Science.gov

Sample records for irradiated single crystals

  1. ESR Study on Irradiated Ascorbic Acid Single Crystal

    SciTech Connect

    Tuner, H.; Korkmaz, M.

    2007-04-23

    Food irradiation is a 'cold' process for preserving food and has been established as a safe and effective method of food processing and preservation after more than five decades of research and development. The small temperature increase, absence of residue and effectiveness of treatment of pre-packed food are the main advantages. In food industry, ascorbic acid and its derivatives are frequently used as antioxidant agents. However, irradiation is expected to produces changes in the molecules of food components and of course in the molecules of the agents added as preservation agents such as ascorbic acid. These changes in the molecular structures could cause decreases in the antioxidant actions of these agents. Therefore, the radiation resistance of these agents must be known to determine the amount of radiation dose to be delivered. Electron spin resonance (ESR) is one of the leading methods for identification of intermediates produced after irradiation. ESR spectrum of irradiated solid powder of ascorbic acid is fairly complex and determinations of involved radical species are difficult. In the present work, single crystals of ascorbic acid irradiated by gamma radiation are used to determine molecular structures of radiation induced radicalic species and four radicalic species related in pair with P21 crystal symmetry are found to be responsible from experimental ESR spectrum of gamma irradiated single crystal of ascorbic acid.

  2. ESR Study on Irradiated Ascorbic Acid Single Crystal

    NASA Astrophysics Data System (ADS)

    Tuner, H.; Korkmaz, M.

    2007-04-01

    Food irradiation is a ``cold'' process for preserving food and has been established as a safe and effective method of food processing and preservation after more than five decades of research and development. The small temperature increase, absence of residue and effectiveness of treatment of pre-packed food are the main advantages. In food industry, ascorbic acid and its derivatives are frequently used as antioxidant agents. However, irradiation is expected to produces changes in the molecules of food components and of course in the molecules of the agents added as preservation agents such as ascorbic acid. These changes in the molecular structures could cause decreases in the antioxidant actions of these agents. Therefore, the radiation resistance of these agents must be known to determine the amount of radiation dose to be delivered. Electron spin resonance (ESR) is one of the leading methods for identification of intermediates produced after irradiation. ESR spectrum of irradiated solid powder of ascorbic acid is fairly complex and determinations of involved radical species are difficult. In the present work, single crystals of ascorbic acid irradiated by gamma radiation are used to determine molecular structures of radiation induced radicalic species and four radicalic species related in pair with P21 crystal symmetry are found to be responsible from experimental ESR spectrum of gamma irradiated single crystal of ascorbic acid.

  3. EPR of gamma irradiated single crystals of cholesteryl benzoate

    NASA Astrophysics Data System (ADS)

    Caliskan, B.; Aras, E.; Asik, B.; Buyum, M.; Birey, M.

    2004-01-01

    The cholesteryl benzoate compound has been irradiated with Co-60-gamma rays at room temperature. The irradiated samples have been examined for paramagnetic resonance, and in several cases the observed spectra could be identified with specific radicals. In each case the results have been considered in relation to the present knowledge of the radiation chemistry of the compound. The single crystals have been investigated between 123 and 300 K. The spectrum parameters are found to be temperature independent. Radiation damage centers are attributed to CHCH2 and CHCH2CH2 radicals. The g values and the hyperfine coupling constants of the unpaired electron with the protons were determined.

  4. EPR studies of gamma-irradiated taurine single crystals

    NASA Astrophysics Data System (ADS)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Köksal, F.

    2000-04-01

    An EPR study of gamma-irradiated taurine [C 2H 7NO 3S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32ṠO -2 and 33ṠO -2 radicals. The hyperfine values of 33ṠO -2 radical were used to obtain O-S-O bond angle for both sites.

  5. Void growth and coalescence in triaxial stress fields in irradiated FCC single crystals

    NASA Astrophysics Data System (ADS)

    Ling, Chao; Tanguy, Benoît; Besson, Jacques; Forest, Samuel; Latourte, Felix

    2017-08-01

    Void growth and coalescence, known as main mechanisms of ductile fracture, are investigated for irradiated FCC single crystals. Finite element simulations of voided unit cells are performed with a single crystal plasticity model accounting for strain hardening and softening associated with irradiation-induced defects. The simulations predict a rather brittle overall behavior for the voided irradiated single crystal at high stress triaxiality, with a large amount of local plastic deformation, which is consistent with experimental observations reported in the literature for stainless steels irradiated in fast reactors. Compared with unirradiated single crystals, irradiated crystals exhibit a higher void growth rate leading to an earlier void coalescence, which is caused by a stronger plastic slip localization in the region near the voids.

  6. Electron irradiation effects on optical properties of semiorganic antimony thiourea tetra chloride single crystals.

    PubMed

    Mahesha Upadhya, K; Udayashankar, N K; Ganesh, S

    2012-11-01

    Antimony thiourea tetra chloride single crystals were grown by solution growth technique at room temperature. The UV-visible, fourier transform infrared and fluorescence spectra were recorded and electron irradiation effects on these properties were studied. The optical absorption edge of the UV-visible spectrum slightly shifts towards longer wavelength with the increase of irradiation dose. The fluorescence quantum yield is decreased for electron irradiated antimony thiourea tetra chloride crystals. The presence of functional group of the as-grown and electron irradiated complex was confirmed by fourier transform infrared spectral study. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Electron irradiation effects on optical properties of semiorganic antimony thiourea tetra chloride single crystals

    NASA Astrophysics Data System (ADS)

    Mahesha Upadhya, K.; Udayashankar, N. K.; Ganesh, S.

    2012-11-01

    Antimony thiourea tetra chloride single crystals were grown by solution growth technique at room temperature. The UV-visible, fourier transform infrared and fluorescence spectra were recorded and electron irradiation effects on these properties were studied. The optical absorption edge of the UV-visible spectrum slightly shifts towards longer wavelength with the increase of irradiation dose. The fluorescence quantum yield is decreased for electron irradiated antimony thiourea tetra chloride crystals. The presence of functional group of the as-grown and electron irradiated complex was confirmed by fourier transform infrared spectral study.

  8. Ferromagnetism in proton irradiated 4H-SiC single crystal

    SciTech Connect

    Zhou, Ren-Wei; Wang, Hua-Jie; Chen, Wei-Bin; Li, Fei; Liu, Xue-Chao Zhuo, Shi-Yi; Shi, Er-Wei

    2015-04-15

    Room-temperature ferromagnetism is observed in proton irradiated 4H-SiC single crystal. An initial increase in proton dose leads to pronounced ferromagnetism, accompanying with obvious increase in vacancy concentration. Further increase in irradiation dose lowers the saturation magnetization with the decrease in total vacancy defects due to the defects recombination. It is found that divacancies are the mainly defects in proton irradiated 4H-SiC and responsible for the observed ferromagnetism.

  9. EPR spectroscopy of gamma-irradiated single crystals of 5-methyle-2-nitrophenol

    NASA Astrophysics Data System (ADS)

    Aras, E.; Asik, B.; Buyum, M.; Birey, M.

    2006-01-01

    The electron paramagnetic resonance of gamma-irradiated single crystals of 5-methyle-2-nitrophenol has been studied for different orientations of the crystals in a magnetic field. The radicals produced by gamma irradiation have been investigated at temperatures between 120 and 330 K. The spectra were found to be temperature dependent, and radiation damage centers were attributed to [GRAPHICS] radicals. The principal values of the g-tensor were determined. The results were found to be in good agreement with the existing literature data and theoretical predictions.

  10. EPR investigation of gamma irradiated single crystal guaifenesin: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Tasdemir, Halil Ugur; Sayin, Ulku; Türkkan, Ercan; Ozmen, Ayhan

    2016-04-01

    Gamma irradiated single crystal of Guaifenesin (Glyceryl Guaiacolate), an important expectorant drug, were investigated with Electron Paramagnetic Resonance (EPR) spectroscopy between 123 and 333 K temperature at different orientations in the magnetic field. Considering the chemical structure and the experimental spectra of the gamma irradiated single crystal of guaifenesin sample, we assumed that alkoxy or alkyl-type paramagnetic species may be produced by irradiation. Depending on this assumption, eight possible alkoxy and alkyl-type radicals were modeled and EPR parameters of these modeled radicals were calculated using the B3LYP/6-311++G(d,p)-level of density functional theory (DFT). Theoretically calculated values of alkyl-type modeled radical(R3) are in good agreement with experimentally determined EPR parameters of single crystal. Furthermore, simulation spectra which are obtained by using the theoretical initial values are well matched with the experimental spectra. It was determined that a stable Cα •H2αCβHβCγH2γ (R3) alkyl radical was produced in the host crystal as a result of gamma irradiation.

  11. Point defects and magnetic properties of neutron irradiated MgO single crystal

    NASA Astrophysics Data System (ADS)

    Cao, Mengxiong; Ma, Yaru; Wang, Xingyu; Ma, Chunlin; Zhou, Weiping; Wang, Xiaoxiong; Tan, Weishi; Du, Jun

    2017-05-01

    (100)-oriented MgO single crystals were irradiated to introduce point defects with different neutron doses ranging from 1.0×1016 to 1.0×1020 cm-2. The point defect configurations were studied with X-ray diffuse scattering and UV-Vis absorption spectra. The isointensity profiles of X-ray diffuse scattering caused by the cubic and double-force point defects in MgO were theoretically calculated based on the Huang scattering theory. The magnetic properties at different temperature were measured with superconducting quantum interference device (SQUID). The reciprocal space mappings (RSMs) of irradiated MgO revealed notable diffuse scattering. The UV-Vis spectra indicated the presence of O Frenkel defects in irradiated MgO. Neutron-irradiated MgO was diamagnetic at room temperature and became ferromagnetic at low temperature due to O Frenkel defects induced by neutron-irradiation.

  12. Single crystal EPR study on gamma-irradiated NLO material (2-amino-5-nitropyridinium chloride)

    NASA Astrophysics Data System (ADS)

    Dhanuskodi, S.; Manikandan, S.

    2004-03-01

    A semiorganic nonlinear optical (NLO) material 2-amino-5-nitropyridinium chloride (2A5NPCl) was synthesized. Single crystals were grown following the slow evaporation method and characterized by measuring density, TGA, FT-IR, FT-Raman and X-ray diffraction techniques. The electron paramagnetic resonance (EPR) spectra were recorded for gamma-irradiated single crystals of 2A5NPCl. The angular variation studies of the spectra were observed and the principal values of the g-tensor and A-tensor were determined.

  13. Fast neutron irradiation effects on magnetization relaxation in YBCO single crystals

    SciTech Connect

    Lensink, J.G.; Griessen, R.; Wiesinger, H.P.; Sauerzopf, F.M.; Weber, H.W.; Crabtree, G.W.

    1991-07-01

    A high-quality YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} single crystal has been investigated by torque magnetometry prior to and following fast neutron irradiation to a fluence of 2{times}10{sup 21} m{sup {minus}2} (E > 0.1 MeV). In addition to large enhancements of the critical current densities, which have been observed in similar form previously by Sauerzopf et al, we find a dramatic change in the relaxation behavior following irradiation. At low temperatures ({le} 50 k) the relaxation rates are lowered by factors up to 4 in the irradiated state in a magnetic field of 1.5 T. At higher temperatures, on the other hand, they are enhanced compared to the unirradiated state. Both before and after irradiation, the magnetization relaxation follows a logarithmic time dependence, which we ascribe to thermally activated flux motion.

  14. Fast neutron irradiation effects on magnetization relaxation in YBCO single crystals

    SciTech Connect

    Lensink, J.G.; Griessen, R. . Faculty of Physics and Astronomy); Wiesinger, H.P.; Sauerzopf, F.M.; Weber, H.W. ); Crabtree, G.W. )

    1991-07-01

    A high-quality YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} single crystal has been investigated by torque magnetometry prior to and following fast neutron irradiation to a fluence of 2{times}10{sup 21} m{sup {minus}2} (E > 0.1 MeV). In addition to large enhancements of the critical current densities, which have been observed in similar form previously by Sauerzopf et al, we find a dramatic change in the relaxation behavior following irradiation. At low temperatures ({le} 50 k) the relaxation rates are lowered by factors up to 4 in the irradiated state in a magnetic field of 1.5 T. At higher temperatures, on the other hand, they are enhanced compared to the unirradiated state. Both before and after irradiation, the magnetization relaxation follows a logarithmic time dependence, which we ascribe to thermally activated flux motion.

  15. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    NASA Astrophysics Data System (ADS)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  16. In-situ TEM observation of dislocation evolution in Kr-irradiated UO2 single crystal

    SciTech Connect

    Lingfeng He; Mahima Gupta; Clarissa A. Yablinsky; Jian Gan; Marquis A. Kirk; Xian-Ming Bai; Janne Pakarinen; Todd R. Allen

    2013-11-01

    In-situ transmission electron microscopy (TEM) observation of UO2 single crystal irradiated with Kr ions at high temperatures was conducted to understand the dislocation evolution due to high-energy radiation. The dislocation evolution in UO2 single crystal is shown to occur as nucleation and growth of dislocation loops at low-irradiation doses, followed by transformation to extended dislocation segments and networks at high doses, as well as shrinkage and annihilation of some loops and dislocations due to high temperature annealing. Generally the trends of dislocation evolution in UO2 are similar under Kr irradiation at different ion energies and temperatures (150 keV at 600 degrees C and 1 MeV at 800 degrees C) used in this work, although the specific dislocation loop size and density are quite different. Interstitial-type dislocation loops with Burgers vector along <110> were observed in the Kr-irradiated UO2.The irradiated specimens were denuded of dislocation loops near the surface.

  17. ESR of gamma irradiated single crystals of cholesteryl acetate and cholesteryl chloroformate

    NASA Astrophysics Data System (ADS)

    Yigit, B. T.; Ozmen, A.; Ercan, I.; Eken, M.; Birey, M.

    2003-11-01

    Cholesteryl acetate and cholesteryl chloroformate compounds have been irradiated with Co-60-gamma rays at room temperatures. The irradiated samples have been examined for paramagnetic resonance, and the observed spectra in several cases have been identified with specific radicals. The results in each case have been considered in relation to the present knowledge of the radiation chemistry of the compound. The single crystals have been investigated between 120 and 300 K. The spectra are found to be temperature independent and radiation damage centers are attributed to CHCH2 radical for cholesteryl acetate and CH3 and CHCH2CH2CH2 radicals for cholesteryl chloroformate.

  18. Flux Pinning Phenomena in Electron Irradiated Yttrium BARIUM(2) COPPER(3) OXYGEN(7-DELTA) Single Crystals

    NASA Astrophysics Data System (ADS)

    Giapintzakis, John Konstantinos

    1992-01-01

    It has been shown that 1 MeV electron irradiation to a typical dose Phi~ 1times 10^{19} cm^{ -2} results in an enhancement of the critical current density in twinned and untwinned YBa_2 Cu_3O_{7 -delta} single crystals. Values up to two times the preirradiation J_{c} at 10 K and 1 T are observed. The J _{c} enhancement is accompanied by a dramatic increase of the irreversibility field. A threshold incident electron energy (E_{ t}~ 0.5 MeV) is found above which flux pinning enhancement is observed. The data indicated that the electron radiation-induced defects are effective pinning centers only for the orientation H parallel c-axis. In-situ TEM studies in the HVEM suggest that the pinning centers must be smaller than 20 A. A comparison of the electron irradiation results with those of proton irradiation experiments indicate a lower magnitude of enhancement of J_{c} at 10 K and 2 T for the electron case. The probable explanation is the difference in the energy spectra of the PKAs produced by the two types of irradiation. GdBa_2Cu_3O_{7-delta } and EuBa_2Cu_3O _{7-delta} single crystals irradiated with 0.6 MeV electrons displayed similar flux pinning enhancements as YBa_2Cu _3O_{7-delta} crystals, indicating that Y displacements are not primary flux pinners. The evidence from annealing studies suggests that the primary pinning center produced by the electron irradiation is not associated with the oxygen in the Cu-O chains. Instead, a consistent interpretation of the data suggests that the primary pinning defect is most likely based on the displacement of a copper atom from the CuO_2 plane. In order to account for the complete enhancement of J_{c} other pinning mechanisms aside from point defects, such as small point defect clusters, should be considered.

  19. Structural, morphological and electrical studies of lithium ion irradiated sodium potassium niobate single crystal grown by flux method

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Rajesh, D.; Rajasekaran, S. V.; Perumal, R.; Chitra, M.; Jayavel, R.

    2013-02-01

    Single crystals of sodium potassium niobate (K0.5Na0.5)NbO3 (KNN) were grown by flux method and crystals were irradiated with 45 MeV Li ions to modify the electrical properties. Energy of the irradiated heavy ion was lower than the threshold energy to produce columnar defect and only clusters of defect was observed. The surface morphology of the irradiated single crystals was studied using scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the surface roughness value was found to increase with increasing fluence.

  20. Structural, morphological and electrical studies of lithium ion irradiated sodium potassium niobate single crystal grown by flux method

    SciTech Connect

    Saravanan, R.; Rajesh, D.; Rajasekaran, S. V.; Perumal, R.; Chitra, M.; Jayavel, R.

    2013-02-05

    Single crystals of sodium potassium niobate (K{sub 0.5}Na{sub 0.5})NbO{sub 3} (KNN) were grown by flux method and crystals were irradiated with 45 MeV Li ions to modify the electrical properties. Energy of the irradiated heavy ion was lower than the threshold energy to produce columnar defect and only clusters of defect was observed. The surface morphology of the irradiated single crystals was studied using scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the surface roughness value was found to increase with increasing fluence.

  1. Defect-induced magnetism in neutron irradiated 6H-SiC single crystals.

    PubMed

    Liu, Yu; Wang, Gang; Wang, Shunchong; Yang, Jianhui; Chen, Liang; Qin, Xiubo; Song, Bo; Wang, Baoyi; Chen, Xiaolong

    2011-02-25

    Defect-induced magnetism is firstly observed in neutron irradiated SiC single crystals. We demonstrated that the intentionally created defects dominated by divacancies (V(Si)V(C)) are responsible for the observed magnetism. First-principles calculations revealed that defect states favor the formation of local moments and the extended tails of defect wave functions make long-range spin couplings possible. Our results confirm the existence of defect-induced magnetism, implying the possibility of tuning the magnetism of wide band-gap semiconductors by defect engineering. © 2011 American Physical Society

  2. EPR study of gamma irradiated DL-methionine sulfone single crystals

    NASA Astrophysics Data System (ADS)

    Karabulut, Bünyamin; Yıldırım, İlkay

    2015-12-01

    Electron paramagnetic resonance (EPR) study of gamma irradiated dl-2-amino-4-(Methylsulfonyl) butyric acid (dl-methionine sulfone, hereafter dl-ABA) single crystals and powder was performed at room temperature. It has been found that this compound indicates the existence of C. O2- and N. H2 radicals after γ-irradiation. While g and hyperfine splitting values for the N. H2 radical were observed, for the C. O2- radical, only the g factor was measured. The EPR spectra have shown that N. H2 radical has two groups each having two distinct sites and C. O2- radical has one site. The principal g and hyperfine values for all sites were analyzed.

  3. Irradiation-initiated plastic deformation in prestrained single-crystal copper

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wang, Liang; Jian, Wu-Rong; E, Jun-Cheng; Ma, Hong-Hao; Luo, Sheng-Nian

    2016-02-01

    With large-scale molecular dynamics simulations, we investigate the response of elastically prestrained single-crystal Cu to irradiation as regards the effects of prestrain magnitude and direction, as well as PKA (primary knock-on atom) energy. Under uniaxial tension, irradiation induces such defects as Frenkel pairs, stacking faults, twins, dislocations, and voids. Given the high dislocation concentration, twins and quad-stacking faults form through overlapping of different stacking faults. Voids nucleate via liquid cavitation, and dislocations around void play a lesser role in the void nucleation and growth. Dislocation density increases with increasing prestrain and PKA energy. At a given prestrain, there exists a critical PKA energy for dislocation activation, which decreases with increasing prestrain and depends on crystallographic direction of the applied prestrain.

  4. In situ neutron diffraction studies of single crystals and powders during microwave irradiation.

    PubMed

    Harrison, Andrew; Ibberson, Richard; Robb, Graeme; Whittaker, Gavin; Wilson, Chick; Youngson, Douglas

    2003-01-01

    Microwave dielectric heating has become an important method in chemical synthesis and materials processing over the past 15 years, and in the case of the reactions in solutions, there is a well-developed understanding of heating mechanisms and their influence on reaction rate. In the solid-state however, there is much less clarity, despite the advantages to be gained from better insight into the way in which such electromagnetic radiation may couple directly to charge carriers, accelerating reactions in good conductors. The related issue of the influence of microwave irradiation on biological systems, in particular, proteins, and the way in which this may pose hazards to health is similarly poorly understood despite the obvious relevance this may have to the current debate on the influence of electromagnetic radiation, in particular, microwave transmission, on human health. One reason for the paucity of fundamental insight in both fields is because most work has been performed with microwave equipment whose design is derived from that of a domestic oven, and which is not ideal for in situ studies of microwave driven processes. We have been developing new methods of irradiating a variety of solid samples while measuring structural parameters through a range of diffraction techniques, and describe apparatus that will enable X-ray or neutron scattering measurements to be performed on powders or single crystals under microwave irradiation with controlled power level. We also describe preliminary studies of a single crystal of the molecular solid aspirin, and a powder of the microwave-susceptible ionic material BaTiO3, during microwave irradiation.

  5. Structure of free radicals in irradiated acetyl-L-leucine single crystals at 77 K

    SciTech Connect

    Almanov, G.A.; Bogdanchikov, G.A.; Usov, O.M.

    1988-09-01

    By using the EPR method, two types of radicals are observed, which are formed in acetyl-L-leucine single crystals irradiated at 77K. These are alkyl type radicals (CH/sub 3/)/sub 2/CCH/sub 2/CH(NHCOCH/sub 3/)COOH and peptide group radicals. When the crystals are defrozen to room temperatures, the radicals of the second type disappear without formation of paramagnetic particles. Two possible structures of the peptide group radicals were studied by the INDO method. On defreezing to room temperature, the alkyl group radical is retained, while the peptide radical disappears without formation of paramagnetic particles. For the protonated form of the anion-radical, a better agreement is observed between the theoretically calculated and the experimentally obtained HFI constants. The quantum chemical analysis of the possible structures of the peptide group radicals indicates that the formation of the protonated form of the anion-radical is energetically favorable.

  6. Irradiation induced dislocations and vacancy generation in single crystal yttria stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Johnsen, Jill Noel

    A determination of the most effective method of introducing defect clusters and forming nanocrystals in single crystal Yttria Stabilized Zirconia (YSZ) to increase its oxygen ion conductivity for use in solid oxide fuel cell has been investigated using several techniques. High-energy particle irradiation using 800 keV electrons and 20 MeV protons and Ar+ and Xe ++ ion implantation promote the introduction of defects. Thermal annealing and temperature cycling were performed both ex-situ and in-situ in a TEM to study the dynamic recovery behavior of the defects introduced by irradiation and the nucleation and growth of nanocrystals. This analysis found multiple outcomes to both light particle irradiation, with electrons and protons, and heavy charged particle irradiation, including Ar+ and Xe++. Electron irradiation produced very few vacancies, and therefore a very low dislocation density after high temperature annealing. The Xe++ and Ar+ irradiated samples show a high density of vacancy clusters. Evidence also shows nanocrystalline formation in Xe++ irradiated YSZ after a 20 minute anneal at 1040°C with grain sizes on the order of 10--50nm. Defect clusters formed in samples exposed to 20.4 MeV protons with a fluence of 1.00 x 1013 p/cm2 and thermally annealed at temperatures between 800°C and 1000°C. The samples became polycrystalline after a 75 minute anneal with a grain size of approximately 20nm and remained polycrystalline throughout the 120 minute anneal. Impedance spectroscopy measurements were conducted on proton irradiated samples with various annealing conditions. From the impedance results it is concluded that the minimum annealing conditions for a noticeable improvement in ionic conductivity are 1000°C for 2 hours and the 1200°C for 1 hour. These annealing conditions correspond to the conditions for nanocrystal formation as show by microstructural characterization. The proton irradiated YSZ ceramic samples annealed under these conditions were found

  7. Strong yellow emission of high-conductivity bulk ZnO single crystals irradiated with high-power gyrotron beam

    NASA Astrophysics Data System (ADS)

    Kato, Kosaku; Qiu, Hongsong; Khutoryan, Eduard M.; Tatematsu, Yoshinori; Tani, Masahiko; Idehara, Toshitaka; Yamaguchi, Yuusuke; Fukunari, Masafumi; Maeda, Yuto; Takayama, Kyoya; Minami, Yuki; Empizo, Melvin John F.; Kurihara, Takayuki; Yamanoi, Kohei; Shimizu, Toshihiko; Takano, Keisuke; Sarukura, Nobuhiko; Fukuda, Tsuguo; Yoshimura, Masashi; Nakajima, Makoto

    2017-07-01

    We report the strong yellow emission of bulk ZnO single crystals irradiated with the high-power gyrotron beam. Hydrothermally grown bulk crystals with high conductivity are irradiated at room temperature with up to 60-W output of a sub-terahertz gyrotron wave source. During gyrotron irradiation, the high-conductivity crystals exhibit intense emissions with a peak of around 2 eV (600 nm) and a longer-wavelength tail. The sample temperatures were also elevated from room temperature to above 1000 K by irradiation. However, when heated up to 1250 K using a heater without irradiation, the ZnO crystals do not exhibit similar visible emissions. We then use the generalized Planck's radiation in non-equilibrium states as an explanation of our experimental observations. The emission peak intensity can be enhanced by the gyrotron-induced non-equilibrium states, and the emission peak position can be related to the Urbach energy. With high intensities in the visible wavelengths, the emissions of the irradiated crystals can be readily observed with our bare eyes or with inexpensive digital cameras. As the spatial distribution of the yellow emission reflects the gyrotron beam pattern, the bulk ZnO single crystals can then be utilized for the quick diagnosis of gyrotron beam patterns and positions.

  8. Swift heavy ion irradiation induced phase transformation in calcite single crystals

    NASA Astrophysics Data System (ADS)

    Nagabhushana, H.; Nagabhushana, B. M.; Lakshminarasappa, B. N.; Singh, Fouran; Chakradhar, R. P. S.

    2009-11-01

    Ion irradiation induced phase transformation in calcite single crystals have been studied by means of Raman and infrared spectroscopy using 120 MeV Au 9+ ions. The observed bands have been assigned according to group theory analysis. For higher fluence of 5×10 12 ion/cm 2, an extra peak on either side of the 713 cm -1 peak and an increase in the intensity of 1085 cm -1 peak were observed in Raman studies. FTIR spectra exhibit extra absorption bands at 674, 1589 cm -1 and enhancement in bands at 2340 and 2374 cm -1 was observed. This might be due to the phase transformation from calcite to vaterite. The damage cross section ( σ) for all the Raman and FTIR active modes was determined. The increase of FWHM, shift in peak positions and appearance of new peaks indicated that calcite phase is converted into vaterite.

  9. EPR study of the stable radical in a γ-irradiated single crystal of progesterone

    NASA Astrophysics Data System (ADS)

    Krzyminiewski, R.; Masiakowski, J.; Pietrzak, J.; Szyczewski, A.

    The molecular structure of free radicals formed in a γ-irradiated single crystal of progesterone was investigated by EPR spectroscopy. Two different types of radicals with different rates of recombination were observed. It is proposed that the stable radical is formed by the loss of a hydrogen atom in position 6 of the molecule, leaving an unpaired electron in the 2 pz orbital of the carbon atoms in positions 6 and 4. The hyperfine spectrum of this radical originates from the interaction of the unpaired electron with the two equivalent a protons in positions 4 and 6 and with the two non-equivalent β protons in position 7. The hyperfine tensors of the couplings are given together with the g tensor of this radical.

  10. Irradiation Damage in Gd2Ti2O7 Single Crystals: Ballistic vs Ionization Processes

    SciTech Connect

    Moll, Sandra; Sattonnay, Gael; Thome, Lionel; Jagielski, Jacek; Decorse, C; Simon, Patrick; Monnet, Isabelle; Weber, William J

    2011-01-01

    The structural transformations induced in Gd2Ti2O7 single crystals irradiated at high energies (870 MeV Xe), where ionization processes (electronic stopping) dominate, and at low energies (4 MeV Au), where ballistic processes (nuclear stopping) dominate, have been studied via the combination of Rutherford backscattering spectrometry and channeling, Raman spectroscopy and transmission electron microscopy experiments. At high energy, amorphization occurs directly in individual ion tracks from the extreme electronic energy deposition from ionization, and full amorphization results from the overlapping of these tracks as described by a direct impact model. The track diameters determined from RBS/C and TEM data lie in the range 6-8 nm. At low energy, amorphization occurs via indirect processes, driven by ballistic nuclear energy deposition from the ions, that is accounted for in the framework of both the direct-impact/defect stimulated and multi-step damage accumulation models. The ion fluence for total amorphization of the irradiated layer is much higher (0.5 ion nm-2) at low energy than at high energy (0.05 ion nm-2), consistent with the nuclear stopping at low energy (5.2 keV/nm) compared to the electronic stopping at high energy (29 keV/nm).

  11. ESR study of irradiated single crystals of the cocrystalline complex of cytidine: Salicylic acid

    SciTech Connect

    Close, D.M.; Sagstuen, E.

    1983-12-01

    Irradiation at 77 K of single crystals of the 1:1 complex of cytidine and salicylic acid produces a phenoxyl radical formed by oxidation of the salicylic acid. Anisotropic hyperfine coupling tensors have been determined for this radical which are associated with the para and ortho hydrogens. No cytidine oxidation products (alkoxy or hydroxyalkyl radicals) were observed at 77 K. Following the decay of the phenoxyl radical at room temperature, four radicals were detected. These include the cytosine 5--yl and 6--yl radicals, formed by H addition to the cytosine ring, and an anisotropic doublet. By UV irradiation at room temperature, it is possible to convert a significant fraction of 6-yl radicals into 5-yl radicals. Hyperfine coupling and g tensors determined for the anisotropic doublet indicate that this radical is formed in the C/sub 1'/-C/sub 2'/ region of the sugar moiety. These results indicate a shift in radiation damage away from the salicylic acid upon warming, and show that the radiation chemistry of the cocrystalline complex is different from that of the isolated bases.

  12. EPR and photoluminescence study of irradiated anion-defective alumina single crystals

    NASA Astrophysics Data System (ADS)

    Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.

    2017-09-01

    Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.

  13. An electron spin double resonance study of x-ray irradiated phenacyl chloride single crystals

    NASA Astrophysics Data System (ADS)

    Hwang, J. S.; Wang, H. C.; Andersson, B.; Kispert, L. D.; Geoffroy, M.

    1981-10-01

    Single crystals of phenacyl chloride irradiated at room temperature give rise to an EPR spectrum that has been shown by ENDOR and ELDOR studies to be due to the radical The EPR spectra are complicated by the appearance of a large number of forbidden lines due to the presence of a chlorine quadrupole interaction similar in magnitude to the proton hyperfine coupling. Spectral assignment is not possible by considering the EPR spectra alone. Although ENDOR spectra are difficult to obtain, it is possible to obtain an ENDOR spectrum along one of the crystal axis that identifies the spectra as due to radical I. Furthermore, rather intense and highly resolved ELDOR spectra are obtained at -60 °C as a function of angle enabling the chlorine and proton magnetic hyperfine tensor components of the -ĊHCl fragment to be determined as -15.4, -8.3, +45.6 MHz and -26.5, -52.5, -80.0 MHz, respectively. The Qzz components of the chlorine quadrupole tensor is -11.2 MHz.

  14. ESR study of some sulfur-centered radicals formed in irradiated cysteamine and 1,4-dithiane single crystals

    SciTech Connect

    Bonazzola, L.; Fackir, L.; Leary, N.; Roncin, J.

    1984-03-01

    Cysteamine and 1,4-dithiane single crystals have been exposed to /sup 60/Co ..gamma.. rays or irradiated with ultraviolet light. The main sulfur-centered radicals are assigned as RCH/sub 2/S and RCH/sub 2/SS from the comparative study by ESR of the hyperfine couping and of the g tensors.

  15. Crystallization of Ge2Sb2Te5 thin films by nano- and femtosecond single laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Sun, Xinxing; Ehrhardt, Martin; Lotnyk, Andriy; Lorenz, Pierre; Thelander, Erik; Gerlach, Jürgen W.; Smausz, Tomi; Decker, Ulrich; Rauschenbach, Bernd

    2016-06-01

    The amorphous to crystalline phase transformation of Ge2Sb2Te5 (GST) films by UV nanosecond (ns) and femtosecond (fs) single laser pulse irradiation at the same wavelength is compared. Detailed structural information about the phase transformation is collected by x-ray diffraction and high resolution transmission electron microscopy (TEM). The threshold fluences to induce crystallization are determined for both pulse lengths. A large difference between ns and fs pulse irradiation was found regarding the grain size distribution and morphology of the crystallized films. For fs single pulse irradiated GST thin films, columnar grains with a diameter of 20 to 60 nm were obtained as evidenced by cross-sectional TEM analysis. The local atomic arrangement was investigated by high-resolution Cs-corrected scanning TEM. Neither tetrahedral nor off-octahedral positions of Ge-atoms could be observed in the largely defect-free grains. A high optical reflectivity contrast (~25%) between amorphous and completely crystallized GST films was achieved by fs laser irradiation induced at fluences between 13 and 16 mJ/cm2 and by ns laser irradiation induced at fluences between 67 and 130 mJ/cm2. Finally, the fluence dependent increase of the reflectivity is discussed in terms of each photon involved into the crystallization process for ns and fs pulses, respectively.

  16. Helium irradiation effects in single crystals of MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Neeft, E. A. C.; Schram, R. P. C.; van Veen, A.; Labohm, F.; Fedorov, A. V.

    2000-05-01

    Magnesium aluminate spinel, (MgAl2O4), is a promising material as a uranium free matrix for the transmutation of americium. Fission products and α-particles are produced during the transmutation. The impact of α-particles is simulated by 30 keV 3He ion implantations at room temperature (RT) with the doses 6.2, 16, 20 and 53×1015 cm-2. In another set of experiments a single crystal MgAl2O4 (1 0 0) sample is irradiated with α-particles (4.5 MeV) from a 241Am source at RT to a dose of 1.3×1012 cm-2. Helium release from the implanted samples was studied by thermal desorption spectrometry (TDS). The numerical analysis of the experimental thermal desorption results of α-implanted samples to a very low helium concentration (0.0288 appm in the irradiation zone of 12.4 μm) show that helium release is dominated by helium interstitial diffusion with an activation energy of 1.8 eV. In the case of high dose implantation to 1.74 at.% in the implantation zone approximately of 100 nm, helium is released from He-vacancy clusters with the activation energy of 2.35 eV. The evolution of the helium concentration profile in the temperature range from RT to 1483 K is monitored by neutron depth profiling (NDP). It confirms that the release of helium is governed by dissociation from vacancy clusters.

  17. Low temperature intrinsic defects in x-irradiated hydroxyapatite synthetic single crystals

    SciTech Connect

    Close, D.M.; Mengeot, M.; Gilliam, O.R.

    1981-05-15

    ESR studies of radiation-induced defects have been conducted on synthetic calcium hydroxyapatite single crystals. For a room temperature x-irradiation a major defect (labeled A) was reported to be an O/sup -/ ion. X irradiation at 6 K shows defect A, trapped atomic hydrogen, and a nonaxial holelike center (labeled I). These new centers are stable at 6 K but anneal near 77 K. Observations at 9 and 35 GHz indicate that the I center is a spin-1/2 defect located in six inequivalent sites. In the ab plane, spectra exhibit an isotropic hyperfine doublet (approx.13 G splitting) and an anisotropic doublet (17--27 G splitting) in three symmetry-related sites. For other orientations additional site splitting and ''forbidden transitions'' make the spectra very complex. The hyperfine coupling tensor for the anisotropic doublet has diagonal elements -29.5, -19.2, and +3.11 G. The g tensor for this defect has diagonal elements 2.0068, 2.0032, and 2.0148. The sets of directional cosines associated with the minimum g value and the intermediate A value each indicate a direction corresponding approximately to that of the vector from an OH oxygen to a neighboring PO/sub 4//sup 3 -/ oxygen. The model proposed for the I center is a hole trapped by both an OH/sup -/ and a neighboring PO/sub 4//sup 3 -/. The anisotropic doublet is accounted for with 65% of the spin density on OH/sup -/. The remaining spin density is on a phosphate oxygen. This creates a PO/sup 2 -//sub 4/ defect with the isotropic coupling arising from hyperfine interaction with the /sup 31/P nucleus.

  18. Modeling of sink-induced irradiation growth of single-crystal and polycrystal zirconiums in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Choi, Sang Il; Lee, Gyeong-Geun; Kwon, Junhyun; Kim, Ji Hyun

    2016-01-01

    The objective of this study is irradiation growth modeling of polycrystal zirconium using the advanced mean-field rate theory (MFRT) and growth equation. Since the 1960s, irradiation growth of zirconium has been among the most important phenomena in nuclear reactors. However, there is no general irradiation growth model that can explain changes in both the microstructure morphology and growth strain in polycrystal zirconium owing to lack of knowledge of the relevant atomistic information and MFRT. Although two groups have developed a single-crystal zirconium irradiation growth model, a general polycrystal zirconium model has not been developed. In this study, therefore, the defect flux was calculated using the MFRT, and the dislocation loop density was calculated from the defect flux. Moreover, the bias factor for each sink (dislocation lines, loops, and grain boundaries) was adopted in the MFRT. In addition, dislocation line and grain boundary effects were examined in polycrystal zirconiums. Finally, irradiation growth equation was established and growth strain was calculated using the average strain factor and anisotropy factor considering grain-interaction. For single-crystal zirconium and cold-worked polycrystal zirconium, irradiation growth strain results show good agreement with the experimental results. For annealed polycrystal zirconium, the results deviate from the experimental results.

  19. Effect of an electron beam irradiation on optical and luminescence properties of LiBaAlF6 single crystals

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, I. N.; Pustovarov, V. A.; Omelkov, S. I.; Kirm, M.

    2017-07-01

    Paper reports the effect of a 10 keV, 110 keV and 10 MeV electron beam irradiation on optical and luminescence properties of LiBaAlF6 (LBAF) single crystals at 10, 90, and 293 K. Five absorption bands at 2.0, 3.2, 4.3, 4.9 and 5.5 eV were revealed in irradiated crystals in the energy range of 1.2-9.5 eV. Several PL emission bands (1.7-1.8, 2.2 and 2.5-3.5 eV) related to defects were found in the luminescence spectra at room temperature, while only one luminescence band at E = 2.2 eV appears at T = 90 K in LBAF crystals after a 10 MeV electron bombardment. The PL excitation spectra and time-response for these emission bands were studied at 10, 90, and 293 K. Thermoluminescence (TL) of irradiated crystals was studied in the temperature range of 90-740 K. New TL glow peaks at 166, 530 and 670 K were revealed and their parameters were determined. Temperature dependence of relative photoluminescence yield recorded monitoring emission at the 1.87 and 2.23 eV in the temperature range from 130 to 450 K, were fitted using five quenching processes related to TL glow peaks revealed in our research. Significant similarity in the manifestation of radiation-induced defects for LBAF and previously studied LiBaF3 single crystals is noted. The effect of an electron beam irradiation on optical and luminescence properties of LBAF single crystals and possible origin of the radiation defects were discussed.

  20. Magnetization transfer in a partly deuterated lyotropic liquid crystal by single- and dual-frequency RF irradiations

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2017-08-01

    The mechanism of magnetization transfer (MT) in a lyotropic liquid crystal made of sodium dodecyl sulfate, decanol, and water molecules is investigated by using deuterated molecules and single- and dual-frequency RF irradiations. The resulting Z-spectra suggest that the decanol molecules are mainly responsible for the MT effects in this system, through proton exchange to water. This is further confirmed by monitoring the relaxation of dipolar order, which allows one to estimate the transfer rate of magnetization from decanol to water. The potential benefits of using dual-frequency RF irradiation for inducing MT effects are explored through numerical solutions to a MT model based on Provotorov's partial saturation theory.

  1. Analysis of strained surface layers of ZnO single crystals after irradiation with intense femtosecond laser pulses

    SciTech Connect

    Schneider, Andreas; Sebald, Kathrin; Voss, Tobias; Wolverson, Daniel; Hodges, Chris; Kuball, Martin

    2013-05-27

    Structural modifications of ZnO single crystals that were created by the irradiation with femtosecond laser pulses at fluences far above the ablation threshold were investigated with micro-Raman spectroscopy. After light-matter interaction on the femtosecond time scale, rapid cooling and the pronounced thermal expansion anisotropy of ZnO are likely to cause residual strains of up to 1.8% and also result in the formation of surface cracks. This process relaxes the strain only partially and a strained surface layer remains. Our findings demonstrate the significant role of thermoelastic effects for the irradiation of solids with intense femtosecond laser pulses.

  2. EPR Investigation of UV-Irradiated Single Crystals of Chromate-Doped Methylammonium and Potassium Aluminum Alums

    NASA Astrophysics Data System (ADS)

    Yu, Jiang-Tsu; Lou, Ssu-Hao

    1993-08-01

    Electron paramagnetic resonance (EPR) has been used to identify and analyze a CrO 3-4 species produced by UV irradiation in single crystals of chromate-doped methylammonium aluminum alum and in potassium aluminum alum lightly codoped with the methylammonium ion. The photoreduction is a simple reduction of the type CrO 2-4 + e- → CrO 3-4, where the odd electron is a photoelectron liberated by the methylammonium ion.

  3. Radiation damage in vitamin B 1: An endor study of an x-irradiated single crystal of thiamine

    NASA Astrophysics Data System (ADS)

    Geoffroy, M.; Reddy, M. V. V. S.; Lambelet, P.; Horman, I.

    A single crystal of thiamine chloride hydrochloride has been x-irradiated at room temperature and studied by 1H-ENDOR spectroscopy at 110 K. It is shown that at least two radical species are trapped in the crystal. Several 1H-hyperfine tensors have been determined for each radical; they indicate that one species is due to cleavage of the thiamine molecule into its pyrimidine and thiazole moieties while the other species is due to hydrogen addition onto the pyrimidine ring.

  4. Characterization of high energy Xe ion irradiation effects in single crystal molybdenum with depth-resolved synchrotron microbeam diffraction

    SciTech Connect

    Yun, Di; Miao, Yinbin; Xu, Ruqing; Mei, Zhigang; Mo, Kun; Mohamed, Walid; Ye, Bei; Pellin, Michael J.; Yacout, Abdellatif M.

    2016-04-01

    Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 mu m, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performed to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations. (c) 2015 Elsevier B.V. All rights reserved.

  5. Optical damage assessment and recovery investigation of hydrogen-ion and deuterium-ion plasma-irradiated bulk ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Empizo, Melvin John F.; Yamanoi, Kohei; Mori, Kazuyuki; Iwano, Keisuke; Iwasa, Yuki; Minami, Yuki; Arita, Ren; Fukuda, Kazuhito; Takano, Keisuke; Shimizu, Toshihiko; Nakajima, Makoto; Yoshimura, Masashi; Sarukura, Nobuhiko; Norimatsu, Takayoshi; Hangyo, Masanori; Azechi, Hiroshi; Fukuda, Tsuguo; Singidas, Bess G.; Sarmago, Roland V.; Oya, Makoto; Ueda, Yoshio

    2017-05-01

    In realizing zinc oxide (ZnO) scintillator applications, we assess the optical damage and investigate the recovery of hydrogen-ion (H-ion) and deuterium-ion (D-ion) plasma-irradiated bulk ZnO single crystals. Hydrothermal-grown bulk crystals are irradiated with H-ion and D-ion beams with 1 keV energy and ˜ 10 20 m - 2 s - 1 flux. After irradiation, the single crystals exhibit decreased visible transparencies, redshifted ultraviolet (UV) emission peaks, shortened UV emission lifetimes, and suppressed visible emission bands. These changes in the optical transmittances and photoluminescence emissions are attributed to the generation of defects during irradiation and to the interaction of hydrogen with other defects and/or impurities. Although modified by ion irradiation, the optical properties of the ZnO crystals, except for the UV emission lifetimes, recover hours after without any sample treatment and only at room temperature. Compared with the H-ion-irradiated sample, the D-ion-irradiated crystal has a slower recovery which may be related to the ions' masses, energy losses, and absolute diffusivities. Our results nevertheless show that bulk ZnO single crystals exhibit resistance to and recovery from H-ion and D-ion irradiation and can therefore be used as scintillator materials for radiation detectors inside future fusion reactors.

  6. Paramagnetic and diamagnetic defects in e - and UV-irradiated TeO 2 single crystal

    NASA Astrophysics Data System (ADS)

    Watterich, A.; Kappers, L. A.; Gilliam, O. R.; Bartram, R. H.; Földvári, I.; Korecz, L.

    2002-05-01

    A study is reported of the influence of illumination on generation and decay of point defects in TeO 2 crystals following electron irradiation at ˜400 K. Electron irradiation is believed to cause a large concentration of diamagnetic oxygen vacancies denoted by V Ox and a smaller concentration of vacancies with one trapped electron denoted by V Orad . When the sample is UV illuminated at 330 nm and 77 K or lower, electron spin resonance (ESR) measurements show that the number of V Orad centers increases and a comparable gain of V O' centers (three electrons in the vacancy) occurs. A brief illumination at 660 nm causes the V O' signal to disappear and the V Orad signal to decrease and return to its original value. Changes in the crystal's optical absorption obtained from spectra measured with polarized light are given. When V O' centers are removed by bleaching, or by thermal annealing, broad bands at 600 and 700 nm disappear and there are increases in optical absorption at 380, 440 and 480 nm. The source of these bands is discussed. These processes are reversed by a new UV illumination at 330 nm and 77 K. The growth and decay kinetics of V O' centers and V Orad centers measured by ESR indicate the same rates of percentage change in their concentrations. Explanation of these reversible processes supports selected models for the three different vacancy centers.

  7. Development and high temperature testing by 14 MeV neutron irradiation of single crystal diamond detectors

    NASA Astrophysics Data System (ADS)

    Pilotti, R.; Angelone, M.; Pagano, G.; Loreti, S.; Pillon, M.; Sarto, F.; Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2016-06-01

    In the present paper, the performances of single crystal diamond detectors "ad hoc" designed to operate at high temperature are reported. The detectors were realized using commercial CVD single crystal diamond films, 500 micron thick with metal contacts deposited by sputtering method on each side. The new detector layout is based upon mechanical contacts between the diamond film and the electric ground. The detector was first characterized by measuring the leakage current as function of temperature and applied biasing voltage (I-V characteristics). The results obtained using two different metal contacts, Pt and Ag respectively, while irradiated with 14 MeV neutrons at the Frascati neutron generator (FNG) are reported and compared. It is shown that diamond detectors with Ag metal contacts can be properly operated in spectrometric mode up to 240oC with energy resolution (FWHM) of about 3.5%.

  8. AC response of 2H-NbSe2 single crystals with electron-irradiation-induced defects

    NASA Astrophysics Data System (ADS)

    Bartolomé, E.; Bartolomé, J.; Arauzo, A.; Eremenko, V. V.; Sirenko, V. A.

    2010-07-01

    The generation of defects in NbSe2 single crystals by electron irradiation has been investigated by a combination of ac susceptibility and structural measurements. Remarkably, thanks to the layered structure of NbSe2, we show that electronic irradiation cannot only create point defects but also in-plane extended defects, which modify anisotropically the ac response. Indeed, the analysis of the onset of the nonlinear susceptibility response, Hacl(T), as a function of irradiation dose and field orientation shows a correlated increase in the density of anisotropic defects induced by electron irradiation. Also, we measured a decrease in the strength of the pinning (Labusch) constant αL accounting for elastic vortex oscillations within the linear Campbell regime for high-dose-irradiated samples in a transverse field, again compatible with the presence of planar defects hindering vortex pinning. X-ray powder diffraction and TEM electron diffraction measurements suggest these in-plane defects may result from the rupture of Se-Se bonds and the formation of nanorods and nanowires by NbSe2 sheet rolling.

  9. A EPR Investigation of Atomic Silver and Divalent Silver in Irradiated Single Crystal of Potassium Fluoride Doped with Silver Fluoride

    NASA Astrophysics Data System (ADS)

    Yu, Cheng

    The electron paramagnetic resonance absorption spectra of a singly ionized diatomic fluoride molecule -ion F_2^-, atomic silver Ag^0 and divalent silver Ag ^{2+} contained in single crystals of potassium fluoride have been re-examined at X-band wavelengths. The F_2^- and Ag^0 centers are produced simultaneously by gamma-irradiation at liquid nitrogen temperature. The divalent silver Ag^{2+} centers are formed by subsequently warming the irradiated samples to room temperature for a few hours and then cooling to 77 K. All field strength positions of resonance absorption lines observed at low temperatures have been satisfactorily predicted by computer simulation. The high degree of resolution exhibited by the spectra is due in part to the large nuclear magnetic moment of fluorine and in part to the fact that spectral lines in KF are narrow compared to those of similar systems in other alkali halide crystals. For an atomic silver, the hexafluoride cluster is cubic. By contrast, the divalent silver center is tetragonally distorted along a crystal cube edge as a consequence of the Jahn-Teller effect. Unexpected splittings of the central lines in the resonance absorption spectrum of divalent silver are observed and interpreted as being due to second order perturbation effects.

  10. The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Neutral atomic zinc and oxygen emission

    SciTech Connect

    Kahn, E. H.; Langford, S. C.; Dickinson, J. T.; Boatner, Lynn A

    2013-01-01

    We report mass-resolved time-of-flight measurements of neutral particles from the surface of single-crystal ZnO during pulsed 193-nm irradiation at laser fluences below the threshold for avalanche breakdown. The major species emitted are atomic Zn and O. We examine the emissions of atomic Zn as a function of laser fluence and laser exposure. Defects at the ZnO surface appear necessary for the detection of these emissions. Our results suggest that the production of defects is necessary to explain intense sustained emissions at higher fluence. Rapid, clean surface etching and high atomic zinc kinetic energies seen at higher laser fluences are also discussed.

  11. The formation of metallic nanoparticles in single crystal CaF{sub 2} under 157 nm excimer laser irradiation

    SciTech Connect

    Cramer, L.P.; Langford, S.C.; Dickinson, J.T.

    2006-03-01

    Single crystal calcium fluoride (CaF{sub 2}) is an important material for vacuum-ultraviolet optical components. Unfortunately, all metal halides tend to form defects when exposed to energetic particles and laser radiation, and these defects can degrade optical performance. Here we examine the consequences of exposing CaF{sub 2} to 157 nm excimer laser radiation and show that several tens of thousands of pulses at fluences near 1 J/cm{sup 2} can color the material. Absorption spectra of the exposed material confirm the formation of metallic calcium nanoparticles similar to those produced by other forms of energetic radiation. The rate of nanoparticle formation depends on the bulk temperature and displays a local maximum near 50 deg. C. Absorption measurements at 157 nm display a transient absorption component that grows during prolonged irradiation and disappears on time scales of several minutes after irradiation ceases. The implications of these effects in optical components are discussed.

  12. Rise and fall of ferromagnetism in O-irradiated Al{sub 2}O{sub 3} single crystals

    SciTech Connect

    Li, Qiang; Xu, Juping; Liu, Jiandang; Du, Huaijiang; Ye, Bangjiao

    2015-06-21

    In dilute magnetic semiconductors studies, sapphire was usually used as non-magnetic substrate for films. We observed weak ferromagnetic component in Al{sub 2}O{sub 3} single crystal substrate, and excluded the possibility of ferromagnetic contaminations carefully by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The ferromagnetism rise and fall during the process of annealing-oxygen irradiation-annealing of the sapphire. The ferromagnetic changes are consistent with Al-vacancy related defects detected by positron annihilation spectroscopy. With first-principle calculations, we confirm that Al-vacancy can introduce magnetic moment for 3 μB in Al{sub 2}O{sub 3} crystal and form stable V{sub Al}-V{sub Al} ferromagnetic coupling at room temperature.

  13. Disorder in KHCO3 as studied by EPR and DTA in Cu2+ doped and gamma-irradiated single crystals

    NASA Astrophysics Data System (ADS)

    Koksal, F.; Karabulut, B.; Demir, D.; Icbudak, H.; Koseoglu, R.

    2005-08-01

    Kalicinite (KHCO3) single crystals were investigated by the electron paramagnetric resonance (EPR) technique in their Cu2+ doped and gamma- irradiated states. It is observed that the behavior of the spectrum is the same at ambient and low temperatures down to 113 K in consistence with the monoclinic symmetry of the crystal. However, when the temperature is increased to 313 K, only one site signals were observed at all orientations of the magnetic field for the Cu2+ doped samples as the site splitted signals overlap at this temperature. Furthermore, for the gamma-irradiated crystals, two sites were observed for the induced H(C)over dot O-3 and (C)over dot O-2(-) radicals at ambient temperature for an arbitrary orientation of the magnetic field. However, when the temperature is increased to 348 K, the signals due to the H(C)over dot O-3 radical overlap indicating only one site, but the signals due to (C)over dot O-2(-) the radical do not and continue to indicate the presence of the two sites. Therefore, we conclude that this one site transition at 313 K is due to the disordering of the proton vacancies, as the charge compensation of Cu2+ is fulfilled by K+ and proton holes. This indicates that the proton vacancies come to disorder at 313 K and the protons get disordered at 348 K. The differential thermal analysis results show two small endothermic peaks for the Cu2+ doped and gamma-irradiated samples at 313 and 348 K that were attributed to the disorder of the proton vacancies and protons, in consistency with the EPR results.

  14. Formation and trapping of free radicals in irradiated purines: EPR and ENDOR of hypoxanthine derivatives studied as single crystals

    NASA Astrophysics Data System (ADS)

    Tokdemir, Sibel

    Four different derivatives of hypoxanthine (hypoxanthine-HCl·H 2O, Na+·Inosine-·2.5H 2O, sodium inosine monophosphate, and calcium inosine monophosphate) were irradiated in the form of single crystals with the objective of identifying the radical products. To do so, magnetic resonance methods (EPR, ENDOR experiments and EPR spectrum simulations) were used to study radical products in crystals following x-irradiation at ˜10 K without warming, and under conditions of controlled warming. Also, computational chemistry methods were used in combination with the experimental methods to assist in identifying the radical products. Immediately following irradiation at 10 K, at least three different radicals were observed for hypoxanthine·HCl·H2O. R5.1 was identified at the product of electron addition followed by protonation of the parent at N3. R5.2 was identified as the product of electron loss followed by deprotonation at N7, and R5.3 was tentatively identified as the product of electron gain followed by protonation at 06. On warming to room temperature, three new radicals were observed: R6.1 and R6.3 were the products of net H addition to C8 and C2 respectively, while R6.2 was the product of OH addition to C8. At least four different radical products of Na+·Inosine - were detected immediately after irradiation at 10 K. R7.1 was identified as the electron-loss product of the parent hypoxanthine base, and R7.2 was identified as the product of net H-abstraction from C5 ' of the sugar. R7.3 and R7.4 were tentatively identified as the products of net H-addition to 06 (probably via electron addition followed by protonation), and the (doubly-negative) product of electron-gain, respectively. R7.5, the C8-H addition radical, was the only product detected on warming sodium inosine crystals to room temperature. Because the ENDOR spectra from sodium IMP irradiated at 10K were complex, it was possible to identify only two radicals. R8.1 was identified as the purine base

  15. Irradiation effects and hydrogen behavior in H2+ and He+ implanted γ-LiAlO2 single crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Weilin; Zhang, Jiandong; Kovarik, Libor; Zhu, Zihua; Price, Lloyd; Gigax, Jonathan; Castanon, Elizabeth; Wang, Xuemei; Shao, Lin; Senor, David J.

    2017-02-01

    Gamma-phase lithium aluminate (γ-LiAlO2) is a breeder material for tritium, a necessary substance for strategic stockpile and fusion power systems. A fundamental study of structural evolution and tritium diffusion in γ-LiAlO2 under displacive irradiation is needed to fully assess the material performance. This study utilizes ion implantation of protium (surrogate for tritium) and helium in γ-LiAlO2 single crystals at elevated temperatures to emulate the irradiation effects. The results show that at 573 K there are two distinct disorder saturation stages to 1 dpa without full amorphization; overlapping implantation of H2+ and He+ ions suggests possible formation of gas bubbles. For irradiation to 1021 H+/m2 (0.36 dpa at peak) at 773 K, amorphization occurs at surface with H diffusion and dramatic Li loss; the microstructure contains bubbles and cubic LiAl5O8 precipitates with sizes up to 200 nm or larger. In addition, significant H diffusion and release are observed during thermal annealing.

  16. Guanine radical reaction processes: a computational description of proton transfer in X-irradiated 9-ethylguanine single crystals.

    PubMed

    Jayatilaka, Nayana; Nelson, William H

    2008-12-25

    Computational methods based on DFT procedures have been used to investigate proton-transfer processes in irradiated 9-ethylguanine crystals. Previous experimental results from X-irradiation and study of this system at 10 K found significant concentrations of two main products, R1, formed by N7-hydrogenation of the purine ring, and R2, the primary one-electron oxidation product (Jayatilaka, N.; Nelson, W. H. J. Phys. Chem. B 2007, 111, 7887). The objective of this work is to describe the processes leading to these products using computational methods that take into account molecular packing and bulk dielectric properties. The basic concept is that a proton will transfer following ionization if the net electronic energy of the system, consisting of the donor plus the acceptor plus any intervening molecules, becomes lower. Three approaches were used to investigate this concept, two based on energies computed for single molecules and one based on energies computed for two-molecule clusters arranged as in the crystals. The results are that the methods successfully predict the observed behavior, that it is energetically favorable on one-electron reduction for proton H1 to transfer from a neutral molecule to N7 of the neighbor, forming the N7-hydrogenated product, and that there is virtually no energy advantage for a proton to transfer upon one-electron oxidation. The results also support the proposal that the C8 H-addition radical, found only upon irradiation at 300 K, was the product of intramolecular transfer of the H7 proton to C8 in a process apparently requiring sufficient thermal energy for activation. Finally, the computations predict hyperfine couplings and tensors in very good agreement with those from experiment, thereby providing additional evidence for the success of the computations in describing the experimental observations.

  17. Comparison of luminescence property of gamma-ray irradiated Tb(3+) -doped and Ce(3)(+) co-doped potassium halide single crystals.

    PubMed

    Bangaru, S; Ravi, D; Saradha, K

    2017-05-01

    Single crystals of KCl and KBr singly and doubly doped with Tb(3)(+) and Ce(3)(+) , respectively, were successfully grown using the Bridgeman technique. This work reports the comparative luminescence behavior and optical absorption characterization of non-irradiated and γ-ray-irradiated single crystals of these materials. The existing defect and the defect created by γ-ray irradiation were monitored by optical absorption spectra. The excitation and emission spectra of these materials were measured at room temperature with a spectrofluorometer and the pertaining results were compared. The F-band comparison was made when bleached with F-light for 2 mins. The trap-level changes in KCl and KBr when it is singly and doubly doped enabled us to draw conclusions on the nature of the defect and on the recombination processes involved. Copyright © 2016 John Wiley & Sons, Ltd.

  18. An ESR study of the stable radical in a γ-irradiated single crystal of 17α-dydroxy-progesterone

    NASA Astrophysics Data System (ADS)

    Krzyminiewski, R.; Pietrzak, J.; Konopka, R.

    1990-11-01

    Electron spin resonance spectroscopy was used to investigate γ-radiation damage of 17α-hydroxy-progesterone molecules in a single crystal. Two types of radicals with different rates of recombination were observed and a definite structure was assigned to the specimen by analyzing the orientational variation of the spectra. The unpaired electron of the radical is delocalized in the 2 pz orbitals of the C(6), C(4) and C(3) atoms, giving rise to a hyperfine spectrum by interaction with two equivalent α-protons in positions 4 and 6 and with two non-equivalent β-protons attached to C(7). The hyperfine coupling tensors are reported, together with the g tensor of the radical. The presence of additional intermolecular interactions caused by hydrogen bonding between O(3) and HO(17) of two molecules does not change the type of radical (which is the same as the stable radical in a γ-irradiated single crystal of progesterone) but does increase the hyperfine coupling anisotropy.

  19. Effects of gamma-irradiation and air annealing on Yb-doped Y3Al5O12 single crystal.

    PubMed

    Zeng, Xionghui; Xu, Xiaodong; Wang, Xiaodan; Zhao, Zhiwei; Zhao, Guangjun; Xu, Jun

    2008-03-01

    The effects of gamma-irradiation on the air-annealed 10at.% Yb:Y(3)Al(5)O(12) (YAG) and air annealing on the gamma-irradiated 10at.% Yb:YAG have been studied by the difference absorption spectra before and after treatment. The gamma-irradiation and air annealing led to opposite changes of the absorption properties of the Yb:YAG crystal. After air annealing, the gamma-irradiation induced centers were totally removed and the concentration of Fe(3+) and Yb(3+) were lightly increased. For the first time, the gamma-irradiation induced valence changes between Yb(3+) and Yb(2+) ions in Yb:YAG crystals have been observed.

  20. Structure of Radicals from X-irradiated Guanine Derivatives: An Experimental and Computational Study of Sodium Guanosine Dihydrate Single Crystals

    PubMed Central

    Jayatilaka, Nayana; Nelson, William H.

    2008-01-01

    In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824

  1. Structure of radicals from X-irradiated guanine derivatives: an experimental and computational study of sodium guanosine dihydrate single crystals.

    PubMed

    Jayatilaka, Nayana; Nelson, William H

    2007-02-01

    In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) studies of crystals X-irradiated at 10 K detected evidence for three radical forms. Radical R1, characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen alpha-couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling, was identified as the primary electron-loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1' of the ribose moiety. The identification of radicals R1-R3 was supported by density functional theory (DFT) calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of one-electron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty.

  2. Luminescence and creation of electron centers in UV-irradiated YAlO{sub 3} single crystals

    SciTech Connect

    Grigorjeva, L.; Krasnikov, A.; Zazubovich, S.; Laguta, V. V.; Nikl, M.

    2010-09-15

    Luminescence and defect creation processes were studied by the photoluminescence, thermally stimulated luminescence, and electron paramagnetic resonance methods in the UV-irradiated single crystals of undoped YAlO{sub 3}, containing small amounts of Ce, Mo, and Ti ions as accidental impurities. The luminescence of the electron antisite Y{sub Al}{sup 2+}-type centers of different structures was found around 2.45 eV and studied at 4.2-500 K. The luminescence of the Ti{sup 3+}-related centers (2.03 and 1.73 eV) and Ti{sup 4+} centers (2.78 eV) was observed as well. Dependences of the number of the Y{sub Al}{sup 2+}-type and Ti{sup 3+}-related centers on the UV irradiation energy, temperature, and duration, as well as on various crystal heat-treatment procedures were examined. As a result of the photostimulated electron transfer from the O{sup 2-} ligand ions to Mo{sup 4+} and Ti{sup 4+} ions, the paramagnetic hole O{sup -}-type centers and electron Ti{sup 3+} and Mo{sup 3+} centers are created. The antisite Y{sub Al}{sup 2+}-type centers are created due to the photostimulated release of electrons mainly from the Mo{sup 3+} centers to the conduction band and their subsequent trapping at the Y{sub Al}{sup 3+} ions located near an oxygen vacancy or a defect at the neighboring Y{sup 3+} site.

  3. Tilted vortex lattice in irradiate Bi2Sr2CaCu2O8+δ single crystals

    NASA Astrophysics Data System (ADS)

    Mirkovic, J.; Kakeya, I.; Savel'ev, S.; Kashiwagi, T.; Markovic, B.; Kadowaki, K.

    2016-01-01

    In order to enlighten the structure of vortex matter in irradiated layered Bi2Sr2CaCu2O8+δ single crystals, the interaction of Josephson vortices and pancake vortices in was investigated by means of the local ac-magnetic permeability measurements by using the miniature local coils, while vortex matter in pristine crystals was studied by in-plane resistivity measurements. The transition anomaly, separating the strong pinning phase and the weak pinning vortex phase was found by both techniques deep in the vortex solid phase solid near ab-plane, indicating crossover from the vortex chains + lattice phase to tilted vortex chains phase. While the columnar defects affect strongly the first-order vortex-lattice melting transition, the magnetic permeability anomaly, associated with the crossover from vortex chains + lattice phase to tilted lattice, is surprisingly still clear, deep in the vortex solid phase. However, the stronger columnar defects eventually affect the crossover anomaly that it disappears too.

  4. Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:alpha-BaB2O4 single crystal.

    PubMed

    Xu, Jun; Zhao, Hengyu; Su, Liangbi; Yu, Jun; Zhou, Peng; Tang, Huili; Zheng, Lihe; Li, Hongjun

    2010-02-15

    The absorption, excitation, and ultrabroadband near-infrared luminescence spectra of Bismuth were investigated in H(2)-annealed and gamma-irradiated Bi:alpha-BaB(2)O(4)(alpha-BBO) single crystals, respectively. Energy-level diagrams of the near-infrared luminescent centers were fixed. The electronic transition energies of near-infrared active centers are basically consistent with the multiplets of free Bi(+) ions. The minor difference of the energy-level diagrams of Bi(+) ions in H(2)-annealed and gamma-irradiated Bi:alpha-BaB(2)O(4) crystals can be ascribed to the difference of the local lattice environments. The involved physical and chemical processes were discussed. The effect of Ar-, air-annealing and electron-irradiation on Bi:alpha-BaB(2)O(4) crystal were also investigated.

  5. Features of tensoresistance depending on the crystallographic orientation of γ-irradiated (60Co) germanium and silicon single crystals

    NASA Astrophysics Data System (ADS)

    Gaidar, G. P.; Baranskii, P. I.

    2017-05-01

    The features of the longitudinal tensoresistance of γ-irradiated (60Co) n-Ge and n-Si crystals, as well as γ-irradiated n-Ge crystals after n → p conversion, at fixed temperatures depending on the direction (X → ∥ J → ∥ [111,110], [100]) of application of the mechanical compressive stress 0 ≤ X ≤ 1.2 GPa were investigated. The charge carrier concentrations and the Hall mobility values before and after γ-irradiation were controlled by measurements of the Hall effect. It was established that under conditions of the nonsymmetrical arrangement of deformation axis relative to the isoenergetic ellipsoids, the dependences of tensoresistance in the γ-irradiated n-Ge and n-Si crystals pass through a maximum. With a symmetrical placement of the deformation axis such maximum is not observed. In the converted n-Ge crystals under applying of mechanical stress the presence of the region of the increasing resistivity in the initial area of deformation was found, which is explained by increase of the energy gap between the deep level and the top of the valence band with increasing pressure.

  6. Reorientation of the crystalline planes in confined single crystal nickel nanorods induced by heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Misra, Abha; Tyagi, Pawan K.; Rai, Padmnabh; Misra, D. S.; Ghatak, Jay; Satyam, P. V.; Avasthi, D. K.

    2006-08-01

    In a recent letter Tyagi et al. [Appl. Phys. Lett. 86, 253110 (2005)] have reported the special orientation of nickel planes inside multiwalled carbon nanotubes (MWCNTs) with respect to the tube axis. Heavy ion irradiation has been performed with 1.5MeV Au2+ and 100MeV Au7+ ions on these nickel filled MWCNTs at fluences ranging from 1012to1015ions/cm2 at room temperature. Ion-induced modifications have been studied using high-resolution transmission electron microscopy. The diffraction pattern and the lattice imaging showed the presence of ion-induced planar defects on the tube walls and completely amorphized encapsulated nickel nanorods. The results are discussed in terms of thermal spike model.

  7. Effect of proton irradiation on superconductivity in optimally doped BaFe2(As1-xPx)2 single crystals

    DOE PAGES

    Smylie, M. P.; Leroux, M.; Mishra, V.; ...

    2016-03-10

    In this paper, irradiation with 4 MeV protons was used to systematically introduce defects in single crystals of the iron-arsenide superconductor BaFe2(As1-xPx)2, x = 0.33. The effect of disorder on the low-temperature behavior of the London penetration depth λ(T) and transition temperature Tc was investigated. In nearly optimally doped samples with Tc ~ 29 K, signatures of a superconducting gap with nodes were observed. Contrary to previous reports on electron-irradiated crystals, we do not see a disorder-driven lifting of accidental nodes, and we observe that proton-induced defects are weaker pair breakers than electron-induced defects. Finally, we attribute our findings tomore » anisotropic electron scattering caused by proton irradiation defects.« less

  8. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    NASA Astrophysics Data System (ADS)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  9. Single crystals of L-O-serine phosphate X-irradiated at low temperatures: EPR, ENDOR, EIE, and DFT studies.

    PubMed

    Øhman, Kjell Tage; Sanderud, Audun; Hole, Eli Olaug; Sagstuen, Einar

    2006-08-10

    Single crystals of the phosphorylated amino acid L-O-serine phosphate were X-irradiated and studied at 10 K and at 77 K using EPR, ENDOR, and EIE techniques. Two radicals, R1(10 K) and R1(77 K), were detected and characterized as two different geometrical conformations of the protonated reduction product >CH-C(OH)(2). R1(10 K) is only observed after irradiation at 10 K, and upon heating to 40 K, R1(10 K) transforms rapidly and irreversibly into R1(77 K). The transition from R1(10 K) to R1(77 K) strongly increases the isotropic hyperfine coupling of the C-CH(beta) coupling (Delta = 32 MHz) and the major C-OH(beta) coupling (Delta = 47 MHz), in sharp contrast to the their much reduced anisotropic hyperfine couplings after the transition. An umbrella-like inversion of the carboxylic acid center, accompanied by minor geometrical adjustments, explains the changes of these observed isotropic and anisotropic couplings. DFT calculations were done on the reduced and protonated L-O-serine phosphate radical at the B3LYP/6-311+G(2df,p)//B3LYP/6-31+G(d) level of theory in order to support the experimental observations. Two different conformations of the anion radical, related by an inversion at the carboxylic center, could be found within the single molecule partial energy-optimization scheme. These two conformations reproduce the experimental hyperfine couplings from radicals R1(10 K) and R1(77 K). A third radical, radical R2, was observed experimentally at both 10 and 77 K and was shown to be due to the decarboxylated L-O-serine phosphate oxidation product, a conclusion fully supported from the DFT calculations. Upon thermal annealing from 77 to 295 K, radicals R1(77 K) and R2 disappeared and all three previously observed room-temperature radicals could be observed. No phosphate-centered radicals could be observed at any temperatures, indicating that the phosphate-ester bond break for one of the room-temperature radicals does not occur by dissociative electron capture at the

  10. Lattice damage assessment and optical waveguide properties in LaAlO3 single crystal irradiated with swift Si ions

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Crespillo, M. L.; Huang, Q.; Wang, T. J.; Liu, P.; Wang, X. L.

    2017-02-01

    As one of the representative ABO3 perovskite-structured oxides, lanthanum aluminate (LaAlO3) crystal has emerged as one of the most valuable functional-materials, and has attracted plenty of fundamental research and promising applications in recent years. Electronic, magnetic, optical and other properties of LaAlO3 strongly depend on its crystal structure, which could be strongly modified owing to the nuclear or electronic energy loss deposited in an ion irradiation environment and, therefore, significantly affecting the performance of LaAlO3-based devices. In this work, utilizing swift (tens of MeV) Si-ion irradiation, the damage behavior of LaAlO3 crystal induced by nuclear or electronic energy loss has been studied in detail utilizing complementary characterization techniques. Differing from other perovskite-structured crystals in which the electronic energy loss could lead to the formation of an amorphous region based on the thermal spike mechanism, in this case, intense electronic energy loss in LaAlO3 will not induce any obvious structural damage. The effects of ion irradiation on the mechanical properties, including hardness increase and elastic modulus decrease, have been confirmed. On the other hand, considering the potential applications of LaAlO3 in the field of integrated optoelectronics, the optical-waveguide properties of the irradiation region have been studied. The significant correspondence (symmetrical inversion) between the iWKB-reconstructed refractive-index profile and SRIM-simulated dpa profile further proves the effects (irradiation-damage production and refractive-index decrease) of nuclear energy loss during the swift-ion penetration process in LaAlO3 crystal. In the case of the rather-thick damage layer produced by swift-ion irradiation, obtaining a damage profile will be constrained owing to the analysis-depth limitation of the characterization techniques (RBS/channeling), and our analysis process (optical guided-mode measurement and

  11. Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation.

    PubMed

    Stone, Adam; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Stone, Greg; Gupta, Pradyumna; Miura, Kiyotaka; Hirao, Kazuyuki; Dierolf, Volkmar; Jain, Himanshu

    2009-12-07

    Laser-fabrication of complex, highly oriented three-dimensional ferroelectric single crystal architecture with straight lines and bends is demonstrated in lanthanum borogermanate model glass using a high repetition rate femtosecond laser. Scanning micro-Raman microscopy shows that the c-axis of the ferroelectric crystal is aligned with the writing direction even after bending. A gradual rather than an abrupt transition is observed for the changing lattice orientation through bends up to approximately 14 degrees. Thus the single crystal character of the line is preserved along the bend through lattice straining rather than formation of a grain boundary.

  12. X-ray diffraction study of BaTiO{sub 3} single crystals before and after fast-neutron irradiation

    SciTech Connect

    Stash, A. I. Ivanov, S. A.; Stefanovich, S. Yu.; Mosunov, A. V.; Boyko, V. M.; Ermakov, V. S.; Korulin, A. V.; Kalyukanov, A. I.; Isakova, N. N.

    2015-09-15

    The neutron irradiation of ferroelectrics is efficiently used to form structural states that cannot be obtained by conventional technologies. To date, the effect of neutron irradiation on the structure and properties of BaTiO{sub 3} has been studied for only ceramic materials. We have considered the influence of fast-neutron irradiation (F = 1 × 10{sup 17} cm{sup −2}) on the structure and properties of BaTiO{sub 3} single crystals for the first time. The structural changes occurring in irradiated BaTiO{sub 3} and their correlation with the behavior of dielectric and nonlinear optical characteristics are analyzed with the aid of a specially developed method for taking into account the experimental correction to diffuse scattering. Neutron irradiation to the aforementioned dose retains the polar structure of the material and only slightly changes atomic displacements. The radiationinduced structural changes occur according to the high-temperature type to form a structure similar to the cubic modification of unirradiated BaTiO{sub 3} crystal.

  13. Thermoluminescence and photoluminescence studies on γ-ray-irradiated Ce³⁺,Tb³⁺-doped potassium chloride single crystals.

    PubMed

    Bangaru, S; Saradha, K; Muralidharan, G

    2016-05-01

    Single crystals of KCl doped with Ce(3+),Tb(3+) were grown using the Bridgeman-Stockbarger technique. Thermoluminescence (TL), optical absorption, photoluminescence (PL), photo-stimulated luminescence (PSL), and thermal-stimulated luminescence (TSL) properties were studied after γ-ray irradiation at room temperature. The glow curve of the γ-ray-irradiated crystal exhibits three peaks at 420, 470 and 525 K. F-Light bleaching (560 nm) leads to a drastic change in the TL glow curve. The optical absorption measurements indicate that F- and V-centres are formed in the crystal during γ-ray irradiation. It was attempted to incorporate a broad band of cerium activator into the narrow band of terbium in the KCl host without a reduction in the emission intensity. Cerium co-doped KCl:Tb crystals showed broad band emission due to the d-f transition of cerium and a reduction in the intensity of the emission peak due to (5)D3 -(7)F(j) (j = 3, 4) transition of terbium, when excited at 330 nm. These results support that energy transfer occurs from cerium to terbium in the KCl host. Co-doping Ce(3+) ions greatly intensified the excitation peak at 339 nm for the emission at 400 nm of Tb(3+). The emission due to Tb(3+) ions was confirmed by PSL and TSL spectra.

  14. Effect of electron irradiation on superconductivity in single crystals of Ba(Fe1–xRux)2As2 ( x=0.24 )

    DOE PAGES

    Prozorov, R.; Kończykowski, M.; Tanatar, M. A.; ...

    2014-11-18

    A single crystal of isovalently substituted Ba(Fe1-xRux)2As2 (x=0.24) is sequentially irradiated with 2.5 MeV electrons up to a maximum dose of 2.1×1019 e-/cm2. The electrical resistivity is measured in situ at T=22 K during the irradiation and ex situ as a function of temperature between subsequent irradiation runs. Upon irradiation, the superconducting transition temperature Tc decreases and the residual resistivity ρ0 increases. We find that electron irradiation leads to the fastest suppression of Tc compared to other types of artificially introduced disorder, probably due to the strong short-range potential of the pointlike irradiation defects. As a result, a more detailedmore » analysis within a multiband scenario with variable scattering potential strength shows that the observed Tc versus ρ0 is fully compatible with s± pairing, in contrast to earlier claims that this model leads to a too rapid suppression of Tc with scattering.« less

  15. Effect of Ar ion irradiation on the room temperature ferromagnetism of undoped and Cu-doped rutile TiO2 single crystals

    NASA Astrophysics Data System (ADS)

    Xu, Nan-Nan; Li, Gong-Ping; Lin, Qiao-Lu; Liu, Huan; Bao, Liang-Man

    2016-11-01

    Remarkable room-temperature ferromagnetism was observed both in undoped and Cu-doped rutile TiO2 single crystals (SCs). To tune their magnetism, Ar ion irradiation was quantitatively performed on the two crystals in which the saturation magnetizations for the samples were enhanced distinctively. The post-irradiation led to a spongelike layer in the near surface of the Cu-doped TiO2. Meanwhile, a new CuO-like species present in the sample was found to be dissolved after the post-irradiation. Analyzing the magnetization data unambiguously reveals that the experimentally observed ferromagnetism is related to the intrinsic defects rather than the exotic Cu ions, while these ions are directly involved in boosting the absorption in the visible region. Project supported by the National Natural Science Foundation of China (Grant No. 11575074), the Open Project of State Key laboratory of Crystal Material, Shandong University, China (Grant No. KF1311), the Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, China (Grant No. LZUMMM2012003), the Open Project of Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, China (Grant No. 201204), and the Fundamental Research Funds for the Central Universities, China (Grant No. lzujbky-2015-240).

  16. Dependence of the structure of ion-modified NiTi single crystal layers on the orientation of irradiated surface

    NASA Astrophysics Data System (ADS)

    Poletika, T. M.; Meisner, L. L.; Girsova, S. L.; Tverdokhlebova, A. V.; Meisner, S. N.

    2017-07-01

    The composition and structure of Si layers implanted into titanium nickelide single crystals with different orientations relative to the ion beam propagation direction have been studied using Auger electron spectroscopy and transmission electron microscopy. The role of the "soft" [111]B2 and "hard" [001]B2 NiTi orientations in the formation of the structure of ion-modified surface layer, as well as the defect structure of the surface layers of the single crystals, has been revealed. Orientation effects of selective sputtering and channeling of ions, which control the composition and thickness of the oxide and amorphous layers being formed, ion and impurity penetration depth, as well as the concentration profile of the Ni distribution over the surface, have been detected.

  17. A photoluminescence study of excitonic grade CuInSe{sub 2} single crystals irradiated with 6 MeV electrons

    SciTech Connect

    Yakushev, M. V.; Mudryi, A. V.; Borodavchenko, O. M.; Volkov, V. A.; Martin, R. W.

    2015-10-21

    High-quality single crystals of CuInSe{sub 2} with near-stoichiometric elemental compositions were irradiated with 6 MeV electrons, at doses from 10{sup 15} to 3 × 10{sup 18 }cm{sup −2}, and studied using photoluminescence (PL) at temperatures from 4.2 to 300 K. Before irradiation, the photoluminescence spectra reveal a number of sharp and well resolved lines associated with free- and bound-excitons. The spectra also show broader bands relating to free-to-bound transitions and their phonon replicas in the lower energy region below 1.0 eV. The irradiation with 6 MeV electrons reduces the intensity of the free- and the majority of the bound-exciton peaks. Such a reduction can be seen for doses above 10{sup 16 }cm{sup −2}. The irradiation induces new PL lines at 1.0215 eV and 0.9909 eV and also enhances the intensity of the lines at 1.0325 and 1.0102 eV present in the photoluminescence spectra before the irradiation. Two broad bands at 0.902 and 0.972 eV, respectively, are tentatively associated with two acceptor-type defects: namely, interstitial selenium (Se{sub i}) and copper on indium site (Cu{sub In}). After irradiation, these become more intense suggesting an increase in the concentration of these defects due to irradiation.

  18. Enhancement of the critical current density by increasing the collective pinning energy in heavy ion irradiated Co-doped BaFe2As2 single crystals

    DOE PAGES

    Haberkorn, N.; Kim, Jeehoon; Gofryk, K.; ...

    2015-04-08

    Here, we investigate the effect of heavy ion irradiation (1.4 GeV Pb) on the vortex matter in Ba(Fe0.92Co0.08)2As2 single crystals by superconducting quantum interference device (SQUID) magnetometry. The defects created by the irradiation are discontinuous amorphous tracks, resulting in an effective track density smaller than 25% of the nominal doses. In this study, we observe large increases in the critical current density (Jc), ranging from a factor of ~3 at low magnetic fields to a factor of ~10 at fields close to 1 T after irradiation with a nominal fluence of BΦ = 3.5 T. From the normalized flux creepmore » rates (S) and the Maley analysis, we determine that the Jc increase can be mainly attributed to a large increment in the pinning energy, from <50 K to ≈500 K, while the glassy exponent μ changes from ~1.5 to <1. Even though the enhancement of Jc is substantial in the entire temperature range and S is strongly suppressed, the artificial pinning landscape induced by the irradiation does not modify significantly the crossover to fast creep in the field-temperature vortex phase diagram.« less

  19. Laser Irradiated Growth of Protein Crystal

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Takano, Kazufumi; Hosokawa, Youichiroh; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi; Yoshimura, Masashi; Tsunaka, Yasuo; Morikawa, Masaaki; Kanaya, Shigenori; Masuhara, Hiroshi; Kai, Yasushi; Sasaki, Takatomo

    2003-07-01

    We succeeded in the first ever generation of protein crystals by laser irradiation. We call this process Laser Irradiated Growth Technique (LIGHT). Effective crystallization was confirmed by applying an intense femtosecond laser. The crystallization period was dramatically shortened by LIGHT. In addition, protein crystals were obtained by LIGHT from normally uncrystallized conditions. These results indicate that intense femtosecond laser irradiation generates crystal nuclei; protein crystals can then be grown from the nuclei that act as seeds in a supersaturated solution. The nuclei formation is possible primarily due to nonlinear nucleation processes of an intense femtosecond laser with a peak intensity of over a gigawatt (GW).

  20. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  1. The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Positive ion emission

    SciTech Connect

    Khan, Enamul H.; Langford, S. C.; Dickinson, J. T.; Boatner, L. A.

    2012-03-15

    We examine UV laser-induced ion emission from a wide bandgap semiconductor, single-crystal ZnO, at fluences well below both the damage threshold and plasma formation. At fluences below 200 mJ/cm{sup 2}, we observe only Zn{sup +}, and the Zn{sup +} intensity decreases monotonically during exposure. At higher fluences, after an initial decrease, the emission is sustained; in addition O{sup +} and O{sub 2}{sup +} are observed. We explain: how Zn ions of several eV in energy can be produced on the surface of a semiconductor, how sustained emission can be maintained, and the origin of an anomalous emission of slow Zn{sup +} ions -- the latter is shown to arise from photoionization of atomic Zn, also emitted by this radiation.

  2. The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Positive ion emission

    SciTech Connect

    Kahn, E. H.; Langford, S. C.; Boatner, Lynn A; Dickinson, J. T.

    2012-01-01

    We examine UV laser-induced ion emission from a wide bandgap semiconductor, single-crystal ZnO, at fluences well below both the damage threshold and plasma formation. At fluences below 200 mJ/cm2, we observe only Zn+, and the Zn+ intensity decreases monotonically during exposure. At higher fluences, after an initial decrease, the emission is sustained; in addition O+ and O2+ are observed. We explain: how Zn ions of several eV in energy can be produced on the surface of a semiconductor, how sustained emission can be maintained, and the origin of an anomalous emission of slow Zn+ ions the latter is shown to arise from photoionization of atomic Zn, also emitted by this radiation.

  3. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  4. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  5. Optical vibronic emission spectra for irradiation induced F aggregate centers in single crystal α-Al2O3

    NASA Astrophysics Data System (ADS)

    Mohammad Saliqur, Rahman Abu Zayed; Awata, T.; Yamashita, N.; Xu, Qiu; Atobe, K.

    The optical vibronic emission spectra of the single crystal α-Al2O3 caused by neutron bombardment have been studied. New sharp line features near the 470 nm emission band were found. The phonon side band of the previously found zero-phonon line near the 380 nm emission band is also observed in the present study. Vibronic structures associated with the 470 nm emission band are predominantly featured. The Huang-Rhys factor and the Debye temperature are estimated by a curve fitting method to be 3.2 and 710 K, respectively. It can be seen that the origin of the 470 nm vibronic emission spectra is derived from the F./GRAD_A_398864_O_XML_IMAGES/GRAD_A_398864_O_ILM0001.gif type center.

  6. Single crystals of chitosan.

    PubMed

    Cartier, N; Domard, A; Chanzy, H

    1990-10-01

    Lamellar single crystals of chitosan were prepared at 125 degrees C by adding ammonia to a low DP fraction of chitosan dissolved in water. The crystals gave sharp electron diffraction diagrams which could be indexed in an orthorhombic P2(1)2(1)2(1) unit cell with a = 8.07 A, b = 8.44 A, c = 10.34 A. The unit cell contained two anti-parallel chitosan chains and no water molecules. It was found that cellulose microfibrils from Valonia ventricosa could act as nuclei for inducing the crystallization of chitosan on cellulose. This produced a shish-kebab morphology.

  7. Interaction of wide-band-gap single crystals with 248-nm excimer laser irradiation. IX. Photoinduced atomic desorption from cleaved NaCl(100) surfaces

    SciTech Connect

    Nwe, K.H.; Langford, S.C.; Dickinson, J.T.

    2005-07-01

    Neutral atomic sodium and chlorine emissions from cleaved, single-crystal NaCl(100) surfaces due to pulsed, 248-nm excimer laser irradiation have been characterized by time-resolved, quadrupole mass spectroscopy. At laser fluences below the threshold for optical breakdown, the resulting time-of-flight signals are consistent with particles emitted in thermal equilibrium with a laser-heated surface. Activation energy measurements made by varying the substrate temperature are consistent with F-H pair formation under UV excitation. By varying the laser fluence and estimating the effective surface temperature from the time-of-flight signals, additional activation energy measurements were made. The corresponding rate-limiting step is attributed to a thermally assisted, photoelectronic process involving atomic steps. Atomic force microscope images of surfaces irradiated at low fluences show monolayer islands that are created by the aggregation of material desorbed from steps. At somewhat higher fluences, monolayer pits due to F-center aggregation are also observed.

  8. Irradiation damage in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals: Ballistic versus ionization processes

    SciTech Connect

    Moll, S.; Thome, L.; Sattonnay, G.; Monnet, I.; Weber, W. J.

    2011-08-01

    The structural transformations induced in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals irradiated at high energies (870-MeV Xe), where ionization processes (electronic stopping) dominate, and at low energies (4-MeV Au), where ballistic processes (nuclear stopping) dominate, have been studied via the combination of Rutherford backscattering spectrometry and channeling (RBS/C), Raman spectroscopy, and transmission electron microscopy (TEM) experiments. At high energy, amorphization occurs directly in individual ion tracks from the extreme electronic-energy deposition, and full amorphization results from the overlapping of these tracks as described by a direct impact model. The track diameters lie in the range 6-9 nm. At low energy, amorphization occurs via indirect processes, driven by ballistic nuclear energy deposition from the ions, that is accounted for in the framework of both direct-impact/defect-stimulated and multi-step damage accumulation models. The ion fluence for total amorphization of the irradiated layer is much higher at low energy (0.5 ion nm{sup -2}) than at high energy (0.05 ion nm{sup -2}), consistent with the nuclear stopping at low energy (5.2 keV/nm) compared to the electronic stopping at high energy (29 keV/nm).

  9. Dynamic change of transmission of CaF2 single crystals by irradiating with ArF excimer laser light

    NASA Astrophysics Data System (ADS)

    Alkemper, Jochen; Kandler, Joerg; Strenge, Lorenz; Moersen, Ewald; Muehlig, Christian; Triebel, Wolfgang

    2000-07-01

    The laser induced absorption of CaF2 caused by ArF excimer laser light has been observed at energy densities of F equals 2-30 mJ/cm2 per pulse and a repetition rate of R equals 50 Hz. The experiments show that the transmission of CaF2 samples depends on the pulse energy density. The change of the absorption coefficient with the time of irradiation can be described by an exponential model. Different experiments were performed where the energy density was increased and decreased stepwise. They prove that color centers not only are formed but also are annihilated by irradiation. Laser induced decrease of absorption was observed in all samples as soon as the energy density was decreased. Coloring and bleaching of the samples are completely reversible processes. The level of transmission depends on the energy density of the laser light and the quality of the material but not on the history of irradiation. The damage resistance of the material can be adjusted by the appropriate choice of the raw material and the process parameters. The reversibility of the laser induced absorption can be explained by a reaction equilibrium. This leads to a model where the concentration of absorbing defects depends on the current irradiation conditions. Using these equations the reversibility and the observed exponential dependence of the change of transmission with time can be explained. Assuming different dependencies of the reaction constants of coloring and bleaching on the energy density, the change of the absorption coefficient with pulse energy density can be calculated.

  10. Membrane Protein Crystallization Using Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Murakami, Satoshi; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Inoue, Tsuyoshi; Mori, Yusuke; Yamaguchi, Akihito; Sasaki, Takatomo

    2004-10-01

    We demonstrate the crystallization of a membrane protein using femtosecond laser irradiation. This method, which we call the laser irradiated growth technique (LIGHT), is useful for producing AcrB crystals in a solution of low supersaturation range. LIGHT is characterized by reduced nucleation times. This feature is important for crystallizing membrane proteins because of their labile properties when solubilized as protein-detergent micelles. Using LIGHT, high-quality crystals of a membrane transporter protein, AcrB, were obtained. The resulting crystals were found to be of sufficiently high resolution for X-ray diffraction. The results reported here indicate that LIGHT is a powerful tool for membrane protein crystallization, as well as for the growth of soluble proteins.

  11. Endor studies of free radicals trapped in X-ray irradiated single crystals of caffeine hydrochloride dihydrate

    NASA Astrophysics Data System (ADS)

    Lenard, D. R.; McDowell, C. A.

    1984-08-01

    ENDOR spectroscopy has been used to identify two different radical species in caffeine hydrochloride dihydrate X-irradiated at room temperature. One radical was identified as that formed by the net abstraction of a hydrogen atom from N(9). This radical is equivalent to that which would be produced by the loss of an electron from a neutral caffeine molecule, the caffeine cation. The other radical, which dominated the EPR spectrum, was identified as that resulting from net addition of a hydrogen atom to C(8) of the protonated caffeine molecule. The identification of this radical was based on the analysis of four different proton hyperfine couplings. Both the nitrogen ( 14N) hyperfine and quadrupole coupling tensors for a ring nitrogen atom were also obtained from the ENDOR spectra, and are attributed to the N(7) nucleus. The observation of 14N ENDOR lines, provided a second, independent estimate of the unpaired spin density centred on N(7). An indirect second-order effect, giving rise to a non-crossing phenomenon, was observed between the methylene protons, which were also found to be non-equivalent. The structure of this radical agrees with those determined previously by EPR and by INDO molecular orbital calculations for the analogous species in other purine derivatives.

  12. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    NASA Astrophysics Data System (ADS)

    Arutyunov, N. Yu.; Emtsev, V. V.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Oganesyan, G. A.; Kozlovski, V. V.

    2014-02-01

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K - 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V2- and V2--) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ˜ T-3 law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ˜1.7×10-12 cm2 (66 - 100 K) to ˜2×10-14 cm2 (≈ 250 K). The characteristic length of trapping of the positron by V2-- divacancy was estimated to be l0(V2--)≈(3.4±0.2)×10-8 cm.

  13. Magneto-optical study of Ba(Fe{sub 1-x}M{sub x}{sub 2}As{sub2} (M = Co and Ni) single crystals irradiated with heavy ions.

    SciTech Connect

    Prozorov, R.; Tanatar, M. A.; Roy, B.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Hua, J.; Welp, U.; Kwok, W. K.; Materials Science Division; Iowa State Univ.

    2010-03-09

    Optimally doped single crystals of Ba(Fe{sub 1-x}M{sub x}){sub 2}As{sub 2} (M=Co, Ni) were irradiated with 1.4 GeV {sup 208}Pb{sup 56+} ions at fluences corresponding to matching fields of B{phi} = 0.1, 0.5, 1, and 2 T. Magneto-optical imaging has been used to map the distribution of the magnetic induction in the irradiated samples. The imaging is complemented by the magnetization measurements. The results show a substantial enhancement of the apparent critical current densities as revealed by the much larger Bean penetration fields and an increase in the hysteretic magnetization. However, the effect depends on the compound, temperature, and applied magnetic field. In Ba(Fe{sub 0.926}Co{sub 0.074}){sub 2}As{sub 2} crystals, at 15 K and low fields, the enhancement appears to scale with the irradiation dose at a rate of about 0.27 MA {center_dot} cm{sup -2} T{sup -1}, whereas in Ba(Fe{sub 0.954}Ni{sub 0.046}){sub 2}As{sub 2} crystals, higher irradiation doses are less effective. Our results suggest that moderate irradiation with heavy ions is an effective way to homogeneously enhance the current-currying capabilities of pnictide superconductors.

  14. Thermoluminescence studies on {gamma}-irradiated Mn:Li{sub 2}B{sub 4}O{sub 7} single crystals

    SciTech Connect

    Kar, S.; Debnath, C.; Verma, S.; Bartwal, K. S.; Bairagi, S.

    2012-08-13

    Manganese doped Li{sub 2}B{sub 4}O{sub 7} (LTB) crystals were grown by Czochralski technique and various kinetic parameter of thermoluminescence (TL) were measured. Crystals were irradiated with different {gamma}-dose using Co{sup 60} source. Thermoluminescence curves were recorded at various heating rates. Trap depth and frequency factor were calculated. Fading of Mn: Li{sub 2}B{sub 4}O{sub 7} was found only {approx}5%-6% in 6 months. Thermoluminescence intensity of Mn: Li{sub 2}B{sub 4}O{sub 7} was found highly sensitive to the mass of the material, and it varies abruptly with mass change of +/- 1 mg, irradiated with the same dose. Therefore, the accuracy in mass is important parameter for thermoluminescence dosimeter badge.

  15. Characterization of damage induced by heavy neutron irradiation on multilayered {sup 6}LiF-single crystal chemical vapor deposition diamond detectors

    SciTech Connect

    Almaviva, S.; Marinelli, Marco; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Pillon, M.

    2009-10-01

    High performance neutron detectors sensitive to both thermal and fast neutrons are of great interest to monitor the high neutron flux produced, e.g., by fission and fusion reactors. An obvious requirement for such an application is neutron irradiation hardness. This is why diamond based neutron detectors are currently under test in some of these facilities. In this paper the damaging effects induced in chemical vapor deposition (CVD) diamond based detectors by a neutron fluence of approx2x10{sup 16} neutrons/cm{sup 2} have been studied and significant changes in spectroscopic, electrical, and optical properties have been observed. The detectors are fabricated using high quality synthetic CVD single crystal diamond using the p-type/intrinsic/Schottky metal/{sup 6}LiF layered structure recently proposed by Marinelli et al. [Appl. Phys. Lett. 89, 143509 (2006)], which allows simultaneous detection of thermal and fast neutrons. Neutron radiation hardness up to at least 2x10{sup 14} n/cm{sup 2} fast (14 MeV) neutron fluence has been confirmed so far [see Pillon et al., (Fusion Eng. Des. 82, 1174 (2007)]. However, at the much higher neutron fluence of approx2x10{sup 16} neutrons/cm{sup 2} damage is observed. The detector response to 5.5 MeV {sup 241}Am alpha-particles still shows a well resolved alpha-peak, thus confirming the good radiation hardness of the device but a remarkable degradation and a significant instability with time of charge collection efficiency and energy resolution arise. Symmetric, nearly Ohmic I-V (current-voltage) characteristics have been recorded from the metal/intrinsic/p-doped diamond layered structure, which before neutron irradiation acted as a Schottky barrier diode with a strong rectifying behavior. The nature and the distribution of the radiation induced damage have been deeply examined by means of cathodoluminescence spectroscopy. A more heavily damaged area into the intrinsic diamond at the same position and with the same extension of

  16. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    SciTech Connect

    Arutyunov, N. Yu.; Emtsev, V. V.; Oganesyan, G. A.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Kozlovski, V. V.

    2014-02-21

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K – 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V{sub 2}{sup −} and V{sub 2}{sup −−}) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ∼ T{sup −3} law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ∼1.7×10{sup −12} cm{sup 2} (66 – 100 K) to ∼2×10{sup −14} cm{sup 2} (≈ 250 K). The characteristic length of trapping of the positron by V{sub 2}{sup −−} divacancy was estimated to be l{sub 0}(V{sub 2}{sup −−})≈(3.4±0.2)×10{sup −8} cm.

  17. Features of the uniaxial elastic deformation of X-ray-irradiated p-Si crystals

    SciTech Connect

    Pavlyk, B. V.; Lys, R. M. Didyk, R. I.; Shykorjak, J. A.

    2015-05-15

    Changes in the conductivity of p-Si single-crystals irradiated at room temperature during their mechanical compression and stress relief are studied. It is shown that irradiation is accompanied by the generation of point defects in silicon, which play the role of stoppers for dislocation motion. The effect of “radiation memory” in “electronic” silicon crystals is detected.

  18. Optical properties of lithium niobate single crystals

    NASA Astrophysics Data System (ADS)

    Palatnikov, M. N.; Sidorov, N. V.; Biryukova, I. V.; Kalinnikov, V. T.; Bormanis, K.

    2005-01-01

    Studies of thermal and -irradiation effects on the optical properties in congruous lithium niobate single crystals containing Y, Mg, Gd, B, and Zn dopants including samples with double dopants Y, Mg and Gd, Mg are reported. Formation of defects at irradiation and thermal treatment of the samples is explored by electron absorption spectra. Considerable increase of absorption with the dose of -radiation is observed at 500 nm. The changes of absorption examined under different conditions are explained by creation and destruction of Nb4+ defects.

  19. Interaction of wide-band-gap single crystals with 248-nm excimer laser irradiation. X. Laser-induced near-surface absorption in single-crystal NaCl

    SciTech Connect

    Nwe, K.H.; Langford, S.C.; Dickinson, J.T.; Hess, W.P.

    2005-02-15

    Ultraviolet laser-induced desorption of neutral atoms and molecules from nominally transparent, ionic materials can yield particle velocities consistent with surface temperatures of a few thousand kelvin even in the absence of visible surface damage. The origin of the laser absorption required for this surface heating has been often overlooked. In this work, we report simultaneous neutral emission and laser transmission measurements on single-crystal NaCl exposed to 248-nm excimer laser radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near-surface region to account for the observed particle velocities. We show that the laser absorption grows from low values over several pulses and saturates at values sufficient to account for the surface temperatures required to explain the observed particle velocity distributions. The growth of absorption in these early pulses is accompanied by a corresponding increase in the emission intensities. The diffuse reflectance spectra acquired after exposure suggest that near-surface V-type centers are responsible for most of the absorption at 248 nm in single-crystal NaCl.

  20. Interaction of Wide-Band-Gap Single Crystals with 248-nm Excimer Laser Irradiation: X. Laser-Induced Near-Surface Absorption in Single-Crystal NaCl

    SciTech Connect

    Nwe, K H.; Langford, Stephen C.; Dickinson, J T.; Hess, Wayne P.

    2005-02-15

    Ultraviolet laser-induced desorption of neutral atoms and molecules from nominally transparent, ionic materials can yield particle velocities consistent with surface temperatures of a few thousand Kelvin, even in the absence of visible surface damage. The origin of the laser required for this surface heating has been often overlooked. In this work, we report simultaneous neutral emission and laser transmission measurements on single crystal NaCl exposed to 248-nm excimer laser radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near surface region to account for the observed particle velocities. We show that the laser absorption grows from low values over several pulses and saturates at values sufficient to account for the surface temperatures required to explain the observed particle velocity distributions. The growth of absorption in these early pulses is accompanied by a corresponding increase in the emission intensities. Diffuse reflectance spectra acquired after exposure suggest that near surface V-type centers are responsible for most of the absorption at 248 nm in single crystal NaCl.

  1. EPR, ENDOR, and DFT study of free radicals in L-lysine·HCl·2H2O single crystals X-irradiated at 298 K.

    PubMed

    Zhou, Yiying; Nelson, William H

    2011-10-27

    With K-band EPR (Electron Paramagnetic Resonance), ENDOR (Electron-Nuclear DOuble Resonance), and EIE (ENDOR-induced EPR) techniques, three free radicals (RI-RIII) in L-lysine hydrochloride dihydrate single crystals X-irradiated at 298 K were detected at 298 K, and six radicals (R1, R1', R2-R5) were detected if the temperature was lowered to 66 K from 298 K. R1 and RI dominated the central portion of the EPR at 66 and 298 K, respectively, and were identified as main chain deamination radicals, (-)OOCĊH(CH(2))(4)(NH(3))(+). R1' was identified as a main chain deamination radical with the different configuration from R1 at 66 K, and it probably formed during cooling the temperature from 298 to 66 K. The configurations of R1, R1', and RI were analyzed with their coupling tensors. R2 and R3 each contain one α- and four β-proton couplings and have very similar EIEs at three crystallographic axes. The two-layer ONIOM calculations (at B3LYP/6-31G(d,p):PM3) support that R2 and R3 are from different radicals: dehydrogenation at C4, (-)OOCCH(NH(3))(+)CH(2)ĊH(CH(2))(2)(NH(3))(+), and dehydrogenation at C5, (-)OOCCH(NH(3))(+)(CH(2))(2)ĊHCH(2)(NH(3))(+), respectively. The comparisons of the coupling tensors indicated that R2 (66 K) is the same radical as RII (298 K), and R3 is the same as RIII. Thus, RII and RIII also are the radicals of C4 and C5 dehydrogenation. R4 and R5 are minority radicals and were observed only when temperature was lowered to 66 K. R4 and R5 were only tentatively assigned as the side chain deamination radical, (-)OOCCH (NH(3))(+)(CH(2))(3)ĊH(2), and the radical dehydrogenation at C3, (-)OOCCH(NH(3))(+)ĊH(CH(2))(3)(NH(3))(+), respectively, although the evidence was indirect. From simulation of the EPR (B//a, 66 K), the concentrations of R1, R1', and R2-R5 were estimated as: R1, 50%; R1', 11%; R2, 14%; R3, 16%; R4, 6%; R5, 3%.

  2. Processing anthracene single crystals

    NASA Astrophysics Data System (ADS)

    Ujhelyi, S.

    1981-11-01

    A mechanical-chemical process for cutting anthracene crystals is described. A thread, soaked in toluene, dissolves a thin layer away from the material. The crystal is fixed to a metal platform placed between the two spools which wind the thread. The thread is not allowed to tighten as it crosses the crystal. For polishing, the slices are bonded with a gelatin solution onto a plexiglass disk, and rubbed with fine silk wetted with toluene. When one side is done the disk is immersed in water (room temperature) and soaks until the crystal can be removed, and the other side can be done. If the crystal splits in two, it can be rejoined using Canada balsam.

  3. Optical Properties of Irradiated Topaz Crystals

    NASA Astrophysics Data System (ADS)

    Skvortsova, V.; Mironova-Ulmane, N.; Trinkler, L.

    2015-04-01

    The results of an investigation of UV-Visible absorption and photoluminescence spectra of colorless topaz before and after neutron irradiation, natural blue topaz from Ukraine, and yellow topaz are presented. We assume that the absorption band ∼ 620 nm and broad emission band 300-700 nm in topaz crystals are associated with exchange interaction between a radiation defect (anion vacancies, which capture one or two electrons) and impurity ions Cr3+, Fe3+ and Mn2+.

  4. Radiation-induced radicals in glucose-1-phosphate. I. Electron paramagnetic resonance and electron nuclear double resonance analysis of in situ X-irradiated single crystals at 77 K.

    PubMed

    De Cooman, Hendrik; Vanhaelewyn, Gauthier; Pauwels, Ewald; Sagstuen, Einar; Waroquier, Michel; Callens, Freddy

    2008-11-27

    Electron magnetic resonance analysis of radiation-induced defects in dipotassium glucose-1-phosphate dihydrate single crystals in situ X-irradiated and measured at 77 K shows that at least seven different carbon-centered radical species are trapped. Four of these (R1-R4) can be fully or partly characterized in terms of proton hyperfine coupling tensors. The dominant radical (R2) is identified as a C1-centered species, assumedly formed by a scission of the sugar-phosphate junction and the concerted formation of a carbonyl group at the neighboring C2 carbon. This structure is chemically identical to a radical recently identified in irradiated sucrose single crystals. Radical species R1 and R4 most likely are C3- and C6-centered species, respectively, both formed by a net hydrogen abstraction. R3 is suggested to be chemically similar to but geometrically different from R4. Knowledge of the identity of the sugar radicals present at 77 K provides a first step in elucidating the formation mechanism of the phosphoryl radicals previously detected after X-irradiation at 280 K. In paper II, the chemical identity, precise conformation, and possible formation mechanisms of these radical species are investigated by means of DFT calculations and elementary insight into the radiation chemistry of sugar and sugar derivatives is obtained.

  5. EPR study of gamma irradiated N-methyl taurine (C 3H 9NO 3S) and sodium hydrogen sulphate monohydrate (NaHSO 3·H 2O) single crystals

    NASA Astrophysics Data System (ADS)

    Yıldırım, İlkay; Karabulut, Bünyamin

    2011-03-01

    EPR study of gamma irradiated C 3H 9NO 3S and NaHSO 3.H 2O single crystals have been carried out at room temperature. There is one site for the radicals in C 3H 9NO 3S and two magnetically distinct sites for the radicals in NaHSO 3. The observed lines in the EPR spectra have been attributed to the species of SO3- and RH radicals for N-methyl taurine, and to the SO3- and OH radicals for sodium hydrogen sulfate monohydrate single crystals. The principal values of the g for SO3-, the hyperfine values of RH and OH proton splitting have been calculated and discussed.

  6. EPR study of gamma irradiated N-methyl taurine (C3H9NO3S) and sodium hydrogen sulphate monohydrate (NaHSO3·H2O) single crystals.

    PubMed

    Yıldırım, Ilkay; Karabulut, Bünyamin

    2011-03-01

    EPR study of gamma irradiated C(3)H(9)NO(3)S and NaHSO(3).H(2)O single crystals have been carried out at room temperature. There is one site for the radicals in C(3)H(9)NO(3)S and two magnetically distinct sites for the radicals in NaHSO(3). The observed lines in the EPR spectra have been attributed to the species of SO(3)(-) and RH radicals for N-methyl taurine, and to the SO(3)(-) and OH radicals for sodium hydrogen sulfate monohydrate single crystals. The principal values of the g for SO(3)(-), the hyperfine values of RH and OH proton splitting have been calculated and discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Magnetotransport of proton-irradiated BaFe2As2 and BaFe1.985Co0.015As2 single crystals

    DOE PAGES

    Moseley, D. A.; Yates, K. A.; Peng, N.; ...

    2015-02-17

    In this paper, we study the magnetotransport properties of the ferropnictide crystals BaFe2As2 and BaFe1.985Co0.015As2. These materials exhibit a high field linear magnetoresistance that has been attributed to the quantum linear magnetoresistance model. In this model, the linear magnetoresistance is dependent on the concentration of scattering centers in the material. By using proton-beam irradiation to change the defect scattering density, we find that the dependence of the magnitude of the linear magnetoresistance on scattering quite clearly contravenes this prediction. Finally, a number of other scaling trends in the magnetoresistance and high field Hall data are observed and discussed.

  8. Oxidation and reduction in irradiated binary crystals of resorcinol and progesterone

    NASA Astrophysics Data System (ADS)

    Box, Harold C.; Budzinski, Edwin E.

    1985-12-01

    The binary single crystals of resorcinol and progesterone were x-irradiated at 4.2 K. The semiquinone of resorcinol was generated by radiation induced oxidation. The oxidation and reduction products were identified from ESR and ENDOR measurements. (AIP)

  9. Oxidation and reduction in irradiated binary crystals of resorcinol and progesterone

    SciTech Connect

    Box, H.C.; Budzinski, E.E.

    1985-12-01

    The binary single crystals of resorcinol and progesterone were x-irradiated at 4.2 K. The semiquinone of resorcinol was generated by radiation induced oxidation. The oxidation and reduction products were identified from ESR and ENDOR measurements. (AIP)

  10. Enhancement of the critical current density by increasing the collective pinning energy in heavy ion irradiated Co-doped BaFe2As2 single crystals

    SciTech Connect

    Haberkorn, N.; Kim, Jeehoon; Gofryk, K.; Ronning, F.; Sefat, Athena Safa; Fang, L.; Welp, U.; Kwok, W. K.; Civale, L.

    2015-04-08

    Here, we investigate the effect of heavy ion irradiation (1.4 GeV Pb) on the vortex matter in Ba(Fe0.92Co0.08)2As2 single crystals by superconducting quantum interference device (SQUID) magnetometry. The defects created by the irradiation are discontinuous amorphous tracks, resulting in an effective track density smaller than 25% of the nominal doses. In this study, we observe large increases in the critical current density (Jc), ranging from a factor of ~3 at low magnetic fields to a factor of ~10 at fields close to 1 T after irradiation with a nominal fluence of BΦ = 3.5 T. From the normalized flux creep rates (S) and the Maley analysis, we determine that the Jc increase can be mainly attributed to a large increment in the pinning energy, from <50 K to ≈500 K, while the glassy exponent μ changes from ~1.5 to <1. Even though the enhancement of Jc is substantial in the entire temperature range and S is strongly suppressed, the artificial pinning landscape induced by the irradiation does not modify significantly the crossover to fast creep in the field-temperature vortex phase diagram.

  11. Fluctuation-induced magnetoconductivity in pristine and proton-irradiated Ca8.5La1.5(Pt3As8)(Fe2As2)5 single crystals

    NASA Astrophysics Data System (ADS)

    Ahmad, D.; Seo, Y. I.; Choi, W. J.; Kwon, Yong Seung

    2017-02-01

    The influence of the proton irradiation on the fluctuation-induced conductivity in Ca8.5La1.5(Pt3As8)(Fe2As2)5 single crystal was investigated. The in-plane magnetoconductivity was measured up to μ 0 H = 13 T. It is observed that the T c was suppressed up to 30.3 K from 32.5 K as a result of proton irradiation whereas the amplitude of the superconducting fluctuations is almost the same in both pristine and irradiated samples. The magnetoconductivity results analyzed by the Ullah and Dorsey scaling approaches showed that in the pristine sample, the 3D-2D crossover is situated near the T c. Furthermore, once the 3D-2D crossover occurs, it is found that there is a regime simultaneously described by 2D and 3D fluctuation behaviors in our Ca8.5La1.5(Pt3As8)(Fe2As2)5 sample. Meanwhile, the proton-irradiated sample showed the 3D fluctuation behavior.

  12. Selective crystallization of metastable phase of acetaminophen by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Mori, Yoichiro; Maruyama, Mihoko; Takahashi, Yoshinori; Ikeda, Kenji; Fukukita, Suguru; Yoshikawa, Hiroshi Y.; Okada, Shino; Adachi, Hiroaki; Sugiyama, Shigeru; Takano, Kazufumi; Murakami, Satoshi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Yoshimura, Masashi; Mori, Yusuke

    2015-06-01

    A new method for selective crystallization of the metastable phase (form II) of acetaminophen is described. To obtain form II, we prepared a highly supersaturated solution (σI = 3.7) and then applied ultrasonic irradiation at different frequencies. Without ultrasonic irradiation, spontaneous crystallization did not occur within one month in the highly supersaturated condition (σI = 3.7). When ultrasonic irradiation at 28 kHz was applied, form II preferentially crystallized. Therefore, we conclude that ultrasonic irradiation can be an effective technique for selectively crystallizing the metastable phase.

  13. Development of single crystal membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Cocks, F. H.

    1972-01-01

    The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.

  14. Single Crystal Surfaces

    NASA Astrophysics Data System (ADS)

    Aguilar-Santillan, Joaquin

    2014-06-01

    The present work studies (0001) Al2O3 and (111) Al2MgO4 wetting with pure molten Al by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) under Ar at PO2 10-15 Pa. Al pure liquid wets a smooth and chemically homogeneous surface of an inert solid, the wetting driving force ( t, T) can be readily studied when surface solid roughness increases in the system. Both crystals planes (0001) Al2O3 and (111) Al2MgO4 have crystallographic surfaces with identical O-2 crystalline positions however considering Mg2+ content in Al2MgO4 structure may influence a reactive mode. Kinetic models results under similar experimental conditions show that Al wetting on (0001) Al2O3 is less reactive than (111) Al2MgO4, however at >1273 K (1000 °C) (0001) Al2O3 transformation occurs and a transition of wetting improves. The (111) Al2MgO4 and Al system promotes interface formations that slow its wetting process.

  15. Crystal ball single event display

    SciTech Connect

    Grosnick, D.; Gibson, A.; Allgower, C.; Alyea, J. |

    1997-10-15

    The Single Event Display (SED) is a routine that is designed to provide information graphically about a triggered event within the Crystal Ball. The SED is written entirely in FORTRAN and uses the CERN-based HICZ graphing package. The primary display shows the amount of energy deposited in each of the NaI crystals on a Mercator-like projection of the crystals. Ten different shades and colors correspond to varying amounts of energy deposited within a crystal. Information about energy clusters is displayed on the crystal map by outlining in red the thirteen (or twelve) crystals contained within a cluster and assigning each cluster a number. Additional information about energy clusters is provided in a series of boxes containing useful data about the energy distribution among the crystals within the cluster. Other information shown on the event display include the event trigger type and data about {pi}{sup o}`s and {eta}`s formed from pairs of clusters as found by the analyzer. A description of the major features is given, along with some information on how to install the SED into the analyzer.

  16. Stacking fault energy in some single crystals

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2012-06-01

    The stacking fault energy of single crystals has been reported using the peak shift method. Presently studied all single crystals are grown by using a direct vapor transport (DVT) technique in the laboratory. The structural characterizations of these crystals are made by XRD. Considerable variations are shown in deformation (α) and growth (β) probabilities in single crystals due to off-stoichiometry, which possesses the stacking fault in the single crystal.

  17. Secondary particle emission from sapphire single crystal

    NASA Astrophysics Data System (ADS)

    Minnebaev, K. F.; Khvostov, V. V.; Zykova, E. Yu.; Tolpin, K. A.; Colligon, J. S.; Yurasova, V. E.

    2015-07-01

    Secondary ion emission from sapphire single crystal has been studied experimentally and by means of computer simulation. The particular oscillations of secondary ion energy spectra and two specific maxima of O+ and Al+ ions were observed under irradiation of (0001) sapphire face by 1 and 10 keV Ar+ ions. We have explained this by the interplay of the charge exchange processes between moving particles and solids. The existence of two maxima in energy spectra of O+ and Al+ secondary ions can be also connected with special features of single-crystal sputtering: the low-energy peak can be formed by random sputtering and the high-energy peak from focusing collisions. In addition some similarity was found between the positions of low-energy maximum in energy spectra of Al+ ions emitted from sapphire and the principal maxima of Al+ ions ejected from the aluminum single crystal. This indicates a possibility to explain the presence of low-energy maximum in energy spectra of secondary ions ejecting from sapphire by emission of Al+ ions from aluminum islands appearing in a number of cases on the sapphire surface due to preferential sputtering of oxygen. These different mechanisms of creating the energy spectra of ions emitted from sapphire should be taken in account.

  18. Single crystal diamond detector for radiotherapy

    NASA Astrophysics Data System (ADS)

    Schirru, F.; Kisielewicz, K.; Nowak, T.; Marczewska, B.

    2010-07-01

    The new generation of synthetic diamonds grown as a CVD single crystal on a high pressure high temperature substrate offers a wide range of applications. In particular, because of the near tissue equivalence and its small size (good spatial resolution), CVD single crystal diamond finds applicability in radiotherapy as a dosemeter of ionizing radiation. In this paper we report the electrical and dosimetric properties of a new diamond detector which was fabricated at IFJ based on a single crystal detector-grade CVD diamond provided with a novel contact metallization. Diamond properties were assessed at IFJ using a Theratron 680E therapeutic 60Co gamma rays unit and at COOK with 6 and 18 MV x-rays Varian Clinac CL2300 C/D accelerator. The new dosemeter showed high electric and dosimetric performances: low value of dark current, high current at the level of some nanoamperes during irradiation, very fast dynamic response with a rise time amounting to parts of a second, good stability and repeatability of the current and linearity of the detector signal at different dose and dose rate levels typically applied in radiotherapy. The results confirm the potential applicability of diamond material as a dosemeter for applications in radiotherapy.

  19. Radiation damage in X-irradiated single crystals of Ph 3P +CH 2SCH 3Cl -: An ESR and ENDOR study of the Ph 3P +CHSCH 3 and Ph 3P +CH 2SS radicals

    NASA Astrophysics Data System (ADS)

    Geoffrey, M.; Reddy, M. V. V. S.

    X irradiation, at room temperature, of a single crystal of Ph 3P +CH 2SCH 3Cl - produces two radical species which are identified from an analysis of their ESR and ENDOR spectra. The resulting 31P, 1H(CH) and 1H(CH 3) hyperfine coupling tensors show that one of these radicals is Ph 3P +CHSCH 3. The g tensor and the 1H and 31P coupling tensors obtained for the second radical lead to the identification of Ph 3P +CH 2SS. It is shown that, for this sulfur centered radical, the C—P bond makes an angle of ˜ 127 °C with the sulfur π * orbital containing the unpaired electron.

  20. GALLIUM ARSENIDE DENDRITE SINGLE CRYSTAL PROGRAM

    DTIC Science & Technology

    ARSENIDES, *GALLIUM COMPOUNDS, *LABORATORY FURNACES, * SOLAR CELLS , CRUCIBLES, DESIGN, DIFFUSION, EXPLOSIONS, INTERMETALLIC COMPOUNDS, MATERIALS, PHOSPHORUS, SINGLE CRYSTALS, TEMPERATURE CONTROL, ZINC

  1. Impact of Cirrus Crystal Shape on Solar Spectral Irradiance: A Case Study for Subtropical Cirrus

    NASA Technical Reports Server (NTRS)

    Wendisch, Manfred; Pilewskie, Peter; Pommier, John; Howard, Steve; Yang, Ping; Heymsfield, Andrew J.; Schmitt, Carl G.; Baumgardner, Darrel; Mayer, Barnhard

    2005-01-01

    Profiles of in situ measurements of ice crystal size distribution of subtropical cirrus were used to calculate solar spectral irradiances above and below the clouds. Spheres and nonspherical ice crystal habits (columns, hollows, plates, bullets, and aggregates) were assumed in the calculations. The simulation results were compared to irradiance measurements from the NASA Solar Spectral Flux Radiometer. The microphysical and radiation data were collected by three aircraft during CRYSTAL-FACE. Two cirrus cases (optical thickness of about 1 and 7) from two mission dates (26 and 23 July 2002) were investigated in detail. The measured downwelling and upwelling irradiance spectra above the cirrus could mostly be reproduced by the radiation model to within +/- 5-10% for most ice crystal habits. Below the cirrus the simulations disagreed with the measured irradiances due to surface albedo variability along the flight track, and nonoptimal colocation between the microphysical and irradiance measurements. The impact of shape characteristics of the crystals was important for the reflected irradiances above the optically thin cirrus, especially for small solar zenith angles, because in this case single-scattering dominated the solar radiation field. For the cirrus of moderate optical thickness the enhanced multiple scattering tended to diminish particular shape features caused by nonspherical single-scattering. Within the ice absorption bands the shape-related differences in the absorption characteristics of the individual nonspherical ice crystals were amplified if multiple scattering prevailed. Furthermore, it was found that below the cloud the shape sensitivity of the downwelling irradiance spectra is larger compared to the nonsphericity effects on reflected irradiances above the cirrus. Finally, it was shown that the calculated cirrus solar radiative forcing could vary by as much as 26% depending on the ice crystal habit.

  2. Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine

    2017-09-01

    Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.

  3. Growth of single-crystal CrN on MgO(001): Effects of low-energy ion-irradiation on surface morphological evolution and physical properties

    NASA Astrophysics Data System (ADS)

    Gall, D.; Shin, C.-S.; Spila, T.; Odén, M.; Senna, M. J. H.; Greene, J. E.; Petrov, I.

    2002-03-01

    CrN layers, 0.5 μm thick, were grown on MgO(001) at Ts=570-775 °C by ultrahigh vacuum magnetically unbalanced magnetron sputter deposition in pure N2 discharges at 20 mTorr. Layers grown at Ts⩽700 °C are stoichiometric single crystals exhibiting cube-on-cube epitaxy: (001)CrN||(001)MgO with [100]CrN||[100]MgO. At higher temperatures, N2 desorption during deposition results in understoichiometric polycrystalline films with N fractions decreasing to 0.35, 0.28, and 0.07 with Ts=730, 760, and 775 °C, respectively. The surface morphologies of epitaxial CrN(001) layers were found to depend strongly on the incident ion-to-metal flux ratio JN2+/JCr which was varied between 1.7 and 14 with the ion energy maintained constant at 12 eV. The surfaces of layers grown with JN2+/JCr=1.7 consist of self-organized square-shaped mounds, due to kinetic roughening, with edges aligned along orthogonal <100> directions. The mounds have an average peak-to-valley height =5.1 nm and an in-plane correlation length of =0.21 μm. The combination of atomic shadowing by the mounds with low adatom mobility results in the formation of nanopipes extending along the growth direction. Increasing JN2+/JCr to 14 leads, due to increased adatom mobilities, to much smoother surfaces with =2.5 nm and =0.52 μm. Correspondingly, the nanopipe density decreases from 870 to 270 μm-2 to <20 μm-2 as JN2+/JCr is increased from 1.7 to 6 to 10. The hardness of dense CrN(001) is 28.5±1 GPa, but decreases to 22.5±1 GPa for layers containing significant nanopipe densities. The CrN(001) elastic modulus, 405±15 GPa, room-temperature resistivity, 7.7×10-2 Ω cm, and relaxed lattice constant, 0.4162±0.0008 nm, are independent of JN2+/JCr.

  4. Fabrication of crystals from single metal atoms

    PubMed Central

    Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  5. Fabrication of crystals from single metal atoms.

    PubMed

    Barry, Nicolas P E; Pitto-Barry, Anaïs; Sanchez, Ana M; Dove, Andrew P; Procter, Richard J; Soldevila-Barreda, Joan J; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J; O'Reilly, Rachel K; Beanland, Richard; Sadler, Peter J

    2014-05-27

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium-osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms.

  6. Lattice damage and compositional changes in Xe ion irradiated InxGa1-xN (x = 0.32-1.0) single crystals

    SciTech Connect

    Zhang, Limin; Jiang, Weilin; Dissanayake, Amila C.; Peng, Jinxin; Ai, Wensi; Zhang, Jiandong; Zhu, Zihua; Wang, Tieshan; Shutthanandan, V.

    2016-06-27

    Lattice disorder and compositional changes in InxGa1-xN (x=0.32, 0.47, 0.7, 0.8 and 1.0) films on GaN/Al2O3 substrates, induced by room-temperature irradiation of 5 MeV Xe ions, have been investigated using both Rutherford backscattering spectrometry under ion-channeling conditions and time-of-flight secondary ion mass spectrometry. The results show that for a fluence of 3E13 cm-2, the relative level of lattice disorder in InxGa1-xN increases monotonically from 59% to 90% with increasing indium concentration x from 0.32 to 0.7; a further increase in x up to 1.0 leads to little increase in the disorder level. In contrast to Ga-rich InxGa1-xN (x=0.32 and 0.47), significant volume swelling of up to ~25% accompanied with oxidation in In-rich InxGa1-xN (x=0.7, 0.8 and 1.0) is observed. In addition, irradiation-induced atomic mixing occurs at the interface of In-rich InxGa1-xN and GaN. The results from this study indicate an extreme susceptibility of the high In-content InxGa1-xN to heavy-ion irradiation, and suggest that cautions must be exercised in applying ion-implantation techniques to these materials at room temperature. Further studies of the irradiation behavior at elevated temperatures are warranted.

  7. Lattice damage and compositional changes in Xe ion irradiated InxGa1-xN (x = 0.32-1.0) single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Limin; Jiang, Weilin; Dissanayake, Amila; Peng, Jinxin; Ai, Wensi; Zhang, Jiandong; Zhu, Zihua; Wang, Tieshan; Shutthanandan, Vaithiyalingam

    2016-06-01

    Lattice disorder and compositional changes in InxGa1-xN (x = 0.32, 0.47, 0.7, 0.8, and 1.0) films on GaN/Al2O3 substrates, induced by room-temperature irradiation of 5 MeV Xe ions, have been investigated using both Rutherford backscattering spectrometry under ion-channeling conditions and time-of-flight secondary ion mass spectrometry. The results show that for a fluence of 3 × 1013 cm-2, the relative level of lattice disorder in InxGa1-xN increases monotonically from 59% to 90% with increasing indium concentration x from 0.32 to 0.7; a further increase in x up to 1.0 leads to little increase in the disorder level. In contrast to Ga-rich InxGa1-xN (x = 0.32 and 0.47), significant volume swelling of up to ˜25% accompanied with oxidation in In-rich InxGa1-xN (x = 0.7, 0.8, and 1.0) is observed. In addition, irradiation-induced atomic mixing occurs at the interface of In-rich InxGa1-xN and GaN. The results from this study indicate an extreme susceptibility of the high In-content InxGa1-xN to heavy-ion irradiation, and suggest that cautions must be exercised in applying ion-implantation techniques to these materials at room temperature. Further studies of the irradiation behavior at elevated temperatures are warranted.

  8. High-temperature long-lasting stability assessment of a single-crystal diamond detector under high-flux neutron irradiation

    NASA Astrophysics Data System (ADS)

    Pilotti, R.; Angelone, M.; Marinelli, M.; Milani, E.; Verona-Rinati, G.; Verona, C.; Prestopino, G.; Montereali, R. M.; Vincenti, M. A.; Schooneveld, E. M.; Scherillo, A.; Pietropaolo, A.

    2016-11-01

    An innovative diamond detector layout is presented that is designed to operate at high temperature under intense neutron and gamma fluxes. It is made of a 500 μm “electronic grade” diamond film with 100 nm thick Ag metal contacts deposited onto each surface of the film by means of thermal evaporation. A 2 μ \\text{m} thick layer of 6LiF has been deposited on top of one of the two Ag contacts to make the detector sensitive to thermal neutrons. The device was tested at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK) using the INES beam line. The detector was continuously irradiated for 100 hours in vacuum (p = 10-5 \\text{mbar}) , exposed to a neutron flux of about 106 n cm-2 s-1 at a temperature T =150 ^\\circ \\text{C} . The aim of this experiment was to study the time dependence of the diamond detector performance while operating at high temperature under irradiation, providing a first experimental proof of reliable continuous operation for 100 hours at high temperature in a harsh environment.

  9. Additive manufacturing of micrometric crystallization vessels and single crystals.

    PubMed

    Halevi, Oded; Jiang, Hui; Kloc, Christian; Magdassi, Shlomo

    2016-11-10

    We present an all-additive manufacturing method that is performed at mild conditions, for the formation of organic single crystals at specific locations, without any photolithography prefabrication process. The method is composed of two steps; inkjet printing of a confinement frame, composed of a water soluble electrolyte. Then, an organic semiconductor solution is printed within the confinement to form a nucleus at a specific location, followed by additional printing, which led to the growth of a single crystal. The specific geometry of the confinement enables control of the specific locations of the single crystals, while separating the nucleation and crystal growth processes. By this method, we printed single crystals of perylene, which are suitable for the formation of OFETs. Moreover, since this method is based on a simple and controllable wet deposition process, it enables formation of arrays of single crystals at specific locations, which is a prerequisite for mass production of active organic elements on flexible substrates.

  10. Additive manufacturing of micrometric crystallization vessels and single crystals

    NASA Astrophysics Data System (ADS)

    Halevi, Oded; Jiang, Hui; Kloc, Christian; Magdassi, Shlomo

    2016-11-01

    We present an all-additive manufacturing method that is performed at mild conditions, for the formation of organic single crystals at specific locations, without any photolithography prefabrication process. The method is composed of two steps; inkjet printing of a confinement frame, composed of a water soluble electrolyte. Then, an organic semiconductor solution is printed within the confinement to form a nucleus at a specific location, followed by additional printing, which led to the growth of a single crystal. The specific geometry of the confinement enables control of the specific locations of the single crystals, while separating the nucleation and crystal growth processes. By this method, we printed single crystals of perylene, which are suitable for the formation of OFETs. Moreover, since this method is based on a simple and controllable wet deposition process, it enables formation of arrays of single crystals at specific locations, which is a prerequisite for mass production of active organic elements on flexible substrates.

  11. Additive manufacturing of micrometric crystallization vessels and single crystals

    PubMed Central

    Halevi, Oded; Jiang, Hui; Kloc, Christian; Magdassi, Shlomo

    2016-01-01

    We present an all-additive manufacturing method that is performed at mild conditions, for the formation of organic single crystals at specific locations, without any photolithography prefabrication process. The method is composed of two steps; inkjet printing of a confinement frame, composed of a water soluble electrolyte. Then, an organic semiconductor solution is printed within the confinement to form a nucleus at a specific location, followed by additional printing, which led to the growth of a single crystal. The specific geometry of the confinement enables control of the specific locations of the single crystals, while separating the nucleation and crystal growth processes. By this method, we printed single crystals of perylene, which are suitable for the formation of OFETs. Moreover, since this method is based on a simple and controllable wet deposition process, it enables formation of arrays of single crystals at specific locations, which is a prerequisite for mass production of active organic elements on flexible substrates. PMID:27830827

  12. Fabrication of graded index single crystal in glass

    PubMed Central

    Veenhuizen, Keith; McAnany, Sean; Nolan, Daniel; Aitken, Bruce; Dierolf, Volkmar; Jain, Himanshu

    2017-01-01

    Lithium niobate crystals were grown in 3D through localized heating by femtosecond laser irradiation deep inside 35Li2O-35Nb2O5-30SiO2 glass. Laser scanning speed and power density were systematically varied to control the crystal growth process and determine the optimal conditions for the formation of single crystal lines. EBSD measurements showed that, in principle, single crystals can be grown to unlimited lengths using optimal parameters. We successfully tuned the parameters to a growth mode where nucleation and growth occur upon heating and ahead of the scanning laser focus. This growth mode eliminates the problem reported in previous works of non-uniform polycrystallinity because of a separate growth mode where crystallization occurs during cooling behind the scanning laser focus. To our knowledge, this is the first report of such a growth mode using a fs laser. The crystal cross-sections possessed a symmetric, smooth lattice misorientation with respect to the c-axis orientation in the center of the crystal. Calculations indicate the observed misorientation leads to a decrease in the refractive index of the crystal line from the center moving outwards, opening the possibility to produce within glass a graded refractive index single crystal (GRISC) optically active waveguide. PMID:28287174

  13. Fabrication of graded index single crystal in glass

    NASA Astrophysics Data System (ADS)

    Veenhuizen, Keith; McAnany, Sean; Nolan, Daniel; Aitken, Bruce; Dierolf, Volkmar; Jain, Himanshu

    2017-03-01

    Lithium niobate crystals were grown in 3D through localized heating by femtosecond laser irradiation deep inside 35Li2O-35Nb2O5-30SiO2 glass. Laser scanning speed and power density were systematically varied to control the crystal growth process and determine the optimal conditions for the formation of single crystal lines. EBSD measurements showed that, in principle, single crystals can be grown to unlimited lengths using optimal parameters. We successfully tuned the parameters to a growth mode where nucleation and growth occur upon heating and ahead of the scanning laser focus. This growth mode eliminates the problem reported in previous works of non-uniform polycrystallinity because of a separate growth mode where crystallization occurs during cooling behind the scanning laser focus. To our knowledge, this is the first report of such a growth mode using a fs laser. The crystal cross-sections possessed a symmetric, smooth lattice misorientation with respect to the c-axis orientation in the center of the crystal. Calculations indicate the observed misorientation leads to a decrease in the refractive index of the crystal line from the center moving outwards, opening the possibility to produce within glass a graded refractive index single crystal (GRISC) optically active waveguide.

  14. Properties of p-n-junctions formed by a laser irradiation of a surface of n-Cd1-xZnxTe single crystal

    NASA Astrophysics Data System (ADS)

    Khomyak, V. V.; Ilashchuk, M. I.; Shtepliuk, I. I.

    2015-03-01

    Photosensitive barrier structures were fabricated by high-power pulsed laser irradiation of a freshly-cleaved surface of п-type bulk Cd1-xZnxTe substrates. Their electrical properties were investigated and discussed. Dominant carrier mechanisms at a forward and a reverse bias in terms of a recombination and tunnel-recombination model were analyzed. At the illumination reaching 100 mW · cm-2, these surface-barrier р-Cd1-хZnхTe/п-Cd1-хZnхTe structures were possessed by the following photoelectric parameters: open-circuit voltage Voc = 0.61 V, short-circuit current Isc = 0.21 mА and fill factor FF = 0.49, respectively.

  15. Effect of the sample annealing temperature and sample crystallographic orientation on the charge kinetics of MgO single crystals subjected to keV electron irradiation.

    PubMed

    Boughariou, A; Damamme, G; Kallel, A

    2015-04-01

    This paper focuses on the effect of sample annealing temperature and crystallographic orientation on the secondary electron yield of MgO during charging by a defocused electron beam irradiation. The experimental results show that there are two regimes during the charging process that are better identified by plotting the logarithm of the secondary electron emission yield, lnσ, as function of the total trapped charge in the material QT. The impact of the annealing temperature and crystallographic orientation on the evolution of lnσ is presented here. The slope of the asymptotic regime of the curve lnσ as function of QT, expressed in cm(2) per trapped charge, is probably linked to the elementary cross section of electron-hole recombination, σhole, which controls the trapping evolution in the reach of the stationary flow regime.

  16. Some Properties Of Synthetic Single Crystal And Thin Film Diamonds

    NASA Astrophysics Data System (ADS)

    Yazu, Shuji; Sato, Shuichi; Fujimori, Naoji

    1989-01-01

    Large synthetic diamond single crystals, in sizes up to 1.4 ct, are produced on 4 commercial basis for some industrial application fields by Sumitomo Electric. The crystals are yellow colored type Ib stones which contain lower amounts of nitrogen (up to about 100 ppm) dispersed through the crystal structure in the form of singly substituting atoms. The impurity controlled type lb crystals have the highest thermal conductivity which is equivalent to that of pure type IIa crystals. Optical and thermal properties of diamond crystals are strongly affected by dispersed impurities. We studied the kinds of dispersed impurities and amounts of those impurity atoms in our synthesized crystals by SIMS. A relation of the thermal conductivities and the nitrogen concentrations of the crystals was examined. The state of nitrogen impurity in the crystals could be transformed by electron irradiation and subsequent high temperature annealing. The reaction rates for the transformation Ib nitrogen to type IaA aggregates and differences in crystal growth sectors have been studied. Vapor phase deposited diamond films are hopeful candidates for optical application of diamond. Preliminary spectroscopic analysis has been done for the free standing polycrystalline films.

  17. Sample Targeting During Single-Particle Single-Cell Irradiation

    NASA Astrophysics Data System (ADS)

    Bigelow, A. W.; Randers-Pehrson, G.; Michel, K. A.; Brenner, D. J.; Dymnikov, A. D.

    2003-08-01

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  18. Re-crystallization of ITO films after carbon irradiation

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Khan, Shahid; Khan, Majid; Abbas, Turab Ali

    2017-01-01

    2.0 MeV carbon ion irradiation effects on Indium Tin Oxide (ITO) thin films on glass substrate are investigated. The films are irradiated with carbon ions in the fluence range of 1 × 1013 to 1 × 1015 ions/cm2. The irradiation induced effects in ITO are compared before and after ion bombardment by systematic study of structural, optical and electrical properties of the films. The XRD results show polycrystalline nature of un-irradiated ITO films which turns to amorphous state after 1 × 1013 ions/cm2 fluence of carbon ions. Further increase in ion fluence to 1 × 1014 ions/cm2 re-crystallizes the structure and retains for even higher fluences. A gradual decrease in the electrical conductivity and transmittance of irradiated samples is observed with increasing ion fluence. The band gap of the films is observed to be decreased after carbon irradiation.

  19. Crystal plasticity modeling of irradiation growth in Zircaloy-2

    DOE PAGES

    Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.

    2017-05-10

    A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less

  20. Effect of proton irradiation on superconductivity in optimally doped BaFe2(As1-xPx)2 single crystals

    SciTech Connect

    Smylie, M. P.; Leroux, M.; Mishra, V.; Fang, L.; Taddei, K. M.; Chmaissem, O.; Claus, H.; Kayani, A.; Snezhko, A.; Welp, U.; Kwok, W. -K.

    2016-03-01

    Irradiation with 4 MeV protons was used to systematically introduce defects in single crystals of the iron-arsenide superconductor BaFe 2 ( As 1 - x P x ) 2 , x = 0.33 . The effect of disorder on the low-temperature behavior of the London penetration depth λ ( T ) and transition temperature T c was investigated. In nearly optimally doped samples with T c ~ 29 K, signatures of a superconducting gap with nodes were observed. Contrary to previous reports on electron-irradiated crystals, we do not see a disorder-driven lifting of accidental nodes, and we observe that proton-induced defects are weaker pair breakers than electron-induced defects. We attribute our findings to anisotropic electron scattering caused by proton irradiation defects.

  1. Effect of proton irradiation on superconductivity in optimally doped BaFe2(As1-xPx)2 single crystals

    SciTech Connect

    Smylie, M. P.; Leroux, M.; Mishra, V.; Fang, L.; Taddei, K. M.; Chmaissem, O.; Claus, H.; Kayani, A.; Snezhko, A.; Welp, U.; Kwok, W. -K.

    2016-03-10

    In this paper, irradiation with 4 MeV protons was used to systematically introduce defects in single crystals of the iron-arsenide superconductor BaFe2(As1-xPx)2, x = 0.33. The effect of disorder on the low-temperature behavior of the London penetration depth λ(T) and transition temperature Tc was investigated. In nearly optimally doped samples with Tc ~ 29 K, signatures of a superconducting gap with nodes were observed. Contrary to previous reports on electron-irradiated crystals, we do not see a disorder-driven lifting of accidental nodes, and we observe that proton-induced defects are weaker pair breakers than electron-induced defects. Finally, we attribute our findings to anisotropic electron scattering caused by proton irradiation defects.

  2. Ultrafast x-ray diffraction of laser-irradiated crystals

    SciTech Connect

    Heimann, P.A.; Padmore, H.A.; Lindenberg, A.; Schuck, P.J.; Judd, E.; Falcone, R.W.; Bucksbaum, P.H.; Murnane, M.; Kapteyn, H. Lee, R.W. Wark, J.S.

    1997-07-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si (111) crystal and then by a sample crystal, presently InSb (111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or {open_quote}camshaft{close_quote} operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps. {copyright} {ital 1997 American Institute of Physics.}

  3. Ultrafast x-ray diffraction of laser-irradiated crystals

    SciTech Connect

    Heimann, P.A.; Larsson, J.; Chang, Z.

    1997-09-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si(111) crystal and then by a sample crystal, presently InSb(111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or camshaft operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  4. Ultrafast x-ray diffraction of laser-irradiated crystals

    SciTech Connect

    Heimann, P. A.; Padmore, H. A.; Larsson, J.; Lindenberg, A.; Schuck, P. J.; Judd, E.; Falcone, R. W.; Chang, Z.; Bucksbaum, P. H.; Murnane, M.; Kapteyn, H.; Lee, R. W.; Wark, J. S.

    1997-07-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si (111) crystal and then by a sample crystal, presently InSb (111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or 'camshaft' operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  5. Statistical Nature of Atomic Disorder in Irradiated Crystals

    NASA Astrophysics Data System (ADS)

    Boulle, A.; Debelle, A.

    2016-06-01

    Atomic disorder in irradiated materials is investigated by means of x-ray diffraction, using cubic SiC single crystals as a model material. It is shown that, besides the determination of depth-resolved strain and damage profiles, x-ray diffraction can be efficiently used to determine the probability density function (PDF) of the atomic displacements within the crystal. This task is achieved by analyzing the diffraction-order dependence of the damage profiles. We thereby demonstrate that atomic displacements undergo Lévy flights, with a displacement PDF exhibiting heavy tails [with a tail index in the γ =0.73 - 0.37 range, i.e., far from the commonly assumed Gaussian case (γ =2 )]. It is further demonstrated that these heavy tails are crucial to account for the amorphization kinetics in SiC. From the retrieved displacement PDFs we introduce a dimensionless parameter fDXRD to quantify the disordering. fDXRD is found to be consistent with both independent measurements using ion channeling and with molecular dynamics calculations.

  6. Ultrafast x-ray diffraction of laser-irradiated crystals

    NASA Astrophysics Data System (ADS)

    Heimann, P. A.; Larsson, J.; Chang, Z.; Lindenberg, A.; Schuck, P. J.; Judd, E.; Padmore, H. A.; Bucksbaum, P. H.; Lee, R. W.; Murnane, M.; Kapteyn, H.; Wark, J. S.; Falcone, R. W.

    1997-07-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si (111) crystal and then by a sample crystal, presently InSb (111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or `camshaft' operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  7. Single crystals of selected titanates and tungstates

    NASA Technical Reports Server (NTRS)

    Loiacono, G. M.

    1972-01-01

    The compound preparation and crystal growth of a number of mixed titanate compositions was investigated. None of the compounds studied were found to melt congruently and therefore, crystal growth was extremely difficult. Various single crystal preparation methods always resulted in mixed phases from which 1-2 mm size crystals could be separated. It is concluded from this study that before successful single crystal growth can be accomplished, a detailed study of the phase diagrams in each of the systems of interest must be completed.

  8. Folding two dimensional crystals by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS2 does not.

  9. Pterygia: Single-fraction postoperative beta irradiation

    SciTech Connect

    Beyer, D.C. )

    1991-02-01

    A retrospective evaluation was performed with records of 128 patients with 146 eyes that underwent applications of strontium-90 after pterygium excisions performed between 1982 and 1988. With a median follow-up of 13 months, 135 eyes were evaluable. Most pterygia (127 of 135) were treated with a single postoperative application of Sr-90 that delivered 3,000 cGy of beta radiation in one fraction. The actuarial freedom from relapse was 87%; all recurrences occurred within the first 18 months, and 46% of these within the first 3 months. Of the 13 recurrences, 10 have been re-treated with surgery and a second course of beta irradiation with excellent results. All eight eyes for which follow-up was available had no evidence of disease. The ultimate control rate was 96.3% for the series. Correlation of various treatment parameters, including age, bilaterality, prior recurrence, and interval from surgery to irradiation, was performed, and no statistically significant difference was seen. No serious complications have developed. Transient conjunctivitis and photophobia were almost universally seen, with five cases lasting beyond 5 months. The authors conclude that a single application of Sr-90 after surgery is effective and safe in managing pterygia.

  10. Synthesis and structural characterization of a single-crystal to single-crystal transformable coordination polymer.

    PubMed

    Tian, Yuyang; Allan, Phoebe K; Renouf, Catherine L; He, Xiang; McCormick, Laura J; Morris, Russell E

    2014-01-28

    A single-crystal to single-crystal transformable coordination polymer compound was hydrothermally synthesized. The structural rearrangement is induced by selecting a ligand that contains both strong and weaker coordinating groups. Both hydrated and dehydrated structures were determined by single crystal X-ray analysis.

  11. Confinement stabilises single crystal vaterite rods.

    PubMed

    Schenk, Anna S; Albarracin, Eduardo J; Kim, Yi-Yeoun; Ihli, Johannes; Meldrum, Fiona C

    2014-05-11

    Single-crystals of vaterite, the least-stable anhydrous polymorph of CaCO3, are rare in biogenic and synthetic systems. We here describe the synthesis of high aspect ratio single crystal vaterite rods under additive-free conditions by precipitating CaCO3 within the cylindrical pores of track-etch membranes.

  12. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  13. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2016-07-12

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  14. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  15. Adhesion of single crystals on modified surfaces in crystallization fouling

    NASA Astrophysics Data System (ADS)

    Mayer, Moriz; Augustin, Wolfgang; Scholl, Stephan

    2012-12-01

    In crystallization fouling it has been observed that during a certain initial phase the fouling is formed by a non-uniform layer consisting of a population of single crystals. These single crystals are frequently formed by inverse soluble salts such as CaCO3. During heterogeneous nucleation and heterogeneous growth an interfacial area between the crystal and the heat transfer surface occurs. The development of this interfacial area is the reason for the adhesion of each single crystal and of all individual crystals, once a uniform layer has been built up. The emerging interfacial area is intrinsic to the heterogeneous nucleation of crystals and can be explained by the thermodynamic principle of the minimum of the Gibbs free energy. In this study CaCO3 crystals were grown heterogeneously on untreated and on modified surfaces inside a flow channel. An untreated stainless steel (AISI 304) surface was used as a reference. Following surface modifications were investigated: enameled and electropolished stainless steel as well as diamond-like-carbon based coatings on stainless steel substrate. The adhesion was measured through a novel measurement technique using a micromanipulator to shear off single crystals from the substrate which was fixed to a spring table inside a SEM.

  16. Single-crystal silicon optical fiber by direct laser crystallization

    SciTech Connect

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; Cheng, Hiu Yan; Liu, Wenjun; Poilvert, Nicolas; Xiong, Yihuang; Dabo, Ismaila; Mohney, Suzanne E.; Badding, John V.; Gopalan, Venkatraman

    2016-12-05

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillary fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.

  17. Single-crystal silicon optical fiber by direct laser crystallization

    DOE PAGES

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...

    2016-12-05

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less

  18. Method of making single crystal fibers

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J. (Inventor)

    1990-01-01

    Single crystal fibers are made from miniature extruded ceramic feed rods. A decomposable binder is mixed with powders to inform a slurry which is extruded into a small rod which may be sintered, either in air or in vacuum, or it may be used in the extruded and dried condition. A pair of laser beams focuses onto the tip of the rod to melt it thereby forming a liquid portion. A single crystal seed fiber of the same material as the feed rod contacts this liquid portion to establish a zone of liquid material between the feed rod and the single crystal seed fiber. The feed rod and the single crystal feed fiber are moved at a predetermined speed to solidify the molten zone onto the seed fiber while simultaneously melting additional feed rod. In this manner a single crystal fiber is formed from the liquid portion.

  19. Swimming photochromic azobenzene single crystals in triacrylate solution.

    PubMed

    Milam, Kenneth; O'Malley, Garrett; Kim, Namil; Golovaty, Dmitry; Kyu, Thein

    2010-06-17

    Self-motion of a growing single crystal of azobenzene chromophore in triacrylate solution (TA) is investigated in relation to the solid-liquid phase diagram bound by the solidus and liquidus lines. Upon thermal quenching from the isotropic melt to the crystal + liquid gap, various single crystals develop in a manner dependent on concentration and supercooling depth. During the crystal growth, TA solvent is rejected from the growing faceted fronts, enriching with TA in close proximity to the crystal-solution interface. The concentration gradient that formed as the result of TA expulsion induces convective flows in the solution and generates spatial variability of surface tension usually responsible for Marangoni effect. Either or both of these phenomena may have contributed to the observed self-motion including swimming, sinking, and floating of the azobenzene rhomboidal crystal in TA solution. A stationary rhomboidal crystal is also shown to swim upon irradiation with the UV light because of a mechanical torque generated by the trans-cis isomerization. Judging from the sinking or floating behavior of the azobenzene crystal, it may be inferred that the nucleation occurs at the solution-air interface.

  20. Advanced piezoelectric single crystal based actuators

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.; Smith, Edward; Dong, Shuxiang; Viehland, Dwight; Moore, Jim, Jr.; Patrick, Brian

    2005-05-01

    TRS is developing new actuators based on single crystal piezoelectric materials such as Pb(Zn1/3Nb2/3)1-xTixO3 (PZN-PT) and Pb(Mg1/3Nb2/3)x-1TixO3 (PMN-PT) which exhibit very high piezoelectric coefficients (d33 = 1800-2200 pC/N) and electromechanical coupling factors (k33 > 0.9), respectively, for a variety of applications, including active vibration damping, active flow control, high precision positioning, ultrasonic motors, deformable mirrors, and adaptive optics. The d32 cut crystal plate actuators showed d32 ~ -1600 pC/N, inter-digital electroded (IDE) plate actuators showed effective d33 ~ 1100 pC/N. Single crystal stack actuators with stroke of 10 μm-100 μm were developed and tested at both room temperature and cryogenic temperatures. Flextensional single crystal piezoelectric actuators with either stack driver or plate driver were developed with stroke 70 μm - > 250 μm. For large stroke cryogenic actuation (> 1mm), a single crystal piezomotor was developed and tested at temperature of 77 K-300K and stroke of > 10mm and step resolution of 20 nm were achieved. In order to demonstrate the significance of developed single crystal actuators, modeling on single crystal piezoelectric deformable mirrors and helicopter flap control using single crystal actuators were conducted and the modeling results show that more than 20 wavelength wavefront error could be corrected by using the single crystal deformable mirrors and +/- 5.8 ° flap deflection will be obtained for a 36" flap using single crystal stack actuators.

  1. Single proton counting at the RIKEN cell irradiation facility

    SciTech Connect

    Mäckel, V. Puttaraksa, N.; Kobayashi, T.; Yamazaki, Y.

    2015-08-15

    We present newly developed tapered capillaries with a scintillator window, which enable us to count single protons at the RIKEN cell irradiation setup. Their potential for performing single proton irradiation experiments at our beamline setup is demonstrated with CR39 samples, showing a single proton detection fidelity of 98%.

  2. Effects of light exposure on irradiated barium fluoride crystals

    SciTech Connect

    Wuest, C.R.; Mauger, G.J.

    1993-04-20

    Small barium fluoride crystals have been irradiated using cobalt-60 gamma rays under various illumination conditions to establish the effect of photo-bleaching of the radiation-induced color centers. This paper describes results of a few different experiments conducted at LLNL over the past few weeks.

  3. Electron-irradiation-induced crystallization of amorphous orthophosphates

    SciTech Connect

    Meldrum, A.; Ewing, R.C.; Boatner, L.A.

    1996-12-01

    Amorphous LaPO{sub 4}, EuPO{sub 4}, GdPO{sub 4}, ScPO{sub 4}, and fluorapatite [Ca{sub 5}(PO{sub 4}){sub 3}F] were irradiated by electron beam in a TEM. Irradiations were done at -150 to 300 C, 80 to 200 keV, and current densities from 0.3 to 16 A/cm{sup 2}. In all cases, the materials crystallized to form a randomly oriented polycrystalline assemblage. Crystallization is driven dominantly by inelastic processes, although ballistic collisions with target nuclei can be important above 175 keV, particularly in apatite. Using a high current density, crystallization is so fast that continuous lines of crystallites can be ``drawn`` on the amorphous matrix.

  4. Crystal growth and optical properties of indium doped LiCaAlF6 scintillator single crystals

    NASA Astrophysics Data System (ADS)

    Tanaka, Chieko; Yokota, Yuui; Kurosawa, Shunsuke; Yamaji, Akihiro; Jary, Vitezslav; Babin, Vladimir; Pejchal, Jan; Ohashi, Yuji; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira

    2017-03-01

    The In-doped LiCaAlF6 [In:LiCAF] single crystals were grown by the micro-pulling-down (μ-PD) method, and the phases, chemical compositions, transmittance and radioluminescence spectra were investigated. All the grown crystals showed high transparency and single phase of LiCAF without visible cracks and inclusions except for the end part of In2%:LiCAF crystal which included the impurity phase. In the radioluminescence spectra of the In:LiCAF crystals under X-ray irradiation, the emission peak around 750 nm was revealed.

  5. Spray printing of organic semiconducting single crystals

    PubMed Central

    Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim

    2016-01-01

    Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics. PMID:27874001

  6. Spray printing of organic semiconducting single crystals.

    PubMed

    Rigas, Grigorios-Panagiotis; Payne, Marcia M; Anthony, John E; Horton, Peter N; Castro, Fernando A; Shkunov, Maxim

    2016-11-22

    Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.

  7. Spray printing of organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim

    2016-11-01

    Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.

  8. Microwave Induced Direct Bonding of Single Crystal Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Budraa, N. K.; Jackson, H. W.; Barmatz, M.

    1999-01-01

    We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.

  9. EPR study of free-radical structure and conformation in pyridoxine hydrochloride single crystal

    NASA Astrophysics Data System (ADS)

    Masiakowski, Jerzy T.; Krzyminiewski, Ryszard; Pietrzak, Jerzy

    1985-05-01

    Numerical analysis of experimental EPR spectra of γ-irradiated single crystals of pyridoxine hydrochloride (vitamin B 6) allowed determination of the structure of the radical formed. Six hyperfine couplings were distinguished. The geometrical model of the radical was found to be in good agreement with the geometry expected from the crystal structure. Semi-empirical INDO and CNDO calculations were performed.

  10. Growth of shaped single crystals of proteins

    NASA Astrophysics Data System (ADS)

    Moreno, Abel; Rondón, Deyanira; García-Ruiz, Juan Ma.

    1996-09-01

    We present a procedure for obtaining protein single crystals that fill the capillary tubes in which they grow. The implementation was typical of the gel acupuncture method and the four different proteins are used as examples: lysozyme (HEW), thaumatin I, ferritin and insulin. Rod- and prismatic-shaped protein single crystals of these four proteins were grown inside capillary tubes of 0.2, 0.3, 0.5 mm in diameter and, for the case of lysozyme, up to 1.2 mm in diameter. The maximum length measured along the long axes of the rod crystals was 1.6 mm again for lysozyme crystals. It was observed that, once the capillary tube was filled, the crystal continues to grow by diffusion of the precipitating agent throughout the porous network formed by the protein crystal structure. We also discuss the possibility of growing these cylinders of crystalline proteins by the addition of protein solution to the mother liquor through the upper end of the glass capillary while the precipitating agent diffuses through the protein crystal itself. X-ray diffraction patterns confirm the single crystal character of the protein rods.

  11. Single Crystals Grown Under Unconstrained Conditions

    NASA Astrophysics Data System (ADS)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  12. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  13. Anisotropic Shock Propagation in Single Crystals

    SciTech Connect

    Eggert, J; Hicks, D; Celliers, P; Bradley, D; Cox, J; Unites, W; Collins, G; McWilliams, R; Jeanloz, R; Bruygoo, S; Loubeyre, P

    2005-05-26

    Most single-crystal shock experiments have been performed in high-symmetry directions while the nature of shock propagation in low-symmetry directions remains relatively unstudied. It is well known that small-amplitude, linear acoustic waves propagating in low-symmetry directions can focus and/or form caustics (Wolfe, 1995). In this report we provide evidence for similar focusing behavior in nonlinear (shock) waves propagating in single crystals of silicon and diamond. Using intense lasers, we have driven non-planar (divergent geometry) shock waves through single-crystals of silicon or diamond and into an isotropic backing plate. On recovery of the backing plates we observe a depression showing evidence of anisotropic plastic strain with well-defined crystallographic registration. We observe 4-, 2-, and 3-fold symmetric impressions for [100], [110], and [111] oriented crystals respectively.

  14. Comparative study of intrinsic luminescence in undoped transparent ceramic and single crystal garnet scintillators

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yutaka; Yanagida, Takayuki; Yagi, Hideki; Yanagidani, Takagimi; Chani, Valery

    2014-10-01

    Scintillation properties associated with intrinsic lattice defects of undoped Y3A5O12 (YAG) and Lu3A5O12 (LuAG) transparent ceramics and single crystals are compared. The ceramics excited with X-ray demonstrated relatively low emission intensity when compared with that of the single crystals. Decay times of the ceramics and the single crystals were similar. These parameters were approximately 430 ns (YAG ceramic), 460 ns (YAG single crystal), 30 ns and 1090 ns (LuAG ceramic), and 25 ns and 970 ns (LuAG single crystal). According to the pulse height spectra recorded under 137Cs gamma-ray irradiation, the scintillation light yield of the both ceramics were about 2950 ± 290 ph/MeV. However, the single crystals had greater kight yield of about about 14,300 ± 1430 ph/MeV for YAG and 8350 ± 830 ph/MeV for LuAG.

  15. Crystallization of silicon carbide thin films by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    De Cesare, G.; La Monica, S.; Maiello, G.; Masini, G.; Proverbio, E.; Ferrari, A.; Chitica, N.; Dinescu, M.; Alexandrescu, R.; Morjan, I.; Rotiu, E.

    1996-10-01

    Pulsed laser irradiation at low incident fluences was demonstrated to be effective for the crystallization of amorphous hydrogenated silicon carbide (a-SiC:H) films deposited on Si wafers. The amorphous films, with a carbon content in the range 30-50%, were deposited on (100) Si wafers by low temperature plasma enhanced chemical vapor deposition (PECVD). The crystallization treatment was carried out by a multipulse KrF excimer laser. The crystallinity modifications induced by the laser treatment were evidenced by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction. An important increase of the microhardness was evidenced as an effect of the laser treatment.

  16. Characterization of zinc selenide single crystals

    NASA Technical Reports Server (NTRS)

    Gerhardt, Rosario A.

    1996-01-01

    ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their

  17. Performance of Single Crystal Niobium Cavities

    SciTech Connect

    Kneisel, Peter; Ciovati, Gianluigi; Singer, Waldemar; Singer, Xenia; Reschke, Detlef; Brinkmann, A.

    2008-07-01

    We have fabricated and tested a total of six single cell niobium cavities, made from single crystal, high purity niobium. Two of the three cavities of the TESLA shape (1300 MHz) were made from Heraeus niobium by extending a smaller single crystal by rolling and annealing steps; the third cavity was made by spinning from CBMM material. The three other cavities of the scaled "Low Loss" (LL) shape (two) and "High Gradient" (HG) shape (one) resonated at 2.3 GHz and were fabricated from "as received" single crystals, both from Heraeus and CBMM niobium. After appropriate surface treatments by buffered chemical polishing and electropolishing most cavities performed quite nicely and peak surface magnetic fields of ~ 160 mT or above corresponding to accelerating gradients between 38 MV/m and 45 MV/m were reached. This paper reports about the performance of these cavities.

  18. Ferromagnetism in Silicon Single Crystals with Positively Charged Vacancy Clusters

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Zhang, Xinghong; Yuan, Quan; Han, Jiecai; Zhou, Shengqiang; Song, Bo

    Defect-induced ferromagnetism provides an alternative for organic and semiconductor spintronics. Here, we investigated the magnetism in Silicon after neutron irradiation and try to correlate the observed magnetism to particular defects in Si. Commercially available p-type Si single crystal wafer is cut into pieces for performing neutron irradiations. The magnetic impurities are ruled out as they can not be detected by secondary ion mass spectroscopy. With positron annihilation lifetime spectroscopy, the positron trapping center corresponding to lifetime 375 ps is assigned to a kind of stable vacancy clusters of hexagonal rings (V6) and its concentration is enhanced by increasing neutron doses. After irradiation, the samples still show strong diamagnetism. The weak ferromagnetic signal in Si after irradiation enhances and then weakens with increasing irradiation doses. The saturation magnetization at room temperature is almost the same as that at 5 K. The X-ray magnetic circular dichroism further provides the direct evidence that Silicon is the origin of this ferromagnetism. Using first-principles calculations, it is found that positively charged V6 brings the spin polarization and the defects have coupling with each other. The work is financially supported by the Helmholtz Postdoc Programme (Initiative and Networking Fund, PD-146).

  19. Development of single crystal filaments. Final report

    SciTech Connect

    Milewski, J.V.; Shoultz, R.A.; Bourque-McConnell, M.M.

    1995-04-01

    The program just completed addresses a route to a more efficient longer-lasting electric light bulb filament. All current filaments for light bulbs are metallic in nature. They are subject to embrittlement with age (large grain growth) and relatively high vapor pressures which limits their operating temperature. There is evidence which suggests advantages to using high temperature refractory single crystal fibers as a filament for a light bulb. These refractory materials may include materials such as hafnium or tantalum carbide which have melting points about 500{degrees}C higher than tungsten. Another advantage is that single crystal fibers have a very high degree of crystalline perfection with very few voids and dislocations. Without these imperfections, the atomic mobility at high temperatures is highly restricted. Thus single crystal fibers are very stable at high temperature and will last longer. The efficiencies result from running these single crystal ceramic fiber filaments at higher temperatures and the higher emissivity of the carbide filaments compared to tungsten. The amount of visible light is proportional to the 4the power of the temperature thus a 500{degrees}C higher operating give about a 3-fold increase in radiation in the visible range. The program accomplishments can be summarized as follows: (1) Single crystal fibers of JfC sufficient crystal quality for light bulb filament applications were made. (2) The HfC fiber furnace growth chamber, power control and data collection system was developed for the laboratory scale plant. (3) method for mounting and apparatuses for testing the single crystal fiber filaments were developed and built.

  20. Oxygen Incorporation in Rubrene Single Crystals

    PubMed Central

    Mastrogiovanni, Daniel D. T.; Mayer, Jeff; Wan, Alan S.; Vishnyakov, Aleksey; Neimark, Alexander V.; Podzorov, Vitaly; Feldman, Leonard C.; Garfunkel, Eric

    2014-01-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed. PMID:24786311

  1. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  2. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  3. Imaging of gamma-Irradiated Regions of a Crystal

    NASA Technical Reports Server (NTRS)

    Dragoi, Danut; McClure, Steven; Johnston, Allan; Chao, Tien-Hsin

    2004-01-01

    A holographic technique has been devised for generating a visible display of the effect of exposure of a photorefractive crystal to gamma rays. The technique exploits the space charge that results from trapping of electrons in defects induced by gamma rays. The technique involves a three-stage process. In the first stage, one writes a holographic pattern in the crystal by use of the apparatus shown in Figure 1. A laser beam of 532-nm wavelength is collimated and split into signal and reference beams by use of a polarizing beam splitter. On its way to the crystal, the reference beam goes through a two-dimensional optical scanner that contains two pairs of lenses (L1y, L2y and L1x,L2x) and mirrors M1 and M2, which can be rotated by use of micrometer drives to make fine adjustments. The signal beam is sent through a spatial light modulator that imposes the holographic pattern, then through two imaging lenses L(sub img) on its way to the crystal. An aperture is placed at the common focus of lenses Limg to suppress high-order diffraction from the spatial light modulator. The hologram is formed by interference between the signal and reference beams. A camera lens focuses an image of the interior of the crystal onto a charge-coupled device (CCD). If the crystal is illuminated by only the reference beam once the hologram has been formed, then an image of the hologram is formed on the CCD: this phenomenon is exploited to make visible the pattern of gamma irradiation of the crystal, as described next. In the second stage of the process, the crystal is removed from the holographic apparatus and irradiated with rays at a dose of about 100 krad. In the third stage of the process, the crystal is remounted in the holographic apparatus in the same position as in the first stage and illuminated with only the reference beam to obtain the image of the hologram as modified by the effect of the rays. The orientations of M1 and M2 can be adjusted slightly, if necessary, to maximize the

  4. Bioperformance of shape memory alloy single crystals.

    PubMed

    Yahia, L'h; Manceur, A; Chaffraix, P

    2006-01-01

    Shape memory alloys (SMA) represent a large family of alloys that show unique characteristics. They have been exploited in several fields for diverse applications. For the last 20 years, these alloys and more particularly Ni-Ti alloys have revolutionized the field of metallic biomaterials. Applications in the biomedical area are multiple and these materials improve significantly the quality of the diagnostics, treatments and surgeries. To our knowledge, most devices are made of SMAs in the polycrystalline form. Nevertheless, the single crystal form shows several promising advantages especially concerning its mechanical performances. In this paper we describe the advantages, advances and limits of using different SMA single crystals for biomedical applications, including biocompatibility and corrosion resistance. We also discuss the low response time of classical thermal SMAs as well as the new advances in research on magnetic SMA single crystals.

  5. Investigation of gamma radiation effect on chemical properties and surface morphology of some nonlinear optical (NLO) single crystals

    NASA Astrophysics Data System (ADS)

    Ahlam, M. A.; Ravishankar, M. N.; Vijayan, N.; Govindaraj, G.; Siddaramaiah; Gnana Prakash, A. P.

    2012-05-01

    The effect of Co-60 gamma irradiation on L-alanine cadmium chloride (LACC), L-alanine doped potassium dihydrogen orthophosphate (KDP) and L-arginine doped KDP nonlinear optical (NLO) single crystals were studied in doses ranging from 100 krad to 6 Mrad. The crystals were grown by slow evaporation method at room temperature. The effects of gamma irradiation on the chemical, surface morphology, DC electrical conductivity, thermal and mechanical properties of the grown crystals have been studied. The functional groups of unirradiated and irradiated crystals have been identified and confirmed by Fourier transform infrared (FTIR) studies. Scanning electron microscopy (SEM) of irradiated crystals shows some morphological changes in the crystals. The dc conductivity of LACC and L-alanine doped KDP crystals were found to increase with increase in radiation dose whereas in case of L-arginine doped KDP crystals, the dc conductivity was found to decrease with increase in radiation dose. Differential scanning calorimetry (DSC) thermograms reveals that there is no significant change in the melting point of the crystals after irradiation and the crystals does not decompose as a result of irradiation. The mechanical behavior of both unirradiated and irradiated crystals is explained with the indentation effects using Vicker's microhardness tester. The Vicker's hardness number HV and Mayer's index 'n' has been estimated and confirms that LACC belong to the hard materials.

  6. Optical properties of Eu2+ doped antipervoskite fluoride single crystals

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Nithya, R.; Ramasamy, P.; Madhusoodanan, U.

    2013-02-01

    Single crystals of pure and Eu2+ doped LiBaF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Absorption and luminescence spectra for pure and rare-earth-doped LiBaF3 were studied. At ambient conditions the photoluminescence spectra consisted of sharp lines peaked at ˜359 nm attributed to the 6P7/2→8S7/2 transitions in the 4f7 electronic configuration of Eu2+ and a broad band extending between 370 and 450 nm attributed to Eu2+ trapped exciton recombination. The effect of 60Co gamma irradiation has also been investigated.

  7. Magnetoelasticity of Fe-Si single crystals

    SciTech Connect

    Xing, Q; Wu, D.; Lograsso, T. A.

    2010-04-20

    The tetragonal magnetostriction constant, (3/2){lambda}{sub 100}, of Fe-Si single crystals was measured and was found to be structure dependent. Similar to that of Fe-Ge single crystals, (3/2){lambda}{sub 100} is positive in the single phase A2 regime, becomes negative in the single phase D0{sub 3} regime, and changes from positive to negative between the two regimes. Short-range order in the A2 regime decreases the magnetostriction prior to the onset of long range order. In the single phase regions of both A2 and D0{sub 3}, thermal history does not show any obvious effect on the magnetostriction, contrary to that found for Fe-Ga alloys. However, in the regions of phase mixture involving A2, B2, and D0{sub 3} phases, quenching pushes the change in magnetostriction from positive to negative to higher Si contents.

  8. Effect of high-energy electron irradiation on forsterite laser crystals

    NASA Astrophysics Data System (ADS)

    Subbotin, K. A.; Dudnikova, V. B.; Zaitseva, O. N.; Lazarenko, V. M.; Kolokol'tsev, V. N.; Tovtin, V. I.; Zharikov, E. V.

    2012-04-01

    The effect of 21-MeV electron irradiation on the optical absorption characteristics of Czochralski-grown forsterite (Mg2SiO4) single crystals (both undoped and chromium-doped) has been investigated. The irradiation is found to induce additional optical absorption (AOA) in the crystals in the range of 225-1200 nm due to the formation of color centers based on intrinsic host point defects and the change in the oxidation state of chromium ions. The AOA spectra have been decomposed into elementary bands. The influence of the chromium concentration in crystals, the oxygen content in the growth atmosphere, and additional doping with lithium on the behavior of these bands has been analyzed. A possible structure of the color centers responsible for the AOA is discussed. It is shown that the electron irradiation somewhat decreases the intensity of the characteristic absorption bands of tri- and tetravalent chromium ions and gives rise to a new absorption band in Mg2SiO4:Cr and Mg2SiO4:Cr,Li crystals heavily doped with chromium.

  9. Characterization of KHCO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Abouelhassan, S.; Salman, F.; Elmansy, M.; Sheha, E.

    Single crystals of KHCO3 were grown by the slow evaporation technique of an aqueous solution. Characterization of the sample was done using different techniques such as X-ray diffraction, infrared spectra (IR) and the differential scanning calorimeter (DSC) technique. The analysis of the X-ray diffraction pattern indicated that the sample was a single crystal. The results obtained by IR and DSC indicated the presence of phase transition. From the analysis of DSC, the activation energy of transition was carried out by two methods (Kissinger and Ozawa).

  10. Magnetotransport of proton-irradiated BaFe2As2 and BaFe1.985Co0.015As2 single crystals

    SciTech Connect

    Moseley, D. A.; Yates, K. A.; Peng, N.; Mandrus, D.; Sefat, Athena Safa; Branford, W. R.; Cohen, L. F.

    2015-02-17

    In this paper, we study the magnetotransport properties of the ferropnictide crystals BaFe2As2 and BaFe1.985Co0.015As2. These materials exhibit a high field linear magnetoresistance that has been attributed to the quantum linear magnetoresistance model. In this model, the linear magnetoresistance is dependent on the concentration of scattering centers in the material. By using proton-beam irradiation to change the defect scattering density, we find that the dependence of the magnitude of the linear magnetoresistance on scattering quite clearly contravenes this prediction. Finally, a number of other scaling trends in the magnetoresistance and high field Hall data are observed and discussed.

  11. Spectrometry of the Rutherford backscattering of ions and the Raman scattering of light in GaS single crystals irradiated with 140-keV H{sub 2}{sup +} ions

    SciTech Connect

    Garibov, A. A.; Madatov, R. S.; Komarov, F. F.; Pilko, V. V.; Mustafayev, Yu. M.; Akhmedov, F. I.; Jakhangirov, M. M.

    2015-05-15

    The methods of the Raman scattering of light and Rutherford backscattering are used to study the degree of structural disorder in layered GaS crystals before and after irradiation with 140-keV H{sub 2}{sup +} ions. It is shown that the distribution of the crystal’s components over depth is homogeneous; for doses as high as 5 × 10{sup 15} cm{sup −2}, the stoichiometric composition of the compound’s components is retained. The experimental value of the critical dose for the beginning of amorphization amounts to about 5 × 10{sup 15} cm{sup −2} and is in accordance with the calculated value. The results obtained by the method of the Raman scattering of light confirm conservation of crystalline structure and the start of the amorphization process.

  12. Light-induced ESR centres in single crystal rutile

    NASA Astrophysics Data System (ADS)

    Hodgskiss, S. W.; Thorp, J. S.

    1983-04-01

    Electron spin resonance studies have been made on Verneuil-grown rutile single crystals, which were doped with a variety of transition gorup ions. Measurements were made at 9 GHz, both before and after UV irradiation, at temperatures in the range from 4.2 to 300 K. UV irradiation had two effects: (a) to affect the relative intensities of esr lines due to species already present, (b) to generate new esr spectra. Both effects are interpreted as representing a redistribution of charge amongst trapping centres. Seven UV generated centres have been identified and characterised in terms of their spin Hamiltonian parameters. Isochronal annealing techniques have been used to determine the ionisation temperatures of the traps. Observation of interactions and charge transfers between centres during isochronal annealing was used to determine the polarity and type of each centre.

  13. Inkjet printing of single-crystal films

    NASA Astrophysics Data System (ADS)

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-01

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. `Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4cm2V-1s-1. This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

  14. Performance of single crystalline silicon solar cell with irradiance

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Purohit, A.; Nehra, Anshu; Nehra, S. P.; Dhaka, M. S.

    2015-06-01

    In this paper, the effect of irradiance on the performance parameters of single crystalline silicon solar cell is undertaken. The experiment was carried out employing solar cell simulator with varying irradiance in the range 115-550W/m2 at constant cell temperature 25°C. The results show that the short circuit current is found to be increased linearly with irradiance and the open circuit voltage is increased slightly. The fill factor, maximum power and cell efficiency are also found to be increased with irradiance. The efficiency is increased linearly at lower irradiance while slightly increased at higher. The results revealed that the irradiance has a dominant effect on the performance parameters. The results are in good agreement with the available literature.

  15. Microhardness studies of sulfamic acid single crystal

    NASA Astrophysics Data System (ADS)

    Santhosh Kumar, A.; Joseph, Cyriac; Paulose, Reshmi; R, Rajesh; Joseph, Georgekutty; Louis, Godfrey

    2015-02-01

    Vicker's microhardness study of (100), (010) and (001) faces of a non-linear optical crystal sulfamic acid have been reported. Single crystals of sulfamic acid have been grown by slow evaporation method. The load dependence of the Vickers microhardness of sulfamic acid crystal were investigated and analyzed from the stand point of various theoretical models. Crystal samples in a, b and c-axes exhibit reverse indentation effect which is best described by Meyer's law, Hays-Kendall's approach and proportional specimen resistance (PSR) models. The negative values of load dependent quantities in Hays-Kendall's approach and PSR model suggest that the origin of indentation size effect is associated with the process of relaxation of indentation stresses.

  16. Growth of single-crystal gallium nitride

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Use of ultrahigh purity ammonia prevents oxygen contamination of GaN during growth, making it possible to grow the GaN at temperatures as high as 825 degrees C, at which point single crystal wafers are deposited on /0001/-oriented sapphire surfaces.

  17. MAGNETORESISTANCE AND HALL EFFECT IN SINGLE CRYSTALS OF ALUMINUM

    DTIC Science & Technology

    ALUMINUM, *SINGLE CRYSTALS, CRYSTALS, HALL EFFECT , IMPURITIES, LOW PRESSURE, MAGNETIC FIELDS, MAGNETIC PROPERTIES, PARTICLE TRAJECTORIES, ELECTRICAL RESISTANCE, SOLID STATE PHYSICS, SURFACE PROPERTIES.

  18. Effect of irradiation of swift heavy ions on dyes-doped KDP crystals for laser applications

    NASA Astrophysics Data System (ADS)

    Kumaresan, P.; Moorthy Babu, S.; Anbarasan, P. M.

    2008-04-01

    The organic dyes (amaranth, rhodamine and methyl orange) are doped in potassium dihydrogen phosphate (KDP) crystals. Influences of super saturation and dye concentration in the solution, on the color and crystal habit of KDP, were observed. Amaranth in the solution at low super saturation and high dye concentration colored the pyramidal section (1 0 1) of the crystals. The highly super saturated solutions produce entirely colored crystals. The concentration of dopants in the mother solution was varied from 0.1 to 10 mol%. The studies on pure and doped KDP crystals clearly indicate the effect of dopants on the crystal structure, in the absorption of IR frequencies and the non-linear optical property. Dye doping improves the NLO properties of the grown crystals. The frequencies with their relative intensities are obtained in FT-IR of pure and doped KDP. The very weak bands for dopants indicate its presence in low concentration. In view of the ever-growing importance of ion beams in optical material processing, this letter reports room temperature MeV Li + ion irradiation-induced depletion of hydrogen from single crystalline KDP which has wide applications as a non-linear optical material in optoelectronics technology. Irradiations have been performed using 50 MeV Li + ions up to a maximum dose of 2.4×10 15 ions cm -2. Simultaneously, detecting the elastically recoiled Li atoms has done hydrogen profiling. Bare KDP crystals show hydrogen loss of 72% at the maximum dose whereas Au-coated samples show that 60 Au layer acts as a barrier to considerably reduce hydrogen depletion from KDP. A possible explanation of these phenomena is suggested.

  19. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    NASA Astrophysics Data System (ADS)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E.; Sorokin, M.; Facsko, S.; Trautmann, C.

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV 129Xe(33-40)+ and with various swift heavy ions (SHI) of 30 MeV I9+ and 374 MeV-2.2 GeV 197Au25+. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  20. Simulation of Electronic Center Formation by Irradiation in Silicon Crystals

    NASA Astrophysics Data System (ADS)

    Yeritsyan, H. N.; Sahakyan, A. A.; Grigoryan, N. E.; Harutyunyan, V. V.; Tsakanov, V. M.; Grigoryan, B. A.; Yeremyan, A. S.; Amatuni, G. A.

    2017-02-01

    We present the results of a study on localized electronic centers formed in crystals by external influences (impurity introduction and irradiation). The main aim is to determine the nature of these centers in the forbidden gap of the energy states of the crystal lattice. For the case of semiconductors, silicon (Si) was applied as model material to determine the energy levels and concentration of radiation defects for application to both doped and other materials. This method relies on solving the appropriate equation describing the variation of the charge carrier concentration as a function of temperature n( T) for silicon crystals with two different energy levels and for a large set of N 1, N 2 (concentrations of electronic centers at each level), and n values. A total of almost 500 such combinations were found. For silicon, energy level values of ɛ 1 = 0.22 eV and ɛ 2 = 0.34 eV were used for the forbidden gap (with corresponding slopes determined from experimental temperature-dependent Hall-effect measurements) and compared with photoconductivity spectra. Additionally, it was shown that, for particular correlations among N 1, N 2, and n, curve slopes of ɛ 1/2 = 0.11 eV, ɛ 2/2 = 0.17 eV, and α = 1/2( ɛ 1 + ɛ 2) = 0.28 eV also apply. Comparison between experimental results for irradiation of silicon crystals by 3.5-MeV energy electrons and Co60 γ-quanta revealed that the n( T) curve slopes do not always coincide with the actual energy levels (electronic centers).

  1. Single crystal complex oxide on flexible substrate

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Lee, Oukjae; Salahuddin, Sayeef

    Flexible ferroelectrics are needed for various applications such as biocompatible energy harvesting and flexible memory. In this sector, most of the current research is focused on organic piezoelectric materials which have advantage of flexibility but suffers severely from poor energy conversion and generation efficiency. On the contrary, owing to very high electromechanical coupling factor (representing energy conversion efficiency) complex oxides are the best choices as energy harvesting and transduction elements, especially for transforming mechanical energies into electronic energy. Still their usage in energy harvesting is very limited mainly due to the stringent growth conditions of single crystals, high temperature needed for crystallization and lack of flexibility and stretchability. We have shown that single crystal Pb0.8Zr0.2TiO3 can be epitaxially transferred on flexible plastic substrate. The transferred PZT shows 70 uC/cm2 remnant polarization and dielectric constant over 100 even when it is bent. These results suggest the possibility of single crystal complex oxide devices on flexible platform.

  2. Optical properties of ladder type single crystals

    SciTech Connect

    Babonas, G.J.; Leonyuk, L.; Reza, A.; Dapkus, L.; Szymczak, R.

    1999-12-01

    The optical properties of (M{sub 2}Cu{sub 2}O{sub 3}){sub m}(CuO{sub 2}){sub n} (M = Ca, Sr, Y, Bi) crystals containing the ladder-type plane Cu{sub 2}O{sub 3} were investigated by spectroscopic ellipsometry method in the range 0.5--5.0 eV. The experimental data were analyzed in order to reveal the difference in the microstructure between superconducting (SC) and non-superconducting (NSC) single crystals. The contributions to the optical response due to the electronic excitations of free and bound carriers were analyzed.

  3. Radiation-electromagnetic effect in germanium single crystals

    SciTech Connect

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-10-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with ..cap alpha.. particles, protons, or x rays in magnetic fields up to 8 kOe. The source of ..cap alpha.. particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10/sup 11/ particles .cm/sup -2/ .sec/sup -1/). In the energy range 4--40 MeV the emf was practically independent of the ..cap alpha..-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the ..cap alpha..-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with ..cap alpha.. particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect.

  4. Lightweight optical mirrors formed in single crystal substrate

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2006-01-01

    This invention is directed to a process for manufacturing a lightweight mirror from a single crystal material, such as single crystal silicon. As a near perfect single crystal material, single crystal silicon has much lower internal stress than a conventional material. This means much less distortion of the optical surface during the light weighting process. After being ground and polished, a single crystal silicon mirror is light weighted by removing material from the back side using ultrasonic machining. After the light weighting process, the single crystal silicon mirror may be used as-is or further figured by conventional polishing or ion milling, depending on the application and the operating wavelength.

  5. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, Frank R.; Gillies, Donald C.; Watring, Dale A.

    1999-01-01

    The objective of the study is to establish the effects of processing semiconducting, solid solution, single crystals in a microgravity environment on the metallurgical, compositional, electrical, and optical characteristics of the crystals. The alloy system being investigated is the solid solution semiconductor Hg(1-x)Cd(x)Te, with x-values appropriate for infrared detector applications in the 8 to 14 mm wavelength region. Both melt and Te-solvent growth are being performed. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. The ground-based portion of the investigation also includes the evaluation of the relative effectiveness of stabilizing techniques, such as applied magnetic fields, for suppressing convective flow during the melt growth of the crystals.

  6. Increase of bulk optical damage threshold fluences of KDP crystals by laser irradiation and heat treatment

    DOEpatents

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.; Rainer, F.

    1982-07-07

    The bulk optical damage threshold fluence of potassium dihydrogen phosphate (KDP) crystals is increased by irradiating the crystals with laser pulses of duration 1 to 20 nanoseconds of increasing fluence, below the optical damage threshold fluence for untreated crystals, or by baking the crystals for times of the order of 24 hours at temperatures of 110 to 165/sup 0/C, or by a combination of laser irradiation and baking.

  7. Single-crystal gallium nitride nanotubes.

    PubMed

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-10

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  8. Flexible single-crystal silicon nanomembrane photonic crystal cavity.

    PubMed

    Xu, Xiaochuan; Subbaraman, Harish; Chakravarty, Swapnajit; Hosseini, Amir; Covey, John; Yu, Yalin; Kwong, David; Zhang, Yang; Lai, Wei-Cheng; Zou, Yi; Lu, Nanshu; Chen, Ray T

    2014-12-23

    Flexible inorganic electronic devices promise numerous applications, especially in fields that could not be covered satisfactorily by conventional rigid devices. Benefits on a similar scale are also foreseeable for silicon photonic components. However, the difficulty in transferring intricate silicon photonic devices has deterred widespread development. In this paper, we demonstrate a flexible single-crystal silicon nanomembrane photonic crystal microcavity through a bonding and substrate removal approach. The transferred cavity shows a quality factor of 2.2×10(4) and could be bent to a curvature of 5 mm radius without deteriorating the performance compared to its counterparts on rigid substrates. A thorough characterization of the device reveals that the resonant wavelength is a linear function of the bending-induced strain. The device also shows a curvature-independent sensitivity to the ambient index variation.

  9. Optimizing Scale Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Pint, Bruce A.

    2000-01-01

    To improve scale adhesion, single crystal superalloys have been desulfurized to levels below 1 ppmw by hydrogen annealing. A transition to fully adherent behavior has been shown to occur at a sulfur level of about 0.2 ppmw, as demonstrated for PWA 1480, PWA 1484, and Rene N5 single crystal superalloys in 1100-1150 C cyclic oxidation tests up to 2000 h. Small additions of yttrium (15 ppmw) also have been effective in producing adhesion for sulfur contents of about 5 ppmw. Thus the critical Y/S ratio required for adhesion was on the order of 3-to-1 by weight (1-to-1 atomic), in agreement with values estimated from solubility products for yttrium sulfides. While hydrogen annealing greatly improved an undoped alloy, yielding <= 0.01 ppmw S, it also produced benefits for Y-doped alloys without measurably reducing the sulfur content.

  10. Macrodeformation Twins in Single-Crystal Aluminum

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Wang, L.; Fan, D.; Bie, B. X.; Zhou, X. M.; Suo, T.; Li, Y. L.; Chen, M. W.; Liu, C. L.; Qi, M. L.; Zhu, M. H.; Luo, S. N.

    2016-02-01

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum at scales beyond nanotwins. Here, we present the first experimental demonstration of macrodeformation twins in single-crystal aluminum formed under an ultrahigh strain rate (˜106 s-1 ) and large shear strain (200%) via dynamic equal channel angular pressing. Large-scale molecular dynamics simulations suggest that the frustration of subsonic dislocation motion leads to transonic deformation twinning. Deformation twinning is rooted in the rate dependences of dislocation motion and twinning, which are coupled, complementary processes during severe plastic deformation under ultrahigh strain rates.

  11. Biomineralization of nanoscale single crystal hydroxyapatite.

    PubMed

    Omokanwaye, Tiffany; Wilson, Otto C; Gugssa, Ayelle; Anderson, Winston

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague-Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54nm and 0.23nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Brittle crack propagation in silicon single crystals

    SciTech Connect

    Brede, M.; Hsia, K.J.; Argon, A.S. )

    1991-07-15

    Viewing the brittle-to-ductile transition of fracture in intrinsically brittle solids as a crack tip initiated critical event of either nucleation of dislocation loops from the crack tip or the motion away of such dislocations from the crack tip, experiments have been devised to measure the critical activation energy of such events by measuring the arrest temperature of cleavage cracks with different velocities in experiments that were conducted on large Si single crystals subjected to a steep temperature gradient. While such experiments can provide precise information that can be related directly to mechanisms of crack tip bifurcation behavior, they are hampered by nontrivial perturbations that must be controlled. Here in the first of a series of communications we discuss the nature of these perturbations in Si single crystals, cleaving either on the {l brace}111{r brace} or the {l brace}110{r brace} planes.

  13. Ionic diffusion in single crystals of vermiculite

    SciTech Connect

    Maraqah, H.R.

    1993-01-01

    Novel guest-host compounds, based on single crystal vermiculite, were synthesized by diffusive techniques through a new hydrogen vermiculite. Single crystals were chosen because of the ease of characterization. An investigation of the ion transport properties of these single crystals was done to determine the mechanism of conductivity including the predominant charge carrier. Measurements of the ionic conductivity using impedance spectroscopy and X-ray lattice parameters of the ion-exchanged samples strongly suggest that the native cations and not protons are the major current carriers. Single crystals of hydrogen vermiculite were synthesized at room temperature by ion exchange from sodium-vermiculite using 1 molar acetic acid for a one week. Subsequent ion exchange with other cations was found to be much enhanced. Thus transition metals were exchanged in about a week in contrast to the need of several months using previous methods. The ionic conductivity of hydrogen vermiculite was measured and shown to be much lower than that of many other monovalent cations in the same host lattice. Its enthalpy of motion is also much lower. These marked differences suggest that protonic species do not play a significant role in charge transport in these layered materials. These materials were characterized by x-ray powder diffraction, thermogravimetric analysis and acid-base titration. Hydrogen-vermiculite was found to react with organic bases, like methylamine, ethylamine, n-butylamine, n-hexylamine, n-octylamine, n-decylamine, aniline, acrylamide, methacrylaminde, urea, 1,10phenanthroline, and 1,1phenanthroline ferrous sulfate complex, to undergo ion exchange with metal cations like sodium, zinc, copper(II) ions and polymerization reactions could be performed in the galleries of the structure like pyrrole and aniline. Its behavior was compared with that of powdered montmorillonite.

  14. Growth of single crystals under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Popolitov, Vladislav Ivanovich; Litvin, Boris Nikolaevich

    The book summarizes the available theoretical, methodological, and experimental data on the hydrothermal growth of inorganic compounds, such as simple and complex oxides, sulfides, silicates, germanates, phosphates, niobates, and tantalates. Attention is given to the physicochemical, hydrodynamic, and kinetic characteristics of the growth of these compounds, as well as hydrothermal growth techniques and equipment. The discussion also covers the morphogenetic characteristics of hydrothermally grown single crystals, their principal physical properties, and X-ray diffraction and structural data.

  15. Thermal properties of UO2 single crystal

    NASA Astrophysics Data System (ADS)

    Gofryk, K.; Du, S.; Andersson, A. D.; Stanek, C. R.; Schulze, R.; Safarik, D.; Mihaila, B.; Lashley, J. C.; Smith, J. L.

    2013-03-01

    For decades UO2 has been the most widely studied actinide oxide because of its technological importance as fuel material for nuclear reactors. Therefore there is a large interest in understanding its thermal, transport and thermodynamic properties. We present recent experimental results for the thermal conductivity and thermal expansion of high quality UO2 single crystal, obtained for different crystallographic directions, and compare with results of molecular dynamics simulations. We will discuss the implications of this study.

  16. A creep mechanism for metal single crystals

    SciTech Connect

    Cuitino, A.M.

    1995-12-31

    In this paper we present a mechanism of creep for metal single crystals. This creep mechanism is consistent with the hardening mechanism in metals single crystals, i.e. forest hardening. Hardening in metals is mainly due to the resistance to the dislocation motion opposed by obstacles. In single crystals, obstacles are generated by dislocation segments crossing the glide plane (forest dislocations). When a dislocation is released from an obstacle, it moves until stopped at the following obstacle inducing plastic deformation. It has been proposed as a mechanisms of creep that obstacles can be overcome by dislocation climb. However, the kind of obstacles remains in planes parallel to the gliding plane. Thus, the dislocation segment after climb is still stopped at the same obstacle and unable to glide, unless, a second jog moving in the forest dislocation meets simultaneously with the jog in the gliding segment. In this case, the gliding segment can move by the height of the forest jog. The gliding area is proportional to this height and the distance between obstacles. We call this mechanism of glide by congruent climb. Creep rate depends on the jog density and jog velocity. For a well-annealed material the number of jogs is relatively low. As plastic deformation proceeds, new jogs are formed by mainly two mechanisms: dislocation intersection and double cross slip. For a crystal undergoing single slip, the cross-slip contribution dominates jog generation, since dislocation intersections are relatively rare due to the low forest dislocation density. The situation is reversed for multiple glide as a consequence of the rapid dislocation multiplication which takes place in the active slip systems, which results in a high rate of dislocation intersection. The number of cross slip events and dislocation intersections can be readily estimated by our dislocation model of plastic deformation. Jog velocity is determined based on vacancy diffusion along the dislocation core.

  17. Anisotropy of sapphire single crystal sputtering

    SciTech Connect

    Minnebaev, K. F.; Tolpin, K. A.; Yurasova, V. E.

    2015-08-15

    We have studied the spatial distribution of particles sputtered from the base (0001) plane of a sapphire single crystal with trigonal crystalline lattice (α-Al{sub 2}O{sub 3}) that can be considered a superposition of two hexagonal close packed (hcp) structures–the ideal sublattice of oxygen and a somewhat deformed sublattice of aluminum. It is established that the particles sputtered from the base plane of sapphire are predominantly deposited along the sides of an irregular hexagon with spots at its vertices. The patterns of spots have been also studied for sputtering of particles from the (0001) face of a zinc single crystal with the hcp lattice. The spots of sputtered Zn atoms are arranged at the vertices of concentric equilateral hexagons. In both cases, the observed anisotropy of sputtering is related to focused collisions (direct and assisted focusing) and the channeling process. The chemical composition of spots has been determined in various regions of sputtered sapphire deposition. The results are discussed in comparison to analogous earlier data for secondary ion emission from an α-Al{sub 2}O{sub 3} single crystal.

  18. Charge transport in single crystal organic semiconductors

    NASA Astrophysics Data System (ADS)

    Xie, Wei

    Organic electronics have engendered substantial interest in printable, flexible and large-area applications thanks to their low fabrication cost per unit area, chemical versatility and solution processability. Nevertheless, fundamental understanding of device physics and charge transport in organic semiconductors lag somewhat behind, partially due to ubiquitous defects and impurities in technologically useful organic thin films, formed either by vacuum deposition or solution process. In this context, single-crystalline organic semiconductors, or organic single crystals, have therefore provided the ideal system for transport studies. Organic single crystals are characterized by their high chemical purity and outstanding structural perfection, leading to significantly improved electrical properties compared with their thin-film counterparts. Importantly, the surfaces of the crystals are molecularly flat, an ideal condition for building field-effect transistors (FETs). Progress in organic single crystal FETs (SC-FETs) is tremendous during the past decade. Large mobilities ~ 1 - 10 cm2V-1s-1 have been achieved in several crystals, allowing a wide range of electrical, optical, mechanical, structural, and theoretical studies. Several challenges still remain, however, which are the motivation of this thesis. The first challenge is to delineate the crystal structure/electrical property relationship for development of high-performance organic semiconductors. This thesis demonstrates a full spectrum of studies spanning from chemical synthesis, single crystal structure determination, quantum-chemical calculation, SC-OFET fabrication, electrical measurement, photoelectron spectroscopy characterization and extensive device optimization in a series of new rubrene derivatives, motivated by the fact that rubrene is a benchmark semiconductor with record hole mobility ~ 20 cm2V-1s-1. With successful preservation of beneficial pi-stacking structures, these rubrene derivatives form

  19. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization.

    PubMed

    Kissel, Patrick; Murray, Daniel J; Wulftange, William J; Catalano, Vincent J; King, Benjamin T

    2014-09-01

    In contrast to the wide number and variety of available synthetic routes to conventional linear polymers, the synthesis of two-dimensional polymers and unambiguous proof of their structure remains a challenge. Two-dimensional polymers-single-layered polymers that form a tiling network in exactly two dimensions-have potential for use in nanoporous membranes and other applications. Here, we report the preparation of a fluorinated hydrocarbon two-dimensional polymer that can be exfoliated into single sheets, and its characterization by high-resolution single-crystal X-ray diffraction analysis. The procedure involves three steps: preorganization in a lamellar crystal of a rigid monomer bearing three photoreactive arms, photopolymerization of the crystalline monomers by [4 + 4] cycloaddition, and isolation of individual two-dimensional polymer sheets. This polymer is a molecularly thin (~1 nm) material that combines precisely defined monodisperse pores of ~9 Å with a high pore density of 3.3 × 10(13) pores cm(-2). Atomic-resolution single-crystal X-ray structures of the monomer, an intermediate dimer and the final crystalline two-dimensional polymer were obtained and prove the single-crystal-to-single-crystal nature and molecular precision of the two-dimensional photopolymerization.

  20. Some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1983-01-01

    The paper reports some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening. The present results show how the frequency shift in quartz crystals can be influenced by heat processing prior to irradiation and how this procedure can lead to radiation hardening for obtaining precise frequencies and time intervals from quartz oscillators in space.

  1. Peculiarities of post-irradiation annealing of MgO crystals

    NASA Astrophysics Data System (ADS)

    Kvatchadze, V. G.; Kalabegishvili, T. L.; Abramishvili, M. G.; Akhvlediani, Z. G.; Galustashvili, M. V.; Garibashvili, K. I.

    The influence of high-temperature annealing on absorption spectra of nominally pure and impure MgO crystals irradiated in a nuclear reactor has been investigated. In nominally pure crystals, as a whole, the accumulation of defect aggregates of non-monotonous character takes place during the whole cycle of the action of radiation plus post-irradiation annealing: the creation of defects in the process of irradiation, their destruction by annealing at 700 °C and repeated creation at higher annealing temperature. In irradiated impure crystals, where the mentioned defects exist in larger quantities, their thermal reanimation is not observed after the decay at 700 °C.

  2. Guest exchange through single crystal-single crystal transformations in a flexible hydrogen-bonded framework.

    PubMed

    Xiao, Wenchang; Hu, Chunhua; Ward, Michael D

    2014-10-08

    A molecular framework based on guanidinium cations and 1,2,4,5-tetra(4-sulfonatophenyl)benzene (TSPB), an aromatic tetrasulfonate with nominal 2-fold and mirror symmetry, exhibits three crystallographically unique one-dimensional channels as a consequence of molecular symmetry and complementary hydrogen bonding between the guanidinium (G) ions and the sulfonate (S) groups of TSPB. Unlike previous GS frameworks, this new topology is sufficiently flexible to permit reversible release and adsorption of guest molecules in large single crystals through a cyclic shrinkage and expansion of the channels with retention of single crystallinity, as verified by single crystal X-ray diffraction. Moreover, the G4TSPB framework permits guest exchange between various guest molecules through SCSCTs as well as exchange discrimination based on the size and character of the three different channels. The exchange of guest molecules during single crystal-single crystal transformations (SCSCT), a rare occurrence for hydrogen-bonded frameworks, is rather fast, with diffusivities of approximately 10(-6) cm(2) s(-1). Rapid diffusion in the two channels having cross sections sufficient to accommodate two guest molecules can be explained by two-way or ring diffusion, most likely vacancy assisted. Surprisingly, rapid guest exchange also is observed in a smaller channel having a cross-section that accommodates only one guest molecule, which can only be explained by guest-assisted single-file unidirectional diffusion. Several single crystals of inclusion compounds can be realized only through guest exchange in the intact framework, suggesting an approach to the synthesis of single crystalline inclusion compounds that otherwise cannot be attained through direct crystallization methods.

  3. Thermal neutron dosimeter by synthetic single crystal diamond devices.

    PubMed

    Almaviva, S; Marinelli, Marco; Milani, E; Prestopino, G; Tucciarone, A; Verona, C; Verona-Rinati, G; Angelone, M; Pillon, M

    2009-07-01

    We report on a new solid state dosimeter based on chemical vapor deposition (CVD) single crystal diamond fabricated at Roma "Tor Vergata" University laboratories. The dosimeter has been specifically designed for direct neutron dose measurements in boron neutron capture therapy (BNCT). The response to thermal neutrons of the proposed diamond dosimeter is directly due to (10)B and, therefore, the dosimeter response is directly proportional to the boron absorbed doses in BNCT. Two single crystal diamond detectors are fabricated in a p-type/intrinsic/metal configuration and are sandwiched together with a boron containing layer in between the metallic contacts (see Fig.1). Neutron irradiations were performed at the Frascati Neutron Generator (FNG) using the 2.5 MeV neutrons produced through the D(d,n)(3)He fusion reaction. Thermal neutrons were then produced by slowing down the 2.5 MeV neutrons using a cylindrical polymethylmethacrylate (PMMA) moderator. The diamond dosimeter was placed in the center of the moderator. The products of (10)B(n,alpha)Li nuclear reaction were collected simultaneously giving rise to a single peak. Stable performance, high reproducibility, high efficiency and good linearity were observed.

  4. Sponge-like nanoporous single crystals of gold

    PubMed Central

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-01-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner. PMID:26554856

  5. Nanoscale heating of laser irradiated single gold nanoparticles in liquid.

    PubMed

    Honda, Mitsuhiro; Saito, Yuika; Smith, Nicholas I; Fujita, Katsumasa; Kawata, Satoshi

    2011-06-20

    Biological applications where nanoparticles are used in a cell environment with laser irradiation are rapidly emerging. Investigation of the localized heating effect due to the laser irradiation on the particle is required to preclude unintended thermal effects. While bulk temperature rise can be determined using macroscale measurement methods, observation of the actual temperature within the nanoscale domain around the particle is difficult and here we propose a method to measure the local temperature around a single gold nanoparticle in liquid, using white light scattering spectroscopy. Using 40-nm-diameter gold nanoparticles coated with thermo-responsive polymer, we monitored the localized heating effect through the plasmon peak shift. The shift occurs due to the temperature-dependent refractive index change in surrounding polymer medium. The results indicate that the particle experiences a temperature rise of around 10 degrees Celsius when irradiated with tightly focused irradiation of ~1 mW at 532 nm.

  6. Single-crystal to single-crystal transformations in discrete hydrated dimeric copper complexes.

    PubMed

    Mobin, Shaikh M; Srivastava, Ashwini K; Mathur, Pradeep; Lahiri, Goutam Kumar

    2010-02-14

    The single crystals of discrete hydrated [(OAc)Cu(mu-hep)(2)Cu(OAc)].2H(2)O (.2H(2)O) and [(OAc)Cu(mu-hep)(2) Cu(O(n)Pr)].2H(2)O (.2H(2)O) (the lattice H(2)O molecules exist as a tetrameric water cluster, hep-H = 2-(2-hydroxyethyl)pyridine), OAc(-) = acetate and O(n)Pr(-) = n-propionate) undergo single-crystal to single-crystal (SCSC) transformations to the dehydrated and , respectively, under the influence of heat. The reverse SCSC processes of /-->.2H(2)O/.2H(2)O involving the regeneration of the lattice water tetramers take place on exposure of / to water vapour. However, the blue single crystal of discrete hydrated [(O(n)Pr)Cu(mu-hep)(2)Cu(O(n)Pr)].2H(2)O (.2H(2)O), incorporating the two bulkier O(n)Pr(-) terminal bidentate ligands, irreversibly converts to the green single crystal of a unique discrete tetrameric [Cu(4)(mu(3)hep)(2)(mu-hep)(2)(mu-O(n)Pr)(2)(O(n)Pr)(2)] () with double open cubane core either by heating or by a simple vapour diffusion technique via the breaking and forming of multiple covalent bonds.

  7. Nonlinear optical response of nanocomposites based on KDP single crystal with incorporated Al2O3*nH2O nanofibriles under CW and pulsed laser irradiation at 532 nm

    NASA Astrophysics Data System (ADS)

    Popov, A. S.; Uklein, A. V.; Multian, V. V.; Dantec, R. Le; Kostenyukova, E. I.; Bezkrovnaya, O. N.; Pritula, I. M.; Gayvoronsky, V. Ya.

    2016-11-01

    Optical properties and nonlinear optical response due to the CW and pulsed laser radiation self-action at 532 nm were studied in composites based on KDP single crystals with incorporated nanofibriles of nanostructured oxyhydroxide of aluminum (NOA). It was shown a high optical quality and structural homogeneity of nanocomposites KDP:NOA by the transmittance spectra, elastic optical scattering and XRD analysis. It was observed manifestation of the second harmonic generation efficiency enhancement in the KDP:NOA versus the nominally pure KDP (λ=1064 nm, τ=1 ns) that is correlated with efficient refractive index self-modulation Δn ∼10-4 (λ=532 nm, τ=30 ps). In the pyramidal and prismatic growth sectors of the nominally pure KDP crystal it was shown opposite signs of the photoinduced variations both of the refractive index and of the optical absorption/bleaching due to resonant excitation of the native defects at 532 nm. It should be considered for the wide-aperture laser frequency KDP family based convertors fabrication.

  8. Crystal orientation dependence of ion-irradiation hardening in pure tungsten

    NASA Astrophysics Data System (ADS)

    Hasenhuetl, Eva; Zhang, Zhexian; Yabuuchi, Kiyohiro; Song, Peng; Kimura, Akihiko

    2017-04-01

    Pure tungsten (W) single crystals of {0 0 1} and {0 1 1} surface orientations were irradiated with 6.4 MeV Fe3+ ions up to 1 dpa at 573 K. The TEM examination revealed that there was a very small orientation dependence in the radiation damaged microstructure, showing that both W{0 0 1} and W{0 1 1} exhibited a double black band structure with high number density of dislocation loop rafts in the black bands. However, the depth profile of ion-irradiation hardening evaluated by nanoindentation (NI) technique turned out to show a clear orientation dependence, namely, W{0 0 1} showed a deeper NI hardness profile than W{0 1 1}.

  9. Ion beam damage assessment and waveguide formation induced by energetic Si-ion irradiation in lanthanum aluminate crystal

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Huang, Q.; Crespillo, M. L.; Qiao, M.; Liu, P.; Wang, X. L.

    2017-02-01

    Lanthanum aluminate (LaAlO3) crystal has emerged as one of the most valuable functional-materials, and its physical, electronic and optical properties strongly depend on the crystal structure, which can be easily altered in an irradiation environment and therefore affect the performance of LaAlO3-based devices. On the other hand, the preparation of LaAlO3 waveguide is also a scientific challenge for its potential application prospects in optoelectronics field. In this work, the damage evolution behavior of LaAlO3 crystal under Si-ion irradiation has been discussed in detail utilizing complementary characterization techniques, and then, single-mode waveguide of LaAlO3 crystal in the visible band can be obtained based on ion-irradiation-induced lattice damage behavior. Waveguide optical-coupling techniques are used to show its competitive features. Thus, novel optical waveguides with optimized features in LaAlO3 crystals can be tailored by a proper selection of ion mass, energy and fluence using the modification of the target material during ion irradiation process.

  10. Gas hydrate single-crystal structure analyses.

    PubMed

    Kirchner, Michael T; Boese, Roland; Billups, W Edward; Norman, Lewis R

    2004-08-04

    The first single-crystal diffraction studies on methane, propane, methane/propane, and adamantane gas hydrates SI, SII, and SH have been performed. To circumvent the problem of very slow crystal growth, a novel technique of in situ cocrystallization of gases and liquids resulting in oligocrystalline material in a capillary has been developed. With special data treatment, termed oligo diffractometry, structural data of the gas hydrates of methane, acetylene, propane, a propane/ethanol/methane-mixture and an adamantane/methane-mixture were obtained. Cell parameters are in accord with reported values. Host network and guest are subject to extensive disorder, reducing the reliability of structural information. It was found that most cages are fully occupied by a guest molecule with the exception of the dodecahedral cage in the acetylene hydrate which is only filled to 60%. For adamantane in the icosahedral cage a disordered model is proposed.

  11. Devices made on single crystal silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, Ying

    The interchip delay and performance mismatch at the chip level degrades the system performance. Further increases in system performance will require one to move from integrated circuits assembled on a board to true integrated systems. All the devices that perform different functions are put on a single substrate. Using this method, the interconnect distance decreases from centimeters to micrometers, thus dramatically decreasing the delay. Also, much of the chip level mismatch is eliminated. The single crystal silicon nanoparticle is a good candidate for one of the primary building blocks of such an integrated system. The devices made on silicon are stable; carrier mobility in single crystal silicon is reasonably high; modern silicon manufacturing infrastructure can be used to make silicon nanoparticle devices easily; and there exists a technology to localize the particles. In addition, the particle is a 3-D structure, making it possible to build a compact 3-D integrated system. In this thesis, a vacuum system was built to generate single crystal silicon nanoparticles. The particles were generated in a silane plasma, focused by aerodynamic lens and annealed in flight using a high temperature furnace. Single crystal silicon nanoparticles as large as 100 nm have been obtained. MSM (Metal-Silicon-Metal) structure was made on the silicon particles and the current-voltage (I-V) relationship through the particles was obtained. Thermionic theory and space charge limited current theory were used to explain the operation of the device. Schottky barrier height and trap density were obtained. SBFETs (Schottky Barrier Field Effect Transistors) were also built. Devices show PMOS characteristics and asymmetric characteristics to the zero drain voltage. Numerical simulation was performed on the MSM structure and SBFET to help understand the mechanism of device performance. I-V relationship generally shows good agreement with the measured result. Contours of band structure and

  12. Single crystal to single crystal polymerization of a columnar assembled diacetylene macrocycle

    NASA Astrophysics Data System (ADS)

    Xu, Weiwei

    Organic tubular materials have attracted lots of attentions for their potential applications as nanoscale fluidic transport systems, specific ion sensors, molecular sieves and confined molecular reaction containers. While conjugated polymers, due to delocalized Pi electrons, exhibit interesting solar cells and sensors applications. In this thesis, we developed a conjugated polymer which combines the attributes of conjugated polymers with tubular materials, which should have great potential to work as a sensing material. We reproduced and scaled-up the synthesis of a polymerizable macrocycle 1 that contains two rigidly separated diacetylene units. We found that, through hydrogen bonding, 1 can assemble into columnar crystals and can be polymerized under a single crystal to single crystal transformation process to afford porous polydiacetylene (PDA) crystals. We studied the assembly of the macrocycles 1 under different conditions to give three different crystalline forms and micro-phase crystals, and also investigated their subsequent polymerizations. The macrocycle assembly and polymerized materials were characterized by a variety of technique. Since the gas adsorption measurement exhibited PDA crystals still retained its porosity and the polymer should have ability to uptake suitable guest molecules, therefore the absorption of iodine for PDA crystals was investigated as well.

  13. Direct Shear of Olivine Single Crystals

    NASA Astrophysics Data System (ADS)

    Tielke, Jacob; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Knowledge of the strength of individual dislocation slip systems in olivine is fundamental to understanding the flow behavior and the development of lattice-preferred orientation in olivine-rich rocks. The most direct measurements of the strengths of individual slip systems are from triaxial compression experiments on olivine single crystals. However, such experiments only allow for determination of flow laws for two of the four dominate slip systems in olivine. In order to measure the strengths of the (001)[100] and (100)[001] slip systems independently, we performed deformation experiments on single crystals of San Carlos olivine in a direct shear geometry. Experiments were carried out at temperatures of 1000° to 1300°C, a confining pressure of 300 MPa, shear stresses of 60 to 334 MPa, and resultant shear strain rates of 7.4 x 10-6 to 6.7 x 10-4 s-1. At high-temperature (≥1200°C) and low-stress (≤200 MPa) conditions, the strain rate of crystals oriented for direct shear on either the (001)[100] or the (100)[001] slip system follows a power law relationship with stress, whereas at lower temperatures and higher stresses, strain rate depends exponentially on stress. The flow laws derived from the mechanical data in this study are consistent with a transition from the operation of a climb-controlled dislocation mechanism during power-law creep to the operation of a glide-controlled dislocation mechanism during exponential creep. In the climb-controlled regime, crystals oriented for shear on the (001)[100] slip system are weaker than crystals orientated for shear on the (100)[001] slip system. In contrast, in the glide-controlled regime the opposite is observed. Extrapolation of flow laws determined for crystals sheared in orientations favorable for slip on these two slip systems to upper mantle conditions reveals that the (001)[100] slip system is weaker at temperatures and stresses that are typical of the asthenospheric mantle, whereas the (100)[001] slip

  14. Direct shear of olivine single crystals

    NASA Astrophysics Data System (ADS)

    Tielke, Jacob A.; Zimmerman, Mark E.; Kohlstedt, David L.

    2016-12-01

    Knowledge of the strengths of the individual dislocation slip systems in olivine is fundamental to understanding the flow behavior and the development of lattice-preferred orientation in olivine-rich rocks. The most direct measurements of the strengths of individual slip systems are from triaxial compression experiments on olivine single crystals. However, such experiments only allow for determination of flow laws for two of the four dominant slip systems in olivine. In order to measure the strengths of the (001)[100] and (100)[001] slip systems independently, we performed deformation experiments on single crystals of San Carlos olivine in a direct shear geometry. Experiments were carried out at temperatures of 1000 ° to 1300 °C, a confining pressure of 300 MPa, shear stresses of 60 to 334 MPa, and resultant shear strain rates of 7.4 × 10-6 to 2.1 × 10-3 s-1. At high-temperature (≥1200 °C) and low-stress (≤200 MPa) conditions, the strain rate of crystals oriented for direct shear on either the (001)[100] or the (100)[001] slip system follows a power law relationship with stress, whereas at lower temperatures and higher stresses, strain rate depends exponentially on stress. The flow laws derived from the mechanical data in this study are consistent with a transition from the operation of a climb-controlled dislocation mechanism during power-law creep to the operation of a glide-controlled dislocation mechanism during exponential creep. In the climb-controlled regime, crystals oriented for shear on the (001)[100] slip system are weaker than crystals orientated for shear on the (100)[001] slip system. In contrast, in the glide-controlled regime the opposite is observed. Extrapolation of flow laws determined for crystals sheared in orientations favorable for slip on these two slip systems to upper mantle conditions reveals that the (001)[100] slip system is weaker at temperatures and stresses that are typical of the asthenospheric mantle, whereas the (100

  15. Load relaxation of olivine single crystals

    NASA Astrophysics Data System (ADS)

    Cooper, Reid F.; Stone, Donald S.; Plookphol, Thawatchai

    2016-10-01

    Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo88-90) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500°C and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log stress versus log strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different than that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, we argue, indicates flow that is rate limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).

  16. Chemical vapor deposition of graphene single crystals.

    PubMed

    Yan, Zheng; Peng, Zhiwei; Tour, James M

    2014-04-15

    As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and

  17. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    SciTech Connect

    Grachev, V.; Meyer, M.; Malovichko, G.; Hunt, A. W.

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin ½ was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystals—ionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and γ-radiation.

  18. Some new results on the frequency characteristics on quartz crystals irradiated by ionizing and particle radiations

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1981-01-01

    The frequency behavior of AT-cut quartz crystals irradiated by X -, gamma rays and fast neutrons. Initial instability in frequency for gamma and neutron irradiated crystals was found. All the different radiations first give a negative frequency shift at lower doses which are followed by positive frequency shift for increased doses. Results are explained in terms of the fundamental crystal structure. Applications of the frequency results for radiation hardening are proposed.

  19. Growth rate study of canavalin single crystals

    NASA Technical Reports Server (NTRS)

    Demattei, R. C.; Feigelson, R. S.

    1989-01-01

    The dependence on supersaturation of the growth rate of single crystals of the protein canavalin is studied. In the supersaturation ranges studied, the rate-limiting step for growth is best described by a screw dislocation mechanism associated with interface attachment kinetics. Using a ln-ln plot, the growth-rate data is found to fit a predictive relationship of the form G = 0.012 x the supersaturation to the 6.66, which, together with the solubility curves, allows the growth rate to be estimated under a variety of conditions.

  20. Phase transition in sarcosine phosphite single crystals

    NASA Astrophysics Data System (ADS)

    Lemanov, V. V.; Popov, S. N.; Pankova, G. A.

    2011-06-01

    Single crystals of sarcosine phosphite (SarcH3PO3) have been grown. The amino acid sarcosine is an isomer of the protein amino acid alanine. Both amino acids are described by the same chemical formula but have different structures; or, more specifically, in contrast to the alanine molecule, the sarcosine molecule has a symmetric structure. It has been found that the sarcosine phosphite compound undergoes a structural phase transition at a temperature of approximately 200 K. This result has demonstrated that compounds of achiral amino acids are more susceptible to structural phase transitions.

  1. Conduction mechanism of single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The fully guarded three-terminal technique was used to perform conductivity measurements on single-crystal alumina at temperatures of 400-1300 C. The conductivity was also determined as a function of time at various temperatures and applied fields. Further, the fractions of the current carried by Al and O ions (ionic transference numbers) were determined from long-term transference experiments in the temperature range 1100-1300 C. A mathematical model of the conduction mechanism is proposed, and model predictions are compared with experimental results.

  2. Synthetic single crystal diamond diodes for radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Almaviva, S.; Marinelli, Marco; Milani, E.; Tucciarone, A.; Verona-Rinati, G.; Consorti, R.; Petrucci, A.; De Notaristefani, F.; Ciancaglioni, I.

    2008-09-01

    Synthetic single crystal diamonds in a p-type/intrinsic/metal structure were tested as dosimeters for radiotherapy. The devices have been analyzed by using 6 and 10 MV Bremsstrahlung X-ray beams and electron beams from 6 MeV up to 18 MeV from a CLINAC DHX Varian accelerator. All measurements have been performed in a water phantom and ionization chambers were used for calibration and comparison. The dosimeters were operated in photovoltaic regime with no external bias voltage applied. A few Gy pre-irradiation was performed in order to stabilize the device output, resulting in fluctuations sensitivity below ±0.5%. No dose rate dependence of the detector response was observed. Very good reproducibility and linearity were obtained as well.

  3. EPR studies of 5-bromouracil crystal after irradiation with X rays in the bromine K-edge region.

    PubMed

    Yokoya, Akinari; Takakura, Kaoru; Watanabe, Ritsuko; Akamatsu, Ken; Ito, Takashi

    2004-10-01

    Radicals induced in a single crystal of 5-bromouracil (BrUra) by synchrotron soft X rays in the bromine K-edge region (13.461-13.482 keV) were investigated using the X-band EPR method. The crystal was irradiated at three peak energies of the absorption spectrum at room temperature or at 80 K. A hydrogen abstraction radical derived from N1 of the pyrimidine ring was commonly observed for all of the energies used, though with some variation in quantity. Similar characteristics were also observed in the EPR signal for the off-K-edge low-energy (13.42 keV) and (60)Co gamma rays used for comparison. When irradiated at 80 K, a much larger exposure (roughly 10 times) of soft X rays was needed to obtain the same signal intensity as that observed at room temperature. EPR signals were not detectable with gamma irradiation at liquid nitrogen temperature.

  4. Thermodynamic forces in single crystals with dislocations

    NASA Astrophysics Data System (ADS)

    Van Goethem, Nicolas

    2014-06-01

    A simple model for the evolution of macroscopic dislocation regions in a single crystal is presented. This model relies on maximal dissipation principle within Kröner's geometric description of the dislocated crystal. Mathematical methods and tools from shape optimization theory provide equilibrium relations at the dislocation front, similarly to previous work achieved on damage modelling (J Comput Phys 33(16):5010-5044, 2011). The deformation state variable is the incompatible strain as related to the dislocation density tensor by a relation involving the Ricci curvature of the crystal underlying elastic metric. The time evolution of the model variables follows from a novel interpretation of the Einstein-Hilbert flow in terms of dislocation microstructure energy. This flow is interpreted as the dissipation of non-conservative dislocations, due to the climb mechanism, modelled by an average effect of mesoscopic dislocations moving normal to their glide planes by adding or removing points defects. The model equations are a fourth-order tensor parabolic equation involving the operator "incompatibility," here appearing as a tensorial counterpart of the scalar Laplacian. This work encompasses and generalizes results previously announced (C R Acad Sci Paris Ser I 349:923-927, 2011), with in addition a series of physical interpretations to give a meaning to the newly introduced concepts.

  5. Ultrahigh-quality silicon carbide single crystals.

    PubMed

    Nakamura, Daisuke; Gunjishima, Itaru; Yamaguchi, Satoshi; Ito, Tadashi; Okamoto, Atsuto; Kondo, Hiroyuki; Onda, Shoichi; Takatori, Kazumasa

    2004-08-26

    Silicon carbide (SiC) has a range of useful physical, mechanical and electronic properties that make it a promising material for next-generation electronic devices. Careful consideration of the thermal conditions in which SiC [0001] is grown has resulted in improvements in crystal diameter and quality: the quantity of macroscopic defects such as hollow core dislocations (micropipes), inclusions, small-angle boundaries and long-range lattice warp has been reduced. But some macroscopic defects (about 1-10 cm(-2)) and a large density of elementary dislocations (approximately 10(4) cm(-2)), such as edge, basal plane and screw dislocations, remain within the crystal, and have so far prevented the realization of high-efficiency, reliable electronic devices in SiC (refs 12-16). Here we report a method, inspired by the dislocation structure of SiC grown perpendicular to the c-axis (a-face growth), to reduce the number of dislocations in SiC single crystals by two to three orders of magnitude, rendering them virtually dislocation-free. These substrates will promote the development of high-power SiC devices and reduce energy losses of the resulting electrical systems.

  6. Single crystal: Urea bisthiourea sodium acetate synthesis, growth and characterization

    NASA Astrophysics Data System (ADS)

    Manickam, R.; Srinivasan, G.

    2017-05-01

    Crystals of urea bisthiourea sodium acetate (UBTSA) were successfully grown from an aqueous solution by slow evaporation method at room temperature. Recrystallization process was used to increase the purity of the grown crystal. The grown crystals were characterized by single crystal XRD, FT-Raman, UV and TGA/DTA analysis. Structure and unit cell parameters were determined by single crystal XRD. Functional groups of grown crystal and their modes of vibration were identified using FT-Raman spectral analysis. Absorbance percentage of the grown crystal was studied using UV analysis. Thermo gravimetric analysis and differential thermal analysis reveal that the good thermal stability of the material.

  7. Influence of crystal tilt on solar irradiance of cirrus clouds.

    PubMed

    Klotzsche, Susann; Macke, Andreas

    2006-02-10

    The single and multiple scattering and absorption properties of hexagonal ice columns with different degrees of particle orientation are modeled in the solar spectral range by means of a ray-tracing single-scattering code and a Monte Carlo radiative-transfer code. The scattering properties are most sensitive to particle orientation for the solar zenith angles of 50 degrees (asymmetry parameter) and 90 degrees (single-scattering albedo). Provided that the ice columns are horizontally oriented, the usual assumption of random orientation leads to an overestimation (underestimation) of the reflected (transmitted) solar broadband radiation at high Sun elevation and to an underestimation (overestimation) at medium solar zenith angles. The orientation effect is more (less) pronounced in scattering and transmission (absorption) for smaller ice crystals.

  8. Cutting fluid study for single crystal silicon

    SciTech Connect

    Chargin, D.

    1998-05-05

    An empirical study was conducted to evaluate cutting fluids for Single Point Diamond Turning (SPDT) of single crystal silicon. The pH of distilled waster was adjusted with various additives the examine the effect of pH on cutting operations. Fluids which seemed to promote ductile cutting appeared to increase tool wear as well, an undesirable tradeoff. High Ph sodium hydroxide solutions showed promise for further research, as they yielded the best combination of reduced tool wear and good surface finish in the ductile regime. Negative rake tools were verified to improve the surface finish, but the negative rake tools used in the experiments also showed much higher wear than conventional 0{degree} rake tools. Effects of crystallographic orientation on SPDT, such as star patterns of fracture damage forming near the center of the samples, were observed to decrease with lower feedrates. Silicon chips were observed and photographed, indicative of a ductile materials removal process.

  9. Heterogeneous growth of single crystals on polycrystals

    NASA Astrophysics Data System (ADS)

    Wang, Zumin; Jeurgens, Lars P. H.; Gu, Lin; Mittemeijer, Eric J.

    2017-03-01

    This work discloses a surprising, previously unknown heterogeneous growth mode. Namely, large-area, thin sheets of single-crystalline Ge were observed to grow laterally on top of a polycrystalline Al substrate, covering as many as tens of differently oriented Al grains at low temperatures. The observation of the Ge crystal-growth process by in situ heating transmission electron microscopy demonstrates an intriguing type of "faceted" growth: the growth of single-crystalline Ge thin sheets proceeding Al-grain by Al-grain on top of the polycrystalline Al substrate. The crystalline Ge growth front tends to align along the lines of intersection of the Al grain boundaries with the Al surface. Such an unusual heterogeneous growth mode has been shown to be a consequence of the strong anisotropy of the energy of the crystalline/crystalline (here: c-Ge/c-Al) interfaces.

  10. Biaxial constitutive equation development for single crystals

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    Current gas turbine engines utilize large single crystal superalloy components in the hot section. Structural analysis of these components requires a valid stress strain temperature constitutive equation. The goal of the program described is to create one or more models and verify these models. A constitutive equation based on an assumed slip behavior of a single slip system was formulated, programmed, and debugged. Specifically, the basic theory for a model based on aggravating slip behavior on individual slip systems was formulated and programmed and some simulations were run using assumed values of constants. In addition, a formulation allowing strain controlled simulations was completed. An approach to structural analysis of the specimen was developed. This approach uses long tube consistancy conditions and finite elements specially formulated to take advantage of the symmetry of 100 oriented specimens.

  11. Comparison of radiation damage in lead tungstate crystals under pion and gamma irradiation

    SciTech Connect

    Batarin, V.A.; Butler, J.; Davidenko, A.M.; Derevschikov, A.A.; Goncharenko, Y.M.; Grishin, V.N.; Kachanov, V.A.; Khodyrev, V.Y.; Konstantinov, A.S.; Kravtsov, V.I.; Kubota, Y.; Lukanin, V.S.; Matulenko, Y.A.; Melnick, Y.M.; Meschanin, A.P.; Mikhalin, N.E.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Nogach, L.V.; Ryazantsev, A.V.; /Serpukhov, IHEP /Fermilab /Minnesota U. /Syracuse U. /Nanjing U.

    2003-12-01

    Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40 GeV pion beam. After full recovery, the same crystals were irradiated using a {sup 137}Cs {gamma}-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.

  12. Hydrolytic weakening in olivine single crystals

    NASA Astrophysics Data System (ADS)

    Tielke, Jacob A.; Zimmerman, Mark E.; Kohlstedt, David L.

    2017-05-01

    Deformation experiments on single crystals of San Carlos olivine under hydrous conditions were performed to investigate the microphysical processes responsible for hydrolytic weakening during dislocation creep. Hydrogen was supplied to the crystals using either talc or brucite sealed in nickel capsules with the crystal. Deformation experiments were carried out using a gas medium apparatus at temperatures of 1050° to 1250°C, a confining pressure of 300 MPa, differential stresses of 45 to 294 MPa, and resultant strain rates of 1.5 × 10-6 to 4.4 × 10-4 s-1. For talc-buffered (i.e., water and orthopyroxene-buffered) samples at high temperatures, the dependence of strain rate on stress follows a power law relationship with a stress exponent (n) of ˜2.5 and an activation energy of ˜490 kJ/mol. Brucite-buffered samples deformed faster than talc-buffered samples but contained similar hydrogen concentrations, demonstrating that strain rate is influenced by orthopyroxene activity under hydrous conditions. The values of n and dependence of strain rate on orthopyroxene activity are consistent with hydrolytic weakening occurring in the climb-controlled dislocation creep regime that is associated with deformation controlled by lattice diffusion under hydrous conditions and by pipe diffusion under anhydrous conditions. Analyses of postdeformation electron-backscatter diffraction data demonstrate that dislocations with [100] Burgers vectors are dominant in the climb-controlled regime and dislocations with [001] are dominant in the glide-controlled regime. Comparison of the experimentally determined constitutive equations demonstrates that under hydrous conditions crystals deform 1 to 2 orders of magnitude faster than under anhydrous conditions.

  13. Effect of crystal orientation on hardness of He+ ion irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Huang, Shilin; Ran, Guang; Lei, Penghui; Chen, Nanjun; Wu, Shenghua; Li, Ning; Shen, Qiang

    2017-09-01

    The effect of crystal orientation on hardness in the as-received, irradiated and post-irradiation annealed tungsten samples was investigated using a nanoindenter. An effective irradiation method of He+ ions with a series of energy degraded from 200 keV to 20 keV was used to continuously irradiate polycrystalline tungsten at room temperature in order to obtain a relatively homogenous displacement damage and helium concentration from sample surface to a desired depth at a NEC 400 kV ion implanter. Some irradiated samples were then annealed at 900 °C. He+ ion irradiation induced hardness increase, oppositely for the post-irradiation annealing effect. Meanwhile, the hardness of the irradiated samples was decreased sharply in the initial stage of annealing from 0 to 1 h, and then slowed down in the latter stage from 1 h to 3 h. Crystal orientation had an obvious effect on the nanoindentation hardness. The (0 0 1)-oriented grains had highest hardness at the as-received and irradiated samples. During the annealing process, the hardness in the irradiated grains with (1 1 1) crystal orientation decreased more quickly than that in the (0 0 1)-oriented grains. The mechanism of the effect of crystal orientation on hardness was analyzed and discussed.

  14. Nanopore integrated with Au clusters formed under electron beam irradiation for single molecule analysis

    NASA Astrophysics Data System (ADS)

    Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Kim, Sung In; Yoo, Jung Ho; Park, Kyung Jin; Park, Nam Kyou; Kim, Yong-Sang

    2016-02-01

    Recently the single molecules such as protein and deoxyribonucleic acid (DNA) have been successfully characterized using a solidstate nanopore with an electrical detection technique. However, the optical plasmonic nanopore has yet to be fabricated. The optical detection technique can be better utilized as next generation ultrafast geneome sequencing devices due to the possible utilization of the current optical technique for genome sequencing. In this report, we have investigated the Au nanopore formation under the electron beam irradiation on an Au aperture. The circular-type nanoopening with ~ 5 nm diameter on the diffused membrane is fabricated by using 2 keV electron beam irradiation by using field emission scanning electron microscopy (FESEM). We found the Au cluster on the periphery of the drilled aperture under a 2 keV electron beam irradiation. Immediately right after electron beam irradiation, no Au cluster and no Au crystal lattice structure on the diffused plane are observed. However, after the sample was kept for ~ 6 months under a room environment, the Au clusters are found on the diffused membrane and the Au crystal lattice structures on the diffused membrane are also found using high resolution transmission electron microscopy. These phenomena can be attributed to Ostwald ripening. In addition, the Au nano-hole on the 40 nm thick Au membrane was also drilled by using 200 keV scanning transmission electron microscopy.

  15. Growing single crystals in silica gel

    NASA Technical Reports Server (NTRS)

    Rubin, B.

    1970-01-01

    Two types of chemical reactions for crystal growing are discussed. The first is a metathetical reaction to produce calcium tartrate tetrahydrate crystals, the second is a decomplexation reaction to produce cuprous chloride crystals.

  16. Growth of single crystals of BaFe12O19 by solid state crystal growth

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  17. Load Relaxation of Olivine Single Crystals

    NASA Astrophysics Data System (ADS)

    Cooper, R. F.; Stone, D. S.; Plookphol, T.

    2016-12-01

    Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo90-92) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500ºC and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power-law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load-relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log-stress v. log-strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different that that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, thus, indicates flow that is rate-limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).

  18. Effects of Gamma Irradiation on Optical Properties of Colloidal Nano-crystals

    SciTech Connect

    Withers, Nathan J.; Sankar, Krishnaprasad; Akins, Brian A.; Memon, Tosifa A.; Smolyakov, Gennady A.; Osinski, Marek; Gu, Jiangjiang; Gu, Tingyi; Bowers, Shin T. |; Greenberg, Melisa R. |; Busch, Robert D.

    2008-07-01

    The effects of {sup 137}Cs gamma irradiation on photoluminescence properties, such as spectra, light output, and lifetime, of several types of colloidal nano-crystals have been investigated. Irradiation-induced damage testing was performed on CdSe/ZnS, LaF{sub 3}:Eu, LaF{sub 3}:Ce, ZnO, and PbI{sub 2} nano-crystals synthesized on a Schlenk line using appropriate solvents and precursors. Optical degradation of the nano-crystals was evaluated based on the measured dependence of their photoluminescence intensity on the irradiation dose. Radiation hardness varies significantly between various nano-crystalline material systems. (authors)

  19. Piezoelectric single crystals for ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K Kirk

    2014-10-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state-of-art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN-PT and PIN-PMN-PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single-element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed.

  20. Photophysics of Molecular Materials: From Single Molecules to Single Crystals

    NASA Astrophysics Data System (ADS)

    Lanzani, Guglielmo

    2005-12-01

    Carbon based pi-conjugated materials offer a broad range of applications, going from molecular electronics and single molecule devices to nanotechnology, plastic electronics and optoelectronics. The proper physical description of such materials is in between that of molecular solids and that of low-dimensional covalent semiconductors. This book is a comprehensive review of their elementary excitations processes and dynamics, which merges the two viewpoints, sometimes very different if not contrasting. In each chapter, a broad tutorial introduction provides a solid physical background to the topic, which is further discussed based on recent experimental results obtained via state-of-the-art techniques. Both the molecular, intra-chain character and the solid state, inter-molecular physics is addressed. Reports on single molecule and single polymer chain spectroscopy introduce the on-site phenomena. Several chapters are dedicated to nano-probes, steady state and transient spectroscopies. The highly ordered state, occurring in single crystals, is also discussed thoroughly. Finally, less conventional tools such as THz spectroscopy are discussed in detail. The book provides a useful introduction to the field for newcomers, and a valid reference for experienced researchers in the field.

  1. Photophysics of Molecular Materials: From Single Molecules to Single Crystals

    NASA Astrophysics Data System (ADS)

    Lanzani, Guglielmo

    2003-09-01

    Carbon based pi-conjugated materials offer a broad range of applications, going from molecular electronics and single molecule devices to nanotechnology, plastic electronics and optoelectronics. The proper physical description of such materials is in between that of molecular solids and that of low-dimensional covalent semiconductors. This book is a comprehensive review of their elementary excitations processes and dynamics, which merges the two viewpoints, sometimes very different if not contrasting. In each chapter, a broad tutorial introduction provides a solid physical background to the topic, which is further discussed based on recent experimental results obtained via state-of-the-art techniques. Both the molecular, intra-chain character and the solid state, inter-molecular physics is addressed. Reports on single molecule and single polymer chain spectroscopy introduce the on-site phenomena. Several chapters are dedicated to nano-probes, steady state and transient spectroscopies. The highly ordered state, occurring in single crystals, is also discussed thoroughly. Finally, less conventional tools such as THz spectroscopy are discussed in detail. The book provides a useful introduction to the field for newcomers, and a valid reference for experienced researchers in the field.

  2. Experimental dynamic metamorphism of mineral single crystals

    USGS Publications Warehouse

    Kirby, S.H.; Stern, L.A.

    1993-01-01

    This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a-?? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ??? clinoenstatite and w u ??rtzite ??? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO ?? nAl2O3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to

  3. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  4. Noncontact atomic force microscopy of perfect single crystals of pentacene prepared by crystallization from solution.

    PubMed

    Sato, Kazuya; Sawaguchi, Takahiro; Sakata, Masafumi; Itaya, Kingo

    2007-12-18

    Nearly perfect single crystals of pentacene were grown from trichlorobenzene solution. The surface structure of pentacene single crystals has been investigated by frequency modulation atomic force microscopy. Molecularly flat and extraordinarily wide terraces, extended over the width of more than a few micrometers with monomolecular steps, were consistently observed, suggesting that those pentacene crystals were nearly perfect single crystals. Molecular packing arrangements were revealed by FM-AFM for the first time.

  5. Single-cell Raman spectroscopy of irradiated tumour cells

    NASA Astrophysics Data System (ADS)

    Matthews, Quinn

    This work describes the development and application of a novel combination of single-cell Raman spectroscopy (RS), automated data processing, and principal component analysis (PCA) for investigating radiation induced biochemical responses in human tumour cells. The developed techniques are first validated for the analysis of large data sets (˜200 spectra) obtained from single cells. The effectiveness and robustness of the automated data processing methods is demonstrated, and potential pitfalls that may arise during the implementation of such methods are identified. The techniques are first applied to investigate the inherent sources of spectral variability between single cells of a human prostate tumour cell line (DU145) cultured in vitro. PCA is used to identify spectral differences that correlate with cell cycle progression and the changing confluency of a cell culture during the first 3-4 days after sub-culturing. Spectral variability arising from cell cycle progression is (i) expressed as varying intensities of protein and nucleic acid features relative to lipid features, (ii) well correlated with known biochemical changes in cells as they progress through the cell cycle, and (iii) shown to be the most significant source of inherent spectral variability between cells. This characterization provides a foundation for interpreting spectral variability in subsequent studies. The techniques are then applied to study the effects of ionizing radiation on human tumour cells. DU145 cells are cultured in vitro and irradiated to doses between 15 and 50 Gy with single fractions of 6 MV photons from a medical linear accelerator. Raman spectra are acquired from irradiated and unirradiated cells, up to 5 days post-irradiation. PCA is used to distinguish radiation induced spectral changes from inherent sources of spectral variability, such as those arising from cell cycle. Radiation induced spectral changes are found to correlate with both the irradiated dose and the

  6. The effect of 100 MeV oxygen ion on electrical and optical properties of nonlinear optical l-alanine sodium nitrate single crystals

    SciTech Connect

    Ahlam, M. A.; Prakash, A. P. Gnana

    2012-06-05

    Single crystals of nonlinear optical (NLO) L-alanine Sodium Nitrate (LASN) were grown by slow evaporation method. The grown crystals were irradiated by 100 MeV oxygen ions with the cumulative doses of 1Mrad, 6 Mrad and 10 Mrad. The dielectric properties, differential scanning calorimetry (DSC) and second harmonic generation (SHG) of the crystals were studied before and after irradiation. The dielectric constant was found to increase after irradiation. The DSC reveals that the melting point remains unaffected due to irradiation. The SHG efficiency of LASN was found to decrease with increase in radiation dose.

  7. The effect of 100 MeV oxygen ion on electrical and optical properties of nonlinear optical l-alanine sodium nitrate single crystals

    NASA Astrophysics Data System (ADS)

    Ahlam, M. A.; Prakash, A. P. Gnana

    2012-06-01

    Single crystals of nonlinear optical (NLO) L-alanine Sodium Nitrate (LASN) were grown by slow evaporation method. The grown crystals were irradiated by 100 MeV oxygen ions with the cumulative doses of 1Mrad, 6 Mrad and 10 Mrad. The dielectric properties, differential scanning calorimetry (DSC) and second harmonic generation (SHG) of the crystals were studied before and after irradiation. The dielectric constant was found to increase after irradiation. The DSC reveals that the melting point remains unaffected due to irradiation. The SHG efficiency of LASN was found to decrease with increase in radiation dose.

  8. Vibration-assisted machining of single crystal

    NASA Astrophysics Data System (ADS)

    Zahedi, S. A.; Roy, A.; Silberschmidt, V. V.

    2013-07-01

    Vibration-assisted machining offers a solution to expanding needs for improved machining, especially where accuracy and precision are of importance, such as in micromachining of single crystals of metals and alloys. Crystallographic anisotropy plays a crucial role in determining on overall response to machining. In this study, we intend to address the matter of ultra-precision machining of material at the micron scale using computational modelling. A hybrid modelling approach is implemented that combines two discrete schemes: smoothed particle hydrodynamics and continuum finite elements. The model is implemented in a commercial software ABAQUS/Explicit employing a user-defined subroutine (VUMAT) and used to elucidate the effect of crystallographic anisotropy on a response of face centred cubic (f.c.c.) metals to machining.

  9. Low-cobalt single crystal Rene 150

    NASA Technical Reports Server (NTRS)

    Scheuermann, C. M.

    1982-01-01

    The effects of cobalt content on a single crystal version of the advanced, high gamma prime content turbine airfoil alloy Rene 150 were investigated. Cobalt contents under investigation include 12 wt.% (composition level of Rene 150), 6 wt.%, and 0 wt.%. Preliminary test results are presented and compared with the properties of standard DS Rene 150. DTA results indicate that the liquidus goes through a maximum of about 1435 C near 6 wt.% Co. The solidus remains essentially constant at 1390 C with decreasing Co content. The gamma prime solvus appears to go through a minimum of about 1235 C near 6 wt.% Co content. Preliminary as-cast tensile and stress rupture results are presented along with heat treat schedules and future test plans.

  10. Hydrogen Annealing Of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  11. Submicron diameter single crystal sapphire optical fiber

    SciTech Connect

    Hill, Cary; Homa, Daniel; Liu, Bo; Yu, Zhihao; Wang, Anbo; Pickrell, Gary

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers is the first step in achieving optical and sensing performance on par with its fused silica counterpart.

  12. Submicron diameter single crystal sapphire optical fiber

    DOE PAGES

    Hill, Cary; Homa, Daniel; Liu, Bo; ...

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  13. Constitutive modeling for single crystal superalloys

    NASA Technical Reports Server (NTRS)

    Stouffer, Donald C.; Dame, L. Thomas; Jayaraman, N.

    1985-01-01

    A crystallographic approach to constitutive modeling of single crystal superalloys is discussed. The approach is based on identifying the active slip planes and slip directions. The shear stresses are computed on each of the slip planes from applied stress components. The slip rate is then computed on each slip system and the microscopic inelastic strain rates are the sum of the slip in the individual slip systems. The constitutive model was implemented in a finite element code using twenty noted isoparametric solid elements. Constants were determined for octahedral and cube slip systems. These constants were then used to predict tension-compression asymmetry and fatigue loops. Other data was used to model the tensile and creep response.

  14. Controlled Folding of Single Crystal Graphene.

    PubMed

    Wang, Bin; Huang, Ming; Kim, Na Yeon; Cunning, Benjamin V; Huang, Yuan; Qu, Deshun; Chen, Xianjue; Jin, Sunghwan; Biswal, Mandakini; Zhang, Xu; Lee, Sun Hwa; Lim, Hyunseob; Yoo, Won Jong; Lee, Zonghoon; Ruoff, Rodney S

    2017-03-08

    Folded graphene in which two layers are stacked with a twist angle between them has been predicted to exhibit unique electronic, thermal, and magnetic properties. We report the folding of a single crystal monolayer graphene film grown on a Cu(111) substrate by using a tailored substrate having a hydrophobic region and a hydrophilic region. Controlled film delamination from the hydrophilic region was used to prepare macroscopic folded graphene with good uniformity on the millimeter scale. This process was used to create many folded sheets each with a defined twist angle between the two sheets. By identifying the original lattice orientation of the monolayer graphene on Cu foil, or establishing the relation between the fold angle and twist angle, this folding technique allows for the preparation of twisted bilayer graphene films with defined stacking orientations and may also be extended to create folded structures of other two-dimensional nanomaterials.

  15. Thermal debracketing of single crystal sapphire brackets.

    PubMed

    Rueggeberg, F A; Lockwood, P E

    1992-01-01

    Because of their optical clarity, single crystal sapphire brackets provide an esthetic advantage over many other types of orthodontic brackets. However, debonding of these brackets has caused iatrogenic damage to enamel. Thermal debonding has been proposed for use in removing sapphire brackets without causing damage to teeth. This study determined the temperature required at the enamel/resin interface to thermally debond sapphire brackets from etched bovine enamel using 23 different commercially available orthodontic resins and one experimental product. The results indicate a wide range of debonding temperatures for the various resins. As a group, the powder-liquid materials had a statistically lower debonding temperature than the two-paste, the no-mix products, or the light-cured materials, for which the temperatures were all similar. This paper presents relative information a clinician can use in selecting an orthodontic bonding resin to minimize thermal damage to the teeth while debonding sapphire brackets.

  16. Method of Making Lightweight, Single Crystal Mirror

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2015-01-01

    A method of making a mirror from a single crystal blank may include fine grinding top and bottom surfaces of the blank to be parallel. The blank may then be heat treated to near its melting temperature. An optical surface may be created on an optical side of the blank. A protector may be bonded to the optical surface. With the protector in place, the blank may be light weighted by grinding a non-optical surface of the blank using computer controlled grinding. The light weighting may include creating a structure having a substantially minimum mass necessary to maintain distortion of the mirror within a preset limit. A damaged layer of the non-optical surface caused by light weighting may be removed with an isotropic etch and/or repaired by heat treatment. If an oxide layer is present, the entire blank may then be etched using, for example, hydrofluoric acid. A reflecting coating may be deposited on the optical surface.

  17. CVT Growth of Single Crystal Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Kjar, Michael J.; Boone, Jack L.; Cantwell, Gene; Thomas, J. E.

    1997-03-01

    The growth of single crystal ZnO by chemical vapor transport using hydrogen as the transporting agent is being investigated both theoretically and experimentally. A mathematical model has been developed for the growth process using a quasi-equilibrium approach. By calculating the equilibrium constants at both the source and growing ends of the growth ampoule, a transport equation has been developed. The transport calculations have been made under the assumption of a "leaky" ampoule in which the hydrogen , water vapor, and inert gas pressures can be controlled externally. The chemical reactions at the source and growth surfaces are being investigated to ascertain their effect on the transport and growth processes. Also, the effects of varying the "communication" between the ampoule interior and the large containment vessel on the overall growth process have been investigated. The parameters for the growth process are being refined through a correlation of the theoretical model predictions with experimental data.

  18. Controlled deposition or organic semiconductor single crystals and its application in field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Shuhong

    The search for low-cost, large area, flexible devices has led to a remarkable increase in the research and development of organic semiconductors. Single-crystal organic field-effect transistors (OFETs) are ideal device structures for studying fundamental science associated with charge transport in organic materials and have demonstrated high mobility and outstanding electrical characteristics. For example, an exceptionally high carrier mobility of 20 cm2/Vs has been demonstrated for rubrene single crystal field effect transistors. However, it remains a technical challenge to integrate single-crystal devices into practical electronic applications. A key difficulty is that organic single-crystal devices are usually fabricated one device at a time by handpicking a single crystal and placing it onto the device substrate. This makes it impossible to mass-produce at high density with reasonable throughput. Therefore, there is a great need for a high-throughput method for depositing large arrays of organic semiconductor single crystals directly onto device structures. In this dissertation, I develop several approaches towards realizing this goal. The first approach is a solution-processing technique, which relies on solvent wetting and de-wetting on substrates with patterned wettability to selectively direct the deposition or removal of organic crystals. The assembly of different organic crystals over centimeter-squared areas on Au, SiO 2 and flexible plastic substrates is demonstrated. By designing line features on the substrate, alignment of needle-like crystals is also achieved. As a demonstration of the potential application of this approach, arrays of organic single crystal FETs are fabricated by patterning organic single crystals directly onto and between transistor source and drain electrodes. Besides organic single crystals, this self-assembly strategy is also applicable for patterning other objects such as metallic nanowires. In the second technique, organic

  19. Development of a compact single ion irradiation system

    NASA Astrophysics Data System (ADS)

    Iida, T.; Tanaka, T.; Sato, F.; Tanimura, Y.

    2000-12-01

    A compact single ion irradiation system has been developed to examine energetic particle effects on materials and devices. The system has been constructed by use of commercially available and inexpensive standard components and can be easily recomposed according to beam requirements for various irradiation experiments. The beam adjustment was automatically performed by help of a computer program based on a modified SIMPLEX method. The beam performances of the system, i.e., pulse width, the number of ions included in one pulse and beam size were examined by use of a microchannel plate, a Si-SSD, a CCD image sensor and a CR-39 track detector, respectively. A beam of a single ion, 1 nsec in pulse width and several /spl mu/m in diameter has been successfully produced by this system.

  20. A simple low-cost single-crystal NMR setup.

    PubMed

    Vinding, Mads S; Kessler, Tommy O; Vosegaard, Thomas

    2016-08-01

    A low-cost single-crystal NMR kit is presented along with a web-based post-processing software. The kit consists of a piezo-crystal motor and a goniometer for the crystal, both embedded in a standard wide-bore NMR probe with a 3D printed scaffold. The NMR pulse program controls the angle setting automatically, and the post-processing software incorporates a range of orientation-angle discrepancies present in the kit and other single-crystal setups. Results with a NaNO3 single-crystal show a high degree of reproducibility and excellent agreement with previous findings for the anisotropic quadrupolar interaction.

  1. A simple low-cost single-crystal NMR setup

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Kessler, Tommy O.; Vosegaard, Thomas

    2016-08-01

    A low-cost single-crystal NMR kit is presented along with a web-based post-processing software. The kit consists of a piezo-crystal motor and a goniometer for the crystal, both embedded in a standard wide-bore NMR probe with a 3D printed scaffold. The NMR pulse program controls the angle setting automatically, and the post-processing software incorporates a range of orientation-angle discrepancies present in the kit and other single-crystal setups. Results with a NaNO3 single-crystal show a high degree of reproducibility and excellent agreement with previous findings for the anisotropic quadrupolar interaction.

  2. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  3. Improved hardware and software for single-crystal NMR spectroscopy.

    PubMed

    Vosegaard, T; Hald, E; Langer, V; Skov, H J; Daugaard, P; Bildsoe, H; Jakobsen, H J

    1998-11-01

    Design of state-of-the-art instrumentation and software for acquisition and analysis of single-crystal NMR spectra is presented. The design involves highly accurate rotation of a goniometer, and the acquisition of all the spectra for each rotation axis is automatically controlled by the host computer of the spectrometer using a homebuilt interface between the computer and the single-crystal probe. Moreover, a software package (ASICS) for fast and routine assignment/analysis of complex single-crystal spectra has been developed. Employing this equipment, the acquisition and complete analysis of single-crystal NMR spectra may be performed in about the same time as required for powder methods (spinning or static). The hardware and software are compared to recent alternative approaches within single-crystal NMR. Finally, it has been observed that single-crystal NMR techniques may provide the desired data for samples where powder methods fail. Copyright 1998 Academic Press.

  4. Development of novel growth methods for halide single crystals

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Kurosawa, Shunsuke; Shoji, Yasuhiro; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira

    2017-03-01

    We developed novel growth methods for halide scintillator single crystals with hygroscopic nature, Halide micro-pulling-down [H-μ-PD] method and Halide Vertical Bridgman [H-VB] method. The H-μ-PD method with a removable chamber system can grow a single crystal of halide scintillator material with hygroscopicity at faster growth rate than the conventional methods. On the other hand, the H-VB method can grow a large bulk single crystal of halide scintillator without a quartz ampule. CeCl3, LaBr3, Ce:LaBr3 and Eu:SrI2 fiber single crystals could be grown by the H-μ-PD method and Eu:SrI2 bulk single crystals of 1 and 1.5 inch in diameter could be grown by the H-VB method. The grown fiber and bulk single crystals showed comparable scintillation properties to the previous reports using the conventional methods.

  5. Functionalizing single crystals: incorporation of nanoparticles inside gel-grown calcite crystals.

    PubMed

    Liu, Yujing; Yuan, Wentao; Shi, Ye; Chen, Xiaoqiang; Wang, Yong; Chen, Hongzheng; Li, Hanying

    2014-04-14

    Synthetic single crystals are usually homogeneous solids. Biogenic single crystals, however, can incorporate biomacromolecules and become inhomogeneous solids so that their properties are also extrinsically regulated by the incorporated materials. The discrepancy between the properties of synthetic and biogenic single crystals leads to the idea to modify the internal structure of synthetic crystals to achieve nonintrinsic properties by incorporation of foreign material. Intrinsically colorless and diamagnetic calcite single crystals are turned into colored and paramagnetic solids, through incorporation of Au and Fe3O4 nanoparticles without significantly disrupting the crystalline lattice of calcite. The crystals incorporate the nanoparticles and gel fibers when grown in agarose gel media containing the nanoparticles, whereas the solution-grown crystals do not. As such, our work extends the long-history gel method for crystallization into a platform to functionalize single-crystalline materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dependence of photoinduced bending behavior of diarylethene crystals on irradiation wavelength of ultraviolet light.

    PubMed

    Kitagawa, Daichi; Tanaka, Rika; Kobatake, Seiya

    2015-11-07

    The dependence of the photoinduced bending behavior of diarylethene crystals on the ultraviolet light irradiation wavelength was investigated. When irradiated with 365 nm light, a crystal of 1,2-bis(5-methyl-2-phenyl-4-thiazolyl)perfluorocyclopentene (1a) bends toward the incident light. On the other hand, when irradiated with 380 nm light, the crystal of 1a first bends away from the light source and then bends toward the incident light. To explain this bending behavior, we propose a comprehensive mechanism based on the depth of the photochromic reaction from the crystal surface. This mechanism is successfully supported by the change of cell parameters associated with the photochromic reaction upon irradiation with 380 nm light, which was determined by in situ X-ray crystallographic analysis.

  7. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    SciTech Connect

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Wirth, Brian D; Snead, Lance Lewis

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.

  8. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutronmore » irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.« less

  9. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Snead, Lance L.; Wirth, Brian D.

    2016-03-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S-W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.

  10. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOEpatents

    Hemley, Russell J.; Mao, Ho-kwang; Yan, Chih-shiue

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  11. Radiation damage of LSO crystals under γ- and 24 GeV protons irradiation

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Barysevich, A.; Fedorov, A.; Korjik, M.; Koschan, M.; Lucchini, M.; Mechinski, V.; Melcher, C. L.; Voitovich, A.

    2013-09-01

    Irradiation damage of undoped and low Ce doped lutetium oxyorthosilicate has been investigated. Crystals were irradiated with both a 60Co γ-quanta source with an absorbed dose of 2000 Gy and, at CERN PS, a high-rate 24 GeV proton beam with a fluence of ˜3.6×1013 p/cm2. Both irradiations produced a similar set of induced absorption bands. However, a shift of the fundamental absorption spectrum cutoff appears after proton irradiation, but not in the case of the γ-irradiation. The observed shift of the band edge in the transmission spectrum following proton irradiation in lutetium oxyorthosilicate crystals indicates that this phenomenon is a general property of heavy crystalline materials. A possible proton-induced transmission damage mechanism is discussed.

  12. Thermally stimulated luminescence origin in LiF crystals irradiated in a reactor at different temperatures

    NASA Astrophysics Data System (ADS)

    Kvatchadze, V.; Dekanozishvili, G.; Kalabegishvili, T.; Abramishvili, M.; Galustashvili, M.; Tavkhelidze, V.

    2015-06-01

    Thermally stimulated luminescence as well as optical absorption and emission spectra have been studied in LiF crystals irradiated in a reactor at different temperatures. It was shown that aggregate colour centres give rise to thermally stimulated luminescence peaks registered below 450°C. Peak at 470°C is observed only in crystals that have been irradiated at standard temperature of the reactor experimental channels. The peak is caused by interaction of dislocations and F centres.

  13. Effects of introducing isotropic artificial defects on the superconducting properties of differently doped Ba-122 based single crystals

    PubMed Central

    Mishev, V.; Nakajima, M.; Eisaki, H.; Eisterer, M.

    2016-01-01

    The effects of isotropic artifical defects, introduced via fast neutron (E > 0.1 MeV) irradiation, on the physical properties of differently (Co, P and K) doped BaFe2As2 superconducting single crystals were studied. The Co- and P-doped single crystals showed a second peak in the magnetization curve (fishtail effect) in the pristine state. Significant variations in the radiation-induced changes in the critical current density Jc were observed in the different types of crystal, while the irreversibility fields did not change remarkably. The highest Jcs were obtained for the K-doped crystal, exceeding 3 × 1010 Am−2 (T = 5 K, B = 4 T) and remaining above 8.5 × 109 Am−2 at 30 K and 1 T. The pinning force was analyzed to compare the pinning mechanisms of the individual samples. While distinct differences were found before the irradiation, the same pinning behavior prevails afterwards. The pinning efficiency η = Jc/Jd was estimated from the depairing current density Jd. η was similar in all irradiated crystals and comparable to the value in neutron irradiated cuprates, suggesting that the huge critical current densities measured in the irradiated K-doped crystal are due to its large depairing current density, making this compound the most promising for applications. PMID:27301665

  14. Electronic structure modification of the KTaO3 single-crystal surface by Ar+ bombardment

    NASA Astrophysics Data System (ADS)

    Wadehra, Neha; Tomar, Ruchi; Halder, Soumyadip; Sharma, Minaxi; Singh, Inderjit; Jena, Nityasagar; Prakash, Bhanu; De Sarkar, Abir; Bera, Chandan; Venkatesan, Ananth; Chakraverty, S.

    2017-09-01

    Oxygen vacancies play an important role in controlling the physical properties of a perovskite oxide. We report alterations in the electronic properties of a cubic perovskite oxide, namely, KTaO3, as a function of oxygen vacancies. The conducting surface of the KTaO3 single-crystal substrate has been realized via Ar+ irradiation. The band gap changes as a function of conductivity which is controlled by irradiation time, indicating the formation of defect states. Kelvin probe force microscopy suggests a sharp increase in the work function upon Ar+ irradiation for a short period of time followed by a monotonic decrease, as we increase the irradiation time. Our experimental findings along with theoretical simulations suggest a significant surface dipole contribution and an unusual change in the electronic band line-up of KTaO3 due to oxygen vacancies.

  15. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker; Miller, Dean J.; Shi, Donglu; Sengupta, Suvankar

    1998-01-01

    A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.

  16. Designed three-dimensional freestanding single-crystal carbon architectures.

    PubMed

    Park, Ji-Hoon; Cho, Dae-Hyun; Moon, Youngkwon; Shin, Ha-Chul; Ahn, Sung-Joon; Kwak, Sang Kyu; Shin, Hyeon-Jin; Lee, Changgu; Ahn, Joung Real

    2014-11-25

    Single-crystal carbon nanomaterials have led to great advances in nanotechnology. The first single-crystal carbon nanomaterial, fullerene, was fabricated in a zero-dimensional form. One-dimensional carbon nanotubes and two-dimensional graphene have since followed and continue to provide further impetus to this field. In this study, we fabricated designed three-dimensional (3D) single-crystal carbon architectures by using silicon carbide templates. For this method, a designed 3D SiC structure was transformed into a 3D freestanding single-crystal carbon structure that retained the original SiC structure by performing a simple single-step thermal process. The SiC structure inside the 3D carbon structure is self-etched, which results in a 3D freestanding carbon structure. The 3D carbon structure is a single crystal with the same hexagonal close-packed structure as graphene. The size of the carbon structures can be controlled from the nanoscale to the microscale, and arrays of these structures can be scaled up to the wafer scale. The 3D freestanding carbon structures were found to be mechanically stable even after repeated loading. The relationship between the reversible mechanical deformation of a carbon structure and its electrical conductance was also investigated. Our method of fabricating designed 3D freestanding single-crystal graphene architectures opens up prospects in the field of single-crystal carbon nanomaterials and paves the way for the development of 3D single-crystal carbon devices.

  17. Fast and Controllable Crystallization of Perovskite Films by Microwave Irradiation Process.

    PubMed

    Cao, Qipeng; Yang, Songwang; Gao, Qianqian; Lei, Lei; Yu, Yu; Shao, Jun; Liu, Yan

    2016-03-01

    The crystal growth process significantly influences the properties of organic-inorganic halide perovskite films along with the performance of solar cell devices. In this paper, we adopted the microwave irradiation to treat perovskite films through a one-step deposition method for several minutes at a fixed output power. It is found that the specific microwave irradiation process can evaporate the solvent directly and heat perovskite film quickly. In comparison with the conventional thermal annealing process, a microwave irradiation process assisted fast and controllable crystallization of perovskite films with less energy-loss and time-consumption and therefore resulted in the enhancement in the photovoltaic performance of the corresponding solar cells.

  18. Crystallization of ultrathin W-Si multilayer structures by high-energy heavy ion irradiations

    SciTech Connect

    Marfaing, J.; Marine, W. ); Vidal, B. ); Toulemonde, M. ); Hage Ali, M.; Stoquert, J.P. )

    1990-10-22

    Ultrathin amorphous multilayers structures (1.55 nm bilayer period) were irradiated by high-energy heavy ion ({sup 127}I and {sup 238}U ions). Transmission electron microscopy study shows that the ion-material interaction in such a configuration leads to an irreversible transformation of the initial amorphous structures. In this letter, we report the first observation of the crystallization of the multilayers induced by the heavy ion irradiations with a subsequent formation of a new WSi structure. The crucial role of the electronic effects in the crystallization process is discussed relatively to the other phenomena induced under the ion irradiation.

  19. Lattice damage and compositional changes in Xe ion irradiated In{sub x}Ga{sub 1-x}N (x = 0.32−1.0) single crystals

    SciTech Connect

    Zhang, Limin Peng, Jinxin; Ai, Wensi; Zhang, Jiandong; Wang, Tieshan; Jiang, Weilin; Dissanayake, Amila; Zhu, Zihua; Shutthanandan, Vaithiyalingam

    2016-06-28

    Lattice disorder and compositional changes in In{sub x}Ga{sub 1-x}N (x = 0.32, 0.47, 0.7, 0.8, and 1.0) films on GaN/Al{sub 2}O{sub 3} substrates, induced by room-temperature irradiation of 5 MeV Xe ions, have been investigated using both Rutherford backscattering spectrometry under ion-channeling conditions and time-of-flight secondary ion mass spectrometry. The results show that for a fluence of 3 × 10{sup 13 }cm{sup −2}, the relative level of lattice disorder in In{sub x}Ga{sub 1-x}N increases monotonically from 59% to 90% with increasing indium concentration x from 0.32 to 0.7; a further increase in x up to 1.0 leads to little increase in the disorder level. In contrast to Ga-rich In{sub x}Ga{sub 1-x}N (x = 0.32 and 0.47), significant volume swelling of up to ∼25% accompanied with oxidation in In-rich In{sub x}Ga{sub 1-x}N (x = 0.7, 0.8, and 1.0) is observed. In addition, irradiation-induced atomic mixing occurs at the interface of In-rich In{sub x}Ga{sub 1-x}N and GaN. The results from this study indicate an extreme susceptibility of the high In-content In{sub x}Ga{sub 1-x}N to heavy-ion irradiation, and suggest that cautions must be exercised in applying ion-implantation techniques to these materials at room temperature. Further studies of the irradiation behavior at elevated temperatures are warranted.

  20. Fabrication of polypyrrole nano-arrays in lysozyme single crystals

    NASA Astrophysics Data System (ADS)

    England, Matt W.; Lambert, Elizabeth M.; Li, Mei; Turyanska, Lyudmila; Patil, Avinash J.; Mann, Stephen

    2012-10-01

    A template-directed method for the synthesis and organization of partially oxidized polypyrrole (PPy) nanoscale arrays within the solvent channels of glutaraldehyde-cross-linked lysozyme single crystals is presented. Macroscopic single crystals of the periodically arranged protein-polymer superstructure are electrically conductive, insoluble in water and organic solvents, and display increased levels of mechanical plasticity compared with native cross-linked lysozyme crystals.A template-directed method for the synthesis and organization of partially oxidized polypyrrole (PPy) nanoscale arrays within the solvent channels of glutaraldehyde-cross-linked lysozyme single crystals is presented. Macroscopic single crystals of the periodically arranged protein-polymer superstructure are electrically conductive, insoluble in water and organic solvents, and display increased levels of mechanical plasticity compared with native cross-linked lysozyme crystals. Electronic supplementary information (ESI) available: Optical microscopy, SEM, TEM images, FTIR spectra and tables, conductivity plot. Experimental methods. See DOI: 10.1039/c2nr32413j

  1. Giant rotating magnetocaloric effect in RNi5 single crystals

    NASA Astrophysics Data System (ADS)

    de Oliveira, N. A.

    2017-04-01

    In this paper we theoretically discuss the rotating magnetocaloric effect in RNi5 (R = Nd , Tb , Dy , Er) single crystals, by using a model of interacting magnetic moments including the interaction with the crystal electric field. Our theoretical calculations show that the rotating magnetocaloric effect in RNi5 single crystals is as large as the conventional one. This fact points out that these single crystals are also good candidates to be used in magnetic refrigerators working at low temperatures and based on the rotating magnetocaloric effect.

  2. Studies of single crystal CVD diamonds for potential applications in x-ray crystal optics

    NASA Astrophysics Data System (ADS)

    Stoupin, Stanislav; Antipov, Sergey P.; Baryshev, Sergey V.; Baturin, Stanislav; Liu, Zunping; Khounsary, Ali M.; Segre, Carlo U.

    2016-09-01

    Several single crystal CVD diamonds with (001) and (111) surface orientations were studied using x-ray diffraction rocking curve mapping in the double-crystal pseudo plane-wave configuration using Bragg reflection geometry. Strongly nonuniform distributions of rocking curve parameters on the studied crystal surfaces were observed, which indicates that the crystals exhibit substantial lattice distortions. Selected crystal pairs were tested in the nondispersive double-crystal configuration using polychromatic bending magnet synchrotron radiation. The results suggest that CVD diamond crystals could be used as high-flux broadband x-ray monochromators in applications where preservation of the radiation wavefront is not a primary goal.

  3. Oxygen diffusion in single crystal barium titanate.

    PubMed

    Kessel, Markus; De Souza, Roger A; Martin, Manfred

    2015-05-21

    Oxygen diffusion in cubic, nominally undoped, (100) oriented BaTiO3 single crystals has been studied by means of (18)O2/(16)O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experiments were carried out as a function of temperature 973 < T/K < 1173, at an oxygen activity of aO2 = 0.200, and as a function of oxygen activity 0.009 < aO2 < 0.900 at T = 1073 K. The oxygen isotope profiles comprise two parts: slow diffusion through a space-charge zone at the surface depleted of oxygen vacancies followed by faster diffusion in a homogeneous bulk phase. The entire isotope profile can be described by a single solution to the diffusion equation involving only three fitting parameters: the surface exchange coefficient ks*, the space-charge potential Φ0 and the bulk diffusion coefficient D*(∞). Analysis of the temperature and oxygen activity dependencies of D*(∞) and Φ0 yields a consistent picture of both the bulk and the interfacial defect chemistry of BaTiO3. Values of the oxygen vacancy diffusion coefficient DV extracted from measured D*(∞) data are compared with literature data; consequently a global expression for the vacancy diffusivity in BaTiO3 for the temperature range 466 < T/K < 1273 is obtained, with an activation enthalpy of vacancy migration, ΔHmig,V = (0.70 ± 0.04) eV.

  4. Excitonic polaritons of zinc diarsenide single crystals

    NASA Astrophysics Data System (ADS)

    Syrbu, N. N.; Stamov, I. G.; Zalamai, V. V.; Dorogan, A.

    2017-02-01

    Excitonic polaritons of ZnAs2 single crystals had been investigated. Parameters of singlet excitons with D2bar(z) symmetry and orthoexcitons 2D1bar(y)+D2bar(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V1) and electron (C1) bands. The values of effective masses of electrons (mc*=0.10 m0) and holes (mv1*=0.89 m0) had been estimated. It was revealed that the hole mass mv1* changes from 1.03 m0 to 0.55 m0 at temperature increasing from 10 K up to 230 K and that the electron mass mc* does not depend on temperature. The integral absorption A (eV cm-1) of the states n=1, 2 and 3 of D2bar(z) excitons depends on the An≈n-3 equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for D2bar(z) and D2bar(D) excitons differ. The ground states of B and C excitons formed by V3 - C1 and V4 - C1 bands and its parameters had been determined.

  5. Microscale Laser Peen Forming of Single Crystal

    SciTech Connect

    Wang,Y.; Fan, Y.; Kysar, J.; Vukelic, S.; Yao, Y.

    2008-01-01

    As the result of quickly increased requirement in many industrial products resulting from microtechnology, laser thermal microforming and microsurface treatment [microscale laser shock peening (?LSP)] have been well studied. By combining the beneficial effects of these two processes with a controlled bending deformation, microscale laser peen forming (?LPF) attracts more attention recently since it not only improves the fatigue life of the material but also shapes microscale metallic parts at the same time. In the present study, ?LSP of single crystal aluminum was presented to study anisotropic material response. Local plastic deformation was characterized by lattice rotation measured through electron backscatter diffraction. Residual stress distributions of both sides of a peened sample, characterized by x-ray microdiffraction, were compared with the results obtained from finite element method simulation. ?LPF anisotropic behavior was investigated in three effective slip systems via both the anisotropic slip line theory and numerical method. Also, the work hardening effect resulted from self-hardening, and latent hardening was analyzed through comparing the results with and without considering hardening.

  6. Advanced single crystal for SSME turbopumps

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.

    1989-01-01

    The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.

  7. Mercuric iodide single crystals for nuclear radiation detectors

    SciTech Connect

    Li, W.; Li, Z.; Zhu, S.; Yin, S.; Zhao, B.; Chen, G.; Yin, S.; Yuan, H.; Xu, H.

    1996-06-01

    Large size HgI{sub 2} single crystals were grown using the Modified Temperature Oscillation Method (MTOM) with low dislocation densities in a relatively stable temperature environment. Radiation detectors were fabricated from the single crystals which showed good energy resolution with small polarization. Applications have been found in geological explorations, marine mineral analysis, environment pollution monitoring, industrial material quality assurance, and space explorations.

  8. A Quick Method for Determining the Density of Single Crystals.

    ERIC Educational Resources Information Center

    Roman, Pascual; Gutierrez-Zorrilla, Juan M.

    1985-01-01

    Shows how the Archimedes method is used to determine the density of a single crystal of ammonium oxalate monohydrate. Also shows how to calculate the density of other chemicals when they are available as single crystals. Experimental procedures and materials needed are included. (JN)

  9. A Quick Method for Determining the Density of Single Crystals.

    ERIC Educational Resources Information Center

    Roman, Pascual; Gutierrez-Zorrilla, Juan M.

    1985-01-01

    Shows how the Archimedes method is used to determine the density of a single crystal of ammonium oxalate monohydrate. Also shows how to calculate the density of other chemicals when they are available as single crystals. Experimental procedures and materials needed are included. (JN)

  10. Single crystal micromechanical resonator and fabrication methods thereof

    DOEpatents

    Olsson, Roy H.; Friedmann, Thomas A.; Homeijer, Sara Jensen; Wiwi, Michael; Hattar, Khalid Mikhiel; Clark, Blythe; Bauer, Todd; Van Deusen, Stuart B.

    2016-12-20

    The present invention relates to a single crystal micromechanical resonator. In particular, the resonator includes a lithium niobate or lithium tantalate suspended plate. Also provided are improved microfabrication methods of making resonators, which does not rely on complicated wafer bonding, layer fracturing, and mechanical polishing steps. Rather, the methods allow the resonator and its components to be formed from a single crystal.

  11. Semiconductor single crystal external ring resonator cavity laser and gyroscope

    SciTech Connect

    Spitzer, M.P.

    1993-08-31

    A ring laser is described comprising: a semiconductor single crystal external ring resonator cavity having a plurality of reflecting surfaces defined by the planes of the crystal and establishing a closed optical path; and a discrete laser medium disposed in said semiconductor single crystal external ring resonator cavity for generating coherent light in said cavity, wherein said resonator cavity is decoupled from the laser medium.

  12. Role of curvature elasticity in sectorization and ripple formation during melt crystallization of polymer single crystals.

    PubMed

    Mehta, Rujul; Keawwattana, Wirunya; Guenthner, Andrew L; Kyu, Thein

    2004-06-01

    The present article focuses on theoretical elucidation of possible effect of mechanical deformation on spatio-temporal emergence of unusual polymer morphology subjected to quiescent isothermal crystallization conditions. The present theory developed is based on a phase field model consisted of non-conserved time dependent Ginzburg-Landau equation having an asymmetric double well potential in the crystal order parameter signifying metastability for crystallization, coupled with the chain tilt angle involving curvature elasticity and strain recovery potentials. Under quiescent crystallization conditions, the curvature elasticity term is needed to discern the emergence of sectorized single crystals. Upon coupling with the strain recovery potential, the numerical calculation captures ripple formation running across the long lamellar growth front, which may be attributed to lamellar buckling caused by the volume shrinkage. Of particular interest is that these simulated topologies of the single crystals are in good accord with the growth character of syndiotactic polypropylene single crystals observed experimentally by us during isothermal crystallization from the melt.

  13. Crystallization of acetaminophen form II by plastic-ball-assisted ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Mori, Yoichiro; Maruyama, Mihoko; Takahashi, Yoshinori; Yoshikawa, Hiroshi Y.; Okada, Shino; Adachi, Hiroaki; Sugiyama, Shigeru; Takano, Kazufumi; Murakami, Satoshi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Yoshimura, Masashi; Mori, Yusuke

    2017-02-01

    We report a novel method for crystallizing the metastable polymorph form II of acetaminophen by using a plastic ball during ultrasonic irradiation. The presence of a plastic ball during ultrasonic irradiation of aqueous acetaminophen solution effectively increased the probability and reduced the induction time of form II crystallization. This method facilitated both laboratory- and large-scale production of form II crystals. Our method has significant advantages for practical application of form II because it can reduce the time to production and enable large-scale production.

  14. Protein Crystallization by Combining Laser Irradiation and Solution-Stirring Techniques

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Niino, Ai; Murakami, Satoshi; Takano, Kazufumi; Matsumura, Hiroyoshi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2005-03-01

    Bovine adenosine deaminase in the absence of an inhibitor (free-ADA) does not form crystals when using conventional crystallization methods. Using a solution-stirring technique, we recently succeeded in generating a small number of free-ADA crystals. In this paper, we demonstrate the combination of laser-irradiated growth and stirring (COLAS). This technique was found to be useful for controlling crystal nucleation and growth, which led to the production of a much larger number of high-quality free-ADA crystals.

  15. Mechanoluminescence and thermoluminesence in γ-irradiated rare earth doped CaF2 crystals

    NASA Astrophysics Data System (ADS)

    Brahme, Nameeta; Bisen, D. P.; Kher, R. S.; Khokhar, M. S. K.

    2009-08-01

    Mechanoluminescence (ML) and Thermoluminescence (TL) in γ-irradiated Dy, Ce, Er and Gd doped CaF2 crystals were studied. The crystals of doped CaF2 were grown by the Bridgman technique. The cleaved crystals were annealed at 450 ∘C for about two hours and cooled very slowly and then irradiated for different time from 60Co source having an exposure rate of 2.8×103 Gy/hr. ML was excited by applying uniaxial pressure on to the samples. Both the ML and TL intensities of CaF2 crystals increase with doping of rare earth impurities. Both the ML and TL intensity of γ-irradiated Dy, Ce, Er and Gd doped CaF2 crystals initially increase with increasing concentration of dopants obtaining an optimum value at 0.1 mole% level then further decreases with increasing dopant concentration. ML and TL intensity of γ-irradiated Dy, Ce, Er and Gd doped CaF2 crystals initially increases with the irradiation dose and then saturates at higher values of γ-doses. The order of ML and TL intensity for dopants were found similar and their order for decreasing intensity is CaF2:Dy>CaF2:Ce>CaF2:Er>CaF2:Gd. The ML spectra are almost similar to the TL spectra, this suggest that the centres emitting TL and ML may be the same although different processes cause their excitations.

  16. Crystallization of sputter-deposited amorphous Ge films by electron irradiation: Effect of low-flux pre-irradiation

    NASA Astrophysics Data System (ADS)

    Okugawa, M.; Nakamura, R.; Ishimaru, M.; Yasuda, H.; Numakura, H.

    2016-10-01

    We investigated the effect of low-flux electron irradiation with 125 keV to sputter-deposited amorphous germanium on the amorphous structure and electron-induced crystallization microstructure by TEM following our previous study on the effect of aging at room temperature. In samples aged for 3 days, coarse, spherical particles about 100 nm in diameter appear dominantly. By low-flux pre-irradiation to the samples, a reduction in the size and number of coarse particles, embedded in the matrix with fine nanograins of the diamond cubic structure, was noted with the increase in fluence. The crystal structure of these coarse particles was found to be not cubic but hexagonal. In samples aged for 4 months, a similar tendency was observed. In samples aged for 7 months, on the other hand, the homogeneous diamond cubic structured nanograins were unchanged by pre-irradiation. These results indicate that pre-irradiation as well as aging modifies the amorphous structure, preventing the appearance of a hexagonal phase. The elimination of a certain amount of medium-range ordered clusters by pre-irradiation, included in as-deposited samples and the samples aged for 4 months, apparently gives rise to a reduction in the size and number of coarse particles with a metastable hexagonal structure.

  17. Cratering behavior in single- and poly-crystalline copper irradiated by an intense pulsed ion beam

    SciTech Connect

    Wood, B.P.; Bitteker, L.J.; Waganaar, W.J.; Perry, A.J.

    1998-12-31

    When treated with intense pulsed ion beams (IPIB), many materials exhibit increased wear resistance, fatigue life, and hardness. However, this treatment often results in cratering and roughening of the surface. In this work, high purity single crystal and polycrystalline copper samples were irradiated with pulses from an IPIB to gain insight into the causes of this cratering behavior. Samples were treated with 1,2,5, and 10 shots at 2 J/cm{sup 2} and 5 J/cm{sup 2} average energy fluence per shot. Shots were about 400 ns in duration and consisted of a mixture of carbon, hydrogen, and oxygen ions at 300 keV. It was found that the single crystal copper cratered far less than the polycrystalline copper at the lower energy fluence. At the higher energy fluence, cratering was replaced by other forms of surface damage, and the single crystal copper sustained less damage at all but the largest number of shots. Molten debris from the Lucite anode (the ion source) was removed and redeposited on the samples with each shot.

  18. Study of photomodulated reflectance in 6H-SiC single crystals

    SciTech Connect

    Gruzintsev, A. N.

    2013-04-15

    The effect of ultraviolet irradiation of the surface of silicon-carbide (6H-SiC) single crystals on their optical reflectivity in the visible and violet spectral regions is studied. It is shown that the photoreflection-signal intensity is maximal, if the light beam is incident at the Brewster angle and polarized parallel to the plane of incidence. The relative change induced in the refractive index of the surface layers of a crystal (10{sup -3}) upon exposure to nitrogen laser radiation, caused by the generation of nonequilibrium free charge carriers in the conduction band of the material, is established.

  19. Study of single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Doty, J. P.; Reising, J. A.

    1973-01-01

    The growth of single crystals of relatively high melting point metals such as silver, copper, gold, and their alloys was investigated. The purpose was to develop background information necessary to support a space flight experiment and to generate ground based data for comparison. The ground based data, when compared to the data from space grown crystals, are intended to identify any effects which zero-gravity might have on the basic process of single crystal growth of these metals. The ultimate purposes of the complete investigation are to: (1) determine specific metals and alloys to be investigated; (2) grow single metal crystals in a terrestrial laboratory; (3) determine crystal characteristics, properties, and growth parameters that will be effected by zero-gravity; (4) evaluate terrestrially grown crystals; (5) grow single metal crystals in a space laboratory such as Skylab; (6) evaluate the space grown crystals; (7) compare for zero-gravity effects of crystal characteristics, properties, and parameters; and (8) make a recommendation as to production of these crystals as a routine space manufacturing proceses.

  20. Segmentation Effect on Inhomogeneity of [110]-Single Crystal Deformation

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Nesterenko, E. A. Alfyorova V. P.

    2016-08-01

    This work presents a detailed analysis of segmentation process in FCC single crystals with compression axis [110] and side faces( ̅110) and (001) considering effect of octahedral shear crystal-geometry and basic stress concentrators. Sequence of meso-band systems formation on side faces is determined. Macro-segmentation patterns are specified, that are common to the FCC single crystals under investigation. It is proved that rectangular shape of highly compressed crystals, elongated in direction of operating planes, is conditioned by orientation symmetry of compression axis, single crystal side faces and shears directions, which are characteristic for the given orientation. The specified patterns are characteristic only for the samples with initial height-to-width ratio equal to 2. When varying sample height relative to the initial one, segmentation patterns will also vary due to crystal geometry variations.

  1. Thermally triggered solid-state single-crystal-to-single-crystal structural transformation accompanies property changes.

    PubMed

    Li, Quan-Quan; Ren, Chun-Yan; Huang, Yang-Yang; Li, Jian-Li; Liu, Ping; Liu, Bin; Liu, Yang; Wang, Yao-Yu

    2015-03-16

    The 1D complex [(CuL0.5H2O)⋅H2O]n (1) (H4L = 2,2'-bipyridine-3,3',6,6'-tetracarboxylic acid) undergoes an irreversible thermally triggered single-crystal-to-single-crystal (SCSC) transformation to produce the 3D anhydrous complex [CuL0.5]n (2). This SCSC structural transformation was confirmed by single-crystal X-ray diffraction analysis, thermogravimetric (TG) analysis, powder X-ray diffraction (PXRD) patterns, variable-temperature powder X-ray diffraction (VT-PXRD) patterns, and IR spectroscopy. Structural analyses reveal that in complex 2, though the initial 1D chain is still retained as in complex 1, accompanied with the Cu-bound H2O removed and new O(carboxyl)-Cu bond forming, the coordination geometries around the Cu(II) ions vary from a distorted trigonal bipyramid to a distorted square pyramid. With the drastic structural transition, significant property changes are observed. Magnetic analyses show prominent changes from antiferromagnetism to weak ferromagnetism due to the new formed Cu1-O-C-O-Cu4 bridge. The catalytic results demonstrate that, even though both solid-state materials present high catalytic activity for the synthesis of 2-imidazolines derivatives and can be reused, the activation temperature of complex 1 is higher than that of complex 2. In addition, a possible pathway for the SCSC structural transformations is proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Growth dynamics of isotactic polypropylene single crystals during isothermal crystallization from a miscible polymeric solvent.

    PubMed

    Mehta, Rujul; Keawwattana, Wirunya; Kyu, Thein

    2004-02-22

    The present article presents a spatiotemporal growth of isotactic polypropylene (iPP) single crystals, melt crystallized from a polymeric solvent, i.e., poly (ethylene octene) copolymer that is known to be miscible with iPP. Optical and atomic force microscopic investigations reveal that the melt grown single crystals of iPP develop in the form of two parallel rows of crystal lamellae, but these crystals merge at the tips. To elucidate the mechanism of these emerging parallel rows of iPP crystals, a phase field model pertaining to solidification phenomena has been employed that involves a nonconserved crystal order parameter and a chain-tilting angle. This phase field model is based on the free energy of crystallization, having an asymmetric double well, and a tensorial surface free energy of the crystal interface coupled with a curvature elastic free energy that is possessed by the solid-liquid interface. The spatiotemporal simulation of iPP single crystal growth has been carried out on a square lattice based on the finite difference method for spatial steps and an explicit method for temporal steps with a periodic boundary condition. The appearance of the seemingly twin crystal is captured in the simulation, which may be attributed to the sector demarcation that is taking place in the anisotropically growing single crystal of iPP.

  3. Growth dynamics of isotactic polypropylene single crystals during isothermal crystallization from a miscible polymeric solvent

    NASA Astrophysics Data System (ADS)

    Mehta, Rujul; Keawwattana, Wirunya; Kyu, Thein

    2004-02-01

    The present article presents a spatiotemporal growth of isotactic polypropylene (iPP) single crystals, melt crystallized from a polymeric solvent, i.e., poly (ethylene octene) copolymer that is known to be miscible with iPP. Optical and atomic force microscopic investigations reveal that the melt grown single crystals of iPP develop in the form of two parallel rows of crystal lamellae, but these crystals merge at the tips. To elucidate the mechanism of these emerging parallel rows of iPP crystals, a phase field model pertaining to solidification phenomena has been employed that involves a nonconserved crystal order parameter and a chain-tilting angle. This phase field model is based on the free energy of crystallization, having an asymmetric double well, and a tensorial surface free energy of the crystal interface coupled with a curvature elastic free energy that is possessed by the solid-liquid interface. The spatiotemporal simulation of iPP single crystal growth has been carried out on a square lattice based on the finite difference method for spatial steps and an explicit method for temporal steps with a periodic boundary condition. The appearance of the seemingly twin crystal is captured in the simulation, which may be attributed to the sector demarcation that is taking place in the anisotropically growing single crystal of iPP.

  4. Method for harvesting single crystals from a peritectic melt

    DOEpatents

    Todt, Volker R.; Sengupta, Suvankar; Shi, Donglu

    1996-01-01

    A method of preparing single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid.

  5. Method for harvesting single crystals from a peritectic melt

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-08-27

    A method of preparing single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid. 2 figs.

  6. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker R.; Sengupta, Suvankar; Shi, Donglu

    1996-01-01

    A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

  7. Growth of Sb-Bi gradient single crystals

    SciTech Connect

    Kozhemyakin, G. N. Lutskiy, D. V.; Rom, M. A.; Mateychenko, P. V.

    2008-12-15

    The growth conditions and structural quality of Sb-Bi gradient single crystals with Bi content from 2 to 18 at %, grown by the Czochralski method with solid phase feed, are investigated. Bi distribution in the crystals along their pulling direction are studied by electron probe microanalysis and the change in the interplanar spacing is analyzed by double-crystal X-ray diffraction. It is established that the pulling rate and feed mass affect the Bi distribution in Sb-Bi single crystals.

  8. Orientation dependence of relativistic-positron annihilation in single crystals

    SciTech Connect

    Kalashnikov, N. P.; Mazur, E. A. Olchak, A. S.

    2016-05-15

    An effect of the orientation dependence of the cross section for the single-photon annihilation of relativistic positrons with atomic electrons in a crystal is predicted. It is shown that the probability for the single-photon annihilation of a channeled positron in a crystal may be either suppressed in a crystal in relation to a homogeneous medium or, on the contrary, enhanced. The reason is that, depending on their incidence angle, the positrons may be either in the vicinity of ion planes of the crystal, where the electron density is higher, or far away from them, where the electron density is lower.

  9. The dynamics of thermal expansion in single crystal beryllium from nanosecond x-ray pulses

    SciTech Connect

    Loomis, Eric N; Greenfield, Scott; Luo, Shengnian; Johnson, Randall; Shimada, Tom; Cobble, Jim; Seifter, Achim; Montgomery, David

    2008-01-01

    Single crystals of beryllium were exposed to nanosecond x-ray pulses generated from laser irradiated (1.5 x 10{sup 14} W/cm{sup 2}) gold targets. The characteristic gold M-band centered at 2.5 keV was measured by time integrated transmission grating spectroscopy and time resolved (spectrally integrated) x-ray photodiodes through beryllium targets of various thickness. Approximately decaying exponential temperature profiles were immediately induced in 100 {mu}m thick single crystal targets producing nearly instand surface motion as measured by free surface velocity interferometry. This temperature profile gave rise to a similar velocity history between a c-axis single crystal and a (10{bar 1}0) single crystal where a large initial acceleration gave way to a profile due to the internal temperature gradient. A smooth rise to the peak velocity was then followed by a sharp release originating from the opposite free surface. Differences between the velocities in each of these regions were found between the two single crystals investigated, which were due to the thermal expansion properties as a function of direction (including plasticity). These results can be used to predict behavior of polycrystalline targets relevant to instability seeding in inertial confinement fusion (ICF) ablators.

  10. Investigations of high mobility single crystal chemical vapor deposition diamond for radiotherapy photon beam monitoring

    SciTech Connect

    Tromson, D.; Descamps, C.; Tranchant, N.; Bergonzo, P.; Nesladek, M.; Isambert, A.

    2008-03-01

    The intrinsic properties of diamond make this material theoretically very suitable for applications in medical physics. Until now ionization chambers have been fabricated from natural stones and are commercialized by PTW, but their fairly high costs and long delivery times have often limited their use in hospital. The properties of commercialized intrinsic polycrystalline diamond were investigated in the past by many groups. The results were not completely satisfactory due to the nature of the polycrystalline material itself. In contrast, the recent progresses in the growth of high mobility single crystal synthetic diamonds prepared by chemical vapor deposition (CVD) technique offer new alternatives. In the framework of the MAESTRO project (Methods and Advanced Treatments and Simulations for Radio Oncology), the CEA-LIST is studying the potentialities of synthetic diamond for new techniques of irradiation such as intensity modulated radiation therapy. In this paper, we present the growth and characteristics of single crystal diamond prepared at CEA-LIST in the framework of the NoRHDia project (Novel Radiation Hard CVD Diamond Detector for Hadrons Physics), as well as the investigations of high mobility single crystal CVD diamond for radiotherapy photon beam monitoring: dosimetric analysis performed with the single crystal diamond detector in terms of stability and repeatability of the response signal, signal to noise ratio, response speed, linearity of the signal versus the absorbed dose, and dose rate. The measurements performed with photon beams using radiotherapy facilities demonstrate that single crystal CVD diamond is a good alternative for air ionization chambers for beam quality control.

  11. Growth and characterization of LuVO4 single crystals

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. Z.; Rafailov, P. M.; Chen, Y. F.; Lee, C. S.; Todorov, R.; Juang, J. Y.

    2017-09-01

    Large LuVO4 single crystals have been successfully obtained by high-temperature solution method. The structure details of these crystals are determined by X-ray crystallographic analysis and Raman spectroscopy. It is observed that the crystal consists of LuVO4 phase with trace amount of imperfections possibly due to oxygen vacancies. The optical quality of the crystal is assessed by Spectroscopic Ellipsometry (SE). The crystal shows higher than +0.2 birefringence in a large interval of wavelengths.

  12. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  13. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  14. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  15. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  16. Hall Effect in Bulk-Doped Organic Single Crystals.

    PubMed

    Ohashi, Chika; Izawa, Seiichiro; Shinmura, Yusuke; Kikuchi, Mitsuru; Watase, Seiji; Izaki, Masanobu; Naito, Hiroyoshi; Hiramoto, Masahiro

    2017-06-01

    The standard technique to separately and simultaneously determine the carrier concentration per unit volume (N, cm(-3) ) and the mobility (μ) of doped inorganic single crystals is to measure the Hall effect. However, this technique has not been reported for bulk-doped organic single crystals. Here, the Hall effect in bulk-doped single-crystal organic semiconductors is measured. A key feature of this work is the ultraslow co-deposition technique, which reaches as low as 10(-9) nm s(-1) and enables us to dope homoepitaxial organic single crystals with acceptors at extremely low concentrations of 1 ppm. Both the hole concentration per unit volume (N, cm(-3) ) and the Hall mobility (μH ) of bulk-doped rubrene single crystals, which have a band-like nature, are systematically observed. It is found that these rubrene single crystals have (i) a high ionization rate and (ii) scattering effects because of lattice disturbances, which are peculiar to this organic single crystal. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Physicochemical principles of high-temperature crystallization and single crystal growth methods

    NASA Astrophysics Data System (ADS)

    Bagdasarov, Kh. S.

    The mechanisms of crystal growth are reviewed, with attention given to the physicochemical reactions taking place in the melt near the phase boundary; phenomena determining physical and chemical kinetics directly at the growth front; solid-phase processes occurring within the crystal. Methods for growing refractory single crystals are discussed with particular reference to the Verneuil method, zone melting, Czhochralskii growth, horizontal directional solidification, and the Stockbarger method. Methods for growing crystals of complex geometrical shapes are also discussed.

  18. A study of crystal growth by solution technique. [triglycine sulfate single crystals

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1979-01-01

    The advantages and mechanisms of crystal growth from solution are discussed as well as the effects of impurity adsorption on the kinetics of crystal growth. Uncertainities regarding crystal growth in a low gravity environment are examined. Single crystals of triglycine sulfate were grown using a low temperature solution technique. Small components were assembled and fabricated for future space flights. A space processing experiment proposal accepted by NASA for the Spacelab-3 mission is included.

  19. Direct detection of density of gap states in C60 single crystals by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bussolotti, Fabio; Yang, Janpeng; Hiramoto, Masahiro; Kaji, Toshihiko; Kera, Satoshi; Ueno, Nobuo

    2015-09-01

    We report on the direct and quantitative evaluation of density of gap states (DOGS) in large-size C60 single crystals by using ultralow-background, high-sensitivity ultraviolet photoemission spectroscopy. The charging of the crystals during photoionization was overcome using photoconduction induced by simultaneous laser irradiation. By comparison with the spectra of as-deposited and gas exposed C60 thin films the following results were found: (i) The DOGS near the highest occupied molecular orbital edge in the C60 single crystals (1019-1021states e V-1c m-3) mainly originates from the exposure to inert and ambient gas atmosphere during the sample preparation, storage, and transfer; (ii) the contribution of other sources of gap states such as structural imperfections at grain boundaries is negligible (<1018states e V-1c m-3) .

  20. The Growth of Large Single Crystals.

    ERIC Educational Resources Information Center

    Baer, Carl D.

    1990-01-01

    Presented is an experiment which demonstrates principles of experimental design, solubility, and crystal growth and structure. Materials, procedures and results are discussed. Suggestions for adapting this activity to the high school laboratory are provided. (CW)

  1. Barium iodide single-crystal scintillator detectors

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Hull, Giulia; Niedermayr, Thomas R.; Drobshoff, Alexander; Payne, Stephen A.; Roy, Utpal N.; Cui, Yunlong; Bhattacharaya, Ajanta; Harrison, Melissa; Guo, Mingsheng; Groza, Michael; Burger, Arnold

    2007-09-01

    We find that the high-Z crystal Barium Iodide is readily growable by the Bridgman growth technique and is less prone to crack compared to Lanthanum Halides. We have grown Barium Iodide crystals: undoped, doped with Ce 3+, and doped with Eu 2+. Radioluminescence spectra and time-resolved decay were measured. BaI II(Eu) exhibits luminescence from both Eu 2+ at 420 nm (~450 ns decay), and a broad band at 550 nm (~3 μs decay) that we assign to a trapped exciton. The 550 nm luminescence decreases relative to the Eu 2+ luminescence when the Barium Iodide is zone refined prior to crystal growth. We also describe the performance of BaI II(Eu) crystals in experimental scintillator detectors.

  2. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    SciTech Connect

    Storb, R.; Raff, R.F.; Graham, T.; Appelbaum, F.R.; Deeg, H.J.; Schuening, F.G.; Shulman, H.; Pepe, M. )

    1993-03-20

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing [sup 60]Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionated total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs.

  3. Single-drop optimization of protein crystallization

    PubMed Central

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-01-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline. PMID:22869140

  4. Growing Single Crystals of Compound Semiconductors

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Lehoczky, Sandor L.; Frazier, Donald O.

    1987-01-01

    Defect reduced by preventing melt/furnace contact and suppressing convention. Large crystals of compound semiconductors with few defects grown by proposed new method. Such materials as gallium arsenide and cadmium telluride produced, with quality suitable for very-large-scale integrated circuits or for large focal-plane arrays of photodetectors. Method used on small scale in Earth gravity, but needs microgravity to provide crystals large enough for industrial use.

  5. Single-drop optimization of protein crystallization.

    PubMed

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-08-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline.

  6. A Single Crystal Niobium RF Cavity of the TESLA Shape

    SciTech Connect

    Singer, W.; Singer, X.; Kneisel, P.

    2007-08-09

    A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was build. An accelerating gradient of 37.5 MV/m was reached after approximately 110 {mu}m of Buffered Chemical Polishing (BCP) and in situ baking at 120 deg. C for 6 hrs with a quality factor exceeding 2x1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

  7. A Single Crystal Niobium RF Cavity of the TESLA Shape

    SciTech Connect

    W. Singer; X. Singer; P. Kneisel

    2007-09-01

    A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was built. An accelerating gradient of 37.5 MV/m was reached after approximately 110 mu-m of Buffered Chanical Polishing (BCP) and in situ baking at 120°C for 6 hrs with a quality factor exceeding 2x1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

  8. Effect of ionizing radiation on dielectric characteristics of Cu2ZnSn(S x Se1- x )4 single crystals

    NASA Astrophysics Data System (ADS)

    Hurtavy, V. G.; Sheleg, A. U.

    2017-02-01

    The effect of electron irradiation on conductivity and dielectric permeability of Cu2ZnSnS4 and Cu2ZnSnSe4 single crystals and solid solutions based on them is studied. It is shown that values of dielectric permeability decrease with an increase in the irradiation dose while those of specific electric conductivity sharply increase.

  9. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    SciTech Connect

    Siva Sankari, R.; Perumal, Rajesh Narayana

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a function of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function

  10. Mechanisms of the degradation of Schottky-barrier photodiodes based on ZnS single crystals

    SciTech Connect

    Korsunska, N. E.; Shulga, E. P.; Stara, T. R. Litvin, P. M.; Bondarenko, V. A.

    2016-01-15

    The effect of ultraviolet (UV) illumination on the electrical and spectral characteristics of Schottky-barrier photodiodes based on ZnS single crystals is studied. It is found that irradiation deteriorates their photosensitivity and changes the current–voltage and capacitance–voltage characteristics and the surface profile of the blocking electrode. It is shown that the main reason for a decrease in the photosensitivity of the diodes is the photoinduced drift of mobile donors in the electric field of the barrier. This drift depends on the crystallographic orientation of the surface being irradiated. Another photoinduced process observed in the diodes is photolysis of the ZnS crystal. This process mainly determines the change in the electrical characteristics of the diodes and in the surface profile of the electrode at an insignificant change in the photosensitivity.

  11. Single crystal Processing and magnetic properties of gadolinium nickel

    SciTech Connect

    Shreve, Andrew John

    2012-01-01

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd2O3 W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  12. Special features of annealing of radiation defects in irradiated p-Si crystals

    SciTech Connect

    Pagava, T. A.

    2007-06-15

    p-Si single crystals grown by the Czochralski method were studied; the hole concentration in these crystals was p = 6 x 10{sup 13} cm{sup -3}. The samples were irradiated with 8-MeV electrons at 300 K and were then annealed isochronously in the temperature range T{sub ann} = 100-500 deg. C. The studies were carried out using the Hall method in the temperature range of 77-300 K. It is shown that annealing of divacancies occurs via their transformation into the B{sub s}V{sub 2} complexes. This complex introduces the energy level located at E{sub v} + 0.22 eV into the band gap and is annealed out in the temperature range of 360-440 deg. C. It is assumed that defects with the level E{sub v} + 0.2 eV that anneal out in the temperature range T{sub ann} = 340-450 deg. C are multicomponent complexes and contain the atoms of the doping and background impurities.

  13. Comparison of structural properties of pristine and gamma irradiated single-wall carbon nanotubes: Effects of medium and irradiation dose

    SciTech Connect

    Kleut, D.; Jovanovic, S.; Markovic, Z.; Kepic, D.; Tosic, D.; Romcevic, N.; Marinovic-Cincovic, M.; Dramicanin, M.; Holclajtner-Antunovic, I.; Pavlovic, V.; Drazic, G.; Milosavljevic, M.; Todorovic Markovic, B.

    2012-10-15

    A systematic study of the gamma irradiation effects on single wall carbon nanotube (SWCNT) structure was conducted. Nanotubes were exposed to different doses of gamma irradiation in three media. Irradiation was carried out in air, water and aqueous ammonia. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and Raman spectroscopy confirmed the changes in the SWCNT structure. TGA measurements showed the highest percentage of introduced groups for the SWCNTs irradiated with 100 kGy. FTIR spectroscopy provided evidence for the attachment of hydroxyl, carboxyl and nitrile functional groups to the SWCNT sidewalls. Those groups were confirmed by EA. All irradiated SWCNTs had hydroxyl and carboxyl groups irrelevant to media used for irradiation, but nitrile functional groups were only identified in SWCNTs irradiated in aqueous ammonia. Raman spectroscopy indicated that the degree of disorder in the carbon nanotube structure correlates with the irradiation dose. For the nanotubes irradiated with the dose of 100 kGy, the Raman I{sub D}/I{sub G} ratio was three times higher than for the pristine ones. Atomic force microscopy showed a 50% decrease in nanotube length at a radiation dose of 100 kGy. Scanning and transmission electron microscopies showed significant changes in the morphology and structure of gamma irradiated SWCNTs. - Highlights: Black-Right-Pointing-Pointer Gamma irradiation causes SWCNT covalent functionalization. Black-Right-Pointing-Pointer Type of covalently attached groups to SWCNT surface depends on irradiation medium. Black-Right-Pointing-Pointer The SWCNT shortening level increases with applied irradiation dose. Black-Right-Pointing-Pointer The average length of carbon nanotubes decreased by 50% at the highest dose. Black-Right-Pointing-Pointer The diameter of SWCNT bundles becomes small as irradiation dose rises.

  14. Growing intermetallic single crystals using in situ decanting

    SciTech Connect

    Petrovic, Cedomir; Canfield, Paul; Mellen, Jonathan

    2012-05-16

    High temperature metallic solution growth is one of the most successful and versatile methods for single crystal growth, and is particularly suited for exploratory synthesis. The method commonly utilizes a centrifuge at room temperature and is very successful for the synthesis of single crystal phases that can be decanted from the liquid below the melting point of the silica ampoule. In this paper, we demonstrate the extension of this method that enables single crystal growth and flux decanting inside the furnace at temperatures above 1200°C. This not only extends the number of available metallic solvents that can be used in exploratory crystal growth but also can be particularly well suited for crystals that have a rather narrow exposed solidification surface in the equilibrium alloy phase diagram.

  15. Automatic system for single ion/single cell irradiation based on Cracow microprobe

    NASA Astrophysics Data System (ADS)

    Veselov, O.; Polak, W.; Lekki, J.; Stachura, Z.; Lebed, K.; Styczeń, J.; Ugenskiene, R.

    2006-05-01

    Recently, the Cracow ion microprobe has found its new application as a single ion hit facility (SIHF), allowing precise irradiations of living cells by a controlled number of ions. The instrument enables a broad field of research, such as survival studies, adaptive response investigations, bystander effect, inverse dose-rate effect, low-dose hypersensitivity, etc. This work presents principles of construction and operation of the SIHF based on the Cracow microprobe. We discuss some crucial features of optical, positioning, and blanking systems, including self-developed software responsible for semiautomatic cell recognition, for precise positioning of cells, and for controlling the irradiation process. We also show some tests carried out to determine the efficiency of the whole system and of its segments. In addition, we present results of the first irradiation measurements performed with living cells.

  16. Structural state of a radiation-modified Ti{sub 50}Ni{sub 47}Fe{sub 3} single crystal

    SciTech Connect

    Parkhomenko, V. D. Dubinin, S. F.; Maksimov, V. I.

    2011-12-15

    The structural state of a Ti{sub 50}Ni{sub 47}Fe{sub 3} single crystal irradiated by fast neutrons (F = 2.5 Multiplication-Sign 10{sup 20} cm{sup -2}) at 340 K was studied by thermal neutron diffraction at 78 and 295 K. The melt of this composition was chosen with the purpose of designing a radiation-resistant material exhibiting a shape-memory effect. It was found that the melt remains crystalline after irradiation, whereas the Ti{sub 49}Ni{sub 51} crystal studied earlier becomes amorphous after an analogous irradiation. In spite of the fact that the main structural motif of the crystal remains unchanged after irradiation, martensitic transformations in the crystal do not occur and, consequently, the shape-memory effect is not retained. The radiation resistance of this class of crystals was estimated.

  17. Growth of bulk single crystals of urea for photonic applications

    NASA Astrophysics Data System (ADS)

    Saranraj, Arumugam; Sathiyadhas, Sahaya Jude Dhas; Jose, Michael; Martin Britto Dhas, Sathiyadhas Amalapusham

    2017-08-01

    We report the growth of technologically important urea crystals of record size (48 × 16 × 8 mm3) by doping sulfuric acid and employing slow evaporation technique. The grown crystal was identified by single crystal X-Ray diffraction and FTIR spectral analysis. Optical properties of the grown crystal were analyzed by UV-Vis spectrum and the presence of H2SO4 was confirmed by EDAX analysis. Thermogravimetric analysis, Differential Scanning Calorimetry and Photo acoustic studies were also carried out to determine the thermal properties of the grown crystal. The dielectric properties for wide range of frequencies (1 Hz to 1 MHz) at different temperatures (35, 40, 60, 80, 100 °C) were analyzed. The second harmonic conversion efficiency of the grown H2SO4 doped urea crystal was found to be 3.75 times higher than the commercially available KDP crystals. [Figure not available: see fulltext.

  18. A study of optical and ESR radiation-induced absorptions in TeO2 single crystals

    NASA Astrophysics Data System (ADS)

    Kappers, L. A.; Gilliam, O. R.; Bartram, R. H.; Földv&Ári, I.; Watterich, A.

    Gamma-ray and 1.5-MeV electron irradiations are employed in the temperature range 25-175°C to produce radiation effects in undoped paratellurite (α-TeO2) single crystals. Optical absorption and ESR techniques are used to study the growth and annealing of point defects, and spectroscopic observations by these two methods are compared. Pulseannealing experiments are reported over the range 100-500°C. The TeO2 crystal shows much more susceptibility to radiation damage at the higher irradiation temperatures.

  19. High-resolution core-level photoemission measurements on the pentacene single crystal surface assisted by photoconduction

    NASA Astrophysics Data System (ADS)

    Nakayama, Yasuo; Uragami, Yuki; Yamamoto, Masayuki; Yonezawa, Keiichirou; Mase, Kazuhiko; Kera, Satoshi; Ishii, Hisao; Ueno, Nobuo

    2016-03-01

    Upon charge carrier transport behaviors of high-mobility organic field effect transistors of pentacene single crystal, effects of ambient gases and resultant probable ‘impurities’ at the crystal surface have been controversial. Definite knowledge on the surface stoichiometry and chemical composites is indispensable to solve this question. In the present study, high-resolution x-ray photoelectron spectroscopy (XPS) measurements on the pentacene single crystal samples successfully demonstrated a presence of a few atomic-percent of (photo-)oxidized species at the first molecular layer of the crystal surface through accurate analyses of the excitation energy (i.e. probing depth) dependence of the C1s peak profiles. Particular methodologies to conduct XPS on organic single crystal samples, without any charging nor damage of the sample in spite of its electric insulating character and fragility against x-ray irradiation, is also described in detail.

  20. Study of single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Doty, J. P.; Reising, J. A.

    1973-01-01

    The parameters and requirements for growing single crystals of relatively high melting point metals in a zero gravity environment are studied. The crystal growth of metals such as silver, copper, gold, and alloys with a melting point between 900-1100 C is examined.

  1. Rotating lattice single crystal architecture on the surface of glass

    NASA Astrophysics Data System (ADS)

    Savytskii, D.; Jain, H.; Tamura, N.; Dierolf, V.

    2016-11-01

    Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the example of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.

  2. Rotating lattice single crystal architecture on the surface of glass

    PubMed Central

    Savytskii, D.; Jain, H.; Tamura, N.; Dierolf, V.

    2016-01-01

    Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the example of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted. PMID:27808168

  3. Rotating lattice single crystal architecture on the surface of glass

    SciTech Connect

    Savytskii, D.; Jain, H.; Tamura, N.; Dierolf, V.

    2016-11-03

    Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the example of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/ crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.

  4. Rotating lattice single crystal architecture on the surface of glass

    DOE PAGES

    Savytskii, D.; Jain, H.; Tamura, N.; ...

    2016-11-03

    Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the examplemore » of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/ crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.« less

  5. Growth of single crystals by vapor transport

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1978-01-01

    The primary objectives of the program were to establish basic vapor transport and crystal growth properties and to determine thermodynamic, kinetic and structural parameters relevant to chemical vapor transport systems for different classes of materials. An important aspect of these studies was the observation of the effects of gravity-caused convection on the mass transport rate and crystal morphology. These objectives were accomplished through extensive vapor transport, thermochemical and structural studies on selected Mn-chalcogenides, II-VI and IV-VI compounds.

  6. Measurement of single crystal surface parameters

    NASA Technical Reports Server (NTRS)

    Swanson, L. W.; Bell, A. E.; Strayer, R. W.

    1972-01-01

    The sticking coefficient and thermal desorption spectra of Cs from the (110) plane of W was investigated. A sticking coefficient of unity for the monolayer region was measured for T 250 K. Several distinct binding states were observed in the thermal desorption spectrum. Work function and electron reflection measurements were made on the (110) and (100) crystal faces of Mo. Both LEED and Auger were used to determine the orientation and cleanliness of the crystal surfaces. The work function values obtained for the (110) and (100) planes of Mo were 4.92 and 4.18 eV respectively.

  7. Electron-irradiation-induced crystallization at metallic amorphous/silicon oxide interfaces caused by electronic excitation

    SciTech Connect

    Nagase, Takeshi; Yamashita, Ryo; Lee, Jung-Goo

    2016-04-28

    Irradiation-induced crystallization of an amorphous phase was stimulated at a Pd-Si amorphous/silicon oxide (a(Pd-Si)/SiO{sub x}) interface at 298 K by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Under irradiation, a Pd-Si amorphous phase was initially formed at the crystalline face-centered cubic palladium/silicon oxide (Pd/SiO{sub x}) interface, followed by the formation of a Pd{sub 2}Si intermetallic compound through irradiation-induced crystallization. The irradiation-induced crystallization can be considered to be stimulated not by defect introduction through the electron knock-on effects and electron-beam heating, but by the electronic excitation mechanism. The observed irradiation-induced structural change at the a(Pd-Si)/SiO{sub x} and Pd/SiO{sub x} interfaces indicates multiple structural modifications at the metal/silicon oxide interfaces through electronic excitation induced by the electron-beam processes.

  8. Aluminium segregation of TiAl during single crystal growth

    SciTech Connect

    Bi, Y.J.; Abell, J.S.

    1997-09-15

    {gamma}-TiAl single crystals have been successfully prepared by an induction-heated cold crucible Czochralski technique which offers more flexibility than vertical float zoning. Compositional analysis of the Czochralski grown single crystals indicates a homogeneous composition after initial transition; and the average composition is close to the peritectic composition. However, {gamma}-TiAl single crystals prepared by vertical float zoning show a small aluminium segregation profile along the growth direction; and the average composition of the as-grown crystals is close to that of the starting alloy. Compositional analysis further demonstrated the banded structure with alternative single {gamma}-phase and {alpha}{sub 2} + {gamma} lamellar regions in the vertical float zoned Ti-54 at.% Al.

  9. Processing tungsten single crystal by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xiao, Zhigang; Zee, Ralph H.; Begg, Lester L.

    2000-01-01

    A tungsten single crystal layer has been fabricated on molybdenum single crystal substrate through the hydrogen (H2) reduction of the tungsten hexafluoride (WF6) in low pressure. Substrate temperature, reaction chamber pressure, and flow rate of WF6 and H2, are critical process parameters during deposition. A comprehensive analysis for the effects of these parameters on single crystal layer growth has been processed and optimized growth conditions have been achieved. The different orientation of the substrate shows the different deposition rate for tungsten. Low index plane has higher deposition rate than high index plane. The kinetics of the deposition process has also been investigated. SEM surface analysis indicates that the single crystal layer is smooth in macro-scale and rough and step-growth format in micro-scale. .

  10. High-temperature alloys: Single-crystal performance boost

    NASA Astrophysics Data System (ADS)

    Schütze, Michael

    2016-08-01

    Titanium aluminide alloys are lightweight and have attractive properties for high-temperature applications. A new growth method that enables single-crystal production now boosts their mechanical performance.

  11. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.; Miller, D.J.; Shi, D.; Sengupta, S.

    1998-07-07

    A method of fabricating bulk YBa{sub 2}Cu{sub 3}O{sub x} where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa{sub 2}Cu{sub 3}O{sub x} are heated in the presence of a Nd{sub 1+x}Ba{sub 2{minus}x}Cu{sub 3}O{sub y} seed crystal to a temperature sufficient to form a liquid phase in the YBa{sub 2}Cu{sub 3}O{sub x} while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa{sub 2}Cu{sub 3}O{sub x} material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material. 7 figs.

  12. Synthesis and Single-Crystal Growth of Ca

    SciTech Connect

    Nakatsuji, Satoru; Maeno, Yoshiteru

    2001-01-01

    For the study of the quasi-two-dimensional Mott transition system Ca{sub 2-x}Sr{sub x}RuO{sub 4}, we have succeeded in synthesizing polycrystalline samples and also growing single crystals by a floating-zone method. Details of the preparations for the entire solution range are described. The structural, transport, and magnetic properties of both polycrystalline and single-crystal samples are fully in agreement.

  13. Inhomogeneities in single crystals of cuprate oxide superconductors

    NASA Technical Reports Server (NTRS)

    Moorjani, K.; Bohandy, J.; Kim, B. F.; Adrian, F. J.

    1991-01-01

    The next stage in the evolution of experimental research on the high temperature superconductors will require high quality single crystals and epitaxially grown crystalline films. However, inhomogeneities and other defects are not uncommon in single crystals of cuprate oxide superconductors, so a corollary requirement will be a reliable method for judging the quality of these materials. The application of magnetically modulated resistance methods in this task is briefly described and illustrated.

  14. Process for Forming a High Temperature Single Crystal Canted Spring

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J (Inventor); Ritzert, Frank J (Inventor); Nathal, Michael V (Inventor); Dunlap, Patrick H (Inventor); Steinetz, Bruce M (Inventor)

    2017-01-01

    A process for forming a high temperature single crystal canted spring is provided. In one embodiment, the process includes fabricating configurations of a rapid prototype spring to fabricate a sacrificial mold pattern to create a ceramic mold and casting a canted coiled spring to form at least one canted coil spring configuration based on the ceramic mold. The high temperature single crystal canted spring is formed from a nickel-based alloy containing rhenium using the at least one coil spring configuration.

  15. Thermal and dielectric studies of nickel malonate dihydrate single crystals

    NASA Astrophysics Data System (ADS)

    Mathew, Varghese; Mathai, K. C.; Mahadeven, C. K.; Abraham, K. E.

    2011-02-01

    Single crystals of nickel malonate dihydrate were grown by the gel technique, employing the single diffusion method. Thermal dehydration of the crystal was investigated by thermogravimetric and differential thermal analyses. The title compound exhibits a steady thermal behaviour at higher temperature range of 350-800 °C. The dielectric properties of the prepared sample were analyzed as a function of frequency in the range of 1 kHz-1 MHz and at temperatures between 40 and 140 °C.

  16. IMRT for Image-Guided Single Vocal Cord Irradiation

    SciTech Connect

    Osman, Sarah O.S.; Astreinidou, Eleftheria; Boer, Hans C.J. de; Keskin-Cambay, Fatma; Breedveld, Sebastiaan; Voet, Peter; Al-Mamgani, Abrahim; Heijmen, Ben J.M.; Levendag, Peter C.

    2012-02-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.

  17. Change in Surface Conductivity of Elastically Deformed p-Si Crystals Irradiated by X-Rays

    NASA Astrophysics Data System (ADS)

    Lys, R.; Pavlyk, B.; Didyk, R.; Shykorjak, J.

    2017-07-01

    Changes in conductivity of irradiated and non-irradiated p-Si mono-crystals under the influence of elastic uniaxial mechanical stress were investigated in this paper. An analytical expression was suggested to describe the dependence of surface conductivity as a function of mechanical stress and X-ray irradiation dose. It was shown that 4-angular nano-particles on the surface of "solar" silicon affect the electroconductivity changes under mechanical stress. It was established that X-ray irradiation causes the generation of point defects in silicon. These defects suppress the dislocations movement. It was shown that the resistivity of previously irradiated samples of "electronic" silicon is only slightly sensitive to the influence of uniaxial compression at certain deformation rate.

  18. Fatigue damage modeling for coated single crystal superalloys

    NASA Technical Reports Server (NTRS)

    Nissley, David M.

    1988-01-01

    A high temperature, low-cycle fatigue life prediction method for coated single crystal nickel-base superalloys is being developed. The method is being developed for use in predicting crack initiation life of coated single crystal turbine airfoils. Although the models are being developed using coated single crystal PWA 1480, they should be readily adaptable to other coated nickel-base single crystal materials. The coatings choosen for this effort were of two generic types: a low pressure plasma sprayed NiCoCrAlY overlay, designated PWA 286, and an aluminide diffusion, designated PWA 273. In order to predict the useful crack initiation life of airfoils, the constitutive and failure behavior of the coating/substrate combination must be taken into account. Coatings alter the airfoil surface microstructure and are a primary source from which cracks originate. The adopted life prediction approach addresses this complexity by separating the coating and single crystal crack initiation regimes. This provides a flexible means for using different life model formulations for the coating and single crystal materials. At the completion of this program, all constitutive and life model formulations will be available in equation form and as software. The software will use the MARC general purpose finite element code to drive the constitutive models and calculate life parameters.

  19. Blocks and residual stresses in shaped sapphire single crystals

    NASA Astrophysics Data System (ADS)

    Krymov, V. M.; Nosov, Yu. G.; Bakholdin, S. I.; Maslov, V. N.; Shul‧pina, I. L.; Nikolaev, V. I.

    2017-01-01

    The formation of blocks and residual stresses in shaped sapphire crystals grown from the melt by the Stepanov method (EFG) has been studied. The probability of block formation is higher for the growth along the c axis compared to that grown in the a-axis direction. The distribution of residual stress in sapphire crystals of tubular, rectangular and round cross section was measured by the conoscopy method. It was found that the magnitude of the residual stress increases from the center to the periphery of the crystal and reaches up to about 20 MPa. Residual stress tensor components for solid round rod and tubular single crystals were determined by numerical integration.

  20. Single crystal niobium tubes for particle colliders accelerator cavities

    SciTech Connect

    Murphy, James E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred °C of the melting temperature of niobium, which is 2477 °C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 °C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was

  1. Growth and characterization of organic single crystal benzyl carbamate

    NASA Astrophysics Data System (ADS)

    Bala Solanki, S. Siva; Perumal, Rajesh Narayana; Suthan, T.; Bhagavannarayana, G.

    2015-10-01

    Benzyl carbamate single crystal is grown by a solution and vertical Bridgman technique for the first time. The cell parameters and morphologies are assessed from single crystal X-ray diffraction analysis. High resolution X-ray diffraction analysis indicates the crystalline perfection of the grown benzyl carbamate crystal. Fourier Transforms Infrared spectroscopy study has been applied to arrive at the different functional groups. Thermo gravimetric analysis and differential scanning calorimetry are used to study its thermal behavior. The microhardness test is carried out and the load dependent hardness is measured.

  2. Growth and properties of benzil doped benzimidazole (BMZ) single crystals

    SciTech Connect

    Babu, R. Ramesh; Sukumar, M.; Vasudevan, V.; Shakir, Mohd.; Ramamurthi, K.; Bhagavannarayana, G.

    2010-09-15

    In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure and doped benzimidazole crystals measured using Kurtz powder test.

  3. The optical properties of alkali nitrate single crystals

    NASA Astrophysics Data System (ADS)

    Anan'ev, Vladimir; Miklin, Mikhail

    2000-08-01

    Absorption of non-polarized light by a uniaxial crystal has been studied. The degree of absorption polarization has been calculated as a function of the ratio of optical densities in the region of low and high absorbances. This function is proposed for analysis of the qualitative and quantitative characteristics of uniaxial crystal absorption spectra. Non-polarized light spectra of alkali nitrate single crystals, both pure and doped with thallium, have been studied. It is shown that the absorption band at 300 nm is due to two transitions, whose intensities depend on temperature in various ways. There is a weak band in a short wavelength range of the absorption spectrum of potassium nitrate crystal, whose intensity increases with thallium doping. The band parameters of alkali nitrate single crystals have been calculated. Low-energy transitions in the nitrate ion have been located.

  4. The lattice parameter of highly pure silicon single crystals

    NASA Astrophysics Data System (ADS)

    Becker, P.; Scyfried, P.; Siegert, H.

    1982-08-01

    From crystal to crystal comparison, the d 220 lattice spacing in PERFX and WASO silicon crystals used in the only two existing absolute measurements have been found to be equal within ±2×10-7 d 220. This demonstrates that generic variabilities of the two crystals account only for a small part of the 1.8×10-6 d 220 difference in the two absolute measurements. In a new series of 336 single measurements, our d 220 value reported recently has been confirmed within ±2×10-8 d 220. From these results we derive the following lattice parameter for highly pure silicon single crystals: a 0=(543 102.018±0.034) fm (at 22.5°C, in vacuum).

  5. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.; Dreshfield, R. L.

    1980-01-01

    The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 760 to 1038 C were performed for 52 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles obtained for Mar-M247 and Mar-M200 single crystals reveal that crystals with orientations near the -111 had the highest lives, those near the 001 had high lives, and those near the 011 had low lives.

  6. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.; Dreshfield, R. L.

    1980-01-01

    The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 760 to 1038 C were performed for 52 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles obtained for Mar-M247 and Mar-M200 single crystals reveal that crystals with orientations near the -111 had the highest lives, those near the 001 had high lives, and those near the 011 had low lives.

  7. An analytical model for porous single crystals with ellipsoidal voids

    NASA Astrophysics Data System (ADS)

    Mbiakop, A.; Constantinescu, A.; Danas, K.

    2015-11-01

    A rate-(in)dependent constitutive model for porous single crystals with arbitrary crystal anisotropy (e.g., FCC, BCC, HCP, etc.) containing general ellipsoidal voids is developed. The proposed model, denoted as modified variational model (MVAR), is based on the nonlinear variational homogenization method, which makes use of a linear comparison porous material to estimate the response of the nonlinear porous single crystal. Periodic multi-void finite element simulations are used in order to validate the MVAR for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void shapes and orientations and various porosity levels. The MVAR model, which involves a priori no calibration parameters, is found to be in good agreement with the finite element results for all cases considered in the rate-dependent context. The model is then used in a predictive manner to investigate the complex response of porous single crystals in several cases with strong coupling between the anisotropy of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids. Finally, a simple way of calibrating the MVAR with just two adjustable parameters is depicted in the rate-independent context so that an excellent agreement with the FE simulation results is obtained. In this last case, this proposed model can be thought as a generalization of the Gurson model in the context of porous single crystals and general ellipsoidal void shapes and orientations.

  8. Fatigue Failure Criteria for Single Crystal Nickel Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    1999-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine and rocket engine turbopump blades is a pervasive problem. Single crystal turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry and NASA because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the pan geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades is complicated to predict due to the material orthotropy and variations in crystal orientations. A fatigue failure criteria based on the maximum shear stress amplitude [delta t max] on the 30 slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criteria reduces the scatter in uniaxial LCF test data, for four different specimen orientations, for PWA 1484 at 1200 F in air, quite well. A power law curve fit of the failure parameter, delta t max, vs. cycles to failure is presented.

  9. Cladded single crystal fibers for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Shaw, B.; Bayya, S.; Askins, C.; Peele, J.; Rhonehouse, D.; Meyers, J.; Thapa, R.; Gibson, D.; Sanghera, J.

    2016-09-01

    We report on the recent progress in the development of cladded single crystal fibers for high power single frequency lasers. Various rare earth doped single crystal YAG fibers with diameters down to 17 μm with length > 1 m have been successfully drawn using a state-of-the-art Laser Heated Pedestal Growth system. Single and double cladding on rare earth doped YAG fibers have been developed using glasses where optical and physical properties were precisely matched to doped YAG core single crystal fiber. The double clad Yb:YAG fiber structures have dimensions analogous to large mode area (LMA) silica fiber. We also report successful fabrications of all crystalline core/clad fibers where thermal and optical properties are superior over glass cladded YAG fibers. Various fabrication methods, optical characterization and gain measurements on these cladded YAG fibers are reported.

  10. Raman spectra of deuteriated taurine single crystals

    NASA Astrophysics Data System (ADS)

    Souza, J. M. de; Lima, R. J. C.; Freire, P. T. C.; Sasaki, J. M.; Melo, F. E. A.; Filho, J. Mendes; Jones, Derry W.

    2005-05-01

    The polarized Raman spectra of partially deuteriated taurine [(ND 3+) 0.65(NH 3+) 0.35(CH 2) 2SO 3-] crystals from x( zz) x and x( zy) x scattering geometries of the A g and B g irreducible representations of the factor group C 2h are reported. The temperature-dependent Raman spectra of partially deuteriated taurine do not reveal any evidence of the structural phase transition undergone by normal taurine at about 250 K, but an anomaly observed in the 180 cm -1 band at ˜120 K implies a different dynamic for this band (which is involved in a pressure-induced phase transition) in the deuteriated crystal.

  11. Shock Driven Twinning in Tantalum Single Crystals

    SciTech Connect

    McNaney, J M; HSUING, L M; Barton, N R; Kumar, M

    2009-07-20

    Recovery based observations of high pressure material behavior generated under high explosively driven flyer based loading conditions are reported. Two shock pressures, 25, and 55 GPa and four orientations {l_brace}(100), (110), (111), (123){r_brace} were considered. Recovered material was characterized using electron backscatter diffraction along with a limited amount of transmission electron microscopy to assess the occurrence of twinning under each test condition. Material recovered from 25 GPa had a very small fraction of twinning for the (100), (110), and (111) oriented crystals while a more noticeable fraction of the (123) oriented crystal was twinned. Material recovered from 55 GPa showed little twinning for (100) orientation slightly more for the (111) orientation and a large area fraction for the (123) orientation. The EBSD and TEM observations of the underlying deformation substructure are rationalized by comparing with previous static and dynamic results.

  12. Special Features of the Structure of Single-Crystal Refractory Nickel Alloy Under Directed Crystallization

    NASA Astrophysics Data System (ADS)

    Bondarenko, Yu. A.; Echin, A. B.; Surova, V. A.; Kolodyazhnyi, M. Yu.

    2017-05-01

    The effect of the conditions of directed crystallization (the temperature gradient and the crystallization rate) on the dendrite spacing, on the size of the particles of the hardening γ'-phase in the arms and arm spaces of the dendrites, on the volume fraction and size of the pores, on the size of the particles of the eutectic γ/γ'-phase, and on the features of dendritic segregation in a single-crystal castable refractory alloy is studied.

  13. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  14. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  15. Crystal growth and characterization of sodium p-nitrophenolate dihydrate (NPNa) single crystals for NLO applications

    NASA Astrophysics Data System (ADS)

    Sethupathi, D.; Pandian, Muthu Senthil; Maurya, K. K.; Ramasamy, P.

    2017-05-01

    A good quality and transparent semi-organic nonlinear optical sodium p-nitrophenolate dihydrate (NPNa) crystal has been grown by slow evaporation solution technique (SEST) in a period of 180 days. The single crystal XRD confirms the NPNa crystal belongs to orthorhombic system with the non-centrosymmetry space group Ima2. The quality of the grown crystal was examined by high resolution X-ray diffraction (HXRD) analysis and the full width at half maximum (FWHM) of NPNa crystal was found to be 19 arc sec. The thermal property of the NPNa crystal was analyzed by TG-DTA analysis. The second harmonic generation (SHG) efficiency of the grown crystal was studied by Kurtz-Perry powder technique and the calculated SHG conversion efficiency was found to be 2.4 times that of standard KDP material.

  16. First determination of the (re)crystallization activation energy of an irradiated olivine-type silicate

    NASA Astrophysics Data System (ADS)

    Djouadi, Z.; D'Hendecourt, L.; Leroux, H.; Jones, A. P.; Borg, J.; Deboffle, D.; Chauvin, N.

    2005-09-01

    To study the evolution of silicate dust in different astrophysical environments we simulate, in the laboratory, interstellar and circumstellar ion irradiation and thermal annealing processes. An experimental protocol that follows different steps in the dust life-cycle was developed. Using the silicate 10 μm band as an indicator, the evolution of the structural properties of an ion-irradiated olivine-type silicate sample, as a function of temperature, is investigated and an activation energy for crystallization is determined. The obtained value of {E_a}/k = 41 700 ± 2400 K is in good agreement with previous determinations of the activation energies of crystallization reported for non-ion-irradiated, amorphous silicates. This implies that the crystallization process is independent of the history of the dust. In particular, the defect concentration due to irradiation appears not to play a major role in stimulating, or hindering, crystallization at a given temperature. This activation energy is an important thermodynamical parameter that must be used in theoretical models which aim to explain the dust evolution from its place of birth in late type stars to its incorporation into young stellar environments, proto-stellar discs and proto-planetary systems after long passage through the interstellar medium.

  17. Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by ultraviolet irradiation

    SciTech Connect

    Yokotani, A.; Sasaki, T.; Yoshida, K.; Yamanaka, T.; Yamanaka, C.

    1986-04-21

    Potassium dihydrogen phosphate (KDP) crystals were grown under the irradiation of ultraviolet light. The bulk laser damage threshold was improved to two to three times (15-20 J/cm/sup 2/) compared to the case of crystals grown by conventional methods. Microbes such as germs and bacteria are frequently generated in the KDP solution with the usual growth method. The ultraviolet light reduces or eliminates organic materials such as microbes or their carcasses incorporated into the crystal, which are the cause of low damage threshold.

  18. Method of making macrocrystalline or single crystal semiconductor material

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor); Holliday, R. J. (Inventor)

    1986-01-01

    A macrocrystalline or single crystal semiconductive material is formed from a primary substrate including a single crystal or several very large crystals of a relatively low melting material. This primary substrate is deposited on a base such as steel or ceramic, and it may be formed from such metals as zinc, cadmium, germanium, aluminum, tin, lead, copper, brass, magnesium silicide, or magnesium stannide. These materials generally have a melting point below about 1000 C and form on the base crystals the size of fingernails or greater. The primary substrate has an epitaxial relationship with a subsequently applied layer of material, and because of this epitaxial relationship, the material deposited on the primary substrate will have essentially the same crystal size as the crystals in the primary substrate. If required, successive layers are formed, each of a material which has an epitaxial relationship with the previously deposited layer, until a layer is formed which has an epitaxial relationship with the semiconductive material. This layer is referred to as the epitaxial substrate, and its crystals serve as sites for the growth of large crystals of semiconductive material. The primary substrate is passivated to remove or otherwise convert it into a stable or nonreactive state prior to deposition of the seconductive material.

  19. Co-doped sodium chloride crystals exposed to different irradiation temperature

    NASA Astrophysics Data System (ADS)

    Ortiz-Morales, A.; Cruz-Zaragoza, E.; Furetta, C.; Kitis, G.; Flores J., C.; Hernández A., J.; Murrieta S., H.

    2013-07-01

    Monocrystals of NaCl:XCl2:MnCl2(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from 60Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  20. Co-doped sodium chloride crystals exposed to different irradiation temperature

    SciTech Connect

    Ortiz-Morales, A.; Cruz-Zaragoza, E.; Furetta, C.; Kitis, G.; Flores J, C.; Hernandez A, J.; Murrieta S, H.

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  1. Observation of plastic deformation in freestanding single crystal Au nanowires

    SciTech Connect

    Lee, Dongyun; Zhao Manhong; Wei Xiaoding; Chen Xi; Jun, Seong C.; Hone, James; Herbert, Erik G.; Oliver, Warren C.; Kysar, Jeffrey W.

    2006-09-11

    Freestanding single crystal nanowires of gold were fabricated from a single grain of pure gold leaf by standard lithographic techniques, with center section of 7 {mu}m in length, 250 nm in width, and 100 nm in thickness. The ends remained anchored to a silicon substrate. The specimens were deflected via nanoindenter until plastic deformation was achieved. Nonlocalized and localized plastic deformations were observed. The resulting force-displacement curves were simulated using continuum single crystal plasticity. A set of material parameters which closely reproduce the experimental results suggests that the initial critical resolved shear stress was as high as 135 MPa.

  2. Inspection of Single Crystal Aerospace Components with Ultrasonic Arrays

    NASA Astrophysics Data System (ADS)

    Lane, C. J. L.; Dunhill, A.; Drinkwater, B. W.; Wilcox, P. D.

    2010-02-01

    Single crystal metal alloys are used extensively in the manufacture of jet engine components for their excellent mechanical properties at elevated temperatures. The increasing use of these materials and demand for longer operational life and improved reliability motivates the requirement to have capable NDE methods available. Ultrasonic arrays are well established at detecting sub-surface defects however these methods are not currently suitable to the inspection of single crystal components due to their high elastic anisotropy causing directional variation in ultrasonic waves. In this paper a model of wave propagation in anisotropic material is used to correct an ultrasonic imaging algorithm and is applied to single crystal test specimens. The orientation of the crystal in a specimen must be known for this corrected-algorithm; therefore a crystal orientation method is also presented that utilizes surface skimming longitudinal waves under a 2D array. The work detailed in this paper allows an ultrasonic 2D array to measure the orientation of a single crystal material and then perform accurate volumetric imaging to detect and size defects.

  3. Mobility of edge dislocations in stressed iron crystals during irradiation

    SciTech Connect

    Korchuganov, A. V. Zolnikov, K. P.; Kryzhevich, D. S.; Chernov, V. M.; Psakhie, S. G.

    2015-10-27

    The behavior of a/2(111)(110) edge dislocations in iron in shear loading and irradiation conditions was studied by means of molecular dynamics simulation. Edge dislocations were exposed to shock waves formed by atomic displacement cascades of different energies. It was shown that starting from a certain threshold amplitude shock waves cause displacement of edge dislocations in the loaded samples. Calculations showed that the larger the shear load and the amplitude of the shock wave, the greater the displacement of dislocations in the crystallite.

  4. Ultraviolet fast-response photoelectric effects in LiTaO3 single crystal

    NASA Astrophysics Data System (ADS)

    Guo, Er-Jia; Xing, Jie; Lu, Hui-Bin; Jin, Kui-Juan; Wen, Juan; Yang, Guo-Zhen

    2010-01-01

    The photoelectric effects of LiTaO3 (LTO) single crystals are experimentally studied with two kinds of LTO wafers, 10° tilted and untilted, at room temperature. A transient open-circuit photoelectrical response of 143 ps rise time is observed in the 10° tilted LTO when a 266 nm pulsed laser with a duration of 25 ps is irradiated directly onto the LTO surface. The untilted LTO with interdigitated electrodes of 10 µm finger width and 10 µm interspacing exhibits a linear dependence on the applied bias and power density of incident light, a response peak at about 235 nm and a sharp cutoff at about 270 nm. The noise current is only 61 pA at 20 V bias under the illumination of sunlight outdoors at midday. The experimental results suggest the promising application of the LTO single crystal in UV detection, in particular, as a solar-blind fast-response photodetector.

  5. Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation.

    PubMed

    Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil

    2017-08-01

    Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis and Structure Characterization of Forsterite Single Crystal

    NASA Astrophysics Data System (ADS)

    Wang, C.; Jin, S.; Wang, X.; Liu, X.; Fleet, M. E.; Jin, Z.

    2006-12-01

    Forsterite (Mg2SiO4), the low-pressure polymorph of magnesium orthosilicate, is of great importance in the upper mantle due to its aboundance. Up to now, only powder samples of forsterite can be synthesized due to the difficulty of its crystal growth. Therefore, the exact crystal structure of forsterite is still an open question. The crystal structure of forsterite was firstly studied in 1926 by Brown and Bragg. Numerous experimental investigations have been performed in order to get the structure of the olivine group minerals at ambient conditions and a variety of temperature and pressures by using the advent of the computer, the single crystal diffractometer and the diamond cell. However, there are still considerable uncertaintes regarding the accuracy of its unit-cell parameter values. In this study, we synthesized for the first time high quality single crystals of forsterite using the Quickpress piston-cylinder apparatus. The single crystal of forsterite was synthesized by direct reaction of stoichiometric amounts of MgO and amorphous SiO2 (Alfa Aesar, 99.999%) in the presence of ~10-11 wt% distilled water at 2.0GPa, 1723 K for 12h. A colorless single crystal of Mg2SiO4 with size dimensions 0.16×0.11×0.04 mm was selected for single crystal X-ray diffraction analysis. The intensity data were collected with a Rigaku R-AXIS RAPID IP diffractometer by oscillation scans using graphite- monochromated Mo-K?0?6?0?6?7677?0?6?0?6?7699 radiation (λ=0.71073 Å). Cell refinement and data reduction were accomplished with RAPID AUTO program. The crystal structure was solved by direct methods with the SHELXL crystallographic software package. Single crystal X-ray diffraction analysis shows a crystal structure of orthorhombic space group Pnma (No. 62) with a = 10.2073(11) Å, b = 5.9863(5) Å, c = 4.7611(4) Å and Z = 4. Our new data provides new constraints for theoretical investigations of the physical and chemistry properties and behaviors of forsterite under various

  7. Irradiation-related amorphization and crystallization: In situ transmission electron microscope studies

    SciTech Connect

    Allen, C.W.

    1994-04-01

    Interfacing an ion accelerator to a transmission electron microscope (TEM) allows the analytical functions of TEM imaging and diffraction to be employed during ion-irradiation effects studies. At present there are twelve such installations in Japan, one in France and one in the US. This paper treats several aspects of in situ studies involving electron and ion beam induced and enhanced phase transformations and presents results of several in situ experiments to illustrate the dynamics of this approach in the materials science of irradiation effects. The paper describes the ion- and electron-induced amorphization of CuTi; the ion-irradiation-enhanced transformation of TiCr{sub 2}; and the ion- and electron-irradiation-enhanced crystallization of CoSi{sub 2}.

  8. Surface reformation and electro-optical characteristics of liquid crystal alignment layers using ion beam irradiation

    SciTech Connect

    Oh, Byeong-Yun; Lee, Kang-Min; Kim, Byoung-Yong; Kim, Young-Hwan; Han, Jin-Woo; Han, Jeong-Min; Lee, Sang-Keuk; Seo, Dae-Shik

    2008-09-15

    The surface modification characteristics of liquid crystal (LC) alignment layers irradiated with various argon (Ar) ion beam (IB) energies were investigated as a substitute for rubbing technology. Various pretilt angles were created on the IB-irradiated polyimide (PI) surfaces after IB irradiation, but the Ar ions did not alter the morphology on the PI surface, indicating that the pretilt angle was not due to microgrooves. The chemical bonding states of the IB-irradiated PI surfaces were analyzed in detail by x-ray photoelectron spectroscopy to verify the compositional behavior for the LC alignment. Chemical structure analysis showed that the alignment ability of LCs was due to the preferential reorientation of the carbon network due to the breaking of C=O double bonds in the imide ring parallel to the incident IB direction. The potential of applying nonrubbing technology to display devices was further supported by the superior electro-optical characteristics compared to rubbed PI.

  9. Enhancing the mechanical properties of single-crystal CVD diamond.

    PubMed

    Liang, Qi; Yan, Chih-Shiue; Meng, Yufei; Lai, Joseph; Krasnicki, Szczesny; Mao, Ho-Kwang; Hemley, Russell J

    2009-09-09

    Approaches for enhancing the strength and toughness of single-crystal diamond produced by chemical vapor deposition (CVD) at high growth rates are described. CVD processes used to grow single-crystal diamond in high density plasmas were modified to incorporate boron and nitrogen. Semi-quantitative studies of mechanical properties were carried out using Vickers indentation techniques. The introduction of boron in single-crystal CVD diamond can significantly enhance the fracture toughness of this material without sacrificing its high hardness (∼78 GPa). Growth conditions were varied to investigate its effect on boron incorporation and optical properties by means of photoluminescence, infrared, and ultraviolet-visible absorption spectroscopy. Boron can be readily incorporated into single-crystal diamond by the methods used, but with nitrogen addition, the incorporation of boron was hindered. The spectroscopic measurements indicate that nitrogen and boron coexist in the diamond structure, which helps explain the origin of the enhanced fracture toughness of this material. Further, low pressure/high temperature annealing can enhance the intrinsic hardness of single-crystal CVD diamond by a factor of two without appreciable loss in fracture toughness. This doping and post-growth treatment of diamond may lead to new technological applications that require enhanced mechanical properties of diamond.

  10. Low-cost single-crystal turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Dennis, R. E.; Heath, B. R.

    1984-01-01

    The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

  11. Enhancing the Mechanical Properties of Single-Crystal CVD Diamond

    SciTech Connect

    Liang, Q.; Yan, C; Meng, Y; Lai, J; Krasnicki, S; Mao, H; Hemley, R

    2009-01-01

    Approaches for enhancing the strength and toughness of single-crystal diamond produced by chemical vapor deposition (CVD) at high growth rates are described. CVD processes used to grow single-crystal diamond in high density plasmas were modified to incorporate boron and nitrogen. Semi-quantitative studies of mechanical properties were carried out using Vickers indentation techniques. The introduction of boron in single-crystal CVD diamond can significantly enhance the fracture toughness of this material without sacrificing its high hardness ({approx}78 GPa). Growth conditions were varied to investigate its effect on boron incorporation and optical properties by means of photoluminescence, infrared, and ultraviolet-visible absorption spectroscopy. Boron can be readily incorporated into single-crystal diamond by the methods used, but with nitrogen addition, the incorporation of boron was hindered. The spectroscopic measurements indicate that nitrogen and boron coexist in the diamond structure, which helps explain the origin of the enhanced fracture toughness of this material. Further, low pressure/high temperature annealing can enhance the intrinsic hardness of single-crystal CVD diamond by a factor of two without appreciable loss in fracture toughness. This doping and post-growth treatment of diamond may lead to new technological applications that require enhanced mechanical properties of diamond.

  12. Microstructural defects in some rare earth laves phase single crystals

    SciTech Connect

    Bi, Y.J.; Abell, J.S. . School of Metallurgy and Materials.)

    1993-08-15

    With the extensive research in magnetic behavior of rare earth intermetallic compounds, more specific microstructural characterization on the available single crystals is obviously necessary because many interpretations of the physical property measurements can be particularly dependent on the knowledge of the microstructural defects, impurity distributions, etc. Among the more interesting and also the most extensively investigated rare earth intermetallics are RAl[sub 2](R = rare earth elements) compounds, which have the C15 cubic Laves phase structure with the tetrahedra of smaller Al atoms residing at the four corners of the cubic cell. While much effort has been devoted to understanding the nature of the magnetism of RAl[sub 2] single crystals by neutron diffraction, e.g. heat capacity measurements, x-ray topography, etc., little work has been performed on characterization of microstructural defects and their effects on physical property measurements. In this work, the authors report a microstructural study on as-grown single crystals of CeAl[sub 2] and TbAl[sub 2] by transmission electron microscopy (TEM). The presence of (001) growth faults in CeAl[sub 2] single crystals and (111) planar defects in TbAl[sub 2] single crystals have been identified, and the possible formation mechanism and the influence on the magnetic properties are discussed.

  13. In-situ X-ray diffraction snapshotting: Determination of the kinetics of a photodimerization within a single crystal

    PubMed Central

    Hu, Fei-Long; Wang, Shu-Long; Lang, Jian-Ping; Abrahams, Brendan F.

    2014-01-01

    In a single-crystal-to-single-crystal (SCSC) transformation, a preformed three-dimensional coordination polymer,[Ni3(oba)2(bpe)2(SO4)(H2O)4]·H2O (H2oba = 4,4′-oxydibenzoic acid; bpe = (E)-1,2-di(pyridin-4-yl)ethane) (1), was shown to undergo a [2+2] cycloaddition reaction upon exposure to UV irradiation. The kinetics of this reaction were followed by taking “snapshots” of the solid state transformation using in situ single crystal X-ray crystallography; a first order process was indicated. The reaction rate was influenced by many factors such as the separation of the sample from the UV light source, the heat produced by the UV irradiation, the light flux of the UV lamp used, the size of the single-crystal and the powder samples. The investigation of the kinetics was complemented by 1H NMR studies. The results clearly demonstrate that in situ single-crystal X-ray diffraction is able to provide useful insights into the gradual formation of the photoproducts and the reaction processes. The work also offers a clear indication that it is possible to use the technique to study the kinetics of other photocycloaddition reactions and SCSC processes in general. PMID:25351677

  14. Growth of solid solution single crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1987-01-01

    Based on the thermophysical properties of Hg sub 1-x Cd sub x Te alloys, the reasons are discussed for the failure of conventional Bridgman-Stockbarger growth methods to produce high quality homogeneous crystals in the presence of Earth's gravity. The deleterious effects are considered which arise from the dependence of the thermophysical properties on temperature and composition and from the large amount of heat carried by the fused silica ampules. An improved growth method, developed to optimize heat flow conditions, is described and experimental results are presented. The problems associated with growth in a gravitational environment are discussed. The anticipated advantages of growth in microgravity are given and the implications of the requirements for spaceflight experiments are summarized.

  15. Growth of solid solution single crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1988-01-01

    Based on the thermophysical properties of Hg sub 1-x Cd sub x Te alloys, the reasons are discussed for the failure of conventional Bridgman-Stockbarger growth methods to produce high quality homogeneous crystals in the prescence of Earth's gravity. The deleterious effects are considered which arise from the dependence of the thermophysical properties on temperature and composition and from the large amount of heat carried by the fused silica ampules. An improved growth method, developed to optimize heat flow conditions, is described and experimental results are presented. The problems associated with growth in a gravitational environment are discussed. The anticipated advantages of growth in microgravity are given and the implications of the requirements for spaceflight experiments are summarized.

  16. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-04-02

    A method of preparing high temperature superconductor single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid. 2 figs.

  17. Single-crystal structure of a covalent organic framework.

    PubMed

    Zhang, Yue-Biao; Su, Jie; Furukawa, Hiroyasu; Yun, Yifeng; Gándara, Felipe; Duong, Adam; Zou, Xiaodong; Yaghi, Omar M

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 °C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 °C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is an important advance in the development of COF chemistry.

  18. Single-Crystal Structure of a Covalent Organic Framework

    SciTech Connect

    Zhang, YB; Su, J; Furukawa, H; Yun, YF; Gandara, F; Duong, A; Zou, XD; Yaghi, OM

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is an important advance in the development of COF chemistry.

  19. Molecular dynamics simulation of shock melting of aluminum single crystal

    NASA Astrophysics Data System (ADS)

    Ju, Yuanyuan; Zhang, Qingming; Gong, Zizheng; Ji, Guangfu; Zhou, Lin

    2013-09-01

    Molecular dynamics method in conjunction with multi-scale shock technique is employed to study the melting characteristics of aluminum single crystal under dynamic conditions. The simulated results show that a linear relationship exists between the shock wave velocity and particle velocity, in good agreement with the experimental data. Comparing the Lindemann melting curve with the two Hugoniot curves for the solid and liquid phases, the Hugoniot melting is found to begin at 93.6 GPa and end at 140 GPa, which is consistent with the theoretical calculations. The impact of crystal defects on the melting characteristics of aluminum single crystal is also studied, and the results indicate that the pressure and temperature increase slightly for the system experiencing the same dynamic loading due to the crystal defects.

  20. Geometric constraints on phase coexistence in vanadium dioxide single crystals

    NASA Astrophysics Data System (ADS)

    McGahan, Christina; Gamage, Sampath; Liang, Jiran; Cross, Brendan; Marvel, Robert E.; Haglund, Richard F.; Abate, Yohannes

    2017-02-01

    The appearance of stripe phases is a characteristic signature of strongly correlated quantum materials, and its origin in phase-changing materials has only recently been recognized as the result of the delicate balance between atomic and mesoscopic materials properties. A vanadium dioxide (VO2) single crystal is one such strongly correlated material with stripe phases. Infrared nano-imaging on low-aspect-ratio, single-crystal VO2 microbeams decorated with resonant plasmonic nanoantennas reveals a novel herringbone pattern of coexisting metallic and insulating domains intercepted and altered by ferroelastic domains, unlike previous reports on high-aspect-ratio VO2 crystals where the coexisting metal/insulator domains appear as alternating stripe phases perpendicular to the growth axis. The metallic domains nucleate below the crystal surface and grow towards the surface with increasing temperature as suggested by the near-field plasmonic response of the gold nanorod antennas.

  1. Geometric constraints on phase coexistence in vanadium dioxide single crystals.

    PubMed

    McGahan, Christina; Gamage, Sampath; Liang, Jiran; Cross, Brendan; Marvel, Robert E; Haglund, Richard F; Abate, Yohannes

    2017-02-24

    The appearance of stripe phases is a characteristic signature of strongly correlated quantum materials, and its origin in phase-changing materials has only recently been recognized as the result of the delicate balance between atomic and mesoscopic materials properties. A vanadium dioxide (VO2) single crystal is one such strongly correlated material with stripe phases. Infrared nano-imaging on low-aspect-ratio, single-crystal VO2 microbeams decorated with resonant plasmonic nanoantennas reveals a novel herringbone pattern of coexisting metallic and insulating domains intercepted and altered by ferroelastic domains, unlike previous reports on high-aspect-ratio VO2 crystals where the coexisting metal/insulator domains appear as alternating stripe phases perpendicular to the growth axis. The metallic domains nucleate below the crystal surface and grow towards the surface with increasing temperature as suggested by the near-field plasmonic response of the gold nanorod antennas.

  2. Studying the magnetic properties of CoSi single crystals

    SciTech Connect

    Narozhnyi, V. N. Krasnorussky, V. N.

    2013-05-15

    The magnetic properties of CoSi single crystals have been measured in a range of temperatures T = 5.5-450 K and magnetic field strengths H {<=} 11 kOe. A comparison of the results for crystals grown in various laboratories allowed the temperature dependence of magnetic susceptibility {chi}(T) = M(T)/H to be determined for a hypothetical 'ideal' (free of magnetic impurities and defects) CoSi crystal. The susceptibility of this ideal crystal in the entire temperature range exhibits a diamagnetic character. The {chi}(T) value significantly increases in absolute value with decreasing temperature and exhibits saturation at the lowest temperatures studied. For real CoSi crystals of four types, paramagnetic contributions to the susceptibility have been evaluated and nonlinear (with respect to the field) contributions to the magnetization have been separated and taken into account in the calculations of {chi}(T).

  3. Microscopic single-crystal refractometry as a function of wavelength

    SciTech Connect

    DeLoach, L.D. )

    1994-07-01

    The refractive indices of crystal fragments 50--200 [mu]m in size can be measured for light wavelengths between 365 and 1100 nm with a spindle-stage refractometer. Established methods from optical crystallograpy are used to orient a crystal on the microscope spindle stage and then to match its refractive index to an immersion fluid. The refractive index of the fluid for the wavelength of light and matching temperature is determined by comparison of a reference crystal on a second spindle axis with the fluid under the match conditions. Investigations of new nonlinear-optical crystals admirably demonstrate the advantages of measuring the refractive index to [plus minus] 0.0004 in small single crystals.

  4. Growth and characterization of lithium yttrium borate single crystals

    SciTech Connect

    Singh, A. K.; Singh, S. G.; Tyagi, M.; Desai, D. G.; Sen, Shashwati

    2014-04-24

    Single crystals of 0.1% Ce doped Li{sub 6}Y(BO{sub 3}){sub 3} have been grown using the Czochralski technique. The photoluminescence study of these crystals shows a broad emission at ∼ 420 nm corresponding to Ce{sub 3+} emission from 5d→4f energy levels. The decay profile of this emission shows a fast response of ∼ 28 ns which is highly desirable for detector applications.

  5. Brittlestar-inspired microlens arrays made of calcite single crystals.

    PubMed

    Ye, Xiaozhou; Zhang, Fei; Ma, Yurong; Qi, Limin

    2015-04-08

    Unique concave microlens arrays (MLAs) made of calcite single crystals with tunable crystal orientations can be readily fabricated by template-assisted epitaxial growth in solution without additives under ambient conditions. While the non-birefringent calcite (001) MLA showed excellent imaging performance like brittlestar's microlens arrays, the birefringent calcite (104) MLA exhibited remarkable polarization-dependent optical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low dimensional magnetic solids and single crystal elpasolites: Need for improved crystal growing techniques

    NASA Technical Reports Server (NTRS)

    Good, M. L.; Watkins, S.; Schwartz, R. W.

    1979-01-01

    The need for extensive crystal growing experiments to develop techniques for preparing crystals suitable for magnetic anisotropy measurements and detailed X-ray and neutron diffraction studies is rationalized on the basis of the unique magnetic properties of the materials and their hydrogen bonded structures which have many features in common with metalloenzyme and metalloprotein active sites. Single crystals of the single and mixed lanthanide species are prepared by the Bridgeman technique of gradient solidification of molten samples. The effects of crystal imperfections on the optical properties of these materials are an important part of the projected research. A series of a-amido acid complexes of first row transition metals were prepared which crystallize as infinite linear chains and exhibit low dimensional magnetic ordering (one or two) at temperature below 40 K.

  7. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  8. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  9. Single Crystal Fibers of MGO:LiNbO3

    DTIC Science & Technology

    1990-08-07

    Fibers, MgO:LiNbO39 Nonlinear Optics Crystal Growth 19 ABSTRACT (Continue on reverse if necessary and identify by block number) As optical instruments...Significant success has already been achieved at Stanford University in the growth of single crystal fibers of MgO:LiNbO3 as frequency doublers. LaserGenics...preparpd frnm singlye crystal material grown y Crstal Inc We also investigated the post growth anneai to minimize loof Prtc, ;jnon ro\\en loss in the

  10. Lithium niobate single-crystal and photo-functional device

    DOEpatents

    Gopalan, Venkatraman; Mitchell, Terrence E.; Kitamura, Kenji; Furukawa, Yasunori

    2001-01-01

    Provided are lithium niobate single-crystal that requires a low voltage of not larger than 10 kV/nm for its ferroelectric polarization inversion and of which the polarization can be periodically inverted with accuracy even at such a low voltage, and a photo-functional device comprising the crystal. The crystal has a molar fraction of Li.sub.2 O/(Nb.sub.2 O.sub.5 +Li.sub.2 O) of falling between 0.49 and 0.52. The photo-functional device can convert a laser ray being incident thereon.

  11. Laser Fabrication of Two-Dimensional Rotating-Lattice Single Crystal

    DOE PAGES

    Savytskii, Dmytro; Au-Yeung, Courtney; Dierolf, Volkmar; ...

    2017-03-09

    A rotating lattice single (RLS) crystal is a unique form of solid, which was fabricated recently as one-dimensional architecture in glass via solid state transformation induced by laser irradiation. In these objects, the lattice rotates gradually and predictably about an axis that lies in the plane of the crystal and is normal to the laser scanning direction. This paper reports on the fabrication of Sb2S3 two-dimensional (2D) RLS crystals on the surface of 16SbI3-84Sb2S3 glass, as a model example: individual RLS crystal lines are joined together using "stitching" or "rastering" as two successful protocols. The electron back scattered diffraction mappingmore » and scanning Laue X-ray microdiffraction of the 2D RLS crystals show gradual rotation of lattice comprising of two components, one along the length of each line and another normal to this direction. The former component is determined by the rotation of the first line of the 2D pattern, but the relative contribution of the last component depends on the extent of overlap between two successive lines. By the appropriate choice of initial seed orientation and the direction of scanning, it is possible to control the lattice rotation, and even to reduce it down to 5 for a 50 × 50 μm 2 2D pattern of Sb2S3 crystal.« less

  12. Mesoscale martensitic transformation in single crystals of topological defects.

    PubMed

    Li, Xiao; Martínez-González, José A; Hernández-Ortiz, Juan P; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F; de Pablo, Juan J

    2017-09-19

    Liquid-crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of double-twisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by the existence of grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with precision by relying on chemically nanopatterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of mesocrystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local reorganization of the crystalline array, without diffusion of the double-twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the submicron regime, is found to be martensitic in nature when one considers the collective behavior of the double-twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal nucleation and the controlled growth of soft matter.

  13. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics.

    PubMed

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-05-19

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing.

  14. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    PubMed Central

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  15. Fabrication and characterization of dielectric strontium titanium oxynitride single crystal

    NASA Astrophysics Data System (ADS)

    Hoshina, Takuya; Sahashi, Akira; Takeda, Hiroaki; Tsurumi, Takaaki

    2015-10-01

    In this paper, we show a fabrication method and the dielectric properties of strontium titanium oxynitride (SrTiO3:N) single crystals. Oxynitride single crystals were prepared by annealing SrTiO3 single crystals in gaseous ammonia. SrTiO3:N was assumed to have the chemical composition SrTiO3-3xN2x, which contained oxygen vacancies. To reduce the number of oxygen vacancies, SrTiO3 crystals co-doped with nitrogen and niobium (SrTiO3:N,Nb) were fabricated. The semiconducting Nb-doped SrTiO3 crystals changed to dielectric N,Nb-codoped SrTiO3 crystals with a resistivity of 6 × 1012 Ω·cm with annealing in gaseous ammonia. XPS measurement indicated that niobium doping was effective for increasing the amount of dopant nitrogen. The dielectric permittivity increased with the amount of dopant nitrogen, indicating the effectivity of nitrogen doping for increasing the dielectric permittivity of perovskite oxides.

  16. Single-Crystal Elasticity of Earth Materials: An Appraisal

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.

    2015-12-01

    The elastic properties of minerals are of central importance for interpreting seismic data for the Earth's crust, mantle, and core. Mineral elasticity data also have more general applications towards understanding equations of state, phase equilibria, interatomic forces, material strength, and phase transitions. The singe-crystal elastic properties are the most generally useful as they provide complete information on the anisotropy of elastic moduli (e.g. Poisson's ratio, Young's modulus), sound velocities, and compressibility. Measurement of the full set of single-crystal elastic properties remains challenging especially for lower symmetry crystals. In this talk, I present an overview of our current understanding of single-crystal elasticity based on a newly constructed database of single-crystal elastic properties. At ambient conditions the full elastic tensor of about 150 minerals have now been measured, along with about another 60 related compounds that are not formally minerals. About two-thirds of the measured minerals are oxides or silicates. A limitation of the existing database is that only about 10% of the measurements are on crystals of monoclinic or triclinic symmetry, while these two systems account for about 40% of known minerals. Additionally, only a smaller subset of minerals have been examined at high pressure or temperature conditions. Several applications of the database will be presented emphasizing trends in elastic anisotropy. The pyroxenes will be used as an illustrative example.

  17. Nucleation kinetics, crystal growth and optical studies on lithium hydrogen oxalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.

    2017-06-01

    Semi-organic lithium hydrogen oxalate monohydrate non-linear optical single crystals have been grown by slow evaporation solution technique at 40 °C. The nucleation parameters such as critical radius, interfacial tension, and critical free energy change have been evaluated using the experimental data. The solubility and the nucleation curve of the crystal at different temperatures have been analyzed. The crystal has a positive temperature coefficient of solubility. The metastable zone width and induction period have been determined for the aqueous solution growth of lithium hydrogen oxalate monohydrate. The UV-vis-NIR spectrum showed this crystal has high transparency. The photoconductivity studies indicate lithium hydrogen oxalate monohydrate has positive photoconductivity behaviour. The low etch pit density observed on (0 0 1) crystal surface and the high resolution x-ray difraction analysis indicate the good quality of the grown crystals

  18. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.; Watring, D. A.

    1999-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and serious has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; mercury cadmium telluride with 80.0 mole percent of HgTe and 84.8 mole percent respectively. These alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed of residual acceleration effects. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system by a previously processed sample, the sample was not received until May 1998, and the preliminary analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. Early results are indicating that the sample may not accomplish the desired objectives. As with the USMP-2 mission, the results of the ground based experiments were compared with the crystal grown in orbit under microgravity conditions. On the earth, it has been demonstrated that the

  19. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.; Watring, D. A.

    1999-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and serious has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; mercury cadmium telluride with 80.0 mole percent of HgTe and 84.8 mole percent respectively. These alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed of residual acceleration effects. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system by a previously processed sample, the sample was not received until May 1998, and the preliminary analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. Early results are indicating that the sample may not accomplish the desired objectives. As with the USMP-2 mission, the results of the ground based experiments were compared with the crystal grown in orbit under microgravity conditions. On the earth, it has been demonstrated that the

  20. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    PubMed Central

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  1. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2006-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  2. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  3. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  4. Mechanical properties of hydroxyapatite single crystals from nanoindentation data.

    PubMed

    Zamiri, A; De, S

    2011-02-01

    In this paper we compute elastoplastic properties of hydroxyapatite single crystals from nanoindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young's modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from the existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals.

  5. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    PubMed

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed.

  6. Surface enhanced raman spectroscopy studies on triglycine sulphate single crystals

    NASA Astrophysics Data System (ADS)

    Parameswari, A.; Mohamed Asath, R.; Premkumar, R.; Milton Franklin Benial, A.

    2017-01-01

    Adsorption characteristics of triglycine sulphate (TGS) on silver (Ag) surface were investigated based on density functional theory calculations and surface enhanced Raman spectroscopy (SERS) technique. The single crystals of TGS were grown by slow evaporation method. Ag nanoparticles (Ag NPs) were prepared by solution combustion method and characterized. The calculated and observed structural parameters of TGS molecule were compared. Raman and SERS spectra for TGS single crystal were studied experimentally and validated theoretically. Frontier molecular orbitals (FMOs) analysis was carried out for TGS and TGS adsorbed on Ag surface. The second harmonic generation measurements confirm the nonlinear optical (NLO) activity of the TGS molecule. SERS spectral analysis reveals that the TGS adsorbed as tilted orientation on the silver surface. The theoretical and experimental results evidence the suitability of the grown TGS single crystal for optoelectronic applications.

  7. Synthesis and properties of erbium oxide single crystals

    SciTech Connect

    Petrovic, J.J.; Romero, R.S.; Mendoza, D.; Kukla, A.M.; Hoover, R.C.; McClellan, K.J.

    1999-04-01

    Erbium oxide (Er{sub 2}O{sub 3}, erbia) is a highly stable cubic rare earth oxide with a high melting point of 2,430 C. Because of this, it may have potential applications where high temperature stability and corrosion resistance are required. However, relatively little is known about the properties of this oxide ceramic. The authors have employed a xenon optical floating zone unit with a temperature capability of 3,000 C to grow high quality single crystals of erbia. The conditions for single crystal growth of erbia have been established. The mechanical properties of erbia single crystals have been initially examined using microhardness indentation as a function of temperature.

  8. Single crystal optic elements for helium atom microscopy

    NASA Astrophysics Data System (ADS)

    MacLaren, D. A.; Allison, W.; Holst, B.

    2000-07-01

    Focusing characteristics of asymmetrically bent single crystal mirrors are discussed in the context of fabricating an optic element for an helium atom microscope. We demonstrate the principle that deforming a clamped, elliptical, single crystal under electrostatic pressure can produce submicron focusing of an helium beam. We present a systematic procedure that may be used to fabricate high precision mirrors close to the Cartesian ideal of any chosen optical configuration. In particular, imaging systems with asymmetric mirror profiles are discussed. Results are independent of crystal characteristics and can be adapted to fit a range of experimental geometries. The calculations indicate that mirror-induced aberrations can be eliminated to fourth order by use of a single actuation electrode in an ideal system.

  9. Self-Assembly of Ultralong Aligned Dipeptide Single Crystals.

    PubMed

    Sun, Bingbing; Li, Qi; Riegler, Hans; Eickelmann, Stephan; Dai, Luru; Yang, Yang; Perez-Garcia, Rodrigo; Jia, Yi; Chen, Guoxiang; Fei, Jinbo; Holmberg, Krister; Li, Junbai

    2017-09-25

    Oriented arrangement of single crystal plays a key role in improving the performance of their functional devices. Herein we describe a method for the exceptionally fast fabrication (mm/min) of ultralong aligned dipeptide single crystals (several centimeters). It combines an induced nucleation step with a continuous withdrawal of substrate, leading to specific evaporation/composition conditions at three phase contact line, which makes the growth process controllable. These aligned dipeptide fibers possess uniform cross section with active optical waveguiding properties that can be used as waveguiding materials. The approach provides a guidance for the controlled arrangement of organic single crystals, a family of materials with considerable potential applications in large-scale functional devices.

  10. Constitutive modelling of single crystal and directionally solidified superalloys

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Walker, K. P.

    1986-01-01

    The trend towards improved engine efficiency and durability places increasing demands on materials that operate in the hot section of the gas turbine engine. These demands are being met by new coatings and materials such as single crystal and directionally solidified nickel-base superalloys which have greater creep/fatigue resistance at elevated temperatures and reduced susceptibility to grain boundary creep, corrosion and oxidation than conventionally cast alloys. Work carried out as part of a research program aimed at the development of constitutive equations to describe the elevated temperature stress-strain-time behavior of single crystal and directionally solidified turbine blade superalloys is discussed. The program involves both development of suitable constitutive models and their verification through elevated temperature tension-torsion testing of single crystals of PWA 1480.

  11. Crystal growth and characterization of new semiorganic nonlinear optical single crystals

    NASA Astrophysics Data System (ADS)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2016-05-01

    An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40-45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm3, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.

  12. Crystal growth and characterization of new semiorganic nonlinear optical single crystals

    SciTech Connect

    Kulshrestha, Shobha Shrivastava, A. K.

    2016-05-06

    An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40–45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm{sup 3}, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.

  13. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Dreshfield, R. L.; Maier, R. D.

    1980-01-01

    The influence of orientation on the tensile and stress rupture behavior of 52 Mar-M247 single crystals was studied. Tensile tests were performed at temperatures between 23 and 1093 C; stress rupture behavior was examined between 760 and 1038 C. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factor contours for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The tensile properties correlated well with the appropriate Schmid factor contours. The stress rupture lives at lower testing temperatures were greatly influenced by the lattice rotations required to produce cross slip. A unified analysis was attained for the stress rupture life data generated for the Mar-M247 single crystals at 760 and 774 C under a stress of 724 MPa and the data reported for Mar-M200 single crystals tested at 760 C under a stress of 689 MPa. Based on this analysis, the stereographic triangle was divided into several regions which were rank ordered according to stress rupture life for this temperature regime.

  14. Modeling of elastic and plastic waves for HCP single crystals in a 3D formulation based on zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, Marina; Kobenko, Sergey; Tuch, Elena; Kozlova, Maria

    2016-11-01

    This paper investigates elastic and plastic waves in HCP single crystals through the numerical simulation of strain processes in anisotropic materials based on a zinc single crystal. Velocity profiles for compression waves in the back surfaces of single-crystal zinc plates with impact loading oriented in 0001 and 10 1 ¯0 are presented in this work as a part of results obtained in numerical simulations. The mathematical model implemented in this study reflects the following characteristics of the mechanical properties inherent in anisotropic (transtropic) materials: varying degree of anisotropy of elastic and plastic properties, which includes reverse anisotropy, dependence of distribution of all types of waves on the velocity orientation, and the anisotropy of compressibility. Another feature of elastic and plastic waves in HCP single crystals is that the shock wave does not split into an elastic precursor and "plastic" compression shock wave, which is inherent in zinc single crystals with loading oriented in 0001. The study compares numerical results obtained in a three-dimensional formulation with the results of velocity profiles from the back surfaces of target plates obtained in real experiments. These results demonstrate that the mathematical model is capable of describing the properties of the above-mentioned anisotropic (transtropic) materials.

  15. Single crystal piezoelectric composite transducers for ultrasound NDE applications

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoning; Snook, Kevin; Walker, Thomas; Portune, Andrew; Haber, Richard; Geng, Xuecang; Welter, John; Hackenberger, Wesley S.

    2008-03-01

    Single crystal piezoelectric composite transducers including 75 MHz PC-MUT (piezoelectric composite micromachined ultrasound transducers), diced 10 MHz and 15 MHz 1-3 composite transducers were successfully demonstrated with broad bandwidth and high sensitivity. In this paper, the design, fabrication and characterization of composite transducers are reported. C-scan experiments for SiC ceramic samples were performed using these composite transducers as well as some commercial NDE transducers. The results suggest that significant improvements in resolution and penetration depth can be achieved in C-scan NDE imaging using single crystal composite broadband transducers.

  16. How a silver dendritic mesocrystal converts to a single crystal

    SciTech Connect

    Fang, J.; Ding, B.; Song, X.; Han, Y.

    2008-05-02

    In this paper, we demonstrate how a silver dendrite transforms from mesocrystal into single crystal and the stability for a dendritic silver mesocrystal within a Sn/AgNO3 galvanic replacement reaction. Our findings provide the direct evidence and visible picture of the transformation from mesocrystal to single crystalline structure and further confirm the particle-mediated crystallization mechanism. At the initial stage of the transformation, there is a crystallographic fusion process, dominated by oriented attachment mechanism. Ostwald ripening also plays an important role in forming smooth surface and regular shape of the final nanocrystal.

  17. Ultrafast lattice dynamics of single crystal and polycrystalline gold nanofilms☆

    NASA Astrophysics Data System (ADS)

    Hu, Jianbo; Karam, Tony E.; Blake, Geoffrey A.; Zewail, Ahmed H.

    2017-09-01

    Ultrafast electron diffraction is employed to spatiotemporally visualize the lattice dynamics of 11 nm-thick single-crystal and 2 nm-thick polycrystalline gold nanofilms. Surprisingly, the electron-phonon coupling rates derived from two temperature simulations of the data reveal a faster interaction between electrons and the lattice in the case of the single-crystal sample. We interpret this unexpected behavior as arising from quantum confinement of the electrons in the 2 nm-thick gold nanofilm, as supported by absorption spectra, an effect that counteracts the expected increase in the electron scattering off surfaces and grain boundaries in the polycrystalline materials.

  18. Current Noise in Sodium Beta Alumina Ceramics and Single Crystals.

    DTIC Science & Technology

    1986-08-01

    AD-Ai7O 412 CURRENT NOISE IN SODIUM BETA ALUMINA CERAMICS AIND t/l SINGLE CRYSTALS(U) UTAH UNIV SALT LAKE CITY DEPT OF PHYSICS J J BROPHY’ 81 AUG 86...ZIP C-0- UNIVERSITY OF UTAH UNIVERSITY OF NEW MEXICO SALT LAKE CITY, UTAH 84112 Bandelier Hall West Albuquerque, NM 87131 go NAME OF FUNDING...bloeS nIumbe Conductivity fluctuations and contact noise observed in ceramic and single crystal silver 811 alumina are very pilar to those in sodium 8

  19. Lead pyrovanadate single crystal as a new SRS material

    SciTech Connect

    Basiev, Tasoltan T; Voronko, Yu K; Maslov, Vladislav A; Sobol, A A; Shukshin, V E

    2011-02-28

    Lead pyrovanadate Pb{sub 2}V{sub 2}O{sub 7} single crystals of optical quality suitable for laser experiments are obtained. Vibrational modes are identified based on the analysis of the polarised Raman spectra of the single crystals. The main parameters (width at half maximum, peak and integral intensities) of the spectral lines most promising for SRS conversion in this material are estimated. These parameters are compared with the corresponding parameters of the most frequently used lines of known Raman materials: yttrium and gadolinium vanadates, potassium and lead tungstates, and lead molybdate. (active media)

  20. Apparatus And Method For Producing Single Crystal Metallic Objects

    DOEpatents

    Huang, Shyh-Chin; Gigliotti, Jr., Michael Francis X.; Rutkowski, Stephen Francis; Petterson, Roger John; Svec, Paul Steven

    2006-03-14

    A mold is provided for enabling casting of single crystal metallic articles including a part-defining cavity, a sorter passage positioned vertically beneath and in fluid communication with the part-defining cavity, and a seed cavity positioned vertically beneath and in fluid communication with the sorter passage. The sorter passage includes a shape suitable for encouraging a single crystal structure in solidifying molten metal. Additionally, a portion of the mold between the sorter passage and the part-defining cavity includes a notch for facilitating breakage of a cast article proximate the notch during thermal stress build-up, so as to prevent mold breakage or the inclusion of part defects.

  1. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.

    2001-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.

  2. Deformation of ⊥m single quartz crystals

    NASA Astrophysics Data System (ADS)

    Krasner, P.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    The rheology of quartz deformed by dislocation creep is essential to understanding the strength of the mid to lower continental crust. Our current understanding of quartz rheology is derived primarily from studies of polycrystalline quartz and little is known about the temperature, strain rate, or water dependence of the individual quartz slip systems. In order to better understand the rheology of quartz slip systems, we have deformed synthetic quartz single crystals with the prism oriented at 45° to the compression direction (⊥m orientation). We converted the gel-type water found in synthetic quartz crystals to free water fluid inclusions, similar to water observed in milky quartz crystals, by annealing the crystals at 900°C/0.1 MPa for 24 hours. The single crystals were deformed at a confining pressure of 1.5 GPa with temperatures of 850 to 1000°C and strain rates of 10-6 to 10-4/s. FTIR measurements of water concentrations in the starting material, annealed synthetic crystals and deformed synthetic quartz crystals indicate that the water concentrations (125-300 H/106Si) are not affected by the annealing process or deformation. However, the spectra in the annealed and deformed samples are similar to those of natural milky quartz rather than those of synthetic quartz. Results of temperature and strain rate stepping experiments indicate that the strength of the crystals decreases with increasing temperature and/or decreasing strain rate. Undulatory extinction is the predominant microstructure observed in deformed samples, which is consistent with deformation by dislocation creep. The strength of the ⊥m oriented quartz crystals deformed in this study with free water is greater than those of the studies of synthetic quartz with gel type water (Linker and Kirby, 1981 and Muto et al., 2011).

  3. Insertion of Guest Molecules into a Mixed Ligand Metal-Organic Framework via Single-Crystal-to-Single Crystal Guest Exchange

    DTIC Science & Technology

    2014-07-01

    Insertion of Guest Molecules into a Mixed Ligand Metal−Organic Framework via Single-Crystal-to-Single- Crystal Guest Exchange by Lily Giri...Research Laboratory Aberdeen Proving Ground, MD 21005-5069 ARL-TR-7004 July 2014 Insertion of Guest Molecules into a Mixed Ligand Metal−Organic...Framework via Single-Crystal-to-Single- Crystal Guest Exchange Lily Giri, Rose Pesce-Rodriguez, Shashi P Karna, and Nirupam J Trivedi Weapons

  4. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    NASA Astrophysics Data System (ADS)

    Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

    2015-11-01

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation.

  5. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    NASA Astrophysics Data System (ADS)

    Zhu, Aibin; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-01

    The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[-211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[-211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  6. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    PubMed Central

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-01-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization. PMID:26145157

  7. Laser interactions with embedded Ca metal nanoparticles in single crystal CaF{sub 2}

    SciTech Connect

    Cramer, L.P.; Schubert, B.E.; Petite, P.S.; Langford, S.C.; Dickinson, J.T.

    2005-04-01

    Single crystal calcium fluoride (CaF{sub 2}) is an important material for vacuum-ultraviolet optics. Nevertheless, prolonged exposure to energetic radiation can color the material by producing calcium metal nanoparticles. We compare the effectiveness of laser conditioning treatments at wavelengths ranging from the near infrared to the deep ultraviolet in removing this coloration. Treatments at 157, 532, and 1064 nm can significantly reduce the visible coloration due to nanoparticles. In contrast, irradiation at 248 nm has little effect at fluences below the damage threshold for the material employed in this work. We present evidence that the effect of laser irradiation on coloration is principally thermal and is largely confined to the first 50 ns after each laser pulse. We attribute the wavelength dependence of the bleaching process to the wavelength dependence associated with Mie absorption by metal nanoparticles. The consequences of these observations with regard to laser conditioning processes in bulk optical materials are discussed.

  8. Investigation and characterization of ZnO single crystal microtubes

    SciTech Connect

    Al-Naser, Qusay A.H.; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2016-04-15

    Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnO single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)

  9. Roflumilast - A reversible single-crystal to single-crystal phase transition at 50 °C

    NASA Astrophysics Data System (ADS)

    Viertelhaus, Martin; Holst, Hans Christof; Volz, Jürgen; Hummel, Rolf-Peter

    2013-01-01

    Roflumilast is a selective phosphodiesterase type 4 inhibitor and is marketed under the brand names Daxas®, Daliresp® and Libertec®. A phase transition of the drug substance roflumilast was observed at 50 °C. The low temperature form, the high temperature form and the phase transition were characterised by differential scanning calorimetry, variable temperature powder X-ray diffraction and single crystal X-ray diffraction, Raman spectroscopy and solid state NMR spectroscopy. The phase transition of roflumilast at 50 °C is completely reversible, the high temperature form cannot be stabilised by quench cooling and the phase transition does not influence the quality of the active pharmaceutical ingredient (API) and the drug product. It was observed to be a single crystal to single crystal phase transition.

  10. Twisted Single Crystals in Nonbiological Main-Chain Chiral Polyesters

    NASA Astrophysics Data System (ADS)

    Cheng, S.; Li, Y.; Bai, F.; Harris, F.; Yan, D.; Chen, L.

    1998-03-01

    A series of chiral Poly(R)-(-)-4-(w)-[2-(p-hydroxy-o-nitrophenyloxy)-1-propyloxy]-1- nonyloxy-4-biphenyl carboxylic acid has been synthesized. Singe crystals were grown from the melt. Two very distinct morphological habits can be observed: an elongated flat-on morphology and a helical twist along its long axis. The twisted single crystals show a unique left-handed helical habit with typical pitch length of about 1-2 micrometers. It is expected that this twisted morphology results from a slight deviation of a 21 symmetry in chain packing. In the past, helical morphologies were report in two classes of materials: liquid crystals from the melt and biopolymers in solutions. Liquid crystals only show this kind of morphology when their order is lower than smectic F or I phase, while biopolmers, such as bombyx mori silk fibroin, exhibit similar morphology from solutions due to the existence of the twisted b-sheets. In this case, however, the twisted morphology was identified as crystals via ED and WAXD experiments. Furthermore, neither H-bonding nor b-sheet structure exists in the chemical structure. It is believed that our observation in the twisted single crystals from the melt may represent a class of phases which has not been fully classified.

  11. Growth and characterization of morpholinium dihydrogenphosphate single crystal

    NASA Astrophysics Data System (ADS)

    Babu, D. Rajan; Arul, H.; Vizhi, R. Ezhil

    2016-10-01

    Morpholinium dihydrogenphosphate (MDP) single crystals were synthesized, and were subsequently grown by controlled evaporation technique at room temperature for nonlinear optical applications. The grown crystal, which belongs to the monoclinic system with the space group P21, was subjected to single crystal X-ray diffraction to confirm the structure. UV-vis-NIR spectroscopy was done on the grown crystal and it showed good optical transparency in the entire visible region with a minimum cut-off wavelength of 289 nm. The optical band gap was computed as a function of photon energy using Tauc's plot. The refractive index of the grown crystal was determined using a Metricon Prism Coupler. The thermogravimetric (TG) and differential thermal analysis (DTA) traces disclosed the thermal stability of the compound. The mechanical strength of the crystal was investigated by a Vickers microhardness tester. Dielectric constant and dielectric loss were calculated and plotted as a function of frequency at different temperatures. The second harmonic conversion efficiency was determined using the Kurtz-Perry powder technique, and the efficiency was found to be 1.2 times greater than that of standard KDP.

  12. Single crystal growth of organic semiconductors for field effect applications

    NASA Astrophysics Data System (ADS)

    Kloc, Christian

    2006-08-01

    Organic semiconductors attract considerable attention due to promising applications in organic light emitting diodes, field effect transistors, and organic solar cells. Moreover, solubility of some organic semiconductors in organic solvents favors them for printed large area OLED displays and inexpensive printed microelectronics. However, low mobility of carriers in organic semiconductors limits usability of organic semiconductors in integrated circuits and need to be overcome. For this reason, the knowledge of intrinsic properties achievable in very pure and perfect crystals is important. Therefore, we have carried out a program to grow high quality single crystals of organics. Solution growth, melt growth, solvothermal method and vapor transport crystal growth have been applied and will be reported. For research purpose, using a gas phase transport method, we have produced millimeter - sized crystals of numerous organic semiconductors with higher quality and purity. Structure quality has been evaluated by x-ray topography methods. Field effect transistors have been prepared on surfaces of single crystals. Some of organic semiconductors like rubrene, pentacene, copper phthalocyanine exhibit carrier mobilities comparable or even higher than amorphous silicon. However, characterization of starting materials, crystals, thin films and resulting devices remains the crucial issue. The relation between organic semiconductor properties, used device fabrication technologies and resulting device characteristics is the object of presented here studies.

  13. Relaxor-PT Single crystals: Observations and Developments

    PubMed Central

    Zhang, Shujun; Shrout, Thomas R.

    2011-01-01

    Relaxor-PT based ferroelectric single crystals Pb(Zn1/3Nb2/3)O3–PbTiO3 (PZNT) and Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMNT) attracted lot of attentions in last decade due to their ultra high electromechanical coupling factors and piezoelectric coefficients. However, owing to a strongly curved morphotropic phase boundary (MPB), the usage temperature of these perovskite single crystals is limited by TRT - the rhombohedral to tetragonal phase transition temperature, which occurs at significantly lower temperatures than the Curie temperature TC. Furthermore, the low mechanical quality factors and coercive fields of these crystals, usually being on the order of ~70 and 2–3kV/cm, respectively, restrict their usage in high power applications. Thus, it is desirable to have high performance crystals with high temperature usage range and high power characteristics. In this survey, different binary and ternary crystal systems were explored, with respect to their temperature usage range, general trends of dielectric and piezoelectric properties of relaxor-PT crystal systems were discussed related to their TC/TRT. In addition, two approaches were proposed to improve mechanical Q values, including acceptor dopant strategy, analogous to “hard” polycrystalline ceramics, and anisotropic domain engineering configurations. PMID:20889397

  14. Structural and spectral studies of Yb:NaGd(WO4)2 crystals irradiated by 6.0 MeV O ions

    NASA Astrophysics Data System (ADS)

    Jia, Chuan-Lei; Li, Song; Song, Xiao-Xiao

    2017-03-01

    Yb:NaGd(WO4)2 single crystals are implanted with 6.0 MeV O ions at room temperature. The effects of ion irradiation on the structure and spectral properties are demonstrated by employing X-ray diffraction techniques, high resolution X-ray diffraction techniques and photoluminescence (PL) measurement. The corresponding results show that the sample can retain good crystallinity by irradiation at relative low fluences of 1.6 × 1014 ions/cm2, whilst both the PL intensity and the line bandwidth can be effectively improved.

  15. Hydrothermal growth and characterization of UO2 single crystals for neutron radiation detection(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mann, Matthew; Hunt, Eric; Young, Christopher; Kimani, Martin; Turner, David; Varga, Stephan; Petrosky, James

    2016-09-01

    There is significant interest in developing efficient, direct conversion, neutron sensitive solid-state radiation detector materials with the ability to discriminate between photon and neutron events. Recently, this has led several research groups to pursue uranium dioxide (UO2) single crystals as a detection material due to the large reaction energy ( 185 MeV) from a neutron induced fission event. The resulting electrical pulse, generated primarily by the energetic fission fragments, is expected to be on the order of 165 MeV, which is much greater than current detection schemes which rely on reaction energies between 2-6 MeV. The primary technical challenge to the successful fabrication of UO2 devices is the lack of high quality (semiconductor grade) single crystals of UO2. The high melting point of UO2 ( 2878°C) precludes the use of traditional melt growth techniques like Czochralski. While exotic melt growth techniques such as arc fusion, cold crucible, and solar furnace have successfully grown UO2, the crystal quality suffers from both thermal strain and oxygen non-stoichiometry, two particularly difficult challenges inherent to uranium oxide materials. Crystal growth of UO2 by the hydrothermal synthesis technique has never been investigated, although the method has been successfully applied to the synthesis of other refractory oxides. In this talk, we will present growth of UO2 single crystals from a variety of hydrothermal solutions at temperatures below 650C. X-ray diffraction confirmed the stoichiometric nature of the samples and X-ray photoelectron spectroscopy determined the photoelectric work function of two crystal orientations. Preliminary proof-of-concept irradiation studies of a simple UO2 resistive detector will also be presented.

  16. Polymer single crystal membrane from liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda; Li, Christopher; Soft Matter Research Group-Drexel University Team

    2013-03-01

    Vesicles, mimicking the structure of cell membrane at the molecular scale, are small membrane-enclosed sacks that can store or transport substances. The weak mechanical properties and the nature of environment-sensitivity of the current available vesicles: liposomes, polymersomes, colloidsomes limit their applications as an excellent candidate for targeting delivery of drugs/genes in biomedical engineering and treatment. Recently, we developed an emulsion-based method to grow curved polymer single crystals. Varying the polymer concentration and/or the emulsification conditions (such as surfactant concentration, water-oil volume ratio), curved crystals with different sizes and different openness could be obtained. This growing process was attributed to polymer crystal growth along the liquid/liquid interface. In addition, the liquid/liquid interfacial crystal growth is promising for synthesis of enclosed hollow sphere.

  17. Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals

    SciTech Connect

    Wagner, F.T.; Somorjai, G.A.

    1980-01-01

    Sustained photogeneration of hydrogen was observed on metal-free as well as on platinized SrTiO/sub 3/ single crystals illuminated in aqueous alkaline electrolytes or in the presence of electrolyte films. Hydrogen evolution rates increased with electrolyte hydroxide concentration, most strongly at hydroxide concentrations above 5 N. Both stoichiometric and prereduced metal-free crystals were active for hydrogen photoproduction. No activity was observed from crystals in neutral or acidic solutions or in water vapor in the absence of a crust of a basic deliquescent compounds. Metal-free crystals appear to evolve hydrogen via a photocatalytic mechanism in which all chemistry occurs at the illuminated surface. The results allow direct comparison of the photocatalytic and photoelectrochemical processes and have implications for the development of heterogeneous photocatalysis at the gas-solid interface.

  18. Monte Carlo simulations of single crystals from polymer solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianing; Muthukumar, M.

    2007-06-01

    A novel "anisotropic aggregation" model is proposed to simulate nucleation and growth of polymer single crystals as functions of temperature and polymer concentration in dilute solutions. Prefolded chains in a dilute solution are assumed to aggregate at a seed nucleus with an anisotropic interaction by a reversible adsorption/desorption mechanism, with temperature, concentration, and seed size being the control variables. The Monte Carlo results of this model resolve the long-standing dilemma regarding the kinetic and thermal roughenings, by producing a rough-flat-rough transition in the crystal morphology with increasing temperature. It is found that the crystal growth rate varies nonlinearly with temperature and concentration without any marked transitions among any regimes of polymer crystallization kinetics. The induction time increases with decreasing the seed nucleus size, increasing temperature, or decreasing concentration. The apparent critical nucleus size is found to increase exponentially with increasing temperature or decreasing concentration, leading to a critical nucleus diagram composed in the temperature-concentration plane with three regions of different nucleation barriers: no growth, nucleation and growth, and spontaneous growth. Melting temperatures as functions of the crystal size, heating rate, and concentration are also reported. The present model, falling in the same category of small molecular crystallization with anisotropic interactions, captures most of the phenomenology of polymer crystallization in dilute solutions.

  19. Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory

    2000-01-01

    Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach

  20. Growth, mechanical, thermal and dielectric properties of pure and doped KHP single crystal

    NASA Astrophysics Data System (ADS)

    M, Lakshmipriya.; Babu, D. Rajan; Vizhi, R. Ezhil

    2015-06-01

    L-Arginine doped potassium hydrogen phthalate and L-Histidine doped potassium hydrogen phthalate single crystals were grown by slow evaporation method at room temperature. The grown crystal crystallizes in orthorhombic system which is confirmed by single crystal XRD analysis. The grown crystals are subjected to thermal, mechanical and dielectric analysis.

  1. Green "planting" nanostructured single crystal silver.

    PubMed

    Zhao, Hong; Wang, Fei; Ning, Yuesheng; Zhao, Binyuan; Yin, Fujun; Lai, Yijian; Zheng, Junwei; Hu, Xiaobin; Fan, Tongxiang; Tang, Jianguo; Zhang, Di; Hu, Keao

    2013-01-01

    Design and fabrication of noble metal nanocrystals have attracted much attention due to their wide applications in catalysis, optical detection and biomedicine. However, it still remains a challenge to scale-up the production in a high-quality, low-cost and eco-friendly way. Here we show that single crystalline silver nanobelts grow abundantly on the surface of biomass-derived monolithic activated carbon (MAC), using [Ag(NH₃)₂]NO₃ aqueous solution only. By varying the [Ag(NH₃)₂]NO₃ concentration, silver nanoplates or nanoflowers can also be selectively obtained. The silver growth was illustrated using a galvanic-cell mechanism. The lowering of cell potential via using [Ag(NH₃)₂]⁺ precursor, together with the AgCl crystalline seed initiation, and the releasing of OH⁻ in the reaction process, create a stable environment for the self-compensatory growth of silver nanocrystals. Our work revealed the great versatility of a new type of template-directed galvanic-cell reaction for the controlled growth of noble metal nanocrystals.

  2. Single crystal plasticity with bend-twist modes

    NASA Astrophysics Data System (ADS)

    Elkhodary, Khalil I.; Bakr, Mohamed A.

    2015-06-01

    In this work a formulation is proposed and computationally implemented for rate dependent single crystal plasticity, which incorporates plastic bend-twist modes that arise from dislocation density based poly-slip mechanisms. The formulation makes use of higher order continuum theory and may be viewed as a generalized micromechanics model. The formulation is then linked to the burgers and Nye tensors, showing how their material rates are derivable from a newly proposed third-rank tensor Λp, which incorporates a crystallographic description of bend-twist plasticity through selectable slip-system level constitutive laws. A simple three-dimensional explicit finite element implementation is outlined and employed in three simulations: (a) bi-crystal bending; (b) tension on a notched single crystal; and (c) the large compression of a microstructure to induce the plastic buckling of secondary phases. All simulation are transient, for computational expediency. The results shed light on the physics resulting from dynamic inhomogeneous plastic deformation.

  3. Atomistic simulation of shocks in single crystal and polycrystalline Ta

    NASA Astrophysics Data System (ADS)

    Bringa, E. M.; Higginbotham, A.; Park, N.; Tang, Y.; Suggit, M.; Mogni, G.; Ruestes, C. J.; Hawreliak, J.; Erhart, P.; Meyers, M. A.; Wark, J. S.

    2011-06-01

    Non-equilibrium molecular dynamics (MD) simulations of shocks in Ta single crystals and polycrystals were carried out using up to 360 million atoms. Several EAM and FS type potentials were tested up to 150 GPa, with varying success reproducing the Hugoniot and the behavior of elastic constants under pressure. Phonon modes were studied to exclude possible plasticity nucleation by soft-phonon modes, as observed in MD simulations of Cu crystals. The effect of loading rise time in the resulting microstructure was studied for ramps up to 0.2 ns long. Dislocation activity was not observed in single crystals, unless there were defects acting as dislocation sources above a certain pressure. E.M.B. was funded by CONICET, Agencia Nacional de Ciencia y Tecnología (PICT2008-1325), and a Royal Society International Joint Project award.

  4. Characterization of hydrogen embrittlement in nickel base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Chene, J.; Baker, C. L.; Bernstein, I. M.; Williams, J. C.

    1986-01-01

    In order to study the role of CMSX2 single crystal microstructure on the combined stress-hydrogen environment effects, hydrogen was introduced by cathodic charging. Concentration measurements were carried out to investigate the dependence of hydrogen solubility and trapping on microstructure. Mechanical properties were measured at room temperature on smooth tensile specimens as a function of heat treatment, crystal orientation and H charging conditions. SEM and TEM allow to study H induced cracks initiation and propagation. A large amount of hydrogen can be dissolved and trapped in CMSX2 single crystals when exposed to a high hydrogen fugacity environment. The strong H trapping evidenced in voids explains the predominant role of these defects as crack initiation sites. The strong detrimental effect of hydrogen on the material tenacity is discussed.

  5. Growth and Characterization of Lead-free Piezoelectric Single Crystals.

    PubMed

    Veber, Philippe; Benabdallah, Feres; Liu, Hairui; Buse, Gabriel; Josse, Michael; Maglione, Mario

    2015-11-24

    Lead-free piezoelectric materials attract more and more attention owing to the environmental toxicity of lead-containing materials. In this work, we review our first attempts of single crystal grown by the top-seeded solution growth method of BaTiO₃ substituted with zirconium and calcium (BCTZ) and (K0.5Na0.5)NbO₃ substituted with lithium, tantalum, and antimony (KNLSTN). The growth methodology is optimized in order to reach the best compositions where enhanced properties are expected. Chemical analysis and electrical characterizations are presented for both kinds of crystals. The compositionally-dependent electrical performance is investigated for a better understanding of the relationship between the composition and electrical properties. A cross-over from relaxor to ferroelectric state in BCTZ solid solution is evidenced similar to the one reported in ceramics. In KNLSTN single crystals, we observed a substantial evolution of the orthorhombic-to-tetragonal phase transition under minute composition changes.

  6. Single particle detection in CMOS compatible photonic crystal nanobeam cavities.

    PubMed

    Quan, Qimin; Floyd, Daniel L; Burgess, Ian B; Deotare, Parag B; Frank, Ian W; Tang, Sindy K Y; Ilic, Rob; Loncar, Marko

    2013-12-30

    We report the label-free detection of single particles using photonic crystal nanobeam cavities fabricated in silicon-on-insulator platform, and embedded inside microfluidic channels fabricated in poly-dimethylsiloxane (PDMS). Our system operates in the telecommunication wavelength band, thus leveraging the widely available, robust and tunable telecom laser sources. Using this approach, we demonstrated the detection of polystyrene nanoparticles with dimensions down to 12.5nm in radius. Furthermore, binding events of a single streptavidin molecule have been observed.

  7. Area detectors in single-crystal neutron diffraction

    NASA Astrophysics Data System (ADS)

    McIntyre, Garry J.

    2015-12-01

    The introduction of area detectors has brought about a gentle revolution in the routine application of single-crystal neutron diffractometry. Implemented first for macromolecular crystallography, electronic detectors subsequently gradually spread to chemical and physics-oriented crystallography at steady-state sources. The volumetric surveying of reciprocal space implicit in the Laue technique has required area detectors right from the start, whether using film and more recently image plates and CCD-based detectors at reactors, or scintillation detectors at spallation sources. Wide-angle volumetric data collection has extended application of neutron single-crystal diffractometry to chemical structures, sample volumes, and physical phenomena previously deemed impossible. More than 30 of the dedicated single-crystal neutron diffractometers at steady-state reactor and neutron spallation sources worldwide and accessible via peer-review proposal mechanisms are currently equipped with area detectors. Here we review the historical development of the various types of area detectors used for single crystals, discuss experimental aspects peculiar to experiments with such detectors, highlight the scientific fields where the use of area detectors has had a special impact, and forecast future developments in hardware, implementation, and software.

  8. Some Debye temperatures from single-crystal elastic constant data

    USGS Publications Warehouse

    Robie, R.A.; Edwards, J.L.

    1966-01-01

    The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.

  9. Low-cost single-crystal turbine blades, volume 1

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Heath, B.; Fujii, M.

    1983-01-01

    The exothermic casting process was successfully developed into a low cost nonproprietary method for producing single crystal (SC) castings. Casting yields were lower than expected, on the order of 20 percent, but it is felt that the casting yield could be significantly improved with minor modifications to the process. Single crystal Mar-M 247 and two derivative SC alloys were developed. NASAIR 100 and SC Alloy 3 were fully characterized through mechanical property testing. SC Mar-M 247 shows no significant improvement in strength over directionally solidified (DS) Mar-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. The 1000 hr/238 MPa (20 ksi) stress rupture capability compared to DS Mar-M 247 was improved over 28 C. Firtree testing, holography, and strain gauge rig testing were used to evaluate the effects of the anisotropic characteristics of single crystal materials. In general, the single crystal material behaved similarly to DS Mar-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined.

  10. Single crystal ternary oxide ferroelectric integration with Silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  11. Low temperature magnetic transitions of single crystal HoBi

    SciTech Connect

    Fente, A.; Suderow, H.; Vieira, S.; Nemes, N. M.; García-Hernández, M.; Bud'ko, S. L.; Canfield, P. C.

    2013-10-01

    We present resistivity, specific heat and magnetization measurements in high quality single crystals of HoBi, with a residual resistivity ratio of 126. We find, from the temperature and field dependence of the magnetization, an antiferromagnetic transition at 5.7 K, which evolves, under magnetic fields, into a series of up to five metamagnetic phases.

  12. TOPICAL REVIEW: Organic field-effect transistors using single crystals

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm2 Vs-1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  13. Organic field-effect transistors using single crystals.

    PubMed

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm(2) Vs(-1), achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  14. A Study of Single Crystal Fatigue Failure Criteria

    NASA Technical Reports Server (NTRS)

    Sayyah, Tarek; Swanson, Gregory R.; Schonberg, William P.

    2000-01-01

    This paper presents the results of a study whose objective was to study the applicability of different failure equations in modeling low cycle fatigue (LCF) test data for single crystal test specimens. A total of four failure criteria were considered in this study. One of the failure equations was developed by Pratt & Whitney and is based on normal and shear strains on the primary crystallographic slip planes of the single crystal material. Other failure equations considered are based on isotropic criteria. Because these failure equations were originally developed for isotropic materials such as structural steel, they were modified to be applicable to the single crystal slip systems of the LCF specimen material. By observing how closely the various equations were able to reduce the scatter in the LCF test data, the applicability of those equations in modeling the LCF test data was assessed. It is desired to subsequently use the failure equation with the highest correlation in the development of a new single crystal failure criterion for the Alternative Turbopump Development (ATD) for the space shuttle main engine (SSME) High Pressure Fuel Turbopump (HPFTP).

  15. Unified constitutive model for single crystal deformation behavior with applications

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Meyer, T. G.; Jordan, E. H.

    1988-01-01

    Single crystal materials are being used in gas turbine airfoils and are candidates for other hot section components because of their increased temperature capabilities and resistance to thermal fatigue. Development of a constitutive model which assesses the inelastic behavior of these materials has been studied in 2 NASA programs: Life Prediction and Constitutive Models for Engine Hot Section Anisotropic Materials and Biaxial Constitutive Equation Development for Single Crystals. The model has been fit to a large body of constitutive data for single crystal PWA 1480 material. The model uses a unified approach for computing total inelastic strains (creep plus plasticity) on crystallographic slip systems reproducing observed directional and strain rate effects as a natural consequence of the summed slip system quantities. The model includes several of the effects that have been reported to influence deformation in single crystal materials, such as shear stress, latent hardening, and cross slip. The model is operational in a commercial Finite Element code and is being installed in a Boundary Element Method code.

  16. Dynamic actuation of single-crystal diamond nanobeams

    SciTech Connect

    Sohn, Young-Ik; Burek, Michael J.; Lončar, Marko; Kara, Vural; Kearns, Ryan

    2015-12-14

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric actuation are also studied.

  17. Reliability analysis of single crystal NiAl turbine blades

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard

    1995-01-01

    As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.

  18. Organic field-effect transistors using single crystals

    PubMed Central

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for ‘plastic electronics’. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. PMID:27877287

  19. Transverse Mode Multi-Resonant Single Crystal Transducer

    NASA Technical Reports Server (NTRS)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  20. Growth of large single crystals of MgO

    SciTech Connect

    Boatner, L.A.; Urbanik, M.

    1997-06-12

    The progressive identification of new high-technology applications and requirements for MgO single crystals in the commercial realm, as well as in DOE and other government-agency project areas, has resulted in an increased demand and international market for this material. Specifically, the demand for MgO crystals in large sizes and quantities is presently increasing due to existing and developing applications that include: (a) MgO substrates for the formation of electro-optic thin films and devices, (b) epitaxial substrates for high-temperature thin-film superconducting devices MgO optical components - including high-temperature windows, lenses, and prisms, and (d) specialty MgO crucibles and evaporation sources for thin-film production. In the course of CRADA ORNL92-0091, carried out with Commercial Crystal Laboratories of Naples, Florida as the commercial participant, we have made major progress in increasing the size of single crystals of MgO produced by means of the submerged-arc-fusion technique-thereby increasing the commercial utility of this material. Prior to the accomplishments realized in the course of this CRADA, the only commercially available single crystals of MgO were produced in Japan, Israel, and Russia. The results achieved in the course of CRADA ORNL92-0091 have now led to the establishment of a domestic commercial source of MgO single-crystal substrates and components, and the U.S. is no longer totally dependent on foreign sources of this increasingly important material.