retention was impaired by irradiation in apoE2 and apoE4 mice but enhanced by irradiation in apoE3 mice. Irradiation reduced DHE-oxidation levels in the enclosed blade of the dentate gyrus and levels of 3-NT and CuZnSOD in apoE2 but not apoE3 or apoE4 mice. Finally, irradiation increased apoE levels in apoE3 but not apoE2 or apoE4 mice. Conclusions: The short-term effects of {sup 56}Fe irradiation on hippocampal ROS levels and hippocampus-dependent spatial memory retention are apoE isoform-dependent.

  2. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    PubMed

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  3. Persistent Impact of In utero Irradiation on Mouse Brain Structure and Function Characterized by MR Imaging and Behavioral Analysis

    PubMed Central

    Verreet, Tine; Rangarajan, Janaki Raman; Quintens, Roel; Verslegers, Mieke; Lo, Adrian C.; Govaerts, Kristof; Neefs, Mieke; Leysen, Liselotte; Baatout, Sarah; Maes, Frederik; Himmelreich, Uwe; D'Hooge, Rudi; Moons, Lieve; Benotmane, Mohammed A.

    2016-01-01

    Prenatal irradiation is known to perturb brain development. Epidemiological studies revealed that radiation exposure during weeks 8–15 of pregnancy was associated with an increased occurrence of mental disability and microcephaly. Such neurological deficits were reproduced in animal models, in which rodent behavioral testing is an often used tool to evaluate radiation-induced defective brain functionality. However, up to now, animal studies suggested a threshold dose of around 0.30 Gray (Gy) below which no behavioral alterations can be observed, while human studies hinted at late defects after exposure to doses as low as 0.10 Gy. Here, we acutely irradiated pregnant mice at embryonic day 11 with doses ranging from 0.10 to 1.00 Gy. A thorough investigation of the dose-response relationship of altered brain function and architecture following in utero irradiation was achieved using a behavioral test battery and volumetric 3D T2-weighted magnetic resonance imaging (MRI). We found dose-dependent changes in cage activity, social behavior, anxiety-related exploration, and spatio-cognitive performance. Although behavioral alterations in low-dose exposed animals were mild, we did unveil that both emotionality and higher cognitive abilities were affected in mice exposed to ≥0.10 Gy. Microcephaly was apparent from 0.33 Gy onwards and accompanied by deviations in regional brain volumes as compared to controls. Of note, total brain volume and the relative volume of the ventricles, frontal and posterior cerebral cortex, cerebellum, and striatum were most strongly correlated to altered behavioral parameters. Taken together, we present conclusive evidence for persistent low-dose effects after prenatal irradiation in mice and provide a better understanding of the correlation between their brain size and performance in behavioral tests. PMID:27199692

  4. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats.

    PubMed

    Pintana, Hiranya; Sripetchwandee, Jirapas; Supakul, Luerat; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-12-01

    Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.

  5. Yawning and Stretching Predict Brain Temperature Changes in Rats: Support for the Thermoregulatory Hypothesis

    PubMed Central

    Shoup-Knox, Melanie L.; Gallup, Andrew C.; Gallup, Gordon G.; McNay, Ewan C.

    2010-01-01

    Recent research suggests that yawning is an adaptive behavior that functions to promote brain thermoregulation among homeotherms. To explore the relationship between brain temperature and yawning we implanted thermocoupled probes in the frontal cortex of rats to measure brain temperature before, during and after yawning. Temperature recordings indicate that yawns and stretches occurred during increases in brain temperature, with brain temperatures being restored to baseline following the execution of each of these behaviors. The circulatory changes that accompany yawning and stretching may explain some of the thermal similarities surrounding these events. These results suggest that yawning and stretching may serve to maintain brain thermal homeostasis. PMID:21031034

  6. Protein-energy malnutrition during pregnancy alters caffeine's effect on brain tissue of neonate rats.

    PubMed

    Mori, M; Wilber, J F; Nakamoto, T

    1984-12-17

    We studied whether protein-energy malnutrition changed brain susceptibility to a small dose of caffeine in newborn rats. Since we had demonstrated previously that caffeine intake during lactation increased the brain neuropeptide on newborns, we investigated further the effects of the prenatal administration of caffeine on TRH and cyclo (His-Pro). From day 13 of gestation to delivery day, pregnant rats in one group were fed either a 20% or a 6% protein diet ad libitum, and those in the other group were pair-fed with each protein diet supplemented with caffeine at an effective dose of 2 mg/100 g body weight. Upon delivery, brain weight, brain protein, RNA, DNA and the neuropeptides thyrotropin-releasing hormone (TRH) and cyclo (His-Pro) were measured in the newborn rats. A 6% protein without caffeine diet caused reductions in brain weights and brain protein, RNA and DNA contents, but did not alter brain TRH and cyclo (His-Pro) concentrations in the newborn animals. In the offspring from dams fed a 6% protein diet, caffeine administration significantly elevated brain weights and brain contents of protein, RNA and DNA. In contrast, these values were similar between noncaffeine and caffeine-supplemented animals in a 20% protein diet group. Brain TRH and cyclo (His-Pro) concentrations were not changed by caffeine administration. These data suggest that caffeine augments protein synthesis in the newborn rat brain when malnourished, but that the same dose of caffeine did not affect protein synthesis in brains of newborn rats from normally nourished dams. Therefore, the present findings indicate that the nutritional status of mothers during pregnancy has important implication in the impact of caffeine on their offspring's brains.

  7. [The effect of various amines on TRH contents in rat brain (author's transl)].

    PubMed

    Mitsuma, T; Hirooka, Y; Nihei, N

    1976-08-20

    To study the effect of vatious amines on TRH contents in rat brain, various amines or inhibitor of synthesis of amines were injected into rat through i.v. or i.p.. Rats were decapitated and brain was frozen in dry ice and aceton. TRH contents in hypothalamus(H), cerebrum(C) and cerebellum and brain stem (C and S) were measured by TRH radioimmunoassay. TRH contents in normal rats were 3.9+/-0.5ng in H, 2.6+/-0.5NG IN C and 1.6+/-0.3ng in C and S. TRH contents in all parts of brain were increased in L-DOPA treated group and did not change in T3 or T4 treated group. TRH contents in all parts of brain were decreased in alpha-methyl-DOPA, alpha-methyl-para-tyrosine, fusaric acid and 5-HTP treated groups. In D,L-p-chlorophenylalanine treated group TRH contents in brain were increased only in hypothalamus. In L-DOPA or 5-HTP treated group with T4 or T3 preadministration, TRH contents in all parts of brain were same levels of L-DOPA or 5-HTP treated group. The above data suggested the TRH contents in rat brain were increased with increase of dopamine level in rat brain and decreased with increase of serotonine level or decrease of noradrenaline level in rat brain and inhibitory effect of T4 or T3 on TRH release might be mediated through dopaminergic and serotonergic mechanism.

  8. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat

    PubMed Central

    Bandeira, Fabiana; Lent, Roberto; Herculano-Houzel, Suzana

    2009-01-01

    The rat brain increases >6× in mass from birth to adulthood, presumably through the addition of glial cells and increasing neuronal size, without the addition of neurons. To test this hypothesis, here we investigate quantitatively the postnatal changes in the total number of neuronal and non-neuronal cells in the developing rat brain, and examine how these changes correlate with brain growth. Total numbers of cells were determined with the isotropic fractionator in the brains of 53 Wistar rats, from birth to young adulthood. We find that at birth, >90% of the cells in the rat brain are neurons. Following a dormant period of ≈3 days after birth, the net number of neurons in the cerebral cortex, hippocampus, and remaining tissue (excluding cerebellum and olfactory bulb) doubles during the first week, then is reduced by 70% during the second postnatal week, concurrently with net gliogenesis. A second round of net addition of 6 million neurons is observed in the cerebral cortex over the following 2 weeks. During the first postnatal week, brain growth relates mainly to increased numbers of neurons of larger average size. In the second and third weeks, it correlates with increased numbers of non-neuronal cells that are smaller in size than the preexisting neurons. Postnatal rat brain development is thus characterized by dramatic changes in the cellular composition of the brain, whose growth is governed by different combinations of cell addition and loss, and changes in average cell size during the first months after birth. PMID:19666520

  9. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats.

    PubMed

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S; Simonsen, Mette; Ott, Peter; Vilstrup, Hendrik; Sørensen, Michael

    2014-03-01

    Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains of healthy rats, inhibition of GS by methionine sulfoximine (MSO) reduced glutamine synthesis and increased alanine synthesis. Here, we investigate effects of MSO on brain and interorgan ammonia metabolism in sham and bile duct ligated (BDL) rats. Concentrations of glutamine, glutamate, alanine, and aspartate and incorporation of (15)NH(4)(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation of (15)NH(4)(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH(4)(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined but only in brain was an increased incorporation of (15)N-ammonia into alanine observed. Liver and kidney were important for metabolizing blood-borne ammonia.

  10. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain

    PubMed Central

    Baulch, Janet E.; Acharya, Munjal M.; Allen, Barrett D.; Ru, Ning; Chmielewski, Nicole N.; Martirosian, Vahan; Giedzinski, Erich; Syage, Amber; Park, Audrey L.; Benke, Sarah N.; Parihar, Vipan K.; Limoli, Charles L.

    2016-01-01

    Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment. PMID:27044087

  11. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain.

    PubMed

    Baulch, Janet E; Acharya, Munjal M; Allen, Barrett D; Ru, Ning; Chmielewski, Nicole N; Martirosian, Vahan; Giedzinski, Erich; Syage, Amber; Park, Audrey L; Benke, Sarah N; Parihar, Vipan K; Limoli, Charles L

    2016-04-26

    Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment.

  12. Taxifolin and Fucoidin Abolish the Irradiation-Induced Increase in the Production of Reactive Oxygen Species in Rat Aorta.

    PubMed

    Arutyunyan, T V; Korystova, A F; Kublik, L N; Levitman, M Kh; Shaposhnikova, V V; Korystov, Yu N

    2016-03-01

    We studied changes in ROS content in the aorta of Wistar rats at early terms after irradiation in doses equal to single fraction used in tumor radiotherapy and the effects of taxifolin and fucoidin, blockers of leukocyte adhesion to endothelium, on ROS content. Male rats were exposed to X-rays (200 kW) in doses of 1-7.5 Gy. ROS production in aorta segments was measured in 1-48 h after irradiation by dichlorodihydrofluorescein oxidation. The content of ROS in the aorta of rats exposed to radiation in doses of 1-2.5 Gy increased in 1-24 h after irradiation, the peak ROS content was found in 2 h after irradiation. Taxifolin (100 μg/kg dihydroquercetin once a day with drinking water) and fucoidin (10 mg/kg, i.v.) abolished ROS accumulation. The content of ROS in rat aorta increased in 1-24 h after irradiation in doses used for tumor radiotherapy and this increase can be determined by leukocyte adhesion to the endothelium.

  13. Investigation of irradiated rats DNA in the presence of Cu(II) chelates of amino acids Schiff bases.

    PubMed

    Karapetyan, N H; Torosyan, A L; Malakyan, M; Bajinyan, S A; Haroutiunian, S G

    2016-01-01

    The new synthesized Cu(II) chelates of amino acids Schiff bases were studied as a potential radioprotectors. Male albino rats of Wistar strain were exposed to X-ray whole-body irradiation at 4.8 Gy. This dose caused 30% mortality of the animals (LD30). The survival of animals exposed to radiation after preliminary administration of 10 mg/kg Cu(II)(Nicotinyl-L-Tyrosinate)2 or Cu(II)(Nicotinyl-L-Tryptophanate)2 prior to irradiation was registered about 80 and 100% correspondingly. Using spectrophotometric melting and agarose gel electrophoresis methods, the differences between the DNA isolated from irradiated rats and rats pretreated with Cu(II) chelates were studied. The fragments of DNA with different breaks were revealed in DNA samples isolated from irradiated animals. While, the repair of the DNA structure was observed for animals pretreated with the Cu(II) chelates. The results suggested that pretreatment of the irradiated rats with Cu(II)(Nicotinyl-L-Tyrosinate)2 and Cu(II)(Nicotinyl-L-Tryptophanate)2 compounds improves the liver DNA characteristics.

  14. Evaluation of radioprotective effect of aloe vera and zinc/copper compounds against salivary dysfunction in irradiated rats.

    PubMed

    Nejaim, Yuri; I V Silva, Amaro; V Vasconcelos, Taruska; J N L Silva, Emmanuel; M de Almeida, Solange

    2014-09-01

    The aim of this study was to evaluate the radioprotective and reparative effects of compounds based on aloe vera, zinc, and copper against salivary gland dysfunction in Wistar rats. A total of 150 Wistar rats were randomly divided into 12 groups, in which the animals received aloe vera and/or zinc and copper. In eight of these groups the animals were also subjected to irradiation before or after administration of the substances. After 27 days, sialometry tests were performed. Data were analyzed using ANOVA and the Tukey test (P < 0.05). Rats that had been administered aloe vera before or after irradiation showed a significantly higher salivary flow rate than rats that had been simply irradiated. When both substances were administered, a statistically significant difference in the salivary flow rate was observed in comparison with the irradiation alone group seven days after irradiation. The present results suggest that aloe vera exerts positive protective and reparative effects, and can be considered a potential radioprotective substance.

  15. Effect of compensating filters on the isodose charts of rat and guinea-pig phantoms irradiated with "fission-neutrons".

    PubMed

    Zaránd, P

    1976-01-01

    Isodose charts were calculated for rat and guinea-pig phantoms exposed to a modified fission spectrum with a most probable energy of 1.3 MeV. Infinite tissue equivalent cylinders (r = 2.5 and 3.3 cm) and a plane source emitting neutrons according to a cosine distribution were assumed and an albedo code was used. Combined effect of (tissue-equivalent or polyethylene) compensating filters (or simply filters) and a bilateral irradiation or rotation was studied. Bilateral irradiation and the use of a filter resulted in a uniform irradiation of a rat phantom (Dmax/Dmin less than 1.15), while a uniform irradiation of a guinea-pig phantom could be obtained by the combined use of filters and rotation. If rotation is possible a Dmax/Dmin less than 1.05 ratio can be achieved. Filters + rotation should be used in all circumstances when geometrical restrictions do not prevent the installation of a rotation equipment. In this case bilateral irradiation + compensating filters are advisable. Unilateral irradiation of small laboratory animals (mouse, rat, guinea-pig) should be avoided.

  16. Rate of utilization of glucose and `compartmentation' of α-oxoglutarate and glutamate in rat brain

    PubMed Central

    Gaitonde, M. K.

    1965-01-01

    1. The rate of incorporation of 14C into pyruvate, α-oxoglutarate, lactate and glucose of rat tissues was measured after the subcutaneous injection of uniformly labelled glucose. 2. In rat brain the specific radioactivities of lactate and glucose were similar to that of alanine. In liver the specific radioactivity of glucose was considerably higher than that of lactate or alanine. 3. The specific radioactivities of α-oxo acids of rat brain were lower than those of corresponding amino acids, alanine and glutamate. These findings have been explained in relation to metabolic compartments in vivo. 4. The approximate estimated rate of glucose utilization in rat brain in vivo is 0·96μmole/g. of brain/min. PMID:14342519

  17. Neonatal hypothyroidism affects the adenine nucleotides metabolism in astrocyte cultures from rat brain.

    PubMed

    Braganhol, Elizandra; Bruno, Alessandra Nejar; Bavaresco, Luci; Barreto-Chaves, Maria Luiza M; Sarkis, João José Freitas; Battastini, Ana Maria Oliveira

    2006-04-01

    Neonatal hypothyroidism is associated with multiple and severe brain alterations. We recently demonstrated a significant increase in hydrolysis of AMP to adenosine in brain of hypothyroid rats at different ages. However, the origin of this effect was unclear. Considering the effects of adenine nucleotides to brain functions and the harmful effects of neonatal hypothyroidism to normal development of the central nervous system, in this study we investigated the metabolism of adenine nucleotides in hippocampal, cortical and cerebellar astrocyte cultures from rats submitted to neonatal hypothyroidism. ATP and AMP hydrolysis were enhanced by 52 and 210%, respectively, in cerebellar astrocytes from hypothyroid rats. In hippocampus of hypothyroid rats, the 47% increase in AMP hydrolysis was significantly reverted when the astrocytes were treated with T3. Therefore, the imbalance in the ATP and adenosine levels in astrocytes, during brain development, may contribute to some of the effects described in neonatal hypothyroidism.

  18. WE-EF-BRA-10: Prophylactic Cranial Irradiation Reduces the Incidence of Brain Metastasis in a Mouse Model of Metastatic Breast Cancerr

    SciTech Connect

    Smith, D; Debeb, B; Larson, R; Diagaradjane, P; Woodward, W

    2015-06-15

    Purpose: Prophylactic cranial irradiation (PCI) is a clinical technique used to reduce the incidence of brain metastasis and improve overall survival in select patients with acute lymphoblastic leukemia and small-cell lung cancer. We examined whether PCI could benefit breast cancer patients at high risk of developing brain metastases. Methods: We utilized our mouse model in which 500k green fluorescent protein (GFP)-labeled breast cancer cells injected into the tail vein of SCID/Beige mice resulted in brain metastases in approximately two-thirds of untreated mice. To test the efficacy of PCI, one set of mice was irradiated five days after cell injection with a single fraction of 4-Gy (two 2-Gy opposing fields) whole-brain irradiation on the XRAD 225Cx small-animal irradiator. Four controls were included: a non-irradiated group, a group irradiated two days prior to cell injection, and two groups irradiated 3 or 6 weeks after cell injection. Mice were sacrificed four and eight weeks post-injection and were evaluated for the presence of brain metastases on a fluorescent stereomicroscope. Results: The incidence of brain metastasis in the non-irradiated group was 77% and 90% at four and eight weeks, respectively. The PCI group had a significantly lower incidence, 20% and 30%, whereas the other three control groups had incidence rates similar to the non-treated control (70% to 100%). Further, the number of metastases and the metastatic burden were also significantly lower in the PCI group compared to all other groups. Conclusion: The timing of irradiation to treat subclinical disease is critical, as a small dose of whole-brain irradiation given five days after cell injection abrogated tumor burden by greater than 90%, but had no effect when administered twenty-one days after cell injection. PCI is likely to benefit breast cancer patients at high risk of developing brain metastases and should be strongly considered in the clinic.

  19. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury

    PubMed Central

    ZHANG, CHENGCHENG; CHEN, JIANQIANG; LU, HONG

    2015-01-01

    Aquaporin 4 (AQP4) is a widely distributed membrane protein, which is found in glial cells, ependymocytes and capillary endothelial cells in the brain, and particularly in the choroid plexus. AQP4 is a key regulator of water metabolism, and changes in its expression following brain injury are associated with pathological changes in the damaged side of the brain; however, the effects of brain injury on AQP4 and injury-induced pathological changes in the contralateral non-damaged side of the brain remain to be fully elucidated. In the present study, male Sprague-Dawley rats were subjected to traumatic brain injury (TBI) and changes in brain water content, the expression of AQP4 expression and pathological characteristics in the damaged and contralateral non-damaged sides of the brain were examined. In the damaged side of the brain, vasogenic edema appeared first, followed by cellular edema. The aggravated cellular edema in the damaged side of the brain resulted in two periods of peak edema severity. Pathological changes in the contralateral non-damaged side of the brain occurred later than those in the damaged side; cellular edema appeared first, followed by vasogenic edema, which was alleviated earlier than the cellular edema. AQP4 was downregulated during vasogenic edema, and upregulated during cellular edema. Taken together, these results suggested that the downregulation of AQP4 was a result of vasogenic edema and that the upregulation of AQP4 may have induced cellular edema. PMID:26459070

  20. Biophotonic effect of diode laser irradiance on tensile strength of diabetic rats.

    PubMed

    Lau, Pik Suan; Bidin, Noriah; Krishnan, Ganesan; Nassir, Zaleha; Bahktiar, Hazri

    2015-04-01

    Low-energy laser irradiance at certain wavelengths is able to stimulate the tissue bio-reaction and enhance the healing process. Collagen deposition is one of the important aspects in healing process because it can increase the strength of the skin. This study was designed to examine the biophotonic effect of irradiance on collagen production of diabetic wound in rat model. The tensile strength of skin was employed as a parameter to describe the wound. Diabetic rat models were induced by streptozotocin via intravenous injection. Skin-breaking strength was measured using an Instron tensile test machine. The experimental animals were treated with 808-nm diode laser at two different powers-0.1 and 0.5 W/cm(2)-and 30, 60, and 120 s for each session. The tensile strength was optimized after treated with high-power diode laser. The photostimulation effect was revealed by accelerated healing process and enhanced tensile strength of wound. Laser photostimulation on tensile strength in diabetic wound suggests that such therapy facilitates collagen production in diabetic wound healing.

  1. Ovarian toxicity of cyclophosphamide alone and in combination with ovarian irradiation in the rat

    SciTech Connect

    Jarrell, J.; Lai, E.V.; Barr, R.; McMahon, A.; Belbeck, L.; O'Connell, G.

    1987-05-01

    The effects of radiation and chemotherapy on gonadal function are relevant to the morbidity induced by such treatments. Cyclophosphamide given i.p. to rats on Day 30 of age delayed vaginal opening, prevented vaginal cyclicity, and caused a reduction in serum estradiol and progesterone. Antral follicular atresia increased in a dose-dependent fashion in response to cyclophosphamide (0 mg/kg, 53.5%; 1 mg/kg, 67.3%; 50 mg/kg, 65.7%; 100 mg/kg, 73.9%; 150 mg/kg, 92.2%). Despite such alterations in ovarian function, serum gonadotrophins did not rise. The concurrent administration of 0, 20, 30, 40, 50, and 60 Gy of radiation to the exteriorized ovaries in rats receiving 50 mg/kg cyclophosphamide induced widespread loss of primordial, preantral, and healthy antral follicles associated with reduction in serum progesterone and estradiol. Such irradiation induced dose-related increases in serum follicle-stimulating hormone and luteinizing hormone. Parenteral cyclophosphamide and local irradiation appear to induce ovarian toxicity by different mechanisms.

  2. Effects of heavy particle irradiation and diet on amphetamine- and lithium chloride-induced taste avoidance learning in rats

    NASA Technical Reports Server (NTRS)

    Rabin, Bernard M.; Shukitt-Hale, Barbara; Szprengiel, Aleksandra; Joseph, James A.

    2002-01-01

    Rats were maintained on diets containing either 2% blueberry or strawberry extract or a control diet for 8 weeks prior to being exposed to 1.5 Gy of 56Fe particles in the Alternating Gradient Synchrotron at Brookhaven National Laboratory. Three days following irradiation, the rats were tested for the effects of irradiation on the acquisition of an amphetamine- or lithium chloride-induced (LiCl) conditioned taste avoidance (CTA). The rats maintained on the control diet failed to show the acquisition of a CTA following injection of amphetamine. In contrast, the rats maintained on antioxidant diets (strawberry or blueberry extract) continued to show the development of an amphetamine-induced CTA following exposure to 56Fe particles. Neither irradiation nor diet had an effect on the acquisition of a LiCl-induced CTA. The results are interpreted as indicating that oxidative stress following exposure to 56Fe particles may be responsible for the disruption of the dopamine-mediated amphetamine-induced CTA in rats fed control diets; and that a reduction in oxidative stress produced by the antioxidant diets functions to reinstate the dopamine-mediated CTA. The failure of either irradiation or diet to influence LiCl-induced responding suggests that oxidative stress may not be involved in CTA learning following injection of LiCl.

  3. Protective Effects of Hong Shan Capsule against Lethal Total-Body Irradiation-Induced Damage in Wistar Rats

    PubMed Central

    Li, Jianzhong; Xu, Jing; Xu, Weiheng; Qi, Yang; Lu, Yiming; Qiu, Lei; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2015-01-01

    Hong Shan Capsule (HSC), a crude drug of 11 medicinal herbs, was used in clinical practice for the treatment of radiation injuries in China. In this study, we investigated its protection in rats against acute lethal total-body irradiation (TBI). Pre-administration of HSC reduced the radiation sickness characteristics, while increasing the 30-day survival of the irradiated rats. Administration of HSC also reduced the radiation sickness characteristics and increased the 30-day survival of mice after exposure to lethal TBI. Ultrastructural observation illustrated that the pretreatment of rats with HSC significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed the dramatic effect of HSC on alterations of gene expression caused by lethal TBI. Pretreatment with HSC prevented differential expression of 66% (1398 genes) of 2126 genes differentially expressed in response to TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 32 pathways, such as pathways in cancer and the mitogen-activated protein kinase (MAPK) signaling pathway. Our analysis indicated that the pretreatment of rats with HSC modulated these pathways induced by lethal TBI, such as multiple MAPK pathways, suggesting that pretreatment with HSC might provide protective effects on lethal TBI mainly or partially through the modulation of these pathways. Our data suggest that HSC has the potential to be used as an effective therapeutic or radio-protective agent to minimize irradiation damage. PMID:26274957

  4. p21WAF1 expression during spermatogenesis of the normal and X-irradiated rat.

    PubMed

    West, A; Lähdetie, J

    1997-03-01

    The cyclin dependent kinase inhibitor p21WAF1 has been shown to be upregulated during differentiation and after DNA damage in somatic cells. We examined the expression of p21WAF1 mRNA during the differentiation of germ cells in normal and X-irradiated rat testis by in situ hybridization and Northern blotting. p21WAF1 was normally expressed in primary spermatocytes of the pachytene phase, but could also be detected in round spermatids. In preparations of defined segments of the seminiferous tubules, the strongest hybridization signals were detected in the segments containing stages VII VIII and IX XII of the seminiferous epithelium. Ionizing radiation (1-12 Gy) induced the expression of p21WAF1 in a dose-dependent manner and the lowest dose that showed a clear increase in mRNA levels was 3 Gy. The p21WAF1 mRNA levels peaked after 3-4 hours, but remained high compared with the control levels during the 24-h follow-up. No change in the in situ hybridization pattern was seen when comparing unirradiated and irradiated tissue. Thus, it appears that X-irradiation induces p21WAF1 in the pachytene spermatocytes. Since p21WAF1 mRNA was found in pachytene spermatocytes and in round spermatids in normal testis, the protein may take part in the regulation of meiosis and in the 'terminal' differentiation of the male germ cells.

  5. Lung damage following bone marrow transplantation. I. The contribution of irradiation. [Rats

    SciTech Connect

    Cardozo, B.L.; Zoetelief, H.; van Bekkum, D.W.; Zurcher, C.; Hagenbeek, A.

    1985-05-01

    High dose whole body irradiation is commonly included in conditioning regimens for bone marrow transplantation for treatment of patients with hematological malignancies. Interstitial pneumonitis is a major complication after BMT. When no infectious cause is found, it is classified as idiopathic IP (IIP). Total body irradiation is often associated with the induction of IIP; however, extrapolation of animal data from the experiments presented indicates that this is not the only factor contributing to IIP in man. Brown Norway (BN/Bi) rats were bilaterally irradiated to the lungs with 300 kV X rays at a high dose rate (HDR; 0.8 Gy/min) and at low dose rate (LDR; 0.05 Gy/min). The LD50 at 180 days was 13.3 Gy for HDR and 22.7 Gy for LDR. The ratios of LD/sub 50/180/ at 0.05 Gy/min to that at 0.8 Gy/min is 1.7, which indicates a great repair capacity of the lungs. Extrapolation of animal data to patient data leads to an estimated dose of about 15-16 Gy at a 50% radiation pneumonitis induction for low dose rate TBI. As the absorbed dose in the lungs of BMT patients rarely exceeds 10 Gy, additional factors might be involved in the high incidence of HP in man after BMT.

  6. Post-irradiation dietary vitamin E does not affect the development of radiation-induced lung damage in rats.

    PubMed

    Wiegman, Erwin M; van Gameren, Mieke M; Kampinga, Harm H; Szabó, Ben G; Coppes, Rob P

    2004-07-01

    The purpose of this study was to investigate whether application of post-irradiation vitamin E, an anti-oxidant, could prevent the development of radiation induced lung damage. Wistar rats were given vitamin E enriched or vitamin E deprived food starting from 4 weeks after 18Gy single dose irradiation of the right thorax. Neither breathing frequencies nor CT density measurements revealed differences between the groups. It is concluded that post-irradiation vitamin E does not influence radiation-induced fibrosis to the lung.

  7. A Longitudinal Analysis of Regional Brain Volumes in Macaques Exposed to X-Irradiation in Early Gestation

    PubMed Central

    Aldridge, Kristina; Wang, Lei; Harms, Michael P.; Moffitt, Amanda J.; Cole, Kimberly K.; Csernansky, John G.; Selemon, Lynn D.

    2012-01-01

    Background Early gestation represents a period of vulnerability to environmental insult that has been associated with adult psychiatric disease. However, little is known about how prenatal perturbation translates into adult brain dysfunction. Here, we use a longitudinal study design to examine the effects of disruption of early gestational neurogenesis on brain volume in the non-human primate. Methods and Principal Findings Five Rhesus macaques were exposed to x-irradiation in early gestation (E30–E41), and four control monkeys were sham-irradiated at comparable ages. Whole brain magnetic resonance imaging was performed at 6 months, 12 months, and 3 and 5 years of age. Volumes of whole cerebrum, cortical gray matter, caudate, putamen, and thalamus were estimated using semi-automated segmentation methods and high dimensional brain mapping. Volume reductions spanning all ages were observed in irradiated monkeys in the putamen (15–24%, p = 0.01) and in cortical gray matter (6–15%, p = 0.01). Upon covarying for whole cerebral volume, group differences were reduced to trend levels (putamen: p = 0.07; cortical gray matter: p = 0.08). No group-by-age effects were significant. Conclusions Due to the small number of observations, the conclusions drawn from this study must be viewed as tentative. Early gestational irradiation may result in non-uniform reduction of gray matter, mainly affecting the putamen and cerebral cortex. This may be relevant to understanding how early prenatal environmental insult could lead to brain morphological differences in neurodevelopmental diseases. PMID:22905212

  8. DNA Methylation Patterns in Rat Mammary Carcinomas Induced by Pre- and Post-Pubertal Irradiation

    PubMed Central

    Takabatake, Masaru; Blyth, Benjamin J.; Daino, Kazuhiro; Imaoka, Tatsuhiko; Nishimura, Mayumi; Fukushi, Masahiro; Shimada, Yoshiya

    2016-01-01

    Several lines of evidence indicate one’s age at exposure to radiation strongly modifies the risk of radiation-induced breast cancer. We previously reported that rat mammary carcinomas induced by pre- and post-pubertal irradiation have distinct gene expression patterns, but the changes underlying these differences have not yet been characterized. The aim of this investigation was to see if differences in CpG DNA methylation were responsible for the differences in gene expression between age at exposure groups observed in our previous study. DNA was obtained from the mammary carcinomas arising in female Sprague-Dawley rats that were either untreated or irradiated (γ-rays, 2 Gy) during the pre- or post-pubertal period (3 or 7 weeks old). The DNA methylation was analyzed using CpG island microarrays and the results compared to the gene expression data from the original study. Global DNA hypomethylation in tumors was accompanied by gene-specific hypermethylation, and occasionally, by unique tumor-specific patterns. We identified methylation-regulated gene expression candidates that distinguished the pre- and post-pubertal irradiation tumors, but these represented only 2 percent of the differentially expressed genes, suggesting that methylation is not a major or primary mechanism underlying the phenotypes. Functional analysis revealed that the candidate methylation-regulated genes were enriched for stem cell differentiation roles, which may be important in mammary cancer development and worth further investigation. However, the heterogeneity of human breast cancer means that the interpretation of molecular and phenotypic differences should be cautious, and take into account the co-variates such as hormone receptor status and cell-of-origin that may influence the associations. PMID:27711132

  9. A Search for Mitochondrial Damage in Alzheimer’s Disease Using Isolated Rat Brain Mitochondria

    PubMed Central

    Faizi, Mehrdad; Seydi, Enayatollah; Abarghuyi, Sadegh; Salimi, Ahmad; Nasoohi, Sanaz; Pourahmad, Jalal

    2016-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects regions of the brain that control cognition, memory, language, speech and awareness to one’s physical surroundings. The pathological initiation and progression of AD is highly complex and its prevalence is on the rise. In his study, Alzheimer's disease was induced with single injection of amyloid-β (Aβ) peptides (30ng, by stereotaxy) in each hemisphere of the Wistar rat brain. Then memory dysfunction, oxidative stress and apoptosis induced by Aβ peptide were investigated on isolated brain mitochondria obtained from infected rat. Our results showed memory impairment in rats after receiving an Aβ peptide. We also found significant rise (P<0.05) at ROS formation, mitochondrial membrane depolarization, mitochondria swelling, cytochrome c release and significant decrease in ATP/ADP ratio on mitochondria isolated from brain of these memory impaired rats compared with those of untreated control rat group. Activation of caspase-3 the final mediator of apoptosis in the brain homogenate of the memory impaired rats was another justification for occurrence of neuron loss in the experimental model of AD. Our results suggest that oxidative stress and mitochondria mediated apoptosis in brain neurons play very important role in initiation of AD. PMID:28228816

  10. Population-averaged diffusion tensor imaging atlas of the Sprague Dawley rat brain.

    PubMed

    Veraart, Jelle; Leergaard, Trygve B; Antonsen, Bjørnar T; Van Hecke, Wim; Blockx, Ines; Jeurissen, Ben; Jiang, Yi; Van der Linden, Annemie; Johnson, G Allan; Verhoye, Marleen; Sijbers, Jan

    2011-10-15

    Rats are widely used in experimental neurobiological research, and rat brain atlases are important resources for identifying brain regions in the context of experimental microsurgery, tissue sampling, and neuroimaging, as well as comparison of findings across experiments. Currently, most available rat brain atlases are constructed from histological material derived from single specimens, and provide two-dimensional or three-dimensional (3D) outlines of diverse brain regions and fiber tracts. Important limitations of such atlases are that they represent individual specimens, and that finer details of tissue architecture are lacking. Access to more detailed 3D brain atlases representative of a population of animals is needed. Diffusion tensor imaging (DTI) is a unique neuroimaging modality that provides sensitive information about orientation structure in tissues, and is widely applied in basic and clinical neuroscience investigations. To facilitate analysis and assignment of location in rat brain neuroimaging investigations, we have developed a population-averaged three-dimensional DTI atlas of the normal adult Sprague Dawley rat brain. The atlas is constructed from high resolution ex vivo DTI images, which were nonlinearly warped into a population-averaged in vivo brain template. The atlas currently comprises a selection of manually delineated brain regions, the caudate-putamen complex, globus pallidus, entopeduncular nucleus, substantia nigra, external capsule, corpus callosum, internal capsule, cerebral peduncle, fimbria of the hippocampus, fornix, anterior commisure, optic tract, and stria terminalis. The atlas is freely distributed and potentially useful for several purposes, including automated and manual delineation of rat brain structural and functional imaging data.

  11. Glutaric acid moderately compromises energy metabolism in rat brain.

    PubMed

    da C Ferreira, Gustavo; Viegas, Carolina M; Schuck, Patrícia F; Latini, Alexandra; Dutra-Filho, Carlos S; Wyse, Angela T S; Wannmacher, Clóvis M D; Vargas, Carmen R; Wajner, Moacir

    2005-12-01

    Glutaric acidemia type I is an inherited metabolic disorder biochemically characterized by tissue accumulation of predominantly glutaric acid (GA). Affected patients present frontotemporal hypotrophy, as well as caudate and putamen injury following acute encephalopathic crises. Considering that the underlying mechanisms of basal ganglia damage in this disorder are poorly known, in the present study we tested the effects of glutaric acid (0.2-5mM) on critical enzyme activities of energy metabolism, namely the respiratory chain complexes I-IV, succinate dehydrogenase and creatine kinase in midbrain of developing rats. Glutaric acid significantly inhibited creatine kinase activity (up to 26%) even at the lowest dose used in the assays (0.2mM). We also observed that CK inhibition was prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of GA was possibly mediated by oxidation of essential thiol groups of the enzyme. In addition, the activities of the respiratory chain complex I-III and of succinate dehydrogenase were also significantly inhibited by 20 and 30%, respectively, at the highest glutaric acid concentration tested (5mM). In contrast, complexes II-III and IV activities of the electron transport chain were not affected by the acid. The effect of glutaric acid on the rate of oxygen consumption in intact mitochondria from the rat cerebrum was also investigated. Glutaric acid (1mM) significantly lowered the respiratory control ratio (state III/state IV) up to 40% in the presence of the respiratory substrates glutamate/malate or succinate. Moreover, state IV respiration linked to NAD and FAD substrates was significantly increased in GA-treated mitochondria while state III was significantly diminished. The results indicate that the major metabolite accumulating in glutaric acidemia type I moderately compromises brain energy metabolism in vitro.

  12. Lipid mapping of the rat brain for models of disease.

    PubMed

    Martínez-Gardeazabal, J; González de San Román, E; Moreno-Rodríguez, M; Llorente-Ovejero, A; Manuel, I; Rodríguez-Puertas, R

    2017-02-21

    Lipids not only constitute the primary component of cellular membranes and contribute to metabolism but also serve as intracellular signaling molecules and bind to specific membrane receptors to control cell proliferation, growth and convey neuroprotection. Over the last several decades, the development of new analytical techniques, such as imaging mass spectrometry (IMS), has contributed to our understanding of their involvement in physiological and pathological conditions. IMS allows researchers to obtain a wide range of information about the spatial distribution and abundance of the different lipid molecules that is crucial to understand brain functions. The primary aim of this study was to map the spatial distribution of different lipid species in the rat central nervous system (CNS) using IMS to find a possible relationship between anatomical localization and physiology. The data obtained were subsequently applied to a model of neurological disease, the 192IgG-saporin lesion model of memory impairment. The results were obtained using a LTQ-Orbitrap XL mass spectrometer in positive and negative ionization modes and analyzed by ImageQuest and MSIReader software. A total of 176 different molecules were recorded based on the specific localization of their intensities. However, only 34 lipid species in negative mode and 51 in positive were assigned to known molecules with an error of 5ppm. These molecules were grouped by different lipid families, resulting in: Phosphatidylcholines (PC): PC (34: 1)+K(+) and PC (32: 0)+K(+) distributed primarily in gray matter, and PC (36: 1)+K(+) and PC (38: 1)+Na(+) distributed in white matter. Phosphatidic acid (PA): PA (38: 3)+K(+) in white matter, and PA (38: 5)+K(+) in gray matter and brain ventricles. Phosphoinositol (PI): PI (18: 0/20: 4)-H(+) in gray matter, and PI (O-30: 1) or PI (P-30: 0)-H(+) in white matter. Phosphatidylserines (PS): PS (34: 1)-H(+) in gray matter, and PS (38: 1)-H(+) in white matter. Sphingomyelin (SM

  13. Effect of Cyclosporin A on the Uptake of D3-Selective PET Radiotracers in Rat Brain

    PubMed Central

    Tu, Zhude; Li, Shihong; Xu, Jinbin; Chu, Wenhua; Jones, Lynne A.; Luedtke, Robert R.; Mach, Robert H.

    2011-01-01

    Introduction Four benzamide analogs having a high affinity and selectivity for D3 versus D2 receptors were radiolabeled with 11C or 18F for in vivo evaluation. Methods Precursors were synthesized and the four D3 selective benzamide analogs were radiolabeled. The tissue distribution and brain uptake of the four compounds were evaluated in control rats and rats pretreated with cyclosporin A, a modulator of P-glycoprotein and an inhibitor of other ABC efflux transporters that contribute to the blood brain barrier. MicroPET imaging was carried out for [11C]6 in a control and a cyclosporin A pre-treated rat. Results All four compounds showed low brain uptake in control rats at 5 and 30 min post-injection; despite recently reported rat behavioral studies conducted on analogs 6 (WC-10) and 7 (WC-44). Following administration of cyclosporin A, increased brain uptake was observed with all four PET radiotracers at both 5 and 30 min post-i.v. injection. An increase in brain uptake following modulation/inhibition of the ABC transporters was also observed in the microPET study. Conclusions These data suggest that D3 selective conformationally-flexible benzamide analogs which contain a N-2-methoxyphenylpiperazine moiety are substrates for P-glycoprotein or other ABC transporters expressed at the blood-brain barrier, and that PET radiotracers containing this pharmacophore may display low brain uptake in rodents due to the action of these efflux transporters. PMID:21718948

  14. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury.

    PubMed

    Khodaie, Babak; Lotfinia, Ahmad Ali; Ahmadi, Milad; Lotfinia, Mahmoud; Jafarian, Maryam; Karimzadeh, Fariba; Coulon, Philippe; Gorji, Ali

    2015-02-01

    Social isolation has significant long-term psychological and physiological consequences. Both social isolation and traumatic brain injury (TBI) alter normal brain function and structure. However, the influence of social isolation on recovery from TBI is unclear. This study aims to evaluate if social isolation exacerbates the anatomical and functional deficits after TBI in young rats. Juvenile male rats were divided into four groups; sham operated control with social contacts, sham control with social isolation, TBI with social contacts, and TBI with social isolation. During four weeks after brain injury in juvenile rats, we evaluated the animal behaviors by T-maze and open-field tests, recorded brain activity with electrocorticograms and assessed structural changes by histological procedures in the hippocampal dentate gyrus, CA1, and CA3 areas. Our findings revealed significant memory impairments and hyperactivity conditions in rats with TBI and social isolation compared to the other groups. Histological assessments showed an increase of the mean number of dark neurons, apoptotic cells, and caspase-3 positive cells in all tested areas of the hippocampus in TBI rats with and without social isolation compared to sham rats. Furthermore, social isolation significantly increased the number of dark cells, apoptotic neurons, and caspase-3 positive cells in the hippocampal CA3 region in rats with TBI. This study indicates the harmful effect of social isolation on anatomical and functional deficits induced by TBI in juvenile rats. Prevention of social isolation may improve the outcome of TBI.

  15. Modification of mortality and tumorigenesis by tocopherol-mono-glucoside (TMG) administered after X irradiation in mice and rats.

    PubMed

    Ueno, Megumi; Inano, Hiroshi; Onoda, Makoto; Murase, Hironobu; Ikota, Nobuo; Kagiya, Tsutomu V; Anzai, Kazunori

    2009-10-01

    The effects of TMG [2-(alpha-d-glucopyranosyl) methyl-2,5,7,8-tetramethylchroman-6-ol], a water-soluble vitamin E derivative, administered after irradiation on the mortality of X-irradiated mice and on the development of tumors in the mammary and pituitary glands in rats were investigated. When TMG (650 mg/kg) was administered intraperitoneally (i.p.) to C3H mice immediately after whole-body exposure to 7 Gy radiation, the 30-day survival was significantly higher than that of the control mice. The i.p. administration of TMG at 4 h after irradiation significantly improved survival compared to that of the controls, but administration 8 h after irradiation did not have a significant effect. Subcutaneous administration of TMG immediately after irradiation also decreased mortality significantly. When dams of lactating Wister rats were exposed to 1.5 Gy of X rays at day 21 after parturition and were then treated with diethylstilbestrol as a tumor promoter, the incidence of mammary tumors and pituitary tumors was increased compared to that in the nonirradiated control group. The administration of TMG (600 mg/kg, i.p.) after irradiation significantly reduced the incidence of mammary tumors and pituitary tumors. The number of rats that were free of both mammary and pituitary gland tumors was enhanced fourfold by TMG. These results suggest that TMG is effective in preventing radiation-induced bone marrow death in mice and in reducing mammary and pituitary tumors in rats even when it is administered after irradiation.

  16. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    PubMed Central

    Servatius, Richard J.; Marx, Christine E.; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D.; Naylor, Jennifer C.; Pang, Kevin C. H.

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration. PMID:27616978

  17. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury.

    PubMed

    Servatius, Richard J; Marx, Christine E; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D; Naylor, Jennifer C; Pang, Kevin C H

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  18. CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO

    PubMed Central

    Masurovsky, Edmund B.; Bunge, Mary Bartlett; Bunge, Richard P.

    1967-01-01

    Long-term organotypic cultures of rat dorsal root ganglia were exposed to a single 40 kR dose of 184 kvp X-rays and studied in the living and fixed states by light or electron microscopy at 1–14 day intervals thereafter. Within the first 4 days following irradiation, over 30% of the neurons display chromatolytic reactions (eccentric nuclei, peripheral dispersal of Nissl substance, central granular zone) as well as abnormal nucleolar changes and dissociation of ribosomes from endoplasmic reticulum cisternae. Some satellite cells undergo retraction or acute degeneration, leaving only basement membrane to cover the neuron in these areas. 8 days after irradiation, neurons also exhibit (a) areas in which ribosomes are substantially reduced, (b) regions of cytoplasmic sequestration, (c) extensive vacuolization of granular endoplasmic reticulum and Golgi complex, and (d) diversely altered mitochondria (including the presence of ribosome-like particles or association with abnormal glycogen and lipid deposits). Nucleolar components become altered or reoriented and may form abnormal projections and ringlike configurations. Sizeable areas of the neuronal soma are now denuded of satellite cells; underlying these areas, nerve processes are found abnormally invaginated into the neuronal cytoplasm. By the 14th day following irradiation, most neurons display marked degenerative changes including extensive regions of ribosome depletion, sequestration, vacuolization, autolysis, and, in some areas, swirls of filaments, myelin figures, and heterogeneous dense bodies. These observations demonstrate that X-irradiation produces profound cytopathological changes in nervous tissue isolated from the host and that many of these changes resemble the effects of radiation on nervous tissue in vivo. PMID:10976234

  19. Cell-free DNA as a marker for prediction of brain damage in traumatic brain injury in rats.

    PubMed

    Ohayon, Sharon; Boyko, Matthew; Saad, Amit; Douvdevani, Amos; Gruenbaum, Benjamin F; Melamed, Israel; Shapira, Yoram; Teichberg, Vivian I; Zlotnik, Alexander

    2012-01-20

    Traumatic brain injury (TBI) is a major cause of morbidity and mortality, and early predictors of neurological outcomes are of great clinical importance. Cell free DNA (CFD), a biomarker used for the diagnosis and monitoring of several diseases, has been implicated as a possible prognostic indicator after TBI. The purpose of this study was to determine the pattern and timing of CFD levels after TBI, and whether a relationship exists between the level of CFD and brain edema and neurological outcomes. Thirty-nine Sprague-Dawley rats were randomly assigned to two groups: rats in group 1 (sham group) were anesthetized and had a scalp incision without TBI, and rats in group 2 were anesthetized and had a scalp incision with TBI, which was induced by using a weight drop model that causes diffuse brain injury. A neurological severity score (NSS) was assessed at 1, 24, and 48 h after TBI. CFD was measured via blood samples drawn at t=0 (baseline), 12, 24, 48, 72, and 120 h after TBI. At 48 h after TBI, brain edema was determined in a subgroup of 11 rats by calculating the difference between rats' wet and dry brain weight. The significance of comparisons between and within groups (CFD levels, brain water content, and NSS) were determined using the Kruskal-Wallis, Mann-Whitney and Student t test. The correlation between CFD levels and the NSS, as well as between CFD levels and the extent of brain edema, was calculated using the Spearman and Pearson tests, respectively. Compared with baseline levels, the CFD levels in rats subjected to TBI were significantly increased at 24 and 48 h after TBI (p<0.01 and p<0.05, respectively). A positive correlation was demonstrated between CFD levels 24 h following TBI and the extent of brain edema (r=0.63, p<0.05), as well as between CFD levels and the NSS (r=0.79, p<0.005). In this study, we demonstrated an increase in CFD levels after TBI, as well as a correlation between CFD levels and brain edema and NSS. CFD levels may provide a

  20. The influence of testosterone on the development of autoimmune thyroiditis in thymectomized and irradiated rats.

    PubMed Central

    Ahmed, S A; Penhale, W J

    1982-01-01

    Orchidectomy was found to potentiate the development of autoimmune thyroiditis induced by thymectomy and irradiation (Tx-X) in male PVG/c strain rats. Conversely, testosterone administration to orchidectomized Tx-X rats markedly reduced or inhibited the development of this condition. When given in varying quantities by injection in oil over a period of 15 weeks the inhibitory effect on the development of both thyroiditis and thyroglobulin autoantibodies was found to be directly related to dose. Levels between 150 ng and 150 micrograms/100 gm body weight reduced the incidence and severity of the disease whilst levels of 500 micrograms and 5000 micrograms abrogated these autoimmune effects. Testosterone in implant form had a similar effect. Low doses of testosterone administered by either procedure were also found to be beneficial to entire female Tx-X rats. These results indicate that sex steroid hormones have an important modulatory influence on the genesis of autoimmune thyroiditis. Furthermore, it is also apparent in this particular model that this influence can be demonstrated in the absence of the thymus gland Images Fig. 2 PMID:7049452

  1. Neuroprotective effect of EGb761® and low-dose whole-body γ-irradiation in a rat model of Parkinson's disease.

    PubMed

    El-Ghazaly, Mona A; Sadik, Nermin A H; Rashed, Engy R; Abd-El-Fattah, Amal A

    2015-12-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. The present study was undertaken to investigate the pretreatment effects of standardized Ginkgo biloba extract (EGb761(®)) and low-dose whole-body γ-irradiation on the neurological dysfunction in the reserpine model of PD. Male Wistar rats were pretreated orally with EGb761 or fractionated low-dose whole-body γ-irradiation or their combination, then subjected to intraperitoneal injection of reserpine (5 mg/kg body weight) 24 h after the final dose of EGb761 or radiation. Reserpine injection resulted in the depletion of striatal dopamine (DA) level, increased catalepsy score, increased oxidative stress indicated via depletion of glutathione (GSH), increased malondialdehyde (MDA) and iron levels, decreased DA metabolites metabolizing enzymes; indicated by inhibition by glutathione-S-transferase, and nicotinamide adenine dinucleotide phosphate (NADPH)-quinone oxidoreductase (NQO) activities, mitochondrial dysfunction; indicated by declined complex I activity, and adenosine triphosphate (ATP) level and increased apoptosis; indicated by decreased mitochondrial B cell lymphoma-2 (Bcl-2) protein level and by transmission electron microscope. EGb761 and low-dose γ-radiation ameliorated the reserpine-induced state of oxidative stress, mitochondrial dysfunction, and apoptosis in brain. It can be concluded that EGb761, a widely used herbal medicine and low dose of γ-irradiation have protective effects for combating Parkinsonism possibly via replenishment of GSH levels.

  2. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Li, Lei; Wang, Lihong V.

    2015-01-01

    Using internal illumination with an optical fiber in the oral cavity, we demonstrate, for the first time, photoacoustic computed tomography (PACT) of the deep brain of rats in vivo. The experiment was performed on a full-ring-array PACT system, with the capability of providing high-speed cross-sectional imaging of the brain. Compared with external illumination through the cranial skull, internal illumination delivers more light to the base of the brain. Consequently, in vivo photoacoustic images clearly reveal deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  3. Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier: modulation with anti-ICAM-1 antibodies.

    PubMed

    Yuan, Hong; Gaber, M Waleed; McColgan, Tamara; Naimark, Michael D; Kiani, Mohammad F; Merchant, Thomas E

    2003-04-18

    We assessed the acute effects of radiation on the rat blood-brain barrier. A cranial window model and intravital microscopy were used to measure changes in permeability and leukocyte adhesion in pial vessels after a localized, single dose of 20 Gy. Permeability was assessed using five sizes of fluorescein isothiocyanate (FITC)-dextran molecules (4.4-, 10-, 38.2-, 70-, and 150-kDa) with measurements performed before and 2, 24, 48, 72 and 96 h after irradiation for the 4.4 and 38.2-kDa molecules and before and 24 h after irradiation for the other three molecules. To demonstrate the nature of blood-brain barrier permeability, we concurrently studied the permeability of microvessels in the cremaster muscle. In both tissues, permeability to FITC-dextran was significantly greater 24 h after irradiation than before (P<0.05). The exception was that radiation did not affect the permeability of pial vessels to the 150-kDa molecule. The particle-size dependence of the permeability changes in the brain were indicative of altered integrity of endothelial tight junctions and occurred concomitantly with an increase in cell adhesion which was determined by fluorescent labeling of leukocytes with rhodamine 6G. An early inflammatory response to irradiation was apparent in the brain 2 h after irradiation. The numbers of rolling and adherent leukocytes increased significantly and peaked at 24 h. Injection with the anti-ICAM-1 mAb significantly reduced leukocyte adhesion and permeability thereby linking the two processes. These findings provide a target to reduce radiation-related permeability and cell adhesion and potentially the side effects of radiation in the CNS.

  4. Enzymatic activities in brains of diabetic rats treated with vanadyl sulphate and sodium tungstate.

    PubMed

    Lemberg, A; Fernández, M A; Ouviña, G; Rodríguez, R R; Peredo, H A; Susemihl, C; Villarreal, I; Filinger, E J

    2007-12-01

    The hypothesis of the present study was that diabetes mellitus might affect brain metabolism. Streptozotocin (STZ)-induced diabetic rats, treated with vanadyl sulphate (V) and sodium tungstate (T) were employed to observe the aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK) activities in brain homogenates. Significant increases in AST, ALT and CK activities were found in diabetic brain homogenates against controls, suggesting increments of transamination in brain and/or increases in cell membrane permeability to these enzymes. The increase in brain CK possibly expresses alterations in energy production. The decrease in CK activity caused by V and T treatment in diabetic rats suggests that both agents tend to normalize energy consumption. It is also possible that V and T-induced hypoglycemic effects cause metabolic alterations in brain.

  5. In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy.

    PubMed

    Nemoz, Christian; Kibleur, Astrid; Hyacinthe, Jean Noël; Berruyer, Gilles; Brochard, Thierry; Bräuer-Krisch, Elke; Le Duc, Géraldine; Brun, Emmanuel; Elleaume, Hélène; Serduc, Raphaël

    2016-01-01

    A fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler. A graphical user interface has been developed in order to define the irradiation parameters: field width, height, number of angles and X-ray dose. This study is the first reporting an image guided method for soft tissue synchrotron radiotherapy. It allowed microbeam radiation therapy irradiation fields to be reduced by a factor of ∼20 compared with previous studies. It permitted more targeted, more efficient brain tumor microbeam treatments and reduces normal brain toxicity of the radiation treatment.

  6. Risk factors for brain metastases after prophylactic cranial irradiation in small cell lung cancer

    PubMed Central

    Zeng, Haiyan; Xie, Peng; Meng, Xue; Yuan, Shuanghu; Sun, Xindong; Li, Wanlong; Fan, Bingjie; Li, Xiaolin; Yu, Jinming

    2017-01-01

    Despite administration of prophylactic cranial irradiation (PCI), some small cell lung cancer (SCLC) patients still suffer from brain metastases (BM) with unknown risk factors. We conducted this study to identify patients with higher BM risk after PCI and improve their outcome. The characteristics and survival of all the SCLC patients underwent PCI in our institute from 2003 to 2014 were analyzed. Kaplan-Meier method was applied to estimate BM free survival (BMFS) and overall survival (OS). Cox regression analyses were performed to explore risk factors for BM. A total of 175 patients with the median age of 55 years (range, 29–76) were eligible, among whom 36 (20.6%) developed BM with median follow-up of 42 months. Both univariate and multivariate analyses showed HART and TNM classification (p < 0.05) were associated with BM. Two-stage system was not related with BMFS or OS (p > 0.05). Stage IIIB-IV and HART were independent risk factors for BM after PCI in SCLC. TNM classification was more valuable on prognosis than two-stage system. Further large-scale studies are needed to confirm our findings. PMID:28202905

  7. Treatment of isografted 9L rat brain tumors with beta-5-o-carboranyl-2'-deoxyuridine neutron capture therapy.

    PubMed

    Schinazi, R F; Hurwitz, S J; Liberman, I; Juodawlkis, A S; Tharnish, P; Shi, J; Liotta, D C; Coderre, J A; Olson, J

    2000-02-01

    beta-5-o-Carboranyl-2'-deoxyuridine (D-CDU) is a nontoxic pyrimidine nucleoside analogue designed for boron neutron capture therapy of brain tumors. In vitro studies indicated that D-CDU accumulates to levels 92- and 117-fold higher than the extracellular concentration in rat 9L and human U-251 glioma cells, respectively, and persists for several hours at levels 5-fold higher than the extracellular concentration. Furthermore, D-CDU was not toxic to rats injected i.p. with up to 150 mg/kg. On the basis of these studies, D-CDU was evaluated as a neutron capture therapy agent using rats bearing stereotactically implanted intracranial 9L tumors at single i.p. doses of 30 mg/kg and 150 mg/kg of D-CDU (20% 10B enriched), given 2 h before irradiation with thermal neutrons. Boron concentrations in tumors 2 h after dosing were 2.3 +/- 1.6 and 7.4 +/- 1.3 micrograms boron/g tissue (mean +/- SD), corresponding to tumor/brain ratios of 11.5 +/- 3.6 and 6.8 +/- 2.0 micrograms boron/g tissue for the low and high doses, respectively. All untreated animals died within 28 days, whereas half survived at days 32, 55, and 38 for groups receiving neutrons only, 30 mg/kg D-CDU, and 150 mg/kg D-CDU, respectively. Odds ratios of all treatment groups differed significantly from the untreated group (P < 0.002; logrank test). The median survival time for the 30 mg/kg-treated group but not for the 150 mg/kg-treated group was significantly longer than for rats treated with neutrons only (P = 0.036), which may correlate with the decreased tumor selectivity for D-CDU observed at the higher dose. Additional pharmacodynamic studies are warranted to determine optimal dosing strategies for D-CDU.

  8. Presynaptic localization of histamine H3-receptors in rat brain

    SciTech Connect

    Fujimoto, K.; Mizuguchi, H.; Fukui, H.; Wada, H. )

    1991-06-28

    The localization of histamine H3-receptors in subcellular fractions from the rat brain was examined in a (3H) (R) alpha-methylhistamine binding assay and compared with those of histamine H1- and adrenaline alpha 1- and alpha 2-receptors. Major (3H)(R) alpha-methylhistamine binding sites with increased specific activities ((3H)ligand binding vs. protein amount) were recovered from the P2 fraction by differential centrifugation. Minor (3H)(R)alpha-methylhistamine binding sites with increased specific activities were also detected in the P3 fraction. Further subfractionation of the P2 fraction by discontinuous sucrose density gradient centrifugation showed major recoveries of (3H)(R)alpha-methylhistamine binding in myelin (MYE) and synaptic plasma membrane (SPM) fractions. A further increase in specific activity was observed in the MYE fraction, but the SPM fraction showed no significant increase in specific activity. Adrenaline alpha 2-receptors, the pre-synaptic autoreceptors, in a (3H) yohimbine binding assay showed distribution patterns similar to histamine H3-receptors. On the other hand, post-synaptic histamine H1- and adrenaline alpha 1-receptors were closely localized and distributed mainly in the SPM fraction with increased specific activity. Only a negligible amount was recovered in the MYE fraction, unlike the histamine H3- and adrenaline alpha 2-receptors.

  9. Simultaneous MRI and PET imaging of a rat brain

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  10. Presence of corticotropin in brain of normal and hypophysectomized rats.

    PubMed Central

    Krieger, D T; Liotta, A; Brownstein, M J

    1977-01-01

    Immunoreactive and bioreactive corticotropin (ACTH-like) activities have been detected in the median eminence and remaining medial basal hypothalamus of both normal and hypophysectomized adult male rats: bioreactive ACTH (pg/100 mug of protein) 1028 in median eminence and 1289 in medial basal hypothalamus; immunoreactive ACTH (midportion ACTH antibody), 1554 in median eminence and 1887 in medial basal hypothalamus. By use of appropriate antibodies and bioassay, it was demonstrated that immunoreactivity was not due solely to alpha-melanotropin, which has previously been reported to be present in the brain of hypophysectomized animals. The Sephadex G-50 gel filtration patterns determined by immunoassay of column eluates obtained from hypothalamic extracts of normal or hypophysectomized animals were similar but were not identical to the pattern derived from whole pituitary. Immunoreactive (midportion ACTH antibody) ACTH concentrations (pg/100 mug of protein) of other central nervous system areas in normal animals were: cerebellum 34.3, cortex 46.3, thalamus 23.8, and hippocampus 116.3. The total amount of bioreactive ACTH present in the median eminence and medial basal hypothalamus is approximately 1% of that present in the pituitary. The present data suggest that such ACTH may have a diencephalic rather than pituitary origin and raise the question of the functional significance of such ACTH. Images PMID:191820

  11. Brain neuronal chromatin responses in acute soman intoxicated rats.

    PubMed

    Martin, L J; Doebler, J A; Wall, T J; Shih, T M; Anthony, A

    1986-08-01

    Male Sprague-Dawley rats (200 g) were injected subcutaneously with soman, a potent neuronal acetylcholinesterase (AChE) inhibitor, at doses of 0.5, 0.8 and 1.0 LD50 (1 LD50 = 135 micrograms/kg) before decapitation at 1 and 24 h post-exposure. Correlative data were obtained on the severity of brain AChE inactivation and physicochemical changes in nuclear chromatin of cerebrocortical (layer V) and striatal neurons using Feulgen-DNA (F-DNA) cytophotometry and ocular filar micrometry. Decreased lability of neurons to F-DNA acid hydrolysis (reduced F-DNA yield), nuclear shrinkage and chromatin aggregation (decreased chromophore area) were used as indices of suppression of genomic template activity; conversely, increases in F-DNA yield and chromophore area signify enhanced neuroexcitation. At 1 hr post-soman there was a dose-dependent inactivation of AChE with a moderate increase in chromatin activation, i.e., nuclear hypertrophy and chromatin dispersion. At 24 hr post-soman there was a partial restoration of AChE activity, notably in striatal neurons, with a suppression in chromatin template activity. These data indicate that actions of soman on neuronal functioning are time-dependent. The absence of any dose-related neuronal chromatin changes may signify existence of non-cholinergic mediated events.

  12. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Pettet, Garry K J; Luo, Yan; Lim, Ta; Akimov, Stanislav; Sanders, Robert D; Franks, Nicholas P; Maze, Mervyn

    2006-02-01

    Xenon attenuates on-going neuronal injury in both in vitro and in vivo models of hypoxic-ischaemic injury when administered during and after the insult. In the present study, we sought to investigate whether the neuroprotective efficacy of xenon can be observed when administered before an insult, referred to as 'preconditioning'. In a neuronal-glial cell coculture, preexposure to xenon for 2 h caused a concentration-dependent reduction of lactate dehydrogenase release from cells deprived of oxygen and glucose 24 h later; xenon's preconditioning effect was abolished by cycloheximide, a protein synthesis inhibitor. Preconditioning with xenon decreased propidium iodide staining in a hippocampal slice culture model subjected to oxygen and glucose deprivation. In an in vivo model of neonatal asphyxia involving hypoxic-ischaemic injury to 7-day-old rats, preconditioning with xenon reduced infarction size when assessed 7 days after injury. Furthermore, a sustained improvement in neurologic function was also evident 30 days after injury. Phosphorylated cAMP (cyclic adenosine 3',5'-monophosphate)-response element binding protein (pCREB) was increased by xenon exposure. Also, the prosurvival proteins Bcl-2 and brain-derived neurotrophic factor were upregulated by xenon treatment. These studies provide evidence for xenon's preconditioning effect, which might be caused by a pCREB-regulated synthesis of proteins that promote survival against neuronal injury.

  13. (/sup 3/H)-beta-endorphin binding in rat brain

    SciTech Connect

    Houghten, R.A.; Johnson, N.; Pasternak, G.W.

    1984-10-01

    The binding of (/sup 3/H)-beta-endorphin to rat brain homogenates is complex. Although Scatchard analysis of saturation studies yields a straight line, detailed competition studies are multiphasic, suggesting that even at low concentrations of the compound, the /sup 3/H-ligand is binding to more than one class of site. A portion of (/sup 3/H)-beta-endorphin binding is sensitive to low concentrations of morphine or D-Ala2-Leu5-enkephalin (less than 5 nM). The inhibition observed with each compound alone (5 nM) is the same as that seen with both together (each at 5 nM). Thus, the binding remaining in the presence of both morphine and the enkephalin does not correspond to either mu or delta sites. The portion of (/sup 3/H)-beta-endorphin binding that is inhibited under these conditions appears to be equally sensitive to both morphine and the enkephalin and may correspond to mu1 sites. Treating membrane homogenates with naloxonazine, a mu1 selective antagonist, lowers (/sup 3/H)-beta-endorphin binding to the same degree as morphine and D-Ala2-Leu5-enkephalin alone or together. This possible binding of (/sup 3/H)-beta-endorphin to mu1 sites is consistent with the role of mu1 sites in beta-endorphin analgesia and catalepsy in vivo.

  14. Antenatal taurine supplementation for improving brain ultrastructure in fetal rats with intrauterine growth restriction.

    PubMed

    Liu, J; Liu, L; Chen, H

    2011-05-05

    Changes in brain ultrastructure of fetal rats with intrauterine growth restriction (IUGR) were explored and the effects of antenatal taurine supplementation on their brain ultrastructure were determined. Fifteen pregnant rats were randomly divided into three groups: control group, IUGR model group and IUGR group given antenatal taurine supplements. Taurine was added to the diet of the taurine group at a dose of 300 mg/kg/d from 12 days after conception until natural delivery. Transmission electron microscopy was used to observe ultrastructural changes in the brains of the newborn rats. At the same time, brain cellular apoptosis was detected using TUNEL, and the changes in protein expression of neuron specific enolase and glial fibrillary acidic protein were analyzed using immunohistochemistry. The results showed that: 1) The average body weight and cerebral weight were significantly lower in the IUGR group than in the control group (p<0.01) and both of them were less so after taurine was supplemented (p<0.01). 2) Transmission electron microscopy revealed that brain cortex structures were sparse IUGR rats, showing many scattered apoptotic cells, decreased numbers of synapses, lower glial cell proliferation, and fewer neurons, more sparsely arranged, while these factors were significantly improved with taurine supplementation. 3) The results of TUNEL showed that the counts of apoptotic brain cells in IUGR groups were significantly increased from those in control groups and that taurine could significantly decrease brain cell apoptosis (p<0.001). 4) The results of immunohistochemistry showed that antenatal taurine-supplementation could significantly increase the counts of neuron specific enolase and glial fibrillary acidic protein immunoreactive cells in fetal rats with IUGR (p<0.001). It can be concluded that it IUGR has a significant detrimental influence on the development of fetal rat brains, and antenatal supplement of taurine can significantly improve the IUGR

  15. Proton radiation and TNF-alpha/Bax gene therapy for orthotopic C6 brain tumor in Wistar rats.

    PubMed

    Gridley, Daila S; Miller, Glen M; Luo, Xian; Cao, Jeffrey D; Timiryasova, Tatyana M; Fodor, Istvan; Slater, James M

    2004-04-01

    High-grade tumors of the brain remain virtually incurable with current therapeutic regimens, new approaches to augment existing therapies need to be explored. The major goal of this pilot study was to evaluate the feasibility of gene therapy using plasmid DNA encoding tumor necrosis factor-alpha and bax together with proton radiation in an immunocompetent animal model with orthotopic brain tumor. C6 glioma cells were stereotactically implanted into the left hemibrain of Wistar rats (day 0). On day 5, the appropriate groups received intratumoral pGL1-TNF-a and pGL1-Bax (10 microg each), parental plasmid pWS4 (20 microg), or PBS. Hemibrain proton irradiation (10 Gy, 90 MeV, single fraction) was delivered 18-20 hr later. Rats were euthanized when signs of illness appeared. In addition, a subset of animals from each group was euthanized on day 9 for immune and other assays. By day 9, 25%, 20%, and 10% of rats treated with PBS, pWS4, or pGL1-TNF-alpha/pGL1-Bax, respectively, had been euthanized due to weight loss or other signs of illness, whereas all rats treated with pGL1-TNF-alpha/pGL1-Bax + radiation or radiation alone were healthy (P<0.05). At this same time, the pGL1-TNF-alpha/pGL1-Bax + radiation group had significantly elevated lymphocyte percentages (P<0.005 or less) and a relatively high level of lymphocytic infiltrate within tumors. Although the rats treated with pGL1-TNF-alpha/pGL1-Bax had the highest levels of activated T helper (CD4+/CD71+) and T cytotoxic (CD8+/CD71+) cells, the values were not significantly different compared to the pWS4-injected control group. Splenocytes in all tumor cell-injected groups had higher mean values for DNA and protein synthesis compared to the non-tumor cell injected control group, whereas oxygen radical production by phagocytes was consistently higher in groups injected with plasmid or treated with radiation. Body, hemibrain, and spleen masses, white blood cell, red blood cell and platelet counts, hemoglobin, hematocrit

  16. [Semax prevents elevation of nitric oxide generation caused by incomplete global ischemia in the rat brain].

    PubMed

    Fadiukova, O E; Alekseev, A A; Bashkatova, V G; Tolordava, I A; Kuzenkov, V S; Mikoian, V D; Vanin, A F; Koshelev, V B; Raevskiĭ, K S

    2001-01-01

    A twofold increase in the nitric oxide (NO) production and a moderate increase in the content of secondary products of lipid peroxidation was observed in Wistar rats with incomplete global ischemia model induced by the bilateral occlusion of common carotid arteries. A clear correlation was observed between the NO content in the rat brain and the level of neurological disturbance manifestations in the ischemized animals. The synthetic peptide semax (a fragment of ACTH4-7 Pro-Gly-Pro) in a dose of 0.3 mg/kg prevented from the development of both neurological disturbances and excess NO production in the rat brain cortex.

  17. Effect of three anorectic drugs on brain GABA levels and synthesis in the Zucker rat.

    PubMed

    Orosco, M; Bremond, J; Jacquot, C; Cohen, Y

    1983-01-01

    1. Genetically obese Zucker rats and their lean littermates were submitted to a subchronic treatment with fenfluramine, mazindol and amphetamine. GABA levels and synthesis index were measured in different brain areas. 2. GABA levels, similar in obese and lean controls, were not changed after the three treatments. 3. A higher synthesis index of GABA was found in lean rats, in the striatum after mazindol and in the hypothalamus after amphetamine. 4. The three drugs increased the synthesis index of GABA in the remainder of the brain of both obese and lean rats.

  18. Short Communication: Rheological properties of blood serum of rats after irradiation with different gamma radiation doses in vivo.

    PubMed

    Abdelhalim, Mohamed Anwar K; Moussa, Sherif Aa; Ms, Al-Ayed

    2016-01-01

    The blood serum rheological properties open the door to find suitable radio-protectors and convenient therapy for many cases of radiation exposure. The present study aimed to investigate the rheological properties of rat blood serum at wide range of shear rates after whole body irradiation with different gamma radiation doses in vivo. Healthy male rats were divided into five groups; one control group and 4 irradiated groups. The irradiation process was carried out using Co60 source with dose rate of 0.883cG/sec. Several rheological parameters were measured using Brookfield LVDV-III Programmable rheometer. A significant increase in viscosity and shear stress was observed with 25 and 50Gy corresponding to each shear rate compared with the control; while a significant decrease observed with 75 and 100Gy. The viscosity exhibited a Non-Newtonian behaviour with the shear rate while shear stress values were linearly related with shear rate. The decrease in blood viscosity might be attributed to changes in molecular weight, pH sensitivity and protein structure. The changes in rheological properties of irradiated rats' blood serum might be attributed to destruction changes in the haematological and dimensional properties of rats' blood products.

  19. Suppressed histamine release from rat peritoneal mast cells by ultraviolet B irradiation: decreased diacylglycerol formation as a possible mechanism

    SciTech Connect

    Danno, K.; Fujii, K.; Tachibana, T.; Toda, K.; Horio, T.

    1988-06-01

    This study was designed to investigate the effect of ultraviolet B (UVB) irradiation on mast cell functions. Purified mast cells obtained from rat peritoneal cavity were irradiated with UVB and subsequently exposed to a degranulator, compound 48/80, or the calcium ionophore A-23187. The amount of histamine released from mast cells measured by the enzyme isotopic assay was significantly decreased by UVB irradiation (100-400 mJ/cm2). Within this dose range, UVB alone was not cytotoxic to the cells because it did not induce histamine release. The suppression was observed when mast cells were subjected to degranulation without intervals after UVB irradiation, and even after 5 h postirradiation. The wavelength of 300 nm from a monochromatic light source showed the maximum effect. When mast cells prelabeled with (/sup 3/H)arachidonate were irradiated and challenged by compound 48/80, label accumulation in diacylglycerol produced by the phosphatidylinositol cycle was considerably decreased by UVB irradiation. From these results, we hypothesize that, within an adequate irradiation dose, UVB irradiation suppresses histamine release from mast cells, probably by causing noncytotoxic damage to the membrane phospholipid metabolism, which is tied to the degranulation mechanisms.

  20. Steroid hormone production in testis, ovary, and adrenal gland of immature rats irradiated in utero with /sup 60/Co

    SciTech Connect

    Inano, H.; Suzuki, K.; Ishii-Ohba, H.; Imada, Y.; Kumagai, R.; Kurihara, S.; Sato, A.

    1989-02-01

    Pregnant rats received whole-body irradiation at 20 days of gestation with 2.6 Gy lambda rays from a 60Co source. Endocrinological effects before maturation were studied using testes and adrenal glands obtained from male offspring and ovaries from female offspring irradiated in utero. Seminiferous tubules of the irradiated male offspring were remarkably atrophied with free germinal epithelium and containing only Sertoli cells. Female offspring also had atrophied ovaries. Testicular tissue obtained from intact and 60Co-irradiated rats was incubated with 14C-labeled pregnenolone, progesterone, 17 alpha-hydroxyprogesterone, and androstenedione as a substrate. Intermediates for androgen production and catabolic metabolites were isolated after the incubation. The amounts of these metabolites produced by the irradiated testes were low in comparison with the control. The activities of delta 5-3 beta-hydroxysteroid dehydrogenase, 17 alpha-hydroxylase, C17,20-lyase, and delta 4-5 alpha-reductase in the irradiated testes were 30-40% of those in nonirradiated testes. Also, the activities of 17 beta- and 20 alpha-hydroxysteroid dehydrogenases were 72 and 52% of the control, respectively. In adrenal glands, the 21-hydroxylase activity of the irradiated animals was 38% of the control, but the delta 5-3 beta-hydroxysteroid dehydrogenase activity was comparable to that of the control. On the other hand, the activity of delta 5-3 beta-hydroxysteroid dehydrogenase of the irradiated ovary was only 19% of the control. These results suggest that 60Co irradiation of the fetus in utero markedly affects the production of steroid hormones in testes, ovaries, and adrenal glands after birth.

  1. Effects of Acyzol on Zinc Content in Rat Brain and Blood Plasma.

    PubMed

    Yakimoskii, A F; Shantyr, I I; Vlasenko, M A; Yakovleva, M V

    2017-01-01

    Zinc level in the blood plasma and brain of rats was studied by inductively coupled plasma mass spectrometry. Maximum amount of zinc was observed in the cerebellum (15.0±5.5 μg/mg wet tissue). Single intraperitoneal administration of a zinc donor acyzol (24 mg/kg) did not change the content of this element in the tissues. Repeated injections of acyzol (7 injections over 14 days) significantly increased zinc level in rat plasma and brain. This elevation was most pronounced in the forebrain (cortex and subcortical structures). The rise in zinc concentration in blood plasma correlated with its level in the brain.

  2. Effect of domoic acid on metabolism of 5-hydroxytryptamine in rat brain.

    PubMed

    Arias, B; Arufe, M; Alfonso, M; Duran, R

    1995-04-01

    Domoic acid (Dom) is a neurotoxic secondary amino acid that interacts with the glutamate receptors, producing neurological problems. In the present work, we study the effects of Dom on the levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in discrete rat brain regions. The effects of Dom on the brain metabolism of serotonin are also discussed in this paper. Dom stimulates the rat brain serotoninergic system, increasing differentially the synthesis and the catabolism of 5-HT and the elimination of 5-HIAA.

  3. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    PubMed

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain.

  4. Focused ultrasound-induced blood-brain barrier disruption enhances the delivery of cytarabine to the rat brain.

    PubMed

    Zeng, Han-Qing; Lü, Lin; Wang, Feng; Luo, Yun; Lou, Shi-Feng

    2012-12-01

    To investigate the feasibility of using focused ultrasound (FUS) with microbubbles for targeted delivery of cytarabine to the brain. Sprague-Dawly rats (weighing 200-250 g) received focused ultrasound with intravenous injection microbubbles. At 0, 2, 4, 8, and 24 hours (n=5 for each time point) after sonication, animals received intravenous administration of cytarabine at a normal dose of 4 mg/kg body weight. Additional five rats were given with a high dose (50 mg/kg body weight) of cytarabine alone. Blood-brain barrier (BBB) permeability and cerebral cytarabine were determined. FUS in conjunction with microbubbles caused a transient BBB opening. Sonication exposure promoted cytarabine accumulation at the sonicated site. Animals injected with a normal dose of cytarabine 2 hours after sonication had similar concentrations of cerebral cytarabine compared to those with higher cytarabine without sonication. FUS can temporarily open the BBB and thus facilitate the penetration of systemic cytarabine into the brain.

  5. Carnosine pretreatment protects against hypoxia-ischemia brain damage in the neonatal rat model.

    PubMed

    Zhang, Xiangmin; Song, Lili; Cheng, Xiuyong; Yang, Yi; Luan, Bin; Jia, Liting; Xu, Falin; Zhang, Zhan

    2011-09-30

    Perinatal hypoxia-ischemia brain injury is a major cause of mortality and morbidity in neonates and lacks an effective treatment thus far. Carnosine has been demonstrated to play a neuroprotective role in the adult brain injuries. However, there is no information available concerning its neuroprotective role in the immature brains after hypoxia-ischemia insults. Therefore, we investigated whether carnosine could also confer neuroprotective effects in a neonatal rat hypoxia-ischemia model. Hypoxia-ischemia was induced in rats on postnatal day 7 (P7). Carnosine (250 mg/kg) was administered intraperitoneally, 30 min prior to hypoxia-ischemia induction. Morphological brain injury and biochemical markers of apoptosis and oxidative stress were evaluated 24 h after hypoxia-ischemia induction. Cognitive performance was evaluated by the Morris Water Maze test on P28-P33. We found that pretreatment with carnosine significantly reduced the infarct volume and the number of terminal-deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells in the hypoxia-ischemia brain. Carnosine also inhibited mRNA expression of apoptosis-inducing factor(AIF) and caspase-3, which was accompanied by an increase in superoxide dismutase(SOD)activity and a decrease in the malondialdehyde(MDA)level in carnosine-treated rats. Furthermore, carnosine also improved the spatial learning and memory abilities of rats declined due to hypoxia-ischemia. These results demonstrate that carnosine can protect rats against hypoxia-ischemia-induced brain damage by antioxidation.

  6. Reduction of food intake following X-ray irradiation of rats--involvement of visceral afferent nerves.

    PubMed

    Unno, Tatsuya; Hashimoto, Mitsuyasu; Arai, Shoichi; Kurosawa, Mieko

    2002-03-18

    Radiotherapy for malignant tumours often elicits anorexia or loss of appetite as an adverse effect. However, the mechanism for this is poorly understood. The present study was undertaken to investigate if visceral afferents are responsible for reduction of food intake following X-ray irradiation. Rats were exposed bilaterally to X-ray (10 MV) irradiation with total doses of 1.5, 3 and 6 Gy, using a high-energy electron linear accelerator at a dose rate of 4.9 Gy min(-1) X-ray irradiation of the whole body, abdomen or head with doses of 1.5, 3 and 6 Gy reduced food intake in a dose-dependent manner. The reduction of food intake after X-ray irradiation of the whole body or abdomen was significantly greater than when only the head was irradiated. Reduction of food intake was observed for the first 4 days after 6 Gy X-ray irradiation of the abdomen, while it was observed only on the first day after the same 6-Gy irradiation of the abdomen in animals whose small-diameter afferents were ablated by capsaicin pre-treatment. These results suggested that the abdominal afferent nerves at least contribute to the reduction of food intake observed on second to fourth days after 6-Gy abdominal irradiation. Taken together, the present evidence suggests that the reduction of food intake following X-ray irradiation of the whole body or the abdomen is partly mediated via abdominal afferent nerves. Moreover, the results of X-ray irradiation to the head suggest that X-ray irradiation directly influences the central nervous system to reduce food intake.

  7. Oxidative damage is ameliorated by curcumin treatment in brain and sciatic nerve of diabetic rats.

    PubMed

    Acar, Abdullah; Akil, Esref; Alp, Harun; Evliyaoglu, Osman; Kibrisli, Erkan; Inal, Ali; Unan, Fatma; Tasdemir, Nebahat

    2012-07-01

    To date, there have not been enough studies about the effects of curcumin against oxidative stress on sciatic nerves caused by streptozotocin (STZ) in diabetic rats. Therefore, this study was undertaken to determine whether curcumin, by virtue of its antioxidant properties, could affect the oxidant/antioxidant balance in the sciatic nerve and brain tissues of streptozotocin (STZ)-induced diabetic rats. A total of 28 rats were randomly divided into four groups of seven rats each: normal controls, only curcumin treated, diabetic controls, and diabetics treated with curcumin. Biomarkers-malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and NO levels-for oxidative stress in the brain and sciatic nerve tissues of the rats were measured. We found a significant increase in MDA, NO, TOS, and OSI, along with a reduction in TAS levels in the brains and sciatic nerves of the STZ-induced diabetic rats (for both parameters p < 0.05). The MDA, TOS, OSI, and NO levels in these tissues were significantly reduced in the curcumin-treated diabetic group compared to the untreated diabetic group. In conclusion, the results of this study suggested that curcumin exhibits neuroprotective effects against oxidative damage in the brain and sciatic tissues of diabetic rats.

  8. Interaction of cadmium chloride and gamma irradiation on blood parameters of the young adult rat.

    PubMed

    Morgan, R M; Kundomal, Y R; Hupp, E W

    1984-12-01

    Two hundred and sixteen male Sprague-Dawley (S-D) rats, 80 +/- 5 days old and weighing 220-250 g each, were assigned at random to nine groups of 24 rats each. Rats were injected with cadmium (Cd) intraperitoneally every 3 days for 29 days for a total of nine injections. Injections doses were 0, 1.0, or 2.5 mg Cd kg-1 body wt. Twenty-four hours after the last Cd injection (Day 30), each rat received an acute whole-body 60Co gamma radiation dose of 0, 3.62, or 5.43 Gray (Gy) at a dose rate of 33.04 Gy min-1. The irradiated groups exhibited significant decreases in the total number of white blood cells (WBCs) and the percentage of lymphocytes. Significant increases were seen in the percentage of polyneutrophils, serum triacylglycerols (TG), serum iron, and serum lactate dehydrogenase (LDH). Cd-treated groups had increased total WBCs, percentage of polyneutrophils, and serum glutamate oxaloacetate transaminase (SGOT). Significant decreases were observed in the percentage of lymphocytes, hemoglobin, total number of red blood cells (RBCs), and hematocrit. In the co-insult, significant decreases were seen in the total number of WBCs and RBCs, the percentage of lymphocytes, hemoglobin, and hematocrit. Significant increases were observed in the percentage of polyneutrophils and serum iron. In general, Cd acted as a debilitator which enhanced the overall effect of ionizing radiation when applied as the second insult. On the other hand, Cd also provided protection against radiation; that is, some parameters such as total WBCs, serum TG, serum iron, and serum LDH were not as adversely affected by the co-insult as when radiation only was used. The mechanism of this Cd anomaly is not known.

  9. Optimization of choline administration regimen for correction of cognitive functions in rats after brain injury.

    PubMed

    Guseva, M V; Kamenskii, A A; Gusev, V B

    2013-06-01

    Choline diet promotes improvement of the brain cognitive functions in rats with moderate-to-severe traumatic brain injury. In previous studies, the rats received choline being standard (0.2%) or choline-supplemented (2%) diet for 2 weeks prior to and 2 weeks after experimental brain injury. To the end of the experiments (in 4 weeks), the post-traumatic disturbances in the cognitive functions were observed in both groups, although they were less pronounced than in the rats kept on the choline-supplemented diet. Based on original mathematical model, this paper proposes a method to calculate the most efficient use of choline to correct the brain cognitive functions. In addition to evaluating the cognitive functions, the study assessed expression of α7 nicotinic acetylcholine receptors, the amount of consumed food and water, and the dynamics of body weight.

  10. Lithium Visibility in Rat Brain and Muscle in Vivoby 7Li NMR Imaging

    NASA Astrophysics Data System (ADS)

    Komoroski, Richard A.; Pearce, John M.; Newton, Joseph E. O.

    1998-07-01

    The apparent concentration of lithium (Li)in vivowas determined for several regions in the brain and muscle of rats by7Li NMR imaging at 4.7 T with inclusion of an external standard of known concentration and visibility. The average apparent concentrations were 10.1 mM for muscle, and 4.2-5.3 mM for various brain regions under the dosing conditions used. The results were compared to concentrations determinedin vitroby high-resolution7Li NMR spectroscopy of extracts of brain and muscle tissue from the same rats. The comparison provided estimates of the7Li NMR visibility of the Li cation in each tissue region. Although there was considerable scatter of the calculated visibilities among the five rats studied, the results suggested essentially full visibility (96%) for Li in muscle, and somewhat reduced visibility (74-93%) in the various brain regions.

  11. Voluntary Running Prevents Progressive Memory Decline and Increases Adult Hippocampal Neurogenesis and Growth Factor Expression After Whole-Brain Irradiation

    PubMed Central

    Wong-Goodrich, Sarah J.E.; Pfau, Madeline L.; Flores, Catherine T.; Fraser, Jennifer A.; Williams, Christina L.; Jones, Lee W.

    2010-01-01

    Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention, and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to four months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting one month after sham- or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdU) immunolabeling and ELISA indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdU+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor, and occurred despite irradiation-induced elevations in hippocampal pro-inflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention. PMID:20884629

  12. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device

    SciTech Connect

    Zarghami, Niloufar Jensen, Michael D.; Talluri, Srikanth; Dick, Frederick A.; Foster, Paula J.; Chambers, Ann F.; Wong, Eugene

    2015-11-15

    Purpose: Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. Methods: A mouse head holder was designed for a microCT couch using CAD software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Results: Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14 ± 0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2° ± 1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. Conclusions: The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.

  13. Changes in miRNA in the lung and whole blood after whole thorax irradiation in rats

    PubMed Central

    Gao, Feng; Liu, Pengyuan; Narayanan, Jayashree; Yang, Meiying; Fish, Brian L.; Liu, Yong; Liang, Mingyu; Jacobs, Elizabeth R.; Medhora, Meetha

    2017-01-01

    We used a rat model of whole thorax x-ray irradiation to profile the microRNA (miRNA) in lung and blood up to 4 weeks after radiation. MiRNA from normal and irradiated Wistar rat lungs and whole blood were analyzed by next-generation sequencing and the changes by radiation were identified by differential deRNA-seq 1, 2, 3 and 4 weeks after irradiation. The average total reads/library was 2,703,137 with a mean of 88% mapping to the rat genome. Detailed profiles of 100 of the most abundant miRNA in rat blood and lung are described. We identified upregulation of 4 miRNA, miR-144-5p, miR-144-3p, miR-142-5p and miR-19a-3p in rat blood 2 weeks after radiation that have not previously been shown to be altered after radiation to the lung. Ingenuity Pathway Analysis identified signaling of inflammatory response pathways. These findings will support development of early detection methods, as well as mechanism(s) of injury and mitigation in patients after radiotherapy or radiological accidents. PMID:28303893

  14. Pre-exposure to low-power diode laser irradiation promotes cytoprotection in the rat retina.

    PubMed

    Sun, Yue; Zhang, Shisheng; Liao, Huaping; Wang, Jing; Wang, Ling

    2015-01-01

    The aim of this study was to investigate whether pre-exposure to low-power laser irradiation can provoke an effect on cellular protection in the rat retina. The right eyes of 40 rats were exposed to a 3-mm diode laser beam for 1 min in different light intensities and different experimental sets: group A low power of 60 mW (34.27 J/cm(2) on the retina in consideration of the energy losses along the optical pathway) prior to high power of 80 mW (44.88 J/cm(2) on the retina in consideration of the energy losses along the optical pathway), group B high power, group C low power, group D (the left eyes from the counterpart of group A) and group E (untreated rat eyes) as controls. Morphological retinal change retinas were assessed using light microscopy and/or transmission electron microscopy. Heat shock protein (Hsp) 70 and cleaved caspase 3 protein expression were analyzed by immunohistochemical staining and Western blot. Cellular injury was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Hsp 70 expression in the inner plexiform layer and the outer plexiform layer in group A were 73.09 ± 6.49 and 78.03 ± 3.05%, respectively, which was significantly higher (P < 0.05) than those observed in group B (59.07 ± 1.40 and 32.25 ± 4.26%, respectively). The Hsp70/β-actin ratio was 0.49 ± 0.06 in group C, which was significantly higher (P < 0.05) than that of group B (0.27 ± 0.04). Cleaved caspase 3 expression in group C both was significantly lower than that observed in group B. TUNEL staining showed that positive cells in the outer nuclear layer and inner nuclear layer in group A were significantly lower than those of group B. Pre-exposure to a 60-mW (34.27 J/cm(2) on the retina) power laser irradiation stimulates a hyperexpression of Hsp70 together with a hypoexpression of cleaved caspase 3 in rat retina, which may suggest a cellular protective effect.

  15. Regional Volume Decreases in the Brain of Pax6 Heterozygous Mutant Rats: MRI Deformation-Based Morphometry

    PubMed Central

    Hiraoka, Kotaro; Sumiyoshi, Akira; Nonaka, Hiroi; Kikkawa, Takako; Kawashima, Ryuta; Osumi, Noriko

    2016-01-01

    Pax6 is a transcription factor that pleiotropically regulates various developmental processes in the central nervous system. In a previous study, we revealed that Pax6 heterozygous mutant (rSey2/+) adult rats exhibit abnormalities in social interaction. However, the brain malformations underlying the behavioral abnormality are unknown. To elucidate the brain malformations in rSey2/+ rats, we morphometrically analyzed brains of rSey2/+ and wild type rats using small-animal magnetic resonance imaging (MRI). Sixty 10-week-old rats underwent brain MRI (29 rSey2/+ rats and 31 wild type rats). SPM8 software was used for image preprocessing and statistical image analysis. Normalized maps of the Jacobian determinant, a parameter for the expansion and/or contraction of brain regions, were obtained for each rat. rSey2/+ rats showed significant volume decreases in various brain regions including the neocortex, corpus callosum, olfactory structures, hippocampal formation, diencephalon, and midbrain compared to wild type rats. Among brain regions, the anterior commissure showed significant interaction between genotype and sex, indicating the effect of genotype difference on the anterior commissure volume was more robust in females than in males. The rSey2/+ rats exhibited decreased volume in various gray and white matter regions of the brain, which may contribute to manifestation of abnormal social behaviors. PMID:27355350

  16. Imaging of sialidase activity in rat brain sections by a highly sensitive fluorescent histochemical method.

    PubMed

    Minami, Akira; Shimizu, Hirotaka; Meguro, Yuko; Shibata, Naoki; Kanazawa, Hiroaki; Ikeda, Kiyoshi; Suzuki, Takashi

    2011-09-01

    Sialidase (EC 3.2.1.18) removes sialic acid from sialoglycoconjugates. Since sialidase extracellularly applied to the rat hippocampus influences many neural functions, including synaptic plasticity and innervations of glutamatergic neurons, endogenous sialidase activities on the extracellular membrane surface could also affect neural functions. However, the distribution of sialidase activity in the brain remains unknown. To visualize extracellular sialidase activity on the membrane surface in the rat brain, acute brain slices were incubated with 5-bromo-4-chloroindol-3-yl-α-d-N-acetylneuraminic acid (X-Neu5Ac) and Fast Red Violet LB (FRV LB) at pH 7.3. After 1h, myelin-abundant regions showed intense fluorescence in the rat brain. Although the hippocampus showed weak fluorescence in the brain, mossy fiber terminals in the hippocampus showed relatively intense fluorescence. These fluorescence intensities were attenuated with a sialidase-specific inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA, 1mM). Additionally, the fluorescence intensities caused by X-Neu5Ac and FRV LB were correlated with the sialidase activity measured with 4-methylumbelliferyl-α-d-N-acetylneuraminic acid (4MU-Neu5Ac), a classical substrate for quantitative measurement of sialidase activity, in each brain region. Therefore, staining with X-Neu5Ac and FRV LB is specific for sialidase and useful for quantitative analysis of sialidase activities. The results suggest that white matter of the rat brain has intense sialidase activity.

  17. Possible ameliorative effects of kolaviron against reproductive toxicity in sub-lethally whole body gamma-irradiated rats.

    PubMed

    Adaramoye, Oluwatosin A; Adedara, Isaac A; Farombi, E Olatunde

    2012-05-01

    Ionizing radiation is one of the environmental factors that may contribute to reproductive dysfunction by a mechanism involving oxidative stress. We investigated the possible ameliorative effects of kolaviron (KV) (a biflavonoid from the seeds of Garcinia kola) on sperm characteristics, testicular lipid peroxidation (LPO) and antioxidant status after a whole body γ-irradiation in Wistar rats. Vitamin C (VC) served as standard antioxidant in this study. The study consists of four groups of 6 rats each. Group I received corn oil, whereas group II received a single dose of γ-radiation (5 Gy). The animals in groups III and IV were pretreated with KV (250 mg/kg) and VC (250 mg/kg) by oral gavage five times in a week, respectively, for 6 weeks prior to and 8 weeks after exposure to γ-radiation. Gamma-irradiation resulted in a significant (p<0.05) decrease in body weight and relative testes weight. Also, γ-irradiation significantly (p<0.05) decreased the activities of superoxide dismutase, catalase and glutathione S-transferase as well as glutathione level, but markedly elevated malondialdehyde levels in the serum and testes. Irradiated rats showed testicular degeneration with concomitant decrease in sperm motility and viability. Although sperm abnormalities significantly increased, it has no effect on the epididymal sperm count. KV and VC significantly (p<0.05) decreased the body weight loss and increased relative testes weights of the rats. Furthermore, supplementation of KV and VC ameliorated radiation-induced toxicity by increasing the activities of antioxidant enzymes, decreased LPO and abrogated testicular degeneration. Taken together, γ-irradiation caused reproductive dysfunction by depleting the antioxidant defence system in the rats, while administration of KV or VC ameliorated the radiation-induced testicular toxicity.

  18. Rationale for the use of upfront whole brain irradiation in patients with brain metastases from breast cancer.

    PubMed

    Tallet, Agnes V; Azria, David; Le Rhun, Emilie; Barlesi, Fabrice; Carpentier, Antoine F; Gonçalves, Antony; Taillibert, Sophie; Dhermain, Frédéric; Spano, Jean-Philippe; Metellus, Philippe

    2014-05-08

    Breast cancer is the second most common cause of brain metastases and deserves particular attention in relation to current prolonged survival of patients with metastatic disease. Advances in both systemic therapies and brain local treatments (surgery and stereotactic radiosurgery) have led to a reappraisal of brain metastases management. With respect to this, the literature review presented here was conducted in an attempt to collect medical evidence-based data on the use of whole-brain radiotherapy for the treatment of brain metastases from breast cancer. In addition, this study discusses here the potential differences in outcomes between patients with brain metastases from breast cancer and those with brain metastases from other primary malignancies and the potential implications within a treatment strategy.

  19. Comparative effects of X irradiation on the testes of adult Sprague-Dawley and Wistar rats.

    PubMed

    Delic, J I; Schlappack, O K; Harwood, J R; Stanley, J A

    1987-10-01

    The response of the testes of two strains of adult rats (Sprague-Dawley and Wistar) to graded single doses and split doses of 230 kVp X rays has been investigated. A marked difference was noted between the strains in the response of the clonogenic spermatogonia to irradiation, as measured histologically by the repopulation index. Single-dose response curves derived for these cells in the Sprague-Dawley strain had a much larger shoulder (up to about 4-5 Gy) than for the Wistar (less than 2 Gy). Split-dose studies revealed that this difference may partly be explained by a greater repair capacity in the cells of the Sprague-Dawley strain. Changes in serum FSH concentrations mirrored the changes in clonogenic spermatogonial survival following split doses of radiation.

  20. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain.

    PubMed

    Bediz, Cem Seref; Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim; Oztekin, Esma

    2006-02-01

    Extremely low-frequency (0-300 Hz) electromagnetic fields (EMFs) generated by power lines, wiring and home appliances are ubiquitous in our environment. All populations are now exposed to EMF, and exposure to EMF may pose health risks. Some of the adverse health effects of EMF exposure are lipid peroxidation and cell damage in various tissues. This study has investigated the effects of EMF exposure and zinc administration on lipid peroxidation in the rat brain. Twenty-four male Sprague-Dawley rats were randomly allocated to three groups; they were maintained untreated for 6 months (control, n = 8), exposed to low-frequency (50 Hz) EMF for 5 minutes every other day for 6 months (n = 8), or exposed to EMF and received zinc sulfate daily (3 mg/kg/day) intraperitoneally (n = 8). We measured plasma levels of zinc and thiobarbituric acid reactive substances (TBARS), and levels of reduced glutathione (GSH) in erythrocytes. TBARS and GSH levels were also determined in the brain tissues. TBARS levels in the plasma and brain tissues were higher in EMF-exposed rats with or without zinc supplementation, than those in controls (p < 0.001). In addition, TBARS levels were significantly lower in the zinc-supplemented rats than those in the EMF-exposed rats (p < 0.001). GSH levels were significantly decreased in the brain and erythrocytes of the EMF-exposed rats (p < 0.01), and were highest in the zinc-supplemented rats (p < 0.001). Plasma zinc was significantly lower in the EMF-exposed rats than those in controls (p < 0.001), while it was highest in the zinc-supplemented rats (p < 0.001). The present study suggests that long-term exposure to low-frequency EMF increases lipid peroxidation in the brain, which may be ameliorated by zinc supplementation.

  1. Brain Insulin Administration Triggers Distinct Cognitive and Neurotrophic Responses in Young and Aged Rats.

    PubMed

    Haas, Clarissa B; Kalinine, Eduardo; Zimmer, Eduardo R; Hansel, Gisele; Brochier, Andressa W; Oses, Jean P; Portela, Luis V; Muller, Alexandre P

    2016-11-01

    Aging is a major risk factor for cognitive deficits and neurodegenerative disorders, and impaired brain insulin receptor (IR) signaling is mechanistically linked to these abnormalities. The main goal of this study was to investigate whether brain insulin infusions improve spatial memory in aged and young rats. Aged (24 months) and young (4 months) male Wistar rats were intracerebroventricularly injected with insulin (20 mU) or vehicle for five consecutive days. The animals were then assessed for spatial memory using a Morris water maze. Insulin increased memory performance in young rats, but not in aged rats. Thus, we searched for cellular and molecular mechanisms that might account for this distinct memory response. In contrast with our expectation, insulin treatment increased the proliferative activity in aged rats, but not in young rats, implying that neurogenesis-related effects do not explain the lack of insulin effects on memory in aged rats. Furthermore, the expression levels of the IR and downstream signaling proteins such as GSK3-β, mTOR, and presynaptic protein synaptophysin were increased in aged rats in response to insulin. Interestingly, insulin treatment increased the expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptors in the hippocampus of young rats, but not of aged rats. Our data therefore indicate that aged rats can have normal IR downstream protein expression but failed to mount a BDNF response after challenge in a spatial memory test. In contrast, young rats showed insulin-mediated TrkB/BDNF response, which paralleled with improved memory performance.

  2. Effect of manganese on the concentration of amino acids in different regions of the rat brain.

    PubMed

    Lipe, G W; Duhart, H; Newport, G D; Slikker, W; Ali, S F

    1999-01-01

    The present study was designed to determine if chronic exposure of weanlings and adult rats to Mn produces significant alterations in amino acid concentrations in different regions of the rat brain. Weanling (30 day old) and adult (90 day old) male rats were exposed to 10 and 20 mg Mn/kg body weight per day, by gavage, for 30 days. Forty-eight hours after the last dose, animals were sacrificed by decapitation and brains were dissected into different regions to determine the concentration of amino acids by HPLC/EC. A dose dependent decrease in body weight gain was found in the adult, but not in the weanling rats. Significant increases occurred in concentrations of aspartate, glutamate, glutamine, taurine and gamma-aminobutyric acid (GABA) in the cerebellum of the adult rats dosed with 20 mg/kg per day, Mn. A significant decrease in the concentration of glutamine was observed in caudate nucleus and hippocampus of weanling rats dosed with 10 mg/kg, Mn. These data suggest that chronic Mn exposure can produce a decrease in body weight gain in adult rats and alterations in amino acids in different regions of weanling and adult rat brains.

  3. Evaluation of low level laser therapy irradiation parameters on rat muscle inflammation through systemic blood cytokines

    NASA Astrophysics Data System (ADS)

    Mantineo, Matias; Pinheiro, João. P.; Morgado, António M.

    2014-02-01

    Low level laser therapy (LLLT) has been used for inflammation treatment. Here, we evaluate the effect of different doses, using continuous (830 and 980 nm) and pulsed illumination (830 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through cytokines concentration in systemic blood and histological analysis of muscle tissue. Animals were randomly divided into five groups per wavelength (5 animals per group: 10, 20, 30, 40 and 50 mW) plus a control group. LLLT was applied during five days, with constant exposure time and irradiated area (3 minutes; 0.5026 cm2). Blood was collected on days 0, 3 and 6. TNF-α, IL-1β, IL-2 and IL-6 cytokines were quantified by ELISA. Rats were killed on day 6. Muscle inflammatory cells were counted using optical microscopy. Treatment effects occurred for all applied doses (largest effect at 40 mW: 7.2 J, 14 J/cm2 per irradiation), with reduction of proinflammatory TNF-α, IL-1β and IL-6 cytokines and lower number of inflammatory cells. Results were better for 830 nm. Identical methodology was used with pulsed illumination. Average power (40 mW) and duty cycle were kept constant (80%) at five frequencies (5, 25, 50, 100 and 200 Hz). Treatment effects were observed at higher frequencies, with no significant differences between them. However, the treatment effect was lower than for continuous illumination. LLLT effect on inflammation treatment can be monitored by measuring systemic blood cytokines. A larger treatment effect was observed with continuous illumination, where results seem to be compatible with a biphasic dose response.

  4. The influence of antiorthostatic unloading and long gamma-irradiation on rat bone marrow (MSCs)

    NASA Astrophysics Data System (ADS)

    Roe, Maria; Bobyleva, Polina; Shtemberg, Andrey; Buravkova, Ludmila

    With the prospect of long interplanetary spaceflight becoming a real possibility there are some important questions that need to be answered regarding the combined effects of microgravity and long gamma-irradiation.The aim of this study was to evaluate the effects of synchronous antiorthostatic unloading and fractional gamma-irradiation on the functional characteristics of rat bone marrow multipotent stromal cells (MSCs).This experiment was carried out following all rules laid out by the Commission on Bioethics at the SSC RF - IBMP RAS. In this experiment the Wistar rats were kept in an unloaded position for a duration of 30 days. They were also subjected to 6 doses of gamma-radiation on the “GOBO-60” with a source of (137) Cs. The dose rate set to 1 meter 50 sGr / H (Total dose of 3 Gr).The study revealed a significant reduction in the number of colonies (CFU-F) in all cultures from the experimental groups when compared to the control groups. The most significant reduction was observed in the group, which had been subject to combined unloading, and radiation. This result was confirmed by examination of cell cultures during 10 days of growth.We found that the CD45 expression was increased in the groups exposed to radiation. At the same time a reduction in the expression of CD90 was observed during combination of radiation and unloading we found.The experimental groups also differed from the control group showing smaller lipid inclusions and decreased expression of alkaline phosphates in the MSCs. This experiment concluded that the bone marrow MSCs after a combination of unloading and multiple radiation sessions, showed a decrease in proliferation and differentiation potential which could reduce the adaption and reparative capacity of the organism.

  5. Involvement of Nuclear Related Factor 2 Signaling Pathway in the Brain of Obese Rats and Obesity-Resistant Rats Induced by High-Fat Diet.

    PubMed

    Ma, Wei-Wei; Ding, Bing-Jie; Wang, Li-Jing; Shao, Yi; Xiao, Rong

    2016-04-01

    We aimed to investigate the mechanism of brain damage in diet-induced obese (DIO) rats and diet-resistant (DR) rats from the viewpoint of redox state and nuclear related factor 2 (Nrf2) signaling pathway. Sprague-Dawley rats were fed with a high-fat diet for 10 weeks to obtain the DIO and DR rats. d-Galactose was injected subcutaneously through the back of the neck for 10 weeks to establish oxidative stress model rats. Then, the ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) and the level of glutathione peroxidase (GSH-Px) in serum and brain tissue were measured by using enzymatic assay kits. The levels of cholecystokinin and peptide YY in the brain tissue were detected by using enzyme-linked immunosorbent assay kits. In addition, the protein expression of Nrf2 and its downstream factors such as heme oxygenase 1, manganese superoxide dismutase, and NAD(P)H quinone oxidoreductase 1 (NQO1) in the brain tissue were measured by Western blotting. In the brain of DIO rats, the level of GSH and ratio of GSH/GSSG were lower, whereas the GSH-Px concentration was higher compared with DR rats significantly. On the other hand, the GSSG level was higher in the serum of DIO rats compared with the DR rats. The oxidative stress state in the brain of DIO rats, but not in DR rats, were observed. In addition, the protein expressions of Nrf2 and NQO1 were downregulated in the brain of DR rats compared with that in DIO rats. Our data suggest that the Nrf2/NQO1 signaling pathway and redox state were involved in the pathogenesis of the rats prone to obesity, but not the DR rats resistant to obesity.

  6. Brain and heart sodium channel subtype mRNA expression in rat cerebral cortex.

    PubMed Central

    Yarowsky, P J; Krueger, B K; Olson, C E; Clevinger, E C; Koos, R D

    1991-01-01

    The expression of mRNAs coding for the alpha subunit of rat brain and rat heart sodium channels has been studied in adult and neonatal rat cerebral cortex using the reverse transcription-polymerase chain reaction (RT-PCR). Rat brain sodium channel subtype I, II, IIA, and III sequences were simultaneously amplified in the same PCR using a single oligonucleotide primer pair matched to all four subtype sequences. Identification of each subtype-specific product was inferred from the appearance of unique fragments when the product was digested with specific restriction enzymes. By using this RT-PCR method, products arising from mRNAs for all four brain sodium channel subtypes were identified in RNA extracted from adult rat cerebral cortex. The predominant component was type IIA with lesser levels of types I, II, and III. In contrast, the type II and IIA sequences were the predominant RT-PCR products in neonatal rat cortex, with slightly lower levels of type III and undetectable levels of type I. Thus, from neonate to adult, type II mRNA levels decrease relative to type IIA levels. Using a similar approach, we detected mRNA coding for the rat heart sodium channel in neonatal and adult rat cerebral cortex and in adult rat heart. These results reveal that mRNAs coding for the heart sodium channel and all four previously sequenced rat brain sodium channel subtypes are expressed in cerebral cortex and that type II and IIA channels may be differentially regulated during development. Images PMID:1658783

  7. Estimates of genetic parameters of body weight in descendants of X-irradiated rat spermatogonia.

    PubMed

    Gianola, D; Chapman, A B; Rutledge, J J

    1977-08-01

    Effects of nine generations of 450r per generation of ancestral spermatogonial X irradiation of inbred rats on genetic parameters of body weight at 3, 6, and 10 weeks of age and of weight gains between these periods were studied. Covariances among relatives were estimated by mixed model and regression techniques in randomly selected lines with (R) and without (C) radiation history. Analyses of the data were based on five linear genetic models combining additive direct, additive indirect (maternal), dominance and environmental effects. Parameters in these models were estimated by generalized least-squares. A model including direct and indirect genetic effects fit more closely to the data in both R and C lines. Overdominance of induced mutations did not seem to be present. Ancestral irradiation increased maternal additive genetic variances of body weights and gains but not direct genetic variances. Theoretically, due to a negative direct-maternal genetic correlation, within full-sib family selection would be ineffective in increasing body weight at six weeks in both R and C lines. However, progress from mass selection would be expected to be faster in the R lines.

  8. Effect of low-level prenatal X-irradiation on postnatal development in the Wistar rat

    SciTech Connect

    Jensh, R.P.; Brent, R.L.

    1987-03-01

    The objective of this investigation was to determine the effect of low-dose prenatal X-irradiation on postnatal growth and neurobehavioral development, and whether alterations would manifest at dosages lower than those which produce anatomic malformations from exposure at the most sensitive period of organogenesis. Ninety-eight Wistar strain rats were exposed to 0.1, 0.2, or 0.4 Gy X-radiation of were sham irradiated on the 9th or 17th day of gestation. A conventional teratologic evaluation was completed on half of the animals (572 fetuses). The age of appearance of four physiologic markers and of acquisition of six reflexes was observed in 372 offspring. Exposure during early organogenesis at these levels had no effect on any of these parameters. Prenatal exposure to X-radiation on the 17th day of gestation at dosage levels greater than 0.1 Gy resulted in alterations in the appearance of three postnatal neurophysiologic parameters. Growth retardation throughout the postpartum period also was observed in the offspring. The induction of developmental and reflex alterations had a comparable threshold to the known threshold for anatomic malformations on the 9th day. These results indicate that all of the parameters studied had thresholds either at or above 0.2 Gy acute radiation, and that the postpartum developmental and reflex acquisition measures were not more sensitive indicators of exposure to X-radiation than growth parameters.

  9. Low energy scatter due to in-situ irradiation of solid tumors in laboratory rats

    SciTech Connect

    Ritenour, E.R. Jr.

    1980-01-01

    A study of the pattern of scattered radiation in laboratory rat cadavers during irradiation of solid tumors on the animals' flanks was performed. The animals were wrapped in a lead shield having a circular cutout through which the tumor protruded. Irradiations were performed with a 250 kVp 15ma X-ray machine with a measured half value layer of 1.39 mmCu. Lead shielding was of sufficient thickness to attenuate essentially all of the beam. The absorbed dose measured in the animal was then due to internal scatter from the tumor. Arrays of thermoluminescent dosimeters (TLDs) were placed beneath the skin of 17 animals bearing a solid tumor (hepatoma H-4-II-E). Absorbed dose was seen to vary isotropically, decreasing as the inverse distance squared from the tumor. Analysis of experimental error played a major role in this study. A pilot study resulted in standard errors that were 35% of the mean absorbed dose measurements. A careful reassessment of methods of manipulating the animals and the dosimetry system resulted in a reduction in standard error to 14% of the mean for small groups (less than 10 animals).

  10. Cellular regulation of basal and FSH-stimulated cyclic AMP production in irradiated rat testes

    SciTech Connect

    Kangasniemi, M.; Kaipia, A.; Toppari, J.; Mali, P.; Huhtaniemi, I.; Parvinen, M. )

    1990-05-01

    Basal and follicle-stimulating hormone (FSH)-stimulated cyclic AMP (cAMP) productions by seminiferous tubular segments from irradiated adult rats were investigated at defined stages of the epithelial cycle when specific spermatogenic cells were low in number. Seven days post-irradiation, depletion of spermatogonia did not influence the basal cAMP production, but FSH response increased in stages II-VIII. Seventeen days post-irradiation when spermatocytes were low in number, there was a small increase in basal cAMP level in stages VII-VIII and FSH-stimulated cAMP production increased in stages VII-XII and XIII-I. At 38 days when pachytene spermatocytes and round spermatids (steps 1-6) were low in number, a decreased basal cAMP production was measured in stages II-VI and IX-XII. FSH-stimulated cAMP output increased in stages VII-XII but decreased in stages II-VI. At 52 days when all spermatids were low in number, basal cAMP levels decreased in all stages of the cycle, whereas FSH response was elevated only in stages VII-XII. All spermatogenic cell types seem to have an effect on cAMP production by the seminiferous tubule in a stage-specific fashion. Germ cells appear to regulate Sertoli cell FSH response in a paracrine way, and a part of cAMP may originate from spermatids stimulated by an unknown FSH-dependent Sertoli cell factor. The FSH-dependent functions may control such phenomena as spermatogonial proliferation, final maturation of spermatids, and onset of meiosis.

  11. Dipeptidyl peptidase 4 inhibitor improves brain insulin sensitivity, but fails to prevent cognitive impairment in orchiectomy obese rats.

    PubMed

    Pintana, Hiranya; Pongkan, Wanpitak; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-08-01

    It is unclear whether the dipeptidyl peptidase 4 (DPP4) inhibitor can counteract brain insulin resistance, brain mitochondrial dysfunction, impairment of hippocampal synaptic plasticity and cognitive decline in testosterone-deprived obese rats. We hypothesized that DPP4 inhibitor vildagliptin improves cognitive function in testosterone-deprived obese rats by restoring brain insulin sensitivity, brain mitochondrial function and hippocampal synaptic plasticity. Thirty male Wistar rats received either a sham-operated (S, n=6) or bilateral orchiectomy (ORX, n=24). ORX rats were divided into two groups and fed with either a normal diet (ND (NDO)) or a high-fat diet (HFO) for 12 weeks. Then, ORX rats in each dietary group were divided into two subgroups (n=6/subgroup) to receive either a vehicle or vildagliptin (3 mg/kg per day, p.o.) for 4 weeks. After treatment, cognitive function, metabolic parameters, brain insulin sensitivity, hippocampal synaptic plasticity and brain mitochondrial function were determined in each rat. We found that HFO rats exhibited peripheral and brain insulin resistance, brain mitochondrial dysfunction, impaired hippocampal synaptic plasticity and cognitive decline. NDO rats did not develop peripheral and brain insulin resistance. However, impaired hippocampal synaptic plasticity and cognitive decline occurred. Vildagliptin significantly improved peripheral insulin sensitivity, restored brain insulin sensitivity and decreased brain mitochondrial reactive oxygen species production in HFO rats. However, vildagliptin did not restore hippocampal synaptic plasticity and cognitive function in both NDO and HFO rats. These findings suggest that vildagliptin could not counteract the impairment of hippocampal synaptic plasticity and cognitive decline in testosterone-deprived subjects, despite its effects on improved peripheral and brain insulin sensitivity as well as brain mitochondrial function.

  12. Nose to brain delivery in rats: Effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization.

    PubMed

    Bonaccorso, A; Musumeci, T; Serapide, M F; Pellitteri, R; Uchegbu, I F; Puglisi, G

    2017-03-18

    Nose to brain delivery and nanotechnology are the combination of innovative strategies for molecules to reach the brain and to bypass blood brain barriers. In this work we investigated the fate of two rhodamine B labeled polymeric nanoparticles (Z-ave <250nm) of opposite surface charge in different areas of the brain after intranasal administration in rats. A preliminary screening was carried out to select the suitable positive (chitosan/poly-l-lactide-co-glycolide) nanocarrier through photon correlation spectroscopy and turbiscan. Physico-chemical and technological characterizations of poly-l-lactide-co-glycolide (negative) and chitosan/poly-l-lactide-co-glycolide (positive) fluorescent labeled nanoparticles were performed. The animals were allocated to three groups receiving negative and positive polymeric nanoparticles via single intranasal administration or no treatment. The localization of both nanocarriers in different brain areas was detected using fluorescent microscopy. Our data revealed that both nanocarriers reach the brain and are able to persist in the brain up to 48h after intranasal administration. Surface charge influenced the involved pathways in their translocation from the nasal cavity to the central nervous system. The positive charge of nanoparticles slows down brain reaching and the trigeminal pathway is involved, while the olfactory pathway may be responsible for the transport of negatively charged nanoparticles, and systemic pathways are not excluded.

  13. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  14. A simple rat model of mild traumatic brain injury: a device to reproduce anatomical and neurological changes of mild traumatic brain injury

    PubMed Central

    Kim, Ho Jeong

    2017-01-01

    Mild traumatic brain injury typically involves temporary impairment of neurological function. Previous studies used water pressure or rotational injury for designing the device to make a rat a mild traumatic brain injury model. The objective of this study was to make a simple model of causing mild traumatic brain injury in rats. The device consisted of a free-fall impactor that was targeted onto the rat skull. The weight (175 g) was freely dropped 30 cm to rat’s skull bregma. We installed a safety device made of acrylic panel. To confirm a mild traumatic brain injury in 36 Sprague-Dawley rats, we performed magnetic resonance imaging (MRI) of the brain within 24 h after injury. We evaluated behavior and chemical changes in rats before and after mild traumatic brain injury. The brain MRI did not show high or low signal intensity in 34 rats. The mobility on grid floor was decreased after mild traumatic brain injury. The absolute number of foot-fault and foot-fault ratio were decreased after mild traumatic brain injury. However, the difference of the ratio was a less than absolute number of foot-fault. These results show that the device is capable of reproducing mild traumatic brain injury in rats. Our device can reduce the potential to cause brain hemorrhage and reflect the mechanism of real mild traumatic brain injury compared with existing methods and behaviors. This model can be useful in exploring physiology and management of mild traumatic brain injury. PMID:28070456

  15. Effects of irradiation and semistarvation on rat thyrotropin beta subunit messenger ribonucleic acid, pituitary thyrotropin content, and thyroid hormone levels

    SciTech Connect

    Litten, R.Z. ); Carr, F.E. ); Fein, H.G.; Smallridge, R.C. )

    1990-01-01

    The effect of radiation-induced anorexia on serum thyrotropin (TSH), pituitary TSH-{beta} mRNA, pituitary TSH content, serum thyroxine (T{sub 4}), and serum 3,5,3{prime}-triiodothyronine (T{sub 3}) was investigated using feed-matched controls. Rats received 10 Gy gamma whole-body irradiation and were examined 1-3 days postirradiation. Feed-matched and untreated controls were also studied. The average food intake of the irradiated and feed-matched groups was approximately 18% of the untreated controls. Over the three day period both the irradiated and feed-matched groups lost a significant amount of body weight. The serum T{sub 4} levels of both the irradiated and feed-matched groups were not significantly different from each other, but were significantly depressed when compared to the untreated control group. The serum TSH and T{sub 3} were, however, significantly greater in the irradiated than the feed-matched groups at day 3 posttreatment. To determine if the difference in the serum TSH level between the two groups was due to a pretranslational alteration in TSH production, we measured the TSH-{beta} mRNA using an RNA blot hybridization assay. We found that the TSH-{beta} mRNA level was the same in the irradiated and feed-matched groups, suggesting that the mechanism responsible for the radiation-induced increase in the serum TSH level is posttranscriptional. Pituitary TSH content in the irradiated rats was significantly less than in pair-fed controls, suggesting that irradiation may permit enhanced secretion of stored hormone.

  16. Monoclonal antibodies against type II rat brain protein kinase

    SciTech Connect

    Nakabayashi, C.H.; Huang, K.P.

    1987-05-01

    Three monoclonal antibodies (8/1, 10/10, and 25/3) against rat brain type II protein kinase C (PKC) were used to carry out the immunochemical characterization of this kinase. These antibodies immunoprecipitated the type II PKC in a dose-dependent manner but did neither to type I nor type III isozyme. Purified type II PKC has a molecular weight of 82,000 and consists of heterogeneous isoelectric point species, all of which are cross reactive with these antibodies. Immunoblot analysis of the tryptic fragments from PKC revealed that all three antibodies recognized the 33-38-KDa fragments, the phospholipid/phorbol ester-binding domain, but not the 45-48-KDa fragments, the kinase catalytic domain. The immune complexes of the kinase and the antibodies retained the kinase activity which was dependent on Ca/sup 2 +/ and phosphatidylserine (PS) and further activated by diacylglycerol. With antibody 8/1, the apparent Km values of the kinase for Ca/sup 2 +/ and PS were not influenced. The initial rate and final extent of autophosphorylation were reduced. The concentration of PS required for half-maximal (/sup 3/H)phorbol 12,13-dibutyrate (PDBu) binding was increased and the total PDBu binding was reduced. In the presence of optimum concentrations of Ca/sup 2 +/ and PS, the Kd of PDBu was unaffected by the antibody but the total binding was reduced. These results demonstrate that the PS/PDBu-binding domain contains the major epitope for the antibodies and the antibody mainly influences the PS/PDBu binding to the kinase.

  17. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    PubMed Central

    Abdelalim, Essam M.; Bellier, Jean-Pierre; Tooyama, Ikuo

    2016-01-01

    Brain natriuretic peptide (BNP) exerts its functions through NP receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn (DH) of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and dorsal root ganglion (DRG). BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the DH of the spinal cord and in the neurons of the intermediate column (IC) and ventral horn (VH). Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I–II) labeled with calcitonin gene-related peptide (CGRP), suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase (ChAT) in the motor neurons of the VH. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NP receptor-A (NPR-A) and/or NP receptor-B (NPR-B) at the spinal cord level. PMID:27994541

  18. Alternative causes of hypopituitarism: traumatic brain injury, cranial irradiation, and infections.

    PubMed

    Pekic, Sandra; Popovic, Vera

    2014-01-01

    Hypopituitarism often remains unrecognized due to subtle clinical manifestations. Anterior pituitary hormone deficiencies may present as isolated or multiple and may be transient or permanent. Traumatic brain injury (TBI) is recognized as a risk factor for hypopituitarism, most frequently presenting with isolated growth hormone deficiency (GHD). Data analysis shows that about 15% of patients with TBI have some degree of hypopituitarism which if not recognized may be mistakenly ascribed to persistent neurologic injury and cognitive impairment. Identification of predictors for hypopituitarism after TBI is important, one of them being the severity of TBI. The mechanisms involve lesions in the hypothalamic-pituitary axis and inflammatory changes in the central nervous system (CNS). With time, hypopituitarism after TBI may progress or reverse. Cranial irradiation is another important risk factor for hypopituitarism. Deficiencies in anterior pituitary hormone secretion (partial or complete) occur following radiation damage to the hypothalamic-pituitary region, the severity and frequency of which correlate with the total radiation dose delivered to the region and the length of follow-up. These radiation-induced hormone deficiencies are irreversible and progressive. Despite numerous case reports, the incidence of hypothalamic-pituitary dysfunction following infectious diseases of the CNS has been underestimated. Hypopituitarism usually relates to the severity of the disease, type of causative agent (bacterial, TBC, fungal, or viral) and primary localization of the infection. Unrecognized hypopituitarism may be misdiagnosed as postencephalitic syndrome, while the presence of a sellar mass with suprasellar extension may be misdiagnosed as pituitary macroadenoma in a patient with pituitary abscess which is potentially a life-threatening disease.

  19. Neuroanatomy-based matrix-guided trimming protocol for the rat brain.

    PubMed

    Defazio, Rossella; Criado, Ana; Zantedeschi, Valentina; Scanziani, Eugenio

    2015-02-01

    Brain trimming through defined neuroanatomical landmarks is recommended to obtain consistent sections in rat toxicity studies. In this article, we describe a matrix-guided trimming protocol that uses channels to reproduce coronal levels of anatomical landmarks. Both setup phase and validation study were performed on Han Wistar male rats (Crl:WI(Han)), 10-week-old, with bodyweight of 298 ± 29 (SD) g, using a matrix (ASI-Instruments(®), Houston, TX) fitted for brains of rats with 200 to 400 g bodyweight. In the setup phase, we identified eight channels, that is, 6, 8, 10, 12, 14, 16, 19, and 21, matching the recommended landmarks midway to the optic chiasm, frontal pole, optic chiasm, infundibulum, mamillary bodies, midbrain, middle cerebellum, and posterior cerebellum, respectively. In the validation study, we trimmed the immersion-fixed brains of 60 rats using the selected channels to determine how consistently the channels reproduced anatomical landmarks. Percentage of success (i.e., presence of expected targets for each level) ranged from 89 to 100%. Where 100% success was not achieved, it was noted that the shift in brain trimming was toward the caudal pole. In conclusion, we developed and validated a trimming protocol for the rat brain that allow comparable extensiveness, homology, and relevance of coronal sections as the landmark-guided trimming with the advantage of being quickly learned by technicians.

  20. N-acetylcysteine attenuates copper overload-induced oxidative injury in brain of rat.

    PubMed

    Ozcelik, Dervis; Uzun, Hafize; Nazıroglu, Mustafa

    2012-06-01

    Copper is an integral part of many important enzymes involved in a number of vital biological processes. Even though it is essential to life, at elevated tissue concentrations, copper can become toxic to cells. Recent studies have reported oxidative damage due to copper in various tissues. Considering the vulnerability of the brain to oxidative stress, this study was undertaken to explore possible beneficial antioxidant effects of N-acetylcysteine on oxidative stress induced by copper overload in brain tissue of rats. Thirty-two Wistar rats were equally divided into four groups. The first group was used as control. The second, third, and fourth groups were given 1 g/L copper in their drinking water for 1 month. At the end of this period, the group 2 rats were sacrificed. During the next 2 weeks, the rats in group 3 were injected intraperitoneally with physiological saline and those in group 4 with 20 mg/kg intraperitoneal injections of N-acetylcysteine. In group 2 the lipid peroxidation and nitric oxide levels were increased in the brain cortex while the activities of superoxide dismutase and catalase and the concentration of glutathione were decreased. In rats treated with N-acetylcysteine, lipid peroxidation decreased and the activities of antioxidant enzyme improved in the brain cortex. In conclusion, treatment with N-acetylcysteine modulated the antioxidant redox system and reduced brain oxidative stress induced by copper.

  1. Hydroxysafflor yellow A exerts antioxidant effects in a rat model of traumatic brain injury

    PubMed Central

    Wang, Yang; Zhang, Chunhu; Peng, Weijun; Xia, Zian; Gan, Pingping; Huang, Wei; Shi, Yafei; Fan, Rong

    2016-01-01

    Free radical-induced oxidative damage occurs rapidly and is of primary importance during the secondary pathophysiological cascades of traumatic brain injury (TBI). Hydroxysafflor yellow A (HSYA) is a constituent of the flower petals of Carthamus tinctorius (safflower) and may represent a potential therapeutic strategy to improve outcomes following TBI. The present study aimed to identify HSYA in the brain tissues of rats exposed to TBI to determine its absorption and to investigate the underlying effects of HSYA on antioxidant enzymes in the brain tissues of TBI rats. To determine the absorption of HSYA for the investigation of the underlying antioxidant effects of HSYA in TBI, the presence of HSYA in the brain tissues of the TBI rats was identified using an ultra performance liquid chromatography-tandem mass spectrometry method. Subsequently, the state of oxidative stress in the TBI rat model following the administration of HSYA was investigated by determining the levels of antioxidant enzymes, including superoxide dismutase (SOD), malondialdehyde (MDA) and catalase (CAT), and the ratio of glutathione (GSH)/glutathione disulfide (GSSG). The data obtained demonstrated that HSYA was absorbed in the brain tissues of the TBI rats. HSYA increased the activities of SOD and CAT, the level of GSH and the GSH/GSSG ratio. However, HSYA concomitantly decreased the levels of MDA and GSSG. These preliminary data suggest that HSYA has the potential to be utilized as a neuroprotective drug in cases of TBI. PMID:27599591

  2. Methylene blue improves brain oxidative metabolism and memory retention in rats.

    PubMed

    Callaway, Narriman Lee; Riha, Penny D; Bruchey, Aleksandra K; Munshi, Zeenat; Gonzalez-Lima, F

    2004-01-01

    Methylene blue (MB) increases mitochondrial oxygen consumption and restores memory retention in rats metabolically impaired by inhibition of cytochrome c oxidase. This study tested two related hypotheses using biochemical and behavioral techniques: (1) that low-level MB would enhance brain cytochrome c oxidation, as tested in vitro in brain homogenates and after in vivo administration to rats and (2) that corresponding low-dose MB would enhance spatial memory retention in normal rats, as tested 24 h after rats were trained in a baited holeboard maze for 5 days with daily MB posttraining injections. The biochemical in vitro studies showed an increased rate of brain cytochrome c oxidation with the low but not the high MB concentrations tested. The in vivo administration studies showed that the corresponding MB low dose (1 mg/kg) increased brain cytochrome c oxidation 24 h after intraperitoneal injection, but not after 1 or 2 h postinjection. In the behavioral studies, spatial memory retention in probe trials (percentage of visits to training-baited holes compared to total visits) was significantly better for MB-treated than saline control groups (66% vs. 31%). Together the findings suggest that low-dose MB enhances spatial memory retention in normal rats by increasing brain cytochrome c oxidase activity.

  3. Anticarcinogenic effect of tetrachlorodecaoxide after total-body gamma irradiation in rats

    SciTech Connect

    Kempf, S.R.; Port, R.E.; Ivankovic, S.

    1994-08-01

    Tetrachlorodecaoxygen (TCDO) therapy of acute radiation syndrome was tested for a possible influence on the development of X-ray-induced malignancies. BD IX rats were exposed to total-body irradiation (TBI, {gamma} rays, 9 or 11 Gy) and received daily intravenous injections of either TCDO or physiological saline solution from days 4 through 11 after TBI. The short-term TCDO therapy reduced the acute death rate markedly, but survival rates after 4 months were similar with and without TCDO. The first malignancy after TBI occurred on day 103, and over the lifetime of the animals the tumor incidence in the group given TBI (11 Gy) without TCDO treatment was 73% vs 20% in animals with short-term TCDO therapy after TBI. In particular, there was a highly significant prevention of radiation-induced leukemia [P (one-sided) < 0.001] by TCDO, and a significantly reduced incidence of malignant epithelial tumors [P (one-sided) < 0.05]. The development of sarcomas was not affected by TCDO. Long-term survival was not enhanced by TCDO due to the occurrence of bronchopneumonial infections about 1 year after TBI. In conclusion, TCDO is not only a potent therapeutic agent in acute radiation syndrome, but it also significantly reduced the carcinogenic risk in rats after exposure to ionizing radiation. 18 refs., 3 figs., 4 tabs.

  4. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    PubMed

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats.

  5. Extremely low frequency magnetic fields induce oxidative stress in rat brain.

    PubMed

    Manikonda, Pavan K; Rajendra, Pilankatta; Devendranath, D; Gunasekaran, B; Channakeshava; Aradhya, Shivakumara R S; Sashidhar, Rao B; Subramanyam, Chivukula

    2014-01-01

    The present investigation was conducted to understand the influence of long-term exposure of rats to extremely low frequency magnetic fields (ELF-MF), focusing on oxidative stress (OS) on different regions of rat's brain. Male Wistar rats (21-day-old) were exposed to ELF-MF (50 Hz; 50 and 100 µT) for 90 days continuously; hippocampal, cerebellar and cortical regions from rats were analyzed for (i) reactive oxygen species (ROS), (ii) metabolites indicative of OS and (iii) antioxidant enzymes. In comparison to control group rats, the rats that were continuously exposed to ELF-MF caused OS and altered glutathione (GSH/GSSG) levels in dose-dependent manner in all the regions of the brain. Accumulation of ROS, lipid peroxidation end products and activity of superoxide dismutase in different regions was in the descending order of cerebellum < hippocampus < cortex. Decrement in GSH/GSSG levels and increment in glutathione peroxidase activity were in the descending order of hippocampus < cerebellum < cortex. The continuous exposure to ELF-MF caused OS in all the examined regions of brain more significantly at 100 µT than at 50 µT. Varied influences observed in different regions of the brain, as documented in this study, may contribute to altered metabolic patterns in its related regions of the central nervous system, leading to aberrant neuronal functions.

  6. L-histidine but not D-histidine attenuates brain edema following cryogenic injury in rats.

    PubMed

    Ikeda, Y; Mochizuki, Y; Matsumoto, H; Nakamura, Y; Dohi, K; Jimbo, H; Shimazu, M; Hayashi, M; Matsumoto, K

    2000-01-01

    Oxygen free radicals have been implicated in the genesis of traumatic brain injury and brain edema (BE). Recent studies have suggested that hydroxyl radical can initiate lipid peroxidation, thus producing lipid-free radicals that may become important sources of singlet oxygen. L-histidine, a singlet oxygen scavenger, potentially can be used to treat BE. In this study we investigated the effects of L-histidine and D-histidine on BE following cryogenic injury in rats. Male Wistar rats were anaesthetized with chloral hydrate. Vasogenic BE was produced by a cortical freezing lesion. Generation of singlet oxygen from photoactivation of rose bengal was studied by electron spin resonance (ESR). Animals were separated into four groups: sham rats (n = 5), saline-treated rats (n = 10), L-histidine treated rats (n = 6) and D-histidine treated rats (n = 7). Each agent (100 mg/kg) was administered intravenously at 30 minutes before lesion production. Animals were sacrificed at 24 hours after lesion production and the brain water content was determined by the dry-wet weight method. L-histidine had no effect on rectal and brain temperature. Election Spin Resonance studies demonstrated that L-histidine is a singlet oxygen scavenger. L-histidine but not D-histidine significantly attenuated BE following cryogenic injury (p < 0.05). In conclusion, L-histidine is useful in the treatment of traumatic BE.

  7. Probing Intrinsic Resting-State Networks in the Infant Rat Brain

    PubMed Central

    Bajic, Dusica; Craig, Michael M.; Borsook, David; Becerra, Lino

    2016-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease. PMID:27803653

  8. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    NASA Astrophysics Data System (ADS)

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-01

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixed in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.

  9. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    SciTech Connect

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-10

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixed in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.

  10. Forebrain and brain stem neural circuits contribute to altered sympathetic responses to heating in senescent rats.

    PubMed

    Kenney, Michael J; Fels, Richard J

    2003-11-01

    Acute heating in young rats increases visceral sympathetic nerve discharge (SND); however, renal and splanchnic SND responses to hyperthermia are attenuated in senescent compared with young Fischer 344 (F344) rats (Kenney MJ and Fels RJ. Am J Physiol Regul Integr Comp Physiol 283: R513-R520, 2002). Central mechanisms by which aging alters visceral SND responses to heating are unknown. W